WO2009145031A1 - Process for producing colloidal crystal and colloidal crystal - Google Patents

Process for producing colloidal crystal and colloidal crystal Download PDF

Info

Publication number
WO2009145031A1
WO2009145031A1 PCT/JP2009/058500 JP2009058500W WO2009145031A1 WO 2009145031 A1 WO2009145031 A1 WO 2009145031A1 JP 2009058500 W JP2009058500 W JP 2009058500W WO 2009145031 A1 WO2009145031 A1 WO 2009145031A1
Authority
WO
WIPO (PCT)
Prior art keywords
colloidal
crystal
temperature
dispersion
polycrystal
Prior art date
Application number
PCT/JP2009/058500
Other languages
French (fr)
Japanese (ja)
Inventor
山中 淳平
真里子 篠原
彰子 豊玉
幸樹 吉沢
佐智子 恩田
米勢 政勝
内田 文生
Original Assignee
公立大学法人名古屋市立大学
富士化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人名古屋市立大学, 富士化学株式会社 filed Critical 公立大学法人名古屋市立大学
Priority to KR1020107027281A priority Critical patent/KR101232315B1/en
Priority to JP2010514424A priority patent/JP5663752B2/en
Priority to CN200980117929.XA priority patent/CN102036747B/en
Priority to US12/994,087 priority patent/US9017477B2/en
Priority to EP09754539A priority patent/EP2295137B1/en
Publication of WO2009145031A1 publication Critical patent/WO2009145031A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B5/00Single-crystal growth from gels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension

Definitions

  • the present invention belongs to the technical field of colloids, and more particularly, to a method for producing colloidal crystals using a colloidal polycrystal dispersion that crystallizes with temperature change, and colloidal crystals produced using the same.
  • Colloid is a state in which colloidal particles having a size of several nm to several ⁇ m are dispersed in a medium, and has a wide range of industrial applications in the field of paints, medicines and the like.
  • the colloidal particles are regularly arranged in the colloidal dispersion to form a structure called "colloidal crystals".
  • crystals are formed of a colloidal system in which particles made of a polymer (polystyrene, polymethyl methacrylate or the like) having a dissociative group on the surface or silica particles (SiO 2 ) are dispersed in a polar medium such as water. Since the electrostatic interaction extends over a long distance, crystals can be formed even with a low particle concentration (long distance between particles) and a particle volume fraction of about 0.001.
  • a polymer polystyrene, polymethyl methacrylate or the like
  • silica particles SiO 2
  • Colloidal crystals conduct Bragg diffraction of electromagnetic waves in the same manner as ordinary crystals.
  • the diffraction wavelength can be set in the visible light range by selecting the manufacturing conditions (particle concentration and particle size). For this reason, application development to optical elements including photonic materials is currently being actively studied in and outside the country.
  • the mainstream of the optical material manufacturing method is a multilayer thin film method and a lithography method. Either method is excellent in periodic accuracy, but in the former, only one or two-dimensional periodic structure can be obtained.
  • the uniformity of the interplanar spacing is good when particles having a uniform particle diameter are used.
  • the region with good single crystallinity is limited to about 10 cycles, and construction of a macro three-dimensional structure (that is, a large colloidal single crystal) is difficult in the method of depositing fine particles.
  • a colloidal crystal is obtained as a polycrystalline body in which microcrystals of about 1 mm square are gathered, but when it is used as an optical element, a single crystal of cm order is often required.
  • colloidal crystals generally have various lattice defects and inhomogeneities, which may prevent their use as optical elements. From the above, it is required to establish a method of producing a colloidal crystal that is (1) high quality (ie, the absence of lattice defects and nonuniformity as much as possible) and (2) large single crystals can be produced. It is done.
  • Non-patent document 1 As a method of controlling the formation of colloidal crystals derived from charged colloid systems, charged colloidal polycrystals have been used so far among parallel plates having a gap of about 0.1 mm with respect to ionic polymer latex / water dispersion systems.
  • a method (Non-patent document 1) for obtaining a single crystal by shear orientation of 1 and a method (non-patent document 2) for applying an electric field to perform crystallization have been reported.
  • these methods require special equipment for shear field application, and in the latter case, the electrode reaction generates impurity ions, which interfere with crystallization, etc. is there.
  • Non-patent document 3 there is a report in which charged colloidal crystals are solidified with polymer gel and the crystal plane distance is controlled using volume change of gel due to temperature change (Non-patent document 3), however, complicated processes are required. Also, generation of crystals from disordered particle arrangement has not been attempted.
  • the present inventors have also developed a method for producing a colloidal crystal in which a specific ionized substance is allowed to coexist in a charged colloid dispersion system, and a colloidal crystal is formed by temperature change (Patent Document 1). According to this method, colloidal crystals can be produced relatively easily from various charged colloid systems without the need for special equipment or complicated steps. However, in this method, it is difficult to produce large single crystals exceeding 1 cm.
  • Non-Patent Documents 4 and 2 Non-Patent Documents 4 and 2.
  • this method has the disadvantage that crystal growth is extremely time-consuming.
  • spectroscopic measurement revealed that there is global nonuniformity (tilt and fluctuation) in the lattice spacing of the large crystal thus obtained.
  • Patent Document 3 a colloidal dispersion in which pyridine is added to silica colloid is prepared. Since the degree of dissociation of pyridine changes with temperature, the colloidal dispersion liquid has the property that the charge density of the silica particles increases as the temperature increases, and colloidal crystals are precipitated. The colloidal dispersion is placed in a container without colloidal crystals deposited. Then, one end side of the container is warmed and set to a temperature at which the colloidal crystal is locally deposited.
  • the range set to the temperature at which the colloidal crystal precipitates is gradually expanded to grow the colloidal crystal.
  • the colloidal crystal thus obtained was an extremely large single crystal, and was also reduced in lattice defects and inhomogeneities. For this reason, the half value width in an absorption spectrum and a reflection spectrum could be set in a very narrow range of 20 nm or less.
  • the spatial non-uniformity of the diffraction wavelength can be made extremely high, of 2.0% or less.
  • spatial nonuniformity refers to the standard deviation of the spatial distribution of diffraction wavelengths of a colloidal crystal measured by reflection spectroscopy or transmission spectroscopy, divided by the weighted average value of diffraction wavelengths, and expressed as a percentage (Same below).
  • the temperature at which the colloidal crystal precipitates from the colloidal dispersion changes not only by the concentration of pyridine but also by a slight ionic impurity.
  • the present invention has been made in view of such conventional circumstances, and is a method for producing a colloidal crystal which can easily, inexpensively and reliably produce a large-size colloidal crystal with few lattice defects and nonuniformities. Providing is an issue to be solved.
  • a preparation step of preparing a colloidal polycrystal dispersion liquid in which colloidal polycrystals melt at a predetermined temperature a storage step of containing the colloid polycrystal dispersion liquid in a container, and the inside of the container Recrystallization process of recrystallizing the colloidal polycrystal by changing the temperature of a part or all of the region of the colloidal polycrystal dispersion of the above to a temperature at which the colloidal crystal is precipitated again And.
  • a colloidal polycrystal dispersion in which the colloidal polycrystal melts at a predetermined temperature is prepared.
  • the colloidal polycrystal dispersion in which colloidal polycrystals are deposited is housed in a container.
  • the temperature of a partial region or the entire region of the colloidal polycrystal dispersion in the container is set to a temperature at which the colloidal crystal does not precipitate, and then changed again to the temperature at which the colloidal crystal precipitates.
  • the colloidal polycrystal dispersion liquid in which the colloidal polycrystal has been precipitated in advance is used for recrystallization after melting, recrystallization can be surely performed. For this reason, it is possible to precipitate colloidal crystals with good reproducibility without paying great attention to the purity of chemicals and solvents, cleaning of containers, and the like. Moreover, according to the test results of the inventors, the colloidal crystal thus obtained becomes a very large single crystal, and also has few lattice defects and nonuniformities.
  • the method for producing a colloidal crystal of the present invention it is possible to easily and inexpensively produce a large-size, colloidal crystal with few lattice defects and nonuniformities, and reliably.
  • a temperature control means sets a part of the colloidal polycrystal dispersion to a temperature at which the colloidal crystal melts to form a melting region and move the melting region. It can be recrystallized by the zone melt method. According to this method, large colloidal single crystals can be easily produced.
  • the impurity colloidal particles are present in the colloidal polycrystal dispersion, it also has the effect of preventing the impurity colloidal particles from entering the colloidal single crystal.
  • the movement of the melting region can be performed by the movement means which enables relative movement between the temperature control means and the container. If the movement of the melting region is performed in this way, the relative movement velocity of the melting region is slowed to slow recrystallization from the molten state to the crystalline state to achieve enlargement of the single crystal, or the relative movement velocity of the melting region.
  • the recrystallization can be easily controlled by making the single crystal faster and making the single crystal faster. For this reason, it is possible to balance the quality of the colloidal crystal and the efficiency of production according to the purpose.
  • the movement of the melting region may be performed by moving the container, may be performed by moving the temperature control means, or may be performed by moving both the container and the temperature control means. .
  • the moving speed of the melting region may be appropriately selected depending on the composition of the colloidal polycrystal dispersion, the temperature of the melting region, etc., but usually 10 mm / min or less is preferable, and 2 mm / min or less is more preferable. If the moving speed of the melting region is too fast, it becomes difficult to precipitate large colloidal single crystals.
  • the colloidal polycrystal dispersion is preferably filled between two walls facing in a substantially parallel manner.
  • free convection in the container hardly occurs, so that the growth of the colloidal crystal is not easily disturbed, and a large single crystal with less lattice defects and nonuniformities can be manufactured.
  • the direction of changing the temperature of the colloidal dispersion may be either parallel to the wall or perpendicular to the wall.
  • a highly viscous liquid such as ethylene glycol or glycerin is used as the colloid dispersion medium, the same effect can be obtained because convection hardly occurs.
  • a method for preparing a colloidal polycrystal dispersion in which colloidal polycrystals melt at a predetermined temperature it is possible to add a weak acid or a weak base whose degree of dissociation changes with temperature change.
  • the degree of dissociation of pyridine which is a weak base, increases with increasing temperature (pK b values in salt-free aqueous solution of pyridine determined by electrical conductivity measurement are 9.28 and 8.53 at 10 and 50 ° C. Decreased linearly with the temperature).
  • a colloidal dispersion system such as a silica colloidal dispersion system
  • the effective surface charge density ⁇ e value of the colloidal particles increases with the temperature rise.
  • the above dissociation at various temperatures is in equilibrium in a much shorter time than the time required for the temperature change of the system under normal use conditions. That is, since the ⁇ e value is uniquely determined by the sample temperature and is not dependent on the temperature history and the like up to that point, melting and recrystallization of the colloidal polycrystal dispersion occur thermoreversibly.
  • weak bases weak acids and salts whose degree of dissociation changes with temperature change are exemplified, but not limited thereto.
  • Preferred weak bases include, for example, pyridine and pyridine derivatives (monomethylpyridine, dimethylpyridine, trimethylpyridine etc.), which increase in degree of dissociation with increasing temperature.
  • These pyridines or pyridine derivatives are particularly preferred for use in the present invention because they have a suitable pK b value for the crystallization of the silica particles and that the change in the pK b value with temperature is sufficiently large.
  • uracil, quinoline, toluidine, aniline (and derivatives thereof) and the like can be used as a weak base, and the degree of dissociation also increases with the temperature rise.
  • examples of weak acids include acids whose degree of dissociation decreases with an increase in temperature in an aqueous solution, such as formic acid, acetic acid, propionic acid, butyric acid, chloracetic acid, phosphoric acid, oxalic acid, malonic acid and the like.
  • an acid such as boric acid or carbonic acid whose degree of dissociation increases with temperature rise.
  • the salt obtained by the neutralization of the weak base and the weak acid as described above is also temperature-dependent in the degree of dissociation and can be used as a weakly ionizable substance in the present invention. Whether the degree of dissociation increases or decreases depending on temperature depends on the magnitude relationship between the strength of the acid and the base.
  • a mixed system of a weak acid and a strong base instead of using a weak acid or a weak base alone, a mixed system of a weak acid and a strong base, a mixed system of a weak base and a strong acid, and the like can be used.
  • temperature change of dielectric constant of the medium can also be used. That is, although the electrostatic interaction between colloidal particles increases with the decrease of the dielectric constant, the dielectric constant of the ordinary liquid decreases with the temperature, so the dielectric constant can be changed by heating to precipitate the colloidal crystals.
  • the colloidal particles of the colloidal polycrystal dispersion may be silica particles, the dispersion medium may be water, and the weak base may be pyridine and / or a pyridine derivative. With such a colloidal polycrystal dispersion, it is possible to reliably produce large single crystals with few lattice defects and nonuniformities.
  • colloidal crystals can be precipitated at a predetermined temperature.
  • the temperature dependence of the degree of dissociation of the strong base is considered to be low, it is nevertheless possible to precipitate the colloidal crystal even by the addition of the strong base because the dielectric of the colloidal polycrystal dispersion according to the temperature change. It is considered that the change in the rate or the change in the degree of dissociation of the functional group on the surface of the colloidal particle due to the temperature change.
  • the colloidal crystal is changed by changing the temperature to change the dielectric constant of the colloidal polycrystal dispersion and the degree of dissociation of the functional group on the surface of the colloidal particle. It can be deposited.
  • the colloidal crystal after the colloidal crystal is grown, it can be solidified by gelation.
  • solidifying the colloidal crystal by gelation can maintain the structure of the colloidal crystal even when the temperature is returned to a temperature at which the colloidal crystal does not precipitate.
  • the mechanical strength of the colloidal crystal can be dramatically increased.
  • the gelled colloidal crystal is a material having the unique properties of the gel matrix. For example, when the gelled colloidal crystal is mechanically compressed and deformed, the crystal lattice spacing also changes, so that the material can control the diffraction wavelength.
  • the gelled colloidal crystals swell or shrink in response to the type of liquid, physical or chemical environment such as temperature or pH.
  • a photocurable resin is dispersed in a colloidal polycrystal dispersion liquid, and a colloidal crystal is precipitated, and then light is irradiated to gelate.
  • the photocurable gelling agent it is preferable to select a material that generates less ions. This is because when using a photocurable gelling agent from which ions are generated, the surface potential of the charged colloid dispersed in the colloidal polycrystal dispersion may change to cause a state change of the colloid.
  • Examples of such a photocurable gelling agent with low ion generation include solutions containing a gel monomer, a crosslinking agent, and a photopolymerization initiator.
  • vinyl monomers such as acrylamide and derivatives thereof, N, N'-methylenebisacrylamide as a crosslinking agent, and as a photopolymerization initiator, 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) -propionamide] and the like.
  • a water-soluble photosensitive resin having an azide-based photosensitive group pendant to polyvinyl alcohol can also be used.
  • the temperature control means in the recrystallization step, cooling or heating from one end side of the container by the temperature control means is performed to melt the colloidal polycrystal in the colloidal polycrystal dispersion, and then the temperature control means is used. It is also possible to stop the cooling or heating and recrystallize.
  • the colloidal crystal obtained by the production method of the present invention can be set to a very narrow range of 10 nm or less in the absorption spectrum and the reflection spectrum.
  • spatial nonuniformity of the diffraction wavelength can also be 0.2% or less.
  • spatial nonuniformity refers to the standard deviation of the spatial distribution of diffraction wavelengths of a colloidal crystal measured by reflection spectroscopy or transmission spectroscopy, divided by the weighted average value of diffraction wavelengths, and expressed as a percentage (Same below).
  • the diffraction wavelength is in the range of 400 to 800 nm, the nonuniformity of the diffraction wavelength is 0.2% or less, and the transmittance at the diffraction wavelength is 0 at a thickness of 1 mm. It is not more than 1%, the number of layers in the crystal lattice plane is 3,000 or more, and a colloidal crystal composed of a single crystal having a maximum diameter of 1 cm or more can be obtained.
  • the diffraction wavelength is in the range of 400 to 800 nm, so that visible light can be diffracted.
  • the spatial non-uniformity of the diffraction wavelength is 0.2% or less, and the accuracy of the diffracted wavelength is extremely high.
  • the transmittance at the diffraction wavelength is 0.1% or less, the efficiency of diffraction is also extremely good. Due to these characteristics, the present invention can be applied to the fields of optical communication connectors, optoelectronic devices such as optical amplification, color imaging devices, high-power lasers, cosmetics and accessories as a photonic crystal.
  • FIG. 14 is a schematic view of an apparatus used for the method of producing a colloidal crystal of Example 3.
  • Example 3-3 It is a diffraction image obtained by Kossel line analysis of a recrystallized region. It is a photograph of the colloidal crystal gelled in Example 3-3. It is the transmission spectrum of the part to which the zone melting method in Example 3-3 is not applied, and the part to which the zone melting method was applied.
  • colloidal polycrystal dispersion used in the present invention is a system in which silica fine particles are dispersed in water.
  • silica fine particles are dispersed in water, partially dissociated Si-O of OH weakly acidic silanol groups covering the surface (Si-OH) - with the, and the counterions around The called plus ion (H + ) is distributed.
  • an ionizable substance such as pyridine
  • the degree of dissociation of the silanol group changes, and the effective surface charge density ⁇ e of the particles changes.
  • the characteristic that the effective surface charge density ⁇ e can be controlled relatively easily. Is the merit of silica particles, which can be used to prepare colloidal crystals.
  • the colloidal polycrystal dispersion used in the method for producing a colloidal crystal of the present invention is not limited to the silica-water system, and colloidal particles having a charge derived from a weak acid or weak base on the surface are dispersed in a liquid medium.
  • a weakly ionizable substance as described above can be applied to other ionic colloid dispersion systems in which the ionized substance is dissociated (ionized) in the liquid medium and the charge on the surface of the colloidal particle can be changed.
  • colloidal particles those having a weak acid on the surface can be used similarly to silica, and for example, titanium oxide fine particles, carboxy-modified latex (latex having carboxyl group on the surface), etc. can be used. Furthermore, as long as it has a weak base on the surface, by adding a weak acid, a function similar to that of silica + pyridine can be expressed, and the corresponding colloidal particles have aluminum oxide or an amino group. Latex etc. can be mentioned. In addition, since the surface of the particles only needs to have the above-mentioned properties, the present invention can be applied to particles whose surface is coated with silica, a titanium oxide layer or the like.
  • colloidal systems consisting of globular proteins and clay minerals with both weak acids and weak bases.
  • colloidal acids including various colloidal particles in which various weak acids and weak bases are introduced to the particle surface by surface modification methods such as introducing a weak base to the surface of silica particles using a silane coupling agent having an amino group
  • the present invention is also applicable to crystal dispersions.
  • a liquid other than water can be exhibited as long as it can exhibit a high dielectric constant such that the dissociative group (charge-imparting group) on the surface of the colloidal particle and the weakly ionized substance (weak acid, weak base, salt) can be dissociated.
  • the dissociative group charge-imparting group
  • the weakly ionized substance weak acid, weak base, salt
  • formamides eg, dimethylformamide
  • alcohols eg, ethylene glycols
  • colloidal polycrystal dispersion liquid to which a weak acid or a weak base is added a commercially available colloidal particle may be dispersed in an appropriate dispersion medium such as water, or a sol-gel method etc. may be used. Since the formation of crystals is inhibited by the presence of a trace amount of salt (ionic impurities), it is preferable to carry out sufficient desalting in preparation of the colloidal dispersion system. For example, in the case of using water, first, purified water is dialyzed until the electric conductivity of the used water becomes approximately equal to the value before use, and then the ion exchange resin (cation And desalting purification by keeping the mixed bed of anion exchange resin in the sample for at least one week.
  • ion exchange resin cation And desalting purification by keeping the mixed bed of anion exchange resin in the sample for at least one week.
  • the particle diameter of the colloidal particles is preferably 600 nm or less, more preferably 300 nm or less. This is because, in the case of a colloidal particle having a large particle diameter such as a particle diameter exceeding 600 nm, it tends to settle due to the influence of gravity. Further, the standard deviation of the particle diameter of the colloidal particles is preferably 15% or less, more preferably 10% or less. If the standard deviation is large, crystals are less likely to form, and even if crystals are formed, lattice defects and inhomogeneity increase, and it is difficult to obtain high quality colloidal crystals.
  • the electrostatic interaction between the colloidal particles governing crystallization in the charged colloid system is the effective surface of the particles. Not only charge density ( ⁇ e ) but also particle volume fraction ( ⁇ ) and additive salt concentration (Cs) are influenced. Therefore, the temperature at which crystallization of the colloid occurs and the amount of weakly ionized substance to be added differ depending on ⁇ and Cs of the initial colloidal dispersion system. For example, when pyridine (Py) is added as a weakly ionizable substance, crystallization generally occurs under conditions of higher pyridine concentration as the Cs value is higher when compared under constant temperature and ⁇ conditions.
  • a colloidal dispersion system is prepared so that ⁇ (volume fraction of colloid particles) is about 0.01 to 0.05, and Cs (addition salt concentration) is about 2 to 10 ⁇ mol / L.
  • the specific gravity of the colloidal particles can be determined by the picometer method or the like, and using this value, the ⁇ value of the colloidal particles of the colloidal dispersion system can be determined by the absolute drying method.
  • a liquid medium such as purified water is added to this colloidal dispersion system and diluted to prepare a dispersion system having a predetermined ⁇ value.
  • the ⁇ value is calculated so as to have a crystal plane spacing in accordance with the desired characteristics of the colloidal crystal.
  • an aqueous solution of low molecular weight salt such as NaCl is added to control the Cs value.
  • the colloidal system prepared as described above can be heated or cooled, the presence or absence of crystals can be confirmed, and the crystallization temperature can be evaluated.
  • X-ray scattering, optical microscopy, spectrophotometry (reflection or transmission spectrum measurement), and the like can be applied in addition to the observation of iridiumescence.
  • crystallization of colloidal particles can be generated thermoreversibly by a simple means of simply heating or cooling the system from the outside.
  • This crystallization can be controlled by changing the concentration of weakly ionizable substances such as pyridine, but the concentration of weakly ionizable substances does not have to be as strict as when adding a strong base such as NaOH. . That is, since the concentration of the dissociated species is very small compared to the concentration of the weakly ionized substance added, the change of the surface charge density ( ⁇ e ) of the colloidal particle with respect to the weakly ionized substance concentration is more gradual than that when the strong base is added.
  • the advantage is that a certain concentration range is acceptable.
  • the crystallization temperature can be easily adjusted by changing the concentration of the weakly ionized substance. It has already been confirmed that the silica / water colloid using pyridine can be adjusted in the range of 2 to 60.degree.
  • the present invention since the system can be kept in a closed system, it is possible to prevent contamination by ionic impurities and obtain high-performance colloidal crystals.
  • the present invention is expected to be applied to a wide range of applications such as optical elements whose light response characteristics can be controlled.
  • the method for producing a colloidal crystal according to the present invention utilizes a colloidal particle having a charge on the surface, a dispersion medium for dispersing the colloidal particle, and a colloid system containing a weakly ionizable substance whose degree of dissociation changes with temperature change in the dispersion medium. It is possible to externally apply a temperature change to this to generate a colloidal crystal. Such a weakly ionized substance-containing colloid system reversibly crystallizes and changes its physical property due to temperature change, and therefore, it is possible to apply this property to applications other than the production of colloidal crystals.
  • thermosensitive material heat-sensitive paint, temperature sensor, etc.
  • the viscosity of the system is expected to increase with the temperature.
  • the viscosity generally decreases monotonically as the temperature increases.
  • Application to the improvement of the temperature characteristic of, for example, a liquid (such as oil for a clutch) used in a conventional stress transfer system is also expected by utilizing such a unique viscosity-temperature characteristic.
  • the temperature when transitioning from the molten state to the solid-liquid coexistence state is the melting point T m
  • the temperature when transitioning from the solid-liquid coexistence state to the crystal state is the freezing point T f
  • the melting point T m and the freezing point T at various pyridine concentrations f was measured.
  • T m and T f depend on the concentration of added pyridine, and T m and T f decrease as the concentration of pyridine increases, and T m and T f depend on the amount of addition of pyridine. It turned out that the value of can be controlled.
  • the melting test shown below was conducted. That is, as shown in FIG. 2, the quartz cell 1 filled with the colloidal polycrystal dispersion is fixed in the horizontal direction, and a large number of thermocouples 2 in the width direction at the top face side in the length direction, etc. Installed at intervals, it was possible to measure the temperature of each part. Then, one end side of the quartz cell 1 is brought into contact with the water tank 3 connected to a cooling water circulation device (not shown) to circulate cold water of a predetermined temperature (0 ° C., 3 ° C., 7 ° C.) The colloidal crystals were melted. The state of melting of the colloidal crystals could be clearly confirmed by the naked eye.
  • the whole cell before bringing the water tank 3 into contact with the quartz cell 1, the whole cell was a crystal region in which an interference color is observed, but after bringing the water tank 3 into contact with one end of the quartz cell 1, the colloidal crystal It was observed that the melted region in the cloudy state spread from one end to the other end. Furthermore, bright spots were scattered between the melted region and the crystalline region, and a solid-liquid coexisting region considered to be a liquid crystal state was observed. Then, the temperature at the boundary between the melting region and the solid-liquid coexistence region was measured as the melting point T m , and the temperature at the boundary between the solid-liquid coexistence region and the crystal region as the freezing point T f .
  • Example 1-1 a large colloidal single crystal was prepared from fine colloidal polycrystals by the zone melt method shown below.
  • silica colloid particles KE-W10 (diameter: 0.11 ⁇ 0.01 ⁇ m, specific gravity: 2.1) manufactured by Nippon Shokubai Co., Ltd. were purified by dialysis using a semipermeable membrane and ion exchange using an ion exchange resin.
  • colloidal polycrystal dispersion fine colloidal polycrystals were observed with the naked eye when sparkling at room temperature.
  • the colloidal polycrystal dispersion was separately charged in a quartz cell, and after precipitation of fine colloidal polycrystals, it was cooled, and the temperature at which the colloidal crystals melted was measured to be 10 ° C.
  • a colloidal polycrystal dispersion in which this fine colloidal polycrystal is dispersed is filled in a quartz cell C having a thickness of 1 mm, a width of 1 cm and a length of 4.5 cm as shown in FIG.
  • a quartz cell C was placed on the X-axis stage 4 so as to be parallel to the horizontal plane.
  • the automatic X-axis stage 4 is provided with a rectangular stage 6 on a base 5, and a stepping motor 7 is attached to one end of the base 5.
  • the stage 6 can be moved in the longitudinal direction via a rack-pinion mechanism (not shown) by driving the stepping motor 7.
  • the stage 6 can be driven at a predetermined speed. It is movable in one direction.
  • a U-shaped jig 8 is installed so as to straddle the automatic X-axis stage 4 and a Peltier element 9 is attached to the lower center of the jig 8 with the lower side as the cooling side.
  • a thin plate-like convex member 10 made of aluminum is disposed at the center of the lower surface side of the Peltier element 9 so as to protrude downward while in contact with the Peltier element 9.
  • the width direction of the convex member 10 is the same as the width direction of the quartz cell C, and the tip of the convex member 10 is in contact with the quartz cell C.
  • the Peltier device 9 can be cooled so that the lower surface side has a predetermined temperature by supplying power from a power supply (not shown). Further, the heat insulating members 11a and 11b are provided on both sides facing the convex member 10 with a slight gap therebetween. Further, a thermocouple 12 is attached near the tip of the convex member 10.
  • FIG. 5 shows the state before recrystallization and after recrystallization by the zone melt method. From this photograph, it was found that although many fine polycrystals were observed before recrystallization, the interference color became homogeneous after recrystallization, and single crystallization progressed. Furthermore, the reflection spectrum and absorption spectrum of the colloidal crystal thus obtained were measured by fiber spectroscopy. As a result, the half width is 6.33 nm before recrystallization, but becomes 5.28 nm after recrystallization (diffraction wavelength is 554 nm both before and after crystallization), and the optical characteristics of the crystal are improved by recrystallization. It turned out to do.
  • the fluctuation of the diffraction wavelength was also very slight (1 nm or less), and the spatial nonuniformity was 0.04% in reflection spectrum measurement: 0.05% in transmission spectrum measurement It has been calculated that it has extremely excellent uniformity. Furthermore, it was found that the transmittance at a diffraction wavelength at a thickness of 1 mm was 0.009, and that the grating exhibited excellent performance as a diffraction grating. In addition, it was found that the transmittance at a wavelength slightly deviated from the diffraction wavelength was large, and the transparency was excellent at wavelengths other than the diffraction wavelength.
  • Example 1-2 to 1-4 the moving speed of the Peltier element 9 is different from that in Example 1-1 (ie, 18 mm / min in Example 1-2 and 30 mm / min in Example 1-3).
  • Example 1-4 colloidal crystals were prepared at 42 mm / min. Other preparation conditions are the same as in Example 1-1. The results are shown in FIG. From this figure, it was found that the crystal size becomes smaller as the moving velocity ⁇ of the cooled portion (ie, the melting region of the colloidal polycrystal) increases.
  • FIG. 7 (a) shows an image of the temperature distribution every 5 minutes.
  • FIG. 7B is a diagram showing the relationship between the position x (distance from the left end of the cell) on the horizontal line shown in each image of FIG. 7A and the temperature.
  • the darkest portion at 15 ° C. or lower is the Peltier element 9, and the portion in contact with this is the melting zone of the colloidal crystal.
  • the temperature of the cell surface opposite to the side in contact with the Peltier element 9 is 23 ° C. in Example 1-4, 22 ° C. in Example 1-3, and 18 ° C. in Example 1-2.
  • Example 2-1 fluorescent polystyrene particles were used as the simulated impurities, and the exclusion test of the impurity particles was performed by the zone melt method.
  • the colloidal polycrystal dispersion is placed in a 1 ⁇ 1 ⁇ 4.5 cm quartz cell, and using the zone melt apparatus used in Example 1-1, the temperature of the tip of the convex member 10 is 3 ° C. at 25 ° C. While controlling the Peltier element 9, zone melt processing was performed by moving about 3 cm leftward from the right end of the cell at a speed of 2 mm / min. The appearance of the colloidal crystal thus obtained is shown in FIG. The portion indicated by the arrow in the figure is the portion subjected to zone melt processing, and it can be seen that the colloidal single crystal is precipitated. A polycrystalline region remained at the left end of the zone melt-treated portion.
  • FIG. 8 The fluorescence microscope image in (a) (polycrystal area
  • the other conditions are the same as in Example 2-1, and the detailed description will be omitted.
  • the zone melt method which has conventionally been used to obtain single crystals of silicon and the like, can also be applied to colloidal crystal systems. That is, since the crystal grain boundary has a melting point lower than that of the inside of the crystal, the colloidal polycrystals are cooled by the zone melt method to melt fine crystal grains, and when heated again for crystallization, the same crystal orientation as the surrounding The crystal with orientation is remodeled and single crystallization proceeds (see FIG. 10). In addition, it is assumed that other crystal defects (for example, vacancies, twin defects, etc.) can be similarly removed by the zone melting method in which melting / recrystallization is performed.
  • Example 3 Preparation of Colloidal Crystal by Method of Stopping Cooling after Precipitation from One Direction and Precipitation of Colloidal Crystal> (Example 3)
  • a quartz cell filled with a colloidal polycrystal dispersion composed of colloidal polycrystals is cooled from one direction, and then the cooling is stopped and recrystallization is carried out to prepare a giant colloidal single crystal from fine colloidal polycrystals.
  • the volume fraction ( ⁇ ) of the silica colloid in the colloidal polycrystal dispersion for crystallization was set to 0.035, and the pyridine concentration was set to 50 ⁇ mol / L.
  • the other conditions for preparing the colloidal polycrystal dispersion are the same as in Example 1, and the description will be omitted.
  • the colloidal polycrystal dispersion thus obtained is filled in the same quartz cell as in Example 1, and the quartz cell 20 is fixed in the horizontal direction as shown in FIG. It abuts on the central part of the direction, and the temperature of each part is set to be measurable. Then, one end side of the quartz cell 20 is brought into contact with the water tank 22 connected to a cooling water circulation device (not shown) to make it 0 ° C., and the colloidal crystal is melted from one end side to the other end. The colloid crystals were separated again and precipitated.
  • thermocouple 21 was placed at a distance of 2.5 mm, 7.5 mm, 12.5 mm and 17.5 mm from the water tank 22. Further, the signal from the thermocouple 21 is digitized by the A / D converter 23 and taken into the personal computer 24 as digital data.
  • the state of the melting of the colloidal crystal could be clearly confirmed by the naked eye. That is, when the cooling by the water tank 22 is stopped, the melted region of the turbid state in which the colloidal crystal is melted is observed on the side close to the water tank 22, and the colloid crystal is not melted on the side far from the water tank 22, and the interference color is An observed crystalline region was observed.
  • FIG. 12 A photograph of the case where the colloidal crystal is precipitated is shown in FIG. 12, and the temperature of each part is shown in FIG. 13 (mm in FIG. 13 indicates the distance from the water tank 22).
  • FIG. 12 it was possible to clearly distinguish between a single crystallization region showing a homogeneous interference color in which the colloidal polycrystal melts and recrystallizes, and a region where the colloidal polycrystal remains as it is without melting.
  • the center wavelength was 620 nm for both, but the half width was 5.47 nm for the part not recrystallized.
  • the recrystallized part it became as small as 4.64 nm, and it turned out that it has excellent optical properties.
  • Kossel line analysis of a colloidal recrystallization region prepared using a colloidal polycrystal dispersion liquid with a pyridine concentration of 50 ⁇ mol / L was performed.
  • the Kossel line is originally that when X-rays are irradiated to a single crystal substance, characteristic X-rays generated secondarily inside the crystal work as point light sources, and the light is diffracted by various crystal lattice planes. It indicates the characteristic diffraction pattern to be obtained, and analysis of the Kossel line can determine the orientation and lattice structure of the crystal lattice. This method is applied to the above-mentioned colloidal crystal, and the method of Sawada et al. (T. Kanai, T.
  • FIG. 16 shows a Kossel line photograph of the single crystal thus obtained. It is concluded that the ring pattern in the center is diffraction from the BCC ⁇ 110 ⁇ plane oriented parallel to the cell wall, and the pattern around the ring is due to the BCC ⁇ 200 ⁇ plane ( A. Toyotama, J. Yamanaka, M. Yonese, T. Sawada, F. Uchida, J. Am. Chem. Soc. Vol. 129, p. 3044 (2007)). As can be seen from this figure, it was supported that a well-oriented single crystal was formed.
  • N-methylol acrylamide hereinafter referred to as "N-MAM”
  • Bis N, N'-methylenebisacrylamide
  • PA 2,2'-azobis [2-methyl-N- (2)
  • Preparation of silica colloidal polycrystal dispersion prepared by mixing —hydroxyethyl) -propionamide] hereinafter referred to as “PA”
  • Bis plays a role as a crosslinking agent
  • PA plays a role as a photopolymerization initiator.
  • the composition of the silica colloidal polycrystal dispersion is 0.05 volume fraction ( ⁇ ) of silica colloid, 42.5 ⁇ mol / L of pyridine concentration, 5 mmol / L of Bis, 50 ⁇ g / ml of PA,
  • the N-MAM was 195 to 390 mmol / L (ie, Example 3-1 is 195 mmol / L, Example 3-2 is mmol / L, and Example 3-3 is 390 mmol / L).
  • the silica colloidal polycrystal dispersion thus obtained is put into the cell used in Example 1-1, a colloidal single crystal is obtained by zone melt method in a dark room, and the colloidal single crystal is further irradiated with ultraviolet light to obtain N-MAM. Polymerized. As a result, as shown in Table 1, it was found that the higher the concentration of N-MAM, the harder the gel state (in the table, ⁇ indicates a hard gel state, ⁇ indicates a soft gel state, and x indicates a flow state) To indicate no gelation).
  • FIG. A photograph of the gelled colloidal crystals of Example 3-3 is shown in FIG. Here, it is between 15 mm from the right end to the left that the recrystallization of the colloidal polycrystal is performed by the zone melt method, and an interference color consisting of substantially a single color was observed between them. On the other hand, in the portion where the recrystallization of the colloidal polycrystal by the zone melt method was not performed, the colloidal polycrystal consisting of various colors was recognized. Furthermore, when the transmission spectrum of the gelled colloidal crystal thus obtained was measured, as shown in FIG.

Abstract

Provided is a process for producing colloidal crystals from which a large single crystal reduced in lattice defects and unevenness can be easily produced at low cost without fail. The process for colloidal crystal production comprises: preparing a colloidal polycrystal dispersion in which colloidal crystals precipitate at a given temperature (preparation step); introducing into a vessel the colloidal polycrystal dispersion in the state of containing fine colloidal polycrystals precipitated (introduction step); and dissolving the colloidal polycrystals and then recrystallizing the dissolved polycrystals (recrystallization step).  The crystals thus obtained have fewer lattice defects and less unevenness than the original polycrystals.

Description

コロイド結晶の製造方法及びコロイド結晶Method of producing colloidal crystal and colloidal crystal
 本発明は、コロイドの技術分野に属し、さらに詳しくは、温度変化により結晶化するコロイド多結晶分散液を利用したコロイド結晶の製造方法及びそれを用いて製造されたコロイド結晶に関する。 The present invention belongs to the technical field of colloids, and more particularly, to a method for producing colloidal crystals using a colloidal polycrystal dispersion that crystallizes with temperature change, and colloidal crystals produced using the same.
 コロイドとは、数nmから数μmの大きさを有するコロイド粒子が媒質中に分散している状態をいい、塗料や医薬品の分野等で幅広い産業的用途を持つ。 Colloid is a state in which colloidal particles having a size of several nm to several μm are dispersed in a medium, and has a wide range of industrial applications in the field of paints, medicines and the like.
 適切な条件を選ぶと、コロイド粒子はコロイド分散液中で規則正しく配列し、“コロイド結晶”と呼ばれる構造を形成する。このコロイド結晶には2つのタイプが存在する。第一は、粒子間に特別な相互作用が無いコロイド系(剛体球系)において、粒子体積分率が約0.5(濃度=50体積%)以上の条件で形成される結晶である。これは、巨視的な球を限られた空間に詰め込んでいくと、規則配列する現象に似ている。第二は、荷電したコロイド粒子の分散系(荷電コロイド系)において、粒子間に働く静電相互作用により形成される結晶構造である。例えば、表面に解離基を持つ高分子(ポリスチレン、ポリメチルメタクリレートなど)製の粒子やシリカ粒子(SiO)を、水などの極性媒体に分散したコロイド系で結晶が形成される。静電相互作用は長距離に及ぶため、粒子濃度の低い(粒子間の距離の長い)、粒子体積分率が約0.001程度でも結晶が生成し得る。 By choosing appropriate conditions, the colloidal particles are regularly arranged in the colloidal dispersion to form a structure called "colloidal crystals". There are two types of this colloidal crystal. The first is crystals formed under conditions of a particle volume fraction of about 0.5 (concentration = 50% by volume) or more in a colloidal system (hard sphere system) in which there is no special interaction between particles. This is similar to the regular arrangement phenomenon when macroscopic spheres are packed in a limited space. The second is a crystal structure formed by electrostatic interaction acting between particles in a dispersion system of charged colloid particles (charged colloid system). For example, crystals are formed of a colloidal system in which particles made of a polymer (polystyrene, polymethyl methacrylate or the like) having a dissociative group on the surface or silica particles (SiO 2 ) are dispersed in a polar medium such as water. Since the electrostatic interaction extends over a long distance, crystals can be formed even with a low particle concentration (long distance between particles) and a particle volume fraction of about 0.001.
 コロイド結晶は、通常の結晶と同様に、電磁波をBragg回折する。その回折波長は、製造条件(粒子濃度と粒径)を選ぶことで可視光領域に設定できる。このため、フォトニック材料をはじめとする光学素子などへの応用展開が、国の内外で現在盛んに検討されている。現在、光学材料製造法の主流は、多層薄膜法およびリソグラフィー法である。いずれの手法も周期精度に優れるが、前者では1次元、後者では1又は2次元周期構造しか得られない。微粒子の堆積によって得られる3次元結晶構造(オパール構造)では、粒径の揃った粒子を用いると、面間隔の均一性は良好となる。しかし単結晶性のよい領域は10周期程度に限られ、マクロな3次元構造(すなわち大きなコロイド単結晶)の構築は微粒子の堆積法では困難である。 Colloidal crystals conduct Bragg diffraction of electromagnetic waves in the same manner as ordinary crystals. The diffraction wavelength can be set in the visible light range by selecting the manufacturing conditions (particle concentration and particle size). For this reason, application development to optical elements including photonic materials is currently being actively studied in and outside the country. At present, the mainstream of the optical material manufacturing method is a multilayer thin film method and a lithography method. Either method is excellent in periodic accuracy, but in the former, only one or two-dimensional periodic structure can be obtained. In the three-dimensional crystal structure (opal structure) obtained by the deposition of the fine particles, the uniformity of the interplanar spacing is good when particles having a uniform particle diameter are used. However, the region with good single crystallinity is limited to about 10 cycles, and construction of a macro three-dimensional structure (that is, a large colloidal single crystal) is difficult in the method of depositing fine particles.
 通常、コロイド結晶は1mm角程度の微結晶が集合した多結晶体として得られるが、光学素子として利用する場合には、cmオーダーの単結晶が必要とされることも多い。また、コロイド結晶には通常、さまざまな格子欠陥や不均一性が存在し、このことが光学素子としての利用を阻むこともある。以上のことから、(1)高品質(すなわち格子欠陥や不均一性ができるだけ存在しないこと)であって、(2)大きな単結晶を製造することができる、コロイド結晶の製造方法の確立が求められている。 Usually, a colloidal crystal is obtained as a polycrystalline body in which microcrystals of about 1 mm square are gathered, but when it is used as an optical element, a single crystal of cm order is often required. In addition, colloidal crystals generally have various lattice defects and inhomogeneities, which may prevent their use as optical elements. From the above, it is required to establish a method of producing a colloidal crystal that is (1) high quality (ie, the absence of lattice defects and nonuniformity as much as possible) and (2) large single crystals can be produced. It is done.
 荷電コロイド系由来のコロイド結晶の生成を制御する手法としては、これまでに、イオン性高分子ラテックス/水分散系に対して、0.1mm程度のギャップを持つ平行平板間において、荷電コロイド多結晶のせん断配向により単結晶を得る手法(非特許文献1)や、電場を付与して結晶化する方法(非特許文献2)が報告されている。しかし、これらの方法では前者の場合、せん断場印加のために特殊な装置が必要とされること、また後者については、電極反応により不純物イオンが生じ、これが結晶化を妨げること、等の難点がある。この他に、荷電コロイド結晶を高分子ゲルで固化し、温度変化によるゲルの体積変化を利用して結晶面間隔を制御した報告(非特許文献3)があるが、煩雑な工程が必要であり、また、無秩序な粒子配列状態からの結晶の生成は試みられていない。 As a method of controlling the formation of colloidal crystals derived from charged colloid systems, charged colloidal polycrystals have been used so far among parallel plates having a gap of about 0.1 mm with respect to ionic polymer latex / water dispersion systems. A method (Non-patent document 1) for obtaining a single crystal by shear orientation of 1 and a method (non-patent document 2) for applying an electric field to perform crystallization have been reported. However, in the former case, these methods require special equipment for shear field application, and in the latter case, the electrode reaction generates impurity ions, which interfere with crystallization, etc. is there. In addition to this, there is a report in which charged colloidal crystals are solidified with polymer gel and the crystal plane distance is controlled using volume change of gel due to temperature change (Non-patent document 3), however, complicated processes are required. Also, generation of crystals from disordered particle arrangement has not been attempted.
 また、本発明者らは、荷電コロイド分散系に特定の電離物質を共存させ、温度変化によりコロイド結晶を形成させるという、コロイド結晶の製造方法を開発している(特許文献1)。この方法によれば、各種の荷電コロイド系から、特殊な装置や複雑な工程を必要とせずに比較的簡単にコロイド結晶を製造することができる。しかし、この方法では1cmを超えるような大型の単結晶を製造することは困難である。 The present inventors have also developed a method for producing a colloidal crystal in which a specific ionized substance is allowed to coexist in a charged colloid dispersion system, and a colloidal crystal is formed by temperature change (Patent Document 1). According to this method, colloidal crystals can be produced relatively easily from various charged colloid systems without the need for special equipment or complicated steps. However, in this method, it is difficult to produce large single crystals exceeding 1 cm.
 大型の単結晶を得ることのできるコロイド結晶の製造方法として、本発明者らは、pHとともに電荷数が増加して結晶化するシリカコロイド粒子/水系を用い、試料の一端から塩基を拡散させる新規手法により、長さ数cmに達する柱状結晶や、1辺が約1cmの立方体状結晶という世界最大級のコロイド結晶の製造に成功している(非特許文献4、特許文献2)。しかし、この方法は、結晶成長に極めて時間がかかるという欠点がある。また、分光測定により、こうして得られた大型結晶の格子面間隔には、大域的な不均一(傾斜及びゆらぎ)が存在することが明らかになった。これは、拡散現象に本質的な塩基濃度の時間・空間的な不均一性、および拡散の乱れ等に起因すると思われる。時間とともに面間隔の不均一性は減少するものの、塩基濃度がほぼ一様になっても、面間隔には10%程度の分布が存在する。このため、光学素子として用途が制限される。 As a method of producing a colloidal crystal capable of obtaining a large single crystal, the present inventors use a silica colloidal particle / water system which crystallizes with an increase in charge number with pH, and a base is diffused from one end of a sample. We have succeeded in manufacturing the world's largest colloidal crystals of columnar crystals that reach several centimeters in length and cubic crystals with sides of about 1 cm by a method (Non-Patent Documents 4 and 2). However, this method has the disadvantage that crystal growth is extremely time-consuming. In addition, spectroscopic measurement revealed that there is global nonuniformity (tilt and fluctuation) in the lattice spacing of the large crystal thus obtained. This seems to be due to the temporal and spatial inhomogeneity of the base concentration essential to the diffusion phenomenon, the diffusion disorder, and the like. Although the heterogeneity of the interplanar spacing decreases with time, a distribution of about 10% exists in the interplanar spacing even if the base concentration becomes almost uniform. For this reason, the application as an optical element is limited.
 このため、本発明者らはさらに鋭意研究を重ね、大型で格子欠陥や不均一性の少ない単結晶を容易かつ安価に製造することができるコロイド結晶の製造方法を開発した(特許文献3)。この方法では、シリカコロイドにピリジンを添加したコロイド分散液を用意しておく。ピリジンは温度によって解離度が変化するため、コロイド分散液は温度が高くなるとシリカ粒子の電荷密度が大きくなり、コロイド結晶が析出する性質を有することとなる。このコロイド分散液をコロイド結晶が析出していない状態で容器に入れる。そして、容器の一端側を温めて局所的に該コロイド結晶が析出する温度に設定する。さらにコロイド結晶が析出する温度に設定された範囲を徐々に拡大させて、コロイド結晶を成長させる。こうして得られたコロイド結晶は、極めて大きな単結晶となり、しかも格子欠陥や不均一性も少ないものとなった。このため、吸収スペクトル及び反射スペクトルにおける半値幅を20nm以下という極めて狭い範囲に設定することができた。また、回折波長の空間不均一性も2.0%以下と極めて高品質なものとすることができた。ここで空間不均一性とは、反射分光や透過分光によって測定されたコロイド結晶の回折波長の空間的な分布の標準偏差を、回折波長の加重平均値で除した値を100分率表示したものである(以下同じ)。
B. J. Ackerson and N. A. Clark, Phys. Rev. A 30, 906, (1984) T. Palberg, W. Moench, J. Schwarz and P. Leiderer, J. Chem. Phys. 102, 5082, (1995) J. M. Weissman, H. B. Sunkara, A. S. Tse and S. A. Asher, Science, 274, 959, (1996) N. Wakabayashi, J. Yamanaka, M. Murai, K. Ito, T.Sawada, and M.Yonese Langmuir ,22,7936-7941,(2006) 特開平11-319539号公報 特開2004-89996号公報 特開2008-93654号公報
For this reason, the inventors of the present invention conducted intensive studies to develop a method of producing a colloidal crystal capable of easily and inexpensively producing a large single crystal with little lattice defect and nonuniformity (Patent Document 3). In this method, a colloidal dispersion in which pyridine is added to silica colloid is prepared. Since the degree of dissociation of pyridine changes with temperature, the colloidal dispersion liquid has the property that the charge density of the silica particles increases as the temperature increases, and colloidal crystals are precipitated. The colloidal dispersion is placed in a container without colloidal crystals deposited. Then, one end side of the container is warmed and set to a temperature at which the colloidal crystal is locally deposited. Further, the range set to the temperature at which the colloidal crystal precipitates is gradually expanded to grow the colloidal crystal. The colloidal crystal thus obtained was an extremely large single crystal, and was also reduced in lattice defects and inhomogeneities. For this reason, the half value width in an absorption spectrum and a reflection spectrum could be set in a very narrow range of 20 nm or less. In addition, the spatial non-uniformity of the diffraction wavelength can be made extremely high, of 2.0% or less. Here, spatial nonuniformity refers to the standard deviation of the spatial distribution of diffraction wavelengths of a colloidal crystal measured by reflection spectroscopy or transmission spectroscopy, divided by the weighted average value of diffraction wavelengths, and expressed as a percentage (Same below).
B. J. Ackerson and N. A. Clark, Phys. Rev. A 30, 906, (1984) T. Palberg, W. Moench, J. Schwarz and P. Leiderer, J. Chem. Phys. 102, 5082, (1995) J. M. Weissman, H. B. Sunkara, A. S. Tse and S. A. Asher, Science, 274, 959, (1996) N. Wakabayashi, J. Yamanaka, M. Murai, K. Ito, T. Sawada, and M. Yonese Langmuir, 22, 7936-7941, (2006) JP-A-11-319539 Unexamined-Japanese-Patent No. 2004-89996 JP, 2008-93654, A
 上記特許文献3に記載のコロイド結晶の製造方法では、コロイド分散液からコロイド結晶が析出する温度が、ピリジンの濃度のみならず、僅かなイオン性の不純物によっても変化するため、再現性良くコロイド結晶を析出させるには、薬品や溶媒の純度や、容器の洗浄等に細心の注意が必要であるという問題があった。本発明は、こうした従来の実情に鑑みてなされたものであり、大型で、格子欠陥や不均一性の少ないコロイド結晶を容易かつ安価であって確実に製造することができる、コロイド結晶の製造方法を提供することを解決すべき課題としている。 In the method of producing a colloidal crystal described in Patent Document 3, the temperature at which the colloidal crystal precipitates from the colloidal dispersion changes not only by the concentration of pyridine but also by a slight ionic impurity. In order to precipitate out, there has been a problem that it is necessary to pay close attention to the purity of chemicals and solvents, cleaning of containers and the like. The present invention has been made in view of such conventional circumstances, and is a method for producing a colloidal crystal which can easily, inexpensively and reliably produce a large-size colloidal crystal with few lattice defects and nonuniformities. Providing is an issue to be solved.
 本発明のコロイド結晶の製造方法は、所定の温度でコロイド多結晶が融解するコロイド多結晶分散液を用意する準備工程と、該コロイド多結晶分散液を容器に収容する収容工程と、該容器内のコロイド多結晶分散液の一部の領域又は全部の領域の温度をコロイド結晶が析出しない温度とした後、再びコロイド結晶が析出する温度に変化させることによってコロイド多結晶を再結晶させる再結晶工程とを有することを特徴とする。 In the method for producing a colloidal crystal according to the present invention, a preparation step of preparing a colloidal polycrystal dispersion liquid in which colloidal polycrystals melt at a predetermined temperature, a storage step of containing the colloid polycrystal dispersion liquid in a container, and the inside of the container Recrystallization process of recrystallizing the colloidal polycrystal by changing the temperature of a part or all of the region of the colloidal polycrystal dispersion of the above to a temperature at which the colloidal crystal is precipitated again And.
 本発明のコロイド結晶の製造方法では、まず準備工程において、所定の温度で該コロイド多結晶が融解するコロイド多結晶分散液を用意する。そして、収容工程において、コロイド多結晶が析出しているコロイド多結晶分散液を容器に収容する。さらに、再結晶工程において、容器内のコロイド多結晶分散液の一部の領域又は全部の領域の温度をコロイド結晶が析出しない温度とした後、再びコロイド結晶が析出する温度に変化させる。すなわち、前もってコロイド多結晶が析出していたコロイド多結晶分散液を用いて、これを融解後再結晶させるため、確実に再結晶を行うことができる。このため、薬品や溶媒の純度や、容器の洗浄等にそれほどの注意を払わなくても、再現性良くコロイド結晶を析出させることができる。また、発明者らの試験結果によれば、こうして得られたコロイド結晶は、極めて大きな単結晶となり、しかも格子欠陥や不均一性も少ないものとなった。 In the method for producing a colloidal crystal of the present invention, first, in the preparation step, a colloidal polycrystal dispersion in which the colloidal polycrystal melts at a predetermined temperature is prepared. Then, in the storing step, the colloidal polycrystal dispersion in which colloidal polycrystals are deposited is housed in a container. Furthermore, in the recrystallization step, the temperature of a partial region or the entire region of the colloidal polycrystal dispersion in the container is set to a temperature at which the colloidal crystal does not precipitate, and then changed again to the temperature at which the colloidal crystal precipitates. That is, since the colloidal polycrystal dispersion liquid in which the colloidal polycrystal has been precipitated in advance is used for recrystallization after melting, recrystallization can be surely performed. For this reason, it is possible to precipitate colloidal crystals with good reproducibility without paying great attention to the purity of chemicals and solvents, cleaning of containers, and the like. Moreover, according to the test results of the inventors, the colloidal crystal thus obtained becomes a very large single crystal, and also has few lattice defects and nonuniformities.
 従って、本発明のコロイド結晶の製造方法によれば、大型で、格子欠陥や不均一性の少ないコロイド結晶を容易かつ安価であって確実に製造することができる。 Therefore, according to the method for producing a colloidal crystal of the present invention, it is possible to easily and inexpensively produce a large-size, colloidal crystal with few lattice defects and nonuniformities, and reliably.
 本発明のコロイド結晶の製造方法において、再結晶工程では、温度調節手段によりコロイド多結晶分散液の一部をコロイド結晶が融解する温度に設定して融解領域を形成させ、該融解領域を移動させるゾーンメルト法によって再結晶させることができる。この方法によれば、巨大なコロイド単結晶を容易に製造することができる。しかも、コロイド多結晶分散液中に不純物コロイド粒子が存在している場合、コロイド単結晶中に不純物コロイド粒子が入ることが阻止されるという効果も有する。 In the method for producing a colloidal crystal of the present invention, in the recrystallization step, a temperature control means sets a part of the colloidal polycrystal dispersion to a temperature at which the colloidal crystal melts to form a melting region and move the melting region. It can be recrystallized by the zone melt method. According to this method, large colloidal single crystals can be easily produced. In addition, when the impurity colloidal particles are present in the colloidal polycrystal dispersion, it also has the effect of preventing the impurity colloidal particles from entering the colloidal single crystal.
 ここで、融解領域の移動は温度調節手段と容器との相対移動を可能とする移動手段によって行なうことができる。融解領域の移動をこのようにして行なえば、融解領域の相対移動速度を遅くして融解状態から結晶状態への再結晶をゆっくりさせて単結晶の大型化を図ったり、融解領域の相対移動速度を速くして単結晶を速く作製したりして、再結晶化の制御が容易となる。このため、目的に応じてコロイド結晶の品質と製造の効率化とのバランスを図ることが可能となる。
 なお、融解領域の移動は、容器を移動させることによって行なってもよいし、温度調節手段を移動させることによって行なってもよいし、容器及び温度調節手段の双方を移動させることによって行なってもよい。
 また、融解領域の移動速度については、コロイド多結晶分散液の組成や融解領域の温度等によって適宜選択すればよいが、通常10mm/分以下が好ましく、さらに好ましいのは2mm/分以下である。融解領域の移動速度が速すぎると、大きなコロイド単結晶が析出し難くなるからである。
Here, the movement of the melting region can be performed by the movement means which enables relative movement between the temperature control means and the container. If the movement of the melting region is performed in this way, the relative movement velocity of the melting region is slowed to slow recrystallization from the molten state to the crystalline state to achieve enlargement of the single crystal, or the relative movement velocity of the melting region. The recrystallization can be easily controlled by making the single crystal faster and making the single crystal faster. For this reason, it is possible to balance the quality of the colloidal crystal and the efficiency of production according to the purpose.
The movement of the melting region may be performed by moving the container, may be performed by moving the temperature control means, or may be performed by moving both the container and the temperature control means. .
The moving speed of the melting region may be appropriately selected depending on the composition of the colloidal polycrystal dispersion, the temperature of the melting region, etc., but usually 10 mm / min or less is preferable, and 2 mm / min or less is more preferable. If the moving speed of the melting region is too fast, it becomes difficult to precipitate large colloidal single crystals.
 また、収容工程において、コロイド多結晶分散液は略平行に対面する2つの壁の間に充填されていることが好ましい。こうであれば、容器内での自由な対流が起こり難くなるため、コロイド結晶の成長が乱され難くなり、さらに大型で、格子欠陥や不均一性の少ない単結晶を製造することができる。この場合において、コロイド分散系の温度を変化させる方向としては、壁に平行の方向あるいは壁に垂直な方向のどちらでもよい。また、エチレングリコール、グリセリンなどの高粘性液体をコロイド分散媒として用いても、対流は起こりにくくなるため、同様の効果が得られる。 In addition, in the storage step, the colloidal polycrystal dispersion is preferably filled between two walls facing in a substantially parallel manner. In this case, free convection in the container hardly occurs, so that the growth of the colloidal crystal is not easily disturbed, and a large single crystal with less lattice defects and nonuniformities can be manufactured. In this case, the direction of changing the temperature of the colloidal dispersion may be either parallel to the wall or perpendicular to the wall. In addition, even when a highly viscous liquid such as ethylene glycol or glycerin is used as the colloid dispersion medium, the same effect can be obtained because convection hardly occurs.
 所定の温度においてコロイド多結晶が融解するコロイド多結晶分散液とするための方法として、温度変化によって解離度が変化する弱酸又は弱塩基を添加しておくことが挙げられる。例えば、弱塩基であるピリジンの解離度は昇温と共に増加する(電気伝導度測定により決定した、ピリジンの無塩水溶液におけるpKb値は、10及び50℃において9.28および8.53であり、温度と共に直線的に減少した)。従って、ピリジンをシリカコロイド分散系のようなコロイド分散系に共存させた場合、昇温に伴いコロイド粒子の有効表面電荷密度σe値が増加すると考えられる。しかも、種々の温度における上記の解離は、通常の使用条件において系の温度変化に要する時間よりもはるかに短時間で平衡状態となる。すなわち、σe値は試料温度により一義的に決まり、それまでの温度履歴等に依らないため、コロイド多結晶分散液の融解及び再結晶化が熱可逆的に起こる。 As a method for preparing a colloidal polycrystal dispersion in which colloidal polycrystals melt at a predetermined temperature, it is possible to add a weak acid or a weak base whose degree of dissociation changes with temperature change. For example, the degree of dissociation of pyridine, which is a weak base, increases with increasing temperature (pK b values in salt-free aqueous solution of pyridine determined by electrical conductivity measurement are 9.28 and 8.53 at 10 and 50 ° C. Decreased linearly with the temperature). Therefore, when pyridine is allowed to coexist in a colloidal dispersion system such as a silica colloidal dispersion system, it is considered that the effective surface charge density σ e value of the colloidal particles increases with the temperature rise. Moreover, the above dissociation at various temperatures is in equilibrium in a much shorter time than the time required for the temperature change of the system under normal use conditions. That is, since the σ e value is uniquely determined by the sample temperature and is not dependent on the temperature history and the like up to that point, melting and recrystallization of the colloidal polycrystal dispersion occur thermoreversibly.
