WO2009139438A1 - Process for production of optically active carboxylic acid - Google Patents

Process for production of optically active carboxylic acid Download PDF

Info

Publication number
WO2009139438A1
WO2009139438A1 PCT/JP2009/058988 JP2009058988W WO2009139438A1 WO 2009139438 A1 WO2009139438 A1 WO 2009139438A1 JP 2009058988 W JP2009058988 W JP 2009058988W WO 2009139438 A1 WO2009139438 A1 WO 2009139438A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
optionally substituted
formula
carboxylic acid
cycloalkyl
Prior art date
Application number
PCT/JP2009/058988
Other languages
French (fr)
Japanese (ja)
Inventor
和利 菅原
將太 利川
Original Assignee
田辺三菱製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田辺三菱製薬株式会社 filed Critical 田辺三菱製薬株式会社
Publication of WO2009139438A1 publication Critical patent/WO2009139438A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D309/04Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses

Definitions

  • the present invention relates to a method for producing optically active carboxylic acid from racemic carboxylic acid.
  • a phenylacetamide derivative represented by the following formula is known as a compound having a glucokinase activating action and useful as a therapeutic agent for diabetes (Patent Documents 1 to 10).
  • R 1 represents an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted cycloalkyl, or an optionally substituted heterocyclic group.
  • R 2 is an optionally substituted alkyl, an optionally substituted cycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, —N (C 0-2 alkyl) (C 0 -2 alkyl) or cyclic amino.
  • R 3 represents a hydrogen atom, a halogen atom or trifluoromethyl.
  • R 6 represents a hydrogen atom, or C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, C 3-7 cycloalkyl, aryl, heteroaryl or a 4- to 7-membered heterocyclic group [these Groups of: halogen atom, cyano, nitro, hydroxyl group, C 1-2 alkoxy, —N (C 0-2 alkyl) (C 0-2 alkyl), C 1-2 alkyl, C 3-7 cycloalkyl, 4 To 7-membered heterocyclic group, CF n H 3-n , aryl, heteroaryl, CO 2 H, —COC 1-2 alkyl, —CON (C 0-2 alkyl) (C 0-2 alkyl), SOCH 3 , Optionally substituted with 1 to 6 substituents independently selected from the group of SO 2 CH 3 and —SO 2 N (C 0-2 alkyl) (C 0-2 alkyl)] To express.
  • R 7 and R 8 independently represent a hydrogen atom, or C 1-4 alkyl, C 3-7 cycloalkyl, aryl, heteroaryl or a 4- to 7-membered heterocyclic group [these groups are halogen Atom, cyano, nitro, hydroxyl group, C 1-2 alkoxy, —N (C 0-2 alkyl) (C 0-2 alkyl), C 1-2 alkyl, C 3-7 cycloalkyl, 4-7 membered heterocycle Groups, CF n H 3-n , aryl, heteroaryl, COC 1-2 alkyl, —CON (C 0-2 alkyl) (C 0-2 alkyl), SOCH 3 , SO 2 CH 3 and —SO 2 N ( C 0-2 alkyl) (optionally substituted with 1 to 6 substituents independently selected from the group of C 0-2 alkyl), or R 7 and R 8 are 6-8 together with the N atom to which they are bonded Bicyclo nitrogen-containing heterocyclic
  • the phenylacetamide derivative has an asymmetric carbon (marked with *), and among the optical isomers related to the asymmetric carbon, R 1 —CH 2 group (hereinafter, R 1 -methyl group) is shown in the figure. It is known that ⁇ -coordinate isomers in the structural formula have high glucokinase activity.
  • a method for producing an optically active phenylacetamide derivative in which the R 1 -methyl group is ⁇ -coordinated is described in, for example, Patent Documents 1, 5 and 9.
  • Patent Document 1 a racemic carboxylic acid of formula (2) is reacted with (R)-(+)-4-benzyl-2-oxazolidinone to form an imide of a diastereo mixture, which is separated by column chromatography and then hydrolyzed.
  • an optically active carboxylic acid of the formula (1) is produced, and an optically active phenylacetamide derivative is produced by further amidation.
  • R 1 , R 2 and R 3 have the same meanings as described above.
  • a method is described in which the racemic carboxylic acid of the formula (2) is used as it is, and a racemic phenylacetamide derivative is introduced and separated by chiral HPLC.
  • Patent Document 5 as described below, an asymmetric induction is attempted by alkylating and hydrolyzing an amide compound of a phenylacetate compound unsubstituted at the benzyl position and (1R, 2R)-( ⁇ )-pseudoephedrine. ing. However, the asymmetric yield is not described. Patent Documents 8 and 10 also report similar reactions. However, none of the patent documents describes the degree of asymmetric induction.
  • Patent Document 9 an optically active carboxylic acid is produced by hydrogenating an olefin compound in the presence of an asymmetric catalyst.
  • R 2 has the same meaning as described above.
  • a high hydrogen pressure of 50 bar is required, there is a problem that it cannot be produced by ordinary production equipment, and the catalyst and asymmetric ligand used are both expensive.
  • Non-Patent Documents 1 to 7 disclose that an optically active carboxylic acid is obtained by reacting a ketene compound derived from a racemic carboxylic acid represented by the following formula or the like with D-(-)-pantolactone or a lactic acid ester and hydrolyzing it.
  • a method for producing an acid is described.
  • R is a hydrogen atom, methyl, isopropyl, phthaloylamino- (CH 2 ) m —, etc. (m is 0, 1 or 2).
  • Phenyl is unsubstituted or phenyl substituted at the 4-position by methoxy, nitro, isobutyl or the like, or is replaced with methoxynaphthyl.
  • the chemical yield and asymmetric yield of this reaction may vary greatly depending on the compound and conditions.
  • phenyl although the asymmetric yield did not decrease so much even when methoxy, nitro, or isobutyl was substituted at the 4-position in Non-Patent Document 1, diastereomeric excess was observed in the compound in which phenyl was changed to 6-methoxynaphthyl. The rate dropped to 80% de.
  • R in Non-Patent Documents 3 to 5, m is 0 in a reaction using a racemic carboxylic acid (m is 0, 1 or 2) in which R is phthaloylamino- (CH 2 ) m —.
  • the problem to be solved by the present invention is to provide a method for producing optically active carboxylic acid from racemic carboxylic acid with a normal production facility at a good yield and at a low cost.
  • the present inventors have conducted intensive research. As a result, the racemic carboxylic acid of the formula (2) is dehydrated into a ketene compound, reacted with D-(-)-pantolactone, and hydrolyzed.
  • the present invention was completed by finding that the optically active carboxylic acid of the formula (1) was produced with high yield and asymmetric yield.
  • the present invention is as follows.
  • [1] A process for producing an optically active carboxylic acid of the formula (1) by dehydrating the carboxylic acid of the formula (2) into a ketene compound, reacting with D-( ⁇ )-pantolactone and hydrolyzing it.
  • [2] A process for producing an optically active carboxylic acid of the formula (1) by reacting a ketene compound of the formula (2a) with D-( ⁇ )-pantolactone and hydrolyzing it.
  • R 1 , R 2 and R 3 have the same meanings as described above.
  • Alkyl includes, for example, C 1-6 , preferably C 1-4 linear or branched alkyl, specifically methyl, ethyl, propyl, isopropyl, isobutyl, t-butyl, pentyl, And hexyl.
  • C 0-4 denotes an alkyl carbon number of 0, 1, 2, 3 or 4 in the C 0-4 alkyl etc., it means a hydrogen atom and alkyl 0 carbon atoms (alkenyl, alkynyl, The same meaning is also applied to cycloalkyl and the like).
  • Cycloalkyl includes, for example, C 3-8 , preferably C 3-6 cycloalkyl, specifically, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl.
  • halogen atom include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a fluorine atom or a chlorine atom.
  • aryl examples include phenyl and naphthyl, with phenyl being particularly preferred.
  • heterocyclic group include a 4- to 8-membered non-aromatic heterocyclic group containing 1 or 2 heteroatoms independently selected from an oxygen atom, a sulfur atom and a nitrogen atom.
  • Examples of the “4- to 8-membered nitrogen-containing heterocyclic group” include heterocyclic groups containing a 4- to 8-membered nitrogen atom among the above heterocyclic groups.
  • Examples of the “6- to 8-membered bicyclo nitrogen-containing heterocyclic group” include cyclohexanothiazolyl, dihydrothiazolopyridinyl, thiazolopyridinyl and the like.
  • the sulfur atom may be oxidized with 1 or 2 oxygen atoms.
  • Heteroaryl includes 5- or 6-membered heteroaryl containing 1 to 4 heteroatoms independently selected from oxygen, sulfur and nitrogen atoms, specifically furyl, thienyl, Examples include pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, triazolyl, oxadiazolyl, thiazolyl, thiadiazolyl, tetrazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl and the like.
  • Cyclic amino includes a “heterocyclic group” having a nitrogen atom and a group substituted with the nitrogen atom. Specific examples include pyrrolidinyl, piperidinyl, azepanyl, piperazinyl, homopiperazinyl, morpholinyl, thiomorpholinyl and the like.
  • substituent of “substituted aryl”, “substituted heteroaryl”, “substituted cycloalkyl” and “substituted heterocyclic group” in R 1 a hydroxyl group, a halogen atom, cyano, nitro, vinyl, ethynyl, methoxy, OCF n H 3-n , —N (C 0-2 alkyl) (C 0-2 alkyl), CHO, C 1-2 alkyl [alkyl is a halogen atom, hydroxyl group, cyano, methoxy, —N (C 0-2 alkyl) ) (C 0-2 alkyl), optionally substituted with 1 to 5 substituents independently selected from the group of —SOCH 3 and —SO 2 CH 3 ], and the like.
  • One or two substituents may be substituted.
  • the two substituents may be bonded together to form a carbonyl group, or may be condensed with a bonded ring after forming a carbocyclic or heterocyclic ring. .
  • substituents of “substituted alkyl”, “substituted cycloalkyl”, “substituted aryl” and “substituted heteroaryl” in R 2 include a halogen atom, cyano, nitro, hydroxyl group, C 1-2 alkoxy, —N (C 0-2 alkyl) (C 0-2 alkyl), C 1-2 alkyl, CF n H 3-n , aryl, heteroaryl, —COC 1-2 alkyl, —CON (C 0-2 alkyl) (C 0 -2 alkyl), CH 3 , SOCH 3 , SO 2 CH 3 , —SO 2 N (C 0-2 alkyl) (C 0-2 alkyl), etc., and the substituent is independently 1 to 6 May be substituted.
  • Examples of the “aromatic ring” include benzene and naphthalene, and benzene is particularly preferable.
  • Examples of the “heteroaromatic ring” include a 5- or 6-membered heteroaromatic ring containing 1 to 4 heteroatoms independently selected from an oxygen atom, a sulfur atom and a nitrogen atom. Thiophene, pyrrole, pyrazole, imidazole, oxazole, isoxazole, triazole, oxadiazole, thiazole, thiadiazole, tetrazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine and the like.
  • Examples of the “carbocycle” include C 3-8 , preferably C 3-6 cycloalkane, and specifically include cyclopropane, cyclobutane, cyclopentane, cyclohexane or cycloheptane.
  • heterocycle examples include a 4- to 8-membered non-aromatic heterocycle containing 1 or 2 heteroatoms independently selected from an oxygen atom, a sulfur atom and a nitrogen atom, specifically, an oxetane , Tetrahydrofuran, tetrahydropyran, tetrahydrothiophene, tetrahydrothiopyran, azetidine, pyrrolidine, piperidine, azepane, dioxolane, piperazine, homopiperazine, morpholine, thiomorpholine and the like.
  • the sulfur atom may be oxidized with 1 or 2 oxygen atoms.
  • heterocyclic ring or heterocyclic ring formed with —N ⁇ C— to which T is bonded include 2-pyrazinyl, 2-thiazolyl and 3-pyrazolyl.
  • each of R 4 and R 5 is preferably independently a hydrogen atom, methyl or fluoro.
  • each of R 4 and R 5 is preferably independently hydrogen or C 1-2 alkyl.
  • Particularly preferred examples of the ring substituted with R 4 and R 5 include 2-pyrazinyl, 5-fluoro-2-thiazolyl, 1-methyl-1H-pyrazol-3-yl.
  • R 1 examples include cycloalkyl, hydroxycycloalkyl, oxocycloalkyl, tetrahydropyranyl and the like.
  • R 2 examples include methyl, cyclopropyl, cyclobutyl and the like.
  • Preferred examples of the optically active phenylacetamide derivative of the formula (4) include (2R) -2- (4-cyclobutanesulfonylphenyl) -N-pyrazin-2-yl-3- (tetrahydropyran-4-yl).
  • Examples of the “pharmaceutically acceptable salt” include inorganic acid salts such as hydrochloride, sulfate, phosphate or hydrobromide, or acetate, fumarate, oxalate, citrate, methane Organic acid salts such as sulfonate, benzenesulfonate, tosylate or maleate are listed. Moreover, when it has a substituent such as carboxyl, examples of the salt include salts with bases such as alkali metal salts such as sodium salt or potassium salt or alkaline earth metal salts such as calcium salt. Pharmacologically acceptable salts also include internal salts and can be in the form of solvates such as hydrates thereof.
  • the optically active carboxylic acid of the formula (1) is produced by dehydrating the carboxylic acid of the formula (2) to form a ketene compound, reacting with D-(-)-pantolactone and hydrolyzing.
  • R 1 , R 2 and R 3 have the same meanings as described above.
  • Various known methods can be applied to dehydrate the racemic carboxylic acid of formula (2) to form a ketene compound.
  • the carboxylic acid can be converted into an acid chloride and subsequently treated with a base.
  • An acid chloride can be obtained by, for example, reacting a chlorinating agent in a reaction solvent at a temperature from 0 ° C.
  • the chlorinating agent examples include phosphorus oxychloride, thionyl chloride, oxalyl chloride and the like.
  • the amount used is, for example, 1 to 2 equivalents based on the racemic carboxylic acid, or the reaction is carried out using a large excess in combination with a solvent. However, it is preferably 1 to 1.2 equivalents.
  • an excess chlorinating agent it may be distilled off after completion of the reaction and replaced with the solvent used in the next step, but when a small excess amount that does not adversely affect the next step is used, It can be used for the next reaction without distilling off the solvent.
  • DMF dimethylformamide
  • Any reaction solvent can be used as long as it can dissolve raw materials, reagents and the like and does not adversely affect the reaction.
  • hydrocarbon solvents hexane, heptane, benzene, toluene, chlorobenzene, etc.
  • Halogen solvents methylene chloride, chloroform, 1,2-dichloroethane, etc.
  • ether solvents diethyl ether, tetrahydrofuran (THF), dioxane, etc.
  • Preferable solvents include methylene chloride, toluene, THF and the like.
  • the subsequent treatment with a base can be carried out by adding the base as it is to the reaction solution of the above reaction.
  • the base include tertiary amines (triethylamine, trimethylamine, dimethylethylamine, N-methylmorpholine, tetramethylethylenediamine, 1,4-diazabicyclo [2.2.2.] Octane, etc.) and the like.
  • the amount of the base used is, for example, 2 to 5 equivalents, preferably 2.1 to 3 equivalents with respect to the racemic carboxylic acid.
  • An example of a reaction temperature is ⁇ 50 to 30 ° C., preferably ⁇ 20 to 15 ° C.
  • the reaction of the produced ketene compound and D-(-)-pantolactone can be carried out, for example, by adding D-(-)-pantolactone as it is to the reaction solution of the above reaction.
  • the amount of D-( ⁇ )-pantolactone used is, for example, 1.1 to 2 equivalents, preferably 1.2 to 1.5 equivalents, relative to the racemic carboxylic acid.
  • Examples of the reaction temperature include ⁇ 100 to 30 ° C., but it is preferable to start the reaction at a temperature of ⁇ 78 to 0 ° C. and gradually raise the temperature. Subsequently, isolation and purification can be performed by conventional methods.
  • D-(-)-pantolactone is represented by the following structural formula and is also called (R) -pantolactone.
  • the optically active carboxylic acid of the formula (1) can be produced by hydrolyzing and purifying the resulting D-( ⁇ )-pantolactone ester. Hydrolysis is preferably performed under conditions that do not cause isomerization at the asymmetric carbon site as much as possible.
  • the hydrolysis method include, for example, an alkali hydroxide (lithium hydroxide, lithium hydroxide) in a mixed solvent of alcohol solvent (methanol, ethanol, etc.) or ether solvent (THF, dioxane, etc.) and water in the presence of hydrogen peroxide. And a method of treating with sodium hydroxide, potassium hydroxide, etc.).
  • the amount of hydrogen peroxide to be used is 0.1 to 5 equivalents, preferably 1 to 3 equivalents, relative to D-(-)-pantolactone ester.
  • the amount of alkali hydroxide used is, for example, 1 to 3 equivalents, preferably 1 to 1.5 equivalents.
  • the reaction temperature include ⁇ 5 ° C. to 30 ° C. Subsequently, isolation and purification can be performed by conventional methods. Further, by performing recrystallization, unnecessary isomers by-produced can be separated and removed.
  • the pantolactone ester can be hydrolyzed without racemization by a method of treating with various acids in the presence of water. Examples of the acid used include acetic acid, sulfuric acid, hydrochloric acid, hydrobromic acid, and mixtures thereof. Examples of the reaction temperature include 0 ° C. to 100 ° C.
  • the optically active carboxylic acid of formula (1) is subsequently condensed with an amine of formula (3) to produce a phenylacetamide derivative of formula (4) or a pharmaceutically acceptable salt thereof.
  • R 1 , R 2 , R 3 , R 4 , R 5 and T are as defined above].
  • Patent Document 1 mentioned above. 10 to 10 are described in detail together with many examples, and can be easily produced by referring to these descriptions.
  • Reference example 1 (4-Cyclopropylsulfanylphenyl) -hydroxyacetic acid ethyl ester
  • a solution of aluminum chloride (127.7 g) in chlorobenzene (480 mL) was added dropwise at 30 ° C. over 15 minutes, followed by cyclopropylphenyl sulfide.
  • a solution of (80.0 g) in chlorobenzene (160 mL) was added dropwise over 15 minutes, and the mixture was stirred at the same temperature for 4 hours.
  • Reference example 2 (4-Cyclopropylsulfanylphenyl) -acetic acid ethyl ester Boron trifluoride diethyl ether was added to a solution of (4-cyclopropylsulfanylphenyl) -hydroxyacetic acid ethyl ester (6.9 g) and triethylsilane (5.2 mL) prepared in Reference Example 1 in methylene chloride (100 mL) under ice-cooling. (3.8 mL) was added, and the mixture was stirred at room temperature for 17 hours.
  • Triethylsilane (5.2 mL) and boron trifluoride diethyl ether (3.8 mL) were sequentially added, and the mixture was further stirred at room temperature for 26 hours.
  • the reaction solution was added to saturated aqueous sodium hydrogen carbonate solution (50 mL), and after liquid separation, the organic layer was washed successively with water (25 mL) and saturated brine (25 mL), and dried (magnesium sulfate).
  • the residue obtained by evaporating the solvent under reduced pressure was purified by silica gel column chromatography (ethyl acetate-hexane (1: 4 to 1: 1)) to obtain the title compound (5.3 g).
  • Reference example 3 (4-Cyclopropylsulfanylphenyl) -acetic acid ethyl ester
  • the ester of Reference Example 2 can also be produced by the following method.
  • Patent Document 9 (4-cyclopropylsulfanylphenyl) -oxoacetic acid ethyl ester
  • boron trifluoride diethyl ether (1.5 mL)
  • the reaction mixture is added to a 7% aqueous sodium hydrogen carbonate solution (15 mL), and the layers are separated.
  • Reference example 4 2- (4-Cyclopropylsulfanylphenyl) -3- (4-tetrahydropyranyl) -propionic acid ethyl ester
  • 4-cyclopropylsulfanylphenyl) -acetic acid ethyl ester (2.4 g) prepared in Reference Example 2 in THF (50 mL) was added 1M lithium hexamethyldisilazide THF solution (10.9 mL) at ⁇ 13 ° C. The mixture was stirred at the same temperature for 1 hour.
  • Patent Document 6 A solution of 4-tetrahydropyranylmethyl iodide (Patent Document 6; 2.9 g) in toluene (10 mL) and N, N′-dimethylpropyleneurea (1.8 mL) were added, and the mixture was warmed to room temperature and stirred for 2 hours. . Saturated aqueous ammonium chloride solution (20 mL) was added to the reaction mixture, and the mixture was extracted with ethyl acetate (50 mL). The organic layer was washed successively with water (20 mL) and saturated brine (20 mL), dried (magnesium sulfate), and the solvent was evaporated under reduced pressure to give a residue.
  • Patent Document 6 A solution of 4-tetrahydropyranylmethyl iodide (Patent Document 6; 2.9 g) in toluene (10 mL) and N, N′-dimethylpropyleneurea (1.8 mL) were added, and the mixture was
  • a 10% aqueous sodium sulfite solution (5 mL) was added to the reaction mixture, and the mixture was stirred at room temperature for 30 minutes.
  • a 10% aqueous sodium carbonate solution (10 mL) was added, and the mixture was extracted with methylene chloride (30 mL).
  • the organic layer was washed successively with water (10 mL) and saturated brine (10 mL), dried (magnesium sulfate), and the residue obtained by evaporating the solvent under reduced pressure was directly used in the next reaction.
  • the residue was dissolved in ethanol (18 mL), 2M aqueous sodium hydroxide solution (2.5 mL) was added under ice cooling, and the mixture was warmed to room temperature and stirred for 14 hr.
  • Reference Example 6 2- (4-Cyclopropylsulfonylphenyl) -3- (4-tetrahydropyranyl) -propionic acid
  • the racemic carboxylic acid of Reference Example 5 can also be produced by the following method. To a solution of (4-cyclopropylsulfanylphenyl) -acetic acid ethyl ester (1.7 g) prepared in Reference Example 2 in acetone (26 mL), a solution of Oxone (registered trademark: 6.0 g) in water (17 mL) at room temperature. Was dripped.
  • the precipitated inorganic salt was filtered, and 20% aqueous sodium thiosulfate solution (2 mL) and 7% aqueous sodium hydrogen carbonate solution (20 mL) were sequentially added to the filtrate, and ethyl acetate (50 mL) was added. After liquid separation, the aqueous layer was extracted twice with ethyl acetate (20 mL). The organic layers were combined, washed with saturated brine, dried (magnesium sulfate), evaporated under reduced pressure, and the resulting residue was subjected to silica gel column chromatography (ethyl acetate-hexane (1: 6 to 1: 1)).
  • Example 1 (R) -2- (4-Cyclopropylsulfonylphenyl) -3- (4-tetrahydropyranyl) -propionic acid
  • 2- (4-cyclopropylsulfonylphenyl) -3- (4-tetrahydropyranyl) -propionic acid 5.0 g
  • DMF 32 mg
  • Reference Example 5 methylene chloride
  • 20 Oxalyl chloride 1.5 mL was added at ° C and stirred at the same temperature for 2 hours.
  • the reaction mixture was cooled to ⁇ 15 ° C., dimethylethylamine (5.3 mL) was added, and the mixture was stirred for 30 min.
  • reaction solution was cooled to ⁇ 78 ° C., and a solution of D-( ⁇ )-pantolactone (2.5 g) in methylene chloride (30 mL) was added dropwise over 20 minutes, and the same temperature was maintained for 30 minutes and at ⁇ 60 ° C. for 2 hours.
  • the mixture was stirred at ⁇ 40 ° C. for 17 hours and further at 20 ° C. for 2 hours.
  • Water (50 mL) was added to the reaction mixture, the organic layer was separated, washed with saturated brine (30 mL), dried (magnesium sulfate), evaporated under reduced pressure, and the resulting residue was used as is. Used for the reaction.
  • the above residue was dissolved in methanol (100 mL), 30% aqueous hydrogen peroxide solution (4.5 mL) and 4M aqueous lithium hydroxide solution (4.4 mL) were successively added under ice-cooling, and the mixture was stirred at the same temperature for 3 hr. A 10% aqueous sodium sulfite solution (90 mL) was added, and the mixture was stirred at room temperature for 1 hour.
  • optically active carboxylic acid can be produced from racemic carboxylic acid with ordinary production equipment at a good yield and at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Disclosed is a process for producing an optically active carboxylic acid from a racemic carboxylic acid in a conventional production facility with high efficiency and at low cost.  Specifically disclosed is a process for producing an optically active carboxylic acid represented by formula (1).  The process comprises: dehydrating a carboxylic acid represented by formula (2) to produce a ketene compound; and reacting the ketene compound with D-(-)-pantolactone to hydrolyze the ketene compound. [In the formulae, R1 represents an aryl which may be substituted, a heteroaryl which may be substituted, a cycloalkyl which may be substituted, or a heterocyclic group which may be substituted; R2 represents an alkyl which may be substituted, a cycloalkyl which may be substituted, an aryl which may be substituted, a heteroaryl which may be substituted, -N(C0-2-alkyl)(C0-2-alkyl) or a cyclic amino; and R3 represents a hydrogen atom, a halogen atom or a trifluoromethyl.

Description

光学活性カルボン酸の製造方法Process for producing optically active carboxylic acid
 本発明はラセミカルボン酸から光学活性カルボン酸を製造する方法に関する。 The present invention relates to a method for producing optically active carboxylic acid from racemic carboxylic acid.
 グルコキナーゼ活性化作用を有し、糖尿病治療剤として有用な化合物として、下式で示されるフェニル酢酸アミド誘導体等が知られている(特許文献1~10)。
Figure JPOXMLDOC01-appb-I000005
[式中、Rは、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいシクロアルキル、又は置換されていてもよい複素環基を表す。
 Rは、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよいアリール、置換されていてもよいヘテロアリール、-N(C0-2アルキル)(C0-2アルキル)又は環状アミノを表す。
 Rは、水素原子、ハロゲン原子又はトリフルオロメチルを表す。
 R及びRは、独立して水素原子、ハロゲン原子、OCF3-n、メトキシ、CO、シアノ、ニトロ、CHO、CONR、CON(OCH)CHを表すか、又はC1-2アルキル、ヘテロアリール又はC3-7シクロアルキル〔これらの基は、ハロゲン原子、水酸基、シアノ、メトキシ、-NHCOCH及び-N(C0-2アルキル)(C0-2アルキル)の群から独立して任意に選択される1~5個の置換基で置換されていてもよい〕を表すか、又はR及びRは共に結合してカルボニル基を形成するか、または5~8員の芳香族環、複素芳香族環、炭素環若しくは複素環を形成した後、Tおよび-N=C-が形成する環と縮合する。
 Rは、水素原子を表すか、又はC1-4アルキル、C2-4アルケニル、C2-4アルキニル、C3-7シクロアルキル、アリール、ヘテロアリール又は4~7員複素環基〔これらの基は、ハロゲン原子、シアノ、ニトロ、水酸基、C1-2アルコキシ、-N(C0-2アルキル)(C0-2アルキル)、C1-2アルキル、C3-7シクロアルキル、4~7員複素環基、CF3-n、アリール、ヘテロアリール、COH、-COC1-2アルキル、-CON(C0-2アルキル)(C0-2アルキル)、SOCH、SOCH及び-SON(C0-2アルキル)(C0-2アルキル)の群から独立して任意に選択される1~6個の置換基で置換されていてもよい〕を表す。
 R及びRは、独立して、水素原子を表すか、又はC1-4アルキル、C3-7シクロアルキル、アリール、ヘテロアリール又は4~7員複素環基〔これらの基は、ハロゲン原子、シアノ、ニトロ、水酸基、C1-2アルコキシ、-N(C0-2アルキル)(C0-2アルキル)、C1-2アルキル、C3-7シクロアルキル、4~7員複素環基、CF3-n、アリール、ヘテロアリール、COC1-2アルキル、-CON(C0-2アルキル)(C0-2アルキル)、SOCH、SOCH及び-SON(C0-2アルキル)(C0-2アルキル)の群から独立して任意に選択される1~6個の置換基で置換されていてもよい〕を表すか、又はR及びRが結合してそれらが結合するN原子と共に6~8員ビシクロ含窒素複素環基又は4~8員含窒素複素環基〔これらの基は、C1-2アルキル、CHOCH、COC0-2アルキル、水酸基及びSOCHの群から独立して任意に選択される1~2個の置換基で置換されていてもよい〕を形成する。
 nは、1、2又は3を表す。
 Tは、それが結合している-N=C-と共に複素芳香族環又は複素環〔N=C結合のみが不飽和部位である〕を表す。]
A phenylacetamide derivative represented by the following formula is known as a compound having a glucokinase activating action and useful as a therapeutic agent for diabetes (Patent Documents 1 to 10).
Figure JPOXMLDOC01-appb-I000005
[Wherein, R 1 represents an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted cycloalkyl, or an optionally substituted heterocyclic group.
R 2 is an optionally substituted alkyl, an optionally substituted cycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, —N (C 0-2 alkyl) (C 0 -2 alkyl) or cyclic amino.
R 3 represents a hydrogen atom, a halogen atom or trifluoromethyl.
R 4 and R 5 independently represent a hydrogen atom, a halogen atom, OCF n H 3-n , methoxy, CO 2 R 6 , cyano, nitro, CHO, CONR 7 R 8 , CON (OCH 3 ) CH 3 Or C 1-2 alkyl, heteroaryl or C 3-7 cycloalkyl [these groups are halogen atoms, hydroxyl groups, cyano, methoxy, —NHCO 2 CH 3 and —N (C 0-2 alkyl) (C Or optionally substituted with 1 to 5 substituents independently selected from the group of 0-2 alkyl), or R 4 and R 5 are bonded together to form a carbonyl group Or after forming a 5- to 8-membered aromatic, heteroaromatic, carbocyclic or heterocyclic ring, it is condensed with the ring formed by T and -N = C-.
R 6 represents a hydrogen atom, or C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, C 3-7 cycloalkyl, aryl, heteroaryl or a 4- to 7-membered heterocyclic group [these Groups of: halogen atom, cyano, nitro, hydroxyl group, C 1-2 alkoxy, —N (C 0-2 alkyl) (C 0-2 alkyl), C 1-2 alkyl, C 3-7 cycloalkyl, 4 To 7-membered heterocyclic group, CF n H 3-n , aryl, heteroaryl, CO 2 H, —COC 1-2 alkyl, —CON (C 0-2 alkyl) (C 0-2 alkyl), SOCH 3 , Optionally substituted with 1 to 6 substituents independently selected from the group of SO 2 CH 3 and —SO 2 N (C 0-2 alkyl) (C 0-2 alkyl)] To express.
R 7 and R 8 independently represent a hydrogen atom, or C 1-4 alkyl, C 3-7 cycloalkyl, aryl, heteroaryl or a 4- to 7-membered heterocyclic group [these groups are halogen Atom, cyano, nitro, hydroxyl group, C 1-2 alkoxy, —N (C 0-2 alkyl) (C 0-2 alkyl), C 1-2 alkyl, C 3-7 cycloalkyl, 4-7 membered heterocycle Groups, CF n H 3-n , aryl, heteroaryl, COC 1-2 alkyl, —CON (C 0-2 alkyl) (C 0-2 alkyl), SOCH 3 , SO 2 CH 3 and —SO 2 N ( C 0-2 alkyl) (optionally substituted with 1 to 6 substituents independently selected from the group of C 0-2 alkyl), or R 7 and R 8 are 6-8 together with the N atom to which they are bonded Bicyclo nitrogen-containing heterocyclic group or a 4-8-membered nitrogen-containing Hajime Tamaki [these groups, C 1-2 alkyl, independently from the group consisting of CH 2 OCH 3, COC 0-2 alkyl, hydroxyl and SO 2 CH 3 Optionally substituted with 1 to 2 substituents optionally selected].
n represents 1, 2 or 3.
T represents a heteroaromatic ring or a heterocyclic ring together with —N═C— to which it is bonded [only the N═C bond is an unsaturated site]. ]
 本フェニル酢酸アミド誘導体は不斉炭素(*印)を有しており、本不斉炭素に関する光学異性体のうちでR-CH基(以下、R-メチル基)が図に示した構造式においてβ配位の異性体が高いグルコキナーゼ活性を有していることが知られている。
 R-メチル基がβ配位である光学活性フェニル酢酸アミド誘導体の製造方法については、例えば特許文献1、5及び9等に記載されている。特許文献1では、式(2)のラセミカルボン酸を(R)-(+)-4-ベンジル-2-オキサゾリジノンと反応させてジアステレオ混合物のイミドとし、カラムクロマトグラフィーで分離後、加水分解することで式(1)の光学活性カルボン酸を製造し、さらにアミド化することで光学活性フェニル酢酸アミド誘導体を製造している。
Figure JPOXMLDOC01-appb-I000006
[式中、R、R及びRは前記と同義である。]
また、式(2)のラセミカルボン酸のままでラセミ体であるフェニル酢酸アミド誘導体まで導いて、キラルHPLCで分離する方法も記載されている。しかし、これらの方法は、カラムクロマトグラフィーを使用するため大量製造には適しておらず、ラセミ体から一方の光学異性体のみ取り出すことから収率が50%を超えることはない。
 特許文献5では、下記の通り、ベンジル位が無置換のフェニル酢酸化合物と(1R,2R)-(-)-シュードエフェドリンとのアミド化合物をアルキル化後、加水分解することで不斉誘導を試みている。しかし、不斉収率については記載されていない。
Figure JPOXMLDOC01-appb-I000007
また、特許文献8及び10でも同様な反応が報告されている。しかし、いずれの特許文献にも不斉誘導の程度については記載されていない。
 特許文献9では、オレフィン化合物を不斉触媒存在下、水素添加することで、光学活性カルボン酸を製造している。
Figure JPOXMLDOC01-appb-I000008
[式中、Rは前記と同義である。]
しかし、50バールの高い水素圧を必要とするために通常の製造設備では製造できないという問題があり、また使用する触媒、不斉配位子は共に高価である。
The phenylacetamide derivative has an asymmetric carbon (marked with *), and among the optical isomers related to the asymmetric carbon, R 1 —CH 2 group (hereinafter, R 1 -methyl group) is shown in the figure. It is known that β-coordinate isomers in the structural formula have high glucokinase activity.
A method for producing an optically active phenylacetamide derivative in which the R 1 -methyl group is β-coordinated is described in, for example, Patent Documents 1, 5 and 9. In Patent Document 1, a racemic carboxylic acid of formula (2) is reacted with (R)-(+)-4-benzyl-2-oxazolidinone to form an imide of a diastereo mixture, which is separated by column chromatography and then hydrolyzed. Thus, an optically active carboxylic acid of the formula (1) is produced, and an optically active phenylacetamide derivative is produced by further amidation.
Figure JPOXMLDOC01-appb-I000006
[Wherein, R 1 , R 2 and R 3 have the same meanings as described above. ]
In addition, a method is described in which the racemic carboxylic acid of the formula (2) is used as it is, and a racemic phenylacetamide derivative is introduced and separated by chiral HPLC. However, since these methods use column chromatography, they are not suitable for mass production, and only one optical isomer is extracted from the racemate, so that the yield does not exceed 50%.
In Patent Document 5, as described below, an asymmetric induction is attempted by alkylating and hydrolyzing an amide compound of a phenylacetate compound unsubstituted at the benzyl position and (1R, 2R)-(−)-pseudoephedrine. ing. However, the asymmetric yield is not described.
Figure JPOXMLDOC01-appb-I000007
Patent Documents 8 and 10 also report similar reactions. However, none of the patent documents describes the degree of asymmetric induction.
In Patent Document 9, an optically active carboxylic acid is produced by hydrogenating an olefin compound in the presence of an asymmetric catalyst.
Figure JPOXMLDOC01-appb-I000008
[Wherein, R 2 has the same meaning as described above. ]
However, since a high hydrogen pressure of 50 bar is required, there is a problem that it cannot be produced by ordinary production equipment, and the catalyst and asymmetric ligand used are both expensive.
 非特許文献1~7には、下式等で示されるラセミカルボン酸から誘導されるケテン化合物に、D-(-)-パントラクトン又は乳酸エステルを反応させて、加水分解することによって光学活性カルボン酸を製造する方法が記載されている。
[式中、Rは水素原子、メチル、イソプロピル、フタロイルアミノ-(CH-等である(mは0、1又は2である)。フェニルは無置換若しくはメトキシ、ニトロ、イソブチル等が4位に置換したフェニルであるか、又はメトキシナフチルに変わったもの等である。]
これらの非特許文献によれば、本反応は、化合物及び条件によって化学収率及び不斉収率が大きく変化することがある。例えば、フェニルについて、非特許文献1で4位にメトキシ、ニトロ、イソブチルが置換しても不斉収率はそれほど低下しなかったものの、フェニルを6-メトキシナフチルに変えた化合物ではジアステレオマー過剰率が80%deまで低下した。また、Rについて、非特許文献3~5では、Rがフタロイルアミノ-(CH-であるラセミカルボン酸(mは0、1又は2である)を用いた反応においてmが0の場合(収率88%/ジアステレオマー過剰率94%de)、mが1の場合(収率75%/ジアステレオマー過剰率70%de)、mが2の場合(収率78%/ジアステレオマー過剰率94%de)で、mが1の場合のみ極端に不斉収率が低下した。すなわち、本反応はどの化合物でどの程度の化学収率及び不斉収率が得られるかは当業者が予想することは容易ではなく、Rが環状基であり、スルホニルが置換したフェニルであるラセミカルボン酸で高い不斉誘導が起こるかは不明であった。
Non-Patent Documents 1 to 7 disclose that an optically active carboxylic acid is obtained by reacting a ketene compound derived from a racemic carboxylic acid represented by the following formula or the like with D-(-)-pantolactone or a lactic acid ester and hydrolyzing it. A method for producing an acid is described.
[Wherein, R is a hydrogen atom, methyl, isopropyl, phthaloylamino- (CH 2 ) m —, etc. (m is 0, 1 or 2). Phenyl is unsubstituted or phenyl substituted at the 4-position by methoxy, nitro, isobutyl or the like, or is replaced with methoxynaphthyl. ]
According to these non-patent documents, the chemical yield and asymmetric yield of this reaction may vary greatly depending on the compound and conditions. For example, with respect to phenyl, although the asymmetric yield did not decrease so much even when methoxy, nitro, or isobutyl was substituted at the 4-position in Non-Patent Document 1, diastereomeric excess was observed in the compound in which phenyl was changed to 6-methoxynaphthyl. The rate dropped to 80% de. Regarding R, in Non-Patent Documents 3 to 5, m is 0 in a reaction using a racemic carboxylic acid (m is 0, 1 or 2) in which R is phthaloylamino- (CH 2 ) m —. In the case (yield 88% / diastereomer excess 94% de), m is 1 (yield 75% / diastereomer excess 70% de), m is 2 (yield 78% / dia) Only when m is 1 at a stereomer excess of 94% de), the asymmetric yield was extremely reduced. That is, it is not easy for those skilled in the art to predict what chemical yield and asymmetric yield can be obtained with which compound in this reaction, and racemic compounds in which R is a cyclic group and sulfonyl is substituted phenyl. It was unclear if high asymmetric induction occurred with carboxylic acids.
WO 00/58293WO 00/58293 WO 02/46173WO 02/46173 WO 03/095438WO 03/095438 WO 2004/050645WO 2004/050645 WO 2004/052869WO 2004/052869 WO 2004/072031WO 2004/072031 WO 2005/103021WO 2005/103021 WO 2006/016194WO 2006/016194 WO 2006/016178WO 2006/016178 WO 2007/051846WO 2007/051846
 本発明が解決しようとする課題は、ラセミカルボン酸から通常の製造設備で、収率が良く、安価に光学活性カルボン酸を製造する方法を提供することにある。 The problem to be solved by the present invention is to provide a method for producing optically active carboxylic acid from racemic carboxylic acid with a normal production facility at a good yield and at a low cost.
 前記課題を解決するために本発明者等は鋭意研究を行った結果、式(2)のラセミカルボン酸を脱水してケテン化合物とし、D-(-)-パントラクトンと反応させ、加水分解すると、高い収率及び不斉収率で式(1)の光学活性カルボン酸が製造されることを見出して、本発明を完成した。 In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, the racemic carboxylic acid of the formula (2) is dehydrated into a ketene compound, reacted with D-(-)-pantolactone, and hydrolyzed. The present invention was completed by finding that the optically active carboxylic acid of the formula (1) was produced with high yield and asymmetric yield.
 すなわち、本発明は、下記の通りである。
  [1] 式(2)のカルボン酸を脱水してケテン化合物とし、D-(-)-パントラクトンと反応させ、加水分解することによる式(1)の光学活性カルボン酸の製造方法。
Figure JPOXMLDOC01-appb-I000010
[式中、R、R及びRは前記と同義である。]
  [2] 式(2a)のケテン化合物とD-(-)-パントラクトンとを反応させ、加水分解することによる式(1)の光学活性カルボン酸の製造方法。
Figure JPOXMLDOC01-appb-I000011
[式中、R、R及びRは前記と同義である。]
  [3] 式(2)のカルボン酸を脱水してケテン化合物とし、D-(-)-パントラクトンと反応させ、加水分解して式(1)の光学活性カルボン酸を製造し、続いて式(3)のアミンと縮合することによる、式(4)のフェニル酢酸アミド誘導体又はその薬学上許容される塩の製造方法。
Figure JPOXMLDOC01-appb-I000012
[式中、R、R、R、R、R及びTは前記と同義である。]
  [4] 式(2a)のケテン化合物とD-(-)-パントラクトンとを反応させ、加水分解して式(1)の光学活性カルボン酸を製造し、続いて式(3)のアミンと縮合することによる、式(4)のフェニル酢酸アミド誘導体又はその薬学上許容される塩の製造方法。
Figure JPOXMLDOC01-appb-I000013
[式中、R、R、R、R、R及びTは前記と同義である。]
  [5] Rが4-テトラヒドロピラニルであり、Rがシクロプロピル又はシクロブチルであり、Rが水素原子である[1]~[4]のいずれか記載の製造方法。
That is, the present invention is as follows.
[1] A process for producing an optically active carboxylic acid of the formula (1) by dehydrating the carboxylic acid of the formula (2) into a ketene compound, reacting with D-(−)-pantolactone and hydrolyzing it.
Figure JPOXMLDOC01-appb-I000010
[Wherein, R 1 , R 2 and R 3 have the same meanings as described above. ]
[2] A process for producing an optically active carboxylic acid of the formula (1) by reacting a ketene compound of the formula (2a) with D-(−)-pantolactone and hydrolyzing it.
Figure JPOXMLDOC01-appb-I000011
[Wherein, R 1 , R 2 and R 3 have the same meanings as described above. ]
[3] The carboxylic acid of formula (2) is dehydrated to form a ketene compound, reacted with D-(-)-pantolactone, and hydrolyzed to produce an optically active carboxylic acid of formula (1). A method for producing a phenylacetamide derivative of formula (4) or a pharmaceutically acceptable salt thereof by condensing with an amine of (3).
Figure JPOXMLDOC01-appb-I000012
[Wherein, R 1 , R 2 , R 3 , R 4 , R 5 and T are as defined above]. ]
[4] A ketene compound of the formula (2a) and D-(−)-pantolactone are reacted and hydrolyzed to produce an optically active carboxylic acid of the formula (1), followed by an amine of the formula (3) and A process for producing a phenylacetamide derivative of formula (4) or a pharmaceutically acceptable salt thereof by condensation.
Figure JPOXMLDOC01-appb-I000013
[Wherein, R 1 , R 2 , R 3 , R 4 , R 5 and T are as defined above]. ]
[5] The production method according to any one of [1] to [4], wherein R 1 is 4-tetrahydropyranyl, R 2 is cyclopropyl or cyclobutyl, and R 3 is a hydrogen atom.
 「アルキル」としては、例えばC1-6、好ましくはC1-4の直鎖又は分枝鎖アルキルが挙げられ、具体的にはメチル、エチル、プロピル、イソプロピル、イソブチル、t-ブチル、ペンチル、ヘキシル等が挙げられる。また、C0-4アルキル等におけるC0-4は炭素数が0、1、2、3又は4であるアルキルを意味し、炭素数0のアルキルとは水素原子を意味する(アルケニル、アルキニル、シクロアルキル等においても同様の意味を表す)。
 「シクロアルキル」としては、例えばC3-8、好ましくはC3-6のシクロアルキルが挙げられ、具体的にはシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル又はシクロヘプチルが挙げられる。
 「ハロゲン原子」としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子が挙げられ、好ましくはフッ素原子又は塩素原子が挙げられる。
“Alkyl” includes, for example, C 1-6 , preferably C 1-4 linear or branched alkyl, specifically methyl, ethyl, propyl, isopropyl, isobutyl, t-butyl, pentyl, And hexyl. Also, C 0-4 denotes an alkyl carbon number of 0, 1, 2, 3 or 4 in the C 0-4 alkyl etc., it means a hydrogen atom and alkyl 0 carbon atoms (alkenyl, alkynyl, The same meaning is also applied to cycloalkyl and the like).
“Cycloalkyl” includes, for example, C 3-8 , preferably C 3-6 cycloalkyl, specifically, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl.
Examples of the “halogen atom” include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a fluorine atom or a chlorine atom.
 「アリール」としては、例えばフェニル、ナフチルが挙げられ、特にフェニルが好ましい。
 「複素環基」としては、酸素原子、硫黄原子及び窒素原子から独立して選択される1又は2個のヘテロ原子を含有する4~8員非芳香族複素環基が挙げられ、具体的にはオキセタニル、テトラヒドロフリル、テトラヒドロピラニル、テトラヒドロチエニル、テトラヒドロチオピラニル、アゼチニル、ピロリジニル、ピペリジニル、アゼパニル、ジオキソラニル、ピペラジニル、ホモピペラジニル、モルホリニル、チオモルホリニル等が挙げられる。「4~8員含窒素複素環基」としては、上記複素環基のうち4~8員の窒素原子を含有する複素環基が挙げられる。「6~8員ビシクロ含窒素複素環基」としては、シクロヘキサノチアゾリル、ジヒドロチアゾロピリジニル、チアゾロピリジニル等が挙げられる。なお、硫黄原子を含む複素環基では、当該硫黄原子が1又は2個の酸素原子で酸化されていてもよい。
 「ヘテロアリール」としては、酸素原子、硫黄原子及び窒素原子から独立して選択される1~4個のヘテロ原子を含有する5又は6員ヘテロアリールが挙げられ、具体的にはフリル、チエニル、ピロリル、ピラゾリル、イミダゾリル、オキサゾリル、イソオキサゾリル、トリアゾリル、オキサジアゾリル、チアゾリル、チアジアゾリル、テトラゾリル、ピリジル、ピリダジニル、ピリミジニル、ピラジニル、トリアジニル等が挙げられる。
 「環状アミノ」としては、窒素原子を有する「複素環基」であって、当該窒素原子にて置換する基が挙げられる。具体的には、ピロリジニル、ピペリジニル、アゼパニル、ピペラジニル、ホモピペラジニル、モルホリニル、チオモルホリニル等が挙げられる。
Examples of “aryl” include phenyl and naphthyl, with phenyl being particularly preferred.
Examples of the “heterocyclic group” include a 4- to 8-membered non-aromatic heterocyclic group containing 1 or 2 heteroatoms independently selected from an oxygen atom, a sulfur atom and a nitrogen atom. May be oxetanyl, tetrahydrofuryl, tetrahydropyranyl, tetrahydrothienyl, tetrahydrothiopyranyl, azetinyl, pyrrolidinyl, piperidinyl, azepanyl, dioxolanyl, piperazinyl, homopiperazinyl, morpholinyl, thiomorpholinyl and the like. Examples of the “4- to 8-membered nitrogen-containing heterocyclic group” include heterocyclic groups containing a 4- to 8-membered nitrogen atom among the above heterocyclic groups. Examples of the “6- to 8-membered bicyclo nitrogen-containing heterocyclic group” include cyclohexanothiazolyl, dihydrothiazolopyridinyl, thiazolopyridinyl and the like. In the heterocyclic group containing a sulfur atom, the sulfur atom may be oxidized with 1 or 2 oxygen atoms.
“Heteroaryl” includes 5- or 6-membered heteroaryl containing 1 to 4 heteroatoms independently selected from oxygen, sulfur and nitrogen atoms, specifically furyl, thienyl, Examples include pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, triazolyl, oxadiazolyl, thiazolyl, thiadiazolyl, tetrazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl and the like.
“Cyclic amino” includes a “heterocyclic group” having a nitrogen atom and a group substituted with the nitrogen atom. Specific examples include pyrrolidinyl, piperidinyl, azepanyl, piperazinyl, homopiperazinyl, morpholinyl, thiomorpholinyl and the like.
 Rにおける「置換アリール」、「置換ヘテロアリール」、「置換シクロアルキル」及び「置換複素環基」の各置換基としては、水酸基、ハロゲン原子、シアノ、ニトロ、ビニル、エチニル、メトキシ、OCF3-n、-N(C0-2アルキル)(C0-2アルキル)、CHO、C1-2アルキル〔アルキルは、ハロゲン原子、水酸基、シアノ、メトキシ、-N(C0-2アルキル)(C0-2アルキル)、-SOCH及び-SOCHの群から独立して任意に選択される1~5個の置換基で置換されていてもよい〕等が挙げられ、当該置換基は1又は2個置換していてもよい。また、当該置換基が2個存在する場合は、2個の置換基が共に結合してカルボニル基を形成するか、または炭素環若しくは複素環を形成した後、結合する環と縮合してもよい。
 Rにおける「置換アルキル」、「置換シクロアルキル」、「置換アリール」及び「置換ヘテロアリール」の各置換基としては、ハロゲン原子、シアノ、ニトロ、水酸基、C1-2アルコキシ、-N(C0-2アルキル)(C0-2アルキル)、C1-2アルキル、CF3-n、アリール、ヘテロアリール、-COC1-2アルキル、-CON(C0-2アルキル)(C0-2アルキル)、CH、SOCH、SOCH、-SON(C0-2アルキル)(C0-2アルキル)等が挙げられ、当該置換基は独立して1~6個置換していてもよい。
As each substituent of “substituted aryl”, “substituted heteroaryl”, “substituted cycloalkyl” and “substituted heterocyclic group” in R 1 , a hydroxyl group, a halogen atom, cyano, nitro, vinyl, ethynyl, methoxy, OCF n H 3-n , —N (C 0-2 alkyl) (C 0-2 alkyl), CHO, C 1-2 alkyl [alkyl is a halogen atom, hydroxyl group, cyano, methoxy, —N (C 0-2 alkyl) ) (C 0-2 alkyl), optionally substituted with 1 to 5 substituents independently selected from the group of —SOCH 3 and —SO 2 CH 3 ], and the like. One or two substituents may be substituted. In addition, when two such substituents are present, the two substituents may be bonded together to form a carbonyl group, or may be condensed with a bonded ring after forming a carbocyclic or heterocyclic ring. .
The substituents of “substituted alkyl”, “substituted cycloalkyl”, “substituted aryl” and “substituted heteroaryl” in R 2 include a halogen atom, cyano, nitro, hydroxyl group, C 1-2 alkoxy, —N (C 0-2 alkyl) (C 0-2 alkyl), C 1-2 alkyl, CF n H 3-n , aryl, heteroaryl, —COC 1-2 alkyl, —CON (C 0-2 alkyl) (C 0 -2 alkyl), CH 3 , SOCH 3 , SO 2 CH 3 , —SO 2 N (C 0-2 alkyl) (C 0-2 alkyl), etc., and the substituent is independently 1 to 6 May be substituted.
 「芳香族環」としては、例えばベンゼン、ナフタレンが挙げられ、特にベンゼンが好ましい。
 「複素芳香族環」としては、酸素原子、硫黄原子及び窒素原子から独立して選択される1~4個のヘテロ原子を含有する5又は6員複素芳香環が挙げられ、具体的にはフラン、チオフェン、ピロール、ピラゾール、イミダゾール、オキサゾール、イソオキサゾール、トリアゾール、オキサジアゾール、チアゾール、チアジアゾール、テトラゾール、ピリジン、ピリダジン、ピリミジン、ピラジン、トリアジン等が挙げられる。
 「炭素環」としては、例えばC3-8、好ましくはC3-6のシクロアルカンが挙げられ、具体的にはシクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン又はシクロヘプタンが挙げられる。
 「複素環」としては、酸素原子、硫黄原子及び窒素原子から独立して選択される1又は2個のヘテロ原子を含有する4~8員非芳香族複素環が挙げられ、具体的にはオキセタン、テトラヒドロフラン、テトラヒドロピラン、テトラヒドロチオフェン、テトラヒドロチオピラン、アゼチジン、ピロリジン、ピペリジン、アゼパン、ジオキソラン、ピペラジン、ホモピペラジン、モルホリン、チオモルホリン等が挙げられる。なお、硫黄原子を含む複素環では、当該硫黄原子が1又は2個の酸素原子で酸化されていてもよい。
Examples of the “aromatic ring” include benzene and naphthalene, and benzene is particularly preferable.
Examples of the “heteroaromatic ring” include a 5- or 6-membered heteroaromatic ring containing 1 to 4 heteroatoms independently selected from an oxygen atom, a sulfur atom and a nitrogen atom. Thiophene, pyrrole, pyrazole, imidazole, oxazole, isoxazole, triazole, oxadiazole, thiazole, thiadiazole, tetrazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine and the like.
Examples of the “carbocycle” include C 3-8 , preferably C 3-6 cycloalkane, and specifically include cyclopropane, cyclobutane, cyclopentane, cyclohexane or cycloheptane.
Examples of the “heterocycle” include a 4- to 8-membered non-aromatic heterocycle containing 1 or 2 heteroatoms independently selected from an oxygen atom, a sulfur atom and a nitrogen atom, specifically, an oxetane , Tetrahydrofuran, tetrahydropyran, tetrahydrothiophene, tetrahydrothiopyran, azetidine, pyrrolidine, piperidine, azepane, dioxolane, piperazine, homopiperazine, morpholine, thiomorpholine and the like. In the heterocyclic ring containing a sulfur atom, the sulfur atom may be oxidized with 1 or 2 oxygen atoms.
 「Tが、それが結合している-N=C-と共に形成する複素芳香族環又は複素環」の好ましい例としては、2-ピラジニル、2-チアゾリル及び3-ピラゾリルが挙げられる。当該環が2-ピラジニル又は2-チアゾリルの場合、R及びRの各々は独立して水素原子、メチル又はフルオロであることが好ましい。当該環が3-ピラゾリルの場合、R及びRの各々は独立して水素又はC1-2アルキルであることが好ましい。R及びRで置換された当該環の特に好ましい例としては、2-ピラジニル、5-フルオロ-2-チアゾリル、1-メチル-1H-ピラゾール-3-イルが挙げられる。
 Rの好ましい例としては、シクロアルキル、ヒドロシキシクロアルキル、オキソシクロアルキル、テトラヒドロピラニル等が挙げられる。
 Rの好ましい例としては、メチル、シクロプロピル、シクロブチル等が挙げられる。
Preferable examples of “heteroaromatic ring or heterocyclic ring formed with —N═C— to which T is bonded” include 2-pyrazinyl, 2-thiazolyl and 3-pyrazolyl. When the ring is 2-pyrazinyl or 2-thiazolyl, each of R 4 and R 5 is preferably independently a hydrogen atom, methyl or fluoro. When the ring is 3-pyrazolyl, each of R 4 and R 5 is preferably independently hydrogen or C 1-2 alkyl. Particularly preferred examples of the ring substituted with R 4 and R 5 include 2-pyrazinyl, 5-fluoro-2-thiazolyl, 1-methyl-1H-pyrazol-3-yl.
Preferred examples of R 1 include cycloalkyl, hydroxycycloalkyl, oxocycloalkyl, tetrahydropyranyl and the like.
Preferable examples of R 2 include methyl, cyclopropyl, cyclobutyl and the like.
 式(4)の光学活性フェニル酢酸アミド誘導体で好ましいものとしては、例えば(2R)-2-(4-シクロブタンスルホニルフェニル)-N-ピラジン-2-イル-3-(テトラヒドロピラン-4-イル)プロピオンアミド、(2R)-2-(4-シクロブタンスルホニルフェニル)-N-(1-メチル-1H-ピラゾール-3-イル)-3-(テトラヒドロピラン-4-イル)プロピオンアミド、(2R)-2-(4-シクロブタンスルホニルフェニル)-N-(5-フルオロチアゾール-2-イル)-3-(テトラヒドロピラン-4-イル)プロピオンアミド、(2R)-2-(4-シクロプロパンスルホニルフェニル)-N-(5-フルオロチアゾール-2-イル)-3-(テトラヒドロピラン-4-イル)プロピオンアミド、(2R)-2-(4-シクロプロパンスルホニルフェニル)-N-ピラジン-2-イル-3-(テトラヒドロピラン-4-イル)プロピオンアミド等が挙げられる。 Preferred examples of the optically active phenylacetamide derivative of the formula (4) include (2R) -2- (4-cyclobutanesulfonylphenyl) -N-pyrazin-2-yl-3- (tetrahydropyran-4-yl). Propionamide, (2R) -2- (4-cyclobutanesulfonylphenyl) -N- (1-methyl-1H-pyrazol-3-yl) -3- (tetrahydropyran-4-yl) propionamide, (2R)- 2- (4-Cyclobutanesulfonylphenyl) -N- (5-fluorothiazol-2-yl) -3- (tetrahydropyran-4-yl) propionamide, (2R) -2- (4-cyclopropanesulfonylphenyl) -N- (5-fluorothiazol-2-yl) -3- (tetrahydropyran-4-yl) propionamide, ( R) -2- (4-cyclopropanesulfonylphenyl phenyl) -N- pyrazin-2-yl-3- (tetrahydropyran-4-yl) propionamide, and the like.
 「薬学上許容される塩」としては、例えば塩酸塩、硫酸塩、リン酸塩若しくは臭化水素酸塩等の無機酸塩、又は酢酸塩、フマル酸塩、シュウ酸塩、クエン酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、トシル酸塩若しくはマレイン酸塩等の有機酸塩が挙げられる。また、カルボキシル等の置換基を有する場合には、該塩としては、例えばナトリウム塩若しくはカリウム塩等のアルカリ金属塩又はカルシウム塩等のアルカリ土類金属塩等の塩基との塩が挙げられる。薬理的に許容し得る塩はまた、分子内塩を含み、その水和物等の溶媒和物の形態であることができる。 Examples of the “pharmaceutically acceptable salt” include inorganic acid salts such as hydrochloride, sulfate, phosphate or hydrobromide, or acetate, fumarate, oxalate, citrate, methane Organic acid salts such as sulfonate, benzenesulfonate, tosylate or maleate are listed. Moreover, when it has a substituent such as carboxyl, examples of the salt include salts with bases such as alkali metal salts such as sodium salt or potassium salt or alkaline earth metal salts such as calcium salt. Pharmacologically acceptable salts also include internal salts and can be in the form of solvates such as hydrates thereof.
 式(2)のカルボン酸を脱水してケテン化合物とし、D-(-)-パントラクトンと反応させ、加水分解することで、式(1)の光学活性カルボン酸が製造される。
Figure JPOXMLDOC01-appb-I000014
[式中、R、R及びRは前記と同義である。]
 式(2)のラセミカルボン酸を脱水してケテン化合物とするには、種々の公知の方法を適用することができるが、例えば、カルボン酸を酸塩化物とし、続いて塩基で処理することで実施できる。酸塩化物にするには、例えば反応溶媒中、0℃から反応溶媒の沸点の温度、好ましくは室温~50℃でクロル化剤を作用させることで実施できる。クロル化剤としては、オキシ塩化リン、塩化チオニル、塩化オキザリル等が挙げられ、使用量としては、ラセミカルボン酸に対して、例えば1~2当量用いるか、または溶媒を兼ねて大過剰用いて反応させてもよいが、好ましくは1~1.2当量が挙げられる。過剰のクロル化剤を用いた場合には、反応完結後に留去し、次工程で用いる溶媒に張り替えてもよいが、次工程に悪影響を及ぼさない程度の小過剰量を用いた場合には、溶媒を留去することなく、次の反応に用いることができる。また、クロル化剤として、塩化オキザリルを用いる場合には、ジメチルホルムアミド(DMF)を少量添加することが望ましい。反応溶媒としては、原料、試薬等を溶解することができ、反応に悪影響を与えないものであればいかなるものも使用できるが、例えば、炭化水素系溶媒(ヘキサン、ヘプタン、ベンゼン、トルエン、クロロベンゼン等)、ハロゲン系溶媒(塩化メチレン、クロロホルム、1,2-ジクロロエタン等)、エーテル系溶媒(ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサン等)等が挙げられる。好ましい溶媒としては、塩化メチレン、トルエン、THF等が挙げられる。続く塩基による処理は、上記反応の反応液に塩基をそのまま加えて行うことができる。塩基としては、例えば三級アミン(トリエチルアミン、トリメチルアミン、ジメチルエチルアミン、N-メチルモルホリン、テトラメチルエチレンジアミン、1,4-ジアザビシクロ[2.2.2.]オクタン等)等が挙げられる。塩基の使用量としては、例えばラセミカルボン酸に対して2~5当量、好ましくは2.1~3当量が挙げられる。反応温度としては、例えば-50~30℃が挙げられ、好ましくは-20~15℃が挙げられる。
The optically active carboxylic acid of the formula (1) is produced by dehydrating the carboxylic acid of the formula (2) to form a ketene compound, reacting with D-(-)-pantolactone and hydrolyzing.
Figure JPOXMLDOC01-appb-I000014
[Wherein, R 1 , R 2 and R 3 have the same meanings as described above. ]
Various known methods can be applied to dehydrate the racemic carboxylic acid of formula (2) to form a ketene compound. For example, the carboxylic acid can be converted into an acid chloride and subsequently treated with a base. Can be implemented. An acid chloride can be obtained by, for example, reacting a chlorinating agent in a reaction solvent at a temperature from 0 ° C. to the boiling point of the reaction solvent, preferably from room temperature to 50 ° C. Examples of the chlorinating agent include phosphorus oxychloride, thionyl chloride, oxalyl chloride and the like. The amount used is, for example, 1 to 2 equivalents based on the racemic carboxylic acid, or the reaction is carried out using a large excess in combination with a solvent. However, it is preferably 1 to 1.2 equivalents. When an excess chlorinating agent is used, it may be distilled off after completion of the reaction and replaced with the solvent used in the next step, but when a small excess amount that does not adversely affect the next step is used, It can be used for the next reaction without distilling off the solvent. When oxalyl chloride is used as the chlorinating agent, it is desirable to add a small amount of dimethylformamide (DMF). Any reaction solvent can be used as long as it can dissolve raw materials, reagents and the like and does not adversely affect the reaction. For example, hydrocarbon solvents (hexane, heptane, benzene, toluene, chlorobenzene, etc.) ), Halogen solvents (methylene chloride, chloroform, 1,2-dichloroethane, etc.), ether solvents (diethyl ether, tetrahydrofuran (THF), dioxane, etc.) and the like. Preferable solvents include methylene chloride, toluene, THF and the like. The subsequent treatment with a base can be carried out by adding the base as it is to the reaction solution of the above reaction. Examples of the base include tertiary amines (triethylamine, trimethylamine, dimethylethylamine, N-methylmorpholine, tetramethylethylenediamine, 1,4-diazabicyclo [2.2.2.] Octane, etc.) and the like. The amount of the base used is, for example, 2 to 5 equivalents, preferably 2.1 to 3 equivalents with respect to the racemic carboxylic acid. An example of a reaction temperature is −50 to 30 ° C., preferably −20 to 15 ° C.
 製造したケテン化合物とD-(-)-パントラクトンとの反応は、例えば、上記反応の反応液にそのままD-(-)-パントラクトンを加えることで実施できる。D-(-)-パントラクトンの使用量としては、例えばラセミカルボン酸に対して1.1~2当量、好ましくは1.2~1.5当量が挙げられる。反応温度としては、例えば-100~30℃が挙げられるが、-78~0℃の温度で反応を開始し、徐々に昇温させるのが好ましい。続いて、常法により単離、精製を行うことができる。この段階で、副生する不要な異性体を再結晶等の操作により分離除去することができるが、続く加水分解後に再結晶にて分離除去することもできる。
 なお、D-(-)-パントラクトンは下記構造式で表され、(R)-パントラクトンとも呼ばれる。
Figure JPOXMLDOC01-appb-I000015
The reaction of the produced ketene compound and D-(-)-pantolactone can be carried out, for example, by adding D-(-)-pantolactone as it is to the reaction solution of the above reaction. The amount of D-(−)-pantolactone used is, for example, 1.1 to 2 equivalents, preferably 1.2 to 1.5 equivalents, relative to the racemic carboxylic acid. Examples of the reaction temperature include −100 to 30 ° C., but it is preferable to start the reaction at a temperature of −78 to 0 ° C. and gradually raise the temperature. Subsequently, isolation and purification can be performed by conventional methods. At this stage, unnecessary isomers produced as a by-product can be separated and removed by operations such as recrystallization, but can also be separated and removed by recrystallization after the subsequent hydrolysis.
D-(-)-pantolactone is represented by the following structural formula and is also called (R) -pantolactone.
Figure JPOXMLDOC01-appb-I000015
 生成するD-(-)-パントラクトンエステルを加水分解し、精製することで、式(1)の光学活性カルボン酸を製造することができる。加水分解は、不斉炭素部位での異性化を極力起こさない条件で行うことが好ましい。その加水分解の方法としては、例えば、アルコール系溶媒(メタノール、エタノール等)またはエーテル系溶媒(THF、ジオキサン等)と水の混合溶媒中、過酸化水素共存下、水酸化アルカリ(水酸化リチウム、水酸化ナトリウム、水酸化カリウム等)等で処理する方法が挙げられる。過酸化水素の使用量としては、D-(-)-パントラクトンエステルに対して0.1~5当量、好ましくは1当量~3当量が挙げられる。水酸化アルカリの使用量としては、例えば、1~3当量、好ましくは1~1.5当量が挙げられる。反応温度としては、例えば-5℃~30℃が挙げられる。続いて、常法により単離、精製を行うことができる。また、再結晶を行うことで、副生する不要な異性体を分離除去することができる。
 また、パントラクトンエステルに対して、水存在下、各種酸で処理する方法でも、ラセミ化することなく加水分解できる。用いる酸としては、酢酸、硫酸、塩酸、臭化水素酸またはそれらの混合物が挙げられ、反応温度としては、例えば0℃~100℃が挙げられる。
The optically active carboxylic acid of the formula (1) can be produced by hydrolyzing and purifying the resulting D-(−)-pantolactone ester. Hydrolysis is preferably performed under conditions that do not cause isomerization at the asymmetric carbon site as much as possible. Examples of the hydrolysis method include, for example, an alkali hydroxide (lithium hydroxide, lithium hydroxide) in a mixed solvent of alcohol solvent (methanol, ethanol, etc.) or ether solvent (THF, dioxane, etc.) and water in the presence of hydrogen peroxide. And a method of treating with sodium hydroxide, potassium hydroxide, etc.). The amount of hydrogen peroxide to be used is 0.1 to 5 equivalents, preferably 1 to 3 equivalents, relative to D-(-)-pantolactone ester. The amount of alkali hydroxide used is, for example, 1 to 3 equivalents, preferably 1 to 1.5 equivalents. Examples of the reaction temperature include −5 ° C. to 30 ° C. Subsequently, isolation and purification can be performed by conventional methods. Further, by performing recrystallization, unnecessary isomers by-produced can be separated and removed.
In addition, the pantolactone ester can be hydrolyzed without racemization by a method of treating with various acids in the presence of water. Examples of the acid used include acetic acid, sulfuric acid, hydrochloric acid, hydrobromic acid, and mixtures thereof. Examples of the reaction temperature include 0 ° C. to 100 ° C.
 式(1)の光学活性カルボン酸は、引き続き式(3)のアミンと縮合することで式(4)のフェニル酢酸アミド誘導体又はその薬学上許容される塩が製造される。
Figure JPOXMLDOC01-appb-I000016
[式中、R、R、R、R、R及びTは前記と同義である。]
 本反応に使用する式(3)の化合物の製造、式(1)の光学活性カルボン酸と式(3)の化合物との反応、及び薬学上許容される塩の製造については、前記特許文献1~10に多数の実施例と共に詳細に記載されており、これらの記載を参考にすれば、容易に製造することができる。
The optically active carboxylic acid of formula (1) is subsequently condensed with an amine of formula (3) to produce a phenylacetamide derivative of formula (4) or a pharmaceutically acceptable salt thereof.
Figure JPOXMLDOC01-appb-I000016
[Wherein, R 1 , R 2 , R 3 , R 4 , R 5 and T are as defined above]. ]
Regarding the production of the compound of the formula (3) used in this reaction, the reaction of the optically active carboxylic acid of the formula (1) with the compound of the formula (3), and the production of a pharmaceutically acceptable salt, Patent Document 1 mentioned above. 10 to 10 are described in detail together with many examples, and can be easily produced by referring to these descriptions.
 以下に、実施例、参考例をあげて本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and reference examples, but the present invention is not limited to these examples.
参考例1
(4-シクロプロピルスルファニルフェニル)-ヒドロキシ酢酸エチルエステル
Figure JPOXMLDOC01-appb-I000017
 塩化アルミニウム(127.7 g)のクロロベンゼン(480 mL)懸濁液に、攪拌下、グリオキサル酸エチル(108.7 g)のクロロベンゼン(160 mL)溶液を15分間かけて30℃で滴下し、さらにシクロプロピルフェニルスルフィド(80.0 g)のクロロベンゼン(160 mL)溶液を15分間かけて滴下し、同温で4時間攪拌した。反応液に氷水(400 mL)を加え、さらに10%亜硫酸水素ナトリウム水溶液(400 mL)を加えた。有機層を分液し、水層をトルエン(200 mL)で2回抽出した。有機層を併せて10%炭酸ナトリウム水溶液(160 mL)で洗浄後、乾燥(硫酸マグネシウム)し、減圧下溶媒留去した。残渣をトルエン(160 mL)-ノルマルヘプタン(480 mL)で再結晶し、標記化合物(98.5 g)を得た。
1H-NMR (400 MHz)δ: 7.36 (d, J = 8.7 Hz, 2H), 7.33 (d, J = 8.7 Hz , 2H), 5.11 (d, J = 4.6 Hz, 1H), 4.32-4.12 (m, 2H), 3.43 (t, J = 5.1 Hz, 1H), 2.21-2.14 (m, 1H), 1.24 (t, J = 7.2 Hz, 3H), 1.11-1.04 (m, 2H), 0.72-0.66 (m, 2H).
Reference example 1
(4-Cyclopropylsulfanylphenyl) -hydroxyacetic acid ethyl ester
Figure JPOXMLDOC01-appb-I000017
To a suspension of aluminum chloride (127.7 g) in chlorobenzene (480 mL), with stirring, a solution of ethyl glyoxalate (108.7 g) in chlorobenzene (160 mL) was added dropwise at 30 ° C. over 15 minutes, followed by cyclopropylphenyl sulfide. A solution of (80.0 g) in chlorobenzene (160 mL) was added dropwise over 15 minutes, and the mixture was stirred at the same temperature for 4 hours. Ice water (400 mL) was added to the reaction solution, and 10% aqueous sodium hydrogen sulfite solution (400 mL) was further added. The organic layer was separated, and the aqueous layer was extracted twice with toluene (200 mL). The organic layers were combined, washed with a 10% aqueous sodium carbonate solution (160 mL), dried (magnesium sulfate), and the solvent was distilled off under reduced pressure. The residue was recrystallized from toluene (160 mL) -normal heptane (480 mL) to obtain the title compound (98.5 g).
1 H-NMR (400 MHz) δ: 7.36 (d, J = 8.7 Hz, 2H), 7.33 (d, J = 8.7 Hz, 2H), 5.11 (d, J = 4.6 Hz, 1H), 4.32-4.12 ( m, 2H), 3.43 (t, J = 5.1 Hz, 1H), 2.21-2.14 (m, 1H), 1.24 (t, J = 7.2 Hz, 3H), 1.11-1.04 (m, 2H), 0.72-0.66 (m, 2H).
参考例2
(4-シクロプロピルスルファニルフェニル)-酢酸エチルエステル
Figure JPOXMLDOC01-appb-I000018
 参考例1で製造した(4-シクロプロピルスルファニルフェニル)-ヒドロキシ酢酸エチルエステル(6.9 g)及びトリエチルシラン(5.2 mL)の塩化メチレン(100 mL)溶液に、氷冷下、三フッ化ホウ素ジエチルエーテル(3.8 mL)を加え、17時間室温で攪拌した。トリエチルシラン(5.2 mL)、三フッ化ホウ素ジエチルエーテル(3.8 mL)を順次加え、さらに26時間室温で攪拌した。反応液を飽和炭酸水素ナトリウム水溶液(50 mL)に加え、分液後、有機層を水(25 mL)及び飽和食塩水(25 mL)で順次洗浄し、乾燥(硫酸マグネシウム)した。減圧下溶媒留去して得られる残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル-ヘキサン(1:4~1:1))で精製し、標記化合物(5.3 g)を得た。
MS(m/z)APCI:237(M+H)+
Reference example 2
(4-Cyclopropylsulfanylphenyl) -acetic acid ethyl ester
Figure JPOXMLDOC01-appb-I000018
Boron trifluoride diethyl ether was added to a solution of (4-cyclopropylsulfanylphenyl) -hydroxyacetic acid ethyl ester (6.9 g) and triethylsilane (5.2 mL) prepared in Reference Example 1 in methylene chloride (100 mL) under ice-cooling. (3.8 mL) was added, and the mixture was stirred at room temperature for 17 hours. Triethylsilane (5.2 mL) and boron trifluoride diethyl ether (3.8 mL) were sequentially added, and the mixture was further stirred at room temperature for 26 hours. The reaction solution was added to saturated aqueous sodium hydrogen carbonate solution (50 mL), and after liquid separation, the organic layer was washed successively with water (25 mL) and saturated brine (25 mL), and dried (magnesium sulfate). The residue obtained by evaporating the solvent under reduced pressure was purified by silica gel column chromatography (ethyl acetate-hexane (1: 4 to 1: 1)) to obtain the title compound (5.3 g).
MS (m / z) APCI: 237 (M + H) +
参考例3
(4-シクロプロピルスルファニルフェニル)-酢酸エチルエステル
 参考例2のエステルは、以下の方法でも製造することができる。
Figure JPOXMLDOC01-appb-I000019
 (4-シクロプロピルスルファニルフェニル)-オキソ酢酸エチルエステル(特許文献9; 0.99 g)及びトリエチルシラン(1.9 mL)の塩化メチレン(15mL)溶液に、氷冷下、三フッ化ホウ素ジエチルエーテル(1.5 mL)を加え、23時間室温で攪拌した。反応液を7%炭酸水素ナトリウム水溶液(15 mL)に加え分液後、有機層を水及び飽和食塩水(15 mL)で洗浄、乾燥(硫酸マグネシウム)し、減圧下溶媒留去して得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル-ヘキサン(1:4~1:1))で精製し、参考例2の化合物(0.51 g)を得た。
MS(m/z)APCI:237(M+H)+
Reference example 3
(4-Cyclopropylsulfanylphenyl) -acetic acid ethyl ester The ester of Reference Example 2 can also be produced by the following method.
Figure JPOXMLDOC01-appb-I000019
To a solution of (4-cyclopropylsulfanylphenyl) -oxoacetic acid ethyl ester (Patent Document 9; 0.99 g) and triethylsilane (1.9 mL) in methylene chloride (15 mL) under ice-cooling, boron trifluoride diethyl ether (1.5 mL) ) And stirred at room temperature for 23 hours. The reaction mixture is added to a 7% aqueous sodium hydrogen carbonate solution (15 mL), and the layers are separated. The organic layer is washed with water and saturated brine (15 mL), dried (magnesium sulfate), and evaporated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate-hexane (1: 4 to 1: 1)) to obtain the compound of Reference Example 2 (0.51 g).
MS (m / z) APCI: 237 (M + H) +
参考例4
2-(4-シクロプロピルスルファニルフェニル)-3-(4-テトラヒドロピラニル)-プロピオン酸エチルエステル
Figure JPOXMLDOC01-appb-I000020
 参考例2で製造した(4-シクロプロピルスルファニルフェニル)-酢酸エチルエステル(2.4 g)のTHF(50 mL)溶液に、-13℃で1MリチウムヘキサメチルジシラジドTHF溶液(10.9 mL)を加え、同温で1時間攪拌した。4-テトラヒドロピラニルメチルヨージド(特許文献6; 2.9 g)のトルエン(10 mL)溶液、及びN,N’-ジメチルプロピレン尿素(1.8 mL)を加え、室温まで昇温して2時間攪拌した。反応液に飽和塩化アンモニウム水溶液(20 mL)を加え、酢酸エチル(50 mL)で抽出した。有機層を水(20 mL)、飽和食塩水(20 mL)で順次洗浄後、乾燥(硫酸マグネシウム)し、減圧下溶媒留去して得られる残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル-ヘキサン(1:20~1:1))で精製することで標記化合物(2.1 g)を得た。
MS(m/z)APCI:335(M+H)+
Reference example 4
2- (4-Cyclopropylsulfanylphenyl) -3- (4-tetrahydropyranyl) -propionic acid ethyl ester
Figure JPOXMLDOC01-appb-I000020
To a solution of (4-cyclopropylsulfanylphenyl) -acetic acid ethyl ester (2.4 g) prepared in Reference Example 2 in THF (50 mL) was added 1M lithium hexamethyldisilazide THF solution (10.9 mL) at −13 ° C. The mixture was stirred at the same temperature for 1 hour. A solution of 4-tetrahydropyranylmethyl iodide (Patent Document 6; 2.9 g) in toluene (10 mL) and N, N′-dimethylpropyleneurea (1.8 mL) were added, and the mixture was warmed to room temperature and stirred for 2 hours. . Saturated aqueous ammonium chloride solution (20 mL) was added to the reaction mixture, and the mixture was extracted with ethyl acetate (50 mL). The organic layer was washed successively with water (20 mL) and saturated brine (20 mL), dried (magnesium sulfate), and the solvent was evaporated under reduced pressure to give a residue. The residue was obtained by silica gel column chromatography (ethyl acetate-hexane (1 : 20 to 1: 1)) to give the title compound (2.1 g).
MS (m / z) APCI: 335 (M + H) +
参考例5
2-(4-シクロプロピルスルホニルフェニル)-3-(4-テトラヒドロピラニル)-プロピオン酸
Figure JPOXMLDOC01-appb-I000021
 参考例4で製造した2-(4-シクロプロピルスルファニルフェニル)-3-(4-テトラヒドロピラニル)-プロピオン酸エチルエステル(835 mg)の塩化メチレン(16 mL)溶液に、氷冷下、m-クロロ過安息香酸(75%, 1.4 g)を加え、室温に昇温し、同温で5時間攪拌した。反応液に10%亜硫酸ナトリウム水溶液(5 mL)を加え、室温で30分攪拌し、10%炭酸ナトリウム水溶液(10 mL)を加え、塩化メチレン(30 mL)で抽出した。有機層を水(10 mL)及び飽和食塩水(10 mL)で順次洗浄し、乾燥(硫酸マグネシウム)後、減圧下溶媒留去して得られた残渣を、そのまま次の反応に用いた。
 上記残渣をエタノール(18 mL)に溶解し、氷冷下、2M 水酸化ナトリウム水溶液(2.5 mL)を加え、室温に昇温して14時間攪拌した。6M塩酸(1 mL)を加え、塩化メチレン(40 mL)で抽出し、有機層を水(10 mL)及び飽和食塩水(10 mL)で順次洗浄後、乾燥(硫酸マグネシウム)し、減圧下溶媒留去した。残渣を酢酸イソブチル(20 mL)- ノルマルヘプタン(10 mL)で再結晶し標記化合物(591 mg)を得た。
MS(m/z)APCI:339(M+H)+
Reference Example 5
2- (4-Cyclopropylsulfonylphenyl) -3- (4-tetrahydropyranyl) -propionic acid
Figure JPOXMLDOC01-appb-I000021
To a solution of 2- (4-cyclopropylsulfanylphenyl) -3- (4-tetrahydropyranyl) -propionic acid ethyl ester (835 mg) prepared in Reference Example 4 in methylene chloride (16 mL) was added m -Chloroperbenzoic acid (75%, 1.4 g) was added, the temperature was raised to room temperature, and the mixture was stirred at the same temperature for 5 hours. A 10% aqueous sodium sulfite solution (5 mL) was added to the reaction mixture, and the mixture was stirred at room temperature for 30 minutes. A 10% aqueous sodium carbonate solution (10 mL) was added, and the mixture was extracted with methylene chloride (30 mL). The organic layer was washed successively with water (10 mL) and saturated brine (10 mL), dried (magnesium sulfate), and the residue obtained by evaporating the solvent under reduced pressure was directly used in the next reaction.
The residue was dissolved in ethanol (18 mL), 2M aqueous sodium hydroxide solution (2.5 mL) was added under ice cooling, and the mixture was warmed to room temperature and stirred for 14 hr. Add 6M hydrochloric acid (1 mL), extract with methylene chloride (40 mL), wash the organic layer sequentially with water (10 mL) and saturated brine (10 mL), dry (magnesium sulfate), and remove the solvent under reduced pressure. Distilled off. The residue was recrystallized from isobutyl acetate (20 mL) -normal heptane (10 mL) to obtain the title compound (591 mg).
MS (m / z) APCI: 339 (M + H) +
参考例6
2-(4-シクロプロピルスルホニルフェニル)-3-(4-テトラヒドロピラニル)-プロピオン酸
 参考例5のラセミカルボン酸は、以下の方法でも製造することができる。
Figure JPOXMLDOC01-appb-I000022
 参考例2で製造した(4-シクロプロピルスルファニルフェニル)-酢酸エチルエステル(1.7 g)のアセトン(26 mL)溶液に、室温でオキソン(登録商標:6.0 g)の水(17 mL)溶液を滴下した。同温で3時間攪拌後、析出する無機塩を濾過し、濾液に20%チオ硫酸ナトリウム水溶液(2 mL)、7%炭酸水素ナトリウム水溶液(20 mL)を順次加え、酢酸エチル(50 mL)を加えて分液後、水層を酢酸エチル(20 mL)で2回抽出した。有機層を併せて、飽和食塩水で洗浄し、乾燥(硫酸マグネシウム)後、減圧下溶媒留去し、得られる残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル-ヘキサン(1:6~1:1))で精製することで化合物(A)(1.4 g)を得た。
MS(m/z)APCI:269(M+H)+
 得られた化合物(A)(1.0 g)のTHF(15 mL)溶液に、-10℃で1MリチウムヘキサメチルジシラジドTHF溶液(4.1 mL)を加え、同温で1時間攪拌した。4-テトラヒドロピラニルメチルヨージド(1.1 g)のトルエン(5 mL)溶液、及びN,N’-ジメチルプロピレン尿素(0.68 mL)を加え、室温まで昇温して3時間攪拌した。反応液に飽和塩化アンモニウム水溶液(10 mL)を加え、酢酸エチル(20 mL)で2回抽出した。有機層を飽和食塩水(10 mL)で洗浄、乾燥(硫酸マグネシウム)、減圧下溶媒留去して得られる残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル-ヘキサン(1:4~1:1))で精製することで化合物(B)(1.1 g)を得た。
MS(m/z)APCI:367(M+H)+
 得られた化合物(B)(730 mg)のメタノール(4 mL)溶液に、2M 水酸化ナトリウム水溶液(3 mL)を加え、50℃で2時間攪拌した。反応液を、減圧下水の留出が認められるまで濃縮後、水(7 mL)t-ブチルメチルエーテル(7 mL)を加え、水層を分液した。水層に5M塩酸(1.5 mL)を加えた後、t-ブチルメチルエーテル(7 mL)で3回抽出し、有機層を乾燥(硫酸マグネシウム)後、減圧下溶媒留去することで参考例5の化合物(670 mg)を得た。
MS(m/z)APCI:339(M+H)+
Reference Example 6
2- (4-Cyclopropylsulfonylphenyl) -3- (4-tetrahydropyranyl) -propionic acid The racemic carboxylic acid of Reference Example 5 can also be produced by the following method.
Figure JPOXMLDOC01-appb-I000022
To a solution of (4-cyclopropylsulfanylphenyl) -acetic acid ethyl ester (1.7 g) prepared in Reference Example 2 in acetone (26 mL), a solution of Oxone (registered trademark: 6.0 g) in water (17 mL) at room temperature. Was dripped. After stirring at the same temperature for 3 hours, the precipitated inorganic salt was filtered, and 20% aqueous sodium thiosulfate solution (2 mL) and 7% aqueous sodium hydrogen carbonate solution (20 mL) were sequentially added to the filtrate, and ethyl acetate (50 mL) was added. After liquid separation, the aqueous layer was extracted twice with ethyl acetate (20 mL). The organic layers were combined, washed with saturated brine, dried (magnesium sulfate), evaporated under reduced pressure, and the resulting residue was subjected to silica gel column chromatography (ethyl acetate-hexane (1: 6 to 1: 1)). To obtain compound (A) (1.4 g).
MS (m / z) APCI: 269 (M + H) +
To a THF (15 mL) solution of the obtained compound (A) (1.0 g), 1M lithium hexamethyldisilazide THF solution (4.1 mL) was added at −10 ° C., and the mixture was stirred at the same temperature for 1 hour. A solution of 4-tetrahydropyranylmethyl iodide (1.1 g) in toluene (5 mL) and N, N′-dimethylpropyleneurea (0.68 mL) were added, and the mixture was warmed to room temperature and stirred for 3 hours. Saturated aqueous ammonium chloride solution (10 mL) was added to the reaction mixture, and the mixture was extracted twice with ethyl acetate (20 mL). The organic layer was washed with saturated brine (10 mL), dried (magnesium sulfate), and the solvent was distilled off under reduced pressure. The resulting residue was purified by silica gel column chromatography (ethyl acetate-hexane (1: 4 to 1: 1)). Purification gave compound (B) (1.1 g).
MS (m / z) APCI: 367 (M + H) +
To a solution of the obtained compound (B) (730 mg) in methanol (4 mL) was added 2M aqueous sodium hydroxide solution (3 mL), and the mixture was stirred at 50 ° C. for 2 hours. The reaction solution was concentrated until distillation of water was observed under reduced pressure, water (7 mL) t-butyl methyl ether (7 mL) was added, and the aqueous layer was separated. 5M hydrochloric acid (1.5 mL) was added to the aqueous layer, followed by extraction three times with t-butyl methyl ether (7 mL). The organic layer was dried (magnesium sulfate) and the solvent was distilled off under reduced pressure to give Reference Example 5 Compound (670 mg) was obtained.
MS (m / z) APCI: 339 (M + H) +
実施例1
(R)-2-(4-シクロプロピルスルホニルフェニル)-3-(4-テトラヒドロピラニル)-プロピオン酸
Figure JPOXMLDOC01-appb-I000023
 参考例5で製造した2-(4-シクロプロピルスルホニルフェニル)-3-(4-テトラヒドロピラニル)-プロピオン酸(5.0 g)及びDMF(32 mg)の塩化メチレン(100 mL)溶液に、20℃でオキザリルクロリド(1.5 mL)を加え、同温で2時間攪拌した。反応液を-15℃に冷却し、ジメチルエチルアミン(5.3 mL)を加え、30分攪拌した。反応液を-78℃に冷却し、D-(-)-パントラクトン(2.5 g)の塩化メチレン(30 mL)溶液を20分間かけて滴下し、同温で30分間、-60℃で2時間、-40℃で17時間、さらに20℃で2時間、攪拌した。反応液に水(50 mL)を加え、有機層を分液し、飽和食塩水(30 mL)で洗浄し、乾燥(硫酸マグネシウム)し、減圧下溶媒留去し、得られた残渣をそのまま次の反応に用いた。この際、得られた粗パントラクトンエステルのジアステレオマー過剰率は82% deであった(ジアステレオマー過剰率はキラルHPLCで測定した: CHIRALPAK-IB、ノルマルヘキサン-イソプロパノール=70:30)。
 上記残渣をメタノール(100 mL)に溶解し、氷冷下、30%過酸化水素水溶液(4.5 mL)及び4M水酸化リチウム水溶液(4.4 mL)を順次加え、同温で3時間攪拌した。10%亜硫酸ナトリウム水溶液(90 mL)を加え、室温で1時間攪拌し、水(60 mL)及びトルエン(80 mL)を加え、水層を分液した。水層に6M塩酸(6 mL)を加え、クロロホルム(80 mL)で抽出し、有機層を水(20 mL)及び飽和食塩水(20 mL)で順次洗浄し、乾燥(硫酸マグネシウム)し、減圧下溶媒留去した。残渣を酢酸イソブチル(30 mL)-n-ヘプタン(3 mL)で再結晶して標記化合物(3.4 g)を得た。この際得られたカルボン酸の光学純度は99.3% eeであった(光学純度はキラルHPLCで測定した: CHIRALCEL-OJ-RH、0.1%燐酸緩衝液-アセトニトリル=4:1)。
MS(m/z)APCI:339(M+H)+
Example 1
(R) -2- (4-Cyclopropylsulfonylphenyl) -3- (4-tetrahydropyranyl) -propionic acid
Figure JPOXMLDOC01-appb-I000023
To a solution of 2- (4-cyclopropylsulfonylphenyl) -3- (4-tetrahydropyranyl) -propionic acid (5.0 g) and DMF (32 mg) prepared in Reference Example 5 in methylene chloride (100 mL), 20 Oxalyl chloride (1.5 mL) was added at ° C and stirred at the same temperature for 2 hours. The reaction mixture was cooled to −15 ° C., dimethylethylamine (5.3 mL) was added, and the mixture was stirred for 30 min. The reaction solution was cooled to −78 ° C., and a solution of D-(−)-pantolactone (2.5 g) in methylene chloride (30 mL) was added dropwise over 20 minutes, and the same temperature was maintained for 30 minutes and at −60 ° C. for 2 hours. The mixture was stirred at −40 ° C. for 17 hours and further at 20 ° C. for 2 hours. Water (50 mL) was added to the reaction mixture, the organic layer was separated, washed with saturated brine (30 mL), dried (magnesium sulfate), evaporated under reduced pressure, and the resulting residue was used as is. Used for the reaction. At this time, the diastereomeric excess of the obtained crude pantolactone ester was 82% de (the diastereomeric excess was measured by chiral HPLC: CHIRALPAK-IB, normal hexane-isopropanol = 70: 30).
The above residue was dissolved in methanol (100 mL), 30% aqueous hydrogen peroxide solution (4.5 mL) and 4M aqueous lithium hydroxide solution (4.4 mL) were successively added under ice-cooling, and the mixture was stirred at the same temperature for 3 hr. A 10% aqueous sodium sulfite solution (90 mL) was added, and the mixture was stirred at room temperature for 1 hour. Water (60 mL) and toluene (80 mL) were added, and the aqueous layer was separated. To the aqueous layer was added 6M hydrochloric acid (6 mL), and the mixture was extracted with chloroform (80 mL). The organic layer was washed successively with water (20 mL) and saturated brine (20 mL), dried (magnesium sulfate), and reduced in pressure. The bottom solvent was distilled off. The residue was recrystallized from isobutyl acetate (30 mL) -n-heptane (3 mL) to obtain the title compound (3.4 g). The optical purity of the carboxylic acid obtained at this time was 99.3% ee (optical purity was measured by chiral HPLC: CHIRALCEL-OJ-RH, 0.1% phosphate buffer-acetonitrile = 4: 1).
MS (m / z) APCI: 339 (M + H) +
 本発明により、ラセミカルボン酸から通常の製造設備で、収率が良く、安価に光学活性カルボン酸を製造することができる。 According to the present invention, optically active carboxylic acid can be produced from racemic carboxylic acid with ordinary production equipment at a good yield and at low cost.

Claims (5)

  1.  式(2)のカルボン酸を脱水してケテン化合物とし、D-(-)-パントラクトンと反応させ、加水分解することによる式(1)の光学活性カルボン酸の製造方法。
    Figure JPOXMLDOC01-appb-I000001
    [式中、Rは、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいシクロアルキル、又は置換されていてもよい複素環基を表す。
     Rは、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよいアリール、置換されていてもよいヘテロアリール、-N(C0-2アルキル)(C0-2アルキル)又は環状アミノを表す。
     Rは、水素原子、ハロゲン原子又はトリフルオロメチルを表す。]
    A process for producing an optically active carboxylic acid of formula (1) by dehydrating a carboxylic acid of formula (2) to form a ketene compound, reacting with D-(-)-pantolactone, and hydrolyzing it.
    Figure JPOXMLDOC01-appb-I000001
    [Wherein, R 1 represents an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted cycloalkyl, or an optionally substituted heterocyclic group.
    R 2 is an optionally substituted alkyl, an optionally substituted cycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, —N (C 0-2 alkyl) (C 0 -2 alkyl) or cyclic amino.
    R 3 represents a hydrogen atom, a halogen atom or trifluoromethyl. ]
  2.  式(2a)のケテン化合物とD-(-)-パントラクトンとを反応させ、加水分解することによる式(1)の光学活性カルボン酸の製造方法。
    Figure JPOXMLDOC01-appb-I000002
    [式中、R、R及びRの意義は請求項1と同義である。]
    A process for producing an optically active carboxylic acid of formula (1) by reacting a ketene compound of formula (2a) with D-(-)-pantolactone and hydrolyzing it.
    Figure JPOXMLDOC01-appb-I000002
    [Wherein, R 1 , R 2 and R 3 have the same meaning as in claim 1. ]
  3.  式(2)のカルボン酸を脱水してケテン化合物とし、D-(-)-パントラクトンと反応させ、加水分解して式(1)の光学活性カルボン酸を製造し、続いて式(3)のアミンと縮合することによる、式(4)のフェニル酢酸アミド誘導体又はその薬学上許容される塩の製造方法。
    Figure JPOXMLDOC01-appb-I000003
    [式中、Rは、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいシクロアルキル、又は置換されていてもよい複素環基を表す。
     Rは、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよいアリール、置換されていてもよいヘテロアリール、-N(C0-2アルキル)(C0-2アルキル)又は環状アミノを表す。
     Rは、水素原子、ハロゲン原子又はトリフルオロメチルを表す。
     R及びRは、独立して水素原子、ハロゲン原子、OCF3-n、メトキシ、CO、シアノ、ニトロ、CHO、CONR、CON(OCH)CHを表すか、又はC1-2アルキル、ヘテロアリール又はC3-7シクロアルキル〔これらの基は、ハロゲン原子、水酸基、シアノ、メトキシ、-NHCOCH及び-N(C0-2アルキル)(C0-2アルキル)の群から独立して任意に選択される1~5個の置換基で置換されていてもよい〕を表すか、又はR及びRは共に結合してカルボニル基を形成するか、または5~8員の芳香族環、複素芳香族環、炭素環若しくは複素環を形成した後、Tおよび-N=C-が形成する環と縮合する。
     Rは、水素原子を表すか、又はC1-4アルキル、C2-4アルケニル、C2-4アルキニル、C3-7シクロアルキル、アリール、ヘテロアリール又は4~7員複素環基〔これらの基は、ハロゲン原子、シアノ、ニトロ、水酸基、C1-2アルコキシ、-N(C0-2アルキル)(C0-2アルキル)、C1-2アルキル、C3-7シクロアルキル、4~7員複素環基、CF3-n、アリール、ヘテロアリール、COH、-COC1-2アルキル、-CON(C0-2アルキル)(C0-2アルキル)、SOCH、SOCH及び-SON(C0-2アルキル)(C0-2アルキル)の群から独立して任意に選択される1~6個の置換基で置換されていてもよい〕を表す。
     R及びRは、独立して、水素原子を表すか、又はC1-4アルキル、C3-7シクロアルキル、アリール、ヘテロアリール又は4~7員複素環基〔これらの基は、ハロゲン原子、シアノ、ニトロ、水酸基、C1-2アルコキシ、-N(C0-2アルキル)(C0-2アルキル)、C1-2アルキル、C3-7シクロアルキル、4~7員複素環基、CF3-n、アリール、ヘテロアリール、COC1-2アルキル、-CON(C0-2アルキル)(C0-2アルキル)、SOCH、SOCH及び-SON(C0-2アルキル)(C0-2アルキル)の群から独立して任意に選択される1~6個の置換基で置換されていてもよい〕を表すか、又はR及びRが結合してそれらが結合するN原子と共に6~8員ビシクロ含窒素複素環基又は4~8員含窒素複素環基〔これらの基は、C1-2アルキル、CHOCH、COC0-2アルキル、水酸基及びSOCHの群から独立して任意に選択される1~2個の置換基で置換されていてもよい〕を形成する。
     nは、1、2又は3を表す。
     Tは、それが結合している-N=C-と共に複素芳香族環又は複素環〔N=C結合のみが不飽和部位である〕を表す。]
    The carboxylic acid of formula (2) is dehydrated to form a ketene compound, reacted with D-(-)-pantolactone and hydrolyzed to produce an optically active carboxylic acid of formula (1), followed by formula (3) A method for producing a phenylacetamide derivative of formula (4) or a pharmaceutically acceptable salt thereof by condensing with an amine of:
    Figure JPOXMLDOC01-appb-I000003
    [Wherein, R 1 represents an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted cycloalkyl, or an optionally substituted heterocyclic group.
    R 2 is an optionally substituted alkyl, an optionally substituted cycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, —N (C 0-2 alkyl) (C 0 -2 alkyl) or cyclic amino.
    R 3 represents a hydrogen atom, a halogen atom or trifluoromethyl.
    R 4 and R 5 independently represent a hydrogen atom, a halogen atom, OCF n H 3-n , methoxy, CO 2 R 6 , cyano, nitro, CHO, CONR 7 R 8 , CON (OCH 3 ) CH 3 Or C 1-2 alkyl, heteroaryl or C 3-7 cycloalkyl [these groups are halogen atoms, hydroxyl groups, cyano, methoxy, —NHCO 2 CH 3 and —N (C 0-2 alkyl) (C Or optionally substituted with 1 to 5 substituents independently selected from the group of 0-2 alkyl), or R 4 and R 5 are bonded together to form a carbonyl group Or after forming a 5- to 8-membered aromatic, heteroaromatic, carbocyclic or heterocyclic ring, it is condensed with the ring formed by T and -N = C-.
    R 6 represents a hydrogen atom, or C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, C 3-7 cycloalkyl, aryl, heteroaryl or a 4- to 7-membered heterocyclic group [these Groups of: halogen atom, cyano, nitro, hydroxyl group, C 1-2 alkoxy, —N (C 0-2 alkyl) (C 0-2 alkyl), C 1-2 alkyl, C 3-7 cycloalkyl, 4 To 7-membered heterocyclic group, CF n H 3-n , aryl, heteroaryl, CO 2 H, —COC 1-2 alkyl, —CON (C 0-2 alkyl) (C 0-2 alkyl), SOCH 3 , Optionally substituted with 1 to 6 substituents independently selected from the group of SO 2 CH 3 and —SO 2 N (C 0-2 alkyl) (C 0-2 alkyl)] To express.
    R 7 and R 8 independently represent a hydrogen atom, or C 1-4 alkyl, C 3-7 cycloalkyl, aryl, heteroaryl or a 4- to 7-membered heterocyclic group [these groups are halogen Atom, cyano, nitro, hydroxyl group, C 1-2 alkoxy, —N (C 0-2 alkyl) (C 0-2 alkyl), C 1-2 alkyl, C 3-7 cycloalkyl, 4-7 membered heterocycle Groups, CF n H 3-n , aryl, heteroaryl, COC 1-2 alkyl, —CON (C 0-2 alkyl) (C 0-2 alkyl), SOCH 3 , SO 2 CH 3 and —SO 2 N ( C 0-2 alkyl) (which may be substituted with 1 to 6 substituents independently selected from the group of (C 0-2 alkyl)), or R 7 and R 8 are 6-8 together with the N atom to which they are bonded Bicyclo nitrogen-containing heterocyclic group or a 4-8-membered nitrogen-containing Hajime Tamaki [these groups, C 1-2 alkyl, independently from the group consisting of CH 2 OCH 3, COC 0-2 alkyl, hydroxyl and SO 2 CH 3 Optionally substituted with 1 to 2 substituents optionally selected].
    n represents 1, 2 or 3.
    T represents a heteroaromatic ring or a heterocyclic ring together with —N═C— to which it is bonded [only the N═C bond is an unsaturated site]. ]
  4.  式(2a)のケテン化合物とD-(-)-パントラクトンとを反応させ、加水分解して式(1)の光学活性カルボン酸を製造し、続いて式(3)のアミンと縮合することによる、式(4)のフェニル酢酸アミド誘導体又はその薬学上許容される塩の製造方法。
    Figure JPOXMLDOC01-appb-I000004
    [式中、R、R、R、R、R及びTの意義は請求項3と同義である。]
    Reacting a ketene compound of formula (2a) with D-(-)-pantolactone and hydrolyzing to produce an optically active carboxylic acid of formula (1), followed by condensation with an amine of formula (3) To produce a phenylacetamide derivative of formula (4) or a pharmaceutically acceptable salt thereof.
    Figure JPOXMLDOC01-appb-I000004
    [Wherein, R 1 , R 2 , R 3 , R 4 , R 5 and T have the same meaning as defined in claim 3. ]
  5.  Rが4-テトラヒドロピラニルであり、Rがシクロプロピル又はシクロブチルであり、Rが水素原子である請求項1~4のいずれか記載の製造方法。 The production method according to any one of claims 1 to 4, wherein R 1 is 4-tetrahydropyranyl, R 2 is cyclopropyl or cyclobutyl, and R 3 is a hydrogen atom.
PCT/JP2009/058988 2008-05-15 2009-05-14 Process for production of optically active carboxylic acid WO2009139438A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-127812 2008-05-15
JP2008127812 2008-05-15

Publications (1)

Publication Number Publication Date
WO2009139438A1 true WO2009139438A1 (en) 2009-11-19

Family

ID=41318802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058988 WO2009139438A1 (en) 2008-05-15 2009-05-14 Process for production of optically active carboxylic acid

Country Status (1)

Country Link
WO (1) WO2009139438A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9663486B2 (en) 2013-10-14 2017-05-30 Eisai R&D Management Co., Ltd. Selectively substituted quinoline compounds
US10087174B2 (en) 2013-10-14 2018-10-02 Eisai R&D Management Co., Ltd. Selectively substituted quinoline compounds
CN114466833A (en) * 2019-09-30 2022-05-10 大金工业株式会社 Process for producing propionic acid derivative

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999021823A1 (en) * 1997-10-27 1999-05-06 Schering Corporation Optically active intermediates for the preparation of optically active substituted oximes, hydrazones and olefins useful as neurokinin antagonists
WO2004072031A2 (en) * 2003-02-11 2004-08-26 Prosidion Limited Phenylacetamides and their use as glucokinase modulators

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999021823A1 (en) * 1997-10-27 1999-05-06 Schering Corporation Optically active intermediates for the preparation of optically active substituted oximes, hydrazones and olefins useful as neurokinin antagonists
WO2004072031A2 (en) * 2003-02-11 2004-08-26 Prosidion Limited Phenylacetamides and their use as glucokinase modulators

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CALMES, MONIQUE ET AL.: "First asymmetric synthesis of (R)-(-)-a-phenyl 5-amino valeric acid", TETRAHEDRON: ASYMMETRY, vol. 11, 2000, pages 1263 - 1266 *
CALMES, MONIQUE ET AL.: "New synthesis of enantiomerically pure (S)-3-amino-2- phenylpropanoic acid via the asymmetric transformation of its racemic N-phthaloyl derivative", TETRAHEDRON: ASYMMETRY, vol. 9, 1998, pages 2845 - 2850 *
CALMES, MONIQUE ET AL.: "Synthesis of N-Boc-(R)- a-phenyl-y-aminobutyric acid using an in situ diastereoselective protonation strategy", TETRAHEDRON: ASYMMETRY, vol. 13, 2002, pages 293 - 296 *
CARINA E.CANNIZZARO ET AL.: "Theoritical Study of the Stereoselective Additions of Chiral Alcohol to Ketenes", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 126, 2004, pages 10992 - 11008 *
CHEN, CHENG-YI ET AL.: "Practical Asymmetric Synthesis of a Potent Cathepsin K Inhibitor Efficient Palladium Removal Following Suzuki Coupling", JOURNAL OF ORGANIC CHEMISTRY, vol. 68, no. 7, 2003, pages 2633 - 2638 *
LARSEN, ROBERT D. ET AL.: "alpha-Hydroxy esters as chiral reagents: asymmetric synthesis of 2-arylpropionic acids", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 111, no. 19, 1989, pages 7650 - 7651 *
SENANAYAKE, CHRIS H. ET AL.: "Enantioselective synthesis of 1, 3-dioxygen-substituted chiral building blocks", SYNLETT, vol. 3, 1994, pages 199 - 200 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9663486B2 (en) 2013-10-14 2017-05-30 Eisai R&D Management Co., Ltd. Selectively substituted quinoline compounds
US10087174B2 (en) 2013-10-14 2018-10-02 Eisai R&D Management Co., Ltd. Selectively substituted quinoline compounds
USRE47193E1 (en) 2013-10-14 2019-01-08 Eisai R&D Management Co., Ltd. Selectively substituted quinoline compounds
CN114466833A (en) * 2019-09-30 2022-05-10 大金工业株式会社 Process for producing propionic acid derivative

Similar Documents

Publication Publication Date Title
RU2502721C2 (en) Method of producing 1-(2-halogen biphenyl-4-yl)-cyclopropane carboxylic acid derivatives
JP2009525320A (en) Method for resolving racemic mixtures and diastereoisomers of resolving agents and enantiomers of interest
EP2238103A1 (en) Novel n-(2-amino-phenyl)-amide derivatives
NO170685B (en) OPTICALLY ACTIVE ALKYL-ARYL KETALS
BRPI0609888A2 (en) process for dynamically resolving an optionally substituted (r) - or - mandelic acid
JP3850838B2 (en) Process for producing trans-4-amino-1-cyclohexanecarboxylic acid derivative
WO2008078482A1 (en) Process for producing intermediate of asenapine synthesis
KR101309605B1 (en) Process for the stereoselective preparation of (-)-halofenate and intermediates thereof
WO2009139438A1 (en) Process for production of optically active carboxylic acid
KR102236806B1 (en) Process for the preparation of enantiomerically enriched 3-aminopiperidine
KR101134767B1 (en) A process for resolving, optionally substituted, mandelic acids by salt formation with a chiral base cyclic amide
US20140127762A1 (en) Method for producing optically active alpha-substituted proline
JP5031778B2 (en) Method for producing amine compound using optically active 2- (aroyloxy) propionic acid
CN105636938B (en) The method for preparing 3- alkylthio group -2- bromopyridines
KR101465025B1 (en) The stereoselective manufacturing method of loxoprofen(2s, 1'r, 2'r) trans-alcohol
JP2010530397A (en) Method for improving amide formation
JP2005053781A (en) Method for producing optically active 3-(n-methylamino)-1-(2-thienyl)propan-1-ol
JP4471664B2 (en) Process for the preparation of 2- (7-chloro-1,8-naphthyridin-2-yl) -3- (5-methyl-2-oxo-hexyl) -1-isoindolinone
WO2004065368A1 (en) Process for producing intermediate for trandolapril
JP2013129642A (en) Method for producing optically active 3,4-bis(alkyloxycarbonyl)-1,6-hexanedioic acid derivative
WO2022186362A1 (en) Method for producing pyrazole compound
JP2004002206A (en) Method for producing optically active thiazolidinone derivative
CN117015542A (en) Process for preparing pyrrolopyridine derivatives
JP2003238506A (en) METHOD FOR PRODUCING OPTICALLY ACTIVE beta-PHENYLALANINE DERIVATIVE
JP2009019004A (en) Process for producing optically active aryloxycarboxylic acid derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09746644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP