WO2009142006A1 - ロボットの異常判定方法 - Google Patents

ロボットの異常判定方法 Download PDF

Info

Publication number
WO2009142006A1
WO2009142006A1 PCT/JP2009/002215 JP2009002215W WO2009142006A1 WO 2009142006 A1 WO2009142006 A1 WO 2009142006A1 JP 2009002215 W JP2009002215 W JP 2009002215W WO 2009142006 A1 WO2009142006 A1 WO 2009142006A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
average value
external force
motor output
output torque
Prior art date
Application number
PCT/JP2009/002215
Other languages
English (en)
French (fr)
Inventor
中田広之
衣笠靖啓
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US12/677,379 priority Critical patent/US9073213B2/en
Priority to CN200980118477.7A priority patent/CN102036789B/zh
Priority to JP2009529461A priority patent/JP5024383B2/ja
Priority to EP09750368.4A priority patent/EP2168728B1/en
Publication of WO2009142006A1 publication Critical patent/WO2009142006A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37344Torque, thrust, twist, machining force measurement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37525Mean, average values, statistical derived values
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41372Force estimator using disturbance estimator observer
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45104Lasrobot, welding robot

Definitions

  • the present invention relates to an abnormality determination method for a robot driven by a motor, particularly an articulated robot.
  • Patent Document 1 a method for detecting an abnormality of a robot by paying attention to fluctuations in the motor speed waveform caused by a failure is known (for example, see Patent Document 1). Also known is a method for detecting an abnormality of a robot by paying attention to the difference between the power on the driving side (motor output power) and the power on the load side (power obtained from the motion equation calculation of the robot) (for example, see Patent Document 2).
  • the former method of judging abnormality from the fluctuation of the velocity waveform has the following problems.
  • the first is that it is necessary to measure and store the velocity waveform data in a normal state as reference data in each robot.
  • the robot when performing abnormality determination, the robot must be operated with a reference operation pattern. Accordingly, since the motor speed waveform data during operation of the production line is different from the speed waveform data for determining abnormality, naturally, abnormality determination cannot be performed while the production line is operating. Further, even if there is a time during which the abnormality determination can be performed due to a production line stoppage or the like, it is necessary to operate with a reference operation pattern only to perform the abnormality determination. For this reason, the cost of the abnormality measurement work man-hour is generated. Further, it is practically difficult to perform the above two points only for determining the abnormality of the robot in a production site where the operation time of the production line is long and the cost is strict.
  • the latter method for determining an abnormality based on the difference in work rate solves the former problem, does not require measurement and storage of reference data, and can be determined even while the production line is in operation.
  • the power on the driving side can be calculated accurately
  • the power on the load side cannot always be calculated accurately. The reason for this is that if the parameters (mass, center of gravity, inertia, etc.) of the load (welding torch, handling tool, workpiece, etc.) attached to the robot by the user are not accurate, the work rate can be calculated using the robot's equation of motion. This is because an error occurs.
  • a load torque value is calculated by an equation of motion related to a mass point model of a robot mechanism unit including a mounting load, an angle, an angular velocity, and an angular acceleration, and multiplied by the angular velocity to obtain a load-side power.
  • the cause of the increase in the driving-side power is not only that the motor driving force increases due to an increase in friction due to a failure of the motor or speed reducer that drives the robot.
  • the motor driving force increases or decreases due to external force.
  • the motor driving force also increases to compensate for the increased friction energy.
  • it does not always change in the direction in which the driving-side power increases. For example, an increase in cable tension becomes a force that supports the gravity of the robot, and the power on the drive side may decrease. Even in such a case, the difference between the power on the driving side and the power on the load side increases, so that there is a possibility that it is determined to be abnormal for a cause other than the failure of the mechanism.
  • FIG. 11 is a diagram for explaining a case where the increase in cable tension described above becomes a force that supports the gravity of the robot, and shows a schematic configuration of a conventional welding robot system.
  • a welding wire 101 as a consumable electrode is sent from a wire spool 102 to a welding torch 104 through a hollow torch cable 111 (shown by a dotted line) by a wire feed motor 103.
  • the welding power source device 105 generates an arc 108 by applying a predetermined welding current I and welding voltage V between the welding wire 101 and the base material 107 as a workpiece to be welded via the welding torch 104 and the welding tip 106.
  • the welding power supply apparatus 105 performs welding construction by controlling the wire feed motor 103.
  • the robot 109 holds the welding torch 104, positions the welding torch 104 (not shown), and moves the welding torch 104 along a welding line (not shown). Such control of the entire robot is performed by the robot controller 110.
  • a user often installs a jig 112 for suspending the torch cable 111 from above for the purpose of ensuring feeding performance by maintaining the shape of the welding wire 101 and avoiding interference with surrounding objects.
  • the torch cable 111 moves as the robot 109 moves. Therefore, an elastic body such as a spring or rubber is often used for the jig 112.
  • a force pulling upward acts also on the welding torch 104 and the robot 109 holding the welding torch 104 via the torch cable 111, and becomes a force that supports the gravity of the robot 109.
  • the robot tip portion to which the welding torch 104 is attached is equipped with a motor having a small capacity, and such a change in the tension of the torch cable 111 cannot be ignored.
  • selection, attachment, and replacement of the jig 112 are performed by the user. Therefore, it may be erroneously determined that an abnormality has occurred by using the jig 112 or by attaching or replacing the jig 112.
  • JP 63-123105 A Japanese Patent Laid-Open No. 11-129186
  • the present invention does not require measurement and storage of reference data, can also determine whether the production line is operating, and erroneously determines that there is an abnormality even when an accurate load parameter is not input or an external force is received.
  • the present invention provides a method for determining an abnormality of a robot that reduces noise.
  • a motor output torque average value obtained from a predetermined N motor output torque average values which is an average value of N motor output torque values (N is a positive integer).
  • the motor output torque average value exceeds the first abnormality determination reference value
  • the external force torque estimation average value exceeds the second abnormality determination reference value. Determining.
  • FIG. 1 is a block diagram illustrating robot abnormality determination according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing details of the abnormality determination unit in FIG.
  • FIG. 3 is a flowchart showing an average calculation process within a unit time of the robot abnormality determination method according to the embodiment.
  • FIG. 4 is a flowchart showing an abnormality determination reference value setting process of the robot abnormality determination method according to the embodiment.
  • FIG. 5 is a first diagram illustrating an abnormality determination reference value setting process based on the motor output torque moving average value in the flowchart of FIG.
  • FIG. 6 is a second diagram illustrating the abnormality determination reference value setting process based on the motor output torque moving average value in the flowchart of FIG. FIG.
  • FIG. 7 is a diagram illustrating an abnormality determination reference value setting process based on the external force torque moving average value in the flowchart of FIG.
  • FIG. 8 is a flowchart showing the abnormality determination process of the robot abnormality determination method according to the embodiment.
  • FIG. 9 is a diagram illustrating an abnormality determination process based on the motor output torque moving average value in the flowchart of FIG.
  • FIG. 10 is a diagram for explaining an abnormality determination process based on the external force torque moving average value in the flowchart of FIG.
  • FIG. 11 is a block diagram showing a conventional welding robot system.
  • FIG. 1 is a block diagram for explaining a robot abnormality determination method according to an embodiment of the present invention, and shows a position control loop including robot abnormality determination.
  • FIG. 2 is a block diagram showing the abnormality determination in FIG.
  • FIG. 3 is a flowchart showing a unit time average value calculation process of the motor output torque value and the external force torque value in the robot abnormality determination method according to the embodiment.
  • FIG. 4 is a flowchart showing an abnormality determination reference value setting process based on the moving average value of the motor output torque value and the external force torque value in the robot abnormality determination method according to the embodiment.
  • the robot abnormality determination method described in the present embodiment can be applied to, for example, the same welding system configuration as shown in FIG. That is, the present embodiment is different from the conventional control method in the robot controller 110 in the welding system shown in FIG. Therefore, in this embodiment, the configuration of the welding system shown in FIG. 11 will be described as an example.
  • the position command ⁇ com is obtained based on the start point position and end point position specified by the user.
  • the position controller 6 performs proportional control (P control) with a position command ⁇ com and a motor angular velocity ⁇ m fed back from a motor / external force torque unit 18 described later as inputs, and outputs a speed command ⁇ com.
  • the speed controller 10 performs proportional / integral control (PI control) with the speed command ⁇ com and the fed-back motor angular speed ⁇ m as inputs, and generates a motor current command Im.
  • P control proportional control
  • PI control proportional / integral control
  • the position controller 6 calculates a position command ⁇ com (for example, a joint angle of a robot equipped with a torch) and a motor position ⁇ m obtained by integrating a feedback motor angular velocity ⁇ m (for example, an angular velocity of a robot angular axis).
  • a speed command ⁇ com is generated based on the difference value.
  • the speed control unit 10 generates a motor current command Im based on the difference value between the speed command ⁇ com and the fed back motor angular speed ⁇ m.
  • the motor / external force torque unit 18 includes a welding torch 104 and a motor that rotates the welding torch 104.
  • the motor / external force torque unit 18 generates a motor output torque value ⁇ m generated by the motor, an external force torque value ⁇ dis applied to the welding torch 104, and a moving friction torque value ⁇ . Based on these torque values, a motor angular speed ⁇ m for controlling the motor speed is output and fed back to the position control unit 6 and the speed control unit 10.
  • the motor / external force torque unit 18 is a load driven by the control system, and shows how the actual angular velocity ⁇ m changes depending on the motor output torque value ⁇ m generated by the motor current command Im.
  • the external force torque estimation unit 30 estimates the external force torque value ⁇ dis without a sensor. That is, the external force torque estimated value ⁇ diso that is an estimated value of the external force torque value ⁇ dis is output.
  • the dynamics calculation method is based on the robot's inverse dynamics calculation based on the reduction gear output torque value obtained by subtracting the torque value generated by the motor and reduction gear inertia and friction from the torque value generated by the motor drive current.
  • This is a method for obtaining an external force torque value by subtracting a dynamic torque value (see Non-Patent Document 1).
  • the disturbance estimation observer method is a method for obtaining a collision force using a disturbance estimation observer. In the present embodiment, the case where the former dynamic calculation method is used will be described as an example.
  • the motor output torque value ⁇ m is represented by (Equation 1-1) when viewed from the motor drive side, and (Equation 1-1) when viewed from the load side. 2).
  • Equation 2 K ⁇ ⁇ sgn (Equation 2)
  • the external force torque value ⁇ dis on the right side of (Equation 1-2) can be obtained by transforming (Equation 3) shown below from (Equation 1-1) and (Equation 1-2).
  • Kt ⁇ Im ⁇ Jm ⁇ ⁇ m + D ⁇ ⁇ m + K ⁇ ⁇ sgn + ⁇ dyn Kt ⁇ Im ⁇ (Jm ⁇ ⁇ m + D ⁇ ⁇ m + K ⁇ ⁇ sgn + ⁇ dyn) (Equation 3)
  • Kt ⁇ Im ⁇ Jm ⁇ ⁇ m ⁇ D ⁇ ⁇ m ⁇ K ⁇ ⁇ sgn is a torque value output from the motor to the reduction gear.
  • the external force torque estimation unit 30 is shown as a block that performs the calculation of (Equation 3).
  • the dynamic torque estimation value ⁇ dyno is subjected to reverse dynamics calculation in the dynamic torque calculation unit 26 using the feedback of the motor angular velocity ⁇ m of all axes constituting the robot and the machine parameters of the robot. Is required. Further, the motor output torque estimated value ⁇ mo is calculated by (Equation 1-1) using the motor current command Im. The external force torque estimating unit 30 obtains the external force torque estimated value ⁇ diso from (Equation 3) using the dynamic torque estimated value ⁇ dyno and the motor output torque estimated value ⁇ mo. As a result, the external force torque estimated value ⁇ diso and the motor output torque estimated value ⁇ mo are output to the abnormality determining device 32.
  • FIG. 2 is a block diagram showing details of the abnormality determination device 32 in FIG. The operation of the abnormality determination device 32 will be described with reference to FIG.
  • unit time is defined as an interval for performing abnormality determination. This unit time is, for example, one hour. Also, it means the time during which the robot is operating, excluding the time when the robot is stopped.
  • the motor output torque average value ⁇ mA and the external force torque average which are unit time average values of the absolute values of the motor output torque estimated value ⁇ mo and the external force torque estimated value ⁇ diso output from the external force torque estimation unit 30, respectively.
  • the value ⁇ dA is calculated.
  • This calculation method is shown in the flowchart of FIG. The process of FIG. 3 is performed for each calculation cycle of the motor output torque estimated value ⁇ mo and the external force torque estimated value ⁇ diso.
  • step S301 it is determined whether or not the angular velocity ⁇ mMAX having the maximum absolute value among the axial angular velocity ⁇ m and the other-axis angular velocity ⁇ m is larger than a predetermined angular velocity threshold ⁇ mth for determining execution of the averaging process (step). S301). In step S301, if the maximum angular velocity ⁇ mMAX is greater than the angular velocity threshold ⁇ mth (Y in step S301), the process proceeds to step S302. Otherwise (N in step S301), the process ends.
  • the reason for setting the condition of step S301 is that when the robot is stopped due to a user's stop operation or waiting for sensor signal input, the stop time is uncertain. This is because the values vary.
  • the robot operation may be determined when an operation command is executed in the robot program or when a position command is generated.
  • step S302 the integrated value ⁇ mS of the absolute value