 以下に、温度変化によって解離度が変化する弱塩基、弱酸および塩を例示するがこれらに限定されるものではない。好ましい弱塩基としては、例えば、ピリジンおよびピリジン誘導体(モノメチルピリジン、ジメチルピリジン、トリメチルピリジン等)が挙げられ、これらは温度上昇とともに解離度が増加する。これらのピリジンまたはピリジン誘導体は、シリカ粒子の結晶化に対して好適なpKb値を有し、またpKb値の温度による変化が充分に大きいという理由から本発明において用いられるのに特に好ましい。弱塩基としては、この他に、ウラシル、キノリン、トルイジン、アニリン(及びそれらの誘導体)等も使用することができ、これらも昇温とともに解離度が増加する。 Hereinafter, weak bases, weak acids and salts whose degree of dissociation changes with temperature change are exemplified, but not limited thereto. Preferred weak bases include, for example, pyridine and pyridine derivatives (monomethylpyridine, dimethylpyridine, trimethylpyridine etc.), which increase in degree of dissociation with increasing temperature. These pyridines or pyridine derivatives are particularly preferred for use in the present invention because they have a suitable pK b value for the crystallization of the silica particles and that the change in the pK b value with temperature is sufficiently large. Other than this, uracil, quinoline, toluidine, aniline (and derivatives thereof) and the like can be used as a weak base, and the degree of dissociation also increases with the temperature rise.
 一方、弱酸としては、水溶液中で温度上昇とともに解離度が減少する酸、例えば、ギ酸、酢酸、プロピオン酸、酪酸、クロル酢酸、リン酸、シュウ酸、マロン酸等を挙げることができる。一方、ホウ酸や炭酸のように、昇温とともに解離度が増加するような酸を用いることもできる。さらに、上記のごとき弱塩基と弱酸の中和により得られる塩も解離度に温度依存性があり、本発明における弱電離物質として使用できる。温度に依存して解離度が増加するか減少するかは、当該酸と塩基の強さの大小関係に依る。 On the other hand, examples of weak acids include acids whose degree of dissociation decreases with an increase in temperature in an aqueous solution, such as formic acid, acetic acid, propionic acid, butyric acid, chloracetic acid, phosphoric acid, oxalic acid, malonic acid and the like. On the other hand, it is also possible to use an acid such as boric acid or carbonic acid whose degree of dissociation increases with temperature rise. Furthermore, the salt obtained by the neutralization of the weak base and the weak acid as described above is also temperature-dependent in the degree of dissociation and can be used as a weakly ionizable substance in the present invention. Whether the degree of dissociation increases or decreases depending on temperature depends on the magnitude relationship between the strength of the acid and the base.
 また、弱酸や弱塩基を単独で用いるのではなく、弱酸-強塩基の混合系や、弱塩基-強酸の混合系等も用いることができる。 Further, instead of using a weak acid or a weak base alone, a mixed system of a weak acid and a strong base, a mixed system of a weak base and a strong acid, and the like can be used.
 また、所定の温度においてコロイド結晶が析出するコロイド多結晶分散液とするための方法として、媒体の誘電率の温度変化を利用することもできる。すなわち、コロイド粒子間の静電相互作用は誘電率の減少とともに増加するが、通常の液体の誘電率は温度とともに減少するため、加熱により誘電率を変化させてコロイド結晶を析出させることもできる。 Further, as a method for preparing a colloidal polycrystal dispersion in which colloidal crystals are precipitated at a predetermined temperature, temperature change of dielectric constant of the medium can also be used. That is, although the electrostatic interaction between colloidal particles increases with the decrease of the dielectric constant, the dielectric constant of the ordinary liquid decreases with the temperature, so the dielectric constant can be changed by heating to precipitate the colloidal crystals.
 また、コロイド多結晶分散液のコロイド粒子はシリカ粒子であり、分散媒は水であり、弱塩基はピリジン及び/又はピリジン誘導体とすることができる。このようなコロイド多結晶分散液により、確実に大型で、格子欠陥や不均一性の少ない単結晶を製造することができる。 The colloidal particles of the colloidal polycrystal dispersion may be silica particles, the dispersion medium may be water, and the weak base may be pyridine and / or a pyridine derivative. With such a colloidal polycrystal dispersion, it is possible to reliably produce large single crystals with few lattice defects and nonuniformities.
 また、コロイド多結晶分散液に強塩基を添加しても、所定の温度でコロイド結晶を析出させることができる。強塩基の解離度に対する温度依存性は低いと考えられるが、それにもかかわらず、強塩基を添加してもコロイド結晶を析出することができるのは、温度変化による該コロイド多結晶分散液の誘電率の変化や、温度変化によるコロイド粒子表面の官能基の解離度の変化によるものと考えられる。さらには、コロイド多結晶分散液に何も添加しなくても、温度を変化させてコロイド多結晶分散液の誘電率や、コロイド粒子表面の官能基の解離度を変化させることにより、コロイド結晶を析出させることができる。 Also, even if a strong base is added to the colloidal polycrystal dispersion, colloidal crystals can be precipitated at a predetermined temperature. Although the temperature dependence of the degree of dissociation of the strong base is considered to be low, it is nevertheless possible to precipitate the colloidal crystal even by the addition of the strong base because the dielectric of the colloidal polycrystal dispersion according to the temperature change. It is considered that the change in the rate or the change in the degree of dissociation of the functional group on the surface of the colloidal particle due to the temperature change. Furthermore, even if nothing is added to the colloidal polycrystal dispersion, the colloidal crystal is changed by changing the temperature to change the dielectric constant of the colloidal polycrystal dispersion and the degree of dissociation of the functional group on the surface of the colloidal particle. It can be deposited.
 また、コロイド結晶を成長させた後、ゲル化により固化することもできる。このように、ゲル化によりコロイド結晶を固化すれば、温度をコロイド結晶が析出しない温度に戻したとしても、コロイド結晶の構造を保持することができる。また、コロイド結晶の機械的強度を飛躍的に高めることができる。さらに、ゲル化したコロイド結晶は、ゲルマトリクス固有の特性を併せ持つ材料となる。例えばゲル化したコロイド結晶を機械的に圧縮させて、変形させた場合、結晶格子面間隔も変化するため、回折波長を制御することができる材料となる。ゲル化したコロイド結晶は、液体の種類、温度やpHなどの物理的・化学的環境に応答して膨潤したり収縮したりする。また、特定の分子と特異的に結合する官能基を導入すると、その分子種の濃度に依存して体積が変化する。こうした性質を利用し、回折波長のシフトを測定することにより、温度、pH、様々な分子種等のセンシングが可能となる。 In addition, after the colloidal crystal is grown, it can be solidified by gelation. Thus, solidifying the colloidal crystal by gelation can maintain the structure of the colloidal crystal even when the temperature is returned to a temperature at which the colloidal crystal does not precipitate. In addition, the mechanical strength of the colloidal crystal can be dramatically increased. Furthermore, the gelled colloidal crystal is a material having the unique properties of the gel matrix. For example, when the gelled colloidal crystal is mechanically compressed and deformed, the crystal lattice spacing also changes, so that the material can control the diffraction wavelength. The gelled colloidal crystals swell or shrink in response to the type of liquid, physical or chemical environment such as temperature or pH. Also, when a functional group that specifically binds to a specific molecule is introduced, the volume changes depending on the concentration of the molecular species. By using these properties and measuring the shift of the diffraction wavelength, it becomes possible to sense temperature, pH, various molecular species and so on.
 ゲル化の方法としては、コロイド多結晶分散液に光硬化性樹脂を分散させておき、コロイド結晶を析出させた後に、光を照射してゲル化する方法などが挙げられる。この場合において、光硬化性ゲル化剤は、イオンの発生の少ない材料を選択することが好ましい。イオンの発生する光硬化性ゲル化剤を用いた場合、コロイド多結晶分散液中に分散している荷電コロイドの表面電位が変化して、コロイドの状態変化が起きる可能性があるからである。このような、イオン発生の少ない光硬化性ゲル化剤としては、ゲルモノマー、架橋剤及び光重合開始剤を含む溶液等が挙げられる。ゲルモノマーとしては、アクリルアミド及びその誘導体などのビニル系モノマー、架橋剤としては、N,N’-メチレンビスアクリルアミド、また光重合開始剤としては、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]等が挙げられる。この他、アジド系感光基をポリビニルアルコールにペンダントした水溶性の感光性樹脂等も用いることができる。 As a method of gelation, a photocurable resin is dispersed in a colloidal polycrystal dispersion liquid, and a colloidal crystal is precipitated, and then light is irradiated to gelate. In this case, as the photocurable gelling agent, it is preferable to select a material that generates less ions. This is because when using a photocurable gelling agent from which ions are generated, the surface potential of the charged colloid dispersed in the colloidal polycrystal dispersion may change to cause a state change of the colloid. Examples of such a photocurable gelling agent with low ion generation include solutions containing a gel monomer, a crosslinking agent, and a photopolymerization initiator. As gel monomers, vinyl monomers such as acrylamide and derivatives thereof, N, N'-methylenebisacrylamide as a crosslinking agent, and as a photopolymerization initiator, 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) -propionamide] and the like. In addition to this, a water-soluble photosensitive resin having an azide-based photosensitive group pendant to polyvinyl alcohol can also be used.
 本発明のコロイド結晶の製造方法において、再結晶工程では、温度調節手段により容器の一端側から冷却又は加熱してコロイド多結晶分散液中のコロイド多結晶を融解させた後、該温度調節手段による冷却又は加熱を停止して再結晶させることもできる。 In the method for producing a colloidal crystal according to the present invention, in the recrystallization step, cooling or heating from one end side of the container by the temperature control means is performed to melt the colloidal polycrystal in the colloidal polycrystal dispersion, and then the temperature control means is used. It is also possible to stop the cooling or heating and recrystallize.
 本発明者らの試験結果によれば、このようなコロイド結晶の再結晶化方法を用いても大型で、格子欠陥や不均一性の少ないコロイド結晶を確実に製造することができる。また、この方法によれば、ゾーンメルト法のような融解領域を移動させる必要はないため、装置が簡単となり、ひいてはコロイド結晶の製造コストを低廉化することができる。 According to the test results of the present inventors, it is possible to reliably manufacture a large-size, small lattice defect and non-uniform colloidal crystal even using such a colloidal crystal recrystallization method. Moreover, according to this method, it is not necessary to move the melting region as in the zone melt method, so that the apparatus can be simplified, and the cost of manufacturing the colloidal crystal can be reduced.
 本発明の製造方法で得られたコロイド結晶は、吸収スペクトル及び反射スペクトルにおける半値幅を10nm以下という極めて狭い範囲に設定することができる。また、回折波長の空間不均一性も0.2%以下とすることができる。ここで空間不均一性とは、反射分光や透過分光によって測定されたコロイド結晶の回折波長の空間的な分布の標準偏差を、回折波長の加重平均値で除した値を100分率表示したものである(以下同じ)。 The colloidal crystal obtained by the production method of the present invention can be set to a very narrow range of 10 nm or less in the absorption spectrum and the reflection spectrum. In addition, spatial nonuniformity of the diffraction wavelength can also be 0.2% or less. Here, spatial nonuniformity refers to the standard deviation of the spatial distribution of diffraction wavelengths of a colloidal crystal measured by reflection spectroscopy or transmission spectroscopy, divided by the weighted average value of diffraction wavelengths, and expressed as a percentage (Same below).
 また、本発明の製造方法では、回折波長が400~800nmの範囲内であり、該回折波長の不均一性が0.2%以下であり、該回折波長での透過率が厚さ1mmにおいて0.1%以下であり、結晶格子面の層数が3000層以上であり、最大径が1cm以上の単結晶からなるコロイド結晶を得ることができる。 In the production method of the present invention, the diffraction wavelength is in the range of 400 to 800 nm, the nonuniformity of the diffraction wavelength is 0.2% or less, and the transmittance at the diffraction wavelength is 0 at a thickness of 1 mm. It is not more than 1%, the number of layers in the crystal lattice plane is 3,000 or more, and a colloidal crystal composed of a single crystal having a maximum diameter of 1 cm or more can be obtained.
 このようなコロイド結晶では、回折波長が400~800nmの範囲内であるため、可視光の回折が可能となる。また、回折波長の空間不均一性が0.2%以下であり、回折する波長の精度が極めて高い。また、回折波長での透過率が0.1%以下であることから、回折の効率も極めてよい。こうした特性から、フォトニック結晶として光通信コネクタ、光増幅等の光電子素子、カラー映像機器、高出力レーザー、化粧品・装飾品分野等へ適用することができる。 With such a colloidal crystal, the diffraction wavelength is in the range of 400 to 800 nm, so that visible light can be diffracted. Also, the spatial non-uniformity of the diffraction wavelength is 0.2% or less, and the accuracy of the diffracted wavelength is extremely high. Moreover, since the transmittance at the diffraction wavelength is 0.1% or less, the efficiency of diffraction is also extremely good. Due to these characteristics, the present invention can be applied to the fields of optical communication connectors, optoelectronic devices such as optical amplification, color imaging devices, high-power lasers, cosmetics and accessories as a photonic crystal.
コロイド多結晶分散液の融解試験から求めたピリジン濃度と融点T及び凝固点Tとの関係を示すグラフである。It is a graph which shows the relationship between the pyridine concentration and melting | fusing point Tm and freezing point Tf which were calculated | required from the melt | fusion test of the colloid polycrystal dispersion liquid. コロイド多結晶分散液の融解曲線を求めるための実験装置の模式図である。It is a schematic diagram of the experimental apparatus for calculating | requiring the melting curve of a colloidal polycrystal dispersion liquid. コロイド多結晶分散液の融解曲線を示すグラフである。It is a graph which shows the melting curve of a colloidal polycrystal dispersion liquid. ゾーンメルト法によるコロイド結晶の析出に使用した装置の模式図である。It is a schematic diagram of an apparatus used for precipitation of a colloid crystal by a zone melt method. ゾーンメルト法によるコロイド結晶の析出前後の写真である。It is a photograph before and behind precipitation of the colloid crystal by a zone melt method. ペルチェ素子の移動速度を変えた場合の、コロイド結晶の外観及び結晶サイズを示す図である。It is a figure which shows the external appearance and crystal size of a colloid crystal at the time of changing the moving speed of a Peltier device. ゾーンメルト法によるコロイド結晶の単結晶化を行なった場合の、セル表面温度を赤外線式サーモグラフィー装置で測定した結果を示す写真である。It is a photograph which shows the result of having measured cell surface temperature with an infrared type thermography apparatus at the time of performing single crystallization of the colloid crystal by a zone melt method. ゾーンメルト法による不純物排除試験後の写真である。It is a photograph after the impurity exclusion test by a zone melt method. コロイド結晶について蛍光画像を撮影した写真の蛍光輝度分布を測定したグラフである。It is the graph which measured the fluorescence luminance distribution of the photograph which image | photographed the fluorescence image about the colloid crystal. ゾーンメルト法による再結晶化の原理を示す図である。It is a figure which shows the principle of recrystallization by a zone melt method. 実施例3のコロイド結晶の製造方法に用いた装置の模式図である。FIG. 14 is a schematic view of an apparatus used for the method of producing a colloidal crystal of Example 3. 再結晶を行なった後のコロイド結晶の写真である。It is a photograph of a colloidal crystal after recrystallization. 一方向からの冷却後に冷却を停止してコロイド結晶を析出させる方法における経過時間と各部における温度との関係を示すグラフである。It is a graph which shows the relationship of the elapsed time and the temperature in each part in the method of stopping a cooling after cooling from one direction, and making a colloidal crystal precipitate. ピリジン濃度が47.5μMOL/L、シリカコロイドの体積分率(φ)を0.035として再結晶を行なった後のコロイド結晶の写真及び多結晶領域及び再結晶領域の透過スペクトルを示すグラフである。It is a graph which shows the permeation | transmission spectrum of the photograph and the polycrystal area | region of a colloidal crystal, and a recrystallization area | region after performing recrystallization with the pyridine concentration set to 47.5 micromol / L and the volume fraction ((phi)) of a silica colloid being 0.035. コロイド多結晶分散液中のピリジン濃度と半値幅との関係を示すグラフである。It is a graph which shows the relationship between the pyridine concentration in a colloidal polycrystal dispersion liquid, and a half value width. 再結晶領域のコッセル線解析で得られた回折像である。It is a diffraction image obtained by Kossel line analysis of a recrystallized region. 実施例3-3においてゲル化されたコロイド結晶の写真である。It is a photograph of the colloidal crystal gelled in Example 3-3. 実施例3-3におけるゾーンメルト法が適用されていない部分とゾーンメルト法が適用された部分の透過スペクトルである。It is the transmission spectrum of the part to which the zone melting method in Example 3-3 is not applied, and the part to which the zone melting method was applied.
 1、C…石英セル(容器)
 2,12…熱電対
 3…水槽(温度調節手段)
 4…自動X軸ステージ(移動手段)
 5…基台
 6…ステージ
 7…ステッピングモータ
 9…ペルチェ素子
 10…凸部材
 11a,b…断熱部材
1, C ... quartz cell (container)
2, 12 ... thermocouple 3 ... water tank (temperature control means)
4 ... Automatic X axis stage (moving means)
5: Base 6: Stage 7: Stepping motor 9: Peltier element 10: Convex member 11a, b: Heat insulation member
 本発明において用いられるコロイド多結晶分散液の例として特に好ましいのは、シリカ微粒子が水に分散された系である。このシリカ微粒子は水中に分散されると、その表面を覆っている弱酸性のシラノール基(Si-OH)のOHの一部が解離してSi-Oとなるとともに、その周囲に対イオンと呼ばれるプラスイオン(H)が分布する。この系にピリジンのような電離物質を添加するとシラノール基の解離度が変化し、粒子の有効表面電荷密度σeが変化するこのように有効表面電荷密度σeが比較的容易に制御できるという特性はシリカ粒子のメリットであり、これを利用してコロイド結晶を調製することができる。 Particularly preferred as an example of the colloidal polycrystal dispersion used in the present invention is a system in which silica fine particles are dispersed in water. When the silica fine particles are dispersed in water, partially dissociated Si-O of OH weakly acidic silanol groups covering the surface (Si-OH) - with the, and the counterions around The called plus ion (H + ) is distributed. When an ionizable substance such as pyridine is added to this system, the degree of dissociation of the silanol group changes, and the effective surface charge density σ e of the particles changes. Thus, the characteristic that the effective surface charge density σ e can be controlled relatively easily. Is the merit of silica particles, which can be used to prepare colloidal crystals.
 しかし、本発明のコロイド結晶の製造方法において用いられるコロイド多結晶分散液は、シリカ-水系に限られるものではなく、表面に弱酸または弱塩基に由来する電荷を有するコロイド粒子が液体媒質に分散され、上述したような弱電離物質を添加すると該電離物質が液体媒質中で解離(電離)するとともに、コロイド粒子表面の電荷が変化し得るようなその他のイオン性コロイド分散系にも適用できる。 However, the colloidal polycrystal dispersion used in the method for producing a colloidal crystal of the present invention is not limited to the silica-water system, and colloidal particles having a charge derived from a weak acid or weak base on the surface are dispersed in a liquid medium. The addition of a weakly ionizable substance as described above can be applied to other ionic colloid dispersion systems in which the ionized substance is dissociated (ionized) in the liquid medium and the charge on the surface of the colloidal particle can be changed.
 すなわち、コロイド粒子として、表面に弱酸を有するものであればシリカと同様に使用可能であり、例えば、酸化チタン微粒子やカルボキシ変成ラテックス(表面にカルボキシル基を有するラテックス)等を使用することができる。さらに、表面に弱塩基を持つものであれば、弱酸を添加することにより、シリカ+ピリジン系と類似の機能を発現させることもでき、これに該当するコロイド粒子としては酸化アルミニウムやアミノ基を有するラテックス等を挙げることができる。また、粒子の表面が上記のような性質を持っておればよいため、シリカや酸化チタン層などで表面をコートした粒子についても、本発明は適用できる。 That is, as colloidal particles, those having a weak acid on the surface can be used similarly to silica, and for example, titanium oxide fine particles, carboxy-modified latex (latex having carboxyl group on the surface), etc. can be used. Furthermore, as long as it has a weak base on the surface, by adding a weak acid, a function similar to that of silica + pyridine can be expressed, and the corresponding colloidal particles have aluminum oxide or an amino group. Latex etc. can be mentioned. In addition, since the surface of the particles only needs to have the above-mentioned properties, the present invention can be applied to particles whose surface is coated with silica, a titanium oxide layer or the like.
 また、弱酸と弱塩基の両方をもつ球状タンパク質や粘土鉱物から成るコロイド系にも適用可能である。さらに、アミノ基を有するシランカップリング剤を用いてシリカ粒子表面に弱塩基を導入するなどの表面修飾法により、種々の弱酸や弱塩基が粒子表面に導入された各種のコロイド粒子を含むコロイド多結晶分散液にも本発明は適用できる。 It is also applicable to colloidal systems consisting of globular proteins and clay minerals with both weak acids and weak bases. Furthermore, various types of colloidal acids including various colloidal particles in which various weak acids and weak bases are introduced to the particle surface by surface modification methods such as introducing a weak base to the surface of silica particles using a silane coupling agent having an amino group The present invention is also applicable to crystal dispersions.
 また、分散媒に関しては、コロイド粒子表面の解離基(電荷付与基)及び添加した弱電離物質(弱酸、弱塩基、塩)が解離できるような高い誘電率を呈することができれば、水以外の液体も使用可能である。例えば、フォルムアミド類(例えば、ジメチルフォルムアミド)やアルコール類(例えば、エチレングリコール類)を使用することができる。これらはコロイド粒子および添加する弱電離物質の組合せによってはそのまま使用することもできるが、一般的には水との混合物として使用するのが好ましい。 With regard to the dispersion medium, a liquid other than water can be exhibited as long as it can exhibit a high dielectric constant such that the dissociative group (charge-imparting group) on the surface of the colloidal particle and the weakly ionized substance (weak acid, weak base, salt) can be dissociated. Are also available. For example, formamides (eg, dimethylformamide) and alcohols (eg, ethylene glycols) can be used. These can be used as they are depending on the combination of the colloidal particles and the weakly ionized substance to be added, but in general, it is preferable to use as a mixture with water.
 弱酸や弱塩基を添加するコロイド多結晶分散液は、市販のコロイド用粒子を水などの適当な分散媒に分散させたり、ゾル-ゲル法などにより合成したものを用いればよいが、一般に、コロイド結晶は微量の塩(イオン性不純物)の存在によってその生成が阻害されるため、コロイド分散系の調製にあたっては充分な脱塩を行うことが好ましい。例えば、水を用いる場合には、まず精製水に対して、用いた水の電気伝導度が使用前の値と同程度になるまで透析を行い、次に充分に洗浄したイオン交換樹脂(陽イオンおよび陰イオン交換樹脂の混床)を試料に共存して少なくとも1週間保つことにより、脱塩精製を行う。 As a colloidal polycrystal dispersion liquid to which a weak acid or a weak base is added, a commercially available colloidal particle may be dispersed in an appropriate dispersion medium such as water, or a sol-gel method etc. may be used. Since the formation of crystals is inhibited by the presence of a trace amount of salt (ionic impurities), it is preferable to carry out sufficient desalting in preparation of the colloidal dispersion system. For example, in the case of using water, first, purified water is dialyzed until the electric conductivity of the used water becomes approximately equal to the value before use, and then the ion exchange resin (cation And desalting purification by keeping the mixed bed of anion exchange resin in the sample for at least one week.
 さらに、コロイド粒子の粒径およびその分布にも注意を払う必要がある。コロイド粒子の粒子径は600nm以下であることが好ましく、さらに好ましくは300nm以下である。粒子径が600nmを超えるような大きな粒子径のコロイド粒子の場合には、重力の影響で沈降し易くなるからである。また、コロイド粒子の粒子径の標準偏差は、15%以内が好ましく、さらに好ましくは10%以下である。標準偏差が大きくなると、結晶が生じにくく、また結晶を生じても、格子欠陥や不均一性が増し、高品質のコロイド結晶が得られ難くなる。 In addition, attention must be paid to the size of the colloidal particles and their distribution. The particle diameter of the colloidal particles is preferably 600 nm or less, more preferably 300 nm or less. This is because, in the case of a colloidal particle having a large particle diameter such as a particle diameter exceeding 600 nm, it tends to settle due to the influence of gravity. Further, the standard deviation of the particle diameter of the colloidal particles is preferably 15% or less, more preferably 10% or less. If the standard deviation is large, crystals are less likely to form, and even if crystals are formed, lattice defects and inhomogeneity increase, and it is difficult to obtain high quality colloidal crystals.
 弱電離物質を添加することによって、温度変化でコロイド結晶を生成させるコロイド多結晶分散液の場合、荷電コロイド系における結晶化を支配するコロイド粒子間の静電的相互作用は、該粒子の有効表面電荷密度(σ)のみならず、粒子の体積分率(φ)や添加塩濃度(Cs)によっても影響される。したがって、コロイドの結晶化が起こる温度や弱電離物質の添加量は、当初のコロイド分散系のφやCsによって異なる。例えば、弱電離物質としてピリジン(Py)を添加する場合、一定温度およびφ条件下で比較したとき、一般に、Cs値が高いほどピリジン濃度の高い条件で結晶化が起こる。 In the case of a colloidal polydispersion in which colloidal crystals are formed on temperature change by addition of weakly ionizable substances, the electrostatic interaction between the colloidal particles governing crystallization in the charged colloid system is the effective surface of the particles. Not only charge density (σ e ) but also particle volume fraction (φ) and additive salt concentration (Cs) are influenced. Therefore, the temperature at which crystallization of the colloid occurs and the amount of weakly ionized substance to be added differ depending on φ and Cs of the initial colloidal dispersion system. For example, when pyridine (Py) is added as a weakly ionizable substance, crystallization generally occurs under conditions of higher pyridine concentration as the Cs value is higher when compared under constant temperature and φ conditions.
 一般的には、φ(コロイド粒子の体積分率)として0.01~0.05程度とし、Cs(添加塩濃度)は2~10μmol/L程度となるようにコロイド分散系を調製し、これに弱電離物質を添加する。このためには、コロイド粒子の比重をピクメーター法などにより求め、この値を用いて精製したコロイド分散系のコロイド粒子のφ値を絶乾法により決定することができる。そして、このコロイド分散系に精製した水などの液体媒質を加えて希釈することにより、所定のφ値を有する分散系を調製することができる。φ値は、コロイド結晶が望まれる特性に応じた結晶面間隔を有するように算出する。また、必要に応じ、NaClなどの低分子塩水溶液を添加してCs値を制御する。 Generally, a colloidal dispersion system is prepared so that φ (volume fraction of colloid particles) is about 0.01 to 0.05, and Cs (addition salt concentration) is about 2 to 10 μmol / L. Add weakly ionized substance to the For this purpose, the specific gravity of the colloidal particles can be determined by the picometer method or the like, and using this value, the φ value of the colloidal particles of the colloidal dispersion system can be determined by the absolute drying method. Then, a liquid medium such as purified water is added to this colloidal dispersion system and diluted to prepare a dispersion system having a predetermined φ value. The φ value is calculated so as to have a crystal plane spacing in accordance with the desired characteristics of the colloidal crystal. Also, if necessary, an aqueous solution of low molecular weight salt such as NaCl is added to control the Cs value.
 以上のコロイド多結晶分散液の調製にあたっては、イオン性不純物による汚染を可能な限り避ける必要がある。この点において、塩基性不純物が水中に溶出するようなソーダ石灰ガラス等は、粒子のσe値を増加させるため、ガラス容器を用いる場合には、石英ガラスのような塩基性不純物が水中に溶出しないガラスの容器の方が好ましい。また空気中の二酸化炭素は水に溶解して炭酸を生じるため、窒素等の雰囲気下で調製を行うことが望ましい。さらに、コロイドの結晶化に用いる容器、器具類は精製水(電気伝導度 0.6μS/cm以下)で充分洗浄したのち使用する。 In the preparation of the above colloidal polycrystal dispersion, it is necessary to avoid contamination with ionic impurities as much as possible. In this respect, soda lime glass or the like in which basic impurities are eluted in water increases the σ e value of the particles, so when using a glass container, basic impurities such as quartz glass are eluted in water A non-glass container is preferred. In addition, carbon dioxide in the air dissolves in water to form carbonic acid, so it is desirable to prepare under an atmosphere such as nitrogen. Furthermore, containers and instruments used for crystallization of colloids are used after thoroughly washing with purified water (electrical conductivity: 0.6 μS / cm or less).
 以上のように調製したコロイド系を加熱または冷却し、結晶の有無を確認し、結晶化温度を評価することができる。結晶生成の確認には、イリデセンスの観察の他、X線散乱法、光学顕微鏡法および分光光度法(反射または透過スペクトル測定)等が適用できる。 The colloidal system prepared as described above can be heated or cooled, the presence or absence of crystals can be confirmed, and the crystallization temperature can be evaluated. For confirmation of crystal formation, X-ray scattering, optical microscopy, spectrophotometry (reflection or transmission spectrum measurement), and the like can be applied in addition to the observation of iridiumescence.
 本発明のコロイド結晶の製造方法では、単に外部から系を加熱または冷却するという簡単な手段により、熱可逆的にコロイド粒子の結晶化を生じさせることができる。この結晶化は、ピリジン等の弱電離物質の濃度を変化させることにより制御できるが、その際、弱電離物質の濃度はNaOHのような強塩基を添加する場合のように厳密である必要もない。すなわち、添加した弱電離物質の濃度に比べその解離種の濃度がごく少量であるため、弱電離物質濃度に対するコロイド粒子の表面電荷密度(σe)の変化が強塩基を添加した場合より緩やかであり、ある程度の濃度範囲が許容されることが利点である。
 また、弱電離物質の濃度を変化させることで、結晶化温度を容易に調節出来る。すでに、ピリジンを用いたシリカ/水系のコロイドでは、2~60℃の範囲で調整出来ることを確認している。
In the method for producing a colloidal crystal of the present invention, crystallization of colloidal particles can be generated thermoreversibly by a simple means of simply heating or cooling the system from the outside. This crystallization can be controlled by changing the concentration of weakly ionizable substances such as pyridine, but the concentration of weakly ionizable substances does not have to be as strict as when adding a strong base such as NaOH. . That is, since the concentration of the dissociated species is very small compared to the concentration of the weakly ionized substance added, the change of the surface charge density (σ e ) of the colloidal particle with respect to the weakly ionized substance concentration is more gradual than that when the strong base is added. The advantage is that a certain concentration range is acceptable.
In addition, the crystallization temperature can be easily adjusted by changing the concentration of the weakly ionized substance. It has already been confirmed that the silica / water colloid using pyridine can be adjusted in the range of 2 to 60.degree.
 また、本発明においては系を密閉系に保つことができるため、イオン性不純物による汚染を防いで高性能のコロイド結晶を得ることができる。かくして、本発明は、光応答特性を制御できる光学素子などの製造に、広範な応用が期待される。 Further, in the present invention, since the system can be kept in a closed system, it is possible to prevent contamination by ionic impurities and obtain high-performance colloidal crystals. Thus, the present invention is expected to be applied to a wide range of applications such as optical elements whose light response characteristics can be controlled.
 本発明のコロイド結晶の製造方法は、表面に電荷を有するコロイド粒子、該コロイド粒子を分散させる分散媒、および該分散媒中において解離度が温度変化とともに変化する弱電離物質を含むコロイド系を利用し、これに外部から温度変化を与えてコロイド結晶を生成させることができる。このような弱電離物質含有コロイド系は温度変化により可逆的に結晶化し物性が変化するので、この性質を利用して、コロイド結晶の製造以外にも応用することが可能である。 The method for producing a colloidal crystal according to the present invention utilizes a colloidal particle having a charge on the surface, a dispersion medium for dispersing the colloidal particle, and a colloid system containing a weakly ionizable substance whose degree of dissociation changes with temperature change in the dispersion medium. It is possible to externally apply a temperature change to this to generate a colloidal crystal. Such a weakly ionized substance-containing colloid system reversibly crystallizes and changes its physical property due to temperature change, and therefore, it is possible to apply this property to applications other than the production of colloidal crystals.
 例えば、温度変化により物性が変わることを利用した新規な感熱性材料(感熱性塗料、温度センサーなど)の開発が可能となる。また、昇温によりコロイド系が結晶化するような系を用いれば、系の粘性は温度とともに増加することが期待される。一方、通常の単純液体においては、一般に粘性は温度増加にともない単調に減少する。このような特異な粘性-温度特性を利用して、例えば従来の応力伝達系に用いられる液体(クラッチ用のオイルなど)の温度特性の改善などへの応用も期待される。 For example, it becomes possible to develop a novel heat-sensitive material (heat-sensitive paint, temperature sensor, etc.) utilizing the change in physical properties due to temperature change. In addition, if a system is used in which the colloidal system crystallizes by raising the temperature, the viscosity of the system is expected to increase with the temperature. On the other hand, in an ordinary simple liquid, the viscosity generally decreases monotonically as the temperature increases. Application to the improvement of the temperature characteristic of, for example, a liquid (such as oil for a clutch) used in a conventional stress transfer system is also expected by utilizing such a unique viscosity-temperature characteristic.
 以下、本発明をさらに具体化した実施例について詳細に述べる。 Hereinafter, the embodiments of the present invention will be described in detail.
<コロイド多結晶分散液の調製>
 コロイド多結晶分散液は次のようにして調製した。
 日本触媒社製シリカコロイド粒子KE-W10(直径0.11±0.01μm 比重2.1)を半透膜による透析及びイオン交換樹脂によるイオン交換法を用いて精製した。こうしてイオンが除かれたシリカコロイドを体積分率(φ)=0.050となるように調整し、ピリジンを所定の濃度となるように添加して、コロイド多結晶分散液とした。このコロイド多結晶分散液は、室温において強く振り混ぜたときには白濁した液となるが、そのまま静置すると1分以内にキラキラと干渉色で輝く微細なコロイド多結晶が肉眼によって観察された。
<Preparation of Colloidal Polycrystalline Dispersion>
A colloidal polycrystal dispersion was prepared as follows.
Silica colloid particles KE-W10 (diameter 0.11 ± 0.01 μm specific gravity 2.1) manufactured by Nippon Shokubai Co., Ltd. were purified by dialysis using a semipermeable membrane and ion exchange using an ion exchange resin. The silica colloid from which ions were removed in this manner was adjusted to have a volume fraction (φ) = 0.050, and pyridine was added to a predetermined concentration to obtain a colloidal polycrystal dispersion. The colloidal polycrystal dispersion becomes a white turbid solution when shaken vigorously at room temperature, but when left as it is, fine colloidal polycrystals sparkling with glitter and interference color are observed with the naked eye within one minute.
<コロイド多結晶分散液の融解試験>
 こうして得られたコロイド多結晶分散液について、コロイド結晶の融解試験を行なった。すなわち、コロイド多結晶分散液を内法が厚さ1mm、幅1cm、長さ4.5cmの石英セル内に充填し、恒温槽内に入れ、全体の温度を低下させながら融点を測定した。融点に達したかどうかは肉眼による観察で行った。すなわち、コロイド結晶が融解すると、キラキラと干渉色に輝くコロイド多結晶状態から、輝く点が散在する固液共存状態を経て白濁した溶融状態に変化する。そして、融解状態から固液共存状態へ移行するときの温度を融点T、固液共存状態から結晶状態へ移行するときの温度を凝固点Tとし、さまざまなピリジン濃度で融点T及び凝固点Tを測定した。
Melting Test of Colloidal Polycrystalline Dispersion
A melt test of colloidal crystals was conducted on the colloidal polycrystal dispersion thus obtained. That is, the colloidal polycrystal dispersion was filled in a quartz cell having a thickness of 1 mm, a width of 1 cm, and a length of 4.5 cm according to the internal method, placed in a thermostat, and the melting point was measured while lowering the overall temperature. It was observed by visual observation whether the melting point was reached. That is, when the colloidal crystal melts, it changes from a colloidal polycrystal state of sparkling glitter and interference color to a clouded molten state through a solid-liquid coexistence state in which sparkling points are scattered. The temperature when transitioning from the molten state to the solid-liquid coexistence state is the melting point T m , and the temperature when transitioning from the solid-liquid coexistence state to the crystal state is the freezing point T f, and the melting point T m and the freezing point T at various pyridine concentrations f was measured.
 その結果、図1に示すように、T及びTは添加したピリジンの濃度に依存し、ピリジンの濃度が高いほどT及びTが低下し、ピリジンの添加量によってT及びTの値を制御できることが分かった。 As a result, as shown in FIG. 1, T m and T f depend on the concentration of added pyridine, and T m and T f decrease as the concentration of pyridine increases, and T m and T f depend on the amount of addition of pyridine. It turned out that the value of can be controlled.
 さらに、以下に示す溶融試験を行った。すなわち、図2に示すように、上記コロイド多結晶分散液を充填した石英セル1を水平方向に固定し、上面側に多数の熱電対2を幅方向の中央部分であって長さ方向に等間隔で設置し、各部の温度を計測可能とした。そして、石英セル1の一端側を図示しない冷却水循環装置に接続された水槽3に接触させて所定温度(0℃、3℃、7℃)の冷水を循環させながら、一端側から他端側へコロイド結晶を融解させた。コロイド結晶の融解の様子は肉眼によって明確に確認することができた。すなわち、水槽3を石英セル1に接触させる前は、セル全体が干渉色が観察される結晶領域であったのに対し、水槽3を石英セル1の一端に接触させた後は、コロイド結晶が融解した白濁した状態の融解領域が一端側から他端側に広がっていくのが観察された。さらに、融解領域と結晶領域の間には光る点が散在し、液晶状態と考えられる固液共存領域が認められた。そして、融解領域と固液共存領域との境界の温度を融点T、固液共存領域と結晶領域との境界の温度を凝固点Tとして測定した。 Furthermore, the melting test shown below was conducted. That is, as shown in FIG. 2, the quartz cell 1 filled with the colloidal polycrystal dispersion is fixed in the horizontal direction, and a large number of thermocouples 2 in the width direction at the top face side in the length direction, etc. Installed at intervals, it was possible to measure the temperature of each part. Then, one end side of the quartz cell 1 is brought into contact with the water tank 3 connected to a cooling water circulation device (not shown) to circulate cold water of a predetermined temperature (0 ° C., 3 ° C., 7 ° C.) The colloidal crystals were melted. The state of melting of the colloidal crystals could be clearly confirmed by the naked eye. That is, before bringing the water tank 3 into contact with the quartz cell 1, the whole cell was a crystal region in which an interference color is observed, but after bringing the water tank 3 into contact with one end of the quartz cell 1, the colloidal crystal It was observed that the melted region in the cloudy state spread from one end to the other end. Furthermore, bright spots were scattered between the melted region and the crystalline region, and a solid-liquid coexisting region considered to be a liquid crystal state was observed. Then, the temperature at the boundary between the melting region and the solid-liquid coexistence region was measured as the melting point T m , and the temperature at the boundary between the solid-liquid coexistence region and the crystal region as the freezing point T f .
 その結果、図3に示す融解曲線(図中のLは水槽3からの距離を示す)が得られた。各Tの値は図1で得られたTの値からの計算値とよい一致を示した。 As a result, a melting curve (L in the figure indicates the distance from the water tank 3) shown in FIG. 3 was obtained. Each T m value showed good agreement with the calculated value from the T m value obtained in FIG.
<ゾーンメルト法によるコロイド結晶の析出>
(実施例1-1)
 実施例1-1では以下に示すゾーンメルト法によって微細なコロイド多結晶から巨大なコロイド単結晶を調製した。
 まず、日本触媒社製シリカコロイド粒子KE-W10(直径0.11±0.01μm 比重2.1)を半透膜による透析及びイオン交換樹脂によるイオン交換法を用いて精製した。こうしてイオンが除かれたシリカコロイドを体積分率(φ)=0.050となるように調整し、ピリジンを50μmol/Lとなるように添加して、コロイド多結晶分散液とした。このコロイド多結晶分散液は、室温で静置するとキラキラと輝く微細なコロイド多結晶が肉眼によって観察された。なお、このコロイド多結晶分散液を別途石英セルに入れ、微細なコロイド多結晶を析出させてから冷却し、コロイド結晶が融解する温度を測定したところ、10℃であった。
Precipitation of Colloidal Crystals by Zone Melt Method
Example 1-1
In Example 1-1, a large colloidal single crystal was prepared from fine colloidal polycrystals by the zone melt method shown below.
First, silica colloid particles KE-W10 (diameter: 0.11 ± 0.01 μm, specific gravity: 2.1) manufactured by Nippon Shokubai Co., Ltd. were purified by dialysis using a semipermeable membrane and ion exchange using an ion exchange resin. The silica colloid from which ions were removed in this way was adjusted to have a volume fraction (φ) = 0.050, and pyridine was added so as to be 50 μmol / L to obtain a colloidal polycrystal dispersion. In this colloidal polycrystal dispersion, fine colloidal polycrystals were observed with the naked eye when sparkling at room temperature. The colloidal polycrystal dispersion was separately charged in a quartz cell, and after precipitation of fine colloidal polycrystals, it was cooled, and the temperature at which the colloidal crystals melted was measured to be 10 ° C.
 この微細なコロイド多結晶が分散されているコロイド多結晶分散液を、図4に示す、内法が厚さ1mm、幅1cm、長さ4.5cmの石英セルC内に充填し、市販の自動X軸ステージ4に、水平面と平行になるように石英セルCを設置した。この自動X軸ステージ4は基台5上に矩形のステージ6が設けられており、基台5の一端にステッピングモータ7が取り付けられている。ステージ6はステッピングモータ7の駆動により、図示しないラック-ピニオン機構を介して長手方向に移動可能とされており、図示しない制御装置によってステッピングモータ7を制御することにより、ステージ6は所定の速度で一方向に移動可能とされている。
 また、自動X軸ステージ4を跨ぐようにしてコ字形状の治具8が設置されており、治具8の中央下側にはペルチェ素子9が下側を冷却側とするように取り付けられている。ペルチェ素子9の下面側中央にはアルミ製で薄板状の凸部材10が、ペルチェ素子9と当接しつつ下方に突出して設置されている。凸部材10の幅方向は石英セルCの幅方向と同じとされており、凸部材10の先端は石英セルCと接触している。ペルチェ素子9は図示しない電源からの電力の供給により、下面側が所定の温度となるように冷却可能とされている。また凸部材10と僅かな隙間を介して断熱部材11a、bが対面して両側に設けられている。さらに、凸部材10の先端近くには熱電対12が取り付けられている。
A colloidal polycrystal dispersion in which this fine colloidal polycrystal is dispersed is filled in a quartz cell C having a thickness of 1 mm, a width of 1 cm and a length of 4.5 cm as shown in FIG. A quartz cell C was placed on the X-axis stage 4 so as to be parallel to the horizontal plane. The automatic X-axis stage 4 is provided with a rectangular stage 6 on a base 5, and a stepping motor 7 is attached to one end of the base 5. The stage 6 can be moved in the longitudinal direction via a rack-pinion mechanism (not shown) by driving the stepping motor 7. By controlling the stepping motor 7 by a controller (not shown), the stage 6 can be driven at a predetermined speed. It is movable in one direction.
Also, a U-shaped jig 8 is installed so as to straddle the automatic X-axis stage 4 and a Peltier element 9 is attached to the lower center of the jig 8 with the lower side as the cooling side. There is. A thin plate-like convex member 10 made of aluminum is disposed at the center of the lower surface side of the Peltier element 9 so as to protrude downward while in contact with the Peltier element 9. The width direction of the convex member 10 is the same as the width direction of the quartz cell C, and the tip of the convex member 10 is in contact with the quartz cell C. The Peltier device 9 can be cooled so that the lower surface side has a predetermined temperature by supplying power from a power supply (not shown). Further, the heat insulating members 11a and 11b are provided on both sides facing the convex member 10 with a slight gap therebetween. Further, a thermocouple 12 is attached near the tip of the convex member 10.
 この自動X軸ステージ4のステージ6にコロイド多結晶分散液を入れた石英セルCを取り付けたところ、取り付け後1分以内にコロイド結晶が析出するのが肉眼で観察された。こうしてコロイド結晶が析出した後、ペルチェ素子9に電力を供給するとともに、制御装置によってステッピングモータ7を駆動し、ステージ6を2mm/分の速度で一方向に移動させた。これにより、ペルチェ素子9の冷却面に当接した凸部材10が冷却され、石英セルCの凸部材10と対面する部分が所定の温度に冷却される。そしてステージ6とともに石英セルCが移動することによって、石英セルCの冷却される部分を2mm/分の速度で一方向に移動させた。 When a quartz cell C containing a colloidal polycrystal dispersion was attached to the stage 6 of the automatic X-axis stage 4, it was visually observed that the colloidal crystals were precipitated within 1 minute after the attachment. After the colloidal crystal was thus deposited, power was supplied to the Peltier element 9, and the stepping motor 7 was driven by the control device to move the stage 6 in one direction at a speed of 2 mm / min. Thereby, the convex member 10 in contact with the cooling surface of the Peltier element 9 is cooled, and the portion of the quartz cell C facing the convex member 10 is cooled to a predetermined temperature. Then, by moving the quartz cell C together with the stage 6, the cooled portion of the quartz cell C was moved in one direction at a speed of 2 mm / min.
 図5に再結晶前と、ゾーンメルト法によって再結晶させた後との様子を示す。この写真から、再結晶前には微細な多結晶が数多く観察されたものが、再結晶化後には均質な干渉色となり、単結晶化が進んだことが分かった。さらに、こうして得られたコロイド結晶の反射スペクトル及び吸収スペクトルをファイバー分光法により測定した。その結果、その半値幅は再結晶前には6.33nmだったものが、再結晶化後には5.28nmとなり(回折波長は結晶化前後共に554nm)、再結晶化により結晶の光学特性が向上することが分かった。 FIG. 5 shows the state before recrystallization and after recrystallization by the zone melt method. From this photograph, it was found that although many fine polycrystals were observed before recrystallization, the interference color became homogeneous after recrystallization, and single crystallization progressed. Furthermore, the reflection spectrum and absorption spectrum of the colloidal crystal thus obtained were measured by fiber spectroscopy. As a result, the half width is 6.33 nm before recrystallization, but becomes 5.28 nm after recrystallization (diffraction wavelength is 554 nm both before and after crystallization), and the optical characteristics of the crystal are improved by recrystallization. It turned out to do.
 得られたコロイド単結晶の結晶格子面の層数をBragg式より次のように算定した。すなわち、Bragg式より2d・sinθ=N・λ/n(ここでdは格子面の間隔、θは入射光と格子面のなす角、Nは自然数、λは回折波長、nは試料の屈折率)となる。実施例1の測定では、θ=90°(sinθ=1)、N=1であり、n=φnシリカ粒子+(1-φ)n(nシリカ粒子=1.46、n=1.33)と近似できる。φ=0.050ではn=1.45となり、d=λ/(2nr)=191nmと算出される。このため、厚さ1mmの結晶中では結晶格子面の数は約5200(層)となり、層数も極めて多いことが分かった。 The number of layers of the crystal lattice plane of the obtained colloid single crystal was calculated as follows from the Bragg equation. That is, according to the Bragg equation, 2d · sin θ = N · λ / n r (where d is the distance between the lattice planes, θ is the angle between the incident light and the lattice plane, N is a natural number, λ is the diffraction wavelength, n r is the sample (Refractive index). In the measurement of Example 1, θ = 90 ° (sin θ = 1), N = 1, n r = φ n silica particles + (1-φ) n water (n silica particles = 1.46, n water = 1 .33). When φ = 0.050, n r = 1.45, and d = λ / (2 nr) = 191 nm is calculated. Therefore, it was found that the number of crystal lattice planes is about 5200 (layers) in a 1 mm thick crystal, and the number of layers is extremely large.
 また、場所による回折波長の違いを調べたところ、回折波長の変動もごく僅か(1nm以下)であり、その空間不均一性は反射スペクトル測定で0.04%:透過スペクトル測定で0.05%と算出され、極めて優れた均一性を有することが分かった。さらには、厚さ1mmにおける回折波長での透過率は0.009であり、回折格子として優れた性能を示すことが分かった。また、回折波長から少し外れた波長での透過率は大きく、回折波長以外では優れた透明性を有することが分かった。 Moreover, when the difference in the diffraction wavelength according to the place was examined, the fluctuation of the diffraction wavelength was also very slight (1 nm or less), and the spatial nonuniformity was 0.04% in reflection spectrum measurement: 0.05% in transmission spectrum measurement It has been calculated that it has extremely excellent uniformity. Furthermore, it was found that the transmittance at a diffraction wavelength at a thickness of 1 mm was 0.009, and that the grating exhibited excellent performance as a diffraction grating. In addition, it was found that the transmittance at a wavelength slightly deviated from the diffraction wavelength was large, and the transparency was excellent at wavelengths other than the diffraction wavelength.
(実施例1-2~1-4)
 実施例1-2~1-4では、ペルチェ素子9の移動速度を実施例1-1の場合と異なる速度(すなわち、実施例1-2では18mm/分、実施例1-3では30mm/分、実施例1-4では42mm/分)でコロイド結晶を調製した。その他の調製条件は実施例1-1と同様である。結果を図6に示す。この図より、冷却部分(すなわちコロイド多結晶の融解域)の移動速度νが大きくなるほど、結晶サイズが小さくなることが分かった。
(Examples 1-2 to 1-4)
In Examples 1-2 to 1-4, the moving speed of the Peltier element 9 is different from that in Example 1-1 (ie, 18 mm / min in Example 1-2 and 30 mm / min in Example 1-3). In Example 1-4, colloidal crystals were prepared at 42 mm / min. Other preparation conditions are the same as in Example 1-1. The results are shown in FIG. From this figure, it was found that the crystal size becomes smaller as the moving velocity ν of the cooled portion (ie, the melting region of the colloidal polycrystal) increases.
 また、実施例1-1(すなわちν=2mm/分)のコロイド結晶調製において、ペルチェ素子9と反対側のセル表面温度を赤外線式サーモグラフィー装置(NEC/Avio社製TH6300型)を用いて測定した。結果を図7に示す。図7(a)は5分毎の温度分布の画像を示す。また、図7(b)は図7(a)の各画像中に示した横線上の位置x(セル左端からの距離)と温度との関係を示した図である。図7(a)において、15℃以下の最も暗く見える部分はペルチェ素子9であり、これに接触している部分がコロイド結晶の融解域である。 Further, in the preparation of the colloidal crystal of Example 1-1 (ie, ν = 2 mm / min), the cell surface temperature on the opposite side to the Peltier element 9 was measured using an infrared thermographic apparatus (TH6300 manufactured by NEC / Avio). . The results are shown in FIG. FIG. 7 (a) shows an image of the temperature distribution every 5 minutes. FIG. 7B is a diagram showing the relationship between the position x (distance from the left end of the cell) on the horizontal line shown in each image of FIG. 7A and the temperature. In FIG. 7 (a), the darkest portion at 15 ° C. or lower is the Peltier element 9, and the portion in contact with this is the melting zone of the colloidal crystal.
 また、同様の表面温度測定を実施例1-4(ν=42mm/分)、実施例1-3(ν=30mm/分)及び実施例1-2(ν=18mm/分)についても行った。その結果、ペルチェ素子9と接触している側と反対側のセル表面の温度は、実施例1-4で23℃、実施例1-3で22℃、実施例1-2で18℃であった。 Similar surface temperature measurements were also performed for Example 1-4 ((= 42 mm / min), Example 1-3 ((= 30 mm / min) and Example 1-2 (ν = 18 mm / min). . As a result, the temperature of the cell surface opposite to the side in contact with the Peltier element 9 is 23 ° C. in Example 1-4, 22 ° C. in Example 1-3, and 18 ° C. in Example 1-2. The
<ゾーンメルト法による不純物排除実験>
(実施例2-1)
 実施例2-1では、蛍光ポリスチレン粒子を模擬不純物とし、ゾーンメルト法による不純物粒子の排除試験を行なった。以下にその試験方法を詳述する。
 すなわち、精製したシリカコロイド(粒径=100nm、粒子濃度=5vol%)にピリジン50μmol/Lを添加した分散液に、モデル不純物として蛍光ポリスチレン微粒子(粒径=100nm)を粒子濃度=0.02vol%となるように加えた。このように調製したコロイド多結晶分散液は、1mm以下の微結晶の集合体であった。このコロイド多結晶分散液を1×1×4.5cmの石英セルに入れ、実施例1-1で用いたゾーンメルト装置を用い、25℃において、凸部材10の先端が3℃となるようにペルチェ素子9を制御しながら、速さ2mm/分でセルの右端から左向きに約3cm移動させて、ゾーンメルト処理を行なった。こうして得られたコロイド結晶の外観を図8に示す。図中に矢印で示した部分がゾーンメルト処理を施した部分であり、コロイド単結晶が析出していることが分かる。ゾーンメルト処理を施した部分の左側端には、多結晶領域が残存していた。さらに、蛍光顕微鏡を用いて蛍光粒子の分布を調べた結果を図8に示す。図8の上側の図に示す(a)(多結晶領域)、(b)(境界領域)及び(c)(再結晶領域)における蛍光顕微鏡像が図8の下の図である。(a)では明瞭な蛍光が観測されたが、(c)ではほとんど観察されなかった。以上の結果から、単結晶部分から模擬不純物である蛍光粒子が排除されたことが分かった。
<Impurity exclusion experiment by zone melt method>
(Example 2-1)
In Example 2-1, fluorescent polystyrene particles were used as the simulated impurities, and the exclusion test of the impurity particles was performed by the zone melt method. The test method is described in detail below.
That is, in a dispersion obtained by adding 50 μmol / L of pyridine to a purified silica colloid (particle size = 100 nm, particle concentration = 5 vol%), fluorescent polystyrene fine particles (particle size = 100 nm) as a model impurity particle concentration = 0.02 vol% Added to be The colloidal polycrystal dispersion prepared in this way was an aggregate of microcrystals of 1 mm or less. The colloidal polycrystal dispersion is placed in a 1 × 1 × 4.5 cm quartz cell, and using the zone melt apparatus used in Example 1-1, the temperature of the tip of the convex member 10 is 3 ° C. at 25 ° C. While controlling the Peltier element 9, zone melt processing was performed by moving about 3 cm leftward from the right end of the cell at a speed of 2 mm / min. The appearance of the colloidal crystal thus obtained is shown in FIG. The portion indicated by the arrow in the figure is the portion subjected to zone melt processing, and it can be seen that the colloidal single crystal is precipitated. A polycrystalline region remained at the left end of the zone melt-treated portion. Furthermore, the result of examining the distribution of fluorescent particles using a fluorescence microscope is shown in FIG. The fluorescence microscope image in (a) (polycrystal area | region) (b) (boundary area | region) and (c) (recrystallized area | region) shown to the upper figure of FIG. 8 is a lower figure of FIG. Clear fluorescence was observed in (a) but hardly observed in (c). From the above results, it was found that fluorescent particles as simulated impurities were excluded from the single crystal part.
(実施例2-2)
 実施例2-2では、蛍光ポリスチレン微粒子(粒径=100nm)を粒子濃度=0.0005vol%となるように加え、ピリジン濃度は55μmol/Lとした。その他の条件は実施例2-1と同様であり、詳細な説明を省略する。
(Example 2-2)
In Example 2-2, fluorescent polystyrene fine particles (particle diameter = 100 nm) were added so that the particle concentration was 0.0005 vol%, and the pyridine concentration was 55 μmol / L. The other conditions are the same as in Example 2-1, and the detailed description will be omitted.
 こうして得られたコロイド結晶について、1mm間隔で蛍光画像を撮影し,画像解析ソフトを用いて蛍光輝度を測定した。結果を図9に示す。この図からゾーンメルト処理後は、ゾーンメルト処理前に比べて、再結晶領域の輝度が減少し,境界部分で輝度が極大を持つことが明らかになった。すなわち、ゾーンメルト処理によって蛍光ポリスチレン粒子は再結晶部分から排除され、境界に集積することが分かった。 About the colloidal crystal thus obtained, fluorescence images were taken at 1 mm intervals, and the fluorescence intensity was measured using image analysis software. The results are shown in FIG. From this figure, it is clear that after zone melt processing, the brightness of the recrystallized region is reduced compared to before zone melt processing, and the brightness has a maximum at the boundary. That is, it was found that the fluorescent polystyrene particles were excluded from the recrystallized portion by zone melt treatment and accumulated at the boundary.
 以上の結果は、従来シリコン等の単結晶を得るのに利用されていたゾーンメルト法が、コロイド結晶系においても適用できることを意味するものである。すなわち、結晶グレイン境界は結晶内部よりも融点が低いため、ゾーンメルト法によりコロイド多結晶を冷却して微小な結晶グレインを融解させ、再び加熱して結晶化させた場合、周囲の結晶配向と同じ配向を持つ結晶が再構築されて、単結晶化が進行する(図10参照)。また、その他の結晶欠陥(例えば空孔、双晶欠陥など)についても、同様に、融解/再結晶化を行なうゾーンメルト法によって、除去することができると推測される。 The above results mean that the zone melt method, which has conventionally been used to obtain single crystals of silicon and the like, can also be applied to colloidal crystal systems. That is, since the crystal grain boundary has a melting point lower than that of the inside of the crystal, the colloidal polycrystals are cooled by the zone melt method to melt fine crystal grains, and when heated again for crystallization, the same crystal orientation as the surrounding The crystal with orientation is remodeled and single crystallization proceeds (see FIG. 10). In addition, it is assumed that other crystal defects (for example, vacancies, twin defects, etc.) can be similarly removed by the zone melting method in which melting / recrystallization is performed.
<一方向からの冷却後に冷却を停止してコロイド結晶を析出させる方法によるコロイド結晶の調製>
(実施例3)
 実施例3では、コロイド多結晶からなるコロイド多結晶分散液を充填した石英セルを一方向から冷却した後、冷却を停止して再結晶させ、微細なコロイド多結晶から巨大なコロイド単結晶を調製した。
 結晶化用コロイド多結晶分散液におけるシリカコロイドの体積分率(φ)を0.035とし、ピリジン濃度は50μmol/Lとした。コロイド多結晶分散液を調製するための他の条件は実施例1と同様であり、説明を省略する。こうして得られたコロイド多結晶分散液を実施例1の場合と同様の石英セルに充填し、図11に示すように石英セル20を水平方向に固定し、上面側に4つの熱電対21を幅方向の中央部分において当接させ、各部の温度を計測可能にセットした。そして、石英セル20の一端側を図示しない冷却水循環装置に接続された水槽22に接触させて0℃とし、一端側から他端側へコロイド結晶を融解させた後、水槽22を石英セル20から離して再びコロイド結晶を析出させた。熱電対21は、水槽22から距離が2.5mm、7.5mm、12.5mm及び17.5mmの位置に設置した。また、熱電対21からの信号はA/Dコンバータ23でデジタル化し、デジタルデータとしてパソコン24に取り込んだ。
Preparation of Colloidal Crystal by Method of Stopping Cooling after Precipitation from One Direction and Precipitation of Colloidal Crystal>
(Example 3)
In Example 3, a quartz cell filled with a colloidal polycrystal dispersion composed of colloidal polycrystals is cooled from one direction, and then the cooling is stopped and recrystallization is carried out to prepare a giant colloidal single crystal from fine colloidal polycrystals. did.
The volume fraction (φ) of the silica colloid in the colloidal polycrystal dispersion for crystallization was set to 0.035, and the pyridine concentration was set to 50 μmol / L. The other conditions for preparing the colloidal polycrystal dispersion are the same as in Example 1, and the description will be omitted. The colloidal polycrystal dispersion thus obtained is filled in the same quartz cell as in Example 1, and the quartz cell 20 is fixed in the horizontal direction as shown in FIG. It abuts on the central part of the direction, and the temperature of each part is set to be measurable. Then, one end side of the quartz cell 20 is brought into contact with the water tank 22 connected to a cooling water circulation device (not shown) to make it 0 ° C., and the colloidal crystal is melted from one end side to the other end. The colloid crystals were separated again and precipitated. The thermocouple 21 was placed at a distance of 2.5 mm, 7.5 mm, 12.5 mm and 17.5 mm from the water tank 22. Further, the signal from the thermocouple 21 is digitized by the A / D converter 23 and taken into the personal computer 24 as digital data.
 コロイド結晶の析出の様子を肉眼で観察したところ、コロイド結晶の融解の様子が肉眼によって明確に確認できた。すなわち、水槽22による冷却を停止したところ、水槽22に近い側にはコロイド結晶が融解した白濁した状態の融解領域認められ、水槽22から遠い側にはコロイド結晶が融解しておらず干渉色が観察される結晶領域が認められた。 When the state of the precipitation of the colloidal crystal was observed with the naked eye, the state of the melting of the colloidal crystal could be clearly confirmed by the naked eye. That is, when the cooling by the water tank 22 is stopped, the melted region of the turbid state in which the colloidal crystal is melted is observed on the side close to the water tank 22, and the colloid crystal is not melted on the side far from the water tank 22, and the interference color is An observed crystalline region was observed.
 こうしてコロイド結晶を析出させた場合の写真を図12に示し、各部の温度を図13に示す(図13中のmmは水槽22からの距離を示す)。図12に示すように、コロイド多結晶が融解-再結晶した均質な干渉色を示す単結晶化領域と、コロイド多結晶が融解せずにそのまま残った領域とが明確に区別できた。また、再結晶した部分及び再結晶しなかった部分について反射スペクトルを測定したところ、どちらも中心波長は620nmであったが、その半値幅は再結晶しなかった部分は5.47nmであったのに対し、再結晶部分では4.64nmと小さくなり、優れた光学的性質を持つことが分かった。 A photograph of the case where the colloidal crystal is precipitated is shown in FIG. 12, and the temperature of each part is shown in FIG. 13 (mm in FIG. 13 indicates the distance from the water tank 22). As shown in FIG. 12, it was possible to clearly distinguish between a single crystallization region showing a homogeneous interference color in which the colloidal polycrystal melts and recrystallizes, and a region where the colloidal polycrystal remains as it is without melting. In addition, when the reflection spectrum was measured for the recrystallized part and the non-recrystallized part, the center wavelength was 620 nm for both, but the half width was 5.47 nm for the part not recrystallized. On the other hand, in the recrystallized part, it became as small as 4.64 nm, and it turned out that it has excellent optical properties.
 また、透過スペクトルを測定したところ、図14に示すように、再結晶しなかった部分は場所ごとにスペクトルが異なっていたのに対し、再結晶領域ではどこでもほぼ同じスペクトルが得られ、光学的な均質性に優れていることが分かった。 In addition, when the transmission spectrum was measured, as shown in FIG. 14, the portion which did not recrystallize was different in spectrum from one place to another, while almost the same spectrum was obtained everywhere in the recrystallisation region. It turned out that it is excellent in homogeneity.
 さらに、コロイド多結晶分散液中のピリジン濃度を40μmol/L、47.5μmol/L及び50μmol/Lと変えて同様に試験を行ない、多結晶領域及び再結晶領域の反射スペクトルを測定した。その結果、図15に示すように、ピリジン濃度が低いほど、半値幅が小さくなった。 Further, the same test was conducted while changing the concentration of pyridine in the colloidal polycrystal dispersion to 40 μmol / L, 47.5 μmol / L and 50 μmol / L, and the reflection spectra of the polycrystal region and the recrystallization region were measured. As a result, as shown in FIG. 15, the lower the pyridine concentration, the smaller the half width.
 また、ピリジン濃度が50μmol/Lのコロイド多結晶分散液を用いて調製したコロイド再結晶領域のコッセル線解析を行った。コッセル線とは、元来、X線を単結晶物質に照射したとき、結晶内部で2次的に発生した特性X線が点光源として働き、その光を様々な結晶格子面が回折することにより得られる特徴的な回折パターンを指すものであり、コッセル線の解析により、結晶格子の配向や格子構造が決定できる。この方法を上記のコロイド結晶に応用し、澤田らの方法(T. Kanai, T. Sawada, I. Maki, K. Kitamura. Jpn. J. Appl. Phys., vol. 42, p. L655 (2003))にならってコッセル線解析を行なった。コロイド結晶は格子面間隔が光の波長のオーダーのため、X線ではなくレーザー光を用いた。点光源と同等なものとして試料セルとレーザー光源の間に光拡散板を設け、円錐状に広がった入射光を得た。(コッセル線解析装置の模式図はA.Toyotama, J.Yamanaka, M.Yonese, T.Sawada, F.Uchida、J.Am.Chem.Soc. vol.129, p.3044 (2007)のSupporting Informationに記載されている)。この方法によれば、コロイド結晶に入射した円錐状の光のうち、回折により除かれた部分が影となって観察される。図16に、このようにして得られた単結晶のコッセル線写真を示す。中央のリング状のパターンはセル壁面に平行に配向した、BCC{110}面からの回折であり、またリングの周囲にあるパターンは、BCC{200}面によるものであることが結論される(A.Toyotama, J.Yamanaka, M.Yonese, T.Sawada, F.Uchida、J.Am.Chem.Soc. vol.129, p.3044 (2007))。この図から分かるように、よく配向した単結晶が形成されていることが支持された。 In addition, Kossel line analysis of a colloidal recrystallization region prepared using a colloidal polycrystal dispersion liquid with a pyridine concentration of 50 μmol / L was performed. The Kossel line is originally that when X-rays are irradiated to a single crystal substance, characteristic X-rays generated secondarily inside the crystal work as point light sources, and the light is diffracted by various crystal lattice planes. It indicates the characteristic diffraction pattern to be obtained, and analysis of the Kossel line can determine the orientation and lattice structure of the crystal lattice. This method is applied to the above-mentioned colloidal crystal, and the method of Sawada et al. (T. Kanai, T. Sawada, I. Maki, K. Kitamura. Jpn. J. Appl. Phys., Vol. 42, p. L655 (2003) Kossel line analysis was performed according to). Since the lattice spacing of the colloidal crystal is on the order of the wavelength of light, laser light was used instead of X-ray. A light diffusion plate was provided between the sample cell and the laser light source as equivalent to a point light source to obtain conically spread incident light. (A schematic diagram of the Kossel line analysis system is the Supporting Information of A. Toyotama, J. Yamanaka, M. Yonese, T. Sawada, F. Uchida, J. Am. Chem. Soc. Vol. 129, p. 3044 (2007) It is described in). According to this method, of the conical light incident on the colloidal crystal, a portion removed by diffraction is observed as a shadow. FIG. 16 shows a Kossel line photograph of the single crystal thus obtained. It is concluded that the ring pattern in the center is diffraction from the BCC {110} plane oriented parallel to the cell wall, and the pattern around the ring is due to the BCC {200} plane ( A. Toyotama, J. Yamanaka, M. Yonese, T. Sawada, F. Uchida, J. Am. Chem. Soc. Vol. 129, p. 3044 (2007)). As can be seen from this figure, it was supported that a well-oriented single crystal was formed.
<コロイド結晶のゲル化>
(実施例3-1~3-3)
 上記の方法で調製したコロイド結晶を、公知の方法(特願2004-375594:ゲル固定化コロイド結晶(発明者:山中淳平、村井雅子、山田浩司、尾崎宙志、内田文生、澤田勉、豊玉彰子、伊藤研策、瀧口義浩、平博仁 (特願2004-375594) 出願人:宇宙航空研究開発機構、富士化学(株))により固定化した。
<Gelation of colloidal crystals>
(Examples 3-1 to 3-3)
Colloidal crystals prepared by the above method are known methods (Japanese Patent Application No. 2004-375594: Gel-immobilized colloidal crystals (Inventor: Ryohei Yamanaka, Masako Murai, Koji Yamada, Hiroshi Ozaki, Fumio Uchida, Tsutomu Sawada, Akiko Toyotama) , Ito Kensaku, Higuchi Yoshihiro, Hira Hirohito (Japanese Patent Application No. 2004-375594) Applicant: The Japan Aerospace Exploration Agency, Fuji Chemical Co., Ltd.
 すなわち、まずN-メチロールアクリルアミド(以下「N-MAM」という)と、N,N’-メチレンビスアクリルアミド(以下「Bis」という)と、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド](以下「PA」という)と、シリカコロイド分散液と、ピリジンとを所定の割合で混合したシリカコロイド多結晶分散液を用意する。ここで、Bisは架橋剤としての役割を担い、PAは、光重合開始剤としての役割を担う。シリカコロイド多結晶分散液の組成は、シリカコロイドの体積分率(φ)を0.05、ピリジン濃度を42.5μmol/Lとし、Bisは5mmol/L、PAは50μg/ml、
N-MAMは195~390mmol/L(すなわち実施例3-1は195mmol/L、実施例3-2はmmol/L、実施例3-3は390mmol/L)とした。
That is, first, N-methylol acrylamide (hereinafter referred to as "N-MAM"), N, N'-methylenebisacrylamide (hereinafter referred to as "Bis"), and 2,2'-azobis [2-methyl-N- (2) Preparation of silica colloidal polycrystal dispersion prepared by mixing —hydroxyethyl) -propionamide] (hereinafter referred to as “PA”), silica colloid dispersion and pyridine in a predetermined ratio. Here, Bis plays a role as a crosslinking agent, and PA plays a role as a photopolymerization initiator. The composition of the silica colloidal polycrystal dispersion is 0.05 volume fraction (φ) of silica colloid, 42.5 μmol / L of pyridine concentration, 5 mmol / L of Bis, 50 μg / ml of PA,
The N-MAM was 195 to 390 mmol / L (ie, Example 3-1 is 195 mmol / L, Example 3-2 is mmol / L, and Example 3-3 is 390 mmol / L).
 こうして得られたシリカコロイド多結晶分散液を実施例1-1で用いたセルに入れて、暗室内でゾーンメルト法によりコロイド単結晶を得、さらにコロイド単結晶に紫外線を照射してN-MAMを重合させた。
 その結果、表1に示すように、N-MAMの濃度が高いほど硬いゲル状態になることが分かった(表中○は硬いゲル状態を示し、△は柔らかいゲル状態を示し、×は流動状態でゲル化していないことを示す)。
Figure JPOXMLDOC01-appb-T000001
The silica colloidal polycrystal dispersion thus obtained is put into the cell used in Example 1-1, a colloidal single crystal is obtained by zone melt method in a dark room, and the colloidal single crystal is further irradiated with ultraviolet light to obtain N-MAM. Polymerized.
As a result, as shown in Table 1, it was found that the higher the concentration of N-MAM, the harder the gel state (in the table, ○ indicates a hard gel state, Δ indicates a soft gel state, and x indicates a flow state) To indicate no gelation).
Figure JPOXMLDOC01-appb-T000001
 実施例3-3のゲル化されたコロイド結晶の写真を図17に示す。ここで、ゾーンメルト法によってコロイド多結晶の再結晶が行なわれているのは、右端から左へ15mmまでの間であり、その間においては、ほぼ単一色からなる干渉色が認められた。これに対し、ゾーンメルト法によるコロイド多結晶の再結晶が行なわれていない部分は、様々な色からなるコロイド多結晶が認められた。さらに、こうして得られたゲル化したコロイド結晶の透過スペクトルを測定したところ、図18に示すように、ゾーンメルト法が適用されていない部分の測定結果(a)では、測定箇所によってスペクトルが大きく異なるのに対し、ゾーンメルト法が適用されている部分の測定結果(b)では、ほぼ均一のスペクトルが得られ、ゾーンメルト法の適用により、コロイド結晶の単結晶化が進行していることが分かった。 A photograph of the gelled colloidal crystals of Example 3-3 is shown in FIG. Here, it is between 15 mm from the right end to the left that the recrystallization of the colloidal polycrystal is performed by the zone melt method, and an interference color consisting of substantially a single color was observed between them. On the other hand, in the portion where the recrystallization of the colloidal polycrystal by the zone melt method was not performed, the colloidal polycrystal consisting of various colors was recognized. Furthermore, when the transmission spectrum of the gelled colloidal crystal thus obtained was measured, as shown in FIG. 18, in the measurement result (a) of the portion to which the zone melt method is not applied, the spectrum largely differs depending on the measurement location On the other hand, in the measurement result (b) of the part where the zone melt method is applied, an almost uniform spectrum is obtained, and by the application of the zone melt method, it is found that single crystallization of the colloidal crystal is progressing The
 この発明は、上記発明の実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。 The present invention is not limited to the description of the embodiments of the invention. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive of the claims without departing from the scope of the claims.

Claims (12)

  1.  所定の温度でコロイド多結晶が融解するコロイド多結晶分散液を用意する準備工程と、
     該コロイド多結晶分散液を容器に収容する収容工程と、
     該容器内のコロイド多結晶分散液の一部の領域又は全部の領域の温度をコロイド結晶が析出しない温度とした後、再びコロイド結晶が析出する温度に変化させることによってコロイド多結晶を再結晶させる再結晶工程と、
     を有することを特徴とするコロイド結晶の製造方法。
    Preparing a colloidal polycrystal dispersion in which the colloidal polycrystal melts at a predetermined temperature;
    Storing the colloidal polycrystal dispersion in a container;
    After setting the temperature of a part or all of the region of the colloidal polycrystal dispersion in the container to a temperature at which the colloidal crystal does not precipitate, the colloidal polycrystal is recrystallized by changing it again to the temperature at which the colloidal crystal precipitates. A recrystallization process,
    A method of producing a colloidal crystal, comprising:
  2.  前記再結晶工程で、温度調節手段によりコロイド多結晶分散液の一部をコロイド結晶が融解する温度に設定して融解領域を形成させ、該融解領域を移動させるゾーンメルト法によって再結晶させることを特徴とする請求項1記載のコロイド結晶の製造方法。 In the recrystallization step, a temperature control means sets a part of the colloidal polycrystal dispersion to a temperature at which the colloidal crystal melts to form a melting region, and recrystallizing it by a zone melting method in which the melting region is moved. The method for producing a colloidal crystal according to claim 1, characterized in that
  3.  融解領域の移動は前記温度調節手段と前記容器との相対移動を可能とする移動手段によって行なうことを特徴とする請求項2記載のコロイド結晶の製造方法。 3. A method of producing a colloidal crystal according to claim 2, wherein the movement of the melting region is performed by a moving means which enables relative movement between the temperature control means and the container.
  4.  収容工程において、コロイド多結晶分散液は略平行に対面する2つの壁の間に充填されることを特徴とする請求項1又は3に記載のコロイド結晶の製造方法。 The method for producing a colloidal crystal according to claim 1 or 3, wherein the colloidal polycrystal dispersion is filled between two walls facing in a substantially parallel manner in the storing step.
  5.  コロイド多結晶分散液には温度変化によって解離度が変化する弱酸又は弱塩基が添加されており、温度変化によるpHの変化によってコロイド結晶が析出することを特徴とする請求項1乃至4のいずれか1項記載のコロイド結晶の製造方法。 5. The colloidal polycrystal dispersion liquid is added with a weak acid or a weak base whose degree of dissociation changes with temperature change, and colloidal crystals are precipitated by change of pH due to temperature change. The manufacturing method of the colloid crystal of 1st term.
  6.  コロイド多結晶分散液のコロイド粒子はシリカ粒子であり、分散媒は水であり、弱塩基はピリジン及び/又はピリジン誘導体であることを特徴とする請求項1乃至4のいずれか1項記載のコロイド結晶の製造方法。 The colloid according to any one of claims 1 to 4, wherein the colloidal particles of the colloidal polycrystalline dispersion are silica particles, the dispersion medium is water, and the weak base is pyridine and / or a pyridine derivative. How to make crystals.
  7.  コロイド結晶を成長させた後、ゲル化により固化することを特徴とする請求項1乃至6のいずれか1項記載のコロイド結晶の製造方法。 The method for producing a colloidal crystal according to any one of claims 1 to 6, wherein the colloidal crystal is grown and solidified by gelation.
  8.  前記再結晶工程では、温度調節手段により容器の一端側から冷却又は加熱してコロイド多結晶分散液中のコロイド多結晶を融解させた後、該温度調節手段による冷却又は加熱を停止して再結晶させることを特徴とする請求項1記載のコロイド結晶の製造方法。 In the recrystallization step, after cooling or heating from one end side of the container by the temperature control means to melt the colloidal polycrystal in the colloidal polycrystal dispersion, cooling or heating by the temperature control means is stopped and recrystallization is carried out The method for producing a colloidal crystal according to claim 1, characterized in that
  9.  請求項1乃至8のいずれか1項のコロイド結晶の製造方法によって得られたコロイド結晶。 A colloidal crystal obtained by the method for producing a colloidal crystal according to any one of claims 1 to 8.
  10.  吸収スペクトル及び反射スペクトルにおける半値幅は10nm以下であることを特徴とする請求項9記載のコロイド結晶。 10. The colloidal crystal according to claim 9, wherein the half width in the absorption spectrum and the reflection spectrum is 10 nm or less.
  11.  回折波長の空間不均一性は0.2%以下であることを特徴とする請求項9又は10記載のコロイド結晶。 11. The colloidal crystal according to claim 9, wherein the spatial non-uniformity of the diffraction wavelength is 0.2% or less.
  12.  回折波長の空間不均一性が0.2%以下であり、該回折波長での透過率が厚さ1mmにおいて0.1%以下であり、結晶格子面の層数が3000層以上であり、最大径が1cm以上の単結晶からなることを特徴とする請求項9乃至11のいずれか1項記載のコロイド結晶。 The spatial nonuniformity of the diffraction wavelength is 0.2% or less, the transmittance at the diffraction wavelength is 0.1% or less at a thickness of 1 mm, the number of layers of crystal lattice planes is 3,000 or more, and the maximum Colloidal crystal according to any one of claims 9 to 11, characterized in that it consists of a single crystal having a diameter of 1 cm or more.
PCT/JP2009/058500 2008-05-28 2009-04-30 Process for producing colloidal crystal and colloidal crystal WO2009145031A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020107027281A KR101232315B1 (en) 2008-05-28 2009-04-30 Process for producing colloidal crystal and colloidal crystal
JP2010514424A JP5663752B2 (en) 2008-05-28 2009-04-30 Method for producing colloidal crystal and colloidal crystal
CN200980117929.XA CN102036747B (en) 2008-05-28 2009-04-30 Process for producing colloidal crystal and colloidal crystal
US12/994,087 US9017477B2 (en) 2008-05-28 2009-04-30 Process for producing colloidal crystal and colloidal crystal
EP09754539A EP2295137B1 (en) 2008-05-28 2009-04-30 Process for producing colloidal crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008140089 2008-05-28
JP2008-140089 2008-05-28

Publications (1)

Publication Number Publication Date
WO2009145031A1 true WO2009145031A1 (en) 2009-12-03

Family

ID=41376917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058500 WO2009145031A1 (en) 2008-05-28 2009-04-30 Process for producing colloidal crystal and colloidal crystal

Country Status (6)

Country Link
US (1) US9017477B2 (en)
EP (1) EP2295137B1 (en)
JP (1) JP5663752B2 (en)
KR (1) KR101232315B1 (en)
CN (1) CN102036747B (en)
WO (1) WO2009145031A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140069326A1 (en) * 2011-03-08 2014-03-13 Public University Corporation Nagoya City University Method for producing colloidal crystal and colloidal crystal
WO2019160132A1 (en) * 2018-02-19 2019-08-22 公立大学法人名古屋市立大学 Decorative aqueous composition and method for producing same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3060707C (en) 2011-11-21 2022-04-12 Innovation Hammer Llc Method for photosafening a plant by exposing the plant to a formulation comprising alpha-d-mannosides and water soluble divalent calcium and manganese ions
US9828299B2 (en) 2012-05-21 2017-11-28 Innovation Hammer, Llc Methods for rendering micellar coordination complexes safe for the treatment of plants and formulations for same
US9970850B2 (en) * 2013-08-06 2018-05-15 National Institute For Materials Science Sheet of colloidal crystals immobilized in resin, method of displaying structural color using same, method for detecting unevenness distribution or hardness distribution of subject using same, and structural color sheet
US9849464B2 (en) 2014-04-18 2017-12-26 The Regents Of The University Of Michigan Devices and methods for spatially and temporally reconfigurable assembly of colloidal crystals
EP3289039A4 (en) 2015-04-27 2018-10-17 The Regents of The University of Michigan Durable icephobic surfaces
EP3448157A4 (en) 2016-04-29 2019-10-23 Innovation Hammer LLC Formulations and methods for treating photosynthetic organisms and enhancing qualities and quantities of yields with glycan composite formulations
TW201934483A (en) * 2017-12-28 2019-09-01 奧地利商施華洛世奇股份有限公司 Method and apparatus for manufacturing photonic crystals
KR102105872B1 (en) * 2018-05-18 2020-04-29 강원대학교산학협력단 Copper nano colloidal dispersion produced by hot-melting extrusion method and uses thereof
KR102105827B1 (en) * 2018-05-18 2020-04-29 강원대학교산학협력단 Selenium nanocolloid dispersion produced by hot melt extrusion method and uses thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319539A (en) 1998-05-11 1999-11-24 Japan Science & Technology Corp Ionic colloidal system reversibly crystallizing by temperature change and production of colloidal crystal utilizing the same
JP2001079384A (en) * 1999-09-14 2001-03-27 Agency Of Ind Science & Technol Method of preparing ultrafine particle and its high density crystal
JP2004089996A (en) 2002-08-09 2004-03-25 Japan Science & Technology Agency Manufacturing method of colloidal crystal of cm size
JP2008093654A (en) 2006-09-11 2008-04-24 Nagoya City Univ Colloidal crystal making method, and colloidal crystal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3647401A (en) * 1969-06-04 1972-03-07 Du Pont Anisodimensional tungsten carbide platelets bonded with cobalt
US4803688A (en) * 1988-03-28 1989-02-07 Lawandy Nabil M Ordered colloidal suspension optical devices
US5232913A (en) * 1990-04-26 1993-08-03 Senju Pharmaceutical Co., Ltd. Antihepatopathic composition
JP2003095651A (en) 2001-09-21 2003-04-03 Ricoh Co Ltd Precursor sol for forming dielectric film, method for preparing precursor sol, dielectric film and method for forming dielectric film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319539A (en) 1998-05-11 1999-11-24 Japan Science & Technology Corp Ionic colloidal system reversibly crystallizing by temperature change and production of colloidal crystal utilizing the same
JP2001079384A (en) * 1999-09-14 2001-03-27 Agency Of Ind Science & Technol Method of preparing ultrafine particle and its high density crystal
JP2004089996A (en) 2002-08-09 2004-03-25 Japan Science & Technology Agency Manufacturing method of colloidal crystal of cm size
JP2008093654A (en) 2006-09-11 2008-04-24 Nagoya City Univ Colloidal crystal making method, and colloidal crystal

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
A. TOYOTAMA; J. YAMANAKA; M. YONESE; T. SAWADA; F. UCHIDA, J. AM. CHEM. SOC., vol. 129, 2007, pages 3044
B. J. ACKERSON; N. A. CLARK, PHYS. REV., vol. A 30, 1984, pages 906
J. M. WEISSMAN; H. B. SUNKARA; A. S. TSE; S. A. ASHER, SCIENCE, vol. 274, 1996, pages 959
N. WAKABAYASHI; J. YAMANAKA; M. MURAI; K. ITO; T. SAWADA; M. YONESE, LANGMUIR, vol. 22, 2006, pages 7936 - 7941
See also references of EP2295137A4 *
T. KANAI; T. SAWADA; I. MAKI; K. KITAMURA, JPN. J. APPL. PHYS., vol. 42, 2003, pages L655
T. PALBERG; W. MOENCH; J. SCHWARZ; P. LEIDERER, J. CHEM. PHYS., vol. 102, 1995, pages 5082

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140069326A1 (en) * 2011-03-08 2014-03-13 Public University Corporation Nagoya City University Method for producing colloidal crystal and colloidal crystal
US9976228B2 (en) * 2011-03-08 2018-05-22 Public University Corporation Nagoya City University Method for producing colloidal crystal and colloidal crystal
WO2019160132A1 (en) * 2018-02-19 2019-08-22 公立大学法人名古屋市立大学 Decorative aqueous composition and method for producing same

Also Published As

Publication number Publication date
KR101232315B1 (en) 2013-02-12
CN102036747A (en) 2011-04-27
EP2295137A1 (en) 2011-03-16
US20110123803A1 (en) 2011-05-26
KR20110049747A (en) 2011-05-12
EP2295137A4 (en) 2011-08-10
JPWO2009145031A1 (en) 2011-10-06
US9017477B2 (en) 2015-04-28
CN102036747B (en) 2014-05-28
EP2295137B1 (en) 2012-06-06
JP5663752B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
WO2009145031A1 (en) Process for producing colloidal crystal and colloidal crystal
Xu et al. Thermochromic hydrogels with dynamic solar modulation and regulatable critical response temperature for energy‐saving smart windows
De Yoreo et al. Developing KH2PO4 and KD2PO4 crystals for the world's most power laser
JP6754963B2 (en) Colloidal eutectic, colloidal eutectic solidified product, and method for producing them
Satoh et al. Iridescent solutions resulting from periodic structure of bilayer membranes
Cai et al. Rapid growth and properties of large-aperture 98%-deuterated DKDP crystals
Lu et al. Bioinspired thermoresponsive photonic polymers with hierarchical structures and their unique properties
Hong et al. Photoinduced tuning of optical stop bands in azopolymer based inverse opal photonic crystals
JP5142127B2 (en) Method for producing colloidal crystal and colloidal crystal
Murai et al. Unidirectional crystallization of charged colloidal silica due to the diffusion of a base
JP5942125B2 (en) Method for producing colloidal crystal and colloidal crystal
Kanai et al. Fabrication of large-area silica colloidal crystals immobilized in hydrogel film
Shinohara et al. Recrystallization and zone melting of charged colloids by thermally induced crystallization
Toyotama et al. Heating-induced freezing and melting transitions in charged colloids
Chaouachi et al. Optical characterization of colloidal silica crystals with controlled size microspheres
Sugao et al. Gelled colloidal crystals as tunable optical filters for spectrophotometers
Yamanaka et al. Colloidal crystals
Wu et al. Rapidly self-assembling three-dimensional opal photonic crystals
JPH02271933A (en) Production of nonlinear optical material
Yamanaka et al. Pattern Formations and Oscillatory Phenomena: 5. Colloidal Crystals
Goldenberg et al. Diffraction properties of ordered arrays of large latex particles
Toyotama et al. Unidirectional Crystallization of Charged Colloidal Silica under Temperature Gradient
Amrehn et al. Indium oxide inverse opal films synthesized by structure replication method
Yamanaka et al. Experimental Methods
Lyashchova et al. Photonics of new metal-alkanoate composites contained semiconductor nanoparticles

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980117929.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754539

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010514424

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009754539

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107027281

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12994087

Country of ref document: US