WO2009138958A1 - Procédé de mise en pression d'un emballage fermé - Google Patents

Procédé de mise en pression d'un emballage fermé Download PDF

Info

Publication number
WO2009138958A1
WO2009138958A1 PCT/IB2009/051984 IB2009051984W WO2009138958A1 WO 2009138958 A1 WO2009138958 A1 WO 2009138958A1 IB 2009051984 W IB2009051984 W IB 2009051984W WO 2009138958 A1 WO2009138958 A1 WO 2009138958A1
Authority
WO
WIPO (PCT)
Prior art keywords
bottle
package
zone
wall
temperature
Prior art date
Application number
PCT/IB2009/051984
Other languages
English (en)
Inventor
Jacques Thomasset
Original Assignee
Aisapack Holding S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisapack Holding S.A. filed Critical Aisapack Holding S.A.
Publication of WO2009138958A1 publication Critical patent/WO2009138958A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/04Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus without applying pressure
    • B67C3/045Apparatus specially adapted for filling bottles with hot liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/22Details
    • B67C2003/226Additional process steps or apparatuses related to filling with hot liquids, e.g. after-treatment

Definitions

  • the present invention relates to pressurizing a closed package, e.g. ex. of a plastic bottle having a high molecular orientation such as a polyethylene terephthalate (PET) bottle.
  • the invention applies in particular to the pressurization of hot filled PET bottles.
  • PET Polyethylene terephthalate
  • the pressurizing process is also of great interest for packaging a hot liquid in a PET bottle.
  • Many products require hot filling, that is to say at a temperature above 60 ° C and generally between 85 ° C and 95 ° C.
  • the hot liquid introduced into the bottle cools and therefore its volume decreases.
  • the plastic bottle is not able to resist the depression resulting from the contraction of the liquid without deforming. Therefore, hot fill PET bottles have compensation panels that deform and absorb the decrease in liquid volume and headspace.
  • these plastic bottles have several drawbacks, mainly a high weight, a limited design and a high manufacturing cost.
  • the patent application WO 2006/079754 proposes to remedy these drawbacks by proposing a packaging method comprising an addition of liquid nitrogen in the bottle.
  • the proposed method is difficult to use because it requires a high accuracy of liquid nitrogen dosing as well as packaging particularly resistant to pressure. Indeed, a high pressure is generated in the bottle immediately after sealing, when the nitrogen passes from the liquid state to the gaseous state. Nitrogen having a volume expansion of a factor 600 during the change of state, it turns out that a very small variation in the quantity of nitrogen dosed in the bottle generates a very large pressure variation in the bottle. The bottle is thus subjected to a high pressure after closing while the temperature of the liquid is still high.
  • the bottle must therefore withstand the combined action of the mechanical stresses exerted by the pressure inside the bottle and thermal stresses related to the high temperature of the liquid. In practice, this process is very difficult to control and requires packaging very resistant to pressure and especially at the bottom. For these reasons, the method of packaging proposed in the application WO 2006/079754 is difficult to exploit and economically unattractive.
  • the present invention overcomes the aforementioned difficulties through a simple and inexpensive method to pressurize the packaging after filling.
  • the process according to the invention can be applied to a wide variety of packaging, and its use is particularly advantageous for PET packaging having a strong molecular orientation and containing liquid products.
  • the invention consists in pressurizing packaging, p. ex. plastic bottles filled and sealed tightly by exposing the packages to a temperature above the temperature of the packaging material, e.g. ex. at a temperature between 600 ° C and 1500 ° C for a few seconds; the heat transferred to the package having the effect of causing a molecular retraction and therefore a decrease in volume of said package.
  • the method which is the subject of the invention makes it possible to pressurize the packaging by means of an intense temperature supply of short duration, whose effect on the temperature of the contained product is negligible.
  • the bottles used in the context of the present invention are generally composed of one or more thermoplastic resins having a melting temperature generally below 300 ° C.
  • the bottles because of their manufacturing process, have a strong molecular orientation which relaxes under the effect of a high temperature.
  • the bottles, hermetically sealed and containing a liquid or viscous product are presented in front of a source of intense heat, for example a flame, for a short time, typically of the order of a few seconds. Under these conditions, there is a retraction almost instantaneous part of the bottle exposed to the heat source and therefore a decrease in the volume of the bottle causing pressurized volume of gas trapped in the bottle.
  • the package is preferably rotated around itself in front of the heat source.
  • the pressurizing process preferably uses bottles having a specific geometry. It has been found that the bottle must have at least two distinct zones at its side wall.
  • a first zone of generally cylindrical geometry is characterized by the fact that it deforms when the relative pressure in the bottle is negative. This first zone serves to absorb the variations in the volume of the liquid contained in the bottle before the pressurization of the package.
  • a second zone has a generally convex geometry that does not deform when the relative pressure is negative. The second zone, undeformed before pressurization, allows heating and reproducible shrinkage of the bottle in the pressurizing process. This zone which retracts under the effect of intense heating causes the pressurization of the bottle. When pressurizing, the first zone covers its initial geometry.
  • the package is a PET bottle manufactured by bi-stretch blow molding of a preform in a mold.
  • the process is particularly advantageous for pressurizing PET packaging of reduced thickness.
  • the process is particularly advantageous for pressurizing hot filled PET packages.
  • An alternative of the invention is to expose a package in front of a source of intense heat to change its shape.
  • FIGS. 1 to 7 Figures 1 to 3 illustrate the general concept of the invention.
  • Figure 1 shows the bottle in the pressurizing process.
  • FIG. 2 shows a top view of a first pressurizing process in which the bottle is heated on its periphery.
  • FIG. 3 illustrates a second pressurizing method in which the rotating bottle scrolls between two heating ramps.
  • Figures 4 to 7 show in detail the bottle during the pressurizing process.
  • Figure 4 shows an example of bottle geometry for the pressurizing process. This bottle has two distinct zones 10 and 11 at its side wall 2.
  • Figure 5 shows the bottle before pressurization when the relative pressure in the bottle is negative.
  • the first zone 10 is deformed by the pressure difference.
  • Figure 6 illustrates the bottle in the pressurizing process with the second zone 11 of the side wall 2 subjected to a source of intense heat.
  • FIG. 7 shows the bottle after pressurization, the first zone 10 of the side wall 2 having recovered its initial geometry and the second zone 11 having retracted in a uniform and reproducible manner.
  • FIG. 8 illustrates a first embodiment of a device using the method according to the invention.
  • FIG. 9 illustrates a second embodiment of a device using the method according to the invention.
  • the invention is particularly applicable to plastic packaging of thin thickness having a high molecular orientation, hermetically sealed and containing a liquid or viscous product.
  • the bottles according to the invention can be exposed at least partially to a temperature source of between 600 ° C. and 1500 ° C. for a short period of time. without destruction of the packaging.
  • the bottles used in the following examples were brought into contact with a flame or air at high temperature for a limited time. Note that these same bottles, but not filled, are destroyed instantly under the effect of exposure to this source of heat.
  • the exposure of filled and sealed bottles for a controlled period of time has the effect of changing the orientation of the polymer chains and creating the retraction of the heated zone.
  • the decrease in the volume of the packaging resulting from the retraction causes an increase in the pressure inside the package.
  • the volume of gas trapped in the packaging at the time of packaging of the product is compressed under the effect of pressure.
  • the temperature variation of the product is negligible. It is also observed that the exposure of the packaging to a lower temperature, for example
  • the invention is particularly advantageous for pressurizing PET packaging of very small thickness. Pressurizing improves the handling of the packaging, its grip and its vertical stability.
  • the invention is of great interest for pressurizing hot-filled PET bottles.
  • a depression is created in the bottle when the product cools, which has the effect of deforming the walls of the bottle.
  • the invention makes it possible to use hot-filled bottles that do not include compensation panels.
  • Bottles of a wide variety of shapes and lighter can be used. The exposure of the bottle to the heat source is effected when the product contained in the bottle is at least partially cooled.
  • a PET bottle 1 comprising at least one side wall 2 formed of two zones 10 and 11, a bottom
  • Zone 10 deforms when the pressure in the bottle is lower than the external pressure. Zone 10 makes it possible to compensate for variations in the volume of the contents of the bottle before pressurization. Zone 11 retains its geometry when the pressure in the bottle is lower than the external pressure. Zone 10 is generally curved in shape. The side wall 2 of the bottle 1 is heated at high temperature at the zone
  • the zone 11 of the bottle 1 is below the level of filling, that is to say in an area where the inner surface of the wall 2 of the bottle 1 is in contact with the product 6.
  • the bottle 1 is heated on the whole periphery of the zone 11 thanks to one or more sources of heat. Symmetrical heating is advantageous to avoid a loss of perpendicularity between the bottom 3 and the axis of the bottle 1.
  • Various methods can be envisaged in order to obtain a uniform heating on the circumference of the zone 11. The heating has the effect the local retraction of the wall 2 at the zone 11 and the increase of the pressure inside the bottle 1. A precise control of the heating time, the heating power, and the homogeneity of the heating circumferential is necessary to ensure the retraction and the reproducible pressurization of the bottles.
  • Figure 2 illustrates a top view of a first pressurizing process which allows the homogeneous shrinkage on the circumference of the bottle 1 during heating.
  • a source of intense heat that may be flames or hot air 7 heat the side wall 2 of the bottle 1 at the zone 11 all around the circumference simultaneously. This axisymmetric heating promotes a homogeneous shrinkage of the bottle 1 at the zone 11.
  • FIG. 3 represents a top view of the bottle 1 during a second pressurizing process by flaming or hot air.
  • the bottle 1 is driven by a translational movement 8 and a rotational movement 9. In its movement, the bottle 1 passes between two ramps of flame or hot air 7 arranged symmetrically with respect to the axis of the bottle 1.
  • the heating time of the cylinder 1 is determined by the speed of translation and the length of the heating ramps.
  • the rotation speed makes it possible to ensure uniform heating over the entire circumference of the zone 11. This device is particularly advantageous because it can be easily inserted on the filling lines.
  • the flame or hot air pressurization process is based on shrinkage of the package under the effect of a high temperature.
  • a rapid rise in the temperature of the bottle wall at zone 11 is caused by the use of a high intensity heat source.
  • the use of a flame or hot air causes an increase in the temperature of zone 11 between 20 ° C per second and 60 ° C per second.
  • This rapid increase in temperature makes it possible to create the retraction of zone 11 in less than 4 seconds and preferably in less than 2 seconds.
  • This intensive and short-term heating avoids the significant increase in the temperature of the liquid contained in the package.
  • the retraction in 2 seconds of the zone 11 of a one-liter bottle creates an increase in the temperature of the liquid contained in the bottle by only 1 ° C.
  • the shrinkage is preferably performed when the temperature of the liquid in the bottle is at a temperature between 5 ° C and 50 ° C and advantageously when the temperature is between 30 ° C and 35 ° C.
  • the lower the temperature of the liquid in the bottle the higher the heating power required to quickly retract the bottle.
  • a heating power of 5 to 20 kW per bottle is necessary to carry out the shrinkage in a reduced time.
  • a flame or convectors with hot air can bring calories quickly enough to retract the wall of the bottle.
  • the heating power is insufficient, the heat energy supplied is gradually absorbed by the liquid contained in the bottle and the retraction time becomes very long and the liquid in the bottle heats up.
  • Figures 4 to 7 show in detail the bottle during the pressurizing process.
  • FIG. 4 represents an example of bottle geometry 1 having the characteristics necessary for pressurizing according to the process described in the invention.
  • This bottle 1 has a side wall 2, connected to a bottom 3 and a neck 4 closed by a cap 5.
  • This bottle contains a liquid or viscous product 6.
  • a gaseous volume or headspace is also trapped in the bottle and is located in the neck if the bottle is handled vertically.
  • the bottle 1 is pressurized following a hot filling the bottle has a suitable bottom 3 which is resistant to pressure and pressure. temperature.
  • a bottom 3 of petaloid type can be used.
  • the side wall 2 of the bottle 1 has at least two distinct zones 10 and 11 which differ in their behavior when the pressure in the bottle is lower than the external pressure.
  • the zone 10 of the wall 2 is preferably cylindrical and may have weak ribs but which do not prevent its deformation when the relative pressure in the bottle is negative.
  • the geometry of the zone 10 can also be square or hexagonal with plane faces that deform under the effect of a relative pressure in the negative bottle.
  • the zone 11 of the wall 2 has a high geometric stability when the relative pressure in the bottle is less than zero.
  • Zone 11 is preferably convex or convex.
  • Zone 11 may also include ribs that provide rigidity.
  • zone 10 is used for labeling.
  • the zone 11 of the side wall has a strong molecular orientation making it able to shrink under the effect of intense heating.
  • Figure 4 shows the geometry of the bottle as manufactured and filled.
  • Figure 5 illustrates the deformation of the bottle when under the effect of a pressure inside the bottle lower than the external pressure. This negative relative pressure appears for example when the volume of the product contained in the bottle 1 decreases under the effect of cooling.
  • Figure 5 shows that the zone 10 deforms to absorb the volume variations of the product 6 and the headspace.
  • the geometry of the zone 11 on the other hand is not affected by this depression.
  • the deformation of the zone 10 may be random or controlled according to its geometry, but in all cases this deformation is reversible.
  • An area 10 of cylindrical geometry generates a random deformation but has the advantage of easier labeling when this area returns to its original shape.
  • Figure 5 shows the state of the bottle when the product is cooled or at least partially cooled.
  • Figure 6 shows the state of the bottle before the pressurization step.
  • This bottle 1 is deformed at a first zone 10 of its side wall 2.
  • a second zone 11 of the side wall 2 having the axis of symmetry axis vertical of the bottle, is not deformed under the effect of the depression in the bottle.
  • the bottle as shown in Figure 6 is pressurized by intensive heating of the zone 11 homogeneous circumference. Methods and examples of intensive heating devices are shown in Figures 2 and 3. Because of its high circularity, the zone 11 can be heated homogeneously around its circumference. On the other hand, homogeneous heating of the randomly deformed zone 10 would be practically impossible. Under the effect of intensive heating, the zone 11 which has a strong molecular orientation retracts, which has the effect of reducing the volume of the bottle and restore a positive relative pressure in the package. The retraction of zone 11 is irreversible. This retraction takes place homogeneously on the circumference of the zone 11. Together with the retraction of the zone 11, the zone 10 covers its initial geometry.
  • Figure 7 illustrates the bottle 1 after pressurization.
  • the second zone 11 of the side wall 2 has its geometry modified because of the retraction.
  • the geometry variation of the zone 11 is taken into account in the design of the bottle so that the geometry of the zone 11 after retraction corresponds to the desired geometry.
  • the volume of the bottle after pressurization is lower than the volume of the bottle before the pressurization step.
  • the variation in volume of the bottle 1 is governed by the variation in the volume of the product contained in the bottle. During a hot filling this volume variation is of the order of 3 to 5%.
  • the consistency of the headspace that is to say the level of filling, ensures the reproducibility of the geometry of the bottles after pressurization.
  • the pressurizing operation has modified the geometry of the bottle 1 only at the level of the heating zone 11.
  • the process allows a controlled and repetitive retraction of the bottles as long as the bottles are of identical initial geometry, and filled so similar.
  • the process Flaming or hot air heating is accurate; it may be local or on the contrary affect a large surface of the bottle.
  • the intensive heating pressurization process facilitates the handling of liquid products in very thin PET packages.
  • the vertical pressure resistance of these packages is substantially increased, which improves their storage by stacking and stability. These packages have a better grip and consequently their opening is facilitated.
  • the flaming or hot air shrink process allows a large energy input over a very short time which causes a rapid and reproducible shrinkage of the necking zone. Contrary to what could have been anticipated by those skilled in the art, the contact with the flame or the hot air does not damage the packaging.
  • the bottle must be heated symmetrically, otherwise the bottle loses its verticality and the final geometry is not reproducible.
  • the bottle is rotated in front of two heat sources arranged symmetrically with respect to the axis of rotation.
  • the distance between the wall of the bottle and the heat source is constant.
  • a PET bottle labeling machine known per se is used, on which some modifications are made, in particular: - Installation of heat sources (for example Leister-type hot air blowers) external 13 and internal " ! 4 (see figure 8).
  • the installation of the internal hot air blowers 14 is not simple, because of the presence of the rotation mechanism which is located inside the machine.
  • a simpler variant is the installation of a hot air reflector wheel 15 which rotates with the center of the machine.
  • This wheel 15 is such that it surrounds part of the bottles 1 to be treated.
  • the reflective cavities disposed on the wheel 15 surround about half the perimeter of the bottles. The flow of hot air is thus captured and channeled.
  • Another variant (not shown) is to capture all the hot air from the external blowers 13 with the reflector wheel 15 and to channel the entire flow through a central chimney.
  • the invention is not limited to the use of a flame or hot air to heat the bottles. Any other source of heat of sufficient intensity may be used.
  • the invention is not limited to PET bottles but more generally covers any packaging geometry and any material whose properties are similar to PET.

Abstract

L'invention a pour objet un procédé de mise en pression d'un emballage constitué d'au moins une résine thermoplastique contenant un produit liquide ou visqueux et étant obturé de façon étanche par un système de fermeture, ledit emballage comportant une paroi à forte orientation moléculaire; procédé consistant à chauffer au moins une partie externe de la paroi de l'emballage au moyen d'une source de chaleur dont la température est supérieure à la température de fusion de la résine thermoplastique. L'invention concerne également un emballage obtenu par le procédé précité ainsi qu'un dispositif pour la mise en œuvre de ce procédé.

Description

Procédé de mise en pression d'un emballage fermé
Domaine de l'invention
La présente invention concerne la mise en pression d'un emballage fermé, p. ex. d'une bouteille en matière plastique ayant une forte orientation moléculaire telle qu'une bouteille en polyéthylène téréphtalate (PET). L'invention s'applique notamment à la mise en pression de bouteilles PET remplies à chaud.
Etat de la technique
Les bouteilles en polyéthylène téréphtalate (PET) sont utilisées dans de nombreux domaines du fait leurs excellentes propriétés : résistance, légèreté, transparence, organoleptique. Ces bouteilles sont fabriquées à grande cadence par étirage bi-axial d'une préforme dans un moule.
Ces emballages une fois remplis, sont stockés, transportés, empilés, manipulés avant d'être ouverts et vidés de leur contenu par le consommateur. Le comportement de l'emballage et principalement sa manutention est fortement influencé par la pression interne de l'emballage. Si la pression interne est inférieure à la pression atmosphérique des problèmes d'ordre technique et esthétique peuvent se poser :
- diminution de la résistance verticale de l'emballage
- déformation de l'emballage, perte de la forme - diminution de la stabilité, verticalité
- prise en main moins bonne
L'acuité de ces problèmes dépend en partie de la géométrie de l'emballage et notamment de l'épaisseur de la paroi dudit emballage. Plus la paroi de l'emballage est de fine épaisseur, plus une pression relative dans l'emballage supérieure ou égale à zéro devient nécessaire. Une pression légèrement positive permet d'améliorer la résistance de l'emballage, facilite sa manutention et améliore sa stabilité. Le procédé de mise en pression de bouteilles revêt donc un intérêt économique parce qu'il permet l'utilisation d'emballages plus légers sans les désavantages liés à leurs manutention qui sont rencontrés habituellement.
Le procédé de mise en pression est d'un grand intérêt également pour le conditionnement d'un liquide chaud dans une bouteille en PET. De nombreux produits nécessitent un remplissage à chaud, c'est-à-dire à une température supérieure à 60 °C et généralement comprise entre 85 °C et 95 °C. Après fermeture hermétique de l'emballage, le liquide chaud introduit dans la bouteille se refroidit et par conséquent voit son volume diminuer. Contrairement à une bouteille en verre, la bouteille plastique n'est pas capable de résister à la dépression résultant de la contraction du liquide sans se déformer. C'est pourquoi, les bouteilles en PET pour remplissage à chaud comportent des panneaux de compensation qui se déforment et absorbent la diminution de volume du liquide et de l'espace de tête. Malgré leur forte utilisation actuelle, ces bouteilles plastiques présentent plusieurs inconvénients, dont principalement un poids élevé, un design limité et un coût de fabrication élevé.
La demande de brevet WO 2006/079754 propose de remédier à ces inconvénients en proposant un procédé de conditionnement comprenant un ajout d'azote liquide dans la bouteille. Cependant, le procédé proposé est difficile à utiliser car il nécessite une grande précision de dosage le l'azote liquide ainsi que des emballages particulièrement résistants à la pression. En effet, une forte pression est générée dans la bouteille immédiatement après fermeture hermétique, lorsque l'azote passe de l'état liquide à l'état gazeux. L'azote ayant une expansion de volume d'un facteur 600 lors du changement d'état, il s'avère qu'une très faible variation de quantité d'azote dosée dans la bouteille génère une très grande variation de pression dans la bouteille. La bouteille se retrouve donc soumise à une forte pression après fermeture alors que la température du liquide est encore élevée. La bouteille doit donc résister à l'action conjuguée des contraintes mécaniques exercées par la pression à l'intérieur de la bouteille et des contraintes thermiques liées à la haute température du liquide. En pratique, ce procédé est très difficile à maîtriser et nécessite un emballage très résistant à la pression et notamment au niveau du fond. Pour ces raisons, le procédé de conditionnement proposé dans la demande WO 2006/079754 est difficilement exploitable et peu intéressant économiquement.
Exposé général de l'invention
La présente invention permet de remédier aux difficultés précitées grâce à un procédé simple et peu coûteux permettant de mettre en pression les emballages après remplissage. Le procédé selon l'invention peut être appliqué à une grande diversité d'emballage, et son usage est particulièrement avantageux pour les emballages en PET ayant une forte orientation moléculaire et contenant des produits liquides.
L'invention consiste à mettre en pression des emballages, p. ex. des bouteilles plastiques, remplis et obturés de façon étanche, en exposant les emballages à une température supérieure à la température du matériau qui constitue l'emballage, p. ex. à une température comprise entre 600°C et 1500°C pendant quelques secondes ; la chaleur transférée à l'emballage ayant pour effet de provoquer une rétraction moléculaire et par conséquent une diminution de volume dudit emballage.
Le procédé objet de l'invention permet de mettre en pression l'emballage par l'intermédiaire d'un apport de température intense et de courte durée, dont l'effet sur la température du produit contenu est négligeable.
Les bouteilles utilisées dans le cadre de la présente invention sont généralement composées d'une ou plusieurs résines thermoplastiques ayant une température de fusion généralement inférieure à 300°C. Les bouteilles, du fait de leur procédé de fabrication, présentent une forte orientation moléculaire qui se relaxe sous l'effet d'une température élevée. Les bouteilles, fermées hermétiquement et contenant un produit liquide ou visqueux, sont présentées devant une source de chaleur intense, par exemple une flamme, pendant une courte durée, typiquement de l'ordre de quelques secondes. Dans ces conditions, on observe une rétraction presque instantanée de la partie de la bouteille exposée à la source de chaleur et par conséquent une diminution du volume de la bouteille provoquant une mise en pression de volume de gaz emprisonné dans la bouteille.
Afin de provoquer une rétraction homogène et contrôlée, on fait de préférence tourner l'emballage autour de lui-même devant la source de chaleur.
Le procédé de mise en pression utilise de préférence des bouteilles ayant une géométrie spécifique. Il a été trouvé que la bouteille devait comporter au moins deux zones distinctes au niveau de sa paroi latérale. Une première zone de géométrie généralement cylindrique se caractérise par le fait qu'elle se déforme lorsque la pression relative dans la bouteille est négative. Cette première zone sert à absorber les variations de volume du liquide contenu dans la bouteille avant la mise en pression de l'emballage. Une deuxième zone présente une géométrie généralement convexe qui ne se déforme pas lorsque la pression relative est négative. La deuxième zone non déformée avant mise en pression, permet le chauffage et la rétraction reproductible de la bouteille dans le procédé de mise en pression. Cette zone qui se rétracte sous l'effet d'un chauffage intense provoque la mise en pression de la bouteille. Lors de la mise en pression la première zone recouvre sa géométrie initiale.
Selon un mode avantageux de l'invention, l'emballage est une bouteille en PET fabriquée par soufflage bi étirage d'une préforme dans un moule.
Le procédé est particulièrement avantageux pour mettre en pression des emballages en PET d'épaisseur réduite.
Le procédé est particulièrement avantageux pour mettre en pression des emballages en PET remplis à chaud.
Une variante de l'invention consiste exposer un emballage devant une source de chaleur intense afin de modifier sa forme.
L'invention sera mieux comprise à l'aide des figures 1 à 7 : Les figures 1 à 3 illustrent le concept général de l'invention.
La figure 1 montre la bouteille dans le procédé de mise en pression.
La figure 2 montre en vue de dessus un premier procédé de mise en pression selon lequel la bouteille est chauffée sur sa périphérie.
La figure 3 illustre un deuxième procédé de mise en pression selon lequel la bouteille en rotation défile entre deux rampes de chauffage.
Les figures 4 à 7 montrent de façon détaillée la bouteille au cours du procédé de mise en pression.
La figure 4 représente un exemple de géométrie de bouteille pour le procédé de mise en pression. Cette bouteille comporte deux zones distinctes 10 et 11 au niveau de sa paroi latérale 2.
La figure 5 montre la bouteille avant mise en pression lorsque la pression relative dans la bouteille est négative. La première zone 10 est déformée par la différence de pression.
La figure 6 illustre la bouteille dans le procédé de mise en pression avec la deuxième zone 11 de la paroi latérale 2 soumise à une source de chaleur intense.
La figure 7 représente la bouteille après mise en pression, la première zone 10 de la paroi latérale 2 ayant recouvré sa géométrie initiale et la deuxième zone 11 s'étant rétractée de façon uniforme et reproductible.
La figure 8 illustre un premier mode de réalisation d'un dispositif utilisant le procédé selon l'invention. La figure 9 illustre un deuxième mode de réalisation d'un dispositif utilisant le procédé selon l'invention.
Exposé détaillé de l'invention
L'invention s'applique en particulier aux emballages en matière plastique de fine épaisseur présentant une forte orientation moléculaire, fermés hermétiquement et contenant un produit liquide ou visqueux.
Contrairement à ce que l'on s'attendre à priori, il a été constaté et démontré que les bouteilles selon l'invention peuvent être exposées au moins partiellement à une source de température comprise entre 600°C et 1500°C pendant une courte durée sans destruction de l'emballage. Les bouteilles utilisées dans les exemples suivants ont été mises en contact avec une flamme ou de l'air à haute température pendant une durée limitée. A relever que ces mêmes bouteilles, mais non remplies, sont détruites instantanément sous l'effet de l'exposition à cette source de chaleur.
L'exposition des bouteilles remplies et fermées hermétiquement pendant une durée contrôlée a pour effet de modifier l'orientation des chaînes de polymère et créer la rétraction de la zone chauffée.
La diminution du volume de l'emballage résultant de la rétraction engendre une augmentation de la pression à l'intérieur de l'emballage. Le volume de gaz emprisonné dans l'emballage au moment du conditionnement du produit est comprimé sous l'effet de la pression.
L'emballage étant exposé pendant une durée très limitée à la source de chaleur, la variation de température du produit est négligeable. Il est observé également que l'exposition de l'emballage à une température plus basse, par exemple
300 °C, conduit à des temps de chauffage beaucoup plus longs, typiquement de plusieurs minutes. Il en résulte une augmentation de la température du produit non négligeable et une durée du procédé de mise en pression souvent incompatible avec les contraintes de production.
L'invention est particulièrement avantageuse pour mettre en pression des emballages en PET de très faible épaisseur. La mise en pression améliore la manutention de l'emballage, sa prise en main ainsi que sa stabilité verticale.
L'invention est d'un grand intérêt pour mettre en pression des bouteilles en PET remplies à chaud. Dans le procédé de remplissage à chaud, une dépression se crée dans la bouteille lorsque le produit refroidit, ce qui a pour effet de déformer les parois de la bouteille. L'invention permet d'utiliser des bouteilles remplies à chaud et ne comportant pas de panneaux de compensation. Des bouteilles d'une grande variété de forme et plus légères peuvent être utilisées. L'exposition de la bouteille à la source de chaleur est effectuée lorsque le produit contenu dans la bouteille est au moins partiellement refroidi.
Le principe général de l'invention est présenté à partir des figures 1 à 3.
Le principe général de l'invention est décrit sur la figure 1. Une bouteille en PET 1 comportant au moins une paroi latérale 2 formée de deux zones 10 et 11 , un fond
3, et un goulot 4 obturé de façon étanche par un bouchon 5 contient un produit liquide ou visqueux 6. La zone 10 se déforme lorsque la pression dans la bouteille est inférieure à la pression extérieure. La zone 10 permet de compenser les variations de volume du contenu de la bouteille avant mise en pression. La zone 11 conserve sa géométrie lorsque la pression dans la bouteille est inférieure à la pression extérieure. La zone 10 a généralement une forme bombée. La paroi latérale 2 de la bouteille 1 est chauffée à haute température au niveau de la zone
11 pendant quelques secondes, de préférence inférieure à 10 secondes et encore plus avantageusement inférieure à 5 secondes, avec une source de chaleur intense 7 dont la température est comprise entre 600 et 1500°C. La zone 11 de la bouteille 1 se situe en dessous du niveau de remplissage, c'est-à-dire dans une zone ou la surface interne de la paroi 2 de la bouteille 1 est en contact avec le produit 6. La bouteille 1 est chauffée sur toute la périphérie de la zone 11 grâce à une ou plusieurs sources de chaleur. Un chauffage symétrique est avantageux pour éviter une perte de la perpendicularité entre le fond 3 et l'axe de la bouteille 1. Différentes méthodes peuvent être envisagées afin d'obtenir un chauffage homogène sur la circonférence de la zone 11. Le chauffage a pour effet la rétraction locale de la paroi 2 au niveau de la zone 11 et l'augmentation de la pression à l'intérieur de la bouteille 1. Un contrôle précis du temps de chauffage, de la puissance de chauffage, et de l'homogénéité du chauffage circonférentiel est nécessaire pour assurer la rétraction et la mise en pression reproductible des bouteilles.
La figure 2 illustre en vue de dessus un premier procédé de mise en pression qui permet la rétraction homogène sur la circonférence de la bouteille 1 pendant le chauffage. Une source de chaleur intense pouvant être des flammes ou de l'air chaud 7 chauffent la paroi latérale 2 de la bouteille 1 au niveau de la zone 11 sur toute la circonférence simultanément. Ce chauffage axisymétrique favorise une rétraction homogène de la bouteille 1 au niveau de la zone 11.
La figure 3 représente en vue de dessus la bouteille 1 au cours d'un deuxième procédé de mise en pression par flammage ou air chaud. La bouteille 1 est animée d'un mouvement de translation 8 et d'un mouvement de rotation 9. Dans son mouvement, la bouteille 1 défile entre deux rampes de flammes ou d'air chaud 7 disposées symétriquement par rapport à l'axe de la bouteille 1. Le temps de chauffage de la bouteille 1 est déterminé par la vitesse de translation et la longueur des rampes de chauffage. La vitesse de rotation permet d'assurer un chauffage homogène sur toute la circonférence de la zone 11. Ce dispositif est particulièrement avantageux car il peut être inséré facilement sur les lignes de remplissage.
Le procédé de mise en pression par flammage ou air chaud est basé sur la rétraction de l'emballage sous l'effet d'une température élevée. Une montée en température rapide de la paroi de la bouteille au niveau de la zone 11 est provoquée par l'utilisation d'une source de chaleur de forte intensité. L'utilisation d'une flamme ou d'air chaud provoque une augmentation de la température de la zone 11 comprise entre 20 °C par seconde et 60 °C par seconde. Cette augmentation rapide de la température permet de créer la rétraction de la zone 11 en moins de 4 secondes et préférentiellement en moins de 2 secondes. Ce chauffage intensif et de courte durée évite l'augmentation significative de la température du liquide contenu dans l'emballage. La rétraction en 2 secondes de la zone 11 d'une bouteille d'un litre crée une augmentation de la température du liquide contenu dans la bouteille de seulement 1 °C. La rétraction est effectuée de préférence lorsque la température du liquide contenu dans la bouteille est à une température comprise entre 5°C et 50 °C et de avantageusement lorsque la température est comprise entre 30 °C et 35 °C. Plus la température du liquide contenu dans la bouteille est à basse température, plus une puissance de chauffage élevée est nécessaire pour rétracter rapidement la bouteille. Une puissance de chauffe de 5 à 20 kW par bouteille est nécessaire pour effectuer la rétraction dans un temps réduit. Une flamme ou des convecteurs à air chaud permettent d'apporter les calories suffisamment rapidement afin de rétracter la paroi de la bouteille. Lorsque la puissance de chauffe est insuffisante, l'énergie calorifique fournie est absorbée au fur et à mesure par le liquide contenu dans la bouteille et le temps de rétraction devient alors très long et le liquide contenu dans la bouteille s'échauffe.
Les figures 4 à 7 montrent de façon détaillée la bouteille au cours du procédé de mise en pression.
La figure 4 représente un exemple de géométrie de bouteille 1 présentant les caractéristiques nécessaires à la mise en pression selon le procédé décrit dans l'invention. Cette bouteille 1 comporte une paroi latérale 2, reliée à un fond 3 et un goulot 4 obturé par un bouchon 5. Cette bouteille contient un produit liquide ou visqueux 6. Un volume gazeux ou espace de tête est également emprisonné dans la bouteille et se situe dans le goulot si la bouteille est manipulée verticalement. Lorsque la bouteille 1 est mise en pression consécutivement à un remplissage à chaud la bouteille comporte un fond 3 adapté qui résiste à la pression et à la température. Un fond 3 de type pétaloïde peut être utilisé. La paroi latérale 2 de la bouteille 1 comporte au moins deux zones distinctes 10 et 11 qui diffèrent par leur comportement lorsque la pression dans la bouteille est inférieure à la pression extérieure. La zone 10 de la paroi 2 est de préférence cylindrique et peut comporter de faibles nervures mais qui n'empêchent pas sa déformation lorsque la pression relative dans la bouteille est négative. La géométrie de la zone 10 peut également être carrée ou hexagonale avec des faces planes qui se déforment sous l'effet d'une pression relative dans la bouteille négative. A contrario, la zone 11 de la paroi 2 présente une forte stabilité géométrique lorsque la pression relative dans la bouteille est inférieure à zéro. La zone 11 est préférentiellement bombée ou convexe. La zone 11 peut également comporter des nervures qui apportent de la rigidité. Avantageusement, la zone 10 est utilisée pour l'étiquetage. La zone 11 de la paroi latérale présente une forte orientation moléculaire la rendant apte à se rétracter sous l'effet d'un chauffage intense. La figure 4 représente la géométrie de la bouteille telle que fabriquée et remplie.
La figure 5 illustre la déformation de la bouteille lorsque sous l'effet d'une pression à l'intérieur de la bouteille inférieure à la pression extérieure. Cette pression relative négative apparait par exemple lorsque le volume du produit contenu dans la bouteille 1 diminue sous l'effet d'un refroidissement. La figure 5 montre que la zone 10 se déforme pour absorber les variations de volume du produit 6 et de l'espace de tête. La géométrie de la zone 11 par contre n'est pas affectée par cette dépression. La déformation de la zone 10 peut être aléatoire ou contrôlée selon sa géométrie, mais dans tous les cas cette déformation est réversible. Une zone 10 de géométrie cylindrique engendre une déformation aléatoire mais présente l'avantage d'un étiquetage facilité lorsque cette zone reprend sa forme initiale. Dans un procédé de remplissage à chaud, la figure 5 représente l'état de la bouteille lorsque le produit est refroidi ou au moins partiellement refroidi.
La figure 6 présente l'état de la bouteille avant l'étape de mise en pression. Cette bouteille 1 est déformée au niveau d'une première zone 10 de sa paroi latérale 2.
Une deuxième zone 11 de la paroi latérale 2 ayant pour axe de symétrie l'axe vertical de la bouteille, n'est pas déformée sous l'effet de la dépression dans la bouteille. La bouteille telle que présentée figure 6 est mise en pression grâce à un chauffage intensif de la zone 11 homogène sur la circonférence. Des méthodes et exemples de dispositifs de chauffage intensif sont présentés figures 2 et 3. Du fait de sa grande circularité, la zone 11 peut être chauffée de façon homogène sur sa circonférence. A contrario, un chauffage homogène de la zone 10 déformée de façon aléatoire serait pratiquement impossible. Sous l'effet d'un chauffage intensif, la zone 11 qui présente une forte orientation moléculaire se rétracte, ce qui a pour effet de diminuer le volume de la bouteille et rétablir une pression relative positive dans l'emballage. La rétraction de la zone 11 est irréversible. Cette rétraction s'opère de façon homogène sur la circonférence de la zone 11. Conjointement à la rétraction de la zone 11 , la zone 10 recouvre sa géométrie initiale.
La figure 7 illustre la bouteille 1 après mise en pression. La zone première zone 10 de la paroi latérale 2 qui se trouvait déformée avant mise en pression, a retrouvée sa géométrie initiale. La deuxième zone 11 de la paroi latérale 2 voit sa géométrie modifiée du fait de la rétraction. Avantageusement, la variation de géométrie de la zone 11 est prise en compte dans le design de la bouteille afin que la géométrie de la zone 11 après rétraction corresponde à la géométrie souhaitée. Le volume de la bouteille après mise en pression est plus faible que le volume de la bouteille avant l'étape de mise en pression. La variation de volume de la bouteille 1 est gouvernée par la variation de volume du produit contenu dans la bouteille. Lors d'un remplissage à chaud cette variation de volume est de l'ordre de 3 à 5%. La constance de l'espace de tête, c'est-à-dire du niveau de remplissage, permet de garantir la reproductibilité de la géométrie des bouteilles après mise en pression.
L'opération de mise en pression a modifié la géométrie de la bouteille 1 uniquement au niveau de la zone de chauffage 11. Le procédé permet une rétraction contrôlée et répétitive des bouteilles pour autant que les bouteilles soient de géométrie initiale identique, et remplies de façon similaire. Le procédé de chauffage par flammage ou air chaud est précis ; il peut être local ou au contraire affecter une grande surface de la bouteille.
Le procédé de mise en pression par chauffage intensif facilite la manutention de produits liquide dans des emballages en PET de très faible épaisseur. La résistance à la pression verticale de ces emballages est sensiblement augmentée, ce qui améliore leur stockage par empilement ainsi que leur stabilité. Ces emballages présentent une meilleure prise en main et par voie de conséquence leur ouverture est facilitée.
Le procédé de rétraction par flammage ou air chaud permet un apport d'énergie important sur une durée très brève ce qui provoque une rétraction rapide et reproductible de la zone de rétreint. Contrairement à ce qu'aurait pu prévoir l'homme du métier, le contact de la flamme ou l'air chaud n'endommage pas l'emballage. La bouteille doit être chauffée de façon symétrique, sinon la bouteille perd sa verticalité et la géométrie finale n'est pas reproductible. Préférentiellement, lors de l'étape de rétraction, la bouteille est en rotation devant deux sources de chaleur disposées symétriquement par rapport à l'axe de rotation. Avantageusement, la distance entre la paroi de la bouteille et la source de chaleur est constante.
Dans le texte qui suit, quelques exemples de dispositifs utilisant le procédé selon l'invention sont présentés.
Il convient préalablement de souligner que les lignes de remplissage industrielles travaillent à des vitesses de production élevées. Une vitesse de 12O00 bouteilles par heures est très courante. Le dispositif doit donc non seulement appliquer le procédé selon l'invention mais également être adapté à de grandes vitesses de production.
Selon une première variante, on utilise une étiqueteuse de bouteilles PET connue en soi mais sur laquelle on réalise quelques modifications, notamment : - Installation de sources de chaleur (p. ex. des soufflantes d'air chaud de type Leister) externes 13 et internes"! 4 (voir figure 8). L'installation des soufflantes d'air chaud internes 14 n'est pas simple, à cause de la présence du mécanisme de rotation qui se situe à l'intérieur de la machine.
Une variante plus simple (voir figure 9) consiste en l'installation d'une roue à réflecteur d'air chaud 15 qui tourne avec le centre de la machine.
La forme de cette roue 15 est telle qu'elle entoure une partie des bouteilles 1 à traiter.
Ceci diminue sensiblement la consommation d'énergie parce que les soufflantes d'air chaud internes 14 sont éliminées.
Les cavités réflectrices disposées sur la roue 15 entourent environ la moitié du périmètre des bouteilles. Le flux d'air chaud est ainsi capté et canalisé.
Une certaine turbulence (écoulement en régime turbulent) dans la cavité réflectrice est souhaitée pour augmenter l'échange thermique entre l'air chaud et la surface de la bouteille 1.
Une autre variante (non illustrée) est de capter tout l'air chaud venant des soufflantes externes 13 avec la roue à réflecteur 15 et de canaliser la totalité du flux par une cheminée centrale.
Depuis la sortie de la cheminée centrale le flux est ensuite amené ou retourné par une tuyauterie à l'entrée des soufflantes d'air chaud externes 13. Grâce à cette récupération de chaleur des économies considérables d'énergie peuvent être obtenues.
Il va de soi que l'invention ne se limite pas à l'utilisation d'une flamme ou de l'air chaud pour chauffer les bouteilles. Toute autre source de chaleur dont l'intensité serait suffisante peut être utilisée.
De même, l'invention ne se limite pas aux bouteilles en PET mais couvre plus généralement n'importe quelle géométrie d'emballage et n'importe quel matériau dont les propriétés sont similaires au PET.

Claims

Revendications
1. Procédé de mise en pression d'un emballage constitué d'au moins une résine thermoplastique contenant un produit liquide ou visqueux et étant obturé de façon étanche par un système de fermeture, ledit emballage comportant une paroi à forte orientation moléculaire; procédé consistant à chauffer au moins une partie externe de la paroi de l'emballage au moyen d'une source de chaleur dont la température est supérieure à la température de fusion de la résine thermoplastique.
2. Procédé selon la revendication 1 dans lequel la température de la source de chaleur est au moins deux fois supérieure à la température de fusion de la résine thermoplastique.
3. Procédé selon la revendication 2 dans lequel la température de la source de chaleur est comprise entre 600 et 1500 °C.
4. Procédé selon l'une des revendications précédentes dans lequel ladite partie de la paroi externe de la paroi de l'emballage est chauffée pendant moins de 10 secondes.
5. Procédé selon la revendication 4 dans lequel ladite partie de la paroi externe de la paroi de l'emballage est chauffée pendant moins de 5 secondes.
6. Procédé selon la revendication 1 dans lequel la source de chaleur est une flamme ou de l'air chaud
7. Procédé selon la revendication précédente dans lequel on utilise plusieurs source de chaleur disposées symétriquement autour de l'emballage.
8. Procédé selon l'une des revendications précédentes pendant lequel on fait tourner l'emballage autour de lui même.
9. Procédé selon l'une des revendications précédentes pendant lequel on fait subir un mouvement de translation à l'emballage.
10. Emballage fermé en PET ou matériau similaire contenant un liquide ou un matériau visqueux, caractérisé par le fait qu'il est obtenu selon le procédé selon l'une des revendications précédentes.
1 1. Emballage selon la revendication 10 dans lequel ladite partie externe s'étend sur toute la circonférence de l'emballage.
12. Dispositif de mise en œuvre du procédé selon l'une des revendications 1 à
9 comprenant un site pour disposer temporairement un emballage rempli et fermé et une source de chaleur de température comprise entre 600 et 1500°C, ladite source de chaleur étant disposée de manière à chauffer au moins une partie externe de la paroi de l'emballage.
13. Dispositif selon la revendication 12 comprenant deux sources de chaleurs disposées symétriquement autour dudit site.
14. Dispositif selon la revendication 12 ou 13 dans lequel la source de chaleur est une flamme.
15. Dispositif selon la revendication 12 ou 13 dans lequel la source de chaleur est de l'air chaud.
PCT/IB2009/051984 2008-05-13 2009-05-13 Procédé de mise en pression d'un emballage fermé WO2009138958A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08156071.6 2008-05-13
EP08156071A EP2119664A1 (fr) 2008-05-13 2008-05-13 Procédé de mise en pression de bouteillle PET

Publications (1)

Publication Number Publication Date
WO2009138958A1 true WO2009138958A1 (fr) 2009-11-19

Family

ID=39816402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2009/051984 WO2009138958A1 (fr) 2008-05-13 2009-05-13 Procédé de mise en pression d'un emballage fermé

Country Status (2)

Country Link
EP (1) EP2119664A1 (fr)
WO (1) WO2009138958A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013007411A1 (de) * 2013-03-29 2014-10-02 Khs Corpoplast Gmbh Verfahren und Vorrichtung zur Herstellung von gefüllten Behältern

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2639197A1 (fr) * 2012-03-12 2013-09-18 Sogepi Procédé de traitement thermique d'un contenant destiné à être empli à chaud, pour stockage longue durée, contenant obtenu
DE102015206359A1 (de) * 2015-04-09 2016-10-13 Krones Ag Vorrichtung zum Überdruckstabilisieren von gefüllten und verschlossenen PET-Behältern und Verfahren zum Überdruckstabilisieren von gefüllten PET-Behältern

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3347970A (en) * 1964-08-19 1967-10-17 Hercules Inc Method of forming duplicate bottles by heat shrinking
FR2887238A1 (fr) * 2005-06-21 2006-12-22 Jean Tristan Outreman Procede de remplissage a chaud d'un contenant a paroi mince et contenant rempli ainsi obtenu

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2881107B1 (fr) 2005-01-27 2007-04-06 Olivier Fedin Procede de remplissage d'un contenant en matiere plastique avec un liquide chaud et fond de contenant adapte

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3347970A (en) * 1964-08-19 1967-10-17 Hercules Inc Method of forming duplicate bottles by heat shrinking
FR2887238A1 (fr) * 2005-06-21 2006-12-22 Jean Tristan Outreman Procede de remplissage a chaud d'un contenant a paroi mince et contenant rempli ainsi obtenu

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013007411A1 (de) * 2013-03-29 2014-10-02 Khs Corpoplast Gmbh Verfahren und Vorrichtung zur Herstellung von gefüllten Behältern

Also Published As

Publication number Publication date
EP2119664A1 (fr) 2009-11-18

Similar Documents

Publication Publication Date Title
EP2129614B1 (fr) Procédé de remplissage d'un emballage rétractable
EP2167390B1 (fr) Procédé de remplissage à chaud d'emballages plastiques
EP1998945B1 (fr) Dispositif d'injection et procédé pour la fabrication d'une pièce à paroi mince, noyau et préforme
EP2361176B1 (fr) Procédé et dispositif de chauffage par infrarouge de préformes plastiques
EP1975116A1 (fr) Procédé de remplissage d'un emballage rétractable
CA2706022A1 (fr) Procede de fabrication et remplissage a chaud d'un emballage en pet et emballage ainsi obtenu
EP2226257A1 (fr) Contenant en matiere plastique a paroi mince, resistant a la chaleur pour remplissage a chaud d'un contenu liquide
WO2008012708A2 (fr) Preforme pour recipient realise par etirage soufflage
EP3172033B2 (fr) Procédé de contrôle d'un procédé de soufflage de recipients en matière plastique
EP2271474B1 (fr) Procede de soudure de col et de corps de reservoir d'un recipient en matiere plastique et recipient comportant au moins un réservoir soudé selon ce procédé
WO2009138958A1 (fr) Procédé de mise en pression d'un emballage fermé
FR3058396A1 (fr) Dispositif et procede de conditionnement en pression d'un contenant a traiter et machine de conditionnement en pression associee
EP2639197A1 (fr) Procédé de traitement thermique d'un contenant destiné à être empli à chaud, pour stockage longue durée, contenant obtenu
EP3535189A1 (fr) Procede et dispositif de conditionnement en pression d'un contenant a traiter et machine de conditionnement en pression associee
FR2851227A1 (fr) Procede et installation de thermoformage destine a la realisation, au remplissage et au scellement de bouteilles en materiau plastique
WO2020049235A1 (fr) Préforme pour récipient en matière plastique
WO2023281053A1 (fr) Lot compact de récipients groupés et son procédé de conditionnement
FR2881107A1 (fr) Procede de remplissage d'un contenant en matiere plastique avec un liquide chaud et fond de contenant adapte
EP3233418A1 (fr) Récipient à large col à manchon fileté rapporté
FR2942740A1 (fr) Systeme d'orientation des emetteurs infrarouges pour le chauffage de preformes en matiere plastique
EP4367030A1 (fr) Lot compact de recipients groupés, procédé de conditionnement et installation
FR3125024A1 (fr) Lot compact de récipients groupés et son procédé de conditionnement
FR3004985A1 (fr) "procede de faconnage d'une preforme chaude par estampage et dispositif pour sa mise en oeuvre"
EP2804740B1 (fr) Procédé de fabrication d'une jupe d'un tube souple
EP3774558A1 (fr) Bouteille a parois minces pour contenir un liquide alimentaire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09746252

Country of ref document: EP

Kind code of ref document: A1