WO2009139288A1 - Communication device - Google Patents

Communication device Download PDF

Info

Publication number
WO2009139288A1
WO2009139288A1 PCT/JP2009/058298 JP2009058298W WO2009139288A1 WO 2009139288 A1 WO2009139288 A1 WO 2009139288A1 JP 2009058298 W JP2009058298 W JP 2009058298W WO 2009139288 A1 WO2009139288 A1 WO 2009139288A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
signal
unit
channel
demodulation
Prior art date
Application number
PCT/JP2009/058298
Other languages
French (fr)
Japanese (ja)
Inventor
靖志 曽我部
明徳 平
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2010511943A priority Critical patent/JP5165056B2/en
Publication of WO2009139288A1 publication Critical patent/WO2009139288A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band

Definitions

  • the present invention relates to a communication apparatus capable of communicating with a plurality of communication systems having different specifications.
  • ETC Electronic Toll Collection System
  • DSRC Dedicated Short Range Communication
  • Vehicle Communication for ITS Intelligent Transport Systems
  • in-vehicle communication devices that support multiple systems.
  • ETC is given the highest priority, and when an ETC signal is detected, the ETC transmission / reception unit and modulation / demodulation unit are forcibly selected.
  • a wireless device having a wireless unit corresponding to a plurality of systems in the same frequency band and improving the real-time property at the time of selection by selecting the one having the highest received power has been proposed (Patent Document 2 below). reference).
  • This wireless device is equipped with a radio unit for ETC and DSRC using the ASK (Amplitude Shift Keying) modulation method and a radio unit for inter-vehicle communication using the QPSK (Quadrature Phase Shift Keying) modulation method. Is operated, the signal strength of the received radio wave is detected, and the one with the higher received power is selected for communication.
  • ASK Amplitude Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • an antenna and a frequency converter unit are provided outside a normal radio device, and the antenna and the frequency converter part are selected and used, and software radio A method of sharing a wireless device portion has been proposed (see Patent Document 3 below).
  • This software defined radio includes a plurality of programmable signal processing devices, and sets the other signal processing device as a switching destination communication method while communicating with one signal processing device.
  • each of the above patent documents includes an antenna, an RF (Radio Frequency) unit, an IF (Intermediate frequency) unit, and a modulation / demodulation unit corresponding to each system in order to communicate with a plurality of systems.
  • the purpose is to perform real-time (seamless) switching by switching circuits and modules to be used.
  • Some technologies aim to reduce the circuit scale by sharing possible parts or applying software defined radio to the baseband part.
  • a method for accommodating a plurality of terminals in the same frequency band for example, there is a collective modulation / demodulation method used in satellite communication or the like.
  • the frequency band is divided and used by a plurality of terminals.
  • signals from the plurality of terminals are handled by a single radio (see Non-Patent Document 1 below).
  • the conventional batch modulation / demodulation method it is necessary to make the reception power from each terminal in the receiver constant, and it is also necessary to synchronize the frame timing. For this reason, it is necessary to perform transmission power control and timing control for each terminal from the receiver side that performs batch modulation / demodulation.
  • the conventional technique described above has a problem that the apparatus scale and the circuit scale cannot be reduced because the system cannot be completely shared for all systems having different modulation / demodulation methods.
  • Non-Patent Document 1 is a system intended to accommodate a plurality of users in the same frequency band, and allocates terminals operating in each system to the plurality of frequency bands. As a result, a plurality of systems can be processed by a single wireless device.
  • the receiver of the radio unit performs gain adjustment such as AGC (Automatic Gain Control) for all received signals at once, if a signal with a low signal level and a high signal are mixed, the A / In D (Analog / Digital) conversion, there is a problem that a signal with a low signal level has a smaller number of bits and a larger quantization error than a high signal.
  • AGC Automatic Gain Control
  • OFDMA Orthogonal Frequency Division Multiple Access
  • This method is used in WiMAX, and it is possible to assign a plurality of users in a band by arbitrarily dividing a channel on the frequency axis during OFDM modulation of secondary modulation.
  • FFT Fast Fourier Transform
  • the present invention has been made in view of the above, and an object thereof is to obtain a communication apparatus that collectively demodulates signals of a plurality of communication systems having different specifications with a simple configuration.
  • the present invention provides a communication apparatus that can be connected to a plurality of communication systems having different specifications, and collects a plurality of signals between the plurality of communication systems.
  • Receiving means demultiplexing means for demultiplexing the received signals for each channel, and selecting a channel corresponding to each communication system based on the signal for each channel demultiplexed by the demultiplexing means,
  • Demodulating means for demodulating the signal in units of communication systems; power detecting means for detecting received power for each channel selected by the demodulating means; and determining a communication system in which the apparatus communicates based on a detection result;
  • Control means for performing communication control based on a demodulation result for each communication system obtained from the demodulation means and a judgment result obtained from the power detection means.
  • the present invention it is possible to reduce the size of the apparatus and eliminate the need for a channel search. Therefore, it is possible to shorten the time until the start of communication, and to enable high-speed channel switching. Play.
  • FIG. 1 is a diagram illustrating a configuration example of a communication apparatus.
  • FIG. 2 is a diagram showing frequency allocation for ITS in the current 5.8 GHz band.
  • FIG. 3 is a diagram illustrating an example of received power.
  • FIG. 4 is a diagram illustrating a case where communication is performed by selecting a system having the maximum power.
  • FIG. 5 is a diagram illustrating an example of the time required for the channel search.
  • FIG. 6A is a diagram illustrating a state in which a vehicle performs road-to-vehicle communication and vehicle-to-vehicle communication in the vicinity of an intersection.
  • FIG. 6B is a diagram illustrating a state in which the vehicle performs road-to-vehicle communication and vehicle-to-vehicle communication near the intersection.
  • FIG. 6A is a diagram illustrating a state in which a vehicle performs road-to-vehicle communication and vehicle-to-vehicle communication near the intersection.
  • FIG. 6A is
  • FIG. 7A is a diagram illustrating an example of received power.
  • FIG. 7B is a diagram of an example of received power.
  • FIG. 8 is a diagram illustrating a configuration example of a communication device.
  • FIG. 9 is a diagram illustrating a configuration example of the analog unit.
  • FIG. 10A is a diagram illustrating an example of received power.
  • FIG. 10B is a diagram of an example of received power.
  • FIG. 10C is a diagram illustrating an example of received power.
  • FIG. 1 is a diagram illustrating a configuration example of a first embodiment of a communication device according to the present invention.
  • an in-vehicle communication device corresponding to each system of ETC / DSRC / inter-vehicle communication in the 5.8 GHz band is shown.
  • 1 includes an analog unit 1, a demultiplexing unit 3, an ETC demodulating unit 4, a DSRC demodulating unit 5, an inter-vehicle demodulating unit 6, an ETC control unit 7, DSRC control unit 8, inter-vehicle control unit 9, power detection unit 10, and communication control unit 11.
  • the in-vehicle communication apparatus of FIG. 1 adopts a single carrier method in accordance with an existing ETC / DSRC roadside machine.
  • the analog unit 1 receives signals for the entire band for ITS or a desired band, and outputs the received signals as baseband digital signals.
  • the demultiplexing unit 3 in the collective demodulation unit 2 demultiplexes the input signal and divides it into channels corresponding to each system.
  • the demultiplexing unit 3 is, for example, a multi-rate filter that can set an arbitrary bandwidth for each channel.
  • the ETC demodulator 4, the DSRC demodulator 5, and the inter-vehicle demodulator 6 select a channel used in the corresponding system of ETC / DSRC / inter-vehicle communication, and the signal input from the demultiplexer 3 Performs demodulation corresponding to the system.
  • a signal (demodulated data sequence) is output to a corresponding control unit connected to the subsequent stage, and power information of the channel selected above is output to the power detection unit 10.
  • the ETC control unit 7, the DSRC control unit 8, and the inter-vehicle control unit 9 correspond to an ETC system, a DSRC system, and an inter-vehicle communication system, respectively, and error correction and frame processing are performed on signals output from the respective demodulation units. And outputs the result to the communication control unit 11.
  • the power detection unit 10 obtains a communicable system based on the power information for each system output from each demodulation unit of ETC / DSRC / vehicle-to-vehicle communication, and outputs the result to the communication control unit 11.
  • the communication control unit 11 performs communication control based on the output from each control unit of ETC / DSRC / inter-vehicle communication and the output from the power detection unit 10.
  • FIG. 2 is a diagram showing frequency allocation for ITS in the 5.8 GHz band.
  • Conventional frequency allocation is performed assuming road-to-vehicle communication only, and as shown in FIG. 2, for uplink (vehicle communication device ⁇ roadside device) and downlink (roadside device ⁇ vehicle communication device) Seven channels (U1 to U7, D1 to D7) are defined.
  • U1 to U7, D1 to D7) are defined.
  • no frequency is assigned at this stage. For this reason, the following description will be made on the assumption that one or more of the specific use or unused channels among the channels shown in FIG. 2 can be allocated.
  • ETC / DSRC / vehicle-to-vehicle communication operates independently of each other, and the power of each channel (system) is different from the viewpoint of the in-vehicle communication device on the receiving side.
  • frame intervals and clock timings are independent (asynchronous between systems) for each system.
  • the analog unit 1 of the in-vehicle communication device receives the signal of the entire band for ITS shown in FIG. 2 (or the desired band if the range of the used band is known), the analog unit 1 converts it into a baseband digital signal. The data is converted and output to the batch demodulation unit 2.
  • the demultiplexing unit 3 of the collective demodulation unit 2 demultiplexes the input signal into signals for each channel. Each demodulator performs processing in parallel, outputs a demodulated data sequence to each control unit connected to the subsequent stage, and outputs power information for each system to the power detector 10.
  • Each control unit for ETC / DSRC / vehicle-to-vehicle communication identifies a unique word that is a known pattern signal for system discrimination inserted in the demodulated data series, thereby identifying an application used in each system, The result is output to the communication control unit 11 connected to the subsequent stage.
  • FIG. 3 is a diagram illustrating an example of received power at the time of channel detection observed in the in-vehicle communication device.
  • DSRC D3 / U3
  • inter-vehicle communication U7
  • ETC ETC
  • D4 DSRC
  • the power detection unit 10 excludes a system of a channel whose received power is equal to or less than a threshold value from communication targets even if it is correctly demodulated. Therefore, the power detection unit 10 determines that the DSRC (D3 / U3) and the inter-vehicle communication (U7) are systems in which the own device communicates, and notifies the communication control unit 11 accordingly.
  • the communication control unit 11 performs control for starting DSRC communication and inter-vehicle communication based on the output from each control unit connected in the previous stage and the notification from the power detection unit 10.
  • FIG. 4 is a diagram illustrating a case where communication is performed by selecting a system having the maximum power in the example of the received power illustrated in FIG. 3.
  • the power detection unit 10 determines DSRC (D3) as the maximum power, and notifies the communication control unit 11 to that effect.
  • the communication control unit 11 performs control for starting DSRC communication based on the output from each control unit connected to the preceding stage and the notification from the power detection unit 10.
  • the maximum value detection in a communication environment where there is no system operating in the vicinity, there is a possibility that a weak radio wave or noise from a distance is erroneously detected as the maximum value.
  • the detected maximum value is compared with an appropriately set threshold value, and if the maximum value is equal to or less than the threshold value, it is determined that communication is impossible.
  • the channel is not limited to the above determination method. For example, when the control unit corresponding to the channel with the maximum power cannot detect a unique word or when there is an error in the demodulated data, the channel It is good also as judging that communication in is impossible.
  • FIG. 5 is a diagram illustrating an example of a time required for channel search when there are a plurality of systems.
  • the in-vehicle communication device needs to perform channel allocation processing with a roadside unit for road-to-vehicle communication (ETC / DSRC) or a nearby in-vehicle communication device that performs inter-vehicle communication prior to communication. For this reason, the in-vehicle communication device needs to search for a channel used by the roadside device and a nearby in-vehicle communication device. For example, in the reception state of FIG.
  • ETC / DSRC road-to-vehicle communication
  • the in-vehicle communication device determines which channel D1-D4 is used by the roadside unit. In addition to searching, a search is made as to which channel is used by a nearby in-vehicle communication device for inter-vehicle communication. Therefore, as shown in the conventional method of FIG. 5, the time required for the channel search becomes long, and it takes time until the communication starts.
  • the in-vehicle communication device of this embodiment demodulates all the ITS band (or the desired band) signals all together, so channel search processing is unnecessary and communication is started only by synchronization processing. can do. Therefore, compared to the conventional method of searching one by one until a corresponding channel is found, it is possible to significantly reduce the time until communication is started.
  • the circuit scale can be reduced and the apparatus can be downsized.
  • the received power is compared with the threshold value, and the channel having the power higher than the threshold value is detected, so that transmission power control to the communication partner is unnecessary.
  • the existing equipment can be used as it is.
  • the adoption of a single carrier eliminates the need for timing synchronization at the symbol period level for all in-vehicle communication devices and roadside devices, eliminating the need to change the modulation method and allowing the existing ETC / DSRC roadside devices to be used as they are. It is.
  • channel detection is performed for all channels that are assumed to be used for ITS.
  • only the downlink signal from the roadside unit is used as a criterion. May be.
  • the circuit scale can be reduced.
  • the in-vehicle communication device may perform communication on the uplink.
  • the transmission signal from the in-vehicle communication device is generally smaller than the transmission signal of the roadside unit, but this uplink signal may exceed the threshold depending on the positional relationship between the host vehicle, the adjacent vehicle, and the roadside unit. Therefore, in such a case, the detection process may be performed on the uplink signal. In this case, the signal detection accuracy may increase.
  • ITS is taken as an example and a case where a plurality of systems within the same system band is assumed has been described. However, even when a plurality of system bands arranged adjacently or discretely are assumed. Applicable.
  • Embodiment 2 In the first embodiment, signals in the entire band (or a desired band) for ITS are monitored and demodulated at once, and communication is performed with a system in a channel whose received power exceeds a threshold value. In the present embodiment, a priority for each system is introduced to select a system for communication.
  • ITS uses (1) ETC, which is a charging system, as a preferential use method for applications that avoid interference between road-to-vehicle communication (ETC / DSRC) and inter-vehicle communication.
  • ETC road-to-vehicle communication
  • DSRC inter-vehicle communication
  • priority is given in the order of “ETC> DSRC> inter-vehicle communication”, and the communication control unit 11 performs control according to this priority.
  • the priority may be another order.
  • the configuration of the in-vehicle communication device is the same as that in FIG. In the present embodiment, it is assumed that the in-vehicle communication device has a specification for communicating with only one system.
  • FIGS. 6A and 6B are diagrams illustrating how the vehicle performs road-to-vehicle communication and vehicle-to-vehicle communication in the vicinity of the intersection.
  • FIGS. 7A and 7B are both for in-vehicle use. It is a figure which shows an example of the received power observed in a communication apparatus.
  • the vehicle 21 that is the host vehicle is communicating with the vehicle 22 using the channel U7.
  • the power detection unit 10 of the in-vehicle communication device mounted on the vehicle 21 observes the signal power as shown in FIG.
  • the power detection unit 10 determines that it is outside the ETC communication area.
  • the power of DSRC D3 / U3
  • the power detection unit 10 determines that it is outside the DSRC communication area.
  • the power detection unit 10 outputs these determination results to the communication control unit 11.
  • the communication control unit 11 continues the inter-vehicle communication with the vehicle 21 based on these results.
  • the power detection unit 10 of the in-vehicle communication device The signal power is observed as shown in -2. In this case, since the power of the ETC system is not observed, the power detection unit 10 determines that it is out of the ETC communication area. However, since the power of DSRC (D3) is equal to or greater than the threshold, the vehicle enters the DSRC communication area. The communication control unit 11 is notified of the determination result.
  • the communication control unit 11 performs control for stopping the vehicle-to-vehicle communication that has been continued with the vehicle 22 based on the determination result and the priority order, and then uses the channel D3 / U3 to communicate with the roadside device 23. Control for starting DSRC communication is performed.
  • the power detection unit 10 determines that the vehicle is within the DSRC communication area. And it judges that it exists in the communication area between cars, and notifies the communication control part 11 of a judgment result.
  • the communication control unit 11 performs control for starting DSRC communication with the roadside device 23 using the channel D3 / U3 based on the determination result and the priority order.
  • the priority is “DSRC> car-to-car communication”
  • control for connecting to the DSRC communication is performed without performing car-to-car communication.
  • the power states of a plurality of channels within a desired band are simultaneously monitored, and priorities are assigned among the systems, and the highest priority is given to systems whose power exceeds a threshold value.
  • the system with the highest priority was selected for communication.
  • Embodiment 3 the power states of a plurality of systems (channels) in a desired band are simultaneously monitored, and the system having the highest priority among the systems whose power exceeds the threshold is selected for communication.
  • the analog unit extracts a signal of a desired system and selectively outputs the signal of the desired system and the signal received at once.
  • FIG. 8 is a diagram illustrating a configuration example of the third embodiment of the communication device according to the present invention.
  • an in-vehicle communication device corresponding to each system of ETC / DSRC / inter-vehicle communication in the 5.8 GHz band is shown.
  • the in-vehicle communication device has a specification for communicating with only one system.
  • the analog unit 1B receives signals for the entire band for ITS or a desired band, and outputs the received radio wave as a baseband digital signal.
  • the communication control unit 11B performs the same processing as the communication control unit 11, and further selects the analog signal 1B and the AGC based on the output from each control unit connected to the previous stage and the notification from the power detection unit 10. Output a control signal.
  • FIG. 9 is a diagram illustrating a configuration example of the analog unit 1B of the in-vehicle communication device illustrated in FIG.
  • the analog unit 1B includes a down converter 31, a channel filter 32, a switch 33, an AGC 34, a down converter 35, and an A / D conversion unit 36.
  • the down converter 31 converts an input RF (Radio Frequency) signal into an IF (Intermediate Frequency) signal.
  • the channel filter 32 filters the IF signal and passes only the set channel.
  • the switch 33 switches the output (signal / channel) to be passed in accordance with the select signal sent from the communication control unit 11B, and only the output on the set side of the output of the down converter 31 and the output of the channel filter 32 is selected. Pass through.
  • An AGC (Automatic Gain Control) 34 adjusts the gain of the input signal in accordance with the AGC control signal from the communication control unit 11B and outputs it.
  • the down converter 35 converts the input signal into a baseband signal.
  • the A / D conversion unit 36 performs analog / digital conversion.
  • the power detection unit 10 of the in-vehicle communication device mounted on the vehicle 21 observes the signal power as shown in FIG. 10-1.
  • 10-1, FIG. 10-2, and FIG. 10-3 are diagrams showing examples of received power observed in the in-vehicle communication device.
  • the power detection unit 10 determines that it is outside the ETC communication area.
  • the power of DSRC D3 / U3
  • the power detection unit 10 determines that it is outside the DSRC communication area.
  • the power detection unit 10 notifies the communication control unit 11 of these determination results.
  • the communication control unit 11 continues the inter-vehicle communication with the vehicle 21 based on these results.
  • the power detection unit 10 of the in-vehicle communication device for example, The signal power is observed as shown in FIG. In this case, since the power of the ETC system is not observed, the power detection unit 10 determines that it is outside the ETC communication area. On the other hand, since the power of DSRC (D3) is equal to or greater than the threshold, it is determined that the host vehicle has entered the DSRC communication area. The power detection unit 10 notifies the communication control unit 11B of these determination results.
  • the communication control unit 11B performs control for stopping the inter-vehicle communication that has been continued with the vehicle 22 based on the notified result, and is connected to the roadside unit 23 using the channel D3 / U3. Control for starting DSRC communication is performed. Then, the communication control unit 11B outputs a select signal for selecting the output of the channel filter 32 toward the switch 33 of the analog unit 1B in order to perform DSRC communication.
  • the analog unit 1B receives a signal in which signals from a plurality of systems are combined, the received signal is amplified (attenuated) so as to be optimal for the A / D conversion range as in the conventional collective demodulation method. ),
  • the desired signal is not always optimal.
  • the signal power of the channel U7 is larger than the signal power of the desired channel D3 (DSRC). It is difficult to take out in a state.
  • the analog unit 1B performs processing for extracting the DSRC signal in an optimal state. Specifically, first, the switch 33 is set to pass the output of the down converter 31 in the initial state, but the output of the channel filter 32 is passed according to the select signal from the communication control unit 11B. Performs processing to switch settings. Next, the AGC 34 performs gain adjustment suitable for the input signal in accordance with the AGC control signal from the communication control unit 11B, and outputs the adjusted signal. Thereafter, predetermined processing is performed by the down converter 35 and the A / D conversion unit 36, and finally, the DSRC signal is output in an optimal state from the analog unit 1B.
  • the communication control unit 11 ⁇ / b> B outputs a select signal for selecting the output of the down converter 31 to the switch 33. Thereby, it returns to the state which can detect the signal of all the systems.
  • the output of the analog unit is controlled according to the priority, and only a desired system signal can be extracted.
  • unnecessary system signals can be deleted, and desired signals can be extracted in an optimum state.
  • the adoption of a single carrier eliminates the need for timing synchronization at the symbol period level in all in-vehicle communication devices and roadside devices, and also eliminates the need to change the modulation method.
  • the communication apparatus is useful for a communication apparatus that communicates with a plurality of systems having different specifications, and is particularly suitable for a communication apparatus that collectively demodulates signals of a plurality of systems.

Abstract

Signals of communication systems having different specifications can be demodulated all at once by using a simple configuration. Provided is a communication device including: an analog unit (1) which receives a plurality of signals between a plurality of communication systems all at once; a demultiplexing unit (3) which demultiplexes the signals received all at once, for each channel; demodulation units (4-6) which select a channel corresponding to each of the communication systems in accordance with a signal of each channel demultiplexed by the demultiplexing unit (3) and demodulates the signal in a communication system unit; a power detection unit (10) which detects a reception power of each channel selected by each demodulation unit and judges with which communication system the local device is to perform communication according to the detection result; and a communication control unit (11) which performs communication control in accordance with the demodulation result of each communication system obtained by each demodulation unit and judgment result obtained by the power detection unit (10).

Description

通信装置Communication device
 本発明は、仕様の異なる複数の通信システムと通信可能な通信装置に関するものである。 The present invention relates to a communication apparatus capable of communicating with a plurality of communication systems having different specifications.
 従来、同一周波数帯の複数システム(アプリケーション)に対応する無線装置としては、たとえば、ITS(Intelligent Transport Systems)用の、ETC(Electronic Toll Collection System)/DSRC(Dedicated Short Range Communication)/車々間通信、といった複数システムに対応する車載用通信装置がある。たとえば、車載用通信装置が、各システムに対応した複数の送受信部と変復調部を持ち、それらを切り替えることで所望のシステムと通信を行う方法が提案されている(下記特許文献1参照)。また、この例では、ETCを最優先とし、ETCの信号を検出すると強制的にETCの送受信部と変復調部を選択している。 Conventionally, as a wireless device corresponding to a plurality of systems (applications) in the same frequency band, for example, ETC (Electronic Toll Collection System) / DSRC (Dedicated Short Range Communication) / Vehicle Communication for ITS (Intelligent Transport Systems) There are in-vehicle communication devices that support multiple systems. For example, a method has been proposed in which an in-vehicle communication device has a plurality of transmission / reception units and modulation / demodulation units corresponding to each system, and communicates with a desired system by switching between them (see Patent Document 1 below). In this example, ETC is given the highest priority, and when an ETC signal is detected, the ETC transmission / reception unit and modulation / demodulation unit are forcibly selected.
 また、たとえば、同一周波数帯の複数システムに対応した無線部を持ち、受信電力の最も高かったものを選択することで選択時のリアルタイム性を高めた無線装置が提案されている(下記特許文献2参照)。この無線装置は、ASK(Amplitude Shift Keying)変調方式を用いるETCおよびDSRC用の無線部と、QPSK(Quadrature Phase Shift Keying)変調方式を用いる車々間通信用の無線部とを備え、常に両方の無線部を動作させておき、受信した電波の信号強度を検出し、受信電力の高い方を選択して通信を行う。 In addition, for example, a wireless device having a wireless unit corresponding to a plurality of systems in the same frequency band and improving the real-time property at the time of selection by selecting the one having the highest received power has been proposed (Patent Document 2 below). reference). This wireless device is equipped with a radio unit for ETC and DSRC using the ASK (Amplitude Shift Keying) modulation method and a radio unit for inter-vehicle communication using the QPSK (Quadrature Phase Shift Keying) modulation method. Is operated, the signal strength of the received radio wave is detected, and the one with the higher received power is selected for communication.
 また、異なる周波数帯の複数システムに対応する無線装置として、たとえば、アンテナと周波数コンバータ部を通常の無線装置の外部に持ち、このアンテナと周波数コンバータ部分を選択して使用し、かつ、ソフトウェア無線により無線装置部分を共通化した方法が提案されている(下記特許文献3参照)。 In addition, as a radio device corresponding to a plurality of systems of different frequency bands, for example, an antenna and a frequency converter unit are provided outside a normal radio device, and the antenna and the frequency converter part are selected and used, and software radio A method of sharing a wireless device portion has been proposed (see Patent Document 3 below).
 同様に、異なる周波数の複数システムに対応する無線装置として、ソフトウェア無線を採用した上記とは異なる方法が提案されている(下記特許文献4参照)。このソフトウェア無線機は、プログラム可能な複数の信号処理装置を備え、一方の信号処理装置で通信を行っている間に、他方の信号処理装置を切り替え先の通信方式に設定する。 Similarly, a method different from the above that employs software defined radio has been proposed as a wireless device corresponding to a plurality of systems having different frequencies (see Patent Document 4 below). This software defined radio includes a plurality of programmable signal processing devices, and sets the other signal processing device as a switching destination communication method while communicating with one signal processing device.
 上記各特許文献の技術は、複数のシステムと通信を行うために、各システムに対応したアンテナやRF(Radio Frequency)部、IF(Intermediate frequency)部、変復調部を備え、受信信号の強度等を用いて回路や使用するモジュールを切り替えることで、リアルタイム(シームレス)に切替えを行うことを目的としている。また、一部の技術は、可能な部分を共通化し、または、ベースバンド部にソフトウェア無線を適用することで、回路規模削減を目指している。 The technology of each of the above patent documents includes an antenna, an RF (Radio Frequency) unit, an IF (Intermediate frequency) unit, and a modulation / demodulation unit corresponding to each system in order to communicate with a plurality of systems. The purpose is to perform real-time (seamless) switching by switching circuits and modules to be used. Some technologies aim to reduce the circuit scale by sharing possible parts or applying software defined radio to the baseband part.
 また、同一周波数帯の複数の端末を収容する方法として、たとえば、衛星通信などで用いられている一括変復調方式がある。この方式では、周波数帯域を分割して複数の端末で使用するが、中継器では、これら複数端末からの信号を一つの無線機で対応している(下記非特許文献1参照)。従来の一括変復調方式では、受信器における各端末からの受信電力を一定にする必要があり、また、フレームタイミングも同期させる必要がある。このため、一括変復調を行う受信器側から、各端末に対して送信電力制御およびタイミング制御を行う必要があった。 Also, as a method for accommodating a plurality of terminals in the same frequency band, for example, there is a collective modulation / demodulation method used in satellite communication or the like. In this method, the frequency band is divided and used by a plurality of terminals. In the repeater, signals from the plurality of terminals are handled by a single radio (see Non-Patent Document 1 below). In the conventional batch modulation / demodulation method, it is necessary to make the reception power from each terminal in the receiver constant, and it is also necessary to synchronize the frame timing. For this reason, it is necessary to perform transmission power control and timing control for each terminal from the receiver side that performs batch modulation / demodulation.
特開2004-246687号公報JP 2004-246687 A 特開2007-104043号公報JP 2007-104043 A 特開2003-110454号公報Japanese Patent Laid-Open No. 2003-110454 特開2006-173664号公報JP 2006-173664 A
 しかしながら、上記従来の技術では、変復調方式の異なる全てのシステムに対して完全な共通化が図れていないため、装置規模・回路規模を小さくしきれていない、という問題があった。 However, the conventional technique described above has a problem that the apparatus scale and the circuit scale cannot be reduced because the system cannot be completely shared for all systems having different modulation / demodulation methods.
 また、上記非特許文献1に記載の従来の一括変復調システムは、同一周波数帯の複数ユーザを収容することを目的としたシステムであるが、複数の周波数帯域に各システムで動作する端末をそれぞれ割当てることで、複数システムを1つの無線機で処理することが可能となる。しかしながら、無線機の受信部では、全ての受信信号に対して一括してAGC(Automatic Gain Control)等のゲイン調整を行うため、信号レベルの低い信号と高い信号が混在した場合、後段のA/D(Analog/Digital)変換において、信号レベルの低い信号は高い信号に比べてビット数が小さくなり、量子化誤差が大きくなる、という問題があった。また、同様の場合において、信号レベルの低い信号はS/N比が悪くなる、という問題もあった。一方で、これに対する解決策として、受信機入力端でのレベルを一定とする制御を行うと、送信側に電力制御を行わせることになるために、受信側から送信側へ送信電力制御用の通知が必要となる、という問題があった。また、従来の一括変復調システムは、同一システム内の複数端末を一つの制御部で制御することを目的としていたため、フレームタイミングを同期させるタイミング制御機能が必要となる。 In addition, the conventional batch modulation / demodulation system described in Non-Patent Document 1 is a system intended to accommodate a plurality of users in the same frequency band, and allocates terminals operating in each system to the plurality of frequency bands. As a result, a plurality of systems can be processed by a single wireless device. However, since the receiver of the radio unit performs gain adjustment such as AGC (Automatic Gain Control) for all received signals at once, if a signal with a low signal level and a high signal are mixed, the A / In D (Analog / Digital) conversion, there is a problem that a signal with a low signal level has a smaller number of bits and a larger quantization error than a high signal. In the same case, there is also a problem that a signal with a low signal level has a poor S / N ratio. On the other hand, as a solution to this, if the control at a constant input level at the receiver input is performed, the power control is performed on the transmission side. There was a problem that notification was necessary. In addition, since the conventional batch modulation / demodulation system is intended to control a plurality of terminals in the same system with a single control unit, a timing control function for synchronizing frame timing is required.
 また、OFDM(Orthogonal Frequency Division Multiplexing)を採用する場合には、一括変復調を行う方式として、OFDMA(Orthogonal Frequency Division Multiple Access)がある。この方式は、WiMAXで用いられ、2次変調のOFDM変調時に、周波数軸上でチャネルを任意に分割できるようにすることで、帯域内に複数のユーザを割当てることが可能である。しかしながら、OFDMA方式では、FFT(Fast Fourier Transform)を行うにあたって、全てのユーザの信号を、シンボルレベルの解像度でFFTウィンドウに収まるようにタイミング制御を行う必要があるため、全ての基地局と端末との間で時間同期を取る必要がある、という問題があった。また、受信機入力端でのレベルが一定となる制御を行うため、上述同様、送信側へ送信電力制御用の通知が必要となる、という問題があった。 In addition, when adopting OFDM (Orthogonal Frequency Division Multiplexing), there is OFDMA (Orthogonal Frequency Division Multiple Access) as a method for performing batch modulation and demodulation. This method is used in WiMAX, and it is possible to assign a plurality of users in a band by arbitrarily dividing a channel on the frequency axis during OFDM modulation of secondary modulation. However, in the OFDMA system, when performing FFT (Fast Fourier Transform), it is necessary to perform timing control so that all user signals fit in the FFT window with symbol-level resolution. There was a problem that it was necessary to synchronize the time. In addition, since control is performed so that the level at the receiver input terminal is constant, there is a problem that notification for transmission power control is required to the transmission side as described above.
 本発明は、上記に鑑みてなされたものであって、仕様の異なる複数の通信システムの信号を、簡易な構成で一括復調する通信装置を得ることを目的とする。 The present invention has been made in view of the above, and an object thereof is to obtain a communication apparatus that collectively demodulates signals of a plurality of communication systems having different specifications with a simple configuration.
 上述した課題を解決し、目的を達成するために、本発明は、仕様の異なる複数の通信システムに接続可能な通信装置であって、前記複数の通信システムとの間の複数の信号を一括して受信する受信手段と、一括受信した信号をチャネル毎に分波する分波手段と、前記分波手段によって分波されたチャネル毎の信号に基づいて各通信システムに対応するチャネルを選択し、当該信号を通信システム単位で復調する復調手段と、前記復調手段により選択されたチャネル毎の受信電力を検出し、検出結果に基づいて自装置が通信を行う通信システムを判断する電力検出手段と、前記復調手段から得られる通信システム毎の復調結果および前記電力検出手段から得られる判断結果に基づいて通信制御を行う制御手段と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a communication apparatus that can be connected to a plurality of communication systems having different specifications, and collects a plurality of signals between the plurality of communication systems. Receiving means, demultiplexing means for demultiplexing the received signals for each channel, and selecting a channel corresponding to each communication system based on the signal for each channel demultiplexed by the demultiplexing means, Demodulating means for demodulating the signal in units of communication systems; power detecting means for detecting received power for each channel selected by the demodulating means; and determining a communication system in which the apparatus communicates based on a detection result; Control means for performing communication control based on a demodulation result for each communication system obtained from the demodulation means and a judgment result obtained from the power detection means.
 この発明によれば、装置の小型化が可能になるとともに、チャネルサーチが不要となるため、通信を開始するまでの時間が短縮可能となり、また、高速なチャネル切り替えが可能となる、という効果を奏する。 According to the present invention, it is possible to reduce the size of the apparatus and eliminate the need for a channel search. Therefore, it is possible to shorten the time until the start of communication, and to enable high-speed channel switching. Play.
図1は、通信装置の構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a communication apparatus. 図2は、現在の5.8GHz帯におけるITS用の周波数割当てを示す図である。FIG. 2 is a diagram showing frequency allocation for ITS in the current 5.8 GHz band. 図3は、受信電力の一例を示す図である。FIG. 3 is a diagram illustrating an example of received power. 図4は、電力が最大のシステムを選択して通信を行う場合を示す図である。FIG. 4 is a diagram illustrating a case where communication is performed by selecting a system having the maximum power. 図5は、チャネルサーチにかかる時間の一例を示す図である。FIG. 5 is a diagram illustrating an example of the time required for the channel search. 図6-1は、車両が交差点近傍において路車間通信および車々間通信を行う様子を示す図である。FIG. 6A is a diagram illustrating a state in which a vehicle performs road-to-vehicle communication and vehicle-to-vehicle communication in the vicinity of an intersection. 図6-2は、車両が交差点近傍において路車間通信および車々間通信を行う様子を示す図である。FIG. 6B is a diagram illustrating a state in which the vehicle performs road-to-vehicle communication and vehicle-to-vehicle communication near the intersection. 図7-1は、受信電力の一例を示す図である。FIG. 7A is a diagram illustrating an example of received power. 図7-2は、受信電力の一例を示す図である。FIG. 7B is a diagram of an example of received power. 図8は、通信装置の構成例を示す図である。FIG. 8 is a diagram illustrating a configuration example of a communication device. 図9は、アナログ部の構成例を示す図である。FIG. 9 is a diagram illustrating a configuration example of the analog unit. 図10-1は、受信電力の一例を示す図である。FIG. 10A is a diagram illustrating an example of received power. 図10-2は、受信電力の一例を示す図である。FIG. 10B is a diagram of an example of received power. 図10-3は、受信電力の一例を示す図である。FIG. 10C is a diagram illustrating an example of received power.
 以下に、本発明にかかる通信装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, an embodiment of a communication device according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明にかかる通信装置の実施の形態1の構成例を示す図である。詳細には、通信装置の一例として、5.8GHz帯におけるETC/DSRC/車々間通信の各システムに対応した車載用通信装置が示されている。図1の車載用通信装置は、アナログ部1と、分波部3,ETC用復調部4,DSRC用復調部5,車々間用復調部6を備える一括復調部2と、ETC用制御部7と、DSRC用制御部8と、車々間用制御部9と、電力検出部10と、通信制御部11と、を備えている。なお、図1の車載用通信装置は、既存のETC/DSRC路側機に合わせてシングルキャリア方式を採用する。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration example of a first embodiment of a communication device according to the present invention. Specifically, as an example of the communication device, an in-vehicle communication device corresponding to each system of ETC / DSRC / inter-vehicle communication in the 5.8 GHz band is shown. 1 includes an analog unit 1, a demultiplexing unit 3, an ETC demodulating unit 4, a DSRC demodulating unit 5, an inter-vehicle demodulating unit 6, an ETC control unit 7, DSRC control unit 8, inter-vehicle control unit 9, power detection unit 10, and communication control unit 11. Note that the in-vehicle communication apparatus of FIG. 1 adopts a single carrier method in accordance with an existing ETC / DSRC roadside machine.
 アナログ部1は、ITS用の全帯域または所望の帯域分の信号を受信し、受信した信号をベースバンドのデジタル信号として出力する。一括復調部2における分波部3は、入力された信号を分波し、各システムに対応したチャネルに分ける。ここで、分波部3を、たとえば、チャネル毎に任意の帯域幅を設定できるマルチレートフィルタとする。ETC用復調部4,DSRC用復調部5,車々間用復調部6は、ETC/DSRC/車々間通信の該当するシステムで使用されるチャネルを選択し、分波部3から入力された信号に対してシステムに対応した復調処理を行う。また、後段に接続された該当する制御部に信号(復調データ系列)を出力するとともに、電力検出部10に上記で選択したチャネルの電力情報を出力する。 The analog unit 1 receives signals for the entire band for ITS or a desired band, and outputs the received signals as baseband digital signals. The demultiplexing unit 3 in the collective demodulation unit 2 demultiplexes the input signal and divides it into channels corresponding to each system. Here, the demultiplexing unit 3 is, for example, a multi-rate filter that can set an arbitrary bandwidth for each channel. The ETC demodulator 4, the DSRC demodulator 5, and the inter-vehicle demodulator 6 select a channel used in the corresponding system of ETC / DSRC / inter-vehicle communication, and the signal input from the demultiplexer 3 Performs demodulation corresponding to the system. In addition, a signal (demodulated data sequence) is output to a corresponding control unit connected to the subsequent stage, and power information of the channel selected above is output to the power detection unit 10.
 ETC用制御部7,DSRC用制御部8,車々間用制御部9は、それぞれ、ETCシステム,DSRCシステム,車々間通信システムに対応しており、各復調部から出力された信号に誤り訂正やフレーム処理等を行い、その結果を通信制御部11に出力する。 The ETC control unit 7, the DSRC control unit 8, and the inter-vehicle control unit 9 correspond to an ETC system, a DSRC system, and an inter-vehicle communication system, respectively, and error correction and frame processing are performed on signals output from the respective demodulation units. And outputs the result to the communication control unit 11.
 電力検出部10は、ETC/DSRC/車々間通信の各復調部から出力されるシステム毎の電力情報に基づいて通信可能なシステムを求め、その結果を通信制御部11に出力する。通信制御部11は、ETC/DSRC/車々間通信の各制御部からの出力および電力検出部10からの出力に基づいて通信制御を行う。 The power detection unit 10 obtains a communicable system based on the power information for each system output from each demodulation unit of ETC / DSRC / vehicle-to-vehicle communication, and outputs the result to the communication control unit 11. The communication control unit 11 performs communication control based on the output from each control unit of ETC / DSRC / inter-vehicle communication and the output from the power detection unit 10.
 図2は、5.8GHz帯におけるITS用の周波数割当てを示す図である。従来の周波数割当ては路車間通信のみを想定して行われており、図2に示すように、アップリンク(車載用通信装置→路側機)およびダウンリンク(路側機→車載用通信装置)用に各7チャネル(U1~U7,D1~D7)が規定されている。なお、車々間通信に関しては、現段階では周波数が割当てられていない。このため、以下では、図2に示されたチャネルのうち、特定用途または未使用のチャネルの1個または複数個が割当て可能であると仮定して説明する。 FIG. 2 is a diagram showing frequency allocation for ITS in the 5.8 GHz band. Conventional frequency allocation is performed assuming road-to-vehicle communication only, and as shown in FIG. 2, for uplink (vehicle communication device → roadside device) and downlink (roadside device → vehicle communication device) Seven channels (U1 to U7, D1 to D7) are defined. Regarding inter-vehicle communication, no frequency is assigned at this stage. For this reason, the following description will be made on the assumption that one or more of the specific use or unused channels among the channels shown in FIG. 2 can be allocated.
 なお、ETC/DSRC/車々間通信は互いに独立して動作しており、受信側の車載用通信装置からみると、各チャネル(システム)の電力は異なっている。また、システム毎に、フレーム間隔やクロックタイミングも独立(互いのシステム間で非同期)である。 Note that ETC / DSRC / vehicle-to-vehicle communication operates independently of each other, and the power of each channel (system) is different from the viewpoint of the in-vehicle communication device on the receiving side. In addition, frame intervals and clock timings are independent (asynchronous between systems) for each system.
 つづいて、以上のように構成された車載用通信装置の動作について説明する。車載用通信装置のアナログ部1は、図2に示されるITS用の全帯域(使用されている帯域の範囲が既知の場合は所望の帯域分)の信号を受信すると、ベースバンドのデジタル信号に変換して一括復調部2に出力する。一括復調部2の分波部3は、入力された信号を、チャネル毎の信号に分波する。各復調部は、並列に処理を行い、後段に接続された各制御部に対して復調データ系列を出力するとともに、システム毎の電力情報を電力検出部10に出力する。ETC/DSRC/車々間通信用の各制御部は、復調データ系列内に挿入されたシステム判別用の既知パターン信号であるユニークワードを検出することで、各システムで使用されているアプリケーションを特定し、その結果を、後段に接続された通信制御部11に出力する。 Next, the operation of the in-vehicle communication device configured as described above will be described. When the analog unit 1 of the in-vehicle communication device receives the signal of the entire band for ITS shown in FIG. 2 (or the desired band if the range of the used band is known), the analog unit 1 converts it into a baseband digital signal. The data is converted and output to the batch demodulation unit 2. The demultiplexing unit 3 of the collective demodulation unit 2 demultiplexes the input signal into signals for each channel. Each demodulator performs processing in parallel, outputs a demodulated data sequence to each control unit connected to the subsequent stage, and outputs power information for each system to the power detector 10. Each control unit for ETC / DSRC / vehicle-to-vehicle communication identifies a unique word that is a known pattern signal for system discrimination inserted in the demodulated data series, thereby identifying an application used in each system, The result is output to the communication control unit 11 connected to the subsequent stage.
 ここで、車載用通信装置の電力検出部10および通信制御部11の動作について詳細に説明する。図3は、車載用通信装置において観測されるチャネル検出時の受信電力の一例を示す図である。ここでは、近隣におけるDSRC(D3/U3),車々間通信(U7)の信号と、遠方におけるETC(D1),DSRC(D4)の信号が観測されている。 Here, operations of the power detection unit 10 and the communication control unit 11 of the in-vehicle communication device will be described in detail. FIG. 3 is a diagram illustrating an example of received power at the time of channel detection observed in the in-vehicle communication device. Here, DSRC (D3 / U3) and inter-vehicle communication (U7) signals in the vicinity and ETC (D1) and DSRC (D4) signals in the distance are observed.
 ITSでは通常、近隣のシステムと通信を行うので、たとえば、図3のように、受信電力に閾値を設定する。この場合、電力検出部10は、受信電力が閾値以下であったチャネルのシステムは、正しく復調されていても通信対象から除外する。したがって、電力検出部10は、DSRC(D3/U3)と車々間通信(U7)を自装置が通信を行うシステムと判断し、通信制御部11にその旨を通知する。通信制御部11は、前段に接続された各制御部からの出力および電力検出部10からの通知に基づいて、以降、DSRC通信と車々間通信を開始するための制御を行う。 Since ITS normally communicates with neighboring systems, for example, a threshold is set for received power as shown in FIG. In this case, the power detection unit 10 excludes a system of a channel whose received power is equal to or less than a threshold value from communication targets even if it is correctly demodulated. Therefore, the power detection unit 10 determines that the DSRC (D3 / U3) and the inter-vehicle communication (U7) are systems in which the own device communicates, and notifies the communication control unit 11 accordingly. The communication control unit 11 performs control for starting DSRC communication and inter-vehicle communication based on the output from each control unit connected in the previous stage and the notification from the power detection unit 10.
 また、車載用通信装置が1つのシステムとのみ通信を行う仕様の場合には、たとえば、受信電力の最大値を検出し、電力が最大となるチャネルのシステムと通信を行う。図4は、図3で示した受信電力の例において、電力が最大のシステムを選択して通信を行う場合を示す図である。この場合、電力検出部10は、DSRC(D3)を最大電力と判断し、その旨を通信制御部11に通知する。通信制御部11は、前段に接続された各制御部からの出力および電力検出部10からの通知に基づいて、DSRC通信を開始するための制御を行う。なお、最大値検出を採用する場合において、近隣で動作しているシステムがない通信環境では、遠方からの微弱な電波や雑音を誤って最大値として検出する可能性がある。これを回避するために、たとえば、検出された最大値を、適宜設定された閾値と比較し、最大値が閾値以下の場合は通信不可と判断する。また、上記通信環境では、上記判断方法に限らず、たとえば、電力が最大となるチャネルに対応する制御部がユニークワードを検出できない場合や、復調データ中に誤りがあった場合等に、そのチャネルでの通信を不可と判断することとしてもよい。 Further, in the case where the in-vehicle communication device is designed to communicate with only one system, for example, the maximum value of the received power is detected, and communication is performed with the system of the channel that maximizes the power. FIG. 4 is a diagram illustrating a case where communication is performed by selecting a system having the maximum power in the example of the received power illustrated in FIG. 3. In this case, the power detection unit 10 determines DSRC (D3) as the maximum power, and notifies the communication control unit 11 to that effect. The communication control unit 11 performs control for starting DSRC communication based on the output from each control unit connected to the preceding stage and the notification from the power detection unit 10. In the case where the maximum value detection is adopted, in a communication environment where there is no system operating in the vicinity, there is a possibility that a weak radio wave or noise from a distance is erroneously detected as the maximum value. In order to avoid this, for example, the detected maximum value is compared with an appropriately set threshold value, and if the maximum value is equal to or less than the threshold value, it is determined that communication is impossible. In the communication environment, the channel is not limited to the above determination method. For example, when the control unit corresponding to the channel with the maximum power cannot detect a unique word or when there is an error in the demodulated data, the channel It is good also as judging that communication in is impossible.
 つづいて、以上のような一括復調を行った場合のチャネルサーチにおける従来方式との違いを説明する。図5は、複数のシステムが存在する場合のチャネルサーチにかかる時間の一例を示す図である。従来方式では、車載用通信装置は、通信に先立ち、路車間通信(ETC/DSRC)の路側機または車々間通信を行う近隣の車載用通信装置との間でチャネル割り付けの処理が必要である。このため、車載用通信装置は、路側機および近隣の車載用通信装置が使用しているチャネルをサーチする必要がある。たとえば、図2の受信状態では、路車間通信(ETC/DSRC)に使用可能なチャネルは4つあるため、車載用通信装置は、路側機がD1~D4のいずれのチャネルを使用しているかをサーチするとともに、近隣の車載用通信装置がいずれのチャネルを用いて車々間通信を行っているかをサーチする。したがって、図5の従来方式に示すように、チャネルサーチにかかる時間が長くなり、通信開始までに時間がかかる。 Next, the difference from the conventional method in the channel search when the collective demodulation as described above is performed will be described. FIG. 5 is a diagram illustrating an example of a time required for channel search when there are a plurality of systems. In the conventional system, the in-vehicle communication device needs to perform channel allocation processing with a roadside unit for road-to-vehicle communication (ETC / DSRC) or a nearby in-vehicle communication device that performs inter-vehicle communication prior to communication. For this reason, the in-vehicle communication device needs to search for a channel used by the roadside device and a nearby in-vehicle communication device. For example, in the reception state of FIG. 2, since there are four channels that can be used for road-to-vehicle communication (ETC / DSRC), the in-vehicle communication device determines which channel D1-D4 is used by the roadside unit. In addition to searching, a search is made as to which channel is used by a nearby in-vehicle communication device for inter-vehicle communication. Therefore, as shown in the conventional method of FIG. 5, the time required for the channel search becomes long, and it takes time until the communication starts.
 一方、本実施の形態の車載用通信装置は、ITS用の全帯域(または所望の帯域分)の信号を一括して復調するので、チャネルサーチ処理が不要であり、同期処理のみで通信を開始することができる。したがって、該当チャネルが見つかるまで1つずつサーチする従来の方法に比べると、通信を開始するまでの時間を大幅に短縮することが可能である。 On the other hand, the in-vehicle communication device of this embodiment demodulates all the ITS band (or the desired band) signals all together, so channel search processing is unnecessary and communication is started only by synchronization processing. can do. Therefore, compared to the conventional method of searching one by one until a corresponding channel is found, it is possible to significantly reduce the time until communication is started.
 以上説明したように、本実施の形態では、1つのアナログ部で異なる周波数の信号を扱う構成としたので、回路規模を削減でき、装置の小型化が可能になる。 As described above, in the present embodiment, since a single analog unit handles signals of different frequencies, the circuit scale can be reduced and the apparatus can be downsized.
 また、本実施の形態では、ITS用の全帯域(使用範囲が既知の場合は所望の帯域分)の信号を一括して復調することとしたので、チャネルサーチが不要となり、通信を開始するまでの時間が短縮可能である。また、常に複数のチャネルを復調しているため、チャネル切り替え時の同期処理が不要となり、高速なチャネル切り替えが可能となる。 Further, in this embodiment, since the signals of the entire band for ITS (for the desired band when the use range is known) are demodulated in a lump, channel search becomes unnecessary and communication is started. Can be shortened. In addition, since a plurality of channels are always demodulated, synchronization processing at the time of channel switching becomes unnecessary, and high-speed channel switching becomes possible.
 また、本実施の形態では、受信電力を閾値と比較し、閾値以上の電力となるチャネルを検出することとしたので、通信相手への送信電力制御が不要である。これにより、既存のETC/DSRC路側機を変更する必要がないため、既存の設備をそのまま使用可能である。また、シングルキャリアの採用により、全ての車載用通信装置と路側機でシンボル周期レベルでのタイミング同期を取る必要がなく、変調方式の変更も不要となり、既存のETC/DSRC路側機をそのまま使用可能である。 Further, in this embodiment, the received power is compared with the threshold value, and the channel having the power higher than the threshold value is detected, so that transmission power control to the communication partner is unnecessary. Thereby, since it is not necessary to change the existing ETC / DSRC roadside machine, the existing equipment can be used as it is. In addition, the adoption of a single carrier eliminates the need for timing synchronization at the symbol period level for all in-vehicle communication devices and roadside devices, eliminating the need to change the modulation method and allowing the existing ETC / DSRC roadside devices to be used as they are. It is.
 なお、本実施の形態では、ITS用に使用が想定される全てのチャネルに対してチャネル検出を行っていたが、路車間通信の検出については、路側機からのダウンリンク信号のみを判定基準にしてもよい。これにより、回路規模が削減可能となる。ただし、この場合、検出タイミングによっては、車載用通信装置がアップリンクで通信を行っている場合がある。車載用通信装置からの送信信号は一般的には路側機の送信信号に比べて小さいが、自車両と隣接車両、路側機の位置関係によっては、本アップリンク信号が閾値を越える場合もあることから、このような場合は、アップリンク信号に対しても検出処理を行うこととしてもよい。この場合、信号検出精度が上がる可能性がある。 In this embodiment, channel detection is performed for all channels that are assumed to be used for ITS. However, for detection of road-to-vehicle communication, only the downlink signal from the roadside unit is used as a criterion. May be. As a result, the circuit scale can be reduced. However, in this case, depending on the detection timing, the in-vehicle communication device may perform communication on the uplink. The transmission signal from the in-vehicle communication device is generally smaller than the transmission signal of the roadside unit, but this uplink signal may exceed the threshold depending on the positional relationship between the host vehicle, the adjacent vehicle, and the roadside unit. Therefore, in such a case, the detection process may be performed on the uplink signal. In this case, the signal detection accuracy may increase.
 また、本実施の形態では、各システムのチャネル当りの帯域幅が同一である場合を例に説明したが、分波部としてのマルチレートフィルタの設定により、異なる帯域幅であっても対応可能である。 Further, in this embodiment, the case where the bandwidth per channel of each system is the same has been described as an example, but it is possible to cope with different bandwidths by setting a multi-rate filter as a demultiplexing unit. is there.
 また、本実施の形態では、ITSを例にとり、同一のシステム帯域内にある複数のシステムを想定する場合について説明したが、隣接または離散的に配置された複数のシステム帯域を想定する場合においても適用可能である。 In this embodiment, ITS is taken as an example and a case where a plurality of systems within the same system band is assumed has been described. However, even when a plurality of system bands arranged adjacently or discretely are assumed. Applicable.
実施の形態2.
 実施の形態1では、ITS用の全帯域(または所望の帯域分)の信号をモニタして一括して復調し、受信電力が閾値を超えたチャネルにおけるシステムと通信を行うこととした。本実施の形態では、通信を行うシステムの選択にシステム毎の優先度を導入する。
Embodiment 2. FIG.
In the first embodiment, signals in the entire band (or a desired band) for ITS are monitored and demodulated at once, and communication is performed with a system in a channel whose received power exceeds a threshold value. In the present embodiment, a priority for each system is introduced to select a system for communication.
 現在、ITSでは、路車間通信(ETC/DSRC)と車々間通信の干渉を回避するアプリケーションの使用方法として、(1)課金システムであるETCは優先的に使用する、(2)交差点における安全・安心においてはDSRCを優先的に使用する、といった提案がなされている。したがって、本実施の形態では、一例として、「ETC>DSRC>車々間通信」の順番で優先順位を付けることとし、通信制御部11は、この優先順位にしたがって制御を行う。優先順位は他の順番であってもよい。車載用通信装置の構成は、図1と同じである。なお、本実施の形態では、車載用通信装置が1つのシステムとのみ通信を行う仕様である場合を想定する。 Currently, ITS uses (1) ETC, which is a charging system, as a preferential use method for applications that avoid interference between road-to-vehicle communication (ETC / DSRC) and inter-vehicle communication. (2) Safety and security at intersections Has proposed that DSRC be used preferentially. Therefore, in this embodiment, as an example, priority is given in the order of “ETC> DSRC> inter-vehicle communication”, and the communication control unit 11 performs control according to this priority. The priority may be another order. The configuration of the in-vehicle communication device is the same as that in FIG. In the present embodiment, it is assumed that the in-vehicle communication device has a specification for communicating with only one system.
 以下、本実施の形態における車載用通信装置の動作について説明する。図6-1および図6-2は、いずれも、車両が交差点近傍において路車間通信および車々間通信を行う様子を示す図であり、図7-1および図7-2は、いずれも、車載用通信装置において観測される受信電力の一例を示す図である。 Hereinafter, the operation of the in-vehicle communication device in the present embodiment will be described. FIGS. 6A and 6B are diagrams illustrating how the vehicle performs road-to-vehicle communication and vehicle-to-vehicle communication in the vicinity of the intersection. FIGS. 7A and 7B are both for in-vehicle use. It is a figure which shows an example of the received power observed in a communication apparatus.
 図6-1では、たとえば、自車両である車両21が、車両22との間でチャネルU7を用いて車々間通信を行っている。このとき、車両21に搭載された車載用通信装置の電力検出部10は、図7-1に示すように信号電力を観測する。この時点で、ETCシステムの電力は観測されていないことから、電力検出部10は、ETC通信エリア外であると判断する。また、DSRC(D3/U3)の電力は観測されているが、受信電力は所定の閾値以下であるため、電力検出部10は、DSRC通信エリア外であると判断する。電力検出部10は、これらの判断結果を、通信制御部11に出力する。通信制御部11は、これらの結果に基づいて、車両21との車々間通信を継続する。 In FIG. 6A, for example, the vehicle 21 that is the host vehicle is communicating with the vehicle 22 using the channel U7. At this time, the power detection unit 10 of the in-vehicle communication device mounted on the vehicle 21 observes the signal power as shown in FIG. At this time, since the power of the ETC system is not observed, the power detection unit 10 determines that it is outside the ETC communication area. Moreover, although the power of DSRC (D3 / U3) is observed, since the received power is equal to or less than a predetermined threshold, the power detection unit 10 determines that it is outside the DSRC communication area. The power detection unit 10 outputs these determination results to the communication control unit 11. The communication control unit 11 continues the inter-vehicle communication with the vehicle 21 based on these results.
 その後、車両21が移動し、図6-2に示すように、交差点近傍に設置されたDSRC用の路側機23の通信エリア内に入ると、車載用通信装置の電力検出部10は、図7-2に示すように信号電力を観測する。この場合、電力検出部10は、ETCシステムの電力は観測されていないのでETC通信エリア外と判断するが、DSRC(D3)の電力が閾値以上であるため、自車両がDSRC通信エリア内に入ったと判断し、判断結果を通信制御部11に通知する。通信制御部11は、判断結果および優先順位に基づいて、車両22との間で継続していた車々間通信を停止するための制御を行い、その後、チャネルD3/U3を用いて路側機23との間でDSRC通信を開始するための制御を行う。 Thereafter, when the vehicle 21 moves and enters the communication area of the roadside unit 23 for DSRC installed in the vicinity of the intersection as shown in FIG. 6B, the power detection unit 10 of the in-vehicle communication device The signal power is observed as shown in -2. In this case, since the power of the ETC system is not observed, the power detection unit 10 determines that it is out of the ETC communication area. However, since the power of DSRC (D3) is equal to or greater than the threshold, the vehicle enters the DSRC communication area. The communication control unit 11 is notified of the determination result. The communication control unit 11 performs control for stopping the vehicle-to-vehicle communication that has been continued with the vehicle 22 based on the determination result and the priority order, and then uses the channel D3 / U3 to communicate with the roadside device 23. Control for starting DSRC communication is performed.
 また、たとえば、車両21は、車両22との間で車々間通信を行っていない状態で、受信電力が図7-2の状態となった場合、電力検出部10が、自車両がDSRC通信エリア内および車々間通信エリア内にあると判断し、判断結果を通信制御部11に通知する。通信制御部11は、判断結果および優先順位に基づいて、チャネルD3/U3を用いて路側機23との間でDSRC通信を開始するための制御を行う。ここでは、優先順位が「DSRC>車々間通信」であるため、車々間通信の電力が閾値を超えている場合であっても車々間通信を行わずに、DSRC通信に接続する制御を行う。 Further, for example, when the vehicle 21 does not perform inter-vehicle communication with the vehicle 22 and the received power is in the state shown in FIG. 7-2, the power detection unit 10 determines that the vehicle is within the DSRC communication area. And it judges that it exists in the communication area between cars, and notifies the communication control part 11 of a judgment result. The communication control unit 11 performs control for starting DSRC communication with the roadside device 23 using the channel D3 / U3 based on the determination result and the priority order. Here, since the priority is “DSRC> car-to-car communication”, even when the power of car-to-car communication exceeds the threshold, control for connecting to the DSRC communication is performed without performing car-to-car communication.
 以上説明したように、本実施の形態では、所望の帯域内の複数のチャネルの電力状態を同時にモニタし、さらに、システム間で優先順位を付けて、電力が閾値を超えるシステムの中で最も優先順位の高いシステムを選択して通信を行うこととした。これにより、相互干渉の少ないITSシステムが実現できるとともに、接続するシステムを変更する場合であってもシームレスなアプリケーションの変更を実現できる。 As described above, in the present embodiment, the power states of a plurality of channels within a desired band are simultaneously monitored, and priorities are assigned among the systems, and the highest priority is given to systems whose power exceeds a threshold value. The system with the highest priority was selected for communication. As a result, an ITS system with little mutual interference can be realized, and seamless application change can be realized even when the connected system is changed.
実施の形態3.
 実施の形態2では、所望の帯域内の複数のシステム(チャネル)の電力状態を同時にモニタし、電力が閾値を超えるシステムの中で優先順位の最も高いシステムを選択して通信を行うこととした。本実施の形態では、これに加え、アナログ部が、所望のシステムの信号を抽出し、所望のシステムの信号と上記一括して受信した信号とを選択的に出力することとした。
Embodiment 3 FIG.
In the second embodiment, the power states of a plurality of systems (channels) in a desired band are simultaneously monitored, and the system having the highest priority among the systems whose power exceeds the threshold is selected for communication. . In the present embodiment, in addition to this, the analog unit extracts a signal of a desired system and selectively outputs the signal of the desired system and the signal received at once.
 図8は、本発明にかかる通信装置の実施の形態3の構成例を示す図である。実施の形態1および2と同様、通信装置の一例として、5.8GHz帯におけるETC/DSRC/車々間通信の各システムに対応した車載用通信装置を示している。なお、本実施の形態では、車載用通信装置が1つのシステムとのみ通信を行う仕様である場合を想定する。 FIG. 8 is a diagram illustrating a configuration example of the third embodiment of the communication device according to the present invention. As in the first and second embodiments, as an example of the communication device, an in-vehicle communication device corresponding to each system of ETC / DSRC / inter-vehicle communication in the 5.8 GHz band is shown. In the present embodiment, it is assumed that the in-vehicle communication device has a specification for communicating with only one system.
 図8の車載用通信装置は、図1の車載用通信装置と比較すると、アナログ部1の代わりにアナログ部1Bを、通信制御部11の代わりに通信制御部11Bを備えている。アナログ部1Bは、ITS用の全帯域または所望の帯域分の信号を受信し、受信した電波をベースバンドのデジタル信号として出力する。通信制御部11Bは、通信制御部11と同様の処理を行い、さらに、前段に接続された各制御部からの出力および電力検出部10からの通知に基づいて、アナログ部1Bにセレクト信号およびAGC制御信号を出力する。 8 is provided with an analog unit 1B instead of the analog unit 1 and a communication control unit 11B instead of the communication control unit 11, as compared with the on-vehicle communication device of FIG. The analog unit 1B receives signals for the entire band for ITS or a desired band, and outputs the received radio wave as a baseband digital signal. The communication control unit 11B performs the same processing as the communication control unit 11, and further selects the analog signal 1B and the AGC based on the output from each control unit connected to the previous stage and the notification from the power detection unit 10. Output a control signal.
 図9は、図8で示される車載用通信装置のアナログ部1Bの構成例を示す図である。アナログ部1Bは、ダウンコンバータ31と、チャネルフィルタ32と、スイッチ33と、AGC34と、ダウンコンバータ35と、A/D変換部36とを備えている。ダウンコンバータ31は、入力されたRF(Radio Frequency)信号をIF(Intermediate Frequency)信号に変換する。チャネルフィルタ32は、IF信号にフィルタをかけ、設定されたチャネルのみを通過させる。スイッチ33は、通信制御部11Bから送られてくるセレクト信号にしたがって、通過させる出力(信号/チャネル)を切替え、ダウンコンバータ31の出力とチャネルフィルタ32の出力のうち、設定された側の出力のみを通過させる。AGC(Automatic Gain Control)34は、通信制御部11BからのAGC制御信号にしたがって、入力された信号をゲイン調整して出力する。ダウンコンバータ35は、入力された信号をベースバンド信号に変換する。A/D変換部36は、アナログ/デジタル変換を行う。 FIG. 9 is a diagram illustrating a configuration example of the analog unit 1B of the in-vehicle communication device illustrated in FIG. The analog unit 1B includes a down converter 31, a channel filter 32, a switch 33, an AGC 34, a down converter 35, and an A / D conversion unit 36. The down converter 31 converts an input RF (Radio Frequency) signal into an IF (Intermediate Frequency) signal. The channel filter 32 filters the IF signal and passes only the set channel. The switch 33 switches the output (signal / channel) to be passed in accordance with the select signal sent from the communication control unit 11B, and only the output on the set side of the output of the down converter 31 and the output of the channel filter 32 is selected. Pass through. An AGC (Automatic Gain Control) 34 adjusts the gain of the input signal in accordance with the AGC control signal from the communication control unit 11B and outputs it. The down converter 35 converts the input signal into a baseband signal. The A / D conversion unit 36 performs analog / digital conversion.
 つづいて、以上のように構成された車載用通信装置の動作について説明する。本実施の形態でも、実施の形態2の場合と同様、一例として「ETC>DSRC>車々間通信」の順番で優先順位を付けることとし、通信制御部11Bはこれにしたがって制御を行う。なお、本実施の形態では、DSRCの通信エリア内にはETCは存在しないものとする。
また、アナログ部1Bのチャネルフィルタ32は、初期状態では、チャネルD3を抽出するように設定されており、また、スイッチ33は、初期状態では、ダウンコンバータ31からの出力を通過させるようになっている。
Next, the operation of the in-vehicle communication device configured as described above will be described. Also in the present embodiment, as in the case of the second embodiment, priority is given in the order of “ETC>DSRC> inter-vehicle communication” as an example, and the communication control unit 11B performs control according to this. In the present embodiment, it is assumed that no ETC exists in the DSRC communication area.
The channel filter 32 of the analog unit 1B is set to extract the channel D3 in the initial state, and the switch 33 allows the output from the down converter 31 to pass in the initial state. Yes.
 たとえば、図6-1の状況で、車両21に搭載された車載用通信装置の電力検出部10は、図10-1に示すように信号電力を観測する。図10-1,図10-2および図10-3は、いずれも、車載用通信装置において観測される受信電力の一例を示す図である。図10-1の時点では、ETCシステムの電力は観測されていないことから、電力検出部10は、ETC通信エリア外であると判断する。また、DSRC(D3/U3)の電力は観測されているが、受信電力は所定の閾値以下であるため、電力検出部10は、DSRC通信エリア外であると判断する。電力検出部10は、これらの判断結果を、通信制御部11に通知する。通信制御部11は、これらの結果に基づいて、車両21との車々間通信を継続する。 For example, in the situation of FIG. 6-1, the power detection unit 10 of the in-vehicle communication device mounted on the vehicle 21 observes the signal power as shown in FIG. 10-1. 10-1, FIG. 10-2, and FIG. 10-3 are diagrams showing examples of received power observed in the in-vehicle communication device. At the time of FIG. 10-1, since the power of the ETC system is not observed, the power detection unit 10 determines that it is outside the ETC communication area. Moreover, although the power of DSRC (D3 / U3) is observed, since the received power is equal to or less than a predetermined threshold, the power detection unit 10 determines that it is outside the DSRC communication area. The power detection unit 10 notifies the communication control unit 11 of these determination results. The communication control unit 11 continues the inter-vehicle communication with the vehicle 21 based on these results.
 その後、車両21が移動し、図6-2に示すように、交差点近傍に設置されたDSRC用の路側機23の通信エリア内に入ると、車載用通信装置の電力検出部10は、たとえば、図10-2に示すように信号電力を観測する。この場合、電力検出部10は、ETCシステムの電力は観測されていないのでETC通信エリア外と判断する。一方、DSRC(D3)の電力は閾値以上であるため、自車両がDSRC通信エリア内に入ったと判断する。電力検出部10は、これらの判断結果を、通信制御部11Bに通知する。通信制御部11Bは、通知された結果に基づいて、車両22との間で継続していた車々間通信を停止するための制御を行い、また、チャネルD3/U3を用いて路側機23との間でDSRC通信を開始するための制御を行う。そして、通信制御部11Bは、DSRC通信を行うために、アナログ部1Bのスイッチ33に向けてチャネルフィルタ32の出力を選択するためのセレクト信号を出力する。 Thereafter, when the vehicle 21 moves and enters the communication area of the DSRC roadside unit 23 installed in the vicinity of the intersection as shown in FIG. 6B, the power detection unit 10 of the in-vehicle communication device, for example, The signal power is observed as shown in FIG. In this case, since the power of the ETC system is not observed, the power detection unit 10 determines that it is outside the ETC communication area. On the other hand, since the power of DSRC (D3) is equal to or greater than the threshold, it is determined that the host vehicle has entered the DSRC communication area. The power detection unit 10 notifies the communication control unit 11B of these determination results. The communication control unit 11B performs control for stopping the inter-vehicle communication that has been continued with the vehicle 22 based on the notified result, and is connected to the roadside unit 23 using the channel D3 / U3. Control for starting DSRC communication is performed. Then, the communication control unit 11B outputs a select signal for selecting the output of the channel filter 32 toward the switch 33 of the analog unit 1B in order to perform DSRC communication.
 ところで、アナログ部1Bは、複数システムの信号が合成された状態の信号を受信するため、従来の一括復調方式のように、受信信号をA/D変換のレンジに最適になるように増幅(減衰)させても、所望の信号が最適になるとは限らない。たとえば、図9-2に示す場合では、所望するチャネルD3(DSRC)の信号電力よりもチャネルU7(車々間通信)の信号電力の方が大きいため、従来の方法では、チャネルD3の信号を最適な状態で取り出すことは難しい。 By the way, since the analog unit 1B receives a signal in which signals from a plurality of systems are combined, the received signal is amplified (attenuated) so as to be optimal for the A / D conversion range as in the conventional collective demodulation method. ), The desired signal is not always optimal. For example, in the case shown in FIG. 9-2, the signal power of the channel U7 (inter-vehicle communication) is larger than the signal power of the desired channel D3 (DSRC). It is difficult to take out in a state.
 そこで、本実施の形態のアナログ部1Bは、DSRCの信号を最適な状態で取り出す処理を行う。具体的には、まず、スイッチ33が、初期状態ではダウンコンバータ31の出力を通過させるように設定されているが、通信制御部11Bからのセレクト信号に従い、チャネルフィルタ32の出力を通過させるように設定を切り替える処理を行う。つぎに、AGC34が、通信制御部11BからのAGC制御信号に従い、入力された信号に適したゲイン調整を行い、調整後の信号を出力する。その後、ダウンコンバータ35およびA/D変換部36により所定の処理が行われ、最終的に、アナログ部1Bからは、DSRCの信号が最適な状態で出力される。 Therefore, the analog unit 1B according to the present embodiment performs processing for extracting the DSRC signal in an optimal state. Specifically, first, the switch 33 is set to pass the output of the down converter 31 in the initial state, but the output of the channel filter 32 is passed according to the select signal from the communication control unit 11B. Performs processing to switch settings. Next, the AGC 34 performs gain adjustment suitable for the input signal in accordance with the AGC control signal from the communication control unit 11B, and outputs the adjusted signal. Thereafter, predetermined processing is performed by the down converter 35 and the A / D conversion unit 36, and finally, the DSRC signal is output in an optimal state from the analog unit 1B.
 その後、車両21において、DSRC通信が終了した場合、通信制御部11Bは、スイッチ33にダウンコンバータ31の出力を選択するためのセレクト信号を出力する。これにより、全てのシステムの信号検出が可能な状態に戻る。 Thereafter, when the DSRC communication is completed in the vehicle 21, the communication control unit 11 </ b> B outputs a select signal for selecting the output of the down converter 31 to the switch 33. Thereby, it returns to the state which can detect the signal of all the systems.
 以上説明したように、本実施の形態では、複数のシステムに優先度を付け、その優先度にしたがってアナログ部の出力を制御し、所望のシステムの信号のみを抽出可能な構成とした。これにより、不要なシステムの信号を削除でき、所望の信号を最適な状態で抽出できる。また、従来の一括復調方式で問題となっていた、受信電力がシステムによってバラツキがある場合に生じる特性劣化を抑制できるとともに、システム(チャネル)の受信電力を一定にするための送信電力制御が不要になる。したがって、既存のETC/DSRC路側機をそのまま使用できる。さらに、シングルキャリアの採用により、全ての車載用通信装置と路側機でシンボル周期レベルでのタイミング同期を取る必要もなく、また、変調方式の変更も不要となる。 As described above, in the present embodiment, priority is given to a plurality of systems, the output of the analog unit is controlled according to the priority, and only a desired system signal can be extracted. Thereby, unnecessary system signals can be deleted, and desired signals can be extracted in an optimum state. In addition, it is possible to suppress the deterioration of characteristics that occur when the received power varies from system to system, which is a problem with the conventional batch demodulation method, and it is not necessary to control the transmission power to keep the received power of the system (channel) constant. become. Therefore, the existing ETC / DSRC roadside machine can be used as it is. Furthermore, the adoption of a single carrier eliminates the need for timing synchronization at the symbol period level in all in-vehicle communication devices and roadside devices, and also eliminates the need to change the modulation method.
 以上のように、本発明にかかる通信装置は、仕様の異なる複数のシステムと通信を行う通信装置に有用であり、特に、複数システムの信号を一括復調する通信装置に適している。 As described above, the communication apparatus according to the present invention is useful for a communication apparatus that communicates with a plurality of systems having different specifications, and is particularly suitable for a communication apparatus that collectively demodulates signals of a plurality of systems.
 1,1B アナログ部
 2 一括復調部
 3 分波部
 4 ETC用復調部
 5 DSRC用復調部
 6 車々間用復調部
 7 ETC用制御部
 8 DSRC用制御部
 9 車々間用制御部
 10 電力検出部
 11,11B 通信制御部
 21,22 車両
 23 路側機
 31,35 ダウンコンバータ
 32 チャネルフィルタ
 33 スイッチ
 34 AGC
 36 A/D変換部
DESCRIPTION OF SYMBOLS 1,1B Analog part 2 Collective demodulation part 3 Demultiplexing part 4 ETC demodulation part 5 DSRC demodulation part 6 Inter-vehicle demodulation part 7 ETC control part 8 DSRC control part 9 Inter-vehicle control part 10 Electric power detection part 11, 11B Communication control unit 21, 22 Vehicle 23 Roadside device 31, 35 Down converter 32 Channel filter 33 Switch 34 AGC
36 A / D converter

Claims (10)

  1.  仕様の異なる複数の通信システムに接続可能な通信装置であって、
     前記複数の通信システムとの間の複数の信号を一括して受信する受信手段と、
     一括受信した信号をチャネル毎に分波する分波手段と、
     前記分波手段によって分波されたチャネル毎の信号に基づいて各通信システムに対応するチャネルを選択し、当該信号を通信システム単位で復調する復調手段と、
     前記復調手段により選択されたチャネル毎の受信電力を検出し、検出結果に基づいて自装置が通信を行う通信システムを判断する電力検出手段と、
     前記復調手段から得られる通信システム毎の復調結果および前記電力検出手段から得られる判断結果に基づいて通信制御を行う制御手段と、
     を備えることを特徴とする通信装置。
    A communication device connectable to a plurality of communication systems having different specifications,
    Receiving means for collectively receiving a plurality of signals between the plurality of communication systems;
    A demultiplexing means for demultiplexing the received signals for each channel;
    A demodulation unit that selects a channel corresponding to each communication system based on a signal for each channel demultiplexed by the demultiplexing unit, and demodulates the signal in communication system units;
    Power detection means for detecting a received power for each channel selected by the demodulation means, and determining a communication system in which the apparatus communicates based on a detection result;
    Control means for performing communication control based on a demodulation result for each communication system obtained from the demodulation means and a determination result obtained from the power detection means;
    A communication apparatus comprising:
  2.  前記電力検出手段は、
     前記復調手段により選択されたチャネル毎の受信電力と所定の閾値とを比較し、当該閾値より電力が大きいチャネルに対応する通信システムを、自装置が通信を行う通信システムと判断し前記制御手段に通知することを特徴とする請求項1に記載の通信装置。
    The power detection means includes
    The received power for each channel selected by the demodulating means is compared with a predetermined threshold, and a communication system corresponding to a channel having a power higher than the threshold is determined as a communication system in which the apparatus communicates, The communication device according to claim 1, wherein notification is performed.
  3.  前記電力検出手段は、
     前記復調手段により選択されたチャネル毎の受信電力と所定の閾値とを比較し、当該閾値より電力が大きいチャネルの中で電力が最も大きいチャネルに対応する通信システムを、自装置が通信を行う通信システムと判断し前記制御手段に通知することを特徴とする請求項1に記載の通信装置。
    The power detection means includes
    A communication in which the own apparatus communicates with a communication system corresponding to a channel having the largest power among the channels having a power higher than the threshold by comparing the received power for each channel selected by the demodulation means with a predetermined threshold. The communication apparatus according to claim 1, wherein the communication apparatus is determined to be a system and notifies the control means.
  4.  前記複数の通信システムに対して個別に優先度を付与する場合、
     前記制御手段は、
     前記復調手段から得られる通信システム毎の復調結果および前記電力検出手段から得られる判断結果に加えて、前記優先度に基づいて、通信制御を行うことを特徴とする請求項1に記載の通信装置。
    When giving priority to the plurality of communication systems individually,
    The control means includes
    The communication apparatus according to claim 1, wherein communication control is performed based on the priority in addition to a demodulation result for each communication system obtained from the demodulation unit and a determination result obtained from the power detection unit. .
  5.  前記複数の通信システムに対して個別に優先度を付与する場合、
     前記制御手段は、
     前記復調手段から得られる通信システム毎の復調結果および前記電力検出手段から得られる判断結果に加えて、前記優先度に基づいて、通信制御を行うことを特徴とする請求項2に記載の通信装置。
    When giving priority to the plurality of communication systems individually,
    The control means includes
    The communication apparatus according to claim 2, wherein communication control is performed based on the priority in addition to a demodulation result for each communication system obtained from the demodulation means and a determination result obtained from the power detection means. .
  6.  前記受信手段は、
     アンテナで受信したアナログ受信信号である第1の信号と、当該第1の信号から抽出した所定のチャネルのアナログ信号である第2の信号と、を選択的に出力する選択手段と、
     前記選択手段の出力信号に応じてゲインを調整するゲイン調整手段と、
     前記ゲイン調整後のアナログ信号を用いて所定の受信処理により生成したデジタル信号を、前記一括受信した信号として出力する受信処理手段と、
     を備え、
     前記制御手段は、
     さらに、自装置が通信を行う通信システムに応じて前記選択手段の出力を切り替える切替制御、および前記ゲイン調整手段に対するAGC制御、を実行することを特徴とする請求項4に記載の通信装置。
    The receiving means includes
    Selection means for selectively outputting a first signal that is an analog reception signal received by an antenna and a second signal that is an analog signal of a predetermined channel extracted from the first signal;
    Gain adjusting means for adjusting the gain according to the output signal of the selecting means;
    A reception processing means for outputting a digital signal generated by a predetermined reception process using the analog signal after the gain adjustment, as the batch received signal;
    With
    The control means includes
    5. The communication apparatus according to claim 4, further comprising: switching control for switching the output of the selection unit in accordance with a communication system in which the device itself performs communication, and AGC control for the gain adjustment unit.
  7.  前記受信手段は、
     アンテナで受信したアナログ受信信号である第1の信号と、当該第1の信号から抽出した所定のチャネルのアナログ信号である第2の信号と、を選択的に出力する選択手段と、
     前記選択手段の出力信号に応じてゲインを調整するゲイン調整手段と、
     前記ゲイン調整後のアナログ信号を用いて所定の受信処理により生成したデジタル信号を、前記一括受信した信号として出力する受信処理手段と、
     を備え、
     前記制御手段は、
     さらに、自装置が通信を行う通信システムに応じて前記選択手段の出力を切り替える切替制御、および前記ゲイン調整手段に対するAGC制御、を実行することを特徴とする請求項5に記載の通信装置。
    The receiving means includes
    Selection means for selectively outputting a first signal that is an analog reception signal received by an antenna and a second signal that is an analog signal of a predetermined channel extracted from the first signal;
    Gain adjusting means for adjusting the gain according to the output signal of the selecting means;
    A reception processing means for outputting a digital signal generated by a predetermined reception process using the analog signal after the gain adjustment, as the batch received signal;
    With
    The control means includes
    6. The communication apparatus according to claim 5, further comprising: switching control for switching the output of the selection unit in accordance with a communication system in which the device itself performs communication, and AGC control for the gain adjustment unit.
  8.  前記複数の通信システムを、同一システム帯域の通信システムとすることを特徴とする請求項1~7のいずれか1つに記載の通信装置。 The communication apparatus according to any one of claims 1 to 7, wherein the plurality of communication systems are communication systems having the same system band.
  9.  前記複数の通信システムを、ETC(Electronic Toll Collection System)、DSRC(Dedicated Short Range Communication)、車々間通信を含む複数の通信システムとすることを特徴とする請求項8に記載の通信装置。 9. The communication apparatus according to claim 8, wherein the plurality of communication systems are a plurality of communication systems including ETC (Electronic Toll Collection System), DSRC (Dedicated Short Range Communication), and inter-vehicle communication.
  10.  前記複数の通信システムを、隣接または離散的に配置された複数のシステム帯域の通信システムとすることを特徴とする請求項1~7のいずれか1つに記載の通信装置。 The communication device according to any one of claims 1 to 7, wherein the plurality of communication systems are communication systems of a plurality of system bands arranged adjacently or discretely.
PCT/JP2009/058298 2008-05-16 2009-04-27 Communication device WO2009139288A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010511943A JP5165056B2 (en) 2008-05-16 2009-04-27 Communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008130098 2008-05-16
JP2008-130098 2008-05-16

Publications (1)

Publication Number Publication Date
WO2009139288A1 true WO2009139288A1 (en) 2009-11-19

Family

ID=41318659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058298 WO2009139288A1 (en) 2008-05-16 2009-04-27 Communication device

Country Status (2)

Country Link
JP (1) JP5165056B2 (en)
WO (1) WO2009139288A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101742538B (en) * 2009-12-01 2012-12-12 北京握奇智能科技有限公司 Method, device and system for controlling communication power
CN113259028A (en) * 2021-03-29 2021-08-13 北京云星宇交通科技股份有限公司 Method and device for capturing multistage ETC wireless radio frequency data

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11284925A (en) * 1998-03-31 1999-10-15 Matsushita Electric Ind Co Ltd Onboard video audio output device
JP2007173970A (en) * 2005-12-19 2007-07-05 Mitsubishi Electric Corp Preset receiver
JP2007189462A (en) * 2006-01-12 2007-07-26 Ricoh Co Ltd Radio communication device on vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3615099B2 (en) * 1999-06-28 2005-01-26 株式会社東芝 Receiving machine
JP4027562B2 (en) * 2000-03-24 2007-12-26 株式会社ケンウッド Software receiver
JP2006050450A (en) * 2004-08-06 2006-02-16 Yazaki Corp Reception system
WO2008038380A1 (en) * 2006-09-28 2008-04-03 Panasonic Corporation Wireless communication apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11284925A (en) * 1998-03-31 1999-10-15 Matsushita Electric Ind Co Ltd Onboard video audio output device
JP2007173970A (en) * 2005-12-19 2007-07-05 Mitsubishi Electric Corp Preset receiver
JP2007189462A (en) * 2006-01-12 2007-07-26 Ricoh Co Ltd Radio communication device on vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101742538B (en) * 2009-12-01 2012-12-12 北京握奇智能科技有限公司 Method, device and system for controlling communication power
CN113259028A (en) * 2021-03-29 2021-08-13 北京云星宇交通科技股份有限公司 Method and device for capturing multistage ETC wireless radio frequency data

Also Published As

Publication number Publication date
JP5165056B2 (en) 2013-03-21
JPWO2009139288A1 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
EP2245763B1 (en) Realizing fdd capability by leveraging existing tdd technology
EP3687231B1 (en) Method and apparatus for providing common time reference in wireless communication system
EP2187535B1 (en) Method and apparatus for management of multi-carrier communications in a wireless communication system
EP2135363B1 (en) Method and detection device for determining whether a specific channel is available for use in an environment in which multiple networks are coexistable
KR20170125345A (en) synchronization in wireless communications networks
EP1850518A1 (en) Communication apparatus
WO2006088082A1 (en) Multi-band radio communication method and base station
CN101828370A (en) System and method for transmitting/receiving signal in a communication system
US8199765B2 (en) Interference-detecting wireless communication method and apparatus
WO2020063471A1 (en) Beam sweeping method, beam configuration method, terminal, and network device
KR20200017711A (en) Method And Apparatus for Synchronizing 5G Relay System
JP2009033487A (en) Communication apparatus
JP5165056B2 (en) Communication device
EP2966892A1 (en) Channel selection for wireless communication device and wireless communication method
CN111147213B (en) Signal sending method and terminal
US11706831B2 (en) Dual mode vehicle to vehicle communications
CN100426935C (en) Method and device for uplink random physical channel access in multiple small cell
EP2966799A1 (en) Multi-band wireless communication device and multi-band wireless communication method
CN101800726B (en) OFDM time-domain synchronizing method, device and mobile multimedia broadcasting receiver
JP5359130B2 (en) Radio base station apparatus, radio apparatus, and external interface signal apparatus
WO2021137346A1 (en) Synchronization obtaining method and apparatus for rf relay in wireless communication system using tdd method
JP3722673B2 (en) Communications system
CN107113620A (en) Transfer resource indicating means and the network equipment
KR20200018118A (en) Method and apparatus for performing synchronization procedure in new radio vehicle to everything system
KR101480183B1 (en) An method and Apparatus for Data transmission and receiving

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746495

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010511943

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09746495

Country of ref document: EP

Kind code of ref document: A1