WO2009142313A1 - Method for searching for gene encoding protein targeted by compound - Google Patents

Method for searching for gene encoding protein targeted by compound Download PDF

Info

Publication number
WO2009142313A1
WO2009142313A1 PCT/JP2009/059475 JP2009059475W WO2009142313A1 WO 2009142313 A1 WO2009142313 A1 WO 2009142313A1 JP 2009059475 W JP2009059475 W JP 2009059475W WO 2009142313 A1 WO2009142313 A1 WO 2009142313A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
wild
plant
line
full
Prior art date
Application number
PCT/JP2009/059475
Other languages
French (fr)
Japanese (ja)
Inventor
笠原博幸
神谷勇治
Original Assignee
独立行政法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人理化学研究所 filed Critical 独立行政法人理化学研究所
Publication of WO2009142313A1 publication Critical patent/WO2009142313A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries

Definitions

  • the present invention relates to a method for searching for a gene encoding a target protein of a compound used in medicine, agricultural chemicals and the like.
  • mutants that are resistant to the compound are selected from pull-down methods and plant mutants that have point mutations. Methods for identifying genes are used.
  • the pull-down method is a method for obtaining a target protein by applying a sample such as a cell extract to a carrier on which a compound is immobilized.
  • a target protein receptor
  • the pull-down method requires that the compound be synthesized in order to bind the compound to the carrier, that even if the compound can be immobilized on the carrier, the target protein may not bind to the immobilized compound.
  • the binding force between the target protein and the target protein is weak, it is difficult to purify the target protein, and it is necessary to optimize the conditions for stable purification of the target protein. In particular, it usually takes several months to make a suitable carrier with immobilized compounds.
  • Non-Patent Document 2 includes a medium containing a novel phenyltriazole acetic acid called DAS 7 34, Screening 48,000 Arabidopsis treated with mutagen, selecting resistant mutants that can grow even in the presence of DAS 7 3 4 and performing map-based cloning to identify genes responsible for resistance Is described.
  • This method uses plants whose DNA has been unmethylated by mutagenesis. Therefore, in order to obtain mutants (target mutants) that have target proteins whose binding ability to compounds has been reduced due to accidental mutations, a large number of plants must be screened stochastically. After acquiring a resistant mutant, it is necessary to identify the target gene by map-based cloning, etc., and to acquire multiple alleles and prove that the resistance is due to the mutation of that gene. There are problems such as. In this method, it takes about 1 to 2 years to obtain a target gene candidate.
  • Non-patent Document 3 the mevalonate pathway (MVA pathway) and the non-mevalonate pathway (MEP pathway) are blocked with mevinolin and phosmidomycin, respectively, and over-expressed gene of Arabidopsis thaliana that is resistant to these drugs (activation)
  • the tag line is selected.
  • the experiments in this document make use of the known actions of mevinolin and HM G—Co A reductase and the known actions of phosmidomycin and D XP reductase isomerase. Further, the activation tag line used in this experiment is a mutant in which DNA containing an enhancer is randomly introduced into the plant genome to overexpress the plant gene.
  • the genomic region that can activate transcription covers a wide range before and after the insertion site of the enhancer, and there can be multiple genes in that range, so which gene is activated by the enhancer.
  • There are problems such as difficulty in determining whether or not the gene has been inserted, and if an inserter is inserted into the coding region of a gene, a mutant lacking the function of the gene is generated.
  • Non-Patent Document 4 includes overexpressing a yeast genomic library in yeast (Saccharorayces cerevi siae) and screening yeast that is resistant to phenylaminopyridine from the gene overexpressing yeast. Is described.
  • non-patent document Rk 5 t describes that Mycobacterium avium chemomefifury 1 3 ⁇ 4r Mycobacterium smegmat is overexpressed and screens bacteria resistant to meflokinin from the gene overexpressing bacteria. Yes.
  • the phenotypes that microorganisms exhibit when compounds are applied to these microorganisms are limited to the suppression of the growth of microorganisms and the change in the content of sugars, proteins, lipids, and the like.
  • Non-Patent Document 1 Harding MW. Et al, A receptor for the immuno-suppressant FK506 is a cis-trans peptidyl-prolyl isomerase ", Nature (1989), 341, p.758-760.
  • Non-Patent Document 2 Terence A. Walsh, et al, "Chemical Genetic Identification of Glutamine Phosphor ibosylpyrophosphate Amidotransf erase as the Target for a Novel Bleaching Herbicide in Arabidopsis, Plant physiol. (2007), 144, p.1292-1304.
  • Non-Patent Document 3 Manuel Rodriguez- concepcion, et al, "Distinct Light-Mediated Pathways Regulate the Biosynthesis and Exchange of Isoprenoid Precursors during Arabidopsis Seedling Development", The Plant Cell (2004), Vol. 16, p.144-156.
  • Non-Patent Document 5 Lia Danelishvili, et al, "Genomic Approach to Identifying the Putative Target of and Mechanisms of Resistance to Meiloquine in Mycobacteria", Antimicrobial Agents and Chemotherapy (2005), vol.49, No.9, p.3707-3714 Disclosure of the invention
  • An object of the present invention is to provide a method for easily and rapidly searching for a gene encoding a protein that is a target of a compound.
  • Figure 1 shows the flow of the verification experiment of action point search using the model compound FSM.
  • Panel (1) shows the whitening of buds of wild-type Arabidopsis when applying FSM at concentrations of 0 // ⁇ , 100 / ⁇ , 200 ⁇ 300 / M, and 400.
  • Panel (2) shows the screening of FSM resistant FOX lines (not whitened).
  • Figure 2 shows the selection of new whitening agents from the chemical library and the search for their action points. The flow of the cord is shown. Panel (1) shows the whitening of buds of wild-type Arabidopsis when each compound is applied. Panel (2) shows the screening of the PSC 1 resistant FOX line (not whitened). BEST MODE FOR CARRYING OUT THE INVENTION
  • a method for searching for a gene encoding a protein that is a target of the compound of the present invention includes:
  • a protein targeted by a compound refers to a protein that interacts with a certain compound.
  • the interaction between the compound and the target protein is not particularly limited, and examples include reversible and irreversible binding of the compound to the protein, and the action of the protein metabolizing the compound to change the compound into another structure. It is.
  • a protein targeted by a compound or a gene encoding the same may be referred to as “point of action”.
  • the “full-length cDNA overexpression line” used in the present invention is called a Fox hunting system, and it is designed to control the function of a gene from changes in traits caused by introducing and overexpressing full-length cDNA into a plant. It is a line produced by the method to be clarified (see WO 2003 No. 0 1808). In the present specification, a full-length cDNA overexpression line is sometimes referred to as a FOX line.
  • the FOX line is a mutation of so-called gain of function, which is created by infecting a plant with a library prepared by connecting full-length cDNA to a strong expression vector and introducing full-length cDNA into the plant. It is a body system.
  • the plants into which full-length cDNA is introduced are particularly limited.
  • Arabidopsis is preferable.
  • the full-length cDNA to be introduced is not particularly limited, and may be derived from any organism such as a plant, animal, or microorganism.
  • a FOX line in which weed full-length cDNA is introduced into Arabidopsis thaliana can be prepared.
  • malaria parasites have a non-mevalonate pathway, but because higher plant plastids also have a non-mevalonate pathway, malaria parasites and plants share enzymes that work in the non-mevalonate pathway. Therefore, FOX lines prepared using a full-length cDNA library of higher plants (including full-length cDNA encoding an enzyme that works in the non-mevalonate pathway) were screened with antimalarial drugs and selected. The full-length cDNA overexpressed in the FOX line can be identified and the site of action of antimalarial drugs can be searched.
  • step (a) using Arabidopsis thaliana (Arabidopsis thaliana FOX line) overexpressing the full-length cDNA of Arabidopsis thaliana as an example.
  • cDNAs of independent Arabidopsis thaliana were prepared as a pool of cDNA equivalence ratios (referred to as standardization), and this cDNA was used as a promoter, enhancer (transcription enhancer E 2 1, omega sequence, etc. ) Incorporated into a T1 DNA vector having a control region such as a terminator and a selectable marker such as a drug resistance gene.
  • the T-DNA vector was introduced into agrobacterium to produce a complete Arabidopsis full-length cDNA expression library, and after confirming whether the entire cDNA distribution was reflected in the library, Transform Arabidopsis thaliana using pacterium by the floral debating method to create an Arabidopsis transformation line (Arabidopsis FOX line). According to this method, even if a plant is infected with a library of hundreds of millions of clones, only one or two clones are introduced into one plant. Therefore, it is possible to produce a transformation line in which different clones are introduced into a plant. it can. Collect T 1 seeds from the transformed Arabidopsis thaliana,
  • T 1 seeds are sown and T 2 generation seeds are collected.
  • the Arabidopsis full-length Arabidopsis FOX line that overexpressed Arabidopsis thaliana FOX line and the rice full-length cDNA that overexpressed DNA FOX line are both incorporated by the National Institute of Physical and Chemical Research. Flight number 3 5 1— 0 1 9 8 Available from Hirosawa No. 2 (1), Wako City, Saitama Prefecture, Japan.
  • wild type plant refers to a plant into which full-length cDNA has not been introduced.
  • a “compound that changes the phenotype of a wild-type plant” refers to a compound that changes some phenotype of a wild-type plant when the compound is applied to the wild-type plant.
  • the phenotypic change is not particularly limited, and the plant is whitened in the light, germination inhibition, plant height change (fertility or hypocotyl elongation), true leaf suppression, root elongation change, flowering change , Change in flower color, change in flowering period, sterilization, change in content of sugar, protein, lipid, etc., change in resistance to disease, suppression of changes in plants in plants (extension of hypocotyl hypocotyl)
  • a phenotype that can be observed as a change in the appearance (form) of the plant is preferable.
  • the method of applying the compound to a plant is not particularly limited, a method of sowing seeds in a medium containing the compound, a method of germinating seeds and planting seedlings in a transplanting medium containing the compound, a plant body (leaves, stems, flowers, etc.) ), A method of applying or spraying a compound, a method of growing seedlings in a liquid medium containing the compound, and the like, but a method of sowing seeds in a medium containing the compound is preferable.
  • the concentration of the compound before applying the compound to the FO X line in step (b). For example, several concentrations of compound can be prepared and applied to wild type plants to determine the concentration. In wild-type plants, the concentration of the compound is a concentration that clearly changes its phenotype, and in the FOX line into which the full-length cDNA encoding the target protein of the compound has been introduced, It is preferable to determine the concentration so that the mold is not changed or the degree of change is low.
  • a compound that changes the phenotype of a wild type plant is applied to the FOX line (step (b)), and a FOX line that exhibits a phenotype different from the changed phenotype of the wild type plant is selected (step (c)).
  • An “overexpression line (FOX line) that showed a phenotype different from the altered phenotype of the wild-type plant” means, for example, that if the altered phenotype when the compound is applied to a wild-type plant is whitened, The line is not whitened or has a low degree of whitening.
  • the protein encoded by the full-length cDNA introduced into the line is overexpressed, for example, the excess protein metabolizes the compound and changes the structure of the compound, or the excess protein binds to the compound The It is thought that in becomes resistant to the compound (does not whiten).
  • the altered phenotype when the compound is applied to a wild-type plant is dwarfing plant height, it is a line that has not dwarfed or has a low degree of dwarfing.
  • Genomic DNA is extracted from the selected FOX line, and PCR is performed using the genomic DNA as a saddle. Primers are designed based on the promoter sequence and the terminator sequence included in the T1 DNA used in FOX line preparation. Using the primer, the base sequence of the amplified product is read with a DNA sequencer, and the full-length cDNA introduced into the selected FOX line is identified (step (d)). The identification can be performed, for example, by searching a nucleotide sequence in a database of NCBI (National Center for Biotechnology Information) or an Arabidopsis gene database of RIKEN.
  • NCBI National Center for Biotechnology Information
  • step (d) further steps may be included in the steps (a) to (d).
  • the cDNA amplified in step (d) is again inserted into TDNA having the above promoter sequence, terminator sequence, etc., and this is reintroduced into a wild type plant of the same type as the plant in the FOX line. Then, it may be confirmed whether the resistance to the compound is reproduced.
  • Analytical method for examining molecular adhesion analysis method for examining thermal changes associated with intermolecular interactions using Micro C a 1 (Nippon Siebel Hegner, etc.), — Material analysis by NM R Not.
  • the method of the present invention is particularly useful when a compound group (chemical library) whose function or the like is unknown is used as a test compound. According to this method, selecting a candidate compound from the compound group and searching for a gene encoding a protein that is a target of the candidate compound can be performed simultaneously in a series of steps.
  • a compound group to be applied is not particularly limited, but a compound group such as a chemical library synthesized by a combinatorial chemistry technique and including a derivative and a precursor is preferable.
  • the method of applying the compound to plants and the altered phenotype of wild-type plants are as described above.
  • the phenotype is plant whitening, the seeds of the wild type plant were sown in a medium containing the compound and a medium not containing the compound, and germinated in the medium containing no compound.
  • the buds of wild-type plants germinated in the medium containing the compound are whitened, the compounds contained in the medium are selected.
  • the compound concentration when applied to the overexpression line in step (g) is determined in the same manner as described above.
  • the relationship between the selected compound and the known protein and its gene may be examined.
  • the selected compound is applied to a plant overexpressed by introducing the gene, and it is examined whether or not it exhibits a phenotype different from the altered phenotype of the wild-type plant. If the phenotype is different from the altered phenotype of the wild-type plant, it can be assumed that the compound works at a known site of action. If the phenotype is similar to that of a wild-type plant, it can be assumed that the compound works at an unknown site of action.
  • steps (f), (g), (h), (i) may be performed in the same manner as the above steps (a), (b), (c), (d), respectively.
  • the above-mentioned additional steps confirmation by reintroducing the identified gene into the plant, analysis of intermolecular interactions using the Biacore system, QCM, or Micro C a 1, NMR Quality analysis).
  • the vector constitutive expression vector p BIG 2 11 13 N (Taji, T. et al. Plant J., 2002.24 (4): pp417-426 and Becker, D. 'et al. Nucleic Acid Res., 1990.18 (1): p BIG 2 1 1 3 SF with S fi I cloning site introduced into p.203) was used.
  • Full-length cDNA was prepared from Arabidopsis thaliana by the CAP tr a p p e r method. This cDNA was cloned into a site sandwiched by S fi I restriction enzyme cleavage sites of Lamb da ZAP or Lamb dap LC—l—B (Seki M. et al. Plant J., 15, 707-720). (1998)). Using the vector sequence, read the sequences at the 5 'end and 3, and the end of cDNA and perform cDNA grouping.
  • 50,000 were mixed, and the plasmids were collected from there. Collected 2 ⁇ I bra
  • the smudge solution was mixed with 40 ⁇ l of Electric competent Agrobacterium cell GV3101 for transformation. Approximately 150,000 independent colonies grown on an agar medium containing Km were suspended in LB liquid medium, glycerol was added to 15%, and stored at ⁇ 80 ° C. This glycerol solution was used as an Arabidopsis FOX Agrobacterium library.
  • the above Arabidopsis F OX agropacteria library is grown in colonies, suspended in a dipping solution, and then wild-type Arabidopsis (Colombia (C o 1-0)) floral diving. Went. Seed (T 1 seed) is harvested, germinated on an oligotrophic medium B AM containing hygromycin, and only about 15, ⁇ 0 0 line plants showing hygromycin resistance are transplanted to the soil, and T 2 seed Got. The following experiment was conducted using the Arabidopsis FOX line produced and established in this way.
  • FSM phosmidomycin
  • Wild-type Arabidopsis thaliana was used to examine the lowest FSM concentrations that clearly whiten Arabidopsis thaliana. Concentration 0; uM, 1 00 M, 2 00 / M, 3 00 ⁇ , and 4 0 0 / ⁇ on agar medium containing FSM, in the dark to match the timing of germination, 4
  • the seeds of wild-type Arabidopsis thaliana treated at low temperature at ° C were sown and grown for 2 weeks under 22 ° C light conditions.
  • Genomic DNA was extracted from the FSM-resistant Arabidopsis FOX line according to a conventional method, and PCR was performed using this as a template.
  • PCR includes 5'-GGAAGTTCATTTATTCGGAGAG-3 '(SEQ ID NO: 1) and 5,-GGCAACAGGATTCAATCTTA-3,
  • the primer of (SEQ ID NO: 2) was used.
  • the amplification product was sequenced, and a primer of 5, -CCCCCCCCCCD-3 '(SEQ ID NO: 3, D represents A, G or T) was used for the sequence.
  • DXR 1-deoxy-D-xylulose 5-phosphate reductoisomerase gene, Arabidopsis gene number At5g62790, nucleic acid sequence: SEQ ID NO: 4
  • the amino acid sequence: SEQ ID NO: 5 was confirmed to be overexpressed.
  • the other 8 lines were considered to be false positive lines because they did not show FSM resistance in the reproducibility test.
  • a new whitening agent was selected from a chemical library, and an experiment was conducted to find a target candidate protein of the selected whitening agent and its gene (action point).
  • a chemical library was selected from 10,000 compounds (ChemBridge Corporation) to whiten wild-type white plants.
  • C0STAR registered trademark
  • 96-well plate (Sigma Aldrich Co., Ltd.) 10 L of water, 1 nL of compound (final concentration approx. 1 00 // M), 100 ⁇ L of MS agar This was dispensed with about 10 grains each of 0.1% agar solution in which seeds of wild-type Arabidopsis thaliana were suspended.
  • the plants were grown for 1 week under 22 ° C light conditions, and we observed whether the buds of wild-type Arabidopsis thaliana were whitened (panel (1) in Fig. 2).
  • the 108 compound was selected as a whitening agent.
  • 33 compounds with unknown functions and new structures were selected from 108 compounds using the chemical substance database (SciFinder).
  • Wild-type Arabidopsis seeds that had been cold-treated on agar media containing various concentrations (1-100 / ⁇ 1) of P S C 1 were sown and grown under 22 ° C light conditions for 2 weeks.
  • the minimum concentration of PSC1 required to whiten wild-type Arabidopsis thaliana was 20 ⁇ , and it was decided to screen the Arabidopsis FOX line at this concentration.
  • FOX line seeds T 2 seeds
  • PPM TM solution 0.1% agar solution
  • Genomic DNA was extracted from the PSCl-resistant FOX line according to a conventional method, and PCR was performed using this as a template.
  • the primers of SEQ ID NO: 1 and SEQ ID NO: 2 were used for PCR.
  • the amplification product was sequenced, and the primer of SEQ ID NO: 3 was used for the sequence.
  • At5g61820 nucleic acid sequence: SEQ ID NO: 6, amino acid sequence: SEQ ID NO: 7. It was isolated as a gene encoding a target candidate protein.
  • a target protein of a compound and a gene encoding the protein can be searched easily and quickly.
  • the present invention elucidates the action mechanism of a compound and predicts side effects on organisms. Etc. are useful.
  • the acquisition of various genes involved in resistance to the compound is expected, and it becomes possible to create compound-resistant plants by overexpression of these genes.
  • various compounds including compound derivatives or precursors, and compounds with unknown functions can be tested. Therefore, from compounds synthesized by combinatorial chemistry technology, pharmaceuticals, agricultural chemicals, chemicals It is an appropriate method for screening compounds (lead compounds) suitable for genetic studies. In addition, a compound that does not show any action when applied to a certain organism (for example, a microorganism) is converted to the full length c D of the microorganism.