  • step S303 it is determined whether the integration number i has reached a predetermined average number num. In step S303, if the cumulative number i has reached the average number num (Y in step S303), the process proceeds to step S304, and if not reached (N in step S303), the process is terminated.
  • step S304 the respective integrated values ⁇ mS, ⁇ dS are divided by the average number num, and the motor output torque average value ⁇ mA and the external force torque average value ⁇ dA, which are unit time average values of the robot operation, are calculated.
  • the motor output torque average value ⁇ mA and the external force torque average value ⁇ dA which are the unit time average values (for example, the average value for one hour), are stored in the data storage unit 36.
  • the motor output torque average value ⁇ mA for the jth unit time (for example, the jth time if the unit time is 1 hour) is defined as ⁇ mA [j].
  • N is a positive integer
  • the current moving averages ⁇ mAA [x] and ⁇ dAA [x] of the N pieces of data accumulated in the data accumulating unit 36 are converted into the motor output torque average value for the unit time x times and the unit time xth time.
  • the motor output torque abnormality determination reference value ⁇ mth (first abnormality determination value) and the external force torque abnormality determination reference value ⁇ dth (second second) shown in FIG. (Abnormality determination value) is determined, and “1” is set to the abnormality determination reference value set flag fth.
  • step S401 it is determined whether or not the abnormality determination reference value set flag fth is “0”. If the abnormality determination reference value set flag fth is “0” in step S401 (Y in step S401), the process proceeds to step S402 because the abnormality determination reference value is not set. If the abnormality determination reference value set flag fth is “1” in step S401 (N in step S401), the processing ends because the abnormality determination reference value has already been set.
  • step S402 it is determined whether the absolute value of the difference between the average value ⁇ mA [x ⁇ k] of the motor output torque value and the moving average value ⁇ mAA [x] is smaller than a threshold value ⁇ mth1 for determining the unit time average variation.
  • a threshold value ⁇ mth1 for determining the unit time average variation.
  • the motor generated torque abnormality determination reference value ⁇ mh is not determined until the load factor becomes stable and constant.
  • this value may be set to an appropriate value from the actual usage situation.
  • step S403 “1” is added to the operation step number k.
  • step S404 it is determined whether or not the calculation step number k has reached the variation determination number NN times. If the number k of calculation steps has reached NN in step S403 (Y in step S403), it is determined that the control system is stable, and the process proceeds to step S405. However, if the number of calculation steps k has not reached NN times (N in step S403), it is determined that the control system is not yet stable, and the process returns to step S402.
  • step S405 the motor output torque abnormality determination reference value ⁇ mh is calculated based on the moving average value ⁇ mAA [x] when the NN motor output torque average values ⁇ mA [x] are within a certain variation range. Further, the external force torque abnormality determination reference value ⁇ dth at this time is calculated, the abnormality determination reference value set flag fth is set to “1”, and the process is ended.
  • the motor output torque abnormality determination reference value ⁇ mh is calculated by adding an addition value ⁇ mth2 (first predetermined value) for setting the motor output torque abnormality reference value to the moving average value ⁇ mAA [x].
  • the external force torque abnormality determination reference value ⁇ dth at this time is calculated by adding an addition value ⁇ dth2 (second predetermined value) for setting the external force torque abnormality determination reference value to the moving average value ⁇ dAA [x].
  • the addition value ⁇ mth2 for setting the motor output torque abnormality reference value and the addition value ⁇ dth2 for setting the external force torque abnormality determination reference value are values that can be determined in advance by, for example, experiments.
  • the maximum motor torque is 8%.
  • it is 5%. The smaller this value, the higher the sensitivity of abnormality determination, but the greater the possibility of erroneous determination. Therefore, this value may be set to an appropriate value from the actual usage situation.
  • FIG. 5 is a first diagram for explaining the abnormality determination reference value setting process based on the motor output torque moving average value in the flowchart of FIG. 4.
  • the horizontal axis represents the unit time processing count x (for example, x time if the unit time is 1 hour).
  • the vertical axis represents the ratio of the motor output torque average value ⁇ mA to the motor torque maximum value.
  • ratio of motor output torque ⁇ mA or the like is simply used below without using the expression “ratio”.
  • the moving average ⁇ mA [1] to ⁇ mA [24] has data outside the range of ⁇ ⁇ mth1 with respect to the moving average ⁇ mAA [24]. Therefore, the conditional expression in step S402 in FIG. 4 is not satisfied, and the motor output torque abnormality determination reference value ⁇ mth in step S405 is not calculated.
  • all 24 motor output torque average values ⁇ mA [14] to ⁇ mA [37] (corresponding to NN) are ⁇ ⁇ mth1 based on the 37th moving average value ⁇ mAA [37] of 24 unit times. Therefore, the conditional expression in step S402 of FIG. 4 is satisfied. Accordingly, the motor output torque abnormality determination reference value ⁇ mth is calculated in step S405, and 1 is set to the abnormality determination reference value set flag fth.
  • the motor output torque abnormality determination reference value ⁇ mth is added with an addition value ⁇ mth2 for setting a motor output torque abnormality determination threshold value based on the moving average value ⁇ mAA [37] of the 24th unit time and 37th time. It is calculated by.
  • the external force torque abnormality determination reference value ⁇ dth is obtained by adding an addition value ⁇ dth2 for setting the external force torque abnormality determination threshold value with the moving average value ⁇ dAA [37] of the 24th unit time and 37th time as a reference value. Calculated.
  • the motor output torque average value ⁇ mAA when the difference between the motor output torque value ⁇ mA and the motor output torque average value ⁇ mAA is smaller than a predetermined value ⁇ mth1 is calculated as the motor output torque.
  • a predetermined value ⁇ mth1 is calculated as the motor output torque.
  • the external force torque estimated average value ⁇ dAA at this time is set as the reference value ⁇ dAA of the external force torque estimated average value.
  • the motor output torque abnormality determination reference value ⁇ mth and the external force torque abnormality determination reference value ⁇ dth are calculated when the variation in the average value ⁇ mA of the motor output torque values becomes smaller in the condition determination in step S402 of FIG. Is done. That is, when the usage status of the robot has settled, the calculation is automatically performed according to the robot operation pattern based on the program stored in advance. Therefore, it is not necessary to measure reference data in advance, and it is not necessary to operate the robot with a reference operation pattern.
  • step S801 in FIG. 8 it is confirmed whether or not 1 is set to the abnormality determination reference value set flag fth.
  • step S801 if 1 is set to the abnormality determination reference value set flag fth (Y in step S801), the process proceeds to step S802, and otherwise (N in step S801), the process ends.
  • step S802 it is determined whether or not the moving average value ⁇ mAA [x] of the motor output torque value is greater than the motor output torque abnormality determination reference value ⁇ mth. If the moving average value ⁇ mAA [x] of the motor output torque value is greater than the motor output torque abnormality determination reference value ⁇ mth in step S802 (Y in step S802), the process proceeds to step S803, and otherwise (N in step S802) is processed. Exit.
  • step S803 it is determined whether or not the moving average value ⁇ dAA [x] of the external force torque value is larger than the external force torque abnormality determination reference value ⁇ dth. If the moving average value ⁇ dAA [x] of the external force torque value is larger than the external force torque abnormality determination reference value ⁇ dth in step S803 (Y in step S803), the process proceeds to step S804, otherwise (N in step S803) is step S805. Proceed to
  • step S804 “1” is set to the abnormality determination flag fL, and the process ends.
  • step S805 “0” is set to the abnormality determination reference value set flag fth, and the processing (flow chart in FIG. 4) in the abnormality determination reference value setting unit 38 is resumed.
  • the motor output torque abnormality determination reference value ⁇ mth is exceeded, and the condition of step S802 is satisfied.
  • the moving average value ⁇ dAA [120] of the external force torque value exceeds the external force torque abnormality determination reference value ⁇ dth, and the condition of step S803 is satisfied.
  • step S804 “1” is set to the abnormality determination flag fL, and abnormality warning processing is performed by the abnormality warning display unit 34 of FIG.
  • both the moving average value ⁇ mAA of the motor output torque value and the rising of the moving average value ⁇ dAA of the external force torque value are determined in steps S802 and S803 is that the moving average value ⁇ dAA of the external force torque value is Even if it rises, the moving average value ⁇ mAA of the motor output torque value may decrease, and this is to avoid erroneous determination in such a case. For example, this is the case when an increase in cable tension becomes a force that supports the gravity of the robot.
  • the moving average value ⁇ dAA of the external force torque value may not increase.
  • the motor output torque average value ⁇ mAA may increase.
  • the external force torque average value ⁇ dAA does not increase in particular, so that the external force torque average value ⁇ dAA does not increase when the parameters of the mounting load are correctly input.
  • Equation 3 the estimated external force torque value ⁇ dis calculated in (Equation 3) causes an error in the calculation of the dynamic torque value ⁇ dyn if there is an error in the parameters of the mounted load. It will not be “0”. If the dynamic torque value including the error is ⁇ dyn_err and this estimation error is ⁇ dis, Equation 5 is established.
  • the operating angle of the robot for use is limited and is about ⁇ 360 degrees at most, so the motor that drives it does not continue to rotate in only one direction.
  • the maximum difference between the rotation angle in the + direction and the rotation angle in the-direction is 720 degrees. For example, if the unit time for abnormality determination is set to 1 hour, the total rotation angle often exceeds tens of thousands of degrees, so the rotation angle in the + direction and the rotation angle in the-direction are considered to be almost the same. Good.
  • the unit time average ⁇ dA of the estimated external force torque can be calculated by (Equation 9) since the average of ⁇ dA [+] and ⁇ dA [ ⁇ ] may be taken.
  • step S803 when an accurate load parameter is not input, even if the friction actually increases due to a failure, the friction torque value increase ⁇ A is less than the error ⁇ dA caused by the parameter error. There may be a case where the condition of step S803 is not satisfied. Therefore, in this case, the process (flow chart in FIG. 4) in the abnormality determination reference value setting unit 38 is restarted, and the abnormality determination threshold ⁇ dth is reset. However, when the friction torque value increase ⁇ A further increases and exceeds the error ⁇ dA caused by the parameter error, the friction torque value increase ⁇ A is correctly reflected in the estimated external force torque value ⁇ dA. Therefore, step S803 is correctly determined. The probability of misjudgment can be reduced by the above contents.
  • an external force torque estimated average value ⁇ dAA that is an average value of N external force torque estimated values ⁇ dA is a reference value ⁇ dAA of an external force torque estimated average value obtained from predetermined N external force torque estimated average values ⁇ dA.
  • the motor output torque average value ⁇ mAA which is an average value of N motor output torque values ⁇ mA, is changed to a reference value ⁇ mAA of the motor output torque average value obtained from the predetermined N motor output torque average values ⁇ mA.
  • the external force torque estimated average value ⁇ dAA when the difference between the N external force torque estimated values ⁇ dA and the external force torque estimated average value ⁇ dAA is smaller than a predetermined value ⁇ mth1 is used as the reference value ⁇ dAA of the external force torque estimated average value.
  • the motor output torque average value ⁇ mAA at this time is set as a reference value ⁇ mAA for the motor output torque average value.
  • processing in the abnormality determination reference value setting unit 38 (flowchart in FIG. 4). May be restarted, the process for obtaining the motor output torque abnormality determination reference value ⁇ mth and the external force torque abnormality determination reference value ⁇ dth is performed again, and the abnormality determination process may be performed using these as new reference values.
  • the motor output torque abnormality determination value is calculated by adding the addition value ⁇ mth2 for setting the motor output torque abnormality determination value to the N moving average values ⁇ mAA of the absolute value of the motor output torque value. Then, an example is shown in which an abnormality is determined by determining whether or not the N moving average values ⁇ mAA of the absolute values of the subsequent motor output torque values exceed the motor output torque abnormality determination value.
  • the abnormality may be determined by determining whether or not the difference between the motor output torque moving average value and the reference value of the motor output torque moving average value exceeds a predetermined value. Note that the predetermined value can be determined in advance, for example, through experiments.
  • the external force torque abnormality determination value is calculated by adding the addition value ⁇ dth2 for setting the external force torque abnormality determination value to the N moving average values ⁇ dAA of the absolute value of the external force torque value.
  • An example in which an abnormality is determined by determining whether or not the N moving average values ⁇ dAA of the absolute values of the external force torque values exceed the external force torque abnormality determination value is shown.
  • the abnormality may be determined by determining whether or not the difference between the external force torque moving average value and the reference value of the external force torque moving average value exceeds a predetermined value.
  • the predetermined value can be determined in advance, for example, through experiments.
  • the motor output torque average value (moving average value) ⁇ mAA is calculated from the N other average values ⁇ mA. Asked.
  • the motor output torque average value (moving average value) ⁇ mAA can be obtained from the motor output torque value ⁇ mo without obtaining the other average value ⁇ mA. The same applies to the case of obtaining the estimated external force torque average value ⁇ dAA.
  • an abnormality is determined for any one motor.
  • abnormality determination may be performed for all the motors by the same method as in the present embodiment. Or you may perform abnormality determination about a specific motor.
  • a servo motor is used in the robot according to the present embodiment, and abnormality determination of the servo motor is performed.
  • the present invention does not require measurement and storage of reference data, can also determine whether the production line is operating, and can reduce the probability of erroneous determination even when an accurate load parameter is not input or when external force is applied. Therefore, it is useful as an abnormality determination method for a robot in operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

モータ出力トルク値τmAのN個分(Nは正の整数)の平均値であるモータ出力トルク平均値τmAAが、第1の異常判定基準値τmthを超え、外力トルク推定値τdAのN個分の平均値である外力トルク推定平均値τdAAが、第2の異常判定基準値τdthを超えた場合に異常と判定することにより、基準データの測定、記憶を必要とせず、生産ライン稼働中の異常判定も可能である。

Description

ロボットの異常判定方法
 本発明は、モータにより駆動されるロボット、特に、多関節型ロボットの異常判定方法に関するものである。
 近年、生産リードタイム短縮の要求が高まっている。しかし、溶接やハンドリング等に用いられる垂直あるいは水平の多関節型ロボットにおいて、ロボットを駆動するモータや減速機等の機構部品に故障が生じて交換が必要となった場合、交換のために生産を数時間にわたって停止しなければならず、大きな問題となっている。
 ロボットを駆動するモータや減速機等に故障が生じた場合、摩擦力が上昇してモータ駆動力が増加する場合が大半である。そこで、ロボットが完全に動作不能になるまでにモータ駆動力の異常状態を知ることができれば、休日や夜間等の生産ライン休止中にモータ等の機構部品を交換することが可能となり、生産に与える影響を減じることができる。
 そこで、故障に起因して発生するモータの速度波形の変動に着目してロボットの異常を検出する方法が知られている(例えば、特許文献1参照)。また、駆動側の仕事率(モータ出力仕事率)と負荷側の仕事率(ロボットの運動方程式演算から得られる仕事率)の差に着目してロボットの異常を検出する方法も知られている(例えば、特許文献2参照)。
 前者の速度波形の変動から異常を判定する方法では、次に挙げる問題点がある。1つ目は、個々のロボットで正常状態における速度波形データを基準データとして測定しておき、かつ、記憶しておく必要がある点である。2つ目は、異常判定を行う場合、基準となる動作パターンでロボットを動作させなければならない点である。従って、生産ライン稼働時のモータ速度波形データは異常判定のための速度波形データとは異なるので、当然、生産ラインの稼働中には異常判定を行うことができない。また、例え生産ライン休止等で異常判定を実施できる時間があるとしても、異常判定を行うためだけに基準となる動作パーンで動作させなければならない。そのため、異常測定作業工数のコストが発生する。また、生産ラインの稼動時間が長くコストに厳しい生産現場において、ロボットの異常判定を行うためだけに上記2つの点を行うことは現実的には非常に困難である。
 また、後者の仕事率の差による異常判定方法では、前者の問題点が解決され、基準データの測定や記憶も必要なく、生産ライン稼働中でも判定が可能である。しかしながら、駆動側の仕事率は正確に計算できても、負荷側の仕事率が正確に計算できるとは限らない。その理由は、ユーザによりロボットに装着される負荷(溶接用トーチやハンドリングツールやワーク等)のパラメータ(質量、重心位置、イナーシャ等)が正確でなければ、ロボットの運動方程式による仕事率の計算に誤差が発生するからである。特許文献2では、装着負荷を含むロボット機構部の質点モデルに関する運動方程式と、角度、角速度、及び角加速度により負荷トルク値を算出し、それに角速度を乗じることで負荷側の仕事率を求めている。
 近年の産業用ロボットでは、加減速の最適化や衝突検出の高精度化にも正確な負荷パラメータが要求されている。従って、負荷パラメータの入力装置や自動測定機能を備えたロボットも多く見られる。しかしながら、負荷パラメータの入力や自動測定機能の使用を実行するか否かはユーザに任せられており、必ずしも正確な負荷パラメータが入力されているとは限らない。もし、負荷の設定パラメータと実パラメータとの間に大きな差があると、負荷側の仕事率には大きな誤差が生じてしまい、異常と誤判定する可能性がでてくる。
 また、駆動側の仕事率が増加する原因としては、ロボットを駆動するモータや減速機等の故障による摩擦上昇でモータ駆動力が増加することだけではない。ロボットが他の物と接触した場合や、ロボットに装着されたケーブルに張力が加わる場合等、外力を受けてモータ駆動力が増減することも原因となる。ただし、前者の摩擦が上昇する場合は、増えた摩擦エネルギーを補うためにモータ駆動力も増加する。しかし、後者の外力を受ける場合は駆動側の仕事率が増加する方向に変化するとは限らない。例えば、ケーブルの張力増加がロボットの重力を支える力になり、駆動側の仕事率が減少する可能性がある。このような場合でも駆動側の仕事率と負荷側の仕事率の差は拡大するので、機構の故障以外の原因でも異常と判定してしまう可能性がある。
 図11は上述したケーブルの張力増加がロボットの重力を支える力になる場合を説明するための図であり、従来の溶接ロボットシステムの概略構成を示している。
 図11において、消耗電極である溶接ワイヤ101は、ワイヤ送給モータ103により、ワイヤースプール102から中空構造のトーチケーブル111(点線で示している)を通って溶接トーチ104のへ送られる。溶接電源装置105は、溶接トーチ104および溶接チップ106を経由して溶接ワイヤ101と被溶接物である母材107との間に所定の溶接電流I及び溶接電圧Vを印加してアーク108を発生させる。また、溶接電源装置105は、ワイヤ送給モータ103の制御を行って溶接施工を行う。ロボット109は、溶接トーチ104を保持し、溶接開始位置(図示せず)に位置決めを行うと共に溶接線(図示せず)に沿って溶接トーチ104を移動させる。このようなロボット全体の制御は、ロボット制御装置110により行われる。
 このとき、例えばユーザが溶接ワイヤ101の形状維持による送給性能確保や周辺物との干渉回避を目的として、トーチケーブル111を上方から吊すための治具112を設置することが良く行われる。なお、ロボット109の動作に伴いトーチケーブル111も移動する。従って、治具112には、ばねやゴムなどの弾性体が用いられることが多い。このため、トーチケーブル111を介して、溶接トーチ104およびそれを保持するロボット109にも上方へ引っ張る力が働き、ロボット109の重力を支える力となる。特に、溶接トーチ104が装着されるロボット先端部は、容量の小さなモータが搭載されるので、このようなトーチケーブル111の張力変化は無視できないものとなる。また、このような治具112の選定や取り付けや交換はユーザによって行われる。したがって、治具112を用いることによって、あるいは治具112の取り付けや交換によって、異常が発生したと誤判定してしまう可能性がある。
特開昭63-123105号公報 特開平11-129186号公報
マニピュレータの動的衝突検出、小菅一弘、他1名、日本機械学会[No.99-9]ロボティクス・メカトロニクス講演会’99講演論文集2A1-11-030
 本発明は、基準データの測定、記憶が必要なく、生産ライン稼働中の判定も可能であり、正確な負荷パラメータが入力されていない場合や外力を受けた場合でも異常と誤判定してしまうことを低減するロボットの異常判定方法を提供するものである。
 本発明は、モータ出力トルク値のN個分(Nは正の整数)の平均値であるモータ出力トルク平均値が、所定のN個分のモータ出力トルク平均値から得たモータ出力トルク平均値の基準値に、第1の所定値を加えた第1の異常判定基準値を超えるか否かを、ロボットの動作中に判定するステップと、外力トルク推定値のN個分の平均値である外力トルク推定平均値が、所定のN個分の外力トルク推定平均値から得た外力トルク推定平均値の基準値に、第2の所定値を加えた第2の異常判定基準値を超えるか否かをロボットの動作中に判定するステップと、モータ出力トルク平均値が第1の異常判定基準値を超え、かつ、外力トルク推定平均値が第2の異常判定基準値を超えた場合に異常と判定するステップとを備えている。
 かかる構成によれば、基準データの測定、記憶を必要とせず、生産ライン稼働中の判定も可能である。また、正確な負荷パラメータが入力されていない場合や外力を受けた場合でも、異常と誤判定してしまうことを低減することができる。
図1は、本発明の一実施の形態におけるロボット異常判定を説明するブロック図である。 図2は、図1における異常判定部の詳細を示すブロック図である。 図3は、同実施の形態におけるロボットの異常判定方法の単位時間内平均演算処理を示すフローチャートである。 図4は、同実施の形態におけるロボットの異常判定方法の異常判定基準値設定処理を示すフローチャートである。 図5は、図4のフローチャートにおけるモータ出力トルク移動平均値に基づく異常判定基準値設定課程を説明する第1の図である。 図6は、図4のフローチャートにおけるモータ出力トルク移動平均値に基づく異常判定基準値設定課程を説明する第2の図である。 図7は、図4のフローチャートにおける外力トルク移動平均値に基づく異常判定基準値設定課程を説明する図である。 図8は、同実施の形態におけるロボットの異常判定方法の異常判定処理を示すフローチャートである。 図9は、図8のフローチャートにおけるモータ出力トルク移動平均値に基づく異常判定課程を説明する図である。 図10は、図8のフローチャートにおける外力トルク移動平均値に基づく異常判定課程を説明する図である。 図11は、従来の溶接ロボットシステムを示す構成図である。
 以下、本発明を図面を用いて説明する。なお、本発明はこれに限られるものではない。
 (実施の形態)
 図1は、本発明の一実施の形態におけるロボットの異常判定方法を説明するブロック図であって、ロボット異常判定を含む位置制御ループを示している。図2は、図1における異常判定を示すブロック図である。図3は、同実施の形態におけるロボットの異常判定方法の、モータ出力トルク値および外力トルク値の単位時間内平均値演算処理を示すフローチャートである。図4は、同実施の形態におけるロボットの異常判定方法の、モータ出力トルク値および外力トルク値の移動平均値に基づく異常判定基準値設定処理を示すフローチャートである。
 なお、本実施の形態で説明するロボットの異常判定方法は、例えば、図11に示す従来と同様の溶接システムの構成に適用できる。すなわち、本実施の形態は、図11に示す溶接システムにおけるロボット制御装置110での制御方法が従来とは異なる。したがって、本実施の形態では、図11に示す溶接システムの構成を例として説明する。
 図1において、位置指令θcomは、ユーザにより指示された始点位置および終点位置に基づいて得られる。位置制御部6は、位置指令θcomと、後述するモータ/外力トルク部18からフィードバックされたモータ角速度ωmとを入力として比例制御(P制御)を行い、速度指令ωcomを出力する。速度制御部10は、速度指令ωcomと、フィードバックされたモータ角速度ωmを入力として比例・積分制御(PI制御)を行い、モータ電流指令Imを生成する。
 以下、図1に示すブロック図の動作を詳細に説明する。図1において、位置制御部6は、位置指令θcom(例えば、トーチを搭載したロボットの関節角)と、フィードバックされたモータ角速度ωm(例えば、ロボット角軸の角速度)を積分したモータ位置θmとの差分値に基づいて、速度指令ωcomを生成する。
 速度制御部10は、速度指令ωcomと、フィードバックされたモータ角速度ωmの差分値に基づいてモータ電流指令Imを生成する。
 モータ/外力トルク部18は、溶接トーチ104と溶接トーチ104を回転させるモータとを含む。モータ/外力トルク部18では、モータで発生するモータ出力トルク値τmや、溶接トーチ104に加わる外力トルク値τdisや、移動摩擦トルク値τμが発生する。これらのトルク値に基づいて、モータ速度を制御するモータ角速度ωmを出力し、位置制御部6および速度制御部10にフィードバックする。モータ/外力トルク部18は、制御系が駆動する負荷であって、モータ電流指令Imにより発生するモータ出力トルク値τmによって、実際の角速度ωmがどのように変化するかを示したものである。
 外力トルク推定部30は、外力トルク値τdisをセンサレスで推定する。すなわち、外力トルク値τdisの推定値である外力トルク推定値τdisoを出力する。
 ところで、外力トルク値をセンサレスで推定する方法としては、動力学演算方式や外乱推定オブザーバ方式が知られている。動力学演算方式は、モータの駆動電流で発生したトルク値からモータ及び減速機のイナーシャと摩擦で損失するトルク値を差し引いた減速機出力トルク値より、ロボットの逆動力学演算から求めたロボットの動力学トルク値を差し引いて外力トルク値を求める方式である(非特許文献1参照)。外乱推定オブザーバ方式は、外乱推定オブザーバを用いて衝突力を求める方式である。本実施の形態では、前者の動力学演算方式を用いた場合を例にして説明する。
 図1において、モータ出力トルク値τmは、減速機が剛体であると仮定すると、モータ駆動側から見た場合は(数1-1)で示され、負荷側から見た場合は(数1-2)で示される。
 τm=Kt×Im   (数1-1)
 τm=τdyn+τdis+Jm×αm+D×ωm+τμ   (数1-2)
 Kt:モータトルク定数
 Im:モータ電流
 ωm:モータ角速度
 αm:モータ角加速度(モータ角速度ωmの微分値)
 Jm:モータイナーシャ(ロータ+減速機1次側)
 D:粘性摩擦係数
 τμ:動摩擦トルク値
 τdyn:動力学トルク値(重力トルク値と慣性力と遠心力とコリオリ力の和)
 τdis:外力トルク値
 また、動摩擦トルク値τμは、以下に示す(数2)で計算できる。
 τμ=Kμ×sgn   (数2)
 Kμ:動摩擦の大きさ
 sgn=1(ωm>0)、0(ωm=0)、-1(ωm<0)
 また、(数1-2)の右辺にある外力トルク値τdisは、(数1-1)と(数1-2)より、以下に示す(数3)に変形して求めることが出来る。
 τdis=Kt×Im-(Jm×αm+D×ωm+Kμ×sgn+τdyn)   (数3)
 なお、(数3)において、Kt×Im-Jm×αm-D×ωm-Kμ×sgnはモータが減速機に出力するトルク値である。
 図1において、外力トルク推定部30は、(数3)の演算を行うブロックとして示している。
 外力トルク推定部30において、動力学トルク推定値τdynoは、動力学トルク演算部26において、ロボットを構成する全軸のモータ角速度ωmのフィードバックとロボットの機械パラメータを用いて逆動力学演算を実行することで求められる。また、モータ出力トルク推定値τmoは、モータ電流指令Imを用いて(数1-1)で計算される。外力トルク推定部30は、動力学トルク推定値τdynoとモータ出力トルク推定値τmoを用いて、(数3)から外力トルク推定値τdisoを求める。その結果、外力トルク推定値τdisoとモータ出力トルク推定値τmoを異常判定装置32へ出力する。
 図2は、図1における異常判定装置32の詳細を示すブロック図である。図2を用いて、異常判定装置32の動作を説明する。なお、以下の説明において、単位時間とは異常判定を行う間隔と定義する。この単位時間は、例えば1時間等である。また、ロボットが停止している時間は除き、稼動している時間をいう。
 単位時間平均部35では、外力トルク推定部30から出力されたモータ出力トルク推定値τmoおよび外力トルク推定値τdisoのそれぞれの絶対値の単位時間平均値であるモータ出力トルク平均値τmAおよび外力トルク平均値τdAを算出する。
 この算出方法を図3のフローチャートに示す。図3の処理はモータ出力トルク推定値τmoおよび外力トルク推定値τdisoの演算周期毎に実施する。
 図3において、まず、当該軸角速度ωmおよび他軸角速度ωmの中で絶対値が最大の角速度ωmMAXが、平均処理の実行を判定する予め定められた角速度閾値ωmthより大きいかどうかを判定する(ステップS301)。ステップS301で、最大角速度ωmMAXが角速度閾値ωmthより大きい場合に(ステップS301のY)ステップS302に進み、それ以外(ステップS301のN)では処理を終了させる。なお、ステップS301の条件を設ける理由は、ロボットがユーザによる停止操作やセンサ信号入力待ち等で停止している場合、その停止時間は不確定であり、その状態も含めて単位時間平均すると、平均値にバラツキが生じるからである。また、ここでは、モータ角速度を監視する例を挙げたが、ロボットが動作していることが確認できれば、他の方法を用いても良い。例えばロボットプログラム内で動作命令が実行されている時、位置指令が生成されている時等でロボット動作の判定をしても良い。
 ステップS302では、モータ出力トルク推定値の絶対値|τmo|の積算値τmSおよび外力トルク推定値の絶対値|τdiso|の積算値τdSおよび積算回数iを演算する。
 その後、ステップS303では、積算回数iが予め定めた平均回数numに到達したかを判断する。ステップS303で、積算回数iが平均回数numに到達していれば(ステップS303のY)ステップS304に進み、到達していなければ(ステップS303のN)処理を終える。
 ステップS304では、各積算値τmS、τdSを平均回数numで割り、ロボット動作の単位時間平均値であるモータ出力トルク平均値τmAおよび外力トルク平均値τdAを算出する。
 例えばロボット動作の単位時間を1時間と設定し、モータ出力トルク推定値τmoおよび外力トルク推定値τdisoが10ミリ秒毎に演算されていたとすると、平均回数はnum=360000回と言うことになる。
 次に、この単位時間平均値(例えば、1時間の平均値)であるモータ出力トルク平均値τmAと外力トルク平均値τdAをデータ蓄積部36に蓄積する。単位時間j回目(例えば、単位時間が1時間であればj時間目)のモータ出力トルク平均値τmAをτmA[j]と定義する。現在が単位時間でx回目で、x回目までの蓄積個数をN個(Nは正の整数)としたとすると、モータ出力トルク値τmA[x-N+1]からτmA[x]までのデータを蓄積する。
 例えば、現在が単位時間で1000回目(x=1000)、データ蓄積個数が48個(N=48)とすると、モータ出力トルク値τmA[953]からτmA[1000]までのデータを蓄積していることになる。単位時間が1時間であると、ロボット動作48時間分のデータを蓄積することになる。外力トルク平均値τdA[j]についても同様である。
 移動平均部37では、データ蓄積部36に蓄積されたN個分のデータの現在の移動平均τmAA[x]およびτdAA[x]を、単位時間x回目のモータ出力トルク平均値および単位時間x回目の外力トルク平均値に対して、それぞれ(数4-1)、(数4-2)により求める。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 異常判定基準値設定部38では、図4に示すフローチャートに基づいて、モータ出力トルク値の単位時間内平均値τmA[x-NN+1](NNは正の整数)からτmA[x]までのデータが、単位時間N個の移動平均値τmAA[x]を基準として、一定範囲内のバラツキに収まっているかを判断する。すなわち、NN個の単位時間内平均値τmA[j]と単位時間N個の移動平均値τmAA[j]との差が、予め定めた所定値より小さいかどうかを判断する。その結果、一定の範囲内にあれば、その単位時間N個の移動平均値τmAA[x]を基準値として設定する。その後、設定した移動平均値τmAA[x]の基準値に基づいて、図2に示すモータ出力トルク異常判定基準値τmth(第1の異常判定値)および外力トルク異常判定基準値τdth(第2の異常判定値)を決定し、異常判定基準値設定済フラグfthに「1」をセットする。
 以下、図4のフローチャートを説明する。図4に示すフローチャートは、異常判定単位時間毎に実施する。図4において、ステップS401では、異常判定基準値設定済フラグfthが「0」かどうかを判定する。ステップS401で、異常判定基準値設定済フラグfthが「0」であれば(ステップS401のY)、異常判定基準値が設定されていないのでステップS402へ進む。ステップS401で、異常判定基準値設定済フラグfthが「1」であれば(ステップS401のN)、既に異常判定基準値が設定されているので処理を終了する。
 ステップS402では、モータ出力トルク値の平均値τmA[x-k]と移動平均値τmAA[x]の差の絶対値が、単位時間平均のバラツキを判断する閾値τmth1より小さいかを判定する。モータ出力トルク値の平均値τmA[x-k]と移動平均値τmAA[x]の差の絶対値が閾値τmth1より小さい場合は(ステップS402のY)、ステップS403に移行する。しかし、それ以外の場合は(ステップS402のN)、処理を終了する。なお、閾値τmth1は、例えば実験等により予め求めておくことができる。図5に示す本実施の形態では、モータ最大トルク値の5%としている。この値は、小さくするほど、負荷率が安定して一定になるまで、モータ発生トルク異常判定基準値τmhが定まらない。つまり、基準値の妥当性は向上するものの、基準値が定まらないので異常判定がなかなか実施されないと言うことになる。したがって、この値は、実際の使用状況から適切な値に定めればよい。
 ステップS403では演算ステップ数kに「1」を加算する。ステップS404では、演算ステップ数kがバラツキ判定個数NN回に到達しているかどうか判定する。ステップS403で演算ステップ数kがNN回に到達していれば(ステップS403のY)、制御系が安定していると判断してステップS405へ移行する。しかし、演算ステップ数kがNN回に到達していない場合は(ステップS403のN)、制御系がまだ安定していないと判断してステップS402へ戻る。
 ステップS405では、NN個のモータ出力トルク平均値τmA[x]が一定のバラツキ範囲内であったときの移動平均値τmAA[x]に基づいて、モータ出力トルク異常判定基準値τmhを計算する。さらに、このときの外力トルク異常判定基準値τdthを計算し、異常判定基準値設定済フラグfthに「1」をセットして処理を終える。なお、モータ出力トルク異常判定基準値τmhは、移動平均値τmAA[x]にモータ出力トルク異常基準値を設定するための加算値τmth2(第1の所定値)を加算して算出する。また、このときの外力トルク異常判定基準値τdthは、移動平均値τdAA[x]に外力トルク異常判定基準値を設定するための加算値τdth2(第2の所定値)を加算して算出する。ここで、モータ出力トルク異常基準値を設定するための加算値τmth2と外力トルク異常判定基準値を設定するための加算値τdth2は、例えば実験等により予め決めておくことができる値である。図6に示す本実施の形態では、モータ最大トルクの8%としている。また、図7に示す本実施の形態では、5%としている。この値は、小さくするほど、異常判定の感度が高くなるが、誤判定の可能性も大きくなる。したがって、この値は、実際の使用状況から適切な値に定めればよい。
 ここまでの処理を説明するための波形を図5、図6、図7に示す。図5は、図4のフローチャートにおけるモータ出力トルク移動平均値に基づく異常判定基準値設定課程を説明するための第1の図である。図5において、横軸は単位時間処理回数xである(例えば単位時間が1時間であればx時間)。縦軸はモータトルク最大値に対するモータ出力トルク平均値τmAの比率である。なお、本実施の形態では、理解を助けるために、以下「比率」という表現を用いずに、単に「モータ出力トルク平均値τmA」などと言う。「×」印で示しているのはモータ出力トルク値の単位時間内平均値τmAであり、実線(図5では黒点で示されている)は単位時間N個の移動平均値τmAAである。図5では、蓄積個数(移動平均個数)Nと、バラツキ判定個数NNが「24」のときを示しており、x=24のとき初めて移動平均τmAA[24]は計算される。この時点では、移動平均τmA[1]~τmA[24]は移動平均τmAA[24]を基準に±τmth1の範囲外にもデータがある。そのため、図4のステップS402の条件式が満たされず、ステップS405でのモータ出力トルク異常判定基準値τmthの計算は行われない。
 図6は、図5と同様に、x=37まで時間が経過した時の波形である。図6では、単位時間24個の37回目の移動平均値τmAA[37]を基準に、モータ出力トルク平均値τmA[14]~τmA[37]の24個(NN個に相当)は全て±τmth1の範囲内にデータがあるので、図4のステップS402の条件式が満たされる。したがって、ステップS405でのモータ出力トルク異常判定基準値τmthの計算が行われ、異常判定基準値設定済フラグfthに1がセットされる。具体的には、モータ出力トルク異常判定基準値τmthは、単位時間24個37回目の移動平均値τmAA[37]を基準値としてモータ出力トルク異常判定閾値を設定するための加算値τmth2を加算することで算出される。
 図7は外力トルク値の変化を示した図で、図6と同じくx=37まで時間が経過した時の波形を示している。「×」印で示しているのは外力トルク値の単位時間内平均値τdAであり、実線は単位時間N個の移動平均値τdAAである。上記のように、x=37の時点でモータ出力トルク平均値の基準値を設定したので、図7では、この時点で図4のステップS405での外力トルク異常判定基準値τdthの計算が行われる。具体的には、外力トルク異常判定基準値τdthは、単位時間24個37回目の移動平均値τdAA[37]を基準値として外力トルク異常判定閾値を設定するための加算値τdth2を加算することで算出される。
 すなわち、図4、図6からわかるように、モータ出力トルク値τmAとモータ出力トルク平均値τmAAとの差が予め定めた所定の値τmth1より小さいときのモータ出力トルク平均値τmAAを、モータ出力トルク平均値の基準値と設定する。このときの外力トルク推定平均値τdAAを外力トルク推定平均値の基準値τdAAと設定する。
 言い換えると、連続するN個分のモータ出力トルク平均値τmAが全て±τmth1の範囲内にデータがあるとき、モータ出力トルク平均値の基準値が得られたことになる。
 以上のように、モータ出力トルク異常判定基準値τmthおよび外力トルク異常判定基準値τdthは、図4のステップS402の条件判断で、モータ出力トルク値の平均値τmAのバラツキが小さくなった時点で計算される。すなわち、ロボットの使用状況が落ちついてきた時点で、予め記憶されたプログラムに基づくロボットの動作パターンに応じて自動的に計算される。従って、予め基準データを計測する必要もなく、基準となる動作パターンでロボットを動作させる必要もない。
 図2の異常判定部40では、図8のフローチャートに従い異常判定を行う。図8の処理は異常判定単位時間毎(例えば1時間毎)に実施する。図8のステップS801では、異常判定基準値設定済フラグfthに1がセットされているのかを確認する。ステップS801で、異常判定基準値設定済フラグfthに1がセットされていれば(ステップS801のY)ステップS802へ進み、それ以外(ステップS801のN)は処理を終了する。
 ステップS802では、モータ出力トルク値の移動平均値τmAA[x]が、モータ出力トルク異常判定基準値τmthより大きいかどうかを判断する。ステップS802でモータ出力トルク値の移動平均値τmAA[x]がモータ出力トルク異常判定基準値τmthより大きい場合(ステップS802のY)は、ステップS803へ進み、それ以外(ステップS802のN)は処理を終了する。
 ステップS803では、外力トルク値の移動平均値τdAA[x]が、外力トルク異常判定基準値τdthより大きいかどうかを判断する。ステップS803で外力トルク値の移動平均値τdAA[x]が、外力トルク異常判定基準値τdthより大きい場合(ステップS803のY)は、ステップS804へ進み、それ以外(ステップS803のN)はステップS805へ進む。
 ステップS804では、異常判定フラグfLに「1」をセットし処理を終了する。ステップS805では、異常判定基準値設定済フラグfthに「0」をセットし、異常判定基準値設定部38での処理(図4のフローチャート)を再開させる。
 図8の処理を説明するための波形図を図9と図10に示す。図9は、図6の波形をx=140回まで進めた波形を示している。図9において、x=90回目近傍から故障による摩擦増加でモータ出力トルク値の移動平均値τmAA[x]が徐々に増加している。x=120回目でモータ出力トルク異常判定基準値τmthを越えており、ステップS802の条件が満たされる。
 図10は、図7の波形をx=140回まで進めた波形を示している。図10において、x=120回目で、外力トルク値の移動平均値τdAA[120]が、外力トルク異常判定基準値τdthを越えており、ステップS803の条件が満たされる。この場合、ステップS804では、異常判定フラグfLに「1」がセットされ、図1の異常警告表示部34で異常警告処理を行う。
 図10において、もしx=120回目で、外力トルク値の移動平均値τdAA[120]が、外力トルク異常判定基準値τdth以下であれば、ステップS803の条件が満たされない。この場合は、判定基準値設定済フラグfthに「0」をセットし、異常判定基準値設定部38での処理(図4のフローチャート)を再開させる。すなわち、モータ出力トルク異常判定基準値τmthと外力トルク異常判定基準値τdthを求める処理を再度行い、これらを新たな基準値として異常判断処理を行う。
 なお、ステップS802とステップS803で、モータ出力トルク値の移動平均値τmAAの上昇と外力トルク値の移動平均値τdAAの上昇の両方で判定している理由は、外力トルク値の移動平均値τdAAが上昇しても、モータ出力トルク値の移動平均値τmAAが減少するような場合もあり、このような場合の誤判定を避けるためである。例えば、ケーブルの張力増加がロボットの重力を支える力になるような場合がこれに該当する。
 さらには、モータ出力トルク値の移動平均値τmAAが上昇しても、外力トルク値の移動平均値τdAAが上昇しないような場合もある。このような場合の誤判定を避けるためにも、ステップS802とステップS803で、モータ出力トルク値の移動平均値τmAAの上昇と外力トルク値の移動平均値τdAAの上昇の両方を条件として判定している。例えば、ロボットの作業内容が変わり、ロボットプログラムがユーザにより書き換えられた場合、モータ出力トルク平均値τmAAは上昇する可能性がある。しかし、外力トルク平均値τdAAは特に外力が増加するわけではないので、装着負荷のパラメータが正しく入力されている場合は上昇しない。
 ところで、本発明では、装着負荷のパラメータが正しく入力されていない場合でも、異常判定の誤判定の確率を減じることができる。
 (数3)で計算される外力推定トルク値τdisoは、実際の外力トルク値τdisが「0」でも、装着負荷のパラメータに誤差があると、動力学トルク値τdynの計算に誤差を生じるため、「0」にはならない。誤差を含む動力学トルク値をτdyn_err、この推定誤差をΔτdisとすると(数5)が成立する。
 Δτdis=Kt×Im-(Jm×α+D×ωm+Kμ×sgn
       +τdyn_err)   (数5)
 この動力学トルク演算に誤差がある状態で、実際の故障で摩擦トルク値がΔτμ増えたとすると、外力トルク推定値τdisoは(数6)で計算される。
 τdiso=Kt×Im
      -(Jm×α+D×ωm+(τμ+Δτμ)×sgn
      +τdyn_err)
     =Δτdis+Δτμ×sgn   (数6)
 このとき、(数6)で、|Δτμ|>|Δτdis|であれば、つまり動力学トルク演算誤差があっても、その誤差に起因する推定誤差より故障による摩擦トルク値増加が上回れば、Δτdisの符号に関わりなく、外力トルク推定値τdisoの絶対値は(数7-1)、(数7-2)で表すことができる。
 |τdiso[+]|= Δτdis+Δτμ   (数7-1)
 |τdiso[-]|=-Δτdis+Δτμ   (数7-2)
 |τdiso[+]|:モータが正方向回転時の外力トルク推定値の絶対値
 |τdiso[-]|:モータが負方向回転時の外力トルク推定値の絶対値
 ここで、ΔτdisとΔτμの単位時間平均をそれぞれΔτdA、ΔτμAとすると、外力トルク推定値τdisoの絶対値の単位時間平均τdAは(数8-1)、(数8-2)のように表せる。
 τdA[+]= ΔτdA+ΔτμA   (数8-1)
 τdA[-]=-ΔτdA+ΔτμA   (数8-2)
 τdA[+]:モータが正方向回転時の外力トルク推定値の絶対値の単位時間平均
 τdA[-]:モータが負方向回転時の外力トルク推定値の絶対値の単位時間平均
 ここで、産業用ロボットの動作角度は有限であり、大きくても±360度程度であるので、それを駆動するモータが1方向のみに回転しつづけることはない。+方向への回転角度と-方向への回転角度の差は最大で720度である。例えば、異常判定の単位時間を1時間にしておけば、延べ回転角度は数万度を超える場合が大半であるので、+方向への回転角度と-方向への回転角度はほぼ同じと考えてよい。
 そこで、外力トルク推定値の単位時間平均τdAは、τdA[+]とτdA[-]の平均をとればよいので(数9)で計算できる。
 τdA=(τdA[+]+τdA[-])/2
   =(ΔτdA+ΔτμA-ΔτdA+ΔτμA)/2
   =ΔτμA   (数9)
 (数9)より、正確な負荷パラメータが入力されず動力学トルク演算に誤差があっても、その誤差に起因する推定誤差ΔτdAより故障による摩擦トルク値増加ΔτμAが上回れば、故障に起因する摩擦トルク値増加ΔτμAを正しく判断できることがわかる。
 つまり、正確な負荷パラメータが入力されていない場合、実際に故障により摩擦が増加しても、その摩擦トルク値増加ΔτμAがパラメータ誤差に起因する誤差ΔτdAを下回っている時点では、図8のフローチャートのステップS803の条件が満たされない場合が発生する。したがって、この場合は異常判定基準値設定部38での処理(図4のフローチャート)が再開され、異常判定閾値τdthが再設定される。しかし、摩擦トルク値増加ΔτμAがさらに増加し、パラメータ誤差に起因する誤差ΔτdAを上回ると、外力トルク推定平均値τdAに摩擦トルク値増加ΔτμAが正しく反映される。したがって、ステップS803が正しく判断される。以上の内容により誤判定の確率を減じることができる。
 なお、本実施の形態では、モータ出力トルク値を優先した場合を説明したが、モータ出力トルク値と外力トルク値の異常判定の順序を入れ替えて、外力トルク値を優先して異常判定を行うことができる。
 すなわち、まず、外力トルク推定値τdAのN個分の平均値である外力トルク推定平均値τdAAが、所定のN個分の外力トルク推定平均値τdAから得た外力トルク推定平均値の基準値τdAAに、第2の所定値τdth2を加えた第2の異常判定基準値τdthを超えるか否かを、ロボットの動作中に判定する。次に、モータ出力トルク値τmAのN個分の平均値であるモータ出力トルク平均値τmAAが、所定のN個分のモータ出力トルク平均値τmAから得たモータ出力トルク平均値の基準値τmAAに、第1の所定値τmth2を加えた第1の異常判定基準値τmthを超えるか否かを、ロボットの動作中に判定する。その結果、外力トルク推定平均値τdAAが第2の異常判定基準値τdth2を超え、かつ、モータ出力トルク平均値τmAAが第1の異常判定基準値τmthを超えた場合に異常と判定するものである。
 この場合、N個の外力トルク推定値τdAと外力トルク推定平均値τdAAとの差が予め定めた所定の値τmth1より小さいときの外力トルク推定平均値τdAAを、外力トルク推定平均値の基準値τdAAと設定し、このときのモータ出力トルク平均値τmAAをモータ出力トルク平均値の基準値τmAAと設定する。
 また、外力トルク推定移動平均値が異常判定基準値を超えるが、モータ出力トルク移動平均値が異常判定基準値を超えない場合に、異常判定基準値設定部38での処理(図4のフローチャート)を再開させ、モータ出力トルク異常判定基準値τmthと外力トルク異常判定基準値τdthを求める処理を再度行い、これらを新たな基準値として異常判断処理を行うようにしてもよい。
 また、本実施の形態では、モータ出力トルク値の絶対値のN個の移動平均値τmAAにモータ出力トルク異常判定値を設定するための加算値τmth2を加算してモータ出力トルク異常判定値算出し、その後のモータ出力トルク値の絶対値のN個の移動平均値τmAAがモータ出力トルク異常判定値を超えるか否かを判定して異常を判定する例を示した。しかし、モータ出力トルク移動平均値とモータ出力トルク移動平均値の基準値との差が所定の値を超えるか否かを判定して異常を判定するようにしてもよい。なお、所定の値は、例えば実験等により予め決定することができる。
 また、本実施の形態では、外力トルク値の絶対値のN個の移動平均値τdAAに外力トルク異常判定値を設定するための加算値τdth2を加算して外力トルク異常判定値算出し、その後の外力トルク値の絶対値のN個の移動平均値τdAAが外力トルク異常判定値を超えるか否かを判定して異常を判定する例を示した。しかし、外力トルク移動平均値と外力トルク移動平均値の基準値との差が所定の値を超えるか否かを判定して異常を判定するようにしてもよい。なお、所定の値は、例えば実験等により予め決定することができる。
 さらに、本実施の形態では、まず単位時間内のモータ出力トルク値τmoの他の平均値τmAを計算し、その後N個の他の平均値τmAからモータ出力トルク平均値(移動平均値)τmAAを求めた。しかし、上記他の平均値τmAを求めなくても、モータ出力トルク値τmoからモータ出力トルク平均値(移動平均値)τmAAを求めることも可能である。このことは、外力トルク推定平均値τdAAを求める場合も同様である。
 また、本実施の形態では、任意の1つのモータについて異常判断を行うようにした。しかし、多関節ロボットは複数のモータを備えているので、本実施の形態と同様な方法で、全てのモータについて異常判定を行ってもよい。あるいは、特定のモータについて異常判定を行ってもよい。
 なお、本実施の形態のロボットには、例えばサーボモータが使用されており、このサーボモータの異常判定を行うものである。
 本発明は、基準データの測定、記憶を必要とせず、生産ライン稼働中の判定も可能で、正確な負荷パラメータが入力されていない場合や外力を受けた場合でも誤判定の確率を減じることができるので、動作中のロボットの異常判定方法として有用である。
 6  位置制御部
 10  速度制御部
 18  モータ/外力トルク部
 21  方向判定部
 26  動力学トルク演算部
 30  外力トルク推定部
 32  異常判定装置
 34  異常警告表示部
 35  単位時間平均部
 36  データ蓄積部
 37  移動平均部
 38  異常判定基準値設定部
 40  異常判定部
 101  溶接ワイヤ
 103  ワイヤ送給モータ
 104  溶接トーチ
 105  溶接電源装置
 107  母材
 108  アーク
 109  ロボット
 110  ロボット制御装置
 111  トーチケーブル
 112  治具

Claims (10)

  1. モータ出力トルク値のN個分(Nは正の整数)の平均値であるモータ出力トルク平均値が、所定の前記N個分のモータ出力トルク平均値から得たモータ出力トルク平均値の基準値に、第1の所定値を加えた第1の異常判定基準値を超えるか否かを、ロボットの動作中に判定するステップと、
    外力トルク推定値のN個分の平均値である外力トルク推定平均値が、所定の前記N個分の外力トルク推定平均値から得た外力トルク推定平均値の基準値に、第2の所定値を加えた第2の異常判定基準値を超えるか否かを前記ロボットの動作中に判定するステップと、
    前記モータ出力トルク平均値が前記第1の異常判定基準値を超え、かつ、前記外力トルク推定平均値が前記第2の異常判定基準値を超えた場合に異常と判定するステップと
    を備えたロボットの異常判定方法。
  2. NN個(NNは正の整数)のモータ出力トルク値と前記モータ出力トルク平均値との差が予め定めた所定の値より小さいときの前記モータ出力トルク平均値を、前記モータ出力トルク平均値の基準値と設定し、このときの前記外力トルク推定平均値を前記外力トルク推定平均値の基準値と設定するステップを備えた請求項1記載のロボットの異常判定方法。
  3. NN個の外力トルク推定値と前記外力トルク推定平均値との差が予め定めた所定の値より小さいときの前記外力トルク推定平均値を、前記外力トルク推定平均値の基準値と設定し、このときの前記モータ出力トルク平均値を前記モータ出力トルク平均値の基準値と設定するステップを備えた請求項1記載のロボットの異常判定方法。
  4. 前記モータ出力トルク平均値が前記第1の異常判定基準値を超え、前記外力トルク推定平均値が前記第2の異常判定基準値を超えない場合、または、前記外力トルク推定平均値が前記第2の異常判定基準値を超え、前記モータ出力トルク平均値が前記第1の異常判定基準値を超えない場合は、前記モータ出力トルク平均値の基準値と前記外力トルク推定平均値の基準値を設定する請求項2または3記載のロボットの異常判定方法。
  5. 前記モータ出力トルク値および前記外力トルク推定値は、予め決められた単位時間内の前記モータ出力トルク値および前記外力トルク推定値の他の平均値である請求項1記載のロボットの異常判定方法。
  6. モータ出力トルク値のN個分(Nは正の整数)の平均値であるモータ出力トルク平均値と、所定の前記N個分のモータ出力トルク平均値から得たモータ出力トルク平均値の基準値との差が、第1の所定の値を超えるか否かを、ロボットの動作中に判定するステップと
    外力トルク推定値のN個分の平均値である外力トルク推定平均値と、所定の前記N個分の外力トルク推定平均値から得た外力トルク推定平均値の基準値との差が、第2の所定の値を超えるか否かを、前記ロボットの動作中に判定するステップと、
    前記モータ出力トルク平均値と前記モータ出力トルク平均値の基準値との差が前記第1の所定の値を超え、かつ、前記外力トルク推定平均値と前記外力トルク推定平均値の基準値との差が前記第2の所定の値を超えた場合に異常と判定するステップと
    を備えたロボットの異常判定方法。
  7. NN個のモータ出力トルク値と前記モータ出力トルク平均値との差が予め定めた所定の値より小さいときの前記モータ出力トルク平均値を、前記モータ出力トルク平均値の基準値と設定し、このときの前記外力トルク推定平均値を前記外力トルク推定平均値の基準値と設定するステップを備えた請求項6記載のロボットの異常判定方法。
  8. NN個の外力トルク推定値と前記外力トルク推定平均値との差が予め定めた所定の値より小さいときの前記外力トルク推定平均値を、前記外力トルク推定平均値の基準値と設定し、このときの前記モータ出力トルク平均値を前記モータ出力トルク平均値の基準値と設定するステップを備えた請求項6記載のロボットの異常判定方法。
  9. 前記モータ出力トルク平均値と前記モータ出力トルク平均値の基準値との差が前記第1の所定の値を超え、かつ、前記外力トルク推定平均値と前記外力トルク推定平均値の基準値との差が前記第2の所定の値を超えない場合、または、前記外力トルク推定平均値と前記外力トルク推定平均値の基準値との差が前記第2の所定の値を超え、かつ、前記モータ出力トルク平均値と前記モータ出力トルク平均値の基準値との差が前記第1の所定の値を超えない場合には、前記モータ出力トルク平均値の基準値と前記外力トルク推定平均値の基準値を設定する請求項7または8記載のロボットの異常判定方法。
  10. 前記モータ出力トルク値および前記外力トルク推定値は、予め決められた単位時間内の前記モータ出力トルク値および前記外力トルク推定値の他の平均値である請求項6記載のロボットの異常判定方法。
PCT/JP2009/002215 2008-05-21 2009-05-20 ロボットの異常判定方法 WO2009142006A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/677,379 US9073213B2 (en) 2008-05-21 2009-05-20 Method of determining failure of robot
CN200980118477.7A CN102036789B (zh) 2008-05-21 2009-05-20 机器人的异常判定方法
JP2009529461A JP5024383B2 (ja) 2008-05-21 2009-05-20 ロボットの異常判定方法
EP09750368.4A EP2168728B1 (en) 2008-05-21 2009-05-20 Robot error judgment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-132783 2008-05-21
JP2008132783 2008-05-21

Publications (1)

Publication Number Publication Date
WO2009142006A1 true WO2009142006A1 (ja) 2009-11-26

Family

ID=41339946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002215 WO2009142006A1 (ja) 2008-05-21 2009-05-20 ロボットの異常判定方法

Country Status (5)

Country Link
US (1) US9073213B2 (ja)
EP (1) EP2168728B1 (ja)
JP (1) JP5024383B2 (ja)
CN (1) CN102036789B (ja)
WO (1) WO2009142006A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061535A (ja) * 2010-09-15 2012-03-29 Yaskawa Electric Corp 減速機の異常判定方法、異常判定装置、ロボット及びロボットシステム
JP2017104456A (ja) * 2015-12-11 2017-06-15 シスメックス株式会社 医療用ロボットシステム、データ解析装置、および、医療用ロボットの監視方法
JP2020006459A (ja) * 2018-07-05 2020-01-16 日産自動車株式会社 異常判定装置及び異常判定方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101776956B1 (ko) * 2010-12-09 2017-09-19 두산공작기계 주식회사 공작기계의 공구 손상 탐지장치 및 공구손상 탐지방법
US9124212B2 (en) * 2011-05-31 2015-09-01 Mitsubishi Electric Corporation Load characteristic estimating apparatus for driving machine
US9024771B1 (en) * 2012-02-07 2015-05-05 Google Inc. Systems and methods for determining a potential failure or other status of a robotic device
JP5374613B2 (ja) * 2012-05-30 2013-12-25 株式会社神戸製鋼所 多関節ロボットの弾性変形補償制御装置および制御方法
JP5958459B2 (ja) * 2013-12-26 2016-08-02 トヨタ自動車株式会社 状態判定システム、状態判定方法及び移動ロボット
JP5926346B2 (ja) * 2014-09-25 2016-05-25 ファナック株式会社 人間協調ロボットシステム
US10011013B2 (en) 2015-03-30 2018-07-03 X Development Llc Cloud-based analysis of robotic system component usage
WO2016185593A1 (ja) * 2015-05-21 2016-11-24 日産自動車株式会社 故障診断装置及び故障診断方法
MX364634B (es) * 2015-05-22 2019-05-03 Nissan Motor Dispositivo de diagnóstico de falla y método de diagnóstico de falla.
KR20180067652A (ko) * 2015-10-30 2018-06-20 카와사키 주코교 카부시키 카이샤 로봇시스템의 감시장치
DE102016014989B4 (de) * 2016-12-15 2019-02-14 Kuka Roboter Gmbh Kollisionsüberwachung eines Roboters
MX2020006692A (es) * 2017-12-26 2020-09-03 Nissan Motor Metodo de determinacion de funcionamiento defectuoso y dispositivo de determinacion de funcionamiento defectuoso.
EP3804923A4 (en) * 2018-06-04 2021-07-14 Nissan Motor Co., Ltd. DEVICE FOR DETERMINING ANOMALY AND METHOD FOR DETERMINING ANOMALY
CN109571549A (zh) * 2018-12-29 2019-04-05 上海新时达机器人有限公司 一种机器人本体的摩擦力监测方法和系统以及设备
CN111152217B (zh) * 2019-12-30 2021-09-17 深圳优地科技有限公司 一种速度控制方法、装置、机器人及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364055A (ja) * 1991-06-11 1992-12-16 Canon Inc 位置決め制御装置
JPH1158024A (ja) * 1997-08-13 1999-03-02 Fanuc Ltd サーボガン軸の異常負荷検出方法及び装置
JP2003117879A (ja) * 2001-10-15 2003-04-23 Ckd Corp ウェハ搬送ロボット及びウェハ搬送方法
JP2003326438A (ja) * 2002-02-28 2003-11-18 Fanuc Ltd 工具異常検出装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63123105A (ja) 1986-11-13 1988-05-26 Kobe Steel Ltd テイ−チング・プレイバツク方式ロボツトの故障予知診断方法
JP3623582B2 (ja) 1995-12-25 2005-02-23 ファナック株式会社 ロボットの故障診断方法
JP3122399B2 (ja) 1997-10-30 2001-01-09 株式会社不二越 産業用ロボット及びその故障検出方法並びに産業用ロボット用故障検出プログラムを記録した記録媒体
JP3681733B2 (ja) 2003-02-21 2005-08-10 ファナック株式会社 数値制御装置
US6989641B2 (en) * 2003-06-02 2006-01-24 General Motors Corporation Methods and apparatus for fault-tolerant control of electric machines

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364055A (ja) * 1991-06-11 1992-12-16 Canon Inc 位置決め制御装置
JPH1158024A (ja) * 1997-08-13 1999-03-02 Fanuc Ltd サーボガン軸の異常負荷検出方法及び装置
JP2003117879A (ja) * 2001-10-15 2003-04-23 Ckd Corp ウェハ搬送ロボット及びウェハ搬送方法
JP2003326438A (ja) * 2002-02-28 2003-11-18 Fanuc Ltd 工具異常検出装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061535A (ja) * 2010-09-15 2012-03-29 Yaskawa Electric Corp 減速機の異常判定方法、異常判定装置、ロボット及びロボットシステム
US9321177B2 (en) 2010-09-15 2016-04-26 Kabushiki Kaisha Yaskawa Denki Reducer abnormality determination method, abnormality determination device, and robot system
JP2017104456A (ja) * 2015-12-11 2017-06-15 シスメックス株式会社 医療用ロボットシステム、データ解析装置、および、医療用ロボットの監視方法
JP2020006459A (ja) * 2018-07-05 2020-01-16 日産自動車株式会社 異常判定装置及び異常判定方法
JP7056418B2 (ja) 2018-07-05 2022-04-19 日産自動車株式会社 異常判定装置及び異常判定方法

Also Published As

Publication number Publication date
US20110054680A1 (en) 2011-03-03
CN102036789B (zh) 2014-09-17
US9073213B2 (en) 2015-07-07
JPWO2009142006A1 (ja) 2011-09-29
JP5024383B2 (ja) 2012-09-12
CN102036789A (zh) 2011-04-27
EP2168728A4 (en) 2011-12-28
EP2168728B1 (en) 2017-07-05
EP2168728A1 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
JP5024383B2 (ja) ロボットの異常判定方法
US9718187B2 (en) Robot controlling method, robot apparatus, program, recording medium, and method for manufacturing assembly component
WO2017047009A1 (ja) ロボットの衝突検出方法
JP4983812B2 (ja) ロボットの制御方法および制御装置
EP1477284B1 (en) Drive control method and drive controller
EP2586577A1 (en) Robot control device
JP5596093B2 (ja) バックラッシを補正するモータ制御装置
US20200173814A1 (en) Encoder abnormality detection method
US20200171661A1 (en) Method for transmitting information in controller and method for detecting abnormality in encoder
JP2008296310A (ja) 加工ロボットの制御装置
CN108604878B (zh) 电机控制装置
JP3933158B2 (ja) ロボットの衝突検出方法
EP1704956A1 (en) Welding system and consumable electrode welding method
JP2013169609A (ja) ロボットの衝突検出方法
JP5929150B2 (ja) ロボット装置
JPH1170490A (ja) 産業用ロボットの衝突検出方法
CN107894749B (zh) 伺服电动机控制装置及其方法、计算机可读取的记录介质
JP4323263B2 (ja) 寿命評価装置
EP3819087A1 (en) Robot control method and robot control device
TW202219674A (zh) 檢測傳達電動機輸出之旋轉力的動力傳達機構之異常的異常檢測裝置
US20210191346A1 (en) Abnormality detection device and abnormality detection method
JPH11254380A (ja) 産業用ロボットの衝突検出方法
JP2013006230A (ja) 回転動力源制御方法および回転動力源制御装置、並びにロボット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980118477.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009529461

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2009750368

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009750368

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750368

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12677379

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE