WO2009143003A1 - Compositions de revêtement comprenant une polyurée et un polysiloxane - Google Patents

Compositions de revêtement comprenant une polyurée et un polysiloxane Download PDF

Info

Publication number
WO2009143003A1
WO2009143003A1 PCT/US2009/044087 US2009044087W WO2009143003A1 WO 2009143003 A1 WO2009143003 A1 WO 2009143003A1 US 2009044087 W US2009044087 W US 2009044087W WO 2009143003 A1 WO2009143003 A1 WO 2009143003A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
isocyanate
component
coating
layer
Prior art date
Application number
PCT/US2009/044087
Other languages
English (en)
Inventor
Michael A. Zalich
John M. Furar
Thomas R. Hockswender
Steven V. Barrancyk
Original Assignee
Ppg Industries Ohio, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ppg Industries Ohio, Inc. filed Critical Ppg Industries Ohio, Inc.
Publication of WO2009143003A1 publication Critical patent/WO2009143003A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3234Polyamines cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3819Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
    • C08G18/3821Carboxylic acids; Esters thereof with monohydroxyl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3878Low-molecular-weight compounds having heteroatoms other than oxygen having phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3878Low-molecular-weight compounds having heteroatoms other than oxygen having phosphorus
    • C08G18/3889Low-molecular-weight compounds having heteroatoms other than oxygen having phosphorus having nitrogen in addition to phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/61Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/12Polyurethanes from compounds containing nitrogen and active hydrogen, the nitrogen atom not being part of an isocyanate group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives

Definitions

  • the isocyanate component comprises an isocyanate functional prepolymer.
  • prepolymer means isocyanate which is pre-reacted with polyamine, polythiol and/or other isocyanate reactive group such as polyol.
  • isocyanate functional prepolymer means prepolymer having at least one isocyanate functional group (NCO).
  • Suitable polyols are numerous and can vary widely. Such polyols can include those that are known in the art.
  • Non- limiting examples of suitable polythiols can include, but are not limited to, trimethylolpropane trimercaptoacetate, pentaerythritol tetramercaptoacetate, trimethylolpropane tris( ⁇ -thiopropionate) and pentaerythritol tetrakis ( ⁇ - thiopropionate), thioplast G4 and G44 (available from Akzo Nobel), 3,6-dioxa-1 ,8- octanedithiol (available from Sigma-Aldrich), or mixtures thereof.
  • the isocyanate functional prepolymer comprises a polythiol
  • the ratio of equivalents of isocyanate groups (NCOs) to equivalents of thiol groups (SHs) is greater than 1 .
  • Suitable epoxy functional compounds include, without limitation, ethylene oxide, propylene oxide, 1 ,2-epoxybutane, butyl glycidyl ether, and CARDURA E-10P (neodecanoic acid glycidyl ester available from Resolution Performance Products LLC).
  • the phosphorus-containing polyol comprises the reaction product of EXOLIT OP 550 (LV) and CARDURA E-10P.
  • Suitable hydroxyl-functional polysiloxanes include, but are not limited to, silanol terminated polydimethylsiloxanes, silanol terminated diphenylsiloxane- dimethylsiloxane copolymers and silanol terminated polydiphenylsiloxanes.
  • Suitable amine-functional polysiloxanes include, but are not limited to, aminopropyl terminated polydimethylsiloxanes, aminopropylmethylsiloxane-dimethylsiloxane copolymers and N-ethylaminoisobutyl terminated polydimethylsiloxanes.
  • the amine may include monoamines, or polyamines having at least two functional groups such as di-, tri-, or higher functional amines; and mixtures thereof.
  • the amine may be aromatic or aliphatic such as cycloaliphatic, or mixtures thereof.
  • Non-limiting examples of secondary amines can include mono- and poly- acrylate and methacrylate modified amines; polyaspartic esters which can include derivatives of compounds such as maleic acid, fumaric acid esters, aliphatic polyamines and the like; and mixtures thereof.
  • the secondary amine includes an aliphatic amine, such as a cycloaliphatic diamine.
  • JEFFLINK such as JEFFLINK 754.
  • the amine can include an amine-functional resin.
  • the amine component may be a mixture of primary and secondary amines wherein the primary amine may be present in an amount of from 20 to 80 percent by weight or from 20 to 50 percent by weight, with the balance being secondary amine.
  • the primary amines present in the composition may have a molecular weight greater than 200, and the secondary amines present may include diamine having molecular weight of at least 190, or from 21 O to 230.
  • the second component of the composition, and/or the composition itself are substantially free of primary amine functionality (unreacted primary amino groups).
  • substantially free of primary amine functionality and like terms means that theoretically there is no primary amine functionality but there maybe some primary amine functionality present that is purely incidental, i.e., impurities in amines that are otherwise secondary amine functional and/or trace primary amine functionality that did not react.
  • the amine component may include at least one secondary amine which may be present in an amount of from 20 to 80 percent by weight or 50 to 80 percent by weight.
  • the amine component may include aliphatic amine. It is believed that the presence of aliphatic amine may provide enhanced durability.
  • the amine typically is provided as a liquid having a relatively low viscosity, for example, less than about 100 mPa « s at 25° C.
  • the amine component may include a functional polysiloxane. Suitable polysiloxanes include those previously described herein.
  • the first and/or second component of the present compositions can further comprise a flame retardant material comprising graphite.
  • Suitable graphites are known in the art and can include natural and synthetic graphites. Non-limiting examples of suitable graphites can include expandable graphites and/or exfoliated graphites. In certain embodiments, expandable graphite in the form of a solid or powder is intercalated with an acid.
  • Suitable acids include, but are not limited to, organic acids (e.g. acetic acid) and inorganic acids (e.g. H 2 SO 4 and HNO 3 ).
  • Non-limiting examples of such graphite include commercially available flame retardant grade graphite under the tradenames NORD-MIN from Nano Technologies, Incorporated and NYAGRAPH including but not limited to NYAGRAPH 35, 251 and 351 , from Nyacol, Incorporated.
  • the first and/or second component of the present compositions can further comprise a non-functional polysiloxane.
  • Suitable nonfunctional polysiloxanes are known in the art and can include, but are not limited to, polydimethylsiloxane, dimethyl/diphenylpolysiloxane and the like.
  • the coating compositions of the present invention may include a blend of polyurea and polyurethane. It will be appreciated by those skilled in the art that polyurethane can be formed as a by-product in the production of the polyurea. In alternate embodiments, the polyurethane can be formed in-situ and/or it can be added to the reaction mixture during formation of the polyurea.
  • a non-limiting example of polyurethane formed in-situ may include the reaction product of isocyanate and hydroxyl-functional material.
  • suitable isocyanates may include those described herein.
  • suitable hydroxyl-functional materials may include polyols such as those described herein.
  • Another example of polyurethane formed in-situ may include the reaction product of prepolymers and isocyanate-functional materials. Suitable examples of these reactants may include those described herein.
  • the coating composition of the present invention may be formulated and applied using various techniques known in the art. Accordingly, the present invention is further directed to methods for coating a substrate comprising applying to at least a portion of the substrate any of the coating compositions described herein.
  • the isocyanate and amine may be combined such that the ratio of equivalents of isocyanate groups to equivalents of amine groups is greater than 1 and the isocyanate and amine can be applied to a substrate at a volume mixing ratio of 1 :1 ; and the reaction mixture may be applied to an uncoated or coated substrate to form a first coating on the uncoated substrate or a subsequent coating on the coated substrate.
  • the ratio of equivalents of isocyanate groups to equivalents of reactive amine groups the total amine groups are taken into consideration; that is the amine groups from any amine or amines used in the coating.
  • compositions are two component or "2K" compositions, wherein the isocyanate component and the amine component are kept separate until just prior to application.
  • Such compositions will be understood as curing under ambient conditions, although a heated forced air or a heat cure can be applied to accelerate final cure or to enhance coating properties such as adhesion.
  • the sprayable coating composition may be prepared using a two- component mixing device.
  • isocyanate and amine are added to a high pressure impingement mixing device. The isocyanate is added to the "A-side” and amine is added to the "B-side".
  • Another suitable application device known in the industry includes a "static mix tube” applicator.
  • the isocyanate and amine are each stored in a separate chamber.
  • each of the components is brought into a mixing tube in a 1 :1 ratio by volume. Mixing of the components is effected by way of a torturous or cork screw pathway within the tube.
  • the exit end of the tube may have atomization capability useful in spray application of the reaction mixture.
  • the fluid reaction mixture may be applied to a substrate as a bead.
  • a static mix tube applicator is commercially available from Cammda Corporation.
  • the coating composition of the present invention may be applied to a wide variety of substrates.
  • Non-limiting examples of suitable substrates can include but are not limited to metal, natural and/or synthetic stone, ceramic, glass, brick, cement, concrete, cinderblock, wood and composites and laminates thereof; wallboard, drywall, sheetrock, cement board, plastic, paper, PVC, roofing materials such as shingles, roofing composites and laminates, and roofing drywall, styrofoam, plastic composites, acrylic composites, ballistic composites, asphalt, fiberglass, soil, gravel and the like.
  • Metals can include but are not limited to aluminum, cold rolled steel, electrogalvanized steel, hot dipped galvanized steel, titanium and alloys; plastics can include but are not limited to TPO, SMC, TPU, polypropylene, polycarbonate, polyethylene and polyamides (Nylon).
  • the coating composition of the present invention can be applied to at least a portion of a building structure or an article of manufacture such as but not limited to a vehicle.
  • Vehicle includes but is not limited to civilian, commercial, and military land-, water-, and air- vehicles, for example, cars, trucks, boats, ships, submarines, airplanes, helicopters, humvees and tanks.
  • the article of manufacture can be a building structure.
  • Building structure includes but is not limited to at least a portion of a structure including residential, commercial and military structures, for example, roofs, floors, support beams, walls and the like.
  • Building structure also includes structures, including those that define apertures, associated with mining.
  • Typical mine structures include mains, submains, gate road entries, production panels, bleeders, and other active working areas associated with underground mining. Accordingly, the present compositions can also be used to coat mine supports, beams, seals, stoppings, ribs, exposed strata, and the like and can be further used, alone or in conjunction with other layers, to seal and/or reinforce mine structures.
  • the term "substrate” may refer to a surface, either external or internal, on at least a portion of an article of manufacture or the article of manufacture itself. In an embodiment, the substrate is a truck bed.
  • the coating composition of the present invention may be applied to a carrier film.
  • the carrier film can be selected from a wide variety of such materials known in the art.
  • suitable carrier films may include, but are not limited to thermoplastic materials, thermosetting materials, metal foils, cellulosic paper, synthetic papers, and mixtures thereof.
  • thermoplastic material refers to any material that is capable of softening or fusing when heated and of solidifying (hardening) again when cooled.
  • suitable thermoplastic materials may include polyolefins, polyurethanes, polyesters, polyamides, polyureas, acrylics, and mixtures thereof.
  • a carrier film having a first and second major surface may serve as a substrate and the coating composition of the present invention may be applied to the first surface of the film to form a coating layer.
  • the carrier film may have a film thickness of at least 0.5 ⁇ m, or at least 1 ⁇ m, or at least 2 ⁇ m, or at least 3 ⁇ m or at least 5 ⁇ m.
  • the carrier film may have a thickness of up to 100 ⁇ m, or up to 90 ⁇ m, or up to 75 ⁇ m, or up to 50 ⁇ m, or up to 40 ⁇ m.
  • the carrier film can vary and range between any thickness recited above provided that the carrier film can adequately support the coating layer and is sufficiently flexible for a desired end use application.
  • the carrier film may include an adhesive layer superimposed on the second surface of the film. Any suitable adhesive composition known in the art can be used to form the adhesive layer. Suitable adhesive compositions include those that contain at least one acrylic latex polymer prepared from a monomer composition that includes CrC 5 linear, branched, or cyclic alkyl (meth)acrylate monomers.
  • a temporary protective cover may be superimposed over the adhesive layer.
  • Any suitable material can be used as the protective cover. Suitable materials include, but are not limited to, paper and polymeric materials.
  • the temporary protective cover can be removed and the second side of the carrier film may be applied or adhered to a desired substrate.
  • the coating composition of the present invention can be used in a two-coat application resulting in a textured surface.
  • a first coat is applied to an uncoated or coated substrate to produce a smooth, substantially tack- free layer.
  • the Tack-Free Method is used to determine if the layer is substantially tack-free.
  • the Tack-Free Method includes spraying the coating composition in one coat onto a non-adhering plastic sheet to a thickness of from 10 to 15 mil (254-381 microns).
  • a loose fitting, disposable vinyl glove such as one commercially available under the trade name Ambidex Disposable Vinyl Glove by Marigold Industrial, Norcross GA, gently touches the surface of the coating.
  • the coating may be touched more than one time by using a different fingertip.
  • the layer is said to be substantially tack-free.
  • the time beginning from the completion of spraying until when the coating is substantially tack-free is said to be the tack-free time.
  • the tack-free time and the cure time may be controlled by balancing levels of various composition components such as the ratio of primary amine to secondary amine.
  • a second coat may then be applied to the first coating layer as a texturizing layer or "dust coating".
  • the second coating layer can be applied by increasing the distance between the application/mixing device and the coated substrate to form discrete droplets of the coating composition prior to contacting the coated substrate thereby forming controlled non-uniformity in the surface of the second layer.
  • the substantially tack-free first layer of the coating is at least partially resistant to the second layer; i.e., at least partially resistant to coalescence of the droplets of coating composition sprayed thereon as the second layer or dust coating such that the droplets adhere to but do not coalesce with the previous layer(s) to create surface texture.
  • the final coating layer typically exhibits more surface texture than the first or previous coating layers.
  • An overall thickness of the coating layers may range from 20 to 1000 mils, or from 40 to 150 mils, or from 60 to 100 mils (1524-2540 microns), or from 500 to 750 mils.
  • the first layer may be the majority of the total thickness and the dust coating may be from 15- 50 mils (381 -1270 microns).
  • the "first" coating layer may comprise one, two, three or more layers; and the "second" coating layer may be one or more subsequent layers applied thereover.
  • four polyurea layers may be applied, with the fourth layer being the dust coating and each layer having a thickness of from 15 to 25 mil (381 -635 microns). It will be appreciated that these coating layers are relatively "thick".
  • the coating compositions of the present invention can also be applied as much thinner layers as well, such as 0.1 to less than 15 mils, such as 0.1 to 10, 0.5 to 3, or 1 to 2 mils. Any of the endpoints within these ranges can also be combined. Such layers can be used alone or in conjunction with other coating layers, such as any of those known in the art or otherwise described herein. When applied at a sufficient thickness (e.g., 10 to 1000 mils, such as 100 to 200 mils, or 125 mils +/- 10 mils), the present polyurea layer(s) can provide blast and/or ballistic mitigation. [00054] In other embodiments, the coating layers may comprise the same or different polyurea or polyurea/polyurethane coating compositions.
  • the first layer may be a polyurea composition comprising aliphatic and/or aromatic amine components and/or aliphatic and/or aromatic isocyanate; and the second layer may comprise the same or different combination of aliphatic and/or aromatic amine components and/or aliphatic and/or aromatic isocyanate.
  • “Amine component” in this context means any amine used in the present coatings.
  • the outermost coating layer may comprise a coating composition that provides a desired durability. The desired durability may depend upon the use of the coating composition of the present invention and/or the substrate to which it may be applied.
  • a combination of aliphatic and/or aromatic amine and/or isocyanate may be selected such that the composition of the outermost layer has substantial durability.
  • the outermost coating layer may have a durability of from 1000 kJ to 6000 kJ, or from 800 hours to 4000 hours, when tested using a Weatherometer (Atlas Material Testing Solutions) in accordance with method SAE J 1960.
  • the first layer may be a polyurea composition comprising isocyanate and amine, wherein at least one of the amine and/or polyisocyante may be aromatic
  • the second layer may be a polyurea composition comprising aliphatic amine and aliphatic isocyanate.
  • the polyurea coating compositions of the present invention may optionally include materials standard in the art such as but not limited to fillers, flame retardants, fiberglass, stabilizers, thickeners, adhesion promoters, catalysts, colorants, antioxidants, UV absorbers, hindered amine light stabilizers, rheology modifiers, flow additives, anti-static agents and other performance or property modifiers which are well known in the art of surface coatings, and mixtures thereof.
  • such materials may be combined with the isocyanate, the amine, or both.
  • at least one of these materials is added to the amine prior to reaction with isocyanate.
  • the coating composition of the present invention may further comprise a flame and/or heat resistant material such as flame retardant.
  • the flame retardant material may be added to the isocyanate component and/or the amine component.
  • Suitable flame retardants for use in the coating compositions of the present invention are numerous and can vary widely. Such flame retardants can include those that are known in the art. Non-limiting examples of suitable flame retardants can include the flame retardant polymers disclosed in United States Patent Nos. 6,015,510 (column 4, line 31 thru column 5, line 41 ) and 5,998,503 (column 4, line 31 thru column 5, line 41 ).
  • Suitable flame retardants may include halogenated phosphates or halogen free phosphates, powdered or fumed silica, layered silicates, aluminum hydroxide, brominated fire retardants, tris(2- chloropropyl) phosphate, tris(2,3-dibromopropyl)phosphate, tris(1 ,3- dichloropropyl)phosphate, diammonium phosphate, various halogenated aromatic compounds, antimony oxide, alumina trihydrate, polyvinyl chloride and the like, and mixtures thereof.
  • the flame retardant may include at least one phosphinic salt of the formula (I), and/or one diphosphinic salt of the formula (II), and/or polymers of these,
  • R 1 and R 2 are identical or different and are CrC 6 -alkyl, linear or branched, and/or aryl;
  • R 3 is Ci-Cio-alkylene, linear or branched, C 6 -Ci 0 -arylene, -alkylarylene, or -arylalkylene;
  • M is Mg, Ca, Al, Sb, Sn, Ge, Ti, Zn, Fe, Zr, Ce, Bi, Sr, Mn, Li, Na, K and/or a protonated nitrogen base;
  • m is from 1 to 4;
  • n is from 1 to 4;
  • x is from 1 to 4, and also may include at least one synergistic halogen-containing component.
  • the flame retardant component of this embodiment is further described in United States Patent Publication Nos. 2005/0004277A1 and 2005/0004278A1 , from paragraph [0025] to paragraph [0070] in both applications.
  • the amount of the flame retardant present in the coating composition of the present invention can vary widely.
  • the flame retardant component constitutes from 5 to 35 percent by weight based on the total weight of reactants in the coating composition.
  • the composition further comprises a filler such as but not limited to clay, silica or mixtures thereof.
  • the filler is added to the amine.
  • Such a coating composition has been found to have better adhesion to a metal substrate than a similar coating composition without clay or silica (as determined in accordance with the test method in ASTM D 1876, without use of a fixturing device).
  • the clay may be selected from any of a variety of clays known in the art including montmorillonite clays such as bentonite, kaolin clays, attapulgite clays, sepiolite clay, and mixtures thereof. Additionally, the clay may be surface treated as is known in the art. Any suitable surface treatment may be used. In a non-limiting embodiment, the clay is treated with one or more of the following amines:
  • R 1 and R 4 are independently C 4 -C 24 linear, branched, or cyclic alkyl, aryl, alkenyl, aralkyl or aralkyl
  • R 2 , R 3 , R 5 and R 7 are independently H or CrC 2 O linear, branched, or cyclic alkyl, aryl, alkenyl, aralkyl or aralkyl
  • R 6 is CrC 24 linear, branched, or cyclic alkylene, arylene, alkenylene, aralkylene or aralkylene.
  • surface treated bentonite as described in U.S. Patent No. 3,974,125 may be used.
  • the clay may be present in the coating composition of the present invention in an amount of at least 0.5 percent by weight, or at least 1 percent by weight, or at least 1 .5 percent by weight. In other embodiments, the clay can be present in an amount of up to 6 percent by weight, or up to 5 percent by weight, or up to 4 percent by weight of the composition.
  • the amount of clay in the coating composition can be any value or range between any values recited above, with the proviso that the adhesion properties and application viscosity of the coating composition are not adversely affected.
  • the coating composition of the present invention may include silica. Any suitable silica can be used, provided that application and coating performance properties are not adversely impacted.
  • the silica may be selected from surface-treated/surface-modified silica, untreated/unmodified silica and mixtures thereof.
  • suitable silica may include but are not limited to precipitated, fumed, colloidal and mixtures thereof.
  • the silica may be present in an amount such that it constitutes at least 0.5 percent by weight, or at least 1 percent by weight, or at least 1 .5 percent by weight of the coating composition.
  • the silica can be present such that it constitutes up to 6 percent by weight, or up to 5 percent by weight, or up to 4 percent by weight of the composition.
  • the amount of silica in the two-component coating composition can be any value or range between any values recited above, provided that the adhesion properties and application viscosity of the coating composition are not adversely affected.
  • the coating composition of the present invention may include an adhesion promoter which may enhance adhesion of the coating composition to a substrate.
  • an adhesion promoter may be present in the first coating composition, or it may be added to the isocyanate and/or amine of the second coating composition, or it may be applied as a separate layer directly to the substrate or first coating prior to application of the second coating thereto.
  • the adhesion promoter may be applied using a variety of conventional techniques such as but not limited to wiping, dipping, roll coating, curtain coating, spraying or the like.
  • Non-limiting examples of suitable adhesion promoters for use in the present invention may include amine-functional materials such as 1 ,3,4,6,7,8- hexahydro-2H-pyrimido-(1 ,2-A)-pyrimidine, hydroxyethyl piperazine, N-aminoethyl piperizine, dimethylamine ethylether, tetramethyliminopropoylamine (commercially available as POLYCAT 15 from Air Products and Chemicals, Inc.), blocked amines such as an adduct of IPDI and dimethylamine, tertiary amines, such as 1 ,5- diazabicyclo[4.3.0]non-5-ene, 1 ,8-diazabicyclo[5.4.0]undec-7-ene, 1 ,4- diazabicyclo[2.2.2]octane, 1 ,5,7-triazabicyclo[4.4.0]dec-5-ene, and 7-methyl-1
  • Cymel 220 or Cymel 303 available from Cytec Industries Inc.
  • metal complexes including metal chelate complexes such as an aluminum chelate complex (e.g. K-KAT 5218 available from King Industries) or tin-containing compositions such as stannous octoate and organotin compounds such as dibutyltin dilaurate and dibutyltin diacetate, urethane acrylate compositions, salts such as chlorine phosphate, butadiene resins such as an epoxidized, hydroxyl terminated polybutadiene resin (e.g. POLY BD 605E available from Atofina Chemicals, Inc.), polyester polyols (e.g.
  • the adhesion promoter comprises at least one component selected from melamine, urethane acrylate, metal chelate complex, salt, tin-containing compound and polyhydric polymer.
  • the coating may further comprise small amounts of solvent and in certain embodiments the coating may be substantially solvent-free.
  • substantially solvent-free means that the coating may contain a small amount of solvent, such as 5%, 2%, 1 % or less.
  • the coating composition of the present invention may include a colorant.
  • colorant means any substance that imparts color and/or other opacity and/or other visual effect to the composition.
  • the colorant can be added to the coating in any suitable form, such as discrete particles, dispersions, solutions and/or flakes.
  • a single colorant or a mixture of two or more colorants can be used in the coatings of the present invention.
  • Example colorants include pigments, dyes and tints, such as those used in the paint industry and/or listed in the Dry Color Manufacturers Association (DCMA), as well as special effect compositions.
  • DCMA Dry Color Manufacturers Association
  • a colorant may include, for example, a finely divided solid powder that is insoluble but wettable under the conditions of use.
  • a colorant can be organic or inorganic and can be agglomerated or non-agglomerated.
  • Colorants can be incorporated into the coatings by grinding or simple mixing. Colorants can be incorporated by grinding into the coating by use of a grind vehicle, such as an acrylic grind vehicle, the use of which will be familiar to one skilled in the art.
  • Example pigments and/or pigment compositions include, but are not limited to, carbazole dioxazine crude pigment, azo, monoazo, disazo, naphthol AS, salt type (lakes), benzimidazolone, condensation, metal complex, isoindolinone, isoindoline and polycyclic phthalocyanine, quinacridone, perylene, perinone, diketopyrrolo pyrrole, thioindigo, anthraquinone, indanthrone, anthrapyrimidine, flavanthrone, pyranthrone, anthanthrone, dioxazine, triarylcarbonium, quinophthalone pigments, diketo pyrrolo pyrrole red (“DPPBO red”), titanium dioxide, carbon black, carbon fiber, graphite, other conductive pigments and/or fillers and mixtures thereof.
  • the terms "pigment” and "colored filler” can be used interchangeably.
  • Example dyes include, but are not limited to, those that are solvent and/or aqueous based such as acid dyes, azoic dyes, basic dyes, direct dyes, disperse dyes, reactive dyes, solvent dyes, sulfur dyes, mordant dyes, for example, bismuth vanadate, anthraquinone, perylene, aluminum, quinacridone, thiazole, thiazine, azo, indigoid, nitro, nitroso, oxazine, phthalocyanine, quinoline, stilbene, and triphenyl methane.
  • solvent and/or aqueous based such as acid dyes, azoic dyes, basic dyes, direct dyes, disperse dyes, reactive dyes, solvent dyes, sulfur dyes, mordant dyes, for example, bismuth vanadate, anthraquinone, perylene, aluminum, quinacridone, thiazole, thiazine, azo, in
  • Example tints include, but are not limited to, pigments dispersed in water- based or water miscible carriers such as AQUA-CHEM 896 commercially available from Degussa, Inc., CHARISMA COLORANTS and MAXITONER INDUSTRIAL COLORANTS commercially available from Accurate Dispersions division of Eastman Chemical, Inc.
  • AQUA-CHEM 896 commercially available from Degussa, Inc.
  • CHARISMA COLORANTS and MAXITONER INDUSTRIAL COLORANTS commercially available from Accurate Dispersions division of Eastman Chemical, Inc.
  • Example special effect compositions that may be used in the coating of the present invention include pigments and/or compositions that produce one or more appearance effects such as reflectance, pearlescence, metallic sheen, phosphorescence, fluorescence, photochromism, photosensitivity, thermochromism, goniochromism and/or color-change. Additional special effect compositions can provide other perceptible properties, such as reflectivity, opacity or texture. In a non- limiting embodiment, special effect compositions can produce a color shift, such that the color of the coating changes when the coating is viewed at different angles. Example color effect compositions are identified in U.S. Patent No. 6,894,086, incorporated herein by reference.
  • Additional color effect compositions can include transparent coated mica and/or synthetic mica, coated silica, coated alumina, a transparent liquid crystal pigment, a liquid crystal coating, and/or any composition wherein interference results from a refractive index differential within the material and not because of the refractive index differential between the surface of the material and the air.
  • a photosensitive composition and/or photochromic composition which reversibly alters its color when exposed to one or more light sources, can be used in the coating of the present invention.
  • Photochromic and/or photosensitive compositions can be activated by exposure to radiation of a specified wavelength. When the composition becomes excited, the molecular structure is changed and the altered structure exhibits a new color that is different from the original color of the composition. When the exposure to radiation is removed, the photochromic and/or photosensitive composition can return to a state of rest, in which the original color of the composition returns.
  • the photochromic and/or photosensitive composition can be colorless in a non-excited state and exhibit a color in an excited state. Full color- change can appear within milliseconds to several minutes, such as from 20 seconds to 60 seconds.
  • Example photochromic and/or photosensitive compositions include photochromic dyes.
  • the photosensitive composition and/or photochromic composition can be associated with and/or at least partially bound to, such as by covalent bonding, a polymer and/or polymeric materials of a polymerizable component.
  • the photosensitive composition and/or photochromic composition associated with and/or at least partially bound to a polymer and/or polymerizable component in accordance with a non-limiting embodiment of the present invention have minimal migration out of the coating.
  • Example photosensitive compositions and/or photochromic compositions and methods for making them are identified in U.S. Application Serial No. 10/892,919 filed July 16, 2004 and incorporated herein by reference.
  • the colorant can be present in the coating composition in any amount sufficient to impart the desired property, visual and/or color effect.
  • the colorant may comprise from 1 to 65 weight percent of the present compositions, such as from 3 to 40 weight percent or 5 to 35 weight percent, with weight percent based on the total weight of the compositions.
  • the coating composition of the present invention when applied to a substrate possesses color that matches the color of an associated substrate.
  • the term "matches" or like terms when referring to color matching means that the color of the coating composition of the present invention substantially corresponds to a desired color or the color of an associated substrate. This can be visually observed, or confirmed using spectroscopy equipment.
  • the coating composition of the present invention may be at least partially applied to a wide variety of substrates or portions thereof, or used to form a component of a substrate.
  • Non-limiting examples of uses as a coating or component may include but are not limited to roofing systems, sprayed or molded insulating material, tanks and pressure vessels, electrical equipment and components, garments and woven fiber, paper and packaging, sports equipment, paving material or pavement coating, HVAC and related equipment, agricultural and garden equipment, household appliances and the like.
  • polymer is meant to refer to prepolymers, oligomers and both homopolymers and copolymers; the prefix “poly” refers to two or more.
  • the isocyanate component and the amine component were then poured into a double barrel canister and sprayed through a static mix tube onto a 6" by 18" gymsum board.
  • the coated gymsum board was tested in accordance with ASTM E 162-02. The flame spread index of this control coating was 449.
  • Example 2 Polyurea Coating with Functional Polysiloxane [00089] An isocyanate functional component was prepared as described in
  • An amine functional component was prepared from the following ingredients:
  • Amino-functional polysilxoane resin commercially available from Gelest, Inc.
  • JEFFALINK 754, DESMOPHEN NH 1220, AEROSIL 200, BENTONE 34, carbon black, TINUVIN 328 and TINUVIN 292 were all mixed together in a suitable container and mixed with a cowles mixer for one hour (hereafter called the 'pre-grind mixture'). After mixing, the pre-grind mixture was placed into an Eiger mill containing zircoa media and ground until the grind was a 7 or higher on a Hegman gauge. Once the desired Hegman value was achieved, the grind was removed from the mill and the remaining ingredients (AMS-162, DYNASYLAN 1 189, Imidazole silane and dibutyl tin dilaurate) were stirred in with a normal pitch stir blade.
  • AMS-162, DYNASYLAN 1 189, Imidazole silane and dibutyl tin dilaurate were stirred in with a normal pitch stir blade.
  • the isocyanate component and the amine component were then poured into a double barrel canister and sprayed through a static mix tube onto gypsum board of the dimensions 6" x 18".
  • the coated gymsum boards were tested as per ASTM E 162-02. The flame spread index of this coating was 198.
  • a polyurea coating was prepared and tested in accordance with the process described in Example 1 with the exception that 5 percent by weight of SF1023 (dimethyl/diphenyl polysiloxane available from Momentive Performance Materials) was present in both the amine and isocyanate functional components prior to mixing. The flame spread index was 172.
  • Example 4 Polyurea Coating 2 with Polysiloxane and Graphite
  • a polyurea coating was prepared and tested in accordance with the process as described in Example 2 with the exception that prior to pouring into the double barrel canister and spraying, 2.5 wt % of Nyagraph 251 was stirred into both the isocyanate component and the amine component using a normal pitch stir blade. The flame spread index of this coating was 180.
  • Example 5 Polyurea Coating Polysiloxane and Phosphorus-Containing Polyol [00095]
  • An isocyanate component comprising isocyanate-functional prepolymer was prepared from the following ingredients as described below:
  • a total of 202 grams of DESMODUR XP2580 was placed in a suitable reaction vessel equipped with a stirrer, temperature probe, a condenser and a nitrogen inlet tube and blanketed with nitrogen gas.
  • a total of 49 grams of EXOLIT OP550 and 30 grams of LEVAGARD 4090N were added and mixed for 15 minutes at ambient temperature. Then, 0.02 grams of dibutyltin dilaurate was added and the mixture heated slowly to 50O, then to 80 °C and finally to 100 °C. At this point the isocyanate equivalent weight was measured and found to be 388 grams per equivalent.
  • the reaction mixture was then cooled to 80 °C and 70 grams of FYROL PCF and 590 grams of DESMODUR XP2580 were then added to the reaction mixture. The contents of the reactor were cooled and poured out. The final material had a measured solids of 96% and an isocyanate equivalent weight of 270 grams per equivalent.
  • JEFFALINK 754, DESMOPHEN NH 1220, AEROSIL 200, BENTONE 34, carbon black and TINUVIN 292 were all mixed together in a suitable container and mixed with a cowles mixer for one hour (hereafter called the 'pre-grind mixture'). After mixing, the pre-grind mixture was placed into an Eiger mill containing zircoa media and ground until the grind was a 7 or higher on a Hegman gauge. Once the desired Hegman value was achieved, the grind was removed from the mill and the remaining ingredients (AMS-162 and dibutyl tin dilaurate) were stirred in with a normal pitch stir blade.
  • AMS-162 and dibutyl tin dilaurate were stirred in with a normal pitch stir blade.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

La présente invention concerne une composition de revêtement comprenant une polyurée ou, une polyurée et un polyuréthane, et un agent ignifuge. La polyurée est formée à partir d’un mélange de réaction comprenant un composant isocyanate ; un composant amine ; et un matériau ignifuge comprenant un polysiloxane dans les composants isocyanate et/ou amine.
PCT/US2009/044087 2008-05-19 2009-05-15 Compositions de revêtement comprenant une polyurée et un polysiloxane WO2009143003A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12298308A 2008-05-19 2008-05-19
US12/122,983 2008-05-19

Publications (1)

Publication Number Publication Date
WO2009143003A1 true WO2009143003A1 (fr) 2009-11-26

Family

ID=41100831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/044087 WO2009143003A1 (fr) 2008-05-19 2009-05-15 Compositions de revêtement comprenant une polyurée et un polysiloxane

Country Status (1)

Country Link
WO (1) WO2009143003A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012000944A1 (fr) * 2010-06-29 2012-01-05 Bayer Materialscience Ag Revêtement de polyurée aliphatique, son procédé de préparation et son utilisation
RU2558602C1 (ru) * 2014-07-16 2015-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) Огнезащитная вспучивающаяся композиция
WO2016064481A1 (fr) * 2014-10-22 2016-04-28 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Revêtements à base de siloxane en deux composants contenant des polymères à liaisons urée et terminaisons alcoxysilane
CN108239255A (zh) * 2016-12-27 2018-07-03 上海东大化学有限公司 聚脲型聚氨酯涂料、原料组合物及其用途
RU2690169C2 (ru) * 2016-12-29 2019-05-31 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) Полимерная защитная композиция
CN112011091A (zh) * 2020-08-10 2020-12-01 中交第二公路勘察设计研究院有限公司 复配改性剂、复配改性耐紫外老化沥青及其制备方法
CN115895412A (zh) * 2013-11-20 2023-04-04 汉高股份有限及两合公司 电池单元涂层
WO2023129767A1 (fr) * 2021-12-30 2023-07-06 Ppg Industries Ohio, Inc. Compositions de revêtement de polyurée modifiées par silicone

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52144034A (en) * 1976-05-26 1977-12-01 Dai Ichi Kogyo Seiyaku Co Ltd Flame retardant polyurethane coating compositions
US20030165676A1 (en) * 2001-12-18 2003-09-04 Zhiming Zhou Silicone priming compositions, articles, and methods
US20060046068A1 (en) * 2004-09-02 2006-03-02 Barancyk Steven V Multi-component coatings that include polyurea coating layers
US20060205868A1 (en) * 2003-07-16 2006-09-14 Glenn Gordon Coating compositions containg aminofunctional silicone resins

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52144034A (en) * 1976-05-26 1977-12-01 Dai Ichi Kogyo Seiyaku Co Ltd Flame retardant polyurethane coating compositions
US20030165676A1 (en) * 2001-12-18 2003-09-04 Zhiming Zhou Silicone priming compositions, articles, and methods
US20060205868A1 (en) * 2003-07-16 2006-09-14 Glenn Gordon Coating compositions containg aminofunctional silicone resins
US20060046068A1 (en) * 2004-09-02 2006-03-02 Barancyk Steven V Multi-component coatings that include polyurea coating layers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 197803, Derwent World Patents Index; AN 1978-05266A, XP002548336 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311700A (zh) * 2010-06-29 2012-01-11 拜耳材料科技(中国)有限公司 脂肪族聚脲涂料、制备方法及其应用
CN103221444A (zh) * 2010-06-29 2013-07-24 拜耳知识产权有限责任公司 脂族聚脲涂料、其制备方法及其用途
WO2012000944A1 (fr) * 2010-06-29 2012-01-05 Bayer Materialscience Ag Revêtement de polyurée aliphatique, son procédé de préparation et son utilisation
CN115895412A (zh) * 2013-11-20 2023-04-04 汉高股份有限及两合公司 电池单元涂层
RU2558602C1 (ru) * 2014-07-16 2015-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) Огнезащитная вспучивающаяся композиция
WO2016064481A1 (fr) * 2014-10-22 2016-04-28 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Revêtements à base de siloxane en deux composants contenant des polymères à liaisons urée et terminaisons alcoxysilane
US9587143B2 (en) 2014-10-22 2017-03-07 The United States Of America, As Represented By The Secretary Of The Navy Two-component siloxane-based coatings containing polymers with urea linkages and terminal alkoxysilanes
CN108239255A (zh) * 2016-12-27 2018-07-03 上海东大化学有限公司 聚脲型聚氨酯涂料、原料组合物及其用途
CN108239255B (zh) * 2016-12-27 2019-12-31 上海东大化学有限公司 聚脲型聚氨酯涂料、原料组合物及其用途
RU2690169C2 (ru) * 2016-12-29 2019-05-31 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) Полимерная защитная композиция
CN112011091A (zh) * 2020-08-10 2020-12-01 中交第二公路勘察设计研究院有限公司 复配改性剂、复配改性耐紫外老化沥青及其制备方法
CN112011091B (zh) * 2020-08-10 2022-03-18 中交第二公路勘察设计研究院有限公司 复配改性剂、复配改性耐紫外老化沥青及其制备方法
WO2023129767A1 (fr) * 2021-12-30 2023-07-06 Ppg Industries Ohio, Inc. Compositions de revêtement de polyurée modifiées par silicone

Similar Documents

Publication Publication Date Title
CA2724485C (fr) Compositions de revetement comprenant une polyuree et un polyol contenant du phosphore
US20110313084A1 (en) Coating compositions comprising polyurea and graphite
US7928160B2 (en) Coating composition of polyurea, polyurethane and flame retardant
CA2672992C (fr) Revetement a base de polyuree comprenant un produit issu de la reaction entre une polyamine et un mono(meth)acrylate
CA2673071C (fr) Produits therapeutiques contenant de la triamine et de l'aspartate et enrobages les comprenant
CA2672994C (fr) Agents de durcissement (meth)acrylate/aspartate amine et revetements et articles comprenant ceux-ci
CA2676564C (fr) Substrats recouverts d'une polyuree comprenant un produit de reaction d'amine (meth)acrylatee
US8691929B2 (en) Curable compositions that form a polyurea demonstrating elongation properties over a large temperature range
WO2009143003A1 (fr) Compositions de revêtement comprenant une polyurée et un polysiloxane
KR20090091820A (ko) 아민/(메트)아크릴레이트 올리고머성 반응 생성물을 포함하는 폴리우레아 코팅
WO2009064282A2 (fr) Compositions et procédés permettant de renforcer l'adhérence entre un substrat et un revêtement à base de polyurée/polyuréthane
US20100261825A1 (en) Coating compositions comprising polyurea and an anti-oxidant compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09751232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09751232

Country of ref document: EP

Kind code of ref document: A1