Landscapes

  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Disclosed is a method for searching for a gene encoding a protein targeted by a compound rapidly and in a simple manner.  Also disclosed is a method for selecting a compound and searching for a gene encoding a protein targeted by the compound.

Description

明 細 書 化合物の標的タンパク質をコードする遺伝子を探索する方法 技術分野  Description Method of searching for a gene encoding a target protein of a compound Technical Field
本発明は、 医薬、 農薬等に用いられる化合物の標的タンパク質をコードする遺 伝子を探索する方法に関する。 背景技術  The present invention relates to a method for searching for a gene encoding a target protein of a compound used in medicine, agricultural chemicals and the like. Background art
従来から、 医薬、 農薬等の化合物が標的とするタンパク質およびその遺伝子を 探索するために、 プルダウン法や、 点変異を有する植物変異体から化合物に耐性 を有する変異体を選抜し、 標的タンパク質およびその遺伝子を同定する方法が用 いられている。  Conventionally, in order to search for proteins and genes targeted by compounds such as pharmaceuticals and agricultural chemicals, mutants that are resistant to the compound are selected from pull-down methods and plant mutants that have point mutations. Methods for identifying genes are used.
上記プルダウン法は、 化合物を固定化した担体に細胞の抽出液などの試料をァ プライして、 標的タンパク質を得る方法である。 例えば非特許文献 1には、 タク 口リムスを担体上に結合させ、 タクロリムスと結合する標的タンパク質(受容体) を得たことが記載されている。 しかしながら、 プルダウン法は、 化合物を担体に 結合させるために化合物を合成しなければならないこと、 化合物を担体に固定化 できても、 固定化された化合物に標的タンパク質が結合しない場合があること、 化合物と標的タンパク質の結合力が弱い場合は、 標的タンパク質の精製が困難で あること、 標的タンパク質を安定に精製できる条件の最適化が必要であること等 の問題点がある。 特に、 化合物を固定化した適切な担体の作製に、 通常数ケ月〜 The pull-down method is a method for obtaining a target protein by applying a sample such as a cell extract to a carrier on which a compound is immobilized. For example, Non-Patent Document 1 describes that a target protein (receptor) that binds to tacrolimus is obtained by binding takuguchi rimus on a carrier. However, the pull-down method requires that the compound be synthesized in order to bind the compound to the carrier, that even if the compound can be immobilized on the carrier, the target protein may not bind to the immobilized compound. When the binding force between the target protein and the target protein is weak, it is difficult to purify the target protein, and it is necessary to optimize the conditions for stable purification of the target protein. In particular, it usually takes several months to make a suitable carrier with immobilized compounds.
1年の時間を要する。 It takes a year.
上記点変異を有する植物変異体から化合物に耐性の変異体を選抜して標的タン パク質およびその遺伝子を同定する方法は、 植物をェチルメタンスルホネートな どの突然変異原で処理して突然変異を起こさせ、 突然変異した遺伝子によりコー ドされるタンパク質と化合物との結合力の低下により、 化合物に対して耐性を獲 得した植物を探索して、 その原因遺伝子を単離する方法である。 例えば非特許文 献 2には、 D A S 7 3 4と呼ばれる新規フヱニルトリァゾール酢酸を含む培地で、 変異原処理した 4 8万のシロイヌナズナをスクリ一二ングし、 D A S 7 3 4存在 下でも生育できる耐性変異体を選抜し、 マップべ一スクローニングを行って耐性 の原因である遺伝子を特定したことが記載されている。 この方法では、 変異原処 理により不特定に D N Aがメチル化された植物を用いる。 従って、 偶発的変異に より化合物との結合力が低下した標的タンパク質を有する突然変異体 (耐性変異 体) を獲得するためには、 確率的に膨大な数の植物をスク リーニングしなくては ならないこと、 耐性変異体を獲得した後もマップベースクロ一ニングなどにより 標的遺伝子を特定する必要があること、 複数のアレルを取得して耐性がその遺伝 子の変異によることを証明する必要があること等の問題点がある。この方法では、 標的遺伝子の候補を得るまでに、 約 1〜 2年の時間を要する。 A method of selecting a mutant resistant to a compound from plant mutants having the above point mutation and identifying a target protein and its gene is carried out by treating the plant with a mutagen such as ethyl methanesulfonate. This is a method of isolating the causative gene by searching for plants that have acquired resistance to the compound by reducing the binding power between the protein encoded by the mutated gene and the compound. For example, Non-Patent Document 2 includes a medium containing a novel phenyltriazole acetic acid called DAS 7 34, Screening 48,000 Arabidopsis treated with mutagen, selecting resistant mutants that can grow even in the presence of DAS 7 3 4 and performing map-based cloning to identify genes responsible for resistance Is described. This method uses plants whose DNA has been unmethylated by mutagenesis. Therefore, in order to obtain mutants (target mutants) that have target proteins whose binding ability to compounds has been reduced due to accidental mutations, a large number of plants must be screened stochastically. After acquiring a resistant mutant, it is necessary to identify the target gene by map-based cloning, etc., and to acquire multiple alleles and prove that the resistance is due to the mutation of that gene. There are problems such as. In this method, it takes about 1 to 2 years to obtain a target gene candidate.
非特許文献 3には、 メバロン酸経路(M V A経路)、非メバロン酸経路(M E P経 路)をそれぞれメビノリン、 ホスミ ドマイシンでブロックし、 これらの薬剤に耐性 を有するシロイヌナズナの遺伝子過剰発現体 (アクティベーションタグ系統) を 選抜したことが記載されている。 この文献での実験は、 メビノリンと HM G— C o Aレダクターゼとの既知の作用、 ホスミ ドマイシンと D X Pレダク トイソメラ ーゼとの既知の作用を利用したものである。 また、 この実験で用いられたァクテ ィベーションタグ系統は、 ェンハンサ一を含む D N Aを植物ゲノムにランダムに 導入して該植物の遺伝子を過剰発現させた変異体である。 ァクティべーションタ グ系統では、 転写を活性化しうるゲノム領域がェンハンサ一の挿入部位前後の広 い範囲に及び、 その範囲に複数の遺伝子が存在し得るため、 ェンハンサーによつ てどの遺伝子が活性化されたのかを判断することが困難であること、 ェンハンサ 一がある遺伝子のコード領域に挿入されると、 その遺伝子の機能が欠失した変異 体が生ずること等の問題点がある。  In Non-patent Document 3, the mevalonate pathway (MVA pathway) and the non-mevalonate pathway (MEP pathway) are blocked with mevinolin and phosmidomycin, respectively, and over-expressed gene of Arabidopsis thaliana that is resistant to these drugs (activation) The tag line) is selected. The experiments in this document make use of the known actions of mevinolin and HM G—Co A reductase and the known actions of phosmidomycin and D XP reductase isomerase. Further, the activation tag line used in this experiment is a mutant in which DNA containing an enhancer is randomly introduced into the plant genome to overexpress the plant gene. In the activation tag line, the genomic region that can activate transcription covers a wide range before and after the insertion site of the enhancer, and there can be multiple genes in that range, so which gene is activated by the enhancer. There are problems such as difficulty in determining whether or not the gene has been inserted, and if an inserter is inserted into the coding region of a gene, a mutant lacking the function of the gene is generated.
非特許文献 4 には、 酵母ゲノ ムライブラ リ ーを酵母 ( Saccharorayces cerevi siae) で過剰発現させて、 該遺伝子過剰発現酵母からフヱニルァミノピリ ジンに耐性を示す酵母をスクリ一二ングすることが記載されている。 また非特許 文 Rk 5 tこ ί 、 Mycobacterium avium のケノムフィフ フ リ 1 ¾r Mycobacterium smegmat i s で過剰発現させて、 該遺伝子過剰発現バクテリアからメフロキニンに 耐性を示すバクテリアをスクリ一二ングすることが記載されている。 しかしなが ら、 これら微生物に化合物を適用したときに微生物が示す表現型は、 微生物の成 長の抑制や、 糖、 タンパク質、 脂質等の含有量の変化などに限られるという問題 点がある。 Non-Patent Document 4 includes overexpressing a yeast genomic library in yeast (Saccharorayces cerevi siae) and screening yeast that is resistant to phenylaminopyridine from the gene overexpressing yeast. Is described. In addition, non-patent document Rk 5 t, describes that Mycobacterium avium chemomefifury 1 ¾r Mycobacterium smegmat is overexpressed and screens bacteria resistant to meflokinin from the gene overexpressing bacteria. Yes. However, In addition, the phenotypes that microorganisms exhibit when compounds are applied to these microorganisms are limited to the suppression of the growth of microorganisms and the change in the content of sugars, proteins, lipids, and the like.
非特許文献 1 Harding MW. et al, A receptor for the immuno- suppressant FK506 is a cis- trans peptidyl - prolyl isomerase " , Nature (1989) , 341, p.758-760.  Non-Patent Document 1 Harding MW. Et al, A receptor for the immuno-suppressant FK506 is a cis-trans peptidyl-prolyl isomerase ", Nature (1989), 341, p.758-760.
非特許文献 2 Terence A. Walsh, et al, "Chemical Genetic Identification of Glutamine Phosphor ibosylpyrophosphate Amidotransf erase as the Target for a Novel Bleaching Herbicide in Arabidopsis , Plant physiol. (2007) , 144, p.1292-1304.  Non-Patent Document 2 Terence A. Walsh, et al, "Chemical Genetic Identification of Glutamine Phosphor ibosylpyrophosphate Amidotransf erase as the Target for a Novel Bleaching Herbicide in Arabidopsis, Plant physiol. (2007), 144, p.1292-1304.
非特許文献 3 Manuel Rodriguez- concepcion, et al, " Distinct Light-Mediated Pathways Regulate the Biosynthesis and Exchange of Isoprenoid Precursors during Arabidopsis Seedling Development" , The Plant Cell (2004) , Vol.16, p.144-156.  Non-Patent Document 3 Manuel Rodriguez- concepcion, et al, "Distinct Light-Mediated Pathways Regulate the Biosynthesis and Exchange of Isoprenoid Precursors during Arabidopsis Seedling Development", The Plant Cell (2004), Vol. 16, p.144-156.
非特 S午文献 4 Hendrik Luesch, et al, "A Genome-Wide Overexpression Screen in Yeast for Small-Molecule Target Identir ication , Chemistry & Biology (2004), vol.12, p.55-63.  Non-specific S No. 4 Hendrik Luesch, et al, "A Genome-Wide Overexpression Screen in Yeast for Small-Molecule Target Identification, Chemistry & Biology (2004), vol.12, p.55-63.
非特許文献 5 Lia Danelishvili, et al, "Genomic Approach to Identifying the Putative Target of and Mechanisms of Resistance to Meiloquine in Mycobacteria" , Antimicrobial Agents and Chemotherapy (2005) , vol.49, No.9, p.3707-3714. 発明の開示  Non-Patent Document 5 Lia Danelishvili, et al, "Genomic Approach to Identifying the Putative Target of and Mechanisms of Resistance to Meiloquine in Mycobacteria", Antimicrobial Agents and Chemotherapy (2005), vol.49, No.9, p.3707-3714 Disclosure of the invention
本発明の課題は、 化合物の標的となるタンパク質をコードする遺伝子を、 簡易 かつ迅速に探索する方法を提供することである。  An object of the present invention is to provide a method for easily and rapidly searching for a gene encoding a protein that is a target of a compound.
