WO2009139406A1 - トルエン検出センサシステム及びトルエンの検出方法 - Google Patents

トルエン検出センサシステム及びトルエンの検出方法 Download PDF

Info

Publication number
WO2009139406A1
WO2009139406A1 PCT/JP2009/058891 JP2009058891W WO2009139406A1 WO 2009139406 A1 WO2009139406 A1 WO 2009139406A1 JP 2009058891 W JP2009058891 W JP 2009058891W WO 2009139406 A1 WO2009139406 A1 WO 2009139406A1
Authority
WO
WIPO (PCT)
Prior art keywords
toluene
enzyme
detecting
sensor system
reaction
Prior art date
Application number
PCT/JP2009/058891
Other languages
English (en)
French (fr)
Inventor
浩二 三林
浩一 斉藤
寛之 工藤
智子 月精
祐貴 鈴木
Original Assignee
国立大学法人 東京医科歯科大学
地方独立行政法人 東京都立産業技術研究センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京医科歯科大学, 地方独立行政法人 東京都立産業技術研究センター filed Critical 国立大学法人 東京医科歯科大学
Publication of WO2009139406A1 publication Critical patent/WO2009139406A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/44Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving esterase
    • C12Q1/46Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving esterase involving cholinesterase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/04Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres

Definitions

  • the present invention relates to a toluene detection sensor system and a toluene detection method, and more particularly to a toluene detection sensor system and a toluene detection method capable of detecting toluene with high sensitivity and ease.
  • Toluene has been conventionally used as a solvent for dissolving ink and as a solvent for epoxy resins used as flooring materials. Recently, volatile substances such as toluene emitted from buildings have been considered as causative substances for sick houses and school, and the use of toluene has become a problem at construction sites and factories that use toluene. . In particular, with the recent increase in airtightness of houses, there is a possibility that toluene, which is a volatile substance, is present in the air over a long period of time. In addition, toluene is sometimes used as a solvent for dissolving agricultural chemicals. Therefore, there is a possibility that toluene remains in vegetables or the like on which agricultural chemicals using toluene as a solvent are sprayed.
  • toluene is included in PRTR-designated substances and Ministry of Health, Labor and Welfare guideline-designated VOCs (volatile organic compounds), and provides health considerations to contractors, residents, and people who eat vegetables. It is necessary to manage the usage and discharge, and to manage the indoor concentration regularly in buildings. Moreover, when selling vegetables at a store or a supermarket, it is necessary to check whether toluene remains.
  • an object of the present invention is a toluene measurement system and toluene detection capable of easily and easily detecting that toluene existing at a low concentration level of ppm exists in the air. It is to provide a method.
  • the present inventors have found that the above object can be achieved by using a sensitive membrane on which an enzyme whose activity is inhibited by toluene is immobilized.
  • the present invention has been made on the basis of the above findings, and an enzyme reaction is carried out in a reaction vessel containing a substrate of the enzyme at a constant concentration using a sensitive membrane on which an enzyme whose activity is inhibited by toluene is immobilized. And providing a sensor system for detecting toluene, comprising means for detecting the inhibition activity of the enzyme reaction.
  • the enzyme include butyrylcholinesterase, and the substrate in this case includes butyrylcholine.
  • the sensitive membrane may further include an enzyme that reacts in the presence of choline and oxygen, which are products of the enzyme reaction of the enzyme.
  • the means for detecting the inhibition activity of the enzyme reaction include a means for detecting a change in the amount of oxygen consumed.
  • the present invention uses a sensitive membrane on which an enzyme whose activity is inhibited by toluene is immobilized, performs an enzyme reaction in a reaction tank containing a substrate of the enzyme at a certain concentration, and has an inhibitory activity on the enzyme reaction.
  • a method for detecting toluene is provided.
  • the enzyme include butyrylcholinesterase, and the substrate in this case includes butyrylcholine.
  • the sensitive membrane may further include an enzyme that reacts in the presence of choline and oxygen, which are products of the enzyme reaction of the enzyme. By detecting a change in the amount of oxygen consumed, the enzyme reaction inhibition activity can be detected.
  • a toluene detection sensor system capable of detecting toluene with high sensitivity and ease can be obtained.
  • the toluene detection method of the present invention can detect toluene with high sensitivity and ease.
  • the present invention is described in detail below.
  • the toluene detection sensor system of the present invention uses a sensitive membrane on which an enzyme whose activity is inhibited by toluene is immobilized, performs an enzyme reaction in a reaction vessel containing a substrate of the enzyme at a constant concentration, and the enzyme reaction Means for detecting the inhibitory activity.
  • the enzyme whose activity is inhibited by toluene used in the present invention include butyrylcholinesterase, acetylcholinesterase and the like, but are not limited thereto, and any enzyme can be used as long as the activity is inhibited by toluene. It can be used.
  • a sensitive membrane on which an enzyme whose activity is inhibited by toluene is immobilized is used.
  • a dialysis membrane is usually used.
  • the dialysis membrane a commercially available one can be used without any limitation.
  • the film thickness is about 15 ⁇ m, but the film thickness is not limited to about 15 ⁇ m.
  • membrane used in this invention What kind of method may be used. For example, an entrapment method using a photocrosslinkable resin, a crosslinking method, an adsorption method, and the like can be given.
  • the photocrosslinkable resin used to create the sensitive film used in the toluene detection sensor system of the present invention include polyethylene glycol, polyvinyl alcohol, and the like, in which polyvinyl alcohol is combined with a photosensitive group of SbQ, PVA-SbQ, SPP-H-13 (Bio), Toyo Gosei Co., Ltd., etc. can be used.
  • the enzyme and the photocrosslinkable resin were dissolved in a suitable buffer (for example, phosphate buffer), and then applied to and impregnated on a dialysis membrane, and the photocrosslinkable resin was crosslinked to immobilize the enzyme.
  • a suitable buffer for example, phosphate buffer
  • a carrier ie a sensitive membrane
  • FIG. 1 is a diagram schematically showing a method for producing a sensitive film used in the toluene detection sensor system of the present invention.
  • a mixed solution 12 containing a photocrosslinkable resin and an enzyme is applied to the dialysis membrane 10.
  • a solvent for preparing the mixed solution for example, a phosphate buffer is used.
  • concentration of the enzyme and the photocrosslinkable resin in the mixed solution is not particularly limited.
  • the enzyme is about 50 units per cm 2 of the dialysis membrane, and the photocrosslinkable resin is 1 ⁇ L per cm 2 of the dialysis membrane (concentration: It is preferable to use about 10% by weight).
  • the dialysis membrane 10 to which the mixed solution 12 is applied is left to stand in a cool dark place (temperature of about 0 to 10 ° C.) and dried.
  • the drying time is not particularly limited, but is usually about 30 minutes to 2 hours.
  • the dialysis membrane is irradiated with a fluorescent lamp 14 with a fluorescent lamp 14, photocrosslinked, and a sensitive membrane with an enzyme immobilized thereon is obtained.
  • the duration of the fluorescent lamp irradiation is not particularly limited, but is usually about 15 minutes to 1 hour.
  • the above-mentioned sensitive membrane is used, and the enzyme reaction is carried out in a reaction vessel containing the enzyme substrate at a constant concentration.
  • the substrate used herein means a compound that becomes a substrate of the enzyme whose activity is inhibited by toluene, and when the enzyme is butyrylcholinesterase, the substrate is butyrylcholine.
  • toluene detection sensor system of the present invention when toluene is present, it is detected that the enzyme is inhibited and the production amount of the enzyme reaction product is reduced. Therefore, it is necessary to carry out the enzyme reaction in an environment containing a certain concentration of substrate. In an environment containing a constant concentration of substrate, the concentration of the compound produced by the enzyme reaction becomes constant, and the inhibitory effect can be easily detected.
  • the toluene detection sensor system of the present invention has means for detecting the inhibition activity of the enzyme reaction.
  • the means for detecting the enzyme reaction inhibitory activity is not particularly limited, and any means may be used as long as it can detect the enzyme reaction inhibitory activity.
  • Examples of the means for detecting the inhibition activity of the enzyme reaction include a means for detecting a change in the amount of oxygen consumed. As such means, for example, a case where butyrylcholinesterase is used as an enzyme whose activity is inhibited by toluene will be described.
  • choline oxidase By reacting, for example, choline oxidase with choline produced by the decomposition of butyrylcholine by butyrylcholinesterase, the reaction of the product choline to betaine is simultaneously performed on the sensitive membrane. At this time, choline is oxidized by choline oxidase in the presence of water and oxygen to produce betaine. Since oxygen is consumed with the oxidation reaction by choline oxidase, it can be understood that the reaction of butyrylcholinesterase has occurred by detecting this oxygen consumption.
  • an oxygen electrode for example, a Clark-type oxygen electrode
  • the sensitive film is in close contact with the tip of the oxygen electrode. That is, the toluene detection sensor system of the present invention preferably uses an oxygen electrode (Clark type oxygen electrode) in which a sensitive membrane to which an enzyme whose activity is inhibited by toluene is immobilized is in close contact with the tip.
  • the oxygen electrode used in the toluene detection sensor system of the present invention includes a Clark-type oxygen electrode 22, a sensitive film 16, a mesh net 18, and a retaining ring 20.
  • the mesh net 18 has a function of bringing the sensitive film 16 into close contact with the Clark-type oxygen electrode 22.
  • the retaining ring 20 has an effect of fixing the sensitive membrane, and the material of the ring 13 is not particularly limited, and any material can be used as long as the enzyme-immobilized membrane 12 can be fixed to the optical fiber 11. A thing may be used.
  • the ring 13 for example, a ring made of silicon can be used.
  • the Clark-type oxygen electrode includes a working electrode (platinum) and a counter electrode (silver) in a cylindrical container containing an electrolytic solution (potassium chloride solution, etc.), and one end of the cylinder serves as a gas-permeable membrane (diaphragm).
  • the oxygen molecules flowing in from the outside are detected by the electrochemical reaction between the two electrodes, and a constant potential (-600 mV vs. Ag) is applied between the two electrodes, and the current accompanying the electrochemical reaction Oxygen can be measured as a change in value.
  • Formula (1) is a reaction of butyrylcholinesterase, which decomposes butyrylcholine into choline and butyric acid.
  • Formula (2) is a reaction in which the reaction product choline in Formula (1) is decomposed into betaine by choline oxidase in the presence of oxygen.
  • butyrylcholinesterase which is an enzyme that catalyzes the reaction of formula (1), is inhibited by toluene, the production of choline is reduced or eliminated in the presence of toluene.
  • the toluene detection sensor system of the present invention is characterized by measuring oxygen consumption, and is therefore preferably implemented in a saturated oxygen state. Moreover, it is necessary to make the substrate (butyrylcholine) concentration constant. For this reason, in the toluene detection sensor system of the present invention, it is preferable to perform measurement while circulating a buffer solution (for example, phosphate buffer solution) containing a constant concentration of substrate and saturated with oxygen.
  • a buffer solution for example, phosphate buffer solution
  • the method for detecting toluene according to the present invention uses a sensitive membrane on which an enzyme whose activity is inhibited by toluene is immobilized, performs an enzyme reaction in a reaction vessel containing a substrate of the enzyme at a certain concentration, Inhibitory activity is detected.
  • the toluene detection method of the present invention can be implemented using the above-described toluene detection sensor system of the present invention.
  • FIG. 2 is a schematic view of a method for detecting toluene using the toluene detection sensor system of the present invention.
  • the tip of the toluene detection sensor 30 is inserted into the measurement sample chamber 32, and the buffer solution storage tank 36, the pump 34, and the measurement sample chamber 32 are connected by a flow path 38.
  • the buffer solution storage tank 36 stores a phosphate buffer solution in which butyrylcholine, which is a substrate, is dissolved, and this phosphate buffer solution exists in a saturated oxygen state.
  • the buffer 34 in which the substrate in the buffer solution storage tank 36 is dissolved is pumped up by the pump 34, and the buffer solution in which the substrate is dissolved enters the measurement sample chamber 32 and detects the toluene inserted in the measurement sample chamber 32. It comes in contact with the tip of the sensor system 30 for use.
  • Butyrylcholinesterase and choline oxidase are immobilized at the tip of the toluene detection sensor 30, and the above reactions (1) and (2) occur in the measurement data chamber 32. Accordingly, when toluene is not present, oxygen in the buffer solution is consumed. When toluene is present, the amount of oxygen consumed is reduced, and this oxygen consumption constitutes the toluene detection sensor 30. Measurement is performed with an oxygen electrode, and an enzymatic reaction occurring in the measurement sample chamber 32 is detected. In FIG. 2, using a syringe 40, toluene is dropped into a sample tray 39, and an oxygen consumption measurement experiment is performed based on the amount of dropped toluene. In this case, a fan 42 is provided in the measurement chamber so that the concentration of toluene in the environment is constant.
  • a current measuring device 44 such as a potentiostat is connected to the toluene detection sensor 30 and receives a signal from an oxygen electrode constituting the toluene detection sensor 30.
  • an A / D converter 46 that converts an analog signal input to the current measuring device 44 into a digital signal, and information from the oxygen electrode is transmitted to the computer 48 by a signal from the A / D converter 46, and the computer 48 can analyze the data.
  • Example 1 Production of Sensitive Membrane (Enzyme Immobilized Membrane) Butyrylcholinesterase (2.1 units), choline oxidase (1.6 units) and PVA-SbQ (100 mg) were dissolved in phosphate buffer (0.1 mL), and dialysis membrane ( (Pore diameter: 24 ⁇ , film thickness: 15 ⁇ m, manufactured by Technicon), and then the dialysis membrane was dried in a cool and dark place for 1 hour, then irradiated with a fluorescent lamp for 30 minutes, and the enzyme was immobilized by photocrosslinking. To obtain a sensitive membrane (enzyme-immobilized membrane).
  • the obtained sensitive film was adhered to the tip of the oxygen electrode, a nylon mesh net was adhered, and then attached using a silicon tube ring to obtain the toluene detection sensor of the present invention.
  • the oxygen electrode used is a BO type dissolved oxygen electrode manufactured by Able Corporation.
  • Example 2 Measurement of Butyrylcholine Using the apparatus shown in FIG. 1, the oxygen consumption accompanying the dropwise addition of butyrylcholine solutions having various concentrations was measured. The sensor sensitive part was immersed in 50 ml of phosphate buffer filled in a 50 ml beaker, and the output stability for 1 minute was confirmed. Thereafter, butyrylcholine was added dropwise so that the final concentration was 50, 100, 250, 500, 750, 1000, 1250 ⁇ M, and the sensor output until 6 minutes later was measured. The results are shown in FIG. In FIG. 3, the horizontal axis represents time (minutes) and the vertical axis represents sensor output. The sensor output is represented by the absolute value of the difference from the sensor output in the oxygen saturation state. As apparent from FIG. 3, it was found that a sensor output corresponding to the concentration of butyrylcholine was obtained.
  • Example 3 Next, the same measurement was performed using a buffer solution having a butyrylcholine concentration of 600 ⁇ M, and 0.5 mL of a toluene / methanol solution was dropped 6 minutes after the start of the measurement.
  • the toluene concentration in the beaker at this time is 500 ⁇ M.
  • FIG. 4 the horizontal axis represents time (minutes), and the vertical axis represents sensor output.
  • FIG. 4 it was found that the presence of toluene reduces the oxygen consumption.
  • the decrease in oxygen consumption is the result of a decrease in the amount of choline which is a substrate for choline oxidase.
  • the sensor system for detecting toluene of the present invention can be used for detecting a substance that inhibits the activity of butyrylcholinesterase, that is, toluene.
  • the toluene measurement system shown in FIG. 2 was constructed.
  • the toluene detection sensor 30 is inserted into the measurement sample chamber 32, and a phosphate buffer solution in which butyrylcholine is dissolved is stored in the buffer solution storage tank 36.
  • a phosphate buffer solution in which butyrylcholine is dissolved is stored in the buffer solution storage tank 36.
  • oxygen is dissolved in a saturated state. is doing.
  • the buffer solution flows through the flow path 38, and the buffer solution enters the measurement sample chamber 32 and contacts the tip of the toluene detection sensor 30.
  • the flow rate of the buffer solution can be changed by the pump 34.
  • the buffer solution is flowed at a rate of 1.0 ml / min.
  • the toluene concentration can be adjusted by changing the amount of toluene dropped from the syringe 40 to the sample pan 39.
  • An oxygen electrode constituting the toluene detection sensor 30 measures the oxygen concentration in the buffer solution flowing in the measurement sample chamber 32, and the information is sent to the current measuring device 44 and then input to the current measuring device 44.
  • the analog signal is converted into a digital signal by the A / D converter 46, and the digital signal is sent to the computer 48 to analyze the data.
  • the measurement results are shown in FIG. In FIG. 5, the horizontal axis represents time (minutes), and the vertical axis represents sensor output.
  • the sensor output is expressed as a difference from the sensor output when toluene is not present in an oxygen saturated state. As is clear from FIG. 5, it was found that when the toluene concentration increases, the difference between the sensor output and the sensor output in the saturated oxygen state increases.
  • FIG. 6 shows that the sensor output shows a straight line when the toluene concentration is in the range of 5 to 100 ppm.
  • the calibration curve shown in FIG. 6 was expressed by the following equation, and the correlation coefficient was 0.997.
  • Sensor output ⁇ 0.026 + 0.046 log [toluene concentration (ppm)]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Dispersion Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 トルエンが空気中に存在することを高感度かつ簡便に検出することができるトルエン測定システム及びトルエンの検出方法を提供すること。  【解決手段】 本発明のトルエン検出用センサシステムは、トルエンによって活性が阻害される酵素が固定化された感応膜を用い、一定濃度の前記酵素の基質を含む反応槽内で酵素反応を実施し、前記酵素反応の阻害活性を検出する手段を有することを特徴とする。

Description

トルエン検出センサシステム及びトルエンの検出方法
 本発明は、トルエン検出センサシステム及びトルエンの検出方法に関し、特には、高感度かつ簡便にトルエンを検出することができる、トルエン検出センサシステム及びトルエンの検出方法に関する。
 トルエンは、従来よりインクを溶解するための溶媒として、また、床材として用いられるエポキシ系樹脂の溶剤として用いられてきた。最近、建築物から放散するトルエン等の揮発性物質がシックハウスやシックスクールの原因物質とされており、建築現場や、トルエンを用いる工場等ではトルエンの使用が問題視されるようになってきている。特に、近年における住宅の高気密化に伴い、住居内において、空気中に揮発性物質であるトルエンが長期にわたり存在する可能性もあり、問題となっている。
 また、トルエンは農薬を溶解するための溶媒として用いられる場合もある。従って、トルエンを溶媒として用いた農薬が散布された野菜等にはトルエンが残留している可能性がある。
  更に、トルエンは、PRTR法の指定物質や厚生労働省指針値指定VOC(揮発性有機化合物)に含まれ、建築業者や、居住者、また野菜を食する人への健康上の配慮や、物質の使用量及び排出量を管理し、建築物における定期的な室内濃度測定管理をする必要がある。また、野菜を商店やスーパーで販売する場合にも、トルエンが残留していないかを調べる必要がある。
 しかしながら、低濃度のトルエンが空気中に存在することを高感度に検知することができる装置は存在せず、低濃度のトルエンを検出することのできる装置が望まれており、例えば、特許文献1には、揮発性有機化合物であるトルエン等を検出するガス検出装置が開示されている。しかしながら、更に感度の優れたトルエン検出システムが望まれている。
 一方、本発明者らは、酵素を固定化した膜を用いることにより、特定の物質を測定することのできることのできるバイオセンサを開示している(例えば、特許文献2)。このようなバイオセンサによれば、特定の物質の測定をすることが可能であるが、トルエンの測定に用いることのできるものではなかった。
特開2007-271636号公報 特開2003-250516号公報
 従って、本発明の目的は、上記の事情に鑑みて、ppmの低濃度のレベルで存在するトルエンが空気中に存在することを高感度かつ簡便に検出することができるトルエン測定システム及びトルエンの検出方法を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、トルエンによって活性が阻害される酵素が固定化された感応膜を用いることにより、上記目的を達成し得るという知見を得た。
 本発明は、上記知見に基づいてなされたものであり、トルエンによって活性が阻害される酵素が固定化された感応膜を用い、一定濃度の前記酵素の基質を含む反応槽内で酵素反応を実施し、前記酵素反応の阻害活性を検出する手段を有することを特徴とする、トルエン検出用センサシステムを提供するものである。
 前記酵素としてはブチリルコリンエステラーゼが挙げられ、その場合の基質としてはブチリルコリンが挙げられる。
 前記感応膜は、前記酵素の酵素反応の生成物であるコリンと酸素の存在下に反応する酵素を更に含むものであってもよい。
 前記酵素反応の阻害活性を検出する手段としては、消費される酸素量の変化を検出する手段が挙げられる。
 また、本発明は、トルエンによって活性が阻害される酵素が固定化された感応膜を用い、一定濃度の前記酵素の基質を含む反応槽内で酵素反応を実施し、前記酵素反応の阻害活性を検出することを特徴とする、トルエンの検出方法を提供する。
 前記酵素としてはブチリルコリンエステラーゼが挙げられ、その場合の基質としてはブチリルコリンが挙げられる。
 前記感応膜は、前記酵素の酵素反応の生成物であるコリンと酸素の存在下に反応する酵素を更に含むものであってもよい。
 消費される酸素量の変化を検出することにより、酵素反応の阻害活性を検出することができる。
 本発明によれば、高感度かつ簡便にトルエンを検出することができる、トルエン検出センサシステムが得られる。また、本発明のトルエンの検出方法は、高感度かつ簡便にトルエンを検出することができる。
 以下に、本発明を詳細に説明する。
 本発明のトルエン検出用センサシステムは、トルエンによって活性が阻害される酵素が固定化された感応膜を用い、一定濃度の前記酵素の基質を含む反応槽内で酵素反応を実施し、前記酵素反応の阻害活性を検出する手段を有する。
 本発明において用いられる、トルエンによって活性が阻害される酵素とは、例えばブチリルコリンエステラーゼ、アセチルコリンエステラーゼ等が挙げられるが、これらに限定されず、トルエンによって活性が阻害される酵素であればあらゆるものが使用可能である。
 本発明のトルエン検出用センサシステムにおいては、上記のトルエンによって活性が阻害される酵素が固定化された感応膜を用いる。本発明のトルエン検出用センサシステムにおいて用いられる膜としては、通常は透析膜が用いられる。透析膜としては、通常に市販されているものが何ら制限なく用いられる。通常は膜厚が15μm程度のものが用いられるが、膜厚が15μm程度のものに限定されない。本発明において用いられる感応膜の製造方法としては特に制限はなくどのような方法を用いてもよい。例えば、光架橋性樹脂による包括法、架橋法、吸着法等が挙げられる。その中でも、光架橋性樹脂による包括法が一般的に用いられる。以下、光架橋製樹脂による包括法について説明する。本発明のトルエン検出用センサシステムにおいて用いられる感応膜を作成するのに用いられる光架橋性樹脂としては、例えばポリエチレングリコール、ポリビニルアルコール等が挙げられ、ポリビニルアルコールにSbQの光感応基を組み合わせた、PVA-SbQ、SPP-H-13(Bio)、東洋合成工業(株)製等を用いることができる。酵素及び光架橋性樹脂を適当な緩衝液(例えば例えば、リン酸緩衝液)に溶解した後、透析膜に塗布、含浸させ、上記光架橋性樹脂を架橋させることにより、酵素が固定化された担体、すなわち感応膜が得られる。
 感応膜の製造方法について、図面を参照しつつ説明する。図1は、本発明のトルエン検出センサシステムにおいて用いられる、感応膜の製造方法を概略的に示す図である。
 まず、透析膜10に、光架橋性樹脂、酵素を含む混合溶液12を塗布する。混合溶液の作成のための溶媒としては、例えばリン酸緩衝液が用いられる。この混合溶液中の酵素及び光架橋性樹脂の濃度に特に制限はないが、通常は、酵素を、透析膜1cmあたり50ユニット程度、光架橋性樹脂を、透析膜1cmあたり1μL(濃度:10重量%)程度用いることが好ましい。次いで、混合溶液12を塗布した透析膜10を冷暗所(0~10℃程度の温度)に静置して乾燥させる。乾燥時間は特に制限はないが、通常、30分~2時間程度である。次いで、透析膜により、蛍光灯14により蛍光灯照射を行い、光架橋を行い、酵素が固定化された感応膜が得られる。蛍光灯照射の時間は、特に制限はないが、通常、15分~1時間程度である。
 本発明のトルエン検出用センサシステムにおいては、上述した感応膜を用い、一定濃度の前記酵素の基質を含む反応槽内で酵素反応を実施する。ここで用いられる基質は、前述した、トルエンによって活性が阻害される酵素の基質となる化合物を意味するものであり、前記酵素がブチリルコリンエステラーゼの場合、基質はブチリルコリンである。本発明のトルエン検出用センサシステムにおいては、トルエンが存在する場合に前記酵素が阻害され、酵素反応生成物の生成量が減少することを検出するものである。従って、一定濃度の基質を含む環境下で酵素反応を実施する必要がある。一定濃度の基質を含む環境下であれば酵素反応によって生成される化合物の濃度は一定となり、阻害効果を検出しやすくなる。
 本発明のトルエン検出用センサシステムにおいては、前記酵素反応の阻害活性を検出する手段を有する。この酵素反応の阻害活性を検出する手段としては特に制限はなく、前記酵素反応の阻害活性を検出できる手段であればどのような手段であってよい。前記酵素反応の阻害活性を検出する手段としては、消費される酸素量の変化を検出する手段が挙げられる。
 このような手段としては、例えば、トルエンによって活性が阻害される酵素としてブチリルコリンエステラーゼを用いる場合について説明する。
 ブチリルコリンエステラーゼがブチリルコリンを分解して生成するコリンを、例えばコリンオキシダーゼと反応させることにより、生成物であるコリンがベタインになる反応を感応膜上で同時に実施させる。この時、コリンは水及び酸素の存在下にコリンオキシダーゼによって酸化されてベタインが生成する。コリンオキシダーゼによる酸化反応に伴い、酸素が消費されるので、この酸素消費量を検出することによって、ブチリルコリンエステラーゼの反応が起こったことがわかる。すなわち、トルエンによってブチリンコリンエステラーゼの活性が阻害された場合、酸素消費量が減少するので、トルエンが存在しない場合の酸素消費量と比較することにより、空気中にトルエンが存在するか否かを検出することが可能となる。従って、前記感応膜には、前述したブチリルコリンエステラーゼに加え、コリンオキシダーゼを固定させておく必要がある。
 酸素の消費量を検出する方法としては、例えば、酸素電極(例えば、クラーク型酸素電極)を用いることにより実施することができる。従って、本発明のトルエン検出用センサシステムにおいては、感応膜を酸素電極の先端に密着させることが好ましい。すなわち、本発明のトルエン検出用センサシステムは、トルエンによって活性が阻害される酵素が固定化された感応膜が先端に密着されてなる酸素電極(クラーク型酸素電極)を用いることが好ましい。
 本発明のトルエン検出用センサシステムにおいて用いられる酸素電極について図1を参照しつつ説明する。本発明のトルエン検出用センサシステムにおいて用いられる酸素電極は、図1に示すように、クラーク型酸素電極22と、感応膜16と、網目ネット18と、止め輪20とから構成されている。網目ネット18は、感応膜16をクラーク型酸素電極22に密着させる作用を有する。また、止め輪20は感応膜を固定させる作用を有しており、このリング13の材質については特に制限はなく、酵素固定化膜12を光ファイバー11に固定できるものであればどのような材質のものを用いてもよい。リング13としては、例えばシリコン製のものを用いることができる。
 クラーク型酸素電極とは、電解液(塩化カリウム溶液等)を含む円筒の容器の中に作用電極(白金)と対極(銀)とが備えられ、円筒の一端がガス透過性膜(隔膜)にて外部と隔てられ、外部より流入する酸素分子を2電極での電気化学反応にて検出し、一定の電位(-600mV vs.Ag)を2電極間に印加して、電気化学反応に伴う電流値の変化として酸素を測定することができるものである。
 本発明のトルエン検出用センサシステムの原理について以下に説明する。本発明は、下記に示す2種類の酵素反応に基づく。式(1)は、ブチリルコリンエステラーゼの反応であり、ブチリルコリンエステラーゼがブチリルコリンをコリンと酪酸に分解する。式(2)は、式(1)における反応生成物コリンが、酸素の存在下、コリンオキシダーゼによりベタインに分解される反応である。ここで、式(1)の反応を触媒する酵素であるブチリルコリンエステラーゼはトルエンによって、その活性が阻害されるので、トルエンの存在下ではコリンの生成が減少又は消失する。コリンの生成量が減少又は消失することにより、式(2)の反応の基質であるコリンの量が減少又は消失するため、反応(2)において消費される酸素量が減少することから、コリンの生成量を測定することが可能となる。
 ブチリルコリン → コリン + 酪酸      (1)
 コリン + 2O + HO → ベタイン + 過酸化水素(2)
 従って、コントロール(飽和酸素状態)の測定値と比較し、酸素消費量が減少している場合には、ブチリルコリンエステラーゼが阻害されていることがわかり、従って、トルエンが存在していることがわかる。本発明のトルエン検出用センサシステムは、酸素の消費量を測定することが特徴であり、従って、飽和酸素状態で実施することが好ましい。また、基質(ブチリルコリン)濃度を一定濃度にする必要がある。このため、本発明のトルエン検出用センサシステムにおいては、一定濃度の基質を含み、酸素を飽和させた緩衝液(例えば、リン酸緩衝液)を循環させながら測定を行うことが好ましい。
 次に、本発明のトルエンの検出方法について説明する。
 本発明のトルエンの検出方法は、トルエンによって活性が阻害される酵素が固定化された感応膜を用い、一定濃度の前記酵素の基質を含む反応槽内で酵素反応を実施し、前記酵素反応の阻害活性を検出することを特徴とする。本発明のトルエンの検出方法は、上述した、本発明のトルエン検出用センサシステムを用いて実施することができる。
 本発明のトルエン検出用センサシステムを用いて、トルエンを検出する方法、すなわち、本発明のトルエンの検出方法について、図面を参照しつつ説明する。図2は、本発明のトルエン検出用センサシステムを用いてトルエンを検出する方法の概略図である。図2においては、トルエン検出用センサ30の先端が測定用試料室32に挿入されており、緩衝液貯蔵タンク36とポンプ34と、測定用試料室32とが流路38によって連結されている。緩衝液貯蔵タンク36には、基質であるブチリルコリンが溶解したリン酸緩衝液が貯蔵されており、また、このリン酸緩衝液は飽和酸素状態で存在する。ポンプ34により、緩衝液貯蔵タンク36内の基質が溶解した緩衝液がくみ上げられ、基質が溶解した緩衝液は測定用試料室32内に入り、測定用試料室32内に挿入されているトルエン検出用センサシステム30の先端と接触するようになっている。
 トルエン検出用センサ30の先端には、ブチリルコリンエステラーゼ及びコリンオキシダーゼが固定化されており、この測定用資料室32内で、上述した反応(1)及び(2)が起こる。従って、トルエンが存在しない場合においては、緩衝液中の酸素が消費され、トルエンが存在する場合には、酸素の消費量が減少するので、この酸素消費量を、トルエン検出用センサ30を構成する酸素電極により測定し、測定用試料室32内で起こっている酵素反応を検出する。
 図2においては、注射器40を用いて、試料皿39内にトルエンを滴下し、滴下したトルエン量による、酸素消費量の測定実験を行うようになっている。また、この場合の測定室内には、ファン42が備えられており、環境中のトルエン濃度が一定になるようになっている。
 図2においては、トルエン検出用センサ30には、ポテンシオスタット等の電流測定器44が接続されており、トルエン検出用センサ30を構成する酸素電極からの信号を受信する。次いで、電流測定器44に入力されたアナログ信号をデジタル信号に変換するA/Dコンバータ46と、該A/Dコンバータ46からの信号にて酸素電極からの情報をコンピュータ48に送信し、かかるコンピュータ48によりデータを解析することができる。
 以下に、実施例を示して本発明を具体的に説明するが、これらにより本発明は何ら制限を受けるものではない。
 実施例1
 感応膜(酵素固定化膜)の製造
 ブチリルコリンエステラーゼ(2.1units)、コリンオキシダーゼ(1.6units)及びPVA-SbQ(100mg)をリン酸緩衝液(0.1mL)に溶解し、透析膜(孔径:24オングストローム、膜厚:15μm、テクニコン社製)に塗布し、次いで、この透析膜を冷暗所にて1時間乾燥させた後、30分間蛍光灯を照射し、光架橋法により酵素を包括固定化し、感応膜(酵素固定化膜)を得た。
 得られた感応膜を、酸素電極の先端部に密着させ、ナイロン製の網目ネットを接着させ、次いでシリコンチューブリングを用いて装着させ、本発明のトルエン検出用センサを得た。用いた酸素電極は、エイブル(株)製のBO型溶存酸素電極である。
 実施例2
 ブチリルコリンの測定
 図1に示す装置を用いて、種々の濃度のブチリルコリン溶液の滴下に伴う酸素消費を測定した。50mlビーカー中に満たした50mlのリン酸緩衝液にセンサ感応部を浸漬し、1分間の出力安定を確認した。その後最終濃度が50,100,250,500,750,1000,1250μMとなるようブチリルコリンを滴下し、6分後までのセンサ出力を測定した。結果を図3に示す。図3において、横軸は時間(分)を表わし、縦軸はセンサ出力を表わす。なお、センサ出力としては、酸素飽和状態のセンサ出力との差の絶対値で表わす。図3から明らかなように、ブチリルコリンの濃度に応じたセンサ出力が得られることが分かった。
 実施例3
 次に、ブチリルコリン濃度が600μMの緩衝液を用い、同様に測定を行い、測定開始6分後に、トルエン・メタノール溶液を0.5mL滴下した。この時のビーカー中のトルエン濃度は500μMである。結果を図4に示す。図4において、横軸は時間(分)を表わし、縦軸はセンサ出力を表わす。図4から明らかなように、トルエンが存在することにより、酸素消費量が減少することがわかった。酸素消費量の減少は、コリンオキシダーゼの基質であるコリンの量が減少することの結果である。これは、ブチリルコリンエステラーゼによってブチリルコリンの分解量が減少すること、すなわち、ブチリルコリンエステラーゼの阻害が検出できることを意味する。これらより、本発明のトルエン検出用センサシステムは、ブチリルコリンエステラーゼの活性を阻害する物質、すなわちトルエンの検出に用いることができることがわかった。
 このトルエン検出用センサを用い、図2に示すトルエン計測系を構築した。トルエン検出用センサ30を測定用試料室32に挿入し、緩衝液貯蔵タンク36には、ブチリルコリンが溶解したリン酸緩衝液が貯蔵されており、このリン酸緩衝液には酸素が飽和状態で溶解している。ポンプ34を稼働させることにより、緩衝液が流路38を流れ、緩衝液は測定用試料室32に入り、トルエン検出用センサ30の先端と接触する。ポンプ34により、緩衝液の流速を変えることができ、本実施例においては、1.0ml/分の速度で緩衝液を流す。トルエン濃度は、注射器40から試料皿39にトルエンを滴下する量を変えることによって調整することができる。トルエン検出用センサ30を構成する酸素電極により、測定用試料室32内を流れる緩衝液中の酸素濃度を測定し、その情報が電流測定器44に送られ、次いで、電流測定器44に入力されたアナログ信号が、A/Dコンバータ46によってデジタル信号に変換され、かかるデジタル信号がコンピュータ48に送られデータが解析される。
 実施例4
 図2に示すトルエン計測系を用いてトルエンガスの計測を行なった。注射器40よりトルエンを、それぞれ、0.22、5.54、11.07μL、試料皿39へ滴下し、環境中のトルエン濃度を5、25及び50ppmとなるようにした。測定の結果を図5に示す。図5において、横軸は時間(分)を表わし、縦軸はセンサ出力を表わす。なお、センサ出力としては、酸素飽和状態でトルエンが存在しない場合のセンサ出力との差として表わす。図5から明らかなように、トルエン濃度が上昇すると、センサ出力は飽和酸素状態のセンサ出力との差が大きくなることがわかった。これは、酸素消費量が減少することを意味し、すなわち、トルエン濃度が上昇すると酸素消費量が減少することがわかった。このデータに従い、検量線を作成したのが図6のグラフである。図6において、横軸はトルエン濃度の対数、縦軸はセンサ出力であり、酸素飽和状態でトルエンが存在しない場合のセンサ出力との差で表わす。図6より、トルエン濃度が5~100ppmの範囲ではセンサ出力が直線を示すことがわかった。
 なお、図6に示す検量線は以下の式によって表され、相関係数は0.997であった。
 センサ出力=-0.026+0.046log〔トルエン濃度(ppm)〕
本発明のトルエン検出センサシステムにおいて用いられる、感応膜の製造方法を概略的に示す図である。 本発明のトルエン検出用センサシステムを用いてトルエンを検出する方法の概略図である。 種々の濃度のブチリルコリンの測定を行った結果を示すグラフである。 トルエンの測定を行った結果を示すグラフである。 トルエンガスの測定を行った結果を示すグラフである。 検量線を示すグラフである。
10 透析膜          12 混合溶液
14 蛍光灯          16 感応膜
18 網目ネット        20 止め輪
22 クラーク型酸素電極    30 トルエン検出用センサ
32 測定用試料室       34 ポンプ
36 緩衝液貯蔵タンク     38 流路
39 試料皿          40 注射器
42 ファン          44 電流測定器
46 A/Dコンバータ     48 コンピュータ

Claims (8)

  1. トルエンによって活性が阻害される酵素が固定化された感応膜を用い、一定濃度の前記酵素の基質を含む反応槽内で酵素反応を実施し、前記酵素反応の阻害活性を検出する手段を有することを特徴とする、トルエン検出用センサシステム。
  2. 前記酵素がブチリルコリンエステラーゼであり、前記基質がブチリルコリンである、請求項1記載のトルエン検出用センサシステム。
  3. 前記感応膜が、前記酵素の酵素反応の生成物であるコリンと酸素の存在下に反応する酵素を更に含んでなる、請求項2記載のトルエン検出用センサシステム。
  4. 前記酵素反応の阻害活性を検出する手段が、消費される酸素量の変化を検出する手段である、請求項1~3のいずれか1項記載のトルエン検出用センサシステム。
  5. トルエンによって活性が阻害される酵素が固定化された感応膜を用い、一定濃度の前記酵素の基質を含む反応槽内で酵素反応を実施し、前記酵素反応の阻害活性を検出することを特徴とする、トルエンの検出方法。
  6. 前記酵素がブチリルコリンエステラーゼであり、前記基質がブチリルコリンである、請求項5記載のトルエンの検出方法。
  7. 前記感応膜が、前記酵素の酵素反応の生成物であるコリンと酸素の存在下に反応する酵素を更に含んでなる、請求項6記載のトルエンの検出方法。
  8. 消費される酸素量の変化を検出することにより、酵素反応の阻害活性を検出する、請求項6~8のいずれか1項記載のトルエンの検出方法。
PCT/JP2009/058891 2008-05-14 2009-05-13 トルエン検出センサシステム及びトルエンの検出方法 WO2009139406A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-127030 2008-05-14
JP2008127030A JP2009273394A (ja) 2008-05-14 2008-05-14 トルエン検出センサシステム及びトルエンの検出方法

Publications (1)

Publication Number Publication Date
WO2009139406A1 true WO2009139406A1 (ja) 2009-11-19

Family

ID=41318773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058891 WO2009139406A1 (ja) 2008-05-14 2009-05-13 トルエン検出センサシステム及びトルエンの検出方法

Country Status (2)

Country Link
JP (1) JP2009273394A (ja)
WO (1) WO2009139406A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015158237A1 (en) 2014-04-15 2015-10-22 Novozymes A/S Polypeptides with lipase activity and polynucleotides encoding same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"214th ECS Meeting, The Electrochemical Society, Abstract #2935, Oct, 2008", October 2008, article SUZUKI, Y. ET AL.: "Toluene bio-sniffer using enzyme inhibition" *
"Dai 2 Kai 21 Seiki Rengo Symposium Ronbunshu -Kagaku Gijutsu to Ningen", 2003, article HIROKAZU AMAGAI ET AL.: "Toluene-yo Imuno. Sunifa ni Kansuru Kenkyu", pages: 275 - 276 *
JARV, J.: "Reversible of butyrylcholinesterase with aromatic hydrocarbons", BIOCHIM.BIOPHYS. ACTA., vol. 706, no. 2, 1982, pages 174 - 8 *
MITSUBAYASHI, K. ET AL.: "Bioelectronic sniffer for nicotine using enzyme inhibition", ANAL.CHIM.ACTA., vol. 573-574, 2006, pages 69 - 74 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015158237A1 (en) 2014-04-15 2015-10-22 Novozymes A/S Polypeptides with lipase activity and polynucleotides encoding same

Also Published As

Publication number Publication date
JP2009273394A (ja) 2009-11-26

Similar Documents

Publication Publication Date Title
CA1177735A (en) Method of polarographic analysis of lactic acid and lactate
Li et al. Measurement of atmospheric hydrogen peroxide and hydroxymethyl hydroperoxide with a diffusion scrubber and light emitting diode− liquid Core waveguide-based fluorometry
Lehner et al. LUMOS-A sensitive and reliable optode system for measuring dissolved oxygen in the nanomolar range
Karube et al. Biosensors for environmental control
Rose et al. Determination of Superoxide in Seawater Using 2-Methyl-6-(4-methoxyphenyl)-3, 7-dihydroimidazo [1, 2-a] pyrazin-3 (7 H)-one Chemiluminescence
Adamski et al. Simple sensor for the determination of phenol and its derivatives in water based on enzyme tyrosinase
Hämmerle et al. Analysis of volatile alcohols in apple juices by an electrochemical biosensor measuring in the headspace above the liquid
Dhall et al. Quick and reliable estimation of BOD load of beverage industrial wastewater by developing BOD biosensor
WO2011022921A1 (zh) 一种反应器式bod快速测定仪及其测定方法
Nakamura et al. An automatic flow-injection analysis system for determining phosphate ion in river water using pyruvate oxidase G (from Aerococcus viridans)
DK2939012T3 (en) ELECTROCHEMICAL SENSOR TO DETECT DINITROGEN OXIDE
Preuschoff et al. Photodiode-based chemiluminometric biosensors for hydrogen peroxide and L-lysine
RU2149182C1 (ru) Биодатчик для обнаружения ионов нитрата или нитрита и способ определения ионов нитрата и/или нитрита
Demirkiran et al. Immobilization of glucose oxidase in silica sol-gel film for application to biosensor and amperometric determination of glucose
WO2009139406A1 (ja) トルエン検出センサシステム及びトルエンの検出方法
Reddy et al. Ion exchanger modified PVC membranes—selectivity studies and response amplification of oxalate and lactate enzyme electrodes
Mieliauskiene et al. Amperometric determination of acetate with a tri-enzyme based sensor
Mitsubayashi et al. Bioelectronic sniffer device for trimethylamine vapor using flavin containing monooxygenase
Ebeling et al. Electrochemical ozone sensor and instrument with characterization of the electrode and gas flow effects
Sanvito et al. Fostering and understanding iron detection at the ultratrace level by adsorptive stripping voltammetry with catalytic enhancement
Bolshakov et al. Catalase activity of cytochrome c oxidase assayed with hydrogen peroxide-sensitive electrode microsensor
Stergiou et al. Ozone monitoring based on a biosensor concept utilizing a reagentless alcohol oxidase electrode
Bollmann et al. An NH4+ biosensor based on ammonia-oxidizing bacteria for use under anoxic conditions
Lapp et al. An enzymatic chemiluminescence optrode for choline detection under flow injection conditions
WO2012090919A1 (ja) 光センサ用チップ、光センサ、測定システムおよびそれを用いた測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746612

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09746612

Country of ref document: EP

Kind code of ref document: A1