本発明者らは、 上記課題を解決すべく鋭意研究を重ねた結果、 Fox hunting systemと呼ばれる遺伝子機能の解析方法を応用することにより、本発明を完成し た。  As a result of intensive studies to solve the above problems, the present inventors have completed the present invention by applying a gene function analysis method called Fox hunting system.
本発明は、 要約すると以下の通りである。 [1] 以下の工程 (a) 〜 (d) : The present invention is summarized as follows. [1] The following steps (a) to (d) :
(a) 完全長 c DNAのライブラリーを植物に導入し、 完全長 c DNA過剰発現 系統を作製する工程、  (a) introducing a full-length cDNA library into a plant to produce a full-length cDNA overexpression line;
(b) 過剰発現系統に野生型植物の表現型を変化させる化合物を適用する工程、 (b) applying a compound that changes the phenotype of a wild-type plant to an overexpression line,
( c ) 野生型植物の変化した表現型とは異なる表現型を示した過剰発現系統を選 抜する工程、 および (c) selecting an overexpression line that exhibits a phenotype different from the altered phenotype of the wild-type plant; and
(d) 選抜された過剰発現系統に導入された完全長 c DNAを同定する工程 を含む、 化合物の標的となるタンパク質をコードする遺伝子を探索する方法。  (d) A method for searching for a gene encoding a protein targeted by a compound, comprising the step of identifying a full-length cDNA introduced into a selected overexpression line.
[2] 以下の工程 (e) 〜 ( i ) : [2] The following steps (e) to (i) :
(e) 野生型植物に化合物群を適用して、 野生型植物の表現型を変化させる化合 物を選抜する工程、  (e) applying a group of compounds to a wild-type plant to select a compound that changes the phenotype of the wild-type plant;
( f ) 完全長 c DNAのライブラリーを植物に導入し、 完全長 c DNA過剰発現 系統を作製する工程、  (f) introducing a full-length cDNA library into a plant to produce a full-length cDNA overexpression line;
(g) 過剰発現系統に野生型植物の表現型を変化させる化合物を適用する工程、 (g) applying a compound that changes the phenotype of a wild-type plant to an overexpression line;
(h) 野生型植物の変化した表現型とは異なる表現型を示した過剰発現系統を選 抜する工程、 および (h) selecting an overexpression line that exhibits a phenotype different from the altered phenotype of the wild-type plant; and
( i ) 選抜された過剰発現系統に導入された完全長 c DNAを同定する工程 を含む、 化合物の選抜と該化合物の標的となるタンパク質をコードする遺伝子を 探索する方法。  (i) A method for selecting a compound and searching for a gene encoding a target protein of the compound, comprising the step of identifying a full-length cDNA introduced into the selected overexpression line.
本明細書は本願の優先権の基礎である日本国特許出願 2008-133148号の明細書 および/または図面に記載される内容を包含する。 図面の簡単な説明  This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2008-133148, which is the basis of the priority of the present application. Brief Description of Drawings
図 1は、 モデル化合物 F SMを用いた作用点探索の検証実験のフローを示す。 パネル ( 1 ) は濃度 0 //Μ、 1 00 /ζΜ、 200 μ 300 / M、 および 40 0 の F SMを適用したときの野生型シロイヌナズナの芽の白化を示す。 パネ ル (2) は F SM耐性 FOXライン (白化しなかったもの) のスクリーニングを 示す。  Figure 1 shows the flow of the verification experiment of action point search using the model compound FSM. Panel (1) shows the whitening of buds of wild-type Arabidopsis when applying FSM at concentrations of 0 // Μ, 100 / ζΜ, 200 μ300 / M, and 400. Panel (2) shows the screening of FSM resistant FOX lines (not whitened).
図 2は、 ケミカルライブラリーからの新規白化剤の選抜およびその作用点の探 索のフローを示す。 パネル (1) は各化合物を適用したときの野生型シロイヌナ ズナの芽の白化を示す。 パネル (2) は P S C 1耐性 FOXライン (白化しなか つたもの) のスクリーニングを示す。 発明を実施するための最良の形態 Figure 2 shows the selection of new whitening agents from the chemical library and the search for their action points. The flow of the cord is shown. Panel (1) shows the whitening of buds of wild-type Arabidopsis when each compound is applied. Panel (2) shows the screening of the PSC 1 resistant FOX line (not whitened). BEST MODE FOR CARRYING OUT THE INVENTION
1. 化合物の標的となるタンパク質をコードする遺伝子を探索する方法  1. A method for searching for genes that encode proteins targeted by compounds
本発明の化合物の標的となるタンパク質をコードする遺伝子を探索する方法は、 A method for searching for a gene encoding a protein that is a target of the compound of the present invention includes:
(a) 完全長 c DNAのライブラリーを植物に導入し、 完全長 c DNA過剰発現 系統を作製する工程、 (a) introducing a full-length cDNA library into a plant to produce a full-length cDNA overexpression line;
(b) 過剰発現系統に野生型植物の表現型を変化させる化合物を適用する工程、 (b) applying a compound that changes the phenotype of a wild-type plant to an overexpression line,
( c ) 野生型植物の変化した表現型とは異なる表現型を示した過剰発現系統を選 抜する工程、 および (c) selecting an overexpression line that exhibits a phenotype different from the altered phenotype of the wild-type plant; and
(d) 選抜された過剰発現系統に導入された完全長 c DNAを同定する工程 を含む。  (d) identifying a full-length cDNA introduced into the selected overexpression line.
本明細書において 「化合物の標的となるタンパク質」 とは、 ある化合物と相互 作用を有するタンパク質をいう。 該化合物と標的タンパク質との相互作用は、 特 に限定されないが、 例えば化合物のタンパク質への可逆的および不可逆的結合、 タンパク質が化合物を代謝して化合物を別の構造に変化させる作用などが挙げら れる。 本明細書では化合物の標的となるタンパク質またはそれをコードする遺伝 子を 「作用点」 ということがある。  As used herein, “a protein targeted by a compound” refers to a protein that interacts with a certain compound. The interaction between the compound and the target protein is not particularly limited, and examples include reversible and irreversible binding of the compound to the protein, and the action of the protein metabolizing the compound to change the compound into another structure. It is. In the present specification, a protein targeted by a compound or a gene encoding the same may be referred to as “point of action”.
本発明で用いられる 「完全長 c DN A過剰発現系統」 は、 Fox hunting system と呼ばれる、 完全長 c DNAを植物に導入して過剰発現させることによりもたら される形質の変化から遺伝子の機能を明らかにする方法において作製されたライ ンである (WO 2003ノ 0 1 8808号参照)。本明細書では完全長 c DNA過 剰発現系統を FOXラインということがある。  The “full-length cDNA overexpression line” used in the present invention is called a Fox hunting system, and it is designed to control the function of a gene from changes in traits caused by introducing and overexpressing full-length cDNA into a plant. It is a line produced by the method to be clarified (see WO 2003 No. 0 1808). In the present specification, a full-length cDNA overexpression line is sometimes referred to as a FOX line.
FOXラインは、 完全長 c DN Aを強発現型べクタ一につないで作製したライ ブラリーを植物に感染させて、 完全長 c DNAを植物に導入して作製した、 いわ ゆる gain of functionの変異体系統である。  The FOX line is a mutation of so-called gain of function, which is created by infecting a plant with a library prepared by connecting full-length cDNA to a strong expression vector and introducing full-length cDNA into the plant. It is a body system.
FOXラインの作製において、 完全長 c DNAが導入される植物は特に限定さ れないが、 シロイヌナズナが好ましい。 導入する完全長 c DNAは、 特に限定さ れず、 植物、 動物、 微生物等、 どの生物に由来するものでもよい。 例えば、 除草 剤の作用点を探索する場合、 雑草の完全長 c DNAをシロイヌナズナに導入した FOXラインを作製すればよい。 また、 必ずしも目的生物の完全長 c DNAを用 意しなくてもよい。 例えば、 マラリア原虫は非メバロン酸経路を持っているが、 高等植物の色素体も非メバロン酸経路を持つので、 マラリア原虫と植物では、 非 メバロン酸経路で働く酵素が共通している。 従って、 高等植物の完全長 c DNA ライブラリー(非メバロン酸経路で働く酵素をコードする完全長 c DNAを含む) を用いて作製した FOXラインを抗マラリァ薬でスクリ一二ングし、 選抜された FOXラインで過剰発現した完全長 c DNAを同定し、 抗マラリァ薬の作用点を 探索することができる。 In the production of the FOX line, the plants into which full-length cDNA is introduced are particularly limited. However, Arabidopsis is preferable. The full-length cDNA to be introduced is not particularly limited, and may be derived from any organism such as a plant, animal, or microorganism. For example, when searching for the site of action of a herbicide, a FOX line in which weed full-length cDNA is introduced into Arabidopsis thaliana can be prepared. In addition, it is not always necessary to prepare the full-length cDNA of the target organism. For example, malaria parasites have a non-mevalonate pathway, but because higher plant plastids also have a non-mevalonate pathway, malaria parasites and plants share enzymes that work in the non-mevalonate pathway. Therefore, FOX lines prepared using a full-length cDNA library of higher plants (including full-length cDNA encoding an enzyme that works in the non-mevalonate pathway) were screened with antimalarial drugs and selected. The full-length cDNA overexpressed in the FOX line can be identified and the site of action of antimalarial drugs can be searched.
以下に、シロイヌナズナの完全長 c DNAを過剰発現させたシロイヌナズナ(シ ロイヌナズナ FOXライン) を例として、 FOXラインの作製方法 (工程 (a)) を説明する。  The following describes the FOX line preparation method (step (a)), using Arabidopsis thaliana (Arabidopsis thaliana FOX line) overexpressing the full-length cDNA of Arabidopsis thaliana as an example.
独立したシロイヌナズナの完全長 c DNA約 1 5, 000種類を c DNAの等 量比のプールとして調製し (標準化という)、 この c DNAを、 プロモーター、 ェ ンハンサー (転写ェンハンサー E 2 1、 オメガ配列等)、 ターミネータ一等の制御 領域、 薬剤耐性遺伝子などの選択マーカー等を持った T一 DNAベクターに組み 込む。 該 T— DN Aベクターをァグロバクテリゥムに導入してシロイヌナズナ完 全長 c DNA発現ライブラリ一を作製し、 全体の c DNAの分布が該ライブラリ 一に反映されているかを確認後、 前記ァグロパクテリゥムを用いてフローラルデ ィッビング法によりシロイヌナズナの形質転換を行い、 シロイヌナズナの形質転 換ライン (シロイヌナズナ FOXライン) を作製する。 この方法によれば、 植物 を何億クローンものライブラリ一に感染させても、 1植物に 1〜 2クローンしか 導入されないので、 植物に別々のクローンが導入された形質転換ラインを作製す ることができる。 上記の形質転換されたシロイヌナズナから T 1種子を回収し、 About 15,000 full-length cDNAs of independent Arabidopsis thaliana were prepared as a pool of cDNA equivalence ratios (referred to as standardization), and this cDNA was used as a promoter, enhancer (transcription enhancer E 2 1, omega sequence, etc. ) Incorporated into a T1 DNA vector having a control region such as a terminator and a selectable marker such as a drug resistance gene. The T-DNA vector was introduced into agrobacterium to produce a complete Arabidopsis full-length cDNA expression library, and after confirming whether the entire cDNA distribution was reflected in the library, Transform Arabidopsis thaliana using pacterium by the floral debating method to create an Arabidopsis transformation line (Arabidopsis FOX line). According to this method, even if a plant is infected with a library of hundreds of millions of clones, only one or two clones are introduced into one plant. Therefore, it is possible to produce a transformation line in which different clones are introduced into a plant. it can. Collect T 1 seeds from the transformed Arabidopsis thaliana,
T 1種子を播種して、 さらに T 2世代の種子を回収する。 なお、 シロイヌナズナ の完全長 c DNAを過剰発現させたシロイヌナズナ FOXライン、 イネの完全長 c DN Aを過剰発現させたイネ FOXラインは、 独立行政法人理化学研究所 (郵 便番号 3 5 1— 0 1 9 8 日本国埼玉県和光市広沢 2番 1号) から入手可能であ る。 T 1 seeds are sown and T 2 generation seeds are collected. The Arabidopsis full-length Arabidopsis FOX line that overexpressed Arabidopsis thaliana FOX line and the rice full-length cDNA that overexpressed DNA FOX line are both incorporated by the National Institute of Physical and Chemical Research. Flight number 3 5 1— 0 1 9 8 Available from Hirosawa No. 2 (1), Wako City, Saitama Prefecture, Japan.
本明細書において 「野生型植物」 とは、 完全長 c D N Aを導入していない植物 をいう。 「野生型植物の表現型を変化させる化合物」 とは、 化合物を野生型植物に 適用すると、 野生型植物の何らかの表現型に変化を与える化合物をいう。 表現型 の変化は、 特に限定されず、 明所における植物の白化、発芽阻害、 草丈の変化 (矮 性化または胚軸伸長化)、本葉の抑制、根の伸長の変化、花付の変化、花色の変化、 開花期の変化、 不稔化、 糖、 タンパク質、 脂質等の含有量の変化、 病気に対する 抵抗性の変化、 喑所における植物の変化 (黄化ゃ胚軸伸長化) の抑制などが挙げ られるが、 植物の外観 (形態) の変化として観察できる表現型が好ましい。 化合物を植物に適用する方法は、 特に限定されず、 化合物を含む培地に種子を 播種する方法、 種子を発芽させ、 化合物を含む移植培地に苗を植える方法、 植物 体 (葉、 茎、 花など) に化合物を塗布または嘖霧する方法、 化合物を含む液体培 地中で苗を生育させる方法などが挙げられるが、 化合物を含む培地に種子を播種 する方法が好ましい。  As used herein, “wild type plant” refers to a plant into which full-length cDNA has not been introduced. A “compound that changes the phenotype of a wild-type plant” refers to a compound that changes some phenotype of a wild-type plant when the compound is applied to the wild-type plant. The phenotypic change is not particularly limited, and the plant is whitened in the light, germination inhibition, plant height change (fertility or hypocotyl elongation), true leaf suppression, root elongation change, flowering change , Change in flower color, change in flowering period, sterilization, change in content of sugar, protein, lipid, etc., change in resistance to disease, suppression of changes in plants in plants (extension of hypocotyl hypocotyl) A phenotype that can be observed as a change in the appearance (form) of the plant is preferable. The method of applying the compound to a plant is not particularly limited, a method of sowing seeds in a medium containing the compound, a method of germinating seeds and planting seedlings in a transplanting medium containing the compound, a plant body (leaves, stems, flowers, etc.) ), A method of applying or spraying a compound, a method of growing seedlings in a liquid medium containing the compound, and the like, but a method of sowing seeds in a medium containing the compound is preferable.
工程 (b ) において F O Xラインに化合物を適用する前に、 化合物の濃度を決 定しておぐことが好ましい。 例えば、 数種類の濃度の化合物を調製し、 野生型植 物に適用して濃度を決定することができる。 化合物の濃度は、 野生型植物では、 その表現型を明らかに変化させる濃度であって、 かつ、 化合物の標的となるタン パク質をコードする完全長 c D N Aが導入された F O Xラインでは、 その表現型 を変化させないか、 変化の程度が低い濃度に決定することが好ましい。  It is preferable to determine the concentration of the compound before applying the compound to the FO X line in step (b). For example, several concentrations of compound can be prepared and applied to wild type plants to determine the concentration. In wild-type plants, the concentration of the compound is a concentration that clearly changes its phenotype, and in the FOX line into which the full-length cDNA encoding the target protein of the compound has been introduced, It is preferable to determine the concentration so that the mold is not changed or the degree of change is low.
F O Xラインに野生型植物の表現型を変化させる化合物を適用し(工程(b ) )、 野生型植物の変化した表現型とは異なる表現型を示した F O Xラインを選抜する (工程(c ) )。 「野生型植物の変化した表現型とは異なる表現型を示した過剰発現 系統(F O Xライン)」 とは、 例えば、 化合物を野生型植物に適用したときの変化 した表現型が白化であれば、 白化しないか、 または白化の程度が低いラインであ る。 該ラインに導入された完全長 c D N Aによりコードされるタンパク質が過剰 発現し、 例えば、 過剰なタンパク質が化合物を代謝して化合物の構造を変化させ ることにより、 あるいは過剰なタンパク質と化合物が結合することにより、 該ラ インが該化合物に対して耐性になる (白化しない) と考えられる。 また、 化合物 を野生型植物に適用したときの変化した表現型が草丈の矮性化であれば、 矮性化 しないか、 または矮性化の程度が低かったラインである。 A compound that changes the phenotype of a wild type plant is applied to the FOX line (step (b)), and a FOX line that exhibits a phenotype different from the changed phenotype of the wild type plant is selected (step (c)). . An “overexpression line (FOX line) that showed a phenotype different from the altered phenotype of the wild-type plant” means, for example, that if the altered phenotype when the compound is applied to a wild-type plant is whitened, The line is not whitened or has a low degree of whitening. The protein encoded by the full-length cDNA introduced into the line is overexpressed, for example, the excess protein metabolizes the compound and changes the structure of the compound, or the excess protein binds to the compound The It is thought that in becomes resistant to the compound (does not whiten). In addition, if the altered phenotype when the compound is applied to a wild-type plant is dwarfing plant height, it is a line that has not dwarfed or has a low degree of dwarfing.
選抜された FOXラインからゲノム DN Aを抽出し、 該ゲノム DN Aを铸型と して PCRを行う。 プライマーは、 FOXライン作製で用いた T一 DNA中に含 まれるプロモータ一配列とターミネータ一配列の近傍の塩基配列をもとに設計す る。 該プライマーを用レ、て増幅された産物の塩基配列を D N Aシーケンサーで解 読し、 選抜された F OXラインに導入された完全長 c DNAを同定する (工程 ( d ) )。 同定は、 例えば N C B I (National Center for Biotechnology Information)のデータベースや独立行政法人理化学研究所のシロイヌナズナ遺伝 子のデータベース等で塩基配列を検索することにより行うことができる。  Genomic DNA is extracted from the selected FOX line, and PCR is performed using the genomic DNA as a saddle. Primers are designed based on the promoter sequence and the terminator sequence included in the T1 DNA used in FOX line preparation. Using the primer, the base sequence of the amplified product is read with a DNA sequencer, and the full-length cDNA introduced into the selected FOX line is identified (step (d)). The identification can be performed, for example, by searching a nucleotide sequence in a database of NCBI (National Center for Biotechnology Information) or an Arabidopsis gene database of RIKEN.
本発明において、 上記 (a) 〜 (d) の工程に更なる工程を含めてもよい。 例 えば、 工程 (d) で増幅された c DNAを、 再び上記プロモーター配列、 ターミ ネーター配列等を持つ T一 DN Aに挿入し、 これを F OXラインの植物と同種の 野生型植物に再導入して、化合物に対する耐性が再現されるかを確認してもよい。 あるいは、 公知の方法を用いて、 化合物と標的タンパク質の相互作用の解析を行 つてもよレ、。 相互作用の解析方法として、 例えば B i a c o r eシステム (GE ヘルスケア社など) による分子間の特異性、 力イネイクス、 ァフィ二ティーの解 析方法、 QCM(Quartz Crystal Microbalance) (株式会社多摩デバイスなど)に よる分子の付着を調べる解析方法、 M i c r o C a 1 (日本シィベルヘグナー社 など) による分子間の相互作用にともなう熱変化を調べる解析方法、 — NM Rによる物質分析が挙げられるが、 特に限定されない。  In the present invention, further steps may be included in the steps (a) to (d). For example, the cDNA amplified in step (d) is again inserted into TDNA having the above promoter sequence, terminator sequence, etc., and this is reintroduced into a wild type plant of the same type as the plant in the FOX line. Then, it may be confirmed whether the resistance to the compound is reproduced. Alternatively, you can analyze the interaction between the compound and the target protein using known methods. Examples of interaction analysis methods include intermolecular specificity, force enable, and affinity analysis methods using the Biacore system (GE Healthcare, etc.), QCM (Quartz Crystal Microbalance) (Tama Devices Co., Ltd., etc.). Analytical method for examining molecular adhesion, analysis method for examining thermal changes associated with intermolecular interactions using Micro C a 1 (Nippon Siebel Hegner, etc.), — Material analysis by NM R Not.
2. 化合物の選抜と該化合物の標的となるタンパク質をコードする遺伝子を探索 する方法  2. Method of selecting a compound and searching for a gene encoding a protein targeted by the compound
本発明の方法は、 機能等が不明な化合物群 (ケミカルライブラリー) を試験化 合物とする場合に特に有用である。 該方法によれば、 化合物群から候補化合物を 選抜することと、 候補化合物の標的となるタンパク質をコードする遺伝子を探索 することとを、 一連の工程において、 同時的に行うことができる。  The method of the present invention is particularly useful when a compound group (chemical library) whose function or the like is unknown is used as a test compound. According to this method, selecting a candidate compound from the compound group and searching for a gene encoding a protein that is a target of the candidate compound can be performed simultaneously in a series of steps.
本発明の化合物の選抜と該化合物の標的となるタンパク質をコードする遺伝子 を探索する方法は、 Selection of compounds of the present invention and genes encoding proteins that are targets of the compounds How to explore
(e) 野生型植物に化合物群を適用して、 野生型植物の表現型を変化させる化合 物を選抜する工程、  (e) applying a group of compounds to a wild-type plant to select a compound that changes the phenotype of the wild-type plant;
( f ) 完全長 c DNAのライブラリーを植物に導入し、 完全長 c DNA過剰発現 系統を作製する工程、  (f) introducing a full-length cDNA library into a plant to produce a full-length cDNA overexpression line;
(g) 過剰発現系統に野生型植物の表現型を変化させる化合物を適用する工程、 (g) applying a compound that changes the phenotype of a wild-type plant to an overexpression line;
( h ) 野生型植物の変化した表現型とは異なる表現型を示した過剰発現系統を選 抜する工程、 および (h) selecting an overexpression line exhibiting a phenotype different from the altered phenotype of the wild-type plant; and
( i ) 選抜された過剰発現系統に導入された完全長 c DNAを同定する工程 を含む。  (i) identifying the full-length cDNA introduced into the selected overexpression line.
工程 (e) において、 適用する化合物群は特に限定されないが、 コンビナトリ アルケミス トリー技術で合成され、 誘導体および前駆体を含む、 ケミカルライブ ラリーなどの化合物群が好ましい。 化合物を植物に適用する方法および野生型植 物の変化した表現型は、 上述のとおりである。 工程 (e) において、 上記表現型 が植物の白化の場合、 化合物を含む培地および化合物を含まない培地に野生型植 物の種子を播種し、化合物を含まない培地で発芽した野生型植物の芽と比較して、 化合物を含む培地で発芽した野生型植物の芽が白化した場合、 その培地に含まれ る化合物を選抜する。 また好ましくは、 選抜された化合物について、 工程 (g) で過剰発現系統に適用するときの化合物濃度を、 上記と同様にして決定する。 さらに、 任意で、 選抜された化合物と既知タンパク質およびその遺伝子 (既知 作用点) の関係を調べてもよい。 該遺伝子を導入して過剰発現させた植物に、 選 抜された化合物を適用し、 野生型植物の変化した表現型と異なる表現型を示すか 否かを調べる。 野生型植物の変化した表現型と異なる表現型を示せば、 その化合 物は既知の作用点に働く と推測できる。野生型植物と同じような表現型を示せば、 その化合物は未知の作用点に働く と推測できる。  In the step (e), a compound group to be applied is not particularly limited, but a compound group such as a chemical library synthesized by a combinatorial chemistry technique and including a derivative and a precursor is preferable. The method of applying the compound to plants and the altered phenotype of wild-type plants are as described above. In the step (e), when the phenotype is plant whitening, the seeds of the wild type plant were sown in a medium containing the compound and a medium not containing the compound, and germinated in the medium containing no compound. When the buds of wild-type plants germinated in the medium containing the compound are whitened, the compounds contained in the medium are selected. In addition, preferably, for the selected compound, the compound concentration when applied to the overexpression line in step (g) is determined in the same manner as described above. Furthermore, optionally, the relationship between the selected compound and the known protein and its gene (known action point) may be examined. The selected compound is applied to a plant overexpressed by introducing the gene, and it is examined whether or not it exhibits a phenotype different from the altered phenotype of the wild-type plant. If the phenotype is different from the altered phenotype of the wild-type plant, it can be assumed that the compound works at a known site of action. If the phenotype is similar to that of a wild-type plant, it can be assumed that the compound works at an unknown site of action.
工程 ( f )、 (g)、 (h)、 ( i ) は、 それぞれ、 上記工程 (a)、 (b)、 (c)、 (d) と同様にして行えばよい。 また、 これらの工程の他に、 上述の更なる工程 (同定 した遺伝子の植物への再導入による確認や、 B i a c o r eシステム、 QCM、 または M i c r o C a 1による分子間の相互作用の解析、 — NMRによる物 質分析など) を行ってもよい。 The steps (f), (g), (h), (i) may be performed in the same manner as the above steps (a), (b), (c), (d), respectively. In addition to these steps, the above-mentioned additional steps (confirmation by reintroducing the identified gene into the plant, analysis of intermolecular interactions using the Biacore system, QCM, or Micro C a 1, NMR Quality analysis).
以下、 実施例により本発明をさらに具体的に説明する。 但し、 本発明はこれら に限定されるものではない。  Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these.
〔実施例 1〕 シロイヌナズナ FOXラインの作製  [Example 1] Production of Arabidopsis FOX line
本実施例では、 ベクターと して、 恒常発現型べクター p B I G 2 1 1 3 N (Taji, T. ら Plant J. , 2002.24 (4) :p. p.417- 426及び Becker, D.'ら Nucleic Acid Res. , 1990.18(1): p.203)に S f i Iクローニングサイ トを導入した p B I G 2 1 1 3 S Fを用いた。  In this example, the vector constitutive expression vector p BIG 2 11 13 N (Taji, T. et al. Plant J., 2002.24 (4): pp417-426 and Becker, D. 'et al. Nucleic Acid Res., 1990.18 (1): p BIG 2 1 1 3 SF with S fi I cloning site introduced into p.203) was used.
(1)標準化シロイヌナズナ完全長 c DNAミックスの作製  (1) Preparation of standardized Arabidopsis full-length cDNA mix
シロイヌナズナから完全長 c DNAを C AP t r a p p e r法によって作製し た。 この c DNAを L amb d a ZAP、 あるいは L a mb d a p LC— l— Bの S f i I制限酵素切断部位によって挟まれる部位にクローユングした (Seki M. et al. Plant J. , 15, 707-720 (1998))。 ベクター配列を用いて c D N Aの 5 ' 末端と 3, 末端の配列を読み、 c DNAのグルーピングを行い、 独立の 1 3, 0 Full-length cDNA was prepared from Arabidopsis thaliana by the CAP tr a p p e r method. This cDNA was cloned into a site sandwiched by S fi I restriction enzyme cleavage sites of Lamb da ZAP or Lamb dap LC—l—B (Seki M. et al. Plant J., 15, 707-720). (1998)). Using the vector sequence, read the sequences at the 5 'end and 3, and the end of cDNA and perform cDNA grouping.
00種クローンを同定した (Seki M. et al. Plant Physiol. Biochem. 39, 211-220 (2001))。 次に、 50 n gZ/z 1に調製した各クローンから 0. 5 μ 1を分取して 1本のチューブに混ぜた。 この混合液 1 1 分取し、 2 0 μ 1 の Electric competent cell DH10B (Gibco BRL 社、 米国) に形質転換した。 Ampが含まれ た寒天培地上で生育した独立のコロニーを約 200, 000個混合し、 そこから プラスミ ドを回収した。 これを標準化シロイヌナズナ完全長 c DN Aミックスと した。 00 clones were identified (Seki M. et al. Plant Physiol. Biochem. 39, 211-220 (2001)). Next, 0.5 μl was separated from each clone prepared to 50 ng Z / z 1 and mixed in one tube. A 1-minute aliquot of this mixture was taken and transformed into 20 μ 1 of electric competent cell DH10B (Gibco BRL, USA). About 200,000 independent colonies grown on an agar medium containing Amp were mixed, and the plasmid was recovered therefrom. This was a standardized Arabidopsis full-length cDNA mix.
(2)シロイヌナズナ FOXァグロバクテリアライブラリ一の作製  (2) Construction of Arabidopsis FOX agrobacteria library
2 μ gの標準化シロイヌナズナ完全長 c DNAミックスと、 700 /z gの p B 2 μg of standardized Arabidopsis full-length cDNA mix and 700 / zg p B
1 G 2 1 1 3 S Fを混ぜてから同時に S f i Iで完全に切断した。 切断後、 ィソ プロパノール沈殿により濃縮し、 8 IX 1の水に溶かし 1; u lの 1 0 Xバッファー と 1 1の T 4リガーゼを混ぜ、 1 6°Cで 1昼夜反応させた。 2 // 1の反応液を1 G 2 1 1 3 S F was mixed and then completely cut with S f i I at the same time. After cleavage, the mixture was concentrated by isopropanol precipitation, dissolved in 8 IX 1 of water, 1; u 1 of 10 X buffer and 11 T 4 ligase were mixed, and reacted at 16 ° C. overnight. 2 // 1 reaction solution
40 1の Electric competent cell DH10Bに混ぜて形質転換した。 40 1 Electric competent cell DH10B was mixed and transformed.
カナマイシン (Km) が含まれた寒天培地上で生育した独立のコロニーを約 1 About 1 independent colony grown on agar containing kanamycin (Km)
50, 000個混合し、 そこからプラスミ ド回収をした。 回収した 2 μ Iのブラ スミ ド液を、 4 0 μ 1 の Electric competent Agrobacterium cell GV3101に混ぜ て形質転換した。 Kmが含まれる寒天培地上で生育した独立のコロニー約 1 5 0, 0 0 0個を L B液体培地に懸濁し、 1 5 %になるようグリセロールを加え、 — 8 0°Cにて保存した。 このグリセロール溶液をシロイヌナズナ F OXァグロバクテ リアライブラリーとした。 50,000 were mixed, and the plasmids were collected from there. Collected 2 μI bra The smudge solution was mixed with 40 μl of Electric competent Agrobacterium cell GV3101 for transformation. Approximately 150,000 independent colonies grown on an agar medium containing Km were suspended in LB liquid medium, glycerol was added to 15%, and stored at −80 ° C. This glycerol solution was used as an Arabidopsis FOX Agrobacterium library.
(3)シロイヌナズナ FOXラインの作製 (3) Arabidopsis FOX line production
上記シロイヌナズナ F OXァグロパクテリァライブラリ一を約 2 0 0, 0 0 0 コロニー生育させ、ディッビング溶液に懸濁させた後、野生型シロイヌナズナ(コ ロンビア (C o 1 - 0)) のフローラルディッビングを行った。 種 (T 1種子) を 収穫し、 ハイグロマイシンを含む貧栄養培地 B AM上で発芽させ、 ハイグロマイ シン耐性を示す約 1 5,◦ 0 0ラインの植物のみを土に移植し、 T 2種子を得た。 このようにして作製、 確立されたシロイヌナズナ FOXラインを用いて、 以下の 実験を行った。  The above Arabidopsis F OX agropacteria library is grown in colonies, suspended in a dipping solution, and then wild-type Arabidopsis (Colombia (C o 1-0)) floral diving. Went. Seed (T 1 seed) is harvested, germinated on an oligotrophic medium B AM containing hygromycin, and only about 15, ◦ 0 0 line plants showing hygromycin resistance are transplanted to the soil, and T 2 seed Got. The following experiment was conducted using the Arabidopsis FOX line produced and established in this way.
〔実施例 2〕 モデル化合物ホスミ ドマイシンを用いた作用点探索の検証実験 本実施例では、 モデル化合物としてホスミ ドマイシン(F SM)を用い、 本発明 の検証実験を行った。 F SMは抗マラリァ薬リード化合物として知られており、 植物においては、 色素体に存在する非メバロン酸経路を阻害し、 植物を白化させ る作用を有する。  [Example 2] Verification experiment of action point search using model compound phosmidomycin In this example, phosmidomycin (FSM) was used as a model compound, and the verification experiment of the present invention was performed. FSM is known as an antimalarial lead compound, and in plants, it inhibits the non-mevalonate pathway present in the plastids and has the effect of whitening the plant.
(1)シロイヌナズナを白化させる F SM濃度の決定  (1) Determination of FSM concentration to whiten Arabidopsis
野生型シロイヌナズナを用いて、 シロイヌナズナを明確に白化させるがなるベ く低い F SMの濃度を検討した。 濃度 0 ;uM、 1 0 0 M、 2 0 0 / M、 3 0 0 μΜ、 および 4 0 0 /χΜの F SMを含む寒天培地上に、 発芽の時期を合わせるた めに暗所下、 4 °Cでー晚低温処理した野生型シロイヌナズナの種子を播種し、 2 2 °C明所条件下で 2週間生育させた。 F SM濃度 0 μΜの寒天培地で発芽した野 生型シロイヌナズナは緑色であつたのに対し、 濃度 1 0 0 Μの寒天培地で発芽 した野生型シロイヌナズナは黄緑色であり、 濃度 2 0 0 μΜでは、 より白化して いた (図 1のパネル ( 1 ))。 下記(2)のスクリ一ユングで用いる F SMの濃度を 1 Ο θ ίΜとした。  Wild-type Arabidopsis thaliana was used to examine the lowest FSM concentrations that clearly whiten Arabidopsis thaliana. Concentration 0; uM, 1 00 M, 2 00 / M, 3 00 μΜ, and 4 0 0 / χΜ on agar medium containing FSM, in the dark to match the timing of germination, 4 The seeds of wild-type Arabidopsis thaliana treated at low temperature at ° C were sown and grown for 2 weeks under 22 ° C light conditions. Wild-type Arabidopsis thaliana germinated on an agar medium with a FSM concentration of 0 μΜ was green, whereas wild-type Arabidopsis thaliana germinated on an agar medium with a concentration of 100 μΜ was yellow-green, and at a concentration of 200 μΜ It was more whitened (Panel (1) in Figure 1). The concentration of FSM used in the screen (2) below was set to 1 ° θ ίΜ.
(2) F SM耐性 F ΟΧラインのスク リーニング シロイヌナズナ FOXラインを、 250ラインごとに分けて、 F SM耐性ライ ンスクリーニングに用いた。 FOXラインの種子 (T 2種子) を独立した 1万ラ ィンから各 1 0粒ずつ分取し、 250ラインごとに 1 5m lのコニカルチューブ に分注した。 これに、 種子を殺菌するため 5m 1の濃度 2%の P PMTM (Plant Preservative Mixture) 溶液 (ナカライテスク社) を加え、 暗所下、 4°Cでー晚 低温処理した。 低温処理後、 種子を滅菌水で 3度洗浄し、 そこに 0. 1 %寒天溶 液 (8m l ) を加えてボルテックスした。 滅菌 2号角シャーレに濃度 1 00 /iM の F SM.を含む 1 %スクロース入り L B寒天培地 (50mL) を 40枚調製し、 その上に種子を含んだ寒天溶液をそれぞれ注いで、 プレート上に種子を均等に分 散させた。 種子が固定されるまで表面を乾燥させた後、 22°C明所条件化で生育 させ、 F SM耐性 FOXライン (白化しなかったライン) をスク リーニングした(2) F SM resistance F ΟΧ line screening Arabidopsis FOX lines were divided into 250 lines and used for FSM resistance line screening. Ten FOX line seeds (T2 seeds) were collected from 10,000 independent lines each, and dispensed into 15 ml conical tubes every 250 lines. To this, 5m 1 of 2% concentration PPM (Plant Preservative Mixture) solution (Nacalai Tesque) was added and sterilized at 4 ° C in the dark. After low-temperature treatment, the seeds were washed three times with sterilized water, and 0.1% agar solution (8 ml) was added thereto and vortexed. Prepare 40 pieces of LB agar medium (50 mL) containing 1% sucrose containing 100 ppm / iM FSM in a sterile No. 2 petri dish, pour the seed-containing agar solution on each plate, and seed on the plate. Was evenly distributed. After drying the surface until the seeds were fixed, they were grown under 22 ° C light conditions and screened for FSM-resistant FOX lines (lines that were not whitened)
(図 1のパネル (2))。 その結果、 独立した F SM耐性 FOXラインを 1 1ライ ン得た。 1 0日後、 F SM耐性 FOXラインをそれぞれ新しい 1 %スクロース入 り LB寒天プレートに移して生育した。 (Panel (2) in Figure 1). As a result, an independent FSM-resistant FOX line was obtained. After 10 days, the FSM-resistant FOX lines were transferred to fresh LB agar plates containing 1% sucrose and grown.
(3) F SM耐性遺伝子の同定 (3) Identification of FSM resistance gene
常法に従って F SM耐性のシロイヌナズナ FOXラインからゲノム DNAを抽 出し、 これをテンプレー ト と して P C Rを行った。 P C Rには、 5' -GGAAGTTCATTTATTCGGAGAG-3 ' (配列番号 1 )および 5, - GGCAACAGGATTCAATCTTA- 3, Genomic DNA was extracted from the FSM-resistant Arabidopsis FOX line according to a conventional method, and PCR was performed using this as a template. PCR includes 5'-GGAAGTTCATTTATTCGGAGAG-3 '(SEQ ID NO: 1) and 5,-GGCAACAGGATTCAATCTTA-3,
(配列番号 2) のプライマーを用いた。 増幅産物のシークェンスを行い、 シーク エンスには、 5, -CCCCCCCCCCCCD-3' (配列番号 3、 Dは A、 Gまたは Tを示す) の プライマーを用いた。 その結果、 F SM耐性を示した 1 1ラインのうち 1ライン がホスミ ドマイシンの標的酵素遺伝子 DXR (1-deoxy-D- xylulose 5- phosphate reductoisomerase遺伝子、 シロイヌナズナ遺伝子番号 At5g62790、 核酸配列:配 列番号 4、 アミノ酸配列:配列番号 5) を過剰発現していることを確認した。 そ の他の 2ラインは、 F SMの標的となる未知の UGT (配糖化酵素) をコードす る遺伝子が過剰発現している可能性があると考えられた。 その他の 8ラインは再 現性試験で F SM耐性を示さなかったことから擬陽性のラインであつたと考えら れた。 The primer of (SEQ ID NO: 2) was used. The amplification product was sequenced, and a primer of 5, -CCCCCCCCCCCCD-3 '(SEQ ID NO: 3, D represents A, G or T) was used for the sequence. As a result, 1 line out of 11 lines that showed FSM resistance was the target enzyme gene DXR (1-deoxy-D-xylulose 5-phosphate reductoisomerase gene, Arabidopsis gene number At5g62790, nucleic acid sequence: SEQ ID NO: 4 The amino acid sequence: SEQ ID NO: 5) was confirmed to be overexpressed. In the other two lines, it was considered that the gene encoding an unknown UGT (glycosylation enzyme) that is the target of FSM may be overexpressed. The other 8 lines were considered to be false positive lines because they did not show FSM resistance in the reproducibility test.
〔実施例 3〕 ケミカルライブラリーからの新規白化剤の選抜およびその作用点 の探索 [Example 3] Selection of new whitening agent from chemical library and its action point Search for
本実施例では、 ケミカルライブラリーから新規な白化剤を選抜し、 選抜された 白化剤の標的候補タンパク質およびその遺伝子(作用点)を見出す実験を行った。 In this example, a new whitening agent was selected from a chemical library, and an experiment was conducted to find a target candidate protein of the selected whitening agent and its gene (action point).
(1)ケミカルライブラリーからの新規白化剤の選抜 (1) Selection of new whitening agents from chemical libraries
ケミカルライブラリー 1万化合物 (ChemBridge Corporation) から野生型シロ ィヌナズナを白化させる化合物の選抜を行なった。 C0STAR (登録商標) 96穴プ レート (シグマ一アルドリツチ社) に 1 0 Lの水、 1 n Lの化合物 (終濃度約 1 00 //M)、 1 0 0 μ Lの MS寒天培地を順次分注し、 これに野生型シロイヌナ ズナの種子を懸濁した 0. 1 %寒天溶液をそれぞれ 1 0粒程度ずつ入るように分 注した。 この植物を 22°C明所条件化で 1週間生育し、 野生型シロイヌナズナの 芽が白化したかどうかを観察した(図 2のパネル (1) )。 白化剤として 1 08化 合物を選抜した。 次に化学物質データベース (SciFinder) を用いて 1 08化合物 から機能未知かつ新規構造を有する 33化合物を選抜した。  A chemical library was selected from 10,000 compounds (ChemBridge Corporation) to whiten wild-type white plants. C0STAR (registered trademark) 96-well plate (Sigma Aldrich Co., Ltd.) 10 L of water, 1 nL of compound (final concentration approx. 1 00 // M), 100 μL of MS agar This was dispensed with about 10 grains each of 0.1% agar solution in which seeds of wild-type Arabidopsis thaliana were suspended. The plants were grown for 1 week under 22 ° C light conditions, and we observed whether the buds of wild-type Arabidopsis thaliana were whitened (panel (1) in Fig. 2). The 108 compound was selected as a whitening agent. Next, 33 compounds with unknown functions and new structures were selected from 108 compounds using the chemical substance database (SciFinder).
(2)シロイヌナズナ FOXラインをスクリ一ユングするための白化剤濃度の決定 3 3化合物の中から最も白化作用の強い P S C 1 (分子量 350.4、 図 2 ) を選 び、 野生型シロイヌナズナが P S C 1により明確な表現型 (白化) を示す濃度を 検討した。  (2) Arabidopsis Determination of whitening agent concentration for screening the FOX line 3 Select PSC 1 (molecular weight 350.4, Fig. 2) with the strongest whitening action from the three compounds, and wild type Arabidopsis thaliana Concentrations exhibiting a unique phenotype (whitening) were examined.
様々な濃度 (1〜 1 00 /χΜ) の P S C 1を含む寒天培地上で低温処理した野 生型シロイヌナズナの種子を播種し、 22°C明所条件下で 2週間生育させた。 そ の結果、 野生型シロイヌナズナを白化させるために必要な P S C 1の最低濃度は 20 μΜであり、 シロイヌナズナ FOXラインのスクリーニングはこの濃度で行 なうことに決定した。  Wild-type Arabidopsis seeds that had been cold-treated on agar media containing various concentrations (1-100 / χ 1) of P S C 1 were sown and grown under 22 ° C light conditions for 2 weeks. As a result, the minimum concentration of PSC1 required to whiten wild-type Arabidopsis thaliana was 20 μΜ, and it was decided to screen the Arabidopsis FOX line at this concentration.
(3)白化剤耐性シロイヌナズナ FOXラインのスクリ一二ング  (3) Whitening agent resistant Arabidopsis FOX line screening
FOXラインは 250ラインごとに分けてスクリーユングに用いた。 FOXラ インの種子 (T 2種子) は独立した 1万ラインから各 1 0粒ずつ分取し、 250 ラインごとに 1 5m lのコニカルチューブに分注した。 これに 5 m 1の P PM™ 溶液を加え、 喑所下、 4 °Cで一晚低温処理した。 低温処理後、 種子は滅菌水で 3 度洗浄し、 そこに 0. 1 %寒天溶液 (8m 1 ) を加えてボルテックスした。 滅菌 The FOX line was divided into 250 lines and used for screening. FOX line seeds (T 2 seeds) were sorted from 10,000 independent lines, 10 grains each, and dispensed into 15 ml conical tubes every 250 lines. To this, 5 ml of PPM ™ solution was added, and the mixture was processed at a low temperature at 4 ° C under a certain temperature. After low-temperature treatment, the seeds were washed three times with sterilized water, and 0.1% agar solution (8m 1) was added thereto and vortexed. Sterilization
2号角シャーレに P S C 1 ( 20 μ M) を含む 1 %スクロース入り L Β寒天培地 (4 OmL) を 40枚調製し、 その上に FOX種子を含んだ寒天溶液をそれぞれ 注いでプレート上に種子を均等に分散させた。 種子が固定されるまで表面を乾燥 させた後、 22 °C明所条件化で生育させ、 P S C 1に耐性のシロイヌナズナ FO Xライン (白化しなかったもの) をスクリーニングした (図 2のパネル (2))。 その結果、 3枚のプレートから独立した P S C 1耐性 FOXラインを各 3ライン 得た。 1 0日後、 P S C 1耐性 FOXラインを新しい 1 %スクロース入り L B寒 天プレートに移して生育した。 No. 2 petri dish containing 1% sucrose containing PSC 1 (20 μM) 40 pieces of (4 OmL) were prepared, and the agar solution containing FOX seeds was poured on each of them to disperse the seeds uniformly on the plate. After drying the surface until the seeds were fixed, they were grown under 22 ° C light conditions and screened for PSC 1-resistant Arabidopsis FO X line (not whitened) (Panel in Fig. 2 (2 )). As a result, three PSC 1 resistant FOX lines were obtained from each of the three plates. After 10 days, the PSC 1 resistant FOX line was transferred to a new 1% sucrose LB agar plate and grown.
(4) P S C 1耐性タンパク質をコードする遺伝子の同定  (4) Identification of gene encoding P S C 1 resistance protein
常法に従って P S C 1耐性 FOXラインからゲノム DNAを抽出し、 これをテ ンプレートとして PC Rを行った。 PCRには配列番号 1および配列番号 2のプ ライマーを用いた。 増幅産物のシークェンスを行い、 シークェンスには配列番号 3のプライマーを用いた。 その結果、 P S C 1耐性を示す独立の 4ライン全てが 共通の機能未知遺伝子 At5g61820 (核酸配列:配列番号 6、 アミノ酸配列:配列 番号 7) を過剰発現していたことから、 この遺伝子を P S C 1の標的候補タンパ ク質をコードする遺伝子として単離した。 産業上の利用可能性  Genomic DNA was extracted from the PSCl-resistant FOX line according to a conventional method, and PCR was performed using this as a template. The primers of SEQ ID NO: 1 and SEQ ID NO: 2 were used for PCR. The amplification product was sequenced, and the primer of SEQ ID NO: 3 was used for the sequence. As a result, all four independent lines showing PSC 1 resistance overexpressed the common function unknown gene At5g61820 (nucleic acid sequence: SEQ ID NO: 6, amino acid sequence: SEQ ID NO: 7). It was isolated as a gene encoding a target candidate protein. Industrial applicability
本発明によれば、 簡易かつ迅速に、 化合物の標的となるタンパク質および該タ ンパク質をコードする遺伝子を探索することができ、 本発明は、 化合物の作用機 序の解明、 生物に対する副作用の予知等に有用である。 また、 標的タンパク質お よびその遺伝子以外にも、 その化合物に対する耐性等に関与する様々な遺伝子の 獲得が期待され、 これらの遺伝子の過剰発現による化合物耐性植物などを作出す ることが可能になる。  According to the present invention, a target protein of a compound and a gene encoding the protein can be searched easily and quickly. The present invention elucidates the action mechanism of a compound and predicts side effects on organisms. Etc. are useful. In addition to the target protein and its gene, the acquisition of various genes involved in resistance to the compound is expected, and it becomes possible to create compound-resistant plants by overexpression of these genes.
本発明は、 化合物の誘導体もしくは前駆体などを含む様々な化合物、 機能等が 不明な化合物を試験対象にできるので、 コンビナトリァルケミストリー技術によ り合成された化合物群から、 医薬、農薬、化学遺伝学の研究等に適切な化合物(リ ード化合物) をスク リーニングする方法として適切である。 また、 ある生物 (例 えば微生物) に適用しても作用が見られなかった化合物を該微生物の完全長 c D In the present invention, various compounds including compound derivatives or precursors, and compounds with unknown functions can be tested. Therefore, from compounds synthesized by combinatorial chemistry technology, pharmaceuticals, agricultural chemicals, chemicals It is an appropriate method for screening compounds (lead compounds) suitable for genetic studies. In addition, a compound that does not show any action when applied to a certain organism (for example, a microorganism) is converted to the full length c D of the microorganism.
NAを過剰発現した植物に適用すると、 作用が見られる可能性があり、 この結果 を利用して該化合物を誘導体化することにより、 今まで見過ごされてきた化合物 を高活性化させて、 それを例えば殺微生物剤として用いることが可能になる。 本明細書で引用した全ての刊行物、 特許および特許出願をそのまま参考として 本明細書にとり入れるものとする。 When applied to plants overexpressing NA, the effect may be seen. By derivatizing the compound using the above, it becomes possible to increase the activity of the compound that has been overlooked so far and use it as a microbicide, for example. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims

請求の範囲 The scope of the claims
1. 以下の工程 (a) 〜 (d) ·· 1. The following steps (a) to (d)
(a) 完全長 c DNAのライブラリーを植物に導入し、 完全長 c DNA過剰発現 系統を作製する工程、  (a) introducing a full-length cDNA library into a plant to produce a full-length cDNA overexpression line;
(b) 過剰発現系統に野生型植物の表現型を変化させる化合物を適用する工程、 (b) applying a compound that changes the phenotype of a wild-type plant to an overexpression line,
(c) 野生型植物の変化した表現型とは異なる表現型を示した過剰発現系統を選 抜する工程、 および (c) selecting an overexpression line that exhibits a phenotype different from the altered phenotype of the wild-type plant; and
(d) 選抜された過剰発現系統に導入された完全長 c DNAを同定する工程 を含む、 化合物の標的となるタンパク質をコードする遺伝子を探索する方法。  (d) A method for searching for a gene encoding a protein targeted by a compound, comprising the step of identifying a full-length cDNA introduced into a selected overexpression line.
2. 以下の工程 (e) 〜 ( i ) :  2. The following steps (e) to (i):
(e) 野生型植物に化合物群を適用して、 野生型植物の表現型を変化させる化合 物を選抜する工程、  (e) applying a group of compounds to a wild-type plant to select a compound that changes the phenotype of the wild-type plant;
( f ) 完全長 c DNAのライブラリ一を植物に導入し、 完全長 c DNA過剰発現 系統を作製する工程、  (f) introducing a full-length cDNA library into a plant to produce a full-length cDNA overexpression line;
( g ) 過剰発現系統に野生型植物の表現型を変化させる化合物を適用する工程、 (g) applying a compound that changes the phenotype of a wild-type plant to an overexpression line;
(h) 野生型植物の変化した表現型とは異なる表現型を示した過剰発現系統を選 抜する工程、 および (h) selecting an overexpression line that exhibits a phenotype different from the altered phenotype of the wild-type plant; and
( i ) 選抜された過剰発現系統に導入された完全長 c DNAを同定する工程 を含む、 化合物の選抜と該化合物の標的となるタンパク質をコードする遺伝子を 探索する方法。  (i) A method for selecting a compound and searching for a gene encoding a target protein of the compound, comprising the step of identifying a full-length cDNA introduced into the selected overexpression line.
PCT/JP2009/059475 2008-05-21 2009-05-18 Method for searching for gene encoding protein targeted by compound WO2009142313A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-133148 2008-05-21
JP2008133148 2008-05-21

Publications (1)

Publication Number Publication Date
WO2009142313A1 true WO2009142313A1 (en) 2009-11-26

Family

ID=41340239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059475 WO2009142313A1 (en) 2008-05-21 2009-05-18 Method for searching for gene encoding protein targeted by compound

Country Status (1)

Country Link
WO (1) WO2009142313A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003018808A1 (en) * 2001-08-31 2003-03-06 Riken PLANT SYSTEM FOR COMPREHENSIVE GENE FUNCTION ANALYSIS WITH THE USE OF FULL-LENGTH cDNA
WO2008020645A1 (en) * 2006-08-14 2008-02-21 Riken Early-maturing transformed plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003018808A1 (en) * 2001-08-31 2003-03-06 Riken PLANT SYSTEM FOR COMPREHENSIVE GENE FUNCTION ANALYSIS WITH THE USE OF FULL-LENGTH cDNA
WO2008020645A1 (en) * 2006-08-14 2008-02-21 Riken Early-maturing transformed plant

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Proceedings of the Annual Meeting of the Japanese Society of Plant Physiologists", vol. 47TH, 2006, article NAOKI YOKOTANI ET AL.: "Koen Matawa Ko'on Stress Taisei o Shimesu Rice FOX Line no Senbatsu", pages: 331, 356 *
"Proceedings of the Annual Meeting of the Japanese Society of Plant Physiologists", vol. 49TH, 15 March 2008, article NAOKI YOKOTANI ET AL.: "Rice-Arabidopsis thaliana FOX Line Kara Erareta Koen Stress Taisei Line no Kaiseki", pages: 186 *
FUJITA, M. ET AL.: "Identification of stress- tolerance-related transcription-factor genes via mini-scale Full-length cDNA Over-eXpressor (FOX) gene hunting system", BIOCHEM BIOPHYS RES COMMUN, vol. 364, no. 2, 2007, pages 250 - 7 *
ICHIKAWA, T. ET AL.: "The FOX hunting system: an alternative gain-of-function gene hunting technique", PLANT J, vol. 48, no. 6, 2006, pages 974 - 85 *
KO AOKI ET AL.: "Biosource to Shiteno cDNA Full -katsuyo!! cDNA o Katsuyo shita Shokubutsu Kino Genomics", BIOTHECHNOLOGY JOURNAL, vol. 5, no. 5, 2005, pages 634 - 636 *
RODRIGUEZ-CONCEPCION, M. ET AL.: "Distinct light- mediated pathways regulate the biosynthesis and exchange of isoprenoid precursors during Arabidopsis seedling development", PLANT CELL, vol. 16, no. 1, 2004, pages 144 - 56 *
TAKASHI MORIMOTO ET AL.: "Arabidopsis thaliana ni Okeru Genomic DNA/cDNA Hatsugen Library no Sakusei to Screening", JAPANESE SOCIETY FOR CHEMICAL REGULATION OF PLANTS KENKYU HAPPYO KIROKUSHU, vol. 34TH, 1999, pages 148 - 149 *
TOSHIHIRO YOSHIHARA ET AL.: "Chapter 1 Kumikaetai o Mochiita Yuyo Idenshi no Daikibo Kino Kaimei to Kanren Gijutsu no Kaihatsu (8) Cadmium Taisei.Chikusekino ni Kanren shita Rice Idenshi no Tansaku to Kino Kaiseki(EF1008)", NORIN SUISANSHO NORIN SUISAN GIJUTSU KAIGI JIMUKYOKU KENKYU SEIKA, no. 455, 18 February 2008 (2008-02-18), pages 50 - 62 *

Similar Documents

Publication Publication Date Title
KR102594707B1 (en) Methods and compositions for improving plant traits
US8637735B2 (en) Method for improving stress resistance in plants and materials therefor
Ren et al. Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis
Skirycz et al. Developmental stage specificity and the role of mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress
JP2022095931A (en) Methods and compositions for improving plant traits
CN108697752B (en) Genetic regions and genes associated with increased yield in plants
Xiong et al. HOS5–a negative regulator of osmotic stress‐induced gene expression in Arabidopsis thaliana
Wang et al. Microtubule dynamics modulate sensing during cold acclimation in grapevine suspension cells
Ren et al. Overexpression of grape ABA receptor gene VaPYL4 enhances tolerance to multiple abiotic stresses in Arabidopsis
Liu et al. Heterologous expression of the transcription factor EsNAC1 in Arabidopsis enhances abiotic stress resistance and retards growth by regulating the expression of different target genes
Jang et al. Ectopic expression of Arabidopsis FD and FD PARALOGUE in rice results in dwarfism with size reduction of spikelets
Servet et al. Characterization of a phosphatase 2C protein as an interacting partner of the histone acetyltransferase GCN5 in Arabidopsis
Dangol et al. Characterizing serotonin biosynthesis in Setaria viridis leaves and its effect on aphids
Kwak et al. Diverse roles of glycine-rich RNA-binding protein 7 in the response of camelina (Camelina sativa) to abiotic stress
CN106191001B (en) Application of phospholipase PLD zeta 1 gene in improving salt tolerance of plants
EP2992756B1 (en) Onion with reduced pungency that does not generate lachrymatory component
Sosinski et al. Rosaceaous genome sequencing: perspectives and progress
WO2009142313A1 (en) Method for searching for gene encoding protein targeted by compound
JP4998809B2 (en) Polypeptides for improving plant iron deficiency tolerance and use thereof
Wang et al. Dihydrochalcone glycoside biosynthesis in Malus is regulated by two MYB‐like transcription factors and is required for seed development
Verma et al. An efficient hairy root system for genome editing of a β-ODAP pathway gene in Lathyrus sativus
Lee The mechanism of signal reception for the plant hormone strigolactone
Krishnamurthy et al. Regulation of CYP94B1 by WRKY33 controls apoplastic barrier formation in the roots leading to salt tolerance
WO2012126059A1 (en) Novel stock feed crop plant
Yang et al. Reciprocal inhibition of expression between RAV1 and BES1 modulates plant growth and development in Arabidopsis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09750675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP