WO2009138035A1 - 基于分析npc1l1蛋白亚细胞定位变化筛选降胆固醇新药的方法 - Google Patents

基于分析npc1l1蛋白亚细胞定位变化筛选降胆固醇新药的方法 Download PDF

Info

Publication number
WO2009138035A1
WO2009138035A1 PCT/CN2009/071776 CN2009071776W WO2009138035A1 WO 2009138035 A1 WO2009138035 A1 WO 2009138035A1 CN 2009071776 W CN2009071776 W CN 2009071776W WO 2009138035 A1 WO2009138035 A1 WO 2009138035A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
npc1l1
cholesterol
cell
endocytosis
Prior art date
Application number
PCT/CN2009/071776
Other languages
English (en)
French (fr)
Inventor
宋保亮
葛亮
王婧
李培山
曲玉秀
缪红华
戚炜
王江
张锦辉
Original Assignee
中国科学院上海生命科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海生命科学研究院 filed Critical 中国科学院上海生命科学研究院
Publication of WO2009138035A1 publication Critical patent/WO2009138035A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/60Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving cholesterol
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Definitions

  • the present invention belongs to the field of cell biology and pharmacology, and more particularly, to a method for screening a new cholesterol-lowering drug based on analyzing a subcellular localization change of NPC1L1 protein; meanwhile, the present invention identifies a cholesterol-binding domain of NPC1L1 protein, and may also The compound that binds to the domain is screened to obtain a substance that inhibits cholesterol absorption. Background technique
  • Cholesterol is an important component of biofilms and a precursor to synthetic alcohol hormones and bile acids. Excessive intake of cholesterol can cause many diseases, the most common and most serious of which are atherosclerosis and coronary heart disease. Mammals have two main ways to get cholesterol: de novo synthesis and absorption from food. The main molecular mechanisms of cholesterol biosynthesis have been elucidated, but there are not many studies on the level of cellular molecules for cholesterol absorption.
  • NPCILI Nieman-Pick CI Like 1
  • NPCILI Nieman-Pick CI Like 1
  • NPCILI is highly expressed in the small intestine of both humans and mice, and in humans, the liver is also highly expressed.
  • the ability of NPC1L1 knockout mice to absorb cholesterol from food is greatly reduced.
  • NPC1L1 In addition to mediating cholesterol absorption in the small intestine, NPC1L1 also mediates liver cholesterol reabsorption, and transgenic mice with NPC1L1 in the liver have lower cholesterol in bile and feces than normal mice.
  • a NPC1L1 protein contains 1332 amino acids and constitutes 13 transmembrane segments (Wang, J. et al. (2009), Membrane topology of human NPCILI, a key protein in enterohepatic cholesterol absorption. J Lipid Res, Epub ahead of print) 0 NPCILI
  • the 3-7 segment contains a sterol sensing domain, which is also found in the sterol-regulated NPCK HMGCR, and SCAP proteins. The subcellular localization of the NPC1L1 protein has been controversial.
  • Ezetimibe (market name Zetia) can reduce cholesterol absorption and is used to treat hypercholesterolemia clinically. However, the mechanism by which Ezetimibe inhibits NPC 1L1 protein-mediated cholesterol absorption remains unclear.
  • a method of screening for a potential cholesterol-lowering substance comprising: (1) treating a cell expressing the NPC1L1 protein with cholesterol, and determining a cell vesicle (generally referred to as a bubble) Endogenous The extent of the NPC1L1 protein;
  • the degree of endocytic NPC1L1 protein in the vesicle is statistically lower (preferably significantly lower than, such as low)
  • the degree of endocytosis of the NPC1L1 protein in the vesicle, and the candidate substance is a potential cholesterol lowering substance.
  • said vesicular endocytosis is predominantly clathrin mediated endocytosis.
  • the NPC1L1 protein comprises the amino acid sequence of positions 18-260 of GenBank Accession No. FJ481111, which is the binding domain of cholesterol.
  • the cell expressing the NPC1L1 protein is subjected to cholesterol lowering treatment before cholesterol treatment.
  • the cholesterol lowering treatment means that the amount of intracellular cholesterol is lower than a normal level, whereby the NPC1L1 protein is transported to the cell membrane region.
  • (1) or (2) further comprising: determining the degree of binding of the cage protein to the NPC1L1 protein in the cell; and, (3), further comprising: comparing (1) and (2) The degree of binding of the middle clathrin to the NPC1L1 protein; wherein, if the degree of binding of the cage protein to the NPC1L1 protein in (2) is statistically lower (preferably significantly lower than, for example, 20% lower, preferably 40% lower) More preferably, it is 60% lower or lower.
  • the degree of binding of the middle cage protein to the NPC1L1 protein, the candidate substance is a potential cholesterol lowering substance.
  • (1) or (2) further comprising: determining the degree of binding of the AP2 complex-associated protein to the NPC1L1 protein in the cell; and, (3), further comprising: comparing (1) and 2) the degree of binding of the AP2 complex-associated protein to the NPC1L1 protein;
  • the degree of binding of the AP2 complex-associated protein to the NPC1L1 protein in (2) is statistically lower (preferably significantly lower than, for example, 20% lower, preferably 40% lower; more preferably 60% lower or lower) Low)
  • the degree of binding of the AP2 complex-associated protein to the NPC1L1 protein, and the candidate substance is a potential cholesterol-lowering substance.
  • the AP2 complex-associated protein is selected from the group consisting of: ⁇ 2 , ⁇ 2, ⁇ 2 or ⁇ subunit. More preferably, the ⁇ 2 complex-associated protein is a ⁇ 2 subunit.
  • the cell is a recombinant cell comprising an expression cassette in the genome, the expression cassette comprising: a coding gene encoding a operably linked NPC1L1 protein and a reporter gene.
  • the reporter gene is GFP or EGFP.
  • the cell is a eukaryotic cell.
  • the degree of endocytic NPC1L1 protein in the cell vesicle is determined by measuring the amount of endocytic vesicles, the amount of endocytosed NPC1L1 protein and/or cholesterol; or by measuring the NPC1L1 protein and/or cholesterol on the cell membrane. The amount (if the endocytosis occurs, the amount of NPC1L1 protein and/or cholesterol on the cell membrane is reduced) determines the extent to which the cell vesicles endocytose the NPC1L1 protein. In another preferred embodiment, localization or quantification is performed by fluorescent labeling or staining.
  • the NPC1L1 protein is a fusion protein comprising a NPC1L1 protein and a tag protein, and the tagged protein is located in the extracellular region of the NPC1L1 protein (or inside the vesicle;
  • the tagged protein is located between the eighth transmembrane region and the ninth transmembrane region of the NPC1L1 protein.
  • the NPC1L1 protein is linked to the tag protein via a peptide bond.
  • the NPC1L1 protein is a full-length human NPC1L1 protein, and the tagged protein is located between the 986th amino acid (Ser) and the 987th amino acid (Leu) on the NPC1L1 protein.
  • amino acid sequence of the NPC1L1 protein is shown in GenBank Accession No. FJ481 111.
  • the tagged protein is selected from, but not limited to, one or several Myc tagged proteins (preferably 3 X Myc), one or several Flag tagged proteins, one or several His6 tagged proteins, One or several T7-tagged proteins, one or several V5-tagged proteins, one or several HA-tagged proteins, one or several GST-tagged proteins, or a mixture of several tagged proteins.
  • the tagged protein is selected from, but not limited to, luciferase, beta-galase.
  • the localization of the NPC1L1 protein is determined by identifying the localization of the cellular tagged protein, thereby determining the extent of endocytic NPC1L1 protein in the cell vesicle.
  • the NPC1L1 protein when the tagged protein is mostly localized on the cell membrane, the NPC1L1 protein is also localized on the cell membrane, and the degree of endocytic NPC1L1 protein is low in the cell vesicle; when a small portion of the tag protein is localized on the cell membrane, the NPC1L1 protein A large number of cells are located in the cells, and the degree of endocytosis of NPC1L1 protein by the cell vesicles is high.
  • the method for determining the localization of the NPC1L1 protein by identifying the localization of the cell tag protein, and thereby determining the degree of endocytosis of the NPC1L1 protein by the cell vesicle comprises:
  • the observation or analytical quantification of the tagged protein or whole cell tagged protein on the cell membrane can be performed using a fluorescence microscope or using a flow cytometer.
  • the impervious cells are treated with a detergent to form a permeabilized cell.
  • the method further comprises: performing further cell experiments and/or animal tests on the obtained potential substances, selecting and determining substances useful for lowering cholesterol.
  • a method of screening for a potential cholesterol lowering substance comprising: (a) treating a cell expressing a protein that mediates NPC1L1 endocytosis with a candidate substance;
  • the candidate substance reduces the expression or activity of the protein, it indicates that the candidate substance is a potential cholesterol lowering substance.
  • step (a) comprises: adding a candidate substance to a cell expressing a protein that mediates NPC1L1 endocytosis in a test group; and/or
  • Step (b) comprises: detecting the expression or activity of said protein in the cells of the test group, and comparing said control group to a cell expressing said protein without adding said candidate substance;
  • the expression or activity of the protein in the test group is statistically lower (preferably significantly lower than, for example, 20% lower, preferably 40% lower; more preferably 60% lower or lower), it indicates This candidate is a potential cholesterol lowering substance.
  • the protein that mediates endocytosis of NPC1L1 is a clathrin and/or an AP2 complex.
  • a substance which inhibits endocytosis of NPC1L1 protein for the preparation of a cholesterol-lowering drug.
  • the substance which inhibits endocytosis of the NPC1L1 protein is a substance which inhibits the interaction of the clathrin and/or AP2 complex with the NPC1L1 protein.
  • the substance is ⁇ , ⁇ -dimethylacryloyl akanin or 25-hydroxycholesterol.
  • a method of reducing intracellular cholesterol comprising: inhibiting (or interfering with) the clathrin and/or the ⁇ 2 complex interacting with the NPC1L1 protein.
  • a method of screening for a potential cholesterol lowering substance comprising:
  • Adhesion strength ⁇ cholesterol and NPC1L1 protein 2 terminal domain significantly weaker than (preferably binding strength is significantly weaker than 20%, more preferably significantly weaker than 40%, more preferably significantly weaker than 60%) or binding was significantly lower (preferably binding was significantly lower than 20%, more preferably is significantly lower than 40%, more preferably significantly lower than 60%) the bonding strength ⁇ in (1) cholesterol NPC1L1 protein 2 terminal domain or binding
  • the amount of the candidate substance is a potential cholesterol lowering substance. That is, as the binding ⁇ 2-terminal domain capable of competing with cholesterol NPC1L1 protein candidate substance, then the substance is a potential candidate cholesterol-lowering substance.
  • a method for screening potential cholesterol lowering substance comprising: binding ⁇ NPC1L1 candidate substance with the protein domains of the second end contacting the candidate substance with NPC1L1 detecting protein-terminal domain 2 ⁇ situation; candidate substance with such ⁇ NPC1L1 protein 2 terminal domain of a specific binding occurs, the candidate substance is a potential cholesterol lowering substance.
  • ⁇ said second end NPC1L1 protein domain comprising the sequence shown in GenBank Accession No. FJ481 111 of amino acids 18-260.
  • a material obtained by screening using the screening method as described is provided.
  • the substance is 25-hydroxycholesterol or 27-hydroxycholesterol.
  • a fusion protein comprising a NPC1L1 protein and a tagged protein, and wherein the tagged protein is located in the extracellular region of the NPC1L1 protein (or inside the vesicle;
  • the tagged protein is located between the eighth transmembrane region and the ninth transmembrane region of the NPC1L1 protein.
  • a nucleic acid sequence encoding the fusion protein is also provided.
  • a recombinant vector comprising the nucleic acid sequence.
  • the vector is based on a pEGFP-N1 vector comprising the nucleic acid sequence.
  • a host cell comprising the recombinant vector, or a nucleic acid sequence integrated in the genome thereof.
  • the host cell is a rat liver cancer cell.
  • the use of the host cell is also provided for analyzing cellular sublocalization of the NPC1L1 protein.
  • Figure 1 Regulation of intracellular cholesterol levels The cyclic transport of NPC1L1 protein between the cytoplasmic membrane and the endocytic loop.
  • CDX cyclodextrin
  • CRL-1601/NPC1L1-EGFP cells were treated as shown in A, fixed at different time points, and fluorescence localization was observed using a confocal microscope. Bar, 10 ⁇ .
  • CRL-1601/NPC 1L1 -EGFP (D) and L02 cells (E) were treated as indicated in A, and plasma membrane proteins were labeled at different time points by SDS-PAGE analysis.
  • TnR a transferrin receptor.
  • the NPC1L1 protein is required for cells to absorb cholesterol.
  • CRL-1601 and CRL-1601/NPC 1L1-EGFP cells were treated as shown in Figure 1A, fixed at different time points, stained with Filipin, and observed for fluorescence localization using two-photon confocal. Bar, 10 ⁇ .
  • Retroviral-mediated RNAi in L02 cells reduces NPC1L1 expression.
  • the figure shows the western blot results.
  • CDX treatment L02 cells were treated for 60 minutes with 15 g/ml CDX-coated cholesterol. Fixation at different time points, Filipin staining, and comparison of fluorescence intensity of NPC1L1 reduced cells and control cells using a two-photon confocal microscope. Bar, 10 ⁇ . DIC stands for Bright Field Vision.
  • HEK293T cells were transfected with the NPCILI-EGFP plasmid. After 24 hours, the cells were treated with the method of A, fixed, mounted, and stained. Bar, 10 ⁇ .
  • Figure 4 Identification of the ⁇ 2 subunit as a binding protein for NPC1L1 in the ⁇ 2 complex.
  • CRL-1601/NPC1L1-EGFP cells were treated as shown in Figure 6A, fixed, stained at different time points and observed for fluorescence localization using two-photon confocal. Bar, 10 ⁇ .
  • Cage-type and ⁇ 2 subunits are required for NPC1L1 protein-mediated cholesterol absorption and are cholesterol-dependent.
  • RNAi silencing caveolin-1 does not affect NPC1L1 protein endocytosis and cholesterol absorption.
  • A Schematic diagram of the process of treating cells: The cells were treated in a medium containing cyclodextrin for 60 min. Then add Ezetimibe in medium A (containing 5% LPDS, 10 ⁇ compactin, 50 ⁇ M mevalonate). After 60 minutes, CDX was directly added to cholesterol cholesterol. Fixed and dyed at different time points.
  • CRL-1601/NPC1L1-EGFP cells were treated as shown in A, fixed and stained after 60 min of cholesterol addition, and fluorescence localization was observed by two-photon confocal microscopy. Bar, 10 ⁇ .
  • C Quantification of the amount of NPCILI protein and cholesterol in the intracellular localization of cells in B. Error bars: standard deviation.
  • D and F CRL-1601/NPC1L1 -EGFP (D) or L02 cells (F) were treated as shown in A. Biotin-labeled cytoplasmic membrane assays were performed at different time points.
  • E CRL-1601/NPC1L1-EGFP cells were treated as indicated in A, and co-immunoprecipitation experiments were performed at different time points.
  • L02 cells were treated for 60 min in medium containing cyclodextrin and Ezetimibe.
  • the CDX package was directly added to cholesterol cholesterol for 60 minutes. Fixed, stained. Fluorescence localization was observed by two-photon confocal. Bar, 10 ⁇ .
  • NPC1L1-NH 2 terminal 18-260 amino acids are required for cholesterol binding to NPC1L1 protein and are essential for cholesterol absorption.
  • NPC1L1 (A 18-260aa): NPC1L1 protein deleted from the NH 2 -terminal 18-260 amino acid.
  • the cell line stably expressing human NPC1L1 protein was pretreated with 25-hydroxycholesterol for 1 hour, after which the cells were treated with CDX, and the cells were again given cholesterol, and after 1 hour, the cells were mounted, Filipin staining, two-photon confocal microscopy; The amount of internal cholesterol and the intracellularly localized NPC1L1 protein were quantified by fluorescence. Error bars: Standard deviation.
  • CDX cyclodextrin
  • C. CRL1601/NPC1L1 -EGFP cells were treated with CDX and the drug to be screened (C1-C187) to localize the NPC1L1 protein to the cell membrane. Take a photo, see the CDX group in the picture. The CDX was removed and the cells were treated with a ligand containing the drug to be screened and cholesterol for one hour. Take a photo, see the chol group in the picture. A compound (C6) that significantly inhibits endocytosis of NPC1L1 protein was selected. Ez: Ezetimibe o
  • CRL1601/NPC1L1 -EGFP cells were treated with CDX and the drug to be screened (C6), and the NPC1L1 protein was fixed in the cell membrane and fixed, as shown in the CDX group.
  • the CDX was removed, and the cells were treated with a ligand containing the drug to be screened and cholesterol, and fixed, as shown in the chol group.
  • Filipin was stained and photographed with a two-photon microscope.
  • NPC1L1 protein mediates cholesterol absorption through vesicle endocytosis, in which Clathrin and AP2 complexes are identified to play an important role in the endocytosis of NPC1L1 protein.
  • Inhibition of clathrin-mediated endocytosis of NPC1L1 protein ie, inhibition of NPC1L1 protein entry into clathrin-coated vesicles, affecting its endocytic process
  • drugs useful for lowering cholesterol can be screened based on this mechanism.
  • the NPC1L1 protein is a multi-transmembrane protein that plays an important role in cholesterol absorption.
  • the present inventors have found that cholesterol can specifically promote endocytosis of NPC1L1 protein, and can regulate the cyclic transport of NPC1L1 protein between the plasma membrane and Endocytic Recycling Compartment (ERC).
  • EEC Endocytic Recycling Compartment
  • Blocking the clathrin-mediated endocytosis of the NPC1L1 protein reduces cholesterol absorption, indicating that NPC1L1 protein mediates cholesterol transport through vesicular endocytic transport.
  • Ezetimibe inhibits the entry of NPCILI protein into clathrin-coated vesicles, blocks its endocytic process, and thereby inhibits cholesterol absorption.
  • the inventors' research indicates that the NPCILI protein carries cholesterol through the clathrin-mediated endocytosis of vesicles into cells, thus providing a new target for screening novel cholesterol absorption inhibitors.
  • the absorption of extracellular substances by cells is a process of transporting extracellular substances into cells through the deformation movement of the plasma membrane (inoculation).
  • the way of absorption is diverse, and endocytosis can be divided into phagocytosis, pinocytosis, receptor-mediated endocytosis, etc. depending on the mechanism of cell entry.
  • endocytosis can be divided into phagocytosis, pinocytosis, receptor-mediated endocytosis, etc. depending on the mechanism of cell entry.
  • clathrin, caveolin, flotillin, etc. can mediate the entry of some substances into cells.
  • the mechanism of entry into cells may be different for different substances, which is related to the structure of the cell itself, the proteins contained in the cells, the properties of the substance itself, and some more complex factors.
  • the present inventors isolated a complex involved in endocytosis of NPC1L1 protein by immunoprecipitation, and identified a protein specifically binding to NPC1L1 protein by tandem mass spectrometry.
  • One of the proteins is the ⁇ 2 subunit in the AP2 complex.
  • the ⁇ 2 subunit recognizes proteins that are to be endocytosed during endocytosis and binds to them and recruits other subunits of ⁇ -2. After the formation of the ⁇ -2 complex, clathrin can be recruited, followed by endocytosis.
  • the inventors used siRNA-mediated RNA interference to reduce the endogenous clathrin or the ⁇ 2 subunit in the AP-2 complex, and found that the two genes reduced the endocytosis and cells of the NPC1L1 protein. Absorption of cholesterol.
  • the NPC1L1 protein carries cholesterol through the clathrin-mediated endocytosis of vesicles into cells.
  • NPC1L1 protein mediates cholesterol absorption via vesicle-mediated endocytosis of NPC1L1
  • inhibition of NPC1L1 protein vesicle endocytosis can significantly inhibit the absorption of cholesterol by cells, which can be based on This mechanism screens for potential substances that reduce the absorption of cholesterol by cells.
  • substances useful for preventing or treating high cholesterol-related diseases can be found from the potential substances.
  • the present invention provides a method of screening for potential cholesterol-lowering substances, the method comprising:
  • the candidate substance is a potential cholesterol lowering substance.
  • the cell expressing the NPC1L1 protein is previously subjected to a cholesterol lowering treatment.
  • the present inventors have found that, after pre-cholesterol-lowering treatment of cells, NPC1L1 protein can be transported from the intracellular endocytic circulation (ERC) region to the cell membrane region to prepare for cholesterol absorption; and cholesterol treatment can be specific Promote endocytosis of the NPC1L1 protein. Therefore, when the drug is screened, the cells are subjected to cholesterol lowering treatment in advance, and then the cell cholesterol is administered, and it is advantageous to observe the clathrin-mediated vesicle endocytosis of the NPC1L1 protein for drug screening.
  • ERP intracellular endocytic circulation
  • the method further comprises: determining a cage protein and/or ⁇ 2 in the cell The degree of binding of the complex-associated protein to the NPC1L1 protein; and, (3), if the binding degree of the cage protein and/or AP2 complex-related protein to the NPC1L1 protein in (2) is statistically lower than (1)
  • the candidate substance is a potential cholesterol lowering substance.
  • the AP2 complex is composed of subunits such as ⁇ , ⁇ 2, ⁇ 2 and ⁇ 2, and its function is to participate in endocytosis by binding proteins into the vesicles coated with clathrin (including heavy and light chains), thus observing cage protein and /
  • the degree of binding of the ⁇ 2 complex or its related protein to the NPC1L1 protein may also reflect the extent (or amount) of entry of the NPC1L1 protein into the clathrin-coated vesicles;
  • Determining the difference in the degree of endocytosis or binding in the presence or absence of a candidate substance can be achieved by measuring the amount of endocytic vesicles, the amount of endocytosed NPC1L1 protein and/or cholesterol, or by measuring the cell membrane.
  • the increase or decrease in the amount of NPC1L1 protein and/or cholesterol is achieved (if endocytosis occurs, the amount of NPC1L1 protein and/or cholesterol on the cell membrane is reduced;).
  • localization or quantification can be carried out by means of fluorescent labeling or staining, and the immunofluorescence labeling cell surface protein binding flow cytometer is a method for efficiently quantifying the cell membrane localization of the NPC1L1 protein.
  • the cells can also be seeded in 96-well plates for NPC1L1 protein localization by fluorescent labeling of the cytoplasmic membrane after drug treatment, and then read with a microplate reader. If the reading is above a preset threshold, the drug can inhibit NPC1L1 protein endocytosis. May be used as a potential cholesterol-lowering drug.
  • the candidate agent may be effective for cholesterol lowering. If the difference is not significant, the step can be repeated using another candidate substance for screening.
  • one of skill in the art can test a variety of candidate materials simultaneously, such as by using a multiwell plate or other high throughput method.
  • the present invention provides a preferred manner of determining the endocytosis of the NPC1L1 protein by ligating or ligating the tag protein to a suitable position on the NPC1L1 protein sequence (preferably the tagged protein is located in the 8th transmembrane region of the NPC1L1 protein and Between the 9 transmembrane regions;), the localization of the tagged proteins on the plasma membrane is identified to determine the localization of the NPC1L1 protein, thereby determining the extent of endocytic NPC1L1 protein in the cell vesicles.
  • the tagged proteins When most of the tagged proteins are located on the cell membrane, it indicates that NPC1L1 protein is localized on the plasma membrane, and the degree of endocytic NPC1L1 protein is small.
  • a small amount of tagged protein is located on the plasma membrane, it indicates that most of the NPC1L1 protein is localized. In the cell, the degree of endocytosis of the NPC1L1 protein by the cell
  • the NPC1L1 protein is linked to the tagged protein via a peptide bond. More preferably, the tagged protein is located between the 986th amino acid (Ser) and the 987th amino acid (Leu) on the NPC1L1 protein.
  • the selection of the tagged protein is known to those skilled in the art, and when used in the present invention, a tagged protein of 4-300 amino acids in length is preferred.
  • the tagged protein is selected from, but not limited to: one or several Myc tag proteins, one or several Flag tag proteins, one or several His6 tag proteins, one or several T7 tag proteins, one or several V5 tagged protein, one or several HA tagged proteins, one or several GST tagged proteins, and a mixture of several tags.
  • the tagged protein is selected from certain enzymes (but not limited to): luciferase, beta-gal enzyme. Most preferably, the tagged protein is a Myc tag protein (particularly 3 X Myc).
  • NPC1L1 protein When the NPC1L1 protein is linked to a tagged protein via a peptide bond, it constitutes a fusion protein.
  • a nucleic acid sequence encoding the fusion protein, a recombinant vector containing the nucleic acid sequence, and a host cell are included in the present invention, It can be used as a material to analyze the sublocalization of NPC1L1 protein in cells.
  • the cells there is no particular limitation on the cells to be used, as long as it is required to absorb cholesterol during growth or metabolism (for example, it requires cholesterol as a constituent of a biofilm; or cholesterol is required to synthesize an alcoholic hormone or a precursor of bile acid) And, it contains the NPC1L1 protein as well as the clathrin and/or AP2 complex.
  • the cell is a eukaryotic cell.
  • the cell is selected from the group consisting of: CRL-1601 (McArdle RH7777 rat liver cancer cell), L02 (; human liver cell line), HuH7 (; human liver cancer cell line), or HEK 293 cell, etc. .
  • the cell is a recombinant cell comprising an expression cassette in the genome, the expression cassette comprising: a coding gene and a reporter gene of the operably linked NPC1L1 protein.
  • the reporter gene is, for example, green fluorescent protein (GFP) or synergistic green fluorescent protein (EGFP), and their endogenous fluorescent groups can efficiently emit clear visible green light when excited by ultraviolet light or blue light. Intuitive and accurate for the localization and quantification of NPC1L1 protein.
  • GFP green fluorescent protein
  • EGFP synergistic green fluorescent protein
  • another method for screening potential cholesterol-lowering substances includes:
  • the candidate substance reduces the expression or activity of the clathrin and/or AP2 complex, it indicates that the candidate substance is a potential cholesterol lowering substance.
  • a control group may be provided, and the control group may not add the candidate.
  • the substance expresses the cells of the clathrain and/or AP2 complex.
  • the method further comprises: performing further cell experiments and/or animal tests on the obtained potential substances, selecting and determining substances useful for lowering cholesterol.
  • cholesterol lowering substances obtained by the screening method are also included in the present invention.
  • the present invention also provides a substance which inhibits or interferes with cell vesicle endocytosis of NPC1L1 protein, which is useful for preparing a drug useful for lowering cholesterol.
  • a substance which inhibits or interferes with cell vesicle endocytosis of the NPC1L1 protein can be used in the present invention as a potential cholesterol lowering substance.
  • the present invention also provides a substance which inhibits (or interferes with) the interaction (eg, binding) of clathrin and/or AP2 complex with NPC1L1 protein, which can be used for preparation for lowering A useful drug for cholesterol.
  • a substance which inhibits or interferes with the interaction of the clathrin and/or AP2 complex with the NPC1L1 protein reduces the stability of the clathrin and/or AP2 complex interaction with the NPC1L1 protein, and inhibits clathrin and/or AP2 complexes.
  • Substances that express, or inhibit transcription or translation of clathrin and/or AP2 complex-associated genes can be used in the present invention as potential cholesterol lowering substances. These initially screened materials can constitute a screening library so that one can ultimately screen out substances that can be useful for the prevention or treatment of high cholesterol-related diseases.
  • the present invention provides the use of ⁇ , ⁇ -dimethylacryloyl akanin for the preparation of a cholesterol-lowering drug. Further, the present invention provides a method of reducing intracellular cholesterol, the method comprising: inhibiting (or interfering with) a clathrin and/or a ⁇ 2 complex interacting with an NPC1L1 protein (eg, endocytosis, binding or binding;), Thereby preventing the absorption of cholesterol.
  • NPC1L1 protein eg, endocytosis, binding or binding;
  • NPC1L1 protein mediates cholesterol absorption via a clathrin-mediated endocytosis of NPC1L1 protein, which inhibits clathrin-mediated endocytosis of NPC1L1 protein and significantly inhibits cell-to-cholesterol absorb.
  • the NPC1L1 protein-binding cholesterol domain is identified and its function is elucidated, and a compound which binds to the domain can be screened to obtain a substance which inhibits cholesterol absorption activity.
  • the invention is further illustrated below in conjunction with specific embodiments. It is to be understood that the examples are merely illustrative of the invention and are not intended to limit the scope of the invention.
  • the experimental methods in the following examples which do not specify the specific conditions are usually carried out according to the conditions described in conventional conditions such as Sambrook et al., Molecular Cloning: Laboratory Guide (New York: Cold Spring Harbor Laboratory Press, 1989), or according to the manufacturer. The suggested conditions. Percentages and parts are by weight unless otherwise stated.
  • Horseradish peroxidase-conjugated donkey anti-mouse and anti-rabbit IgG obtained from the Jackson Immunological Research Laboratory.
  • Delipidated serum Obtained from newborn calf serum by ultracentrifugation.
  • the coding region of the human NPC1L1 protein is derived from 5 '-actggatccatggcggaggccggcctgagg-3 ' (SEQ ID NO:
  • Hekou 5 '-actggatccgaactgccgcccattgttggg-3 ' was used as a primer to obtain PCR amplification of human liver cDNA, and was inserted into the vector pEGFP-Nl (purchased from Clontech;) by bamHI single restriction site cloning. .
  • the access vector pDsRed-monomer-C l (purchased from Clontech) was cloned by EcoRI single restriction site.
  • CRL-1601 McArdle RH7777 rat liver cancer cells
  • L02 human hepatocyte cell line
  • HuH7 human hepatoma cell line
  • Single cell layer at 37 ° C and 5% CO 2 , cell growth In medium A (Dulbecco's modified Eagle's medium containing 100 units/ml penicillin and 100 g/ml streptomycin;) plus 10% FBS.
  • the cholesterol-depleting medium is medium A plus 5% delipidated serum (LPDS), 10 ⁇ of mevastatin (compactin), 50 ⁇ mevalonate and 1.5% cyclodextrin ( CDX).
  • the cholesterol-replenishing medium contains medium A plus 5% LPDS, 10 ⁇ M mevastatin, 50 ⁇ M mevalonate, and various concentrations of CDX-coated cholesterol.
  • the method of coating sterols with CDX has been reported (Brown, AJ et al. (2002), Cholesterol addition to ER membranes alters conformation of SCAP, the SREBP escort protein that regulates cholesterol metabolism. Mol. Cell 10, 237-245).
  • the cells were washed twice with PBS, and 1 mg/ml of biotin (sulfosuccinimidyl 6-(biotin amino) hexanoate) was added and labeled at 4 °C for 40 min.
  • Buffer A (20 mM Tris-HCl (pH 8.0) and 150 mM NaCl) was washed 2 times and then the cells were placed in buffer A for 15 min.
  • the cells were lysed in buffer B C10 mM Tris-HCl (pH 8.0), 150 mM NaCl and P 1% NP-40).
  • Add 100 ⁇ 50% (v/v) NeutrAvidin-Sepharose to each sample and combine overnight at 4 °C.
  • the agarose beads were washed 3 times with buffer B.
  • the agarose beads were then incubated in a loading buffer at 37 ° C for 30 min. Centrifuge the supernatant and take SDS-PAGE.
  • Double-stranded siRNA was synthesized by Genepharma. siRNA targeting rat clathrin heavy chain (CHC)
  • siRNA sequences targeting the rat ⁇ 2- ⁇ 2 subunit P Caveolin-1 were 5 '-aaggcatgaaggaatcacaga-3 ' (SEQ ID NO: 5) and 5 '-aagcaagtgtacgacgcgcac-3 ' (SEQ ID NO: 6), respectively.
  • siRNA targeting VSV-G see Song, BL (2007).
  • Ufdl is a cofactor of gp78 and plays a key role in cholesterol metabolism by regulating the stability of HMG-CoA reductase.
  • IP buffer 5 mM EGTA, 5 mM EDTA
  • the cells were subjected to relevant treatment, they were lysed in a binding IP buffer of CPBS, 1% NP-40, 5 mM EGTA, 5 mM EDTA).
  • the supernatant was centrifuged and mixed with agarose beads containing EGFP antibody, and incubated at 4 ° C for 2 hours to carry out immunoprecipitation.
  • the agarose beads were washed 5 times with the conjugate IP buffer, and the appropriate concentration of [ 3 H]-labeled cholesterol was added, and the final [ 3 H]-labeled cholesterol concentration was 10-400 nM, and the final volume was 100 ⁇ 1, dissolved in the binding. Buffer (PBS, 0.001% NP-40).
  • the cells are subjected to relevant treatment, and after trypsinization, they are blown into single cells. It was then incubated with Anti-Myc monoclonal antibody IgG-9E10 for 30 minutes on ice and washed twice with PBS. After incubation for 30 minutes with Anti-mouse IgG fluorescent secondary antibody, wash twice with PBS. Analysis was performed using a BD LSR II SORP flow cytometer. Among them, Anti-Myc monoclonal antibody IgG-9E10 was purchased from Roche, and Anti-mouse IgG fluorescent secondary antibody was purchased from Invitrogen.
  • Example 1 Cholesterol regulates the transport of NPCILI protein between the endocytic circulation (ERC) and the plasma membrane.
  • the pEGFP-N1 vector containing the NPC1L1 protein coding region was transfected into the rat liver cell line CRL1601 to obtain a stable expression of NPCILI-EGFP.
  • the stable expression strain was named CRL1601/NPC1L1 -EGFP.
  • FIG. 1A The process of treating CRL1601/NPC1L1 -EGFP cells is shown in Figure 1A.
  • Cells were cultured in cholesterol (Choi)-deficient medium at -60 min, the medium was removed in Omin, and the cells were cultured in Choi-Supplement medium until the first 120min. That is, CDX is first used to reduce intracellular cholesterol, and then the cells are given CDX-coated cholesterol.
  • NPC 1L1 protein is mainly located in the region adjacent to the nucleus.
  • the NPC1L1 protein is transported to the plasma membrane when cholesterol is reduced (Fig. 1B, time from -60 to 0 min). When you hand it to cholesterol.
  • the NPC1L1 protein is then endocytosed into the cell and eventually localized to ERC (Fig. 1B, time from 30 to 120 min).
  • the location of the NPCILI protein on the plasma membrane is shown in Figure 1 C.
  • CRL-1601/NPC 1L1-EGFP cells were treated as shown in Figure 1A, and cytoplasmic membrane proteins were labeled at different time points.
  • the above phenomenon is confirmed by the method of labeling the plasma membrane protein with biotin, as shown in Fig. 1D.
  • NPC1L1 protein is essential for the absorption of free cholesterol
  • the present inventors transfected the pEGFP-N1 vector containing the NPC1L1 protein coding region into HEK293T cells, and transiently expressed NPC1 U-EGFP in HE 293T cells.
  • the localization of NPC1L1-EGFP was also found to be regulated, and cells overexpressing NPC1 L1-EGFP absorbed more cholesterol than the control cells (Fig. 3C).
  • RNAi can effectively reduce the expression of NPC1 L1 protein in cells. It was found that when the expression of NPC1 L1 protein was lowered, cholesterol intake was also reduced by about 60% (Fig. 2D-E). A similar effect was obtained in Huh7 cells.
  • Example 3 Deletion of clathrin/AP2 reduces endocytosis and cholesterol uptake of NPC1L1 protein
  • NPC1 L1 protein-specific bands were identified by tandem mass spectrometry.
  • One of the proteins is the ⁇ 2 subunit of the AP2 complex.
  • the ⁇ 2 complex is composed of ⁇ , ⁇ 2, ⁇ 2 and ⁇ 2, and its function is that the binding protein enters the vesicles coated with clathrin to participate in endocytosis.
  • the results of mass spectrometry were confirmed by immunoprecipitation, indicating that NPC1 L1-EGFP, ⁇ 2 and CHC are in the same complex, see Figure 4.
  • RNAi method to reduce the expression of endogenous ⁇ 2 and CHC, and Western blot to verify RNAi.
  • RNAi ⁇ 2 and CHC Interference efficiency (Figure 5A). RNAi ⁇ 2 and CHC inhibited endocytosis of transferrin (TnR), indicating that RNAi is effective (Fig. 6B).
  • RNAi silencing reduces endogenous expression of Caveolin-1 without affecting endocytosis of NPC1L1 protein and cholesterol
  • Example 4 Ezetimibe inhibits NPC1L1 protein and cholesterol endocytosis
  • Ezetimibe is a potent inhibitor of cholesterol absorption and has been recognized for clinical treatment of hypercholesterolemia. It is also known that the NPC1L1 protein binds to Ezetimibe. However, how Ezetimibe inhibits the absorption of cholesterol by NPC1L1 protein is not clear.
  • the present inventors used CDX to lower intracellular cholesterol to localize the NPC1L1 protein to the plasma membrane, and then treated the cells with different concentrations of drugs (Ezetimibe or U18666A) to deliver cholesterol to the cells (Fig. 8A). It was found that as the concentration of Ezetimibe increased, endocytosis of NPC1L1 protein was inhibited and cholesterol intake was also reduced (Fig. 8B, C). Ul 8666 A is a drug that affects LDL-derived cholesterol transport, and its target may be NPC 1, which does not affect endocytosis of NPC 1L1 protein.
  • Ezetimibe inhibits endocytosis and cholesterol uptake of NPC1L1 protein by inhibiting entry of NPC 1L1 protein into clathrin-coated vesicles.
  • NPC1L1 protein - domain amino acids 18-260
  • bind cholesterol, cholesterol absorption is critical
  • the inventors purified the human full-length NPC1L1 protein with EGFP at the carboxy terminus from the CRL1601/NPC1L1-EGFP cells by immunoprecipitation (GenBank accession number: FJ4811 11), and then added the marker. After cholesterol, NPC1L1 protein was detected to bind [ 3 H] cholesterol. As shown in Figure 9A, the binding of NPC1L1 protein to [ 3 H] cholesterol increased with the increase of [ 3 H] cholesterol. The saturation curve, which indicates that the NPCILI protein specifically binds to cholesterol molecules.
  • the present invention employs a conventional method NPC1L1 NH 2 terminal region of the protein (amino acids 18-260) of deletion, deletion of amino acids 18-260 found to significantly affect the ability of cholesterol NPC1L1 protein binding, suggesting that the protein of 18-NPC1L1 NH 2 terminal region of The 260 amino acid is the cholesterol binding domain (Fig. 9B).
  • NH 2 terminal domain of amino acids 18-260 of influence cholesterol absorption in rat liver in CRL-1601 cells were transiently transfected with the expression of human NPC1L1-EGFP protein, or NH 2 - terminal amino acid deletions 18-260 Human NPC1L1-EGFP protein was fixed at different time points, filipin staining, and observed with a two-photon confocal microscope.
  • the present inventors contemplate that if a compound is found to compete with the binding of NPC1L1 protein to cholesterol, it can inhibit cholesterol absorption. According to this hypothesis, the inventors found that 25-hydroxy cholesterol (structure shown in Figure 1OA), able to compete [3 H] cholesterol-binding protein labeled with NPCILI (FIG. 10B).
  • CRL-1601/NPC1L1-EGFP cells were treated with 25-hydroxycholesterol, fixed at different time points, stained and observed by two-photon confocal microscopy, and quantified by intracellular cholesterol content and localization of intracellular NPC1L1 protein. Analysis revealed that 25-hydroxycholesterol significantly inhibited the absorption of cholesterol and endocytosis of the NPC1L1 protein (Fig. 10C;).
  • the compound 25-hydroxycholesterol can inhibit the uptake of cholesterol by cells by competing for the binding of cholesterol to NPC1L1.
  • NH 2 NPC1L1 protein - domain amino acids 18-260
  • 25-hydroxy cholesterol and the like may be used as a new cholesterol absorption inhibitors.
  • Example 7 NPC1L1 still has normal physiological functions after insertion of 3 X Myc at positions 986 and 987 of the NPC1L1 amino acid sequence.
  • NPClLl/S986-3 X Myc-L987 was mainly located in the region adjacent to the nucleus (Fig. 11B, -60 min).
  • Fig. 12B, Omin When cells were treated with 1.5% cyclodextrin for 1 hour (Fig. 12B, Omin), the cellular cholesterol level was lowered and the NPClL1/S986-3 X Myc-L987 protein was transported to the plasma membrane.
  • the cells are given a cyclized dextrin package After 1 hour of cholesterol, NPC1L1/S986-3 X Myc-L987 was endocytosed into the cytoplasm and localized to ERC (Fig. 12B, 60 min;). This cycle is consistent with wild-type NPC1L1.
  • NPC1L1/S986-3 X Myc-L987 was able to carry large amounts of cholesterol into cells in the absence of Ezetimibe. Under the conditions of ⁇ Ezetimibe treatment, NPC1L1/S986-3 X Myc-L987 was partially endocytosed into cytoplasm and cholesterol was partially absorbed. However, when cells were treated with 40 ⁇ Ezetimibe, NPC1L1/S986-3 X Myc-L987 was completely inhibited on the plasma membrane, and cholesterol could not be endocytosed into cells.
  • NPClLl/S986-3 X Myc-L987 exhibits the same properties as wild-type NPC1L1, ie, intracellular cholesterol levels regulate the cyclic transport of NPC1L1 protein between the plasma membrane and the endocytic cycle, which is mediated by this protein.
  • the absorption of cholesterol, and the absorption process can be specifically inhibited by Ezetimibe.
  • the cell used in this example was CRL1601 and transfected into the pEGFP-N1 plasmid containing the NPC1L1/S986-3 X Myc-L987 expression cassette by transient transfection.
  • Example 8 Analysis of NPC1L1 Localization in Cells by Immunohistochemistry and Flow Cytometry According to the inventors' study of the NPC1L1 topology, the inventors believe that when NPClL1/S986-3 xMyc-L987 protein is transported to the plasma membrane When the 3 xMyc tag is exposed to the extracellular matrix.
  • the cells are not permeable (impermeable means that the cell membrane is not permeable, under such conditions, small external molecules (such as antibodies) cannot enter the cell, the antibody only marks NPC1L1 on the surface of the cell membrane, and can not label NPC1L1 in the cell)
  • Anti-Myc antibody incubation only NPClLl / S986-3 xMyc-L987 on the cell membrane can be detected by Myc antibody, so this feature can be used to label NPC1L1 on the cell membrane.
  • the inventors transfected the rat liver cell line CRL1601 with the pEGFP-N1 vector containing the NPClL1/S986-3 X Myc-L987 protein coding cassette to obtain stable expression of NPC1L1/S986-3 X.
  • the cell line of Myc-L987-EGFP was named CRL1601/NPC1L1/S986-3 X Myc-L987-EGFP.
  • Examples 7 to 8 show that the inventors constructed a novel NPC1L1 protein expression plasmid with a 3 X Myc tag, and when the expressed NPC1L1 is localized on the cell membrane, the 3 X Myc tag is exposed to the extracellular matrix.
  • the inventors labeled the NPC1L1 protein on the membrane by immunohistochemistry, and the subcellular localization of NPC1L1 was also easily identified by flow cytometry. Therefore, the inventors succeeded in creating a new method for analyzing the subcellular localization of NPC1L1, which enables rapid and easy identification of the localization of NPC1L1 in cells.
  • the establishment of this method laid the foundation for high-throughput analysis of NPC1L1 localization in cells.
  • Example 9 Drug screening method
  • the screening method is as follows:
  • the cells were treated with CDX to reduce intracellular cholesterol, and the NPC1L1 protein was localized to the cell membrane; the cells were treated with the candidate drug for one hour;
  • the present inventors have found a compound which inhibits endocytosis of NPC1L1 protein in more than 180 compounds originally screened: ⁇ , ⁇ -dimethylacryloyl akanin ( ⁇ , ⁇ -DIMETHYLACRYL ALKANNIN, C6X Fig. 13 ⁇ - ⁇ ) ⁇
  • the screening method is as follows:
  • the cell used in this screening method is CRL1601, which is transfected into the ⁇ 2 - domain containing the NPC1L1 protein.
  • Test group NPC1L1 (18-260 EGFP protein, in which candidate substances were added;
  • Control group NPC1L1 (18-260 EGFP protein, in which no candidate substance was added.
  • the binding of [ 3 H]-labeled cholesterol to the NH 2 -terminal domain of NPC1L1 protein (18-260 amino acids) was detected in the two groups.
  • the binding amount of cholesterol to the NH 2 terminal domain of NPC1L1 protein was significantly lower in the test group.
  • the control group [3 H] binding amount (lower than 30%) NH cholesterol NPCILI protein labeled 2-terminal domain, then the candidate substance is a cholesterol-lowering substance.
  • Ezetimibe inhibits the absorption of cholesterol by inhibiting endocytosis of the NPC1L1 protein. Its molecular mechanism is that Ezetimib e affects the entry of NPC 1 L 1 protein into clathrin-coated vesicles. Interestingly, Ezetimib e does not affect endocytosis of transferrin and LDL. These results indicate that Ezetimibe is a potent and specific inhibitor of the NPC1L1 protein. However, it is not known how Ezetimibe affects the entry of NPC1L1 protein into clathrin-coated vesicles.
  • the NPC1L1 protein contains a sterol receptor domain.
  • Six proteins in the human genome contain this domain: HMGCR, SCAP, NPC1, Patched, TRC8, and NPC1L1. It can be speculated that the sterol receptor domain of the NPCILI protein may directly bind to cholesterol, and conformationally changes to the clathrin/AP2 complex to cause endocytosis. Ezetimibe may compete for the binding of cholesterol to the NPC1L1 protein.
  • Ezetimib affects the conformation of the NPC1L1 protein and causes cholesterol to fail to promote binding of the NPC1L1 protein to the clathrin/AP2 complex. Ezetimibe may also affect the distribution of cholesterol around the NPC1L1 protein leading to inhibition of endocytosis of the NPC1L1 protein.
  • Ezetimibe is the only drug on the market that inhibits cholesterol absorption compared to drugs that inhibit cholesterol synthesis (eg, statins). Differences in Ezetimibe are different for different individuals due to differences in individual genotypes. Therefore, it is particularly important to find more cholesterol absorption inhibitors.
  • the work of the present inventors revealed the molecular mechanism of cholesterol absorption, which can lay a biological foundation for screening new drugs.
  • the system established by the present inventors to observe the subcellular localization of NPC1L1 protein can be used to screen for inhibitors of NPC1L1 protein endocytosis, and these inhibitors have the possibility of inhibiting cholesterol absorption drugs.
  • the exchange of cells from the outside is mainly through four ways: free diffusion, assisted diffusion, active transport and endocytosis and exocytosis.
  • free diffusion is hydrophobic and simple small molecules directly through the cytoplasmic membrane phospholipid bilayer, this process does not require protein involvement;
  • assisted diffusion is a channel protein-mediated small molecule on the plasma membrane from a high concentration side to a low one Side, such as ion channels;
  • active transport requires energy consumption, which is also protein-mediated, such as ion pump;
  • endocytosis is the exchange of substances mediated by invagination of the plasma membrane, including phagocytosis and pinocytosis, Includes clathrin-mediated endocytosis, caveolin-mediated endocytosis and other unknown forms of endocytosis.
  • the mediators that facilitate diffusion and active transport are channel proteins, which are characterized by the fact that such proteins are monomers or multimers that form channels in the cell membrane, allowing substances to enter and exit the cell membrane directly. These substances are mostly small molecules such as water, glucose and amino acids. Wait. Endocytosis is mediated through receptors on the cell membrane.
  • the LDL receptor is a common molecular receptor for cholesterol transport and endocytosis and is characterized by a transmembrane membrane protein. its The extracellular domain can bind to LDL or VLDL and then endocytosis by recruiting endocytosis-related proteins through some special motifs in the cytoplasm.
  • NPC1L1 it contains about 13 transmembrane regions, and NPC1L1 promotes the absorption of monomolecular cholesterol, so NPC1L1 and LDL receptors are very different in terms of topology and ligand, so usually People do not think that the function of NPC1L1 is similar to that of LDL receptors.
  • NPC1 is a highly homologous protein (50% homology) to NPC1L1, and its topology is very similar to that of NPC1L1. NPC1 plays a key role in the transport of cholesterol from the lysosomes (endoplasmic reticulum and plasma membrane).
  • NPC1L1 may be a molecular pump that promotes the absorption of cholesterol by pumping cholesterol into the cells.
  • NPC1L1 is a molecular pump
  • free monomolecular cholesterol will be the most effective substrate in both human and cell culture.
  • cholesterol must form a micelle with bile acid to be effectively absorbed, and cholesterol coated with CDX in cell culture is more easily absorbed by NPC1L1 than free cholesterol;
  • NPC1L1 is a molecular pump, then when the cell is given In cholesterol, it should be seen that cholesterol first enters the cell, but the inventors have seen that NPC1L1 and cholesterol enter the cell at the same time; finally, if NPC1L1 is a molecular pump, whether it is a microfilament inhibitor or a silent clathrin to reduce NPC1L1 Endocytosis will increase the absorption of cholesterol, but the inventors have seen that cholesterol absorption is also suppressed.
  • NPC1L1 is a molecular pump
  • NPC1L1-mediated cholesterol absorption is similar to LDL receptor endocytosis.
  • the molecular pump substrate in the in vitro experiment of NPC1 is fatty acid rather than the substrate cholesterol under physiological conditions, which indicates that NPC1 transports cholesterol in the body in a way that is not like a molecular pump, and is free.
  • Single-molecule cholesterol is toxic to cells. If NPC1 or NPC1L1 directly pumps free monomolecular cholesterol into the cytoplasm, it is very detrimental to cell health.
  • NPC1L1 is similar to a cholesterol receptor, and NPC1L1 absorbs cholesterol by vesicle endocytosis.
  • NPC1L1 is a cholesterol receptor rather than a cholesterol channel, nor does it explain how cholesterol is absorbed when the NPC1L1 protein is localized in the cell membrane.
  • a specific scheme for screening a cholesterol-lowering drug using the NPC1L1 protein as a target has not been proposed in the prior art.
  • the present invention discloses for the first time the screening of potential cholesterol-lowering substances from the function of the NPC1L1 protein, which is more reliable than in vitro binding experiments.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Veterinary Medicine (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Food Science & Technology (AREA)
  • Obesity (AREA)
  • Endocrinology (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Diabetes (AREA)
  • General Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Pathology (AREA)

Description

基于分析 NPCILI蛋白亚细胞定位变化
筛选降胆固醇新药的方法
技术领域
本发明属于细胞生物学以及药物学领域, 更具体地, 本发明涉及基于分析 NPC1L1 蛋白亚细胞定位变化筛选降胆固醇新药的方法; 同时, 本发明鉴定了 NPC1L1蛋白中结 合胆固醇的结构域, 也可以筛选结合该结构域的化合物从而得到抑制胆固醇吸收的物 质。 背景技术
胆固醇是生物膜的重要组成成分, 也是合成 醇类激素和胆汁酸的前体。 胆固醇过 多的摄入会导致很多疾病, 其中最常见和最严重的是动脉粥样硬化和冠心病。 哺乳动物 获得胆固醇的途径主要有两条: 从头合成和从食物中吸收。 胆固醇生物合成的主要分子 机制已经被阐明, 但是对于胆固醇的吸收, 细胞分子水平的研究并不多。
Nieman-Pick CI Like 1 (NPCILI) 最近被报道在胆固醇吸收过程中起着重要的作用 (Altmann, S.W.等 (2004), Niemann-Pick CI Like 1 protein is critical for intestinal cholesterol absorption. Science 303 , 1201-1204)。 NPCILI在人和小鼠的小肠中都有很高 的表达, 在人中, 肝脏也有很高表达。 NPC1L1敲除的小鼠从食物中吸收胆固醇的能力 大大下降。 除了介导小肠胆固醇吸收外, NPC1L1还介导肝脏胆固醇重吸收, 肝脏过表 达 NPC1L1的转基因小鼠比正常小鼠的胆汁和粪便中的胆固醇下降。
A NPC1L1蛋白含有 1332个氨基酸,构成 13个跨膜区段 (Wang, J.等 (2009), Membrane topology of human NPCILI, a key protein in enterohepatic cholesterol absorption. J Lipid Res, Epub ahead of print) 0 NPCILI的第 3-7区段含有甾醇感受结构域, 在受甾醇调节的 NPCK HMGCR、 和 SCAP蛋白中也含有此结构域。 关于 NPC1L1蛋白的亚细胞定位一 直存在争议。
Ezetimibe (市场名 Zetia) 可以减少胆固醇吸收, 并被用来临床治疗高胆固醇血症。 但是 Ezetimibe抑制 NPC 1L1蛋白介导胆固醇的吸收的药物机理一直不清楚。
因此, 尽管本领域已知 NPC1L1 蛋白与胆固醇的吸收相关, 然而并不清楚 NPC1L1 蛋白介导的胆固醇吸收的机制, 相关药物的研究和开发受到限制。 发明内容
本发明的目的在于提供一种筛选降胆固醇物质的方法。
本发明的目的在于提供通过所述筛选方法获得的降胆固醇的物质。 在本发明的第一方面, 提供一种筛选潜在的降胆固醇物质的方法, 所述方法包括: (1) 用胆固醇处理表达 NPC1L1蛋白的细胞, 并确定细胞囊泡 (一般又称为膜泡)内吞 NPC1L1蛋白的程度;
(2) 在候选物质存在下, 如(1)所述处理表达 NPC1L1 蛋白的细胞, 再次确定囊泡内 吞 NPC1L1蛋白的程度; 和
(3) 比较 (1)和 (2)中囊泡内吞 NPC1L1蛋白的差异;
其中, 如果 (2)中囊泡内吞 NPC1L1蛋白的程度在统计学上低于 (优选显著低于, 如低
20%, 较佳地低 40%; 更佳地低 60%或更低)(1) 中囊泡内吞 NPC1L1蛋白的程度, 则所 述候选物质是潜在的降胆固醇物质。
在一个优选例中, 所述的囊泡内吞主要是笼型蛋白 (clathrin)介导的内吞。
在另一优选例中, 所述的 NPC1L1 蛋白含有 GenBank登录号 FJ481111 中第 18-260 位的氨基酸序列, 该区域是胆固醇的结合结构域。
在另一优选例中, (1)或 (2)中, 所述的表达 NPC1L1蛋白的细胞在胆固醇处理前预先 经过降胆固醇处理。
在另一优选例中, 所述的降低胆固醇处理是指使细胞内胆固醇的量低于正常水平, 从而 NPC1L1蛋白被转运到细胞膜区域。
在另一优选例中, (1)或 (2)中, 还包括: 确定细胞中笼型蛋白与 NPC1L1蛋白的结合 程度; 并且, (3)中, 还包括: 比较 (1)和 (2)中笼形蛋白与 NPC1L1蛋白的结合程度; 其中,如果 (2)中笼型蛋白与 NPC1L1蛋白的结合程度在统计学上低于 (优选显著低于, 如低 20%, 较佳地低 40%; 更佳地低 60%或更低) (1) 中笼型蛋白与 NPC1L1蛋白的结 合程度, 则所述候选物质是潜在的降胆固醇物质。
在另一优选例中, (1)或 (2)中, 还包括: 确定细胞中 AP2复合体相关蛋白与 NPC1L1 蛋白的结合程度; 并且, (3)中, 还包括: 比较 (1)和 (2)中 AP2复合体相关蛋白与 NPC1L1 蛋白的结合程度;
其中,如果 (2)中 AP2复合体相关蛋白与 NPC1L1蛋白的结合程度在统计学上低于 (优 选显著低于, 如低 20%, 较佳地低 40%; 更佳地低 60%或更低)(1) 中 AP2复合体相关 蛋白与 NPC1L1蛋白的结合程度, 则所述候选物质是潜在的降胆固醇物质。
在另一优选例中, 所述的 AP2复合体相关蛋白选自: μ 2、 σ 2, β 2或 α亚基。 更 佳的, 所述的 ΑΡ2复合体相关蛋白是 μ 2亚基。
在另一优选例中, 所述的细胞是重组细胞, 其基因组中含有表达盒, 所述表达盒含 有: 可操作性连接的 NPC1L1蛋白的编码基因和报告基因。
在另一优选例中, 所述的报告基因是 GFP或 EGFP。
在另一优选例中, 所述的细胞是真核细胞。
在另一优选例中, 通过计量内吞小泡的数量、 内吞的 NPC1L1蛋白和 /或胆固醇的量 确定细胞囊泡内吞 NPC1L1蛋白的程度; 或者,通过计量细胞膜上 NPC1L1蛋白和 /或胆 固醇的量 (如发生了内吞, 则细胞膜上 NPC1L1 蛋白和 /或胆固醇的量减少) 确定细胞囊 泡内吞 NPC1L1蛋白的程度。 在另一优选例中, 通过荧光标记或染色的方法来进行定位或定量。
在另一优选例中, 所述的 NPC1L1蛋白是一种融合蛋白, 其包含 NPC1L1蛋白与标 签蛋白, 且所述的标签蛋白位于 NPC1L1蛋白的胞外区域 (或囊泡内侧;)。
在另一优选例中, 所述的标签蛋白位于 NPC1L1蛋白的第 8跨膜区与第 9跨膜区之 间。
在另一优选例中, NPC1L1蛋白与标签蛋白通过肽键相连接。
在另一优选例中, 所述的 NPC1L1蛋白是全长的人 NPC1L1蛋白, 且所述的标签蛋 白位于 NPC1L1蛋白上第 986位氨基酸 (Ser)与第 987位氨基酸 (Leu)之间。
在另一优选例中, 所述的 NPC1L1蛋白的氨基酸序列如 GenBank登录号 FJ481 111 所示。
在另一优选例中, 所述的标签蛋白选自 (但不限于): 一个或数个 Myc标签蛋白 (优选 3 X Myc), 一个或数个 Flag标签蛋白, 一个或数个 His6标签蛋白, 一个或数个 T7标签 蛋白, 一个或数个 V5标签蛋白, 一个或数个 HA标签蛋白, 一个或数个 GST标签蛋白, 或几个标签蛋白的混合使用。
在另一优选例中, 所述的标签蛋白选自 (但不限于): 荧光素酶, β -gal酶。
在另一优选例中, 通过鉴定细胞标签蛋白的定位来确定 NPC1L1 蛋白的定位, 进而 确定细胞囊泡内吞 NPC1L1蛋白的程度。
在另一优选例中, 当标签蛋白大部分定位在细胞膜上, 则 NPC1L1蛋白也大量定位 细胞膜上, 细胞囊泡内吞 NPC1L1蛋白的程度低; 当标签蛋白少部分定位在细胞膜上, 则 NPC1L1蛋白大量定位在细胞内, 细胞囊泡内吞 NPC1L1蛋白的程度高。
在另一优选例中, 所述通过鉴定细胞标签蛋白的定位来确定 NPC1L1蛋白的定位, 进而确定细胞囊泡内吞 NPC1L1蛋白的程度的方法包括:
(1) 在不通透细胞的情况下, 标记 (优选利用免疫组化的方法 M立于细胞膜上的标签蛋 白;
(2) 在通透细胞的情况下, 标记 (优选利用免疫组化的方法;)全细胞的标签蛋白;
(3) 分析或计算 (1)中细胞膜上标签蛋白占 (2)中全细胞标签蛋白的百分比; 如细胞膜 上的标签蛋白所占百分比在统计学上明显增加 (优选明显增加 20%以上, 更优选明显增 加 40%以上, 进一步优选明显增加 60%以上), 则 NPC1L1蛋白定位在细胞膜上的比例 明显增加, 进而表明细胞囊泡内吞 NPC1L1蛋白的程度明显降低。
在另一优选例中, 细胞膜上标签蛋白或全细胞标签蛋白的观察或分析定量可利用荧 光显微镜或利用流式细胞仪。
在另一优选例中, 采用去垢剂处理不通透的细胞, 形成通透的细胞。
在另一优选例中, 所述的方法还包括: 对获得的潜在物质进行进一步的细胞实验和 / 或动物试验, 选择和确定对于降胆固醇有用的物质。
在本发明的第二方面, 提供一种筛选潜在的降胆固醇物质的方法, 所述方法包括: (a) 用候选物质处理表达介导 NPC1L1内吞的蛋白的细胞;
(b) 检测所述细胞中所述蛋白的表达或活性;
其中, 若所述候选物质可降低所述蛋白的表达或活性, 则表明该候选物质是潜在的 降胆固醇物质。
在另一优选例中, 步骤(a)包括: 在测试组中, 将候选物质加入到表达介导 NPC1L1 内吞的蛋白的细胞中; 和 /或
步骤 (b)包括: 检测测试组的细胞中所述蛋白的表达或活性, 并与对照组比较, 其 中所述的对照组是不添加所述候选物质的表达所述蛋白的细胞;
如果测试组中所述蛋白的表达或活性在统计学上低于 (优选显著低于, 如低 20%, 较 佳地低 40%; 更佳地低 60%或更低)对照组, 就表明该候选物是潜在的降胆固醇物质。
在另一优选例中, 所述的介导 NPC1L1内吞的蛋白是笼形蛋白和 /或 AP2复合体。 在本发明的第三方面, 提供一种抑制 NPC1L1 蛋白内吞的物质在制备降胆固醇药物 中的用途。
在另一优选例中,所述抑制 NPC1L1蛋白内吞的物质是抑制笼形蛋白和 /或 AP2复合 体与 NPC1L1蛋白相互作用的物质。
在另一优选例中, 所述物质是 β , β -二甲基丙烯酰阿卡宁或 25-羟胆固醇。
另一方面, 还提供一种降低细胞内胆固醇的方法, 所述方法包括: 抑制 (或干扰)笼形 蛋白和 /或 ΑΡ2复合体与 NPC1L1蛋白相互作用。
另一方面, 还提供一种筛选潜在的降胆固醇物质的方法, 所述方法包括:
(1) 用胆固醇与 NPC1L1 蛋白的 ΝΗ2端结构域接触, 检测胆固醇与 NPC1L1 蛋白的
ΝΗ2端结构域的结合情况;
(2) 用胆固醇与 NPC1L1 蛋白的 ΝΗ2端结构域接触, 并加入候选物质, 检测胆固醇 与 NPC1L1蛋白的 ΝΗ2端结构域的结合情况;
其中,如 (2)中胆固醇与 NPC1L1蛋白的 ΝΗ2端结构域的结合强度显著弱于 (优选结合 强度明显弱 20%以上, 更优选明显弱 40%以上, 进一步优选明显弱 60%以上) 或结合量 显著低于 (优选结合量明显低 20%以上,更优选明显低 40%以上,进一步优选明显低 60% 以上)(1)中胆固醇与 NPC1L1蛋白的 ΝΗ2端结构域的结合强度或结合量, 则所述候选物 质是潜在的降胆固醇物质。 也即, 如所述候选物质能够竞争胆固醇与 NPC1L1 蛋白的 ΝΗ2端结构域的结合, 则所述候选物质是潜在的降胆固醇物质。
另一方面, 还提供一种筛选潜在的降胆固醇物质的方法, 所述方法包括: 将候选物 质与 NPC1L1蛋白的 ΝΗ2端结构域接触, 检测候选物质与 NPC1L1蛋白的 ΝΗ2端结构 域的结合情况; 如候选物质与 NPC1L1蛋白的 ΝΗ2端结构域发生特异结合, 则所述候选 物质是潜在的降胆固醇物质。
在另一优选例中, 所述的 NPC1L1 蛋白的 ΝΗ2端结构域含有 GenBank 登录号 FJ481 111所示序列中第 18-260位氨基酸。 另一方面, 提供采用如所述的筛选方法筛选获得的物质。
在另一优选例中, 所述的物质是 25-羟胆固醇或 27-羟胆固醇。
另一方面, 还提供一种融合蛋白, 所述蛋白包含 NPC1L1 蛋白与标签蛋白, 且所述 的标签蛋白位于 NPC1L1蛋白的胞外区域 (或囊泡内侧;)。
在另一优选例中, 标签蛋白位于 NPC1L1蛋白的第 8跨膜区与第 9跨膜区之间。 另一方面, 还提供一种核酸序列, 所述的核酸序列编码所述的融合蛋白。
另一方面, 还提供一种重组载体, 所述的重组载体含有所述的核酸序列。
在另一优选例中, 所述的载体以 pEGFP-Nl载体为基础, 其中含有所述的核酸序列。 另一方面, 还提供一种宿主细胞, 所述的宿主细胞含有所述的重组载体, 或其基因 组中整合有所述的核酸序列。
在另一优选例中, 所述的宿主细胞是大鼠肝癌细胞。
另一方面, 还提供所述的宿主细胞的用途, 用于分析 NPC1L1蛋白的细胞亚定位。 附图说明
图 1. 细胞内的胆固醇水平调节 NPC1L1蛋白在细胞质膜和内吞循环体之间的循环转 运。
A. 处理细胞的流程示意图: 在 -60 分钟, 用环化糊精 (CDX)减少细胞内的胆固醇; 然后再在 0分钟递给细胞 CDX包被的胆固醇。
B. CRL-1601/NPC1L1 -EGFP细胞做 A中所示的处理, 在不同的时间点固定, 并用 共聚焦显微镜观察荧光定位。 Bar, 10 μιη。
C. 对 B中的细胞荧光定量质膜定位的 NPC1L1的量。 误差线: 标准差。
D和 E. CRL-1601/NPC 1L1 -EGFP(D)和 L02细胞 (E)做 A中所示处理, 在不同的时间 点标记细胞质膜蛋白, SDS-PAGE分析。 TnR, 转铁蛋白受体。
图 2. NPC1L1蛋白是细胞吸收胆固醇所必需。
A. CRL-1601和 CRL- 1601/NPC 1L1 -EGFP细胞做图 1A中所示的处理, 在不同的时 间点固定, Filipin染色, 并用双光子共聚焦观察荧光定位。 Bar, 10 μιη。
Β. 对 Α中的细胞荧光定量质膜定位的 NPC 1L1的量。 误差线: 标准差。
C. 在 L02细胞中用反转录病毒介导的 RNAi降低 NPC1L1的表达。 图示为 western blot结果。
D. CDX处理 L02细胞 60分钟, 用 15 g/ml CDX包被的胆固醇处理细胞。 在不同 的时间点固定, Filipin染色, 并用双光子共聚焦显微镜比较 NPC1L1降低的细胞和对照 细胞的荧光强度。 Bar, 10 μιη。 DIC表示明场视野。
E. 对 D中的细胞荧光定量质膜定位的 NPC1L1的量。 误差线: 标准差。
图 3. 过量表达 NPC 1L1蛋白增加细胞对胆固醇吸收。
A. CDX处理细胞后, 递给 CRL1601细胞和 CRL1601/NPC1L1 -EGFP细胞不同浓度 的胆固醇 1小时后, 封片, Filipin染色, 双光子共聚焦显微镜观察; Bar, 10 μιη。
Β. Α中细胞荧光定量; 误差线: 标准差。
C. HEK293T细胞转染 NPCILI -EGFP质粒。 24小时后用 A中方法处理细胞, 固定, 封片, 染色。 Bar, 10 μιη。
图 4. ΑΡ2复合体中 μ2亚基作为 NPC1L1的结合蛋白的鉴定。
Α. 用偶联抗 EGFP抗体的琼脂糖做免疫共沉淀, 得到的蛋白用 SDS-PAGE分离, 银 染;
Β. 免疫共沉淀 CCoIP)验证 NPC1L1与 μ2的结合。
图 5. 缺失笼形蛋白 /ΑΡ2降低 NPC1L1蛋白的内吞和胆固醇摄取。
A. Western Blot验证 RNAi效率。
B. CRL-1601/NPC1L1 -EGFP细胞做图 6A中所示的处理, 在不同的时间点固定、 染 色并用双光子共聚焦观察荧光定位。 Bar, 10 μιη。
C. 对 B中的细胞荧光定量胞内定位的 NPCILI和胆固醇的量。 误差线: 标准差。 图 6.siRNA 介导的笼型蛋白或者 μ2亚基的基因干扰抑制 NPCILI蛋白的内吞和胆固 醇的细胞吸收, 且呈胆固醇浓度依赖性。
A. 处理细胞的示意图。
B. 检测 RNAi CHC和 μ 2对转铁蛋白内吞影响, 显示 RNAi效率。
C. 生物素标记细胞膜蛋白实验验证笼型蛋白对 NPC1L1蛋白内吞的必要性。
D. 笼型蛋白和 μ2亚基对 NPC1L1 蛋白介导胆固醇吸收必须, 且呈胆固醇浓度依赖 性。
E. D中细胞的荧光定量结果; 误差线: 标准差。
图 7. RNAi沉默 caveolin-1不影响 NPC1L1蛋白内吞和胆固醇吸收。
A. Western Blot显示 RNAi效率。
B. 对细胞做图 6A中处理; Bar, 10 μιη。
C. B中细胞的荧光定量结果; 误差线: 标准差。
图 8. Ezetimibe通过影响 NPC1L1蛋白进入笼形蛋白包被的小泡抑制 NPC1L1蛋白和 胆固醇内吞。
A. 处理细胞的流程示意图: 细胞在含有环化糊精的培养基中处理 60min。 然后在培 养基 A (含有 5%LPDS, 10 μΜ compactin, 50 μΜ 甲羟戊酸)加上 Ezetimibe。 60min后, CDX包被胆固醇的胆固醇直接加入。 在不同的时间点固定, 染色。
B. CRL-1601/NPC1L1 -EGFP细胞做 A中所示的处理, 在加入胆固醇 60min后固定、 染色, 并用双光子共聚焦显微镜观察荧光定位。 Bar, 10 μιη。
C. 对 B中的细胞荧光定量胞内定位的 NPCILI蛋白和胆固醇的量。误差线:标准差。 D和 F. CRL-1601/NPC1L1 -EGFP (D)或 L02 细胞 (F) 做 A中所示的处理. 在不同 的时间点进行生物素标记细胞质膜试验。 E. CRL-1601/NPC1L1 -EGFP细胞做 A中所示的处理, 在不同的时间点进行免疫共 沉淀试验。
G. L02 细胞在含有环化糊精和 Ezetimibe的培养基中处理 60min。 CDX包被胆固醇 的胆固醇直接加入 60min。 固定, 染色。 用双光子共聚焦观察荧光定位。 Bar, 10 μιη。
Η. 对 G中的细胞荧光定量胞内定位的 NPC1L1 蛋白和胆固醇的量。 误差线: 标准 差。
图 9. NPC1L1-NH2端 18-260氨基酸是胆固醇结合 NPC1L1蛋白所必需,对胆固醇吸 收至关重要。
A. 稳定表达人 NPC1L1蛋白的细胞用偶联抗 EGFP抗体的琼脂糖做免疫沉淀, 并在 得到的蛋白中加入 10-160 nM [3H]胆固醇体外结合, 4°C, 4小时后测液闪检测 NPC1L1 与胆固醇的结合。 非特异性条带为不表达 NPC1L1蛋白的细胞重复操作。 误差线: 标准 差。
B. 稳定表达人 NPC1L1蛋白或 NH2-端第 18-260氨基酸缺失的 NPC1L1蛋白的细胞 用偶联抗 EGFP抗体的琼脂糖做免疫沉淀, 并在得到的蛋白中加入 80 nM [3H]胆固醇体 外结合, 4°C, 4小时后测液闪检测该蛋白与胆固醇的结合。 非特异性条带为加入 10 μΜ 未标记胆固醇竞争的重复操作。 NPC1L1( A 18-260aa): NH2-端第 18-260 氨基酸缺失的 NPC1L1蛋白。
C. 细胞瞬时表达人 NPC1L1蛋白或 NH2-端缺失第 18-260氨基酸的 NPC1L1蛋白, 24小时后用 CDX处理细胞,并再次递给细胞胆固醇, 30分钟, 60分钟分别封片, Filipin 染色, 双光子共聚焦显微镜观察; 对细胞内胆固醇的含量和细胞内定位的 NPC1L1蛋白 进行荧光定量。 误差线: 标准差。
图 10. 化合物 25-羟胆固醇抑制 NPC1L1蛋白和胆固醇结合, 减少胆固醇的吸收。
A. 胆固醇, 25-羟胆固醇的结构示意图。
B. 稳定表达人 NPC1L1蛋白的细胞用偶联抗 EGFP抗体的琼脂糖做免疫沉淀, 并在 得到的蛋白中加入 80 nM [3H]胆固醇, 以及 250 nM未标记的 25-羟胆固醇进行体外结合
-竞争, 4°C, 4小时后测液闪检测 NPC1L1与 [3H]胆固醇的结合。 非特异性条带为不表达 NPC1L1蛋白的细胞重复操作。 误差线: 标准差。
C. 稳定表达人 NPC1L1蛋白的细胞系用 25-羟胆固醇预处理 1小时,之后 CDX处理 细胞, 并再次递给细胞胆固醇, 1小时后封片, Filipin染色, 双光子共聚焦显微镜观察; 对细胞内胆固醇的含量和细胞内定位的 NPC1L1蛋白进行荧光定量。 误差线: 标准差。
图 11. 在 NPC1L1氨基酸序列的 986至 987位插入 3 X Myc不影响 NPC1L1的正常 功能。
A. NPC1L1的拓扑结构模式图以及 S986位氨基酸残基的位点。
B.对表达 NPClLl/S986-3 X Myc-L987蛋白的细胞去除胆固醇后, 再给细胞递送胆固 醇并结合 Ezetimibe处理, Filipin染色, 观察细胞对胆固醇的吸收情况。 C. 对 B中细胞内的 NPClLl/S986-3 X Myc-L987蛋白和胆固醇的定量。 误差线: 标 准差。
图 12. 用免疫组化或流式细胞快速简便地分析 NPC1L1蛋白的亚细胞定位。
A. 处理细胞的流程示意图: 在 -60 分钟, 用环化糊精 (CDX)减少细胞内的胆固醇; 然后再在 0分钟递给细胞 CDX包被的胆固醇。
B. 瞬时转染 NPClLl/S986-3 X Myc-L987,在通透和不通透细胞两种条件下,用 Myc 抗体对细胞进行免疫染色后荧光显微镜观察。
C, D. 用流式细胞仪检测 NPCILI细胞定位。 1.5%环化糊精 (CDX)处理 lhr后, 在 4 °。条件下, 用抗 Myc的抗体 (9E10)温育 30分钟, 然后用偶联 Alexa555的荧光二抗温育 30分钟, 流式细胞仪检测。
图 13. 筛选抑制 NPC1L1蛋白内吞的化合物。
A. β , β -二甲基丙烯酰阿卡宁 (C6)的结构式。
Β. 用 CDX和待筛选药物 (C1-C187)处理 CRL1601/NPC1L1 -EGFP细胞, 使 NPC1L1 蛋白定位于细胞膜。 拍照, 见图中的 CDX组。 去掉 CDX, 用含有待筛选药物和胆固醇 的配基处理细胞一个小时。 拍照, 见图中 chol组。 有明显抑制 NPC1L1蛋白内吞的化合 物 (C6)被选出来。 Ez: Ezetimibe o
C. 用 CDX和待筛选药物 (C6)处理 CRL1601/NPC1L1 -EGFP细胞, 使 NPC1L1蛋白 定位于细胞膜, 固定, 见图中的 CDX组。 去掉 CDX, 用含有待筛选药物和胆固醇的配 基处理细胞, 固定, 见图中 chol组。 将 Filipin染色, 用双光子显微镜拍照。
D. 荧光定量 chol组的细胞内的 NPC1L1和胆固醇。 具体实施方式
本发明人经过深入的研究, 发现 NPC1L1 蛋白介导胆固醇吸收需要通过囊泡内吞过 程,其中笼形蛋白 (Clathrin)和 AP2复合体被鉴定出来在 NPC1L1蛋白内吞过程中起到重 要的作用, 抑制笼形蛋白介导的囊泡内吞 NPC1L1蛋白 (即抑制 NPC1L1蛋白进入笼形 蛋白包被的囊泡、 影响其内吞过程) 可显著抑制细胞对胆固醇的吸收。 因此, 可基于该 机制来筛选对于降低胆固醇有用的药物。
NPC1L1蛋白是一个多次跨膜蛋白, 在胆固醇吸收中发挥重要的作用。本发明人研究 发现胆固醇可以特异的促进 NPC1L1蛋白的内吞, 可以调节 NPC1L1蛋白在质膜和内吞 循环体 (Endocytic Recycling Compartment, ERC)之间的循环转运, 当胆固醇减少时, NPC1L1蛋白定位在细胞质膜, 补给细胞胆固醇会使 NPC1L1蛋白内吞并转运到内吞循 环体。此过程需要笼形蛋白 /AP2复合体。阻断笼形蛋白介导的 NPC1L1蛋白的内吞会减 少胆固醇的吸收, 表明 NPC1L1蛋白通过囊泡内吞运输来介导胆固醇的运输。 Ezetimibe 抑制 NPCILI蛋白进入笼形蛋白包被的囊泡、阻断其内吞过程、进而抑制胆固醇的吸收。 总之, 本发明人的研究表明 NPCILI蛋白携带胆固醇通过笼形蛋白介导的囊泡内吞进入 细胞, 从而为筛选新型的胆固醇吸收抑制剂提供了新靶点。
细胞吸收胞外物质是通过质膜的变形运动将细胞外物质转运入细胞内的过程 (入胞 作用)。 其吸收的方式是多种多样的, 根据入胞机制的不同可将内吞作用分为吞噬作用、 胞饮作用、 受体介导的内吞作用等。 例如笼形蛋白, caveolin, flotillin等均可介导一些 物质进入到细胞内。 然而, 对于不同的物质, 入胞的机制可能是不同的, 这与细胞本身 的结构、 细胞所含的蛋白、 所述物质本身的特性、 以及一些更为复杂的因素相关。 为了 鉴定参与 NPC1L1 蛋白内吞过程的蛋白因子, 本发明人用免疫共沉淀分离得到了参与 NPC1L1蛋白内吞的复合体, 用串联质谱鉴定和 NPC1L1蛋白特异结合的蛋白。 其中一 个蛋白是 AP2复合体中的 μ2亚基。 μ2亚基在内吞过程中可以识别将要发生内吞的蛋白, 与之结合并募集 ΑΡ-2的其他亚基。 ΑΡ-2复合体形成后可以招募笼形蛋白, 随之发生内 吞。 为了验证以上结果, 本发明人用 siRNA介导的 RNA干扰来降低内源的笼形蛋白或 者 AP-2复合体中的 μ2亚基, 发现两个基因降低后会影响 NPC1L1蛋白的内吞和细胞对 胆固醇的吸收。 说明 NPC1L1蛋白携带胆固醇通过笼形蛋白介导的囊泡内吞进入细胞。 筛选降胆固醇的物质的方法
在得知了 NPC1L1蛋白介导胆固醇吸收需要通过笼形蛋白介导 NPC1L1 的囊泡内吞 这一途径, 抑制 NPC1L1蛋白的囊泡内吞可显著抑制细胞对胆固醇的吸收这一机制后, 可以基于该机制筛选降低细胞对胆固醇的吸收的潜在物质。 从而, 可从所述的潜在物质 中找到对于预防或治疗高胆固醇相关疾病有用的物质。
因此, 本发明提供一种筛选潜在的降胆固醇物质的方法, 所述的方法包括:
(1) 用胆固醇处理表达 NPC1L1蛋白的细胞,并确定细胞中的囊泡内吞 NPC1L1蛋白 的程度;
(2) 在候选物质存在下, 如(1)所述处理表达 NPC1L1 蛋白的细胞, 再次确定细胞中 囊泡内吞的 NPC1L1蛋白的程度; 和
(3) 比较 (1)和 (2)中囊泡内吞的 NPC1L1蛋白的差异;
其中, 如果 (2)中囊泡内吞的 NPC1L1 蛋白的程度在统计学上低于 (1) 中, 则所述候 选物质是潜在的降胆固醇物质。
作为本发明的优选方式, 步骤 (1)或 (2)中, 所述的表达 NPC1L1蛋白的细胞预先经过 降胆固醇处理。 本发明人在研究中发现, 对细胞预先进行降胆固醇处理后, 可使得 NPC1L1 蛋白从胞内的内吞循环体 (ERC)区域被转运到细胞膜区域, 为吸收胆固醇作准 备; 而胆固醇处理可特异地促进 NPC1L1蛋白的内吞。 因此, 药物筛选时, 预先对细胞 进行降胆固醇处理, 之后再给予细胞胆固醇, 对于药物筛选时观察笼形蛋白介导的囊泡 内吞 NPC1L1蛋白是有利的。
作为本发明的优选方式, 步骤 (1)或 (2)中, 还包括: 确定细胞中笼型蛋白和 /或 ΑΡ2 复合体相关蛋白与 NPC1L1蛋白的结合程度; 并且,(3)中,如果 (2)中笼型蛋白和 /或 AP2 复合体相关蛋白与 NPC1L1蛋白的结合程度在统计学上低于 (1) 中,则所述候选物质是 潜在的降胆固醇物质。 AP2复合体由 α, β2, μ2和 σ2 等亚基组成, 其功能是结合蛋白 进入笼形蛋白 (包括重链和轻链)包被的小泡中参与内吞,因此观察笼型蛋白和 /或 ΑΡ2复 合体或其相关蛋白与 NPC1L1蛋白的结合程度也可反映 NPC1L1蛋白进入笼形蛋白包被 的囊泡的程度 (或量;)。
确定存在或不存在候选物质的情况下内吞或结合程度的差异可以用计量内吞小泡的 数量、 内吞的 NPC1L1蛋白和 /或胆固醇的量的增减来实现; 或者也可通过计量细胞膜上 NPC1L1 蛋白和 /或胆固醇的量的增减来实现 (如发生了内吞, 则细胞膜上 NPC1L1 蛋白 和 /或胆固醇的量减少;)。 具体例如可通过荧光标记或染色的方法来进行定位或定量, 此 外免疫荧光标记细胞表面蛋白结合流式细胞仪是有效定量 NPC1L1蛋白细胞膜定位的方 法。 也可以将细胞种在 96 孔板中, 作相关药物处理后用荧光标记细胞质膜定位的 NPC1L1 蛋白, 然后用酶标仪读数, 如果读数高于预设阈值则此药物可以抑制 NPC1L1 蛋白内吞, 可能作为潜在的降胆固醇药物。
如果内吞或结合的差异是显著的或者超过了某个阈值, 则候选试剂可能对于降胆固 醇是有效的。 如果差异不显著, 则可以用另一候选物质重复所述步骤进行筛选。 通常, 本领域技术人员可同时试验多种候选物质, 例如通过使用多孔板或其它高通量方法。
本发明提供了一种优选的确定 NPC1L1 蛋白内吞情况的方式, 将标签蛋白偶联或连 接于 NPC1L1 蛋白序列上合适的位置 (优选所述的标签蛋白位于 NPC1L1 蛋白的第 8跨 膜区与第 9跨膜区之间;),通过鉴定细胞质膜上标签蛋白的定位来确定 NPC1L1蛋白的定 位, 进而确定细胞囊泡内吞 NPC1L1蛋白的程度。 当标签蛋白大部分定位在细胞膜上, 则表明 NPC1L1蛋白大量定位细胞质膜上, 细胞囊泡内吞 NPC1L1蛋白的程度小; 当标 签蛋白少量的定位在细胞质膜上, 则表明 NPC1L1蛋白大部分定位在细胞内, 细胞囊泡 内吞 NPC1L1蛋白的程度大。
将标签蛋白偶联或连接到 NPC1L1蛋白序列上的方法是本领域人员已知的。优选地,
NPC1L1蛋白与标签蛋白通过肽键相连接。 更优选地, 所述的标签蛋白位于 NPC1L1蛋 白上第 986位氨基酸 (Ser)与第 987位氨基酸 (Leu)之间。
标签蛋白的选择是本领域人员已知的, 当用于本发明时, 长度在 4-300 个氨基酸的 标签蛋白是优选的。 所述的标签蛋白选自 (但不局限于) : 一个或数个 Myc标签蛋白, 一个或数个 Flag标签蛋白, 一个或数个 His6标签蛋白, 一个或数个 T7标签蛋白, 一个 或数个 V5标签蛋白, 一个或数个 HA标签蛋白, 一个或数个 GST标签蛋白, 以及几个 标签的混合使用。 或者, 所述的标签蛋白选自某些酶 (但不限于) : 荧光素酶, β -gal 酶。 最优选的, 所述的标签蛋白是 Myc标签蛋白 (特别是 3 X Myc)。
当 NPC1L1 蛋白与标签蛋白通过肽键相连接时, 构成了一种融合蛋白。 编码所述融 合蛋白的核酸序列, 含有所述核酸序列的重组载体和宿主细胞均包括在本发明中, 它们 可以作为分析 NPC1L1蛋白在细胞中亚定位的材料。
本发明中, 对于所用的细胞没有特别的限制, 只要在生长或代谢过程中需要吸收胆 固醇 (例如其需要胆固醇作为生物膜的组成成分;或需要胆固醇来合成 醇类激素或胆汁 酸的前体); 并且, 其含有 NPC1L1蛋白以及笼形蛋白和 /或 AP2复合体。 较佳的, 所述 的细胞是一种真核细胞。在本发明的实施方式中, 所述的细胞选自: CRL-1601 (McArdle RH7777大鼠肝癌细胞), L02 (;人肝细胞系), HuH7 (;人肝癌细胞系),或 HEK 293细胞等。
作为本发明的优选方式, 所述的细胞是重组细胞, 其基因组中含有表达盒, 所述表 达盒含有: 可操作性连接的 NPC1L1蛋白的编码基因和报告基因。 所述的报告基因例如 是绿色荧光蛋白 (GFP)或增效的绿色荧光蛋白 (EGFP), 它们的内源荧光基团在受到紫外 光或蓝光激发时可高效发射清晰可见的绿光, 从而可直观且准确地用于 NPC1L1蛋白的 定位和定量。 基于本发明人的新发现, 另一种筛选潜在的降胆固醇物质的方法包括:
(a) 用候选物质处理表达笼形蛋白和 /或 AP2复合体的细胞;
(b) 检测所述细胞中笼形蛋白和 /或 AP2复合体的表达或活性;
其中, 若所述候选物质可降低笼形蛋白和 /或 AP2复合体的表达或活性, 则表明该候 选物质是潜在的降胆固醇物质。
作为一种优选的方式, 在进行筛选时, 为了更易于观察到笼形蛋白和 /或 AP2复合体 表达或活性的改变, 还可设置对照组, 所述的对照组可以是不添加所述候选物质的表达 笼形蛋白和 /或 AP2复合体的细胞。
作为一种优选的方式, 所述的方法还包括: 对获得的潜在物质进行进一步的细胞实 验和 /或动物试验, 选择和确定对于降胆固醇有用的物质。
采用所述筛选方法获得的潜在的降胆固醇物质也包括在本发明内。 降胆固醇的物质
基于本发明人的新发现,本发明还提供了一种抑制或干扰细胞囊泡内吞 NPC1L1蛋白 的物质, 所述的物质可用于制备对于降胆固醇有用的药物。 任何可抑制或干扰细胞囊泡 内吞 NPC1L1蛋白的物质均可用于本发明, 作为潜在的降胆固醇物质。
基于本发明人的新发现, 本发明还提供了一种抑制 (或干扰)笼形蛋白和 /或 AP2复合 体与 NPC1L1蛋白相互作用 (如结合)的物质,所述的物质可用于制备对于降胆固醇有用的 药物。 任何可抑制或干扰笼形蛋白和 /或 AP2复合体与 NPC1L1蛋白相互作用, 降低笼形 蛋白和 /或 AP2复合体与 NPC1L1蛋白相互作用的稳定性, 抑制笼形蛋白和 /或 AP2复合体 的表达, 或抑制笼形蛋白和 /或 AP2复合体相关基因的转录或翻译的物质均可用于本发 明, 作为潜在的降胆固醇物质。 这些初步筛选出的物质可构成一个筛选库, 以便于人们最终可以从中筛选出能够对 于预防或治疗高胆固醇相关疾病确定有用的物质。
利用本发明的筛选方法, 本发明人获得了一种可以抑制 NPC1L1 蛋白内吞的化合物 _ _ β , β -二甲基丙烯酰阿卡宁。 因此, 本发明还提供了 β , β -二甲基丙烯酰阿卡宁在制 备降胆固醇药物中的用途。 此外, 本发明还提供一种降低细胞内胆固醇的方法, 所述方法包括: 抑制 (或干扰) 笼形蛋白和 /或 ΑΡ2复合体与 NPC1L1蛋白相互作用 (如内吞、结合或结合;), 从而阻止胆 固醇的吸收。 本发明的主要优点在于:
(1) 首次发现, NPC1L1 蛋白介导胆固醇吸收需要通过笼形蛋白介导的囊泡内吞 NPC1L1蛋白这一途径, 抑制笼形蛋白介导的囊泡内吞 NPC1L1蛋白可显著抑制细胞对 胆固醇的吸收。
(2) 解决了现有技术中不知道细胞内 NPC1L1蛋白通过怎样的途径来转运胆固醇、难 以开发更多更有效药物的缺陷, 从而为筛选降胆固醇药物提供了新的便捷的途径。
(3) 发展了快速简便分析 NPC1L1蛋白亚细胞定位的方法,可以用于高通量化合物筛 选。
(4) 鉴定出 NPC1L1蛋白结合胆固醇的结构域并阐明其功能,可以筛选结合该结构域 的化合物从而得到抑制胆固醇吸收活性的物质。 下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说明本发明 而不用于限制本发明的范围。 下列实施例中未注明具体条件的实验方法, 通常按照常规 条件如 Sambrook等人,分子克隆:实验室指南 (New York: Cold Spring Harbor Laboratory Press, 1989)中所述的条件, 或按照制造厂商所建议的条件。 除非另外说明, 否则百分 比和份数按重量计算。
除非另行定义, 文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义 相同。 此外, 任何与所记载内容相似或均等的方法及材料皆可应用于本发明中。 文中所 述的较佳实施方法与材料仅作示范之用。
试验材料和方法
材料和质粒
辣根过氧化物酶结合的驴抗鼠和抗兔 IgG: 获自 Jackson免疫研究实验室。
菲律宾菌素 (Filipin)获自 Sigma。
sulfosuccinimidyl 6- (生物素氨基) hexanoate禾口 NeutrAvidin-琼月旨糖: 获自 Pierce。 甲基 - β -环化糊精(CDX): 获自 Cyclodextrin Technologies Development Inc.。 胆固醇纯化为高于 99%的纯度。
去脂血清 (LPDS, d > 1.215 g/ml): 从新生小牛血清通过超离心获得。
人源 NPC1L1蛋白的编码区来自以 5 '-actggatccatggcggaggccggcctgagg-3 '(SEQ ID NO:
1)禾口 5 '-actggatccgaactgccgcccattgttggg-3 '(SEQ ID NO: 2)作为引物, PCR扩增人肝 cDNA 获得, 并通过 bamHI 单酶切位点克隆接入载体 pEGFP-Nl(购自 Clontech;)。 以
5 ' -actgaattctatgggcacccgcgacgacga-3 ' (SEQ ID NO: 3)禾口 5 '-actgaattcttagatgttctgacagcact-3 '
(SEQ ID NO: 4) 作为 引物 , 并通过 EcoRI 单酶切位点 克隆接入载体 pDsRed-monomer-C l (购自 Clontech)。 细胞培养
CRL-1601 (McArdle RH7777大鼠肝癌细胞), L02 (人肝细胞系)和 HuH7 (人肝癌细胞 系) (;均购自 ATCC) 单细胞层在 37°C和 5% C02中,细胞生长在培养基 A (Dulbecco' s 改 良的 Eagle' s 培养基, 含有 100单位 /ml青霉素和 lOO g/ml 链霉素;)再加上 10% FBS。 胆固醇 -缺陷 (depleting)培养基是培养基 A加上 5% 去脂血清 (LPDS) , 10 μΜ 美伐他汀 (compactin) , 50 μΜ 甲羟戊酸(mevalonate)禾 Ρ 1.5% 环化糊精(CDX)。 胆固醇 -补充 (replenishing)培养基含有培养基 A 加上 5% LPDS , 10 μΜ美伐他汀, 50 μΜ甲羟戊酸 和不同浓度的 CDX 包被的胆固醇。 CDX 包被甾醇的方法见已有报道 (Brown,A.J 等 (2002), Cholesterol addition to ER membranes alters conformation of SCAP, the SREBP escort protein that regulates cholesterol metabolism. Mol. Cell 10, 237-245)。 生物素标记细胞质膜蛋白
用 PBS 洗细胞两遍, 加入 l mg/ml 的生物素(sulfosuccinimidyl 6- (生物素氨基) hexanoate)4 °C标记 40min。 缓冲液 A (20 mM Tris-HCl (pH 8.0)禾卩 150 mM NaCl) 洗 2遍 细胞然后将细胞置于缓冲液 A 15 min。将细胞裂解于缓冲液 B C10 mM Tris-HCl (pH 8.0), 150 mM NaCl禾 P 1% NP-40)。 每个样品加 100 μΐ 50% (v/v) NeutrAvidin-琼脂糖, 4°C结合 过夜。 琼脂糖珠用缓冲液 B洗 3遍。 然后将琼脂糖珠于上样缓冲液 37°C中温浴 30min。 离心取上清, 走 SDS-PAGE。
RNA干扰
双链 siRNA 由 Genepharma 合成。 靶向大鼠笼形蛋白重链 (CHC)的 siRNA 参见
Radulescu, A.E.等 (2007), A role for clathrin in reassembly of the Golgi apparatus. Mol. Biol. Cell 18, 94-105。 靶向大鼠 ΑΡ2-μ2 亚基禾 P Caveolin- 1 的 siRNA 序列分别是 5 ' -aaggcatgaaggaatcacaga-3 ' (SEQ ID NO: 5)禾口 5 '-aagcaagtgtacgacgcgcac-3 ' (SEQ ID NO: 6)。靶向 VSV-G的 siRNA参见 Song,B.L. (2007). Ufdl is a cofactor of gp78 and plays a key role in cholesterol metabolism by regulating the stability of HMG-CoA reductase. Cell Metab 6, 1 15- 128 , 用作对照(Control siRNA)。 siRNA 转染见 Sever,N.等(2003), Insig-dependent ubiquitination and degradation of mammalian 3-hydroxy-3- methylglutaryl- CoA reductase stimulated by sterols and geranylgeraniol. J. Biol. Chem. 278, 52479-52490。 Filipin染色
配制新鲜 5 mg/ml Filipin储液。细胞固定后用 50 g/ml Filipin 染色 30 min。Filipin 信 号用 Zeiss LSM 510 confocal microscope 双光子观察, 激发光 720 nm。 免疫共沉淀
将细胞进行相关处理后, 裂解于 IP 缓冲液中(PB S, 5mM EGTA , 5mMEDTA,
0.5%Digitonin) o离心取上清和含有 GFP抗体的琼脂糖珠混合, 4 °C结合 2小时。去上清, 用 IP缓冲液洗琼脂糖珠 5遍。用 PH2.8的醋酸 /甘氨酸洗脱液洗脱。 -70 °C丙酮沉淀过夜, 离心弃上清。 将沉淀溶于上样缓冲液, SDS-PAGE分析。 荧光定量
在每次实验里的每个实验组中,任意选择 100个细胞作为定量对象。用 Image Pro Plus 5.01软件荧光定量。细胞总的荧光强度定量的方法是用 AOI选择该细胞, 计算荧光强度 后剪去背景。细胞内的荧光强度定量的方法是用 AOI紧贴着细胞膜下画一个圈, 定量圈 内的荧光强度。 图中显示的是细胞内荧光强度比细胞总的荧光强度。
[3H]胆固醇结合实验
将细胞进行相关处理后,裂解于结合 IP缓冲液中 CPBS, l%NP-40 , 5mM EGTA, 5mM EDTA)。 离心取上清和含有 EGFP抗体的琼脂糖珠混合, 4 °C结合 2小时, 进行免疫沉 淀。 用结合物 IP缓冲液洗琼脂糖珠 5遍, 分别加入合适浓度的 [3H]标记的胆固醇, 最终 [3H]标记的胆固醇浓度为 10-400nM, 最终体积为 100 μ 1, 溶解在结合缓冲液 (PBS, 0.001%NP-40)中。 4 °C结合 4小时, 用结合缓冲液洗琼脂糖珠 5遍, 用 PH2.8的醋酸 /甘 氨酸洗脱液洗脱。 结合的 [3H]标记的胆固醇用闪烁液测液闪计数。 对于竞争实验, 在溶 解好 [3H]标记的胆固醇的结合缓冲液中,分别加入终浓度为 10 μ Μ非同位素标记的甾醇。 其中, [3Η]标记的胆固醇购自 PerkinElmer公司。 流式细胞检测
将细胞进行相关处理, 胰酶消化后, 吹散成单细胞。 然后与 Anti-Myc 单克隆抗体 IgG-9E10 在冰上孵育 30分钟, PBS洗两遍。 Anti-mouse IgG荧光二抗孵育 30分钟后, PBS洗两遍。用 BD LSR II SORP 流式细胞仪分析。其中, Anti-Myc单克隆抗体 IgG-9E10 购自 Roche公司, Anti-mouse IgG荧光二抗购自 invitrogen公司。 实施例 1 胆固醇调节 NPCILI蛋白在内吞循环体 (ERC ) 和细胞质膜之间的转运 将含有 NPC1L1蛋白编码区的 pEGFP-Nl载体转染大鼠的肝细胞系 CRL1601 , 获得 稳定表达 NPCILI -EGFP的稳定表达株, 命名为 CRL1601/NPC1L1 -EGFP。
常规的 Western Blot实验结果表明, NPCILI -EGFP在稳定表达株中的表达量和一些 人肝细胞系 (HepG2, huh7和 L02)中内源 NPC1L1蛋白的表达量类似。 因此本发明人用 这个细胞株来研究 NPC1L1蛋白的定位。
处理 CRL1601/NPC1L1 -EGFP细胞的流程见图 1A, 在 -60min用胆固醇 (Choi) -缺陷 培养基培养细胞, 在 Omin 除去前述培养基, 换用胆固醇 (Choi)-补充培养基培养细胞, 直至第 120min。 也即先用 CDX减少细胞内的胆固醇, 然后再递给细胞 CDX包被的胆 固醇。
在前述处理细胞的过程中, 在不同的时间点固定细胞, 并用共聚焦观察荧光定位。 结果发现,在正常条件下 NPC 1L1蛋白主要定位在核旁的区域。当胆固醇减少时 NPC1L1 蛋白被转运到细胞质膜(图 1B, 时间从 -60至 0min)。 当再递给胆固醇的时候。 NPC1L1 蛋白又内吞到细胞内并最终定位到 ERC (图 1B, 时间从 30至 120 min)。 NPCILI蛋白在 细胞质膜上的定位见图 1 C。
将 CRL- 1601/NPC 1L1-EGFP细胞作图 1A中所示处理, 在不同的时间点标记细胞质 膜蛋白。 从而用生物素标记质膜蛋白的方法肯定了以上的现象, 见图 1D。
为了排除细胞克隆之间的影响, 本发明人在 L02细胞中用生物素标记质膜蛋白的方 法检测了不同条件下内源 NPC1L1蛋白的定位。 结果表明内源的 NPC1L1蛋白也同样受 到胆固醇水平的调控, 见图 1E。 这说明 CRL1601/NPC1L1-EGFP 稳定表达的 NPC1L1 蛋白可以模拟内源 NPC1L1蛋白的特性。 实施例 2 NPC1L1蛋白对游离胆固醇的吸收是必须的
细胞吸收低密度脂蛋白 (LDL)中的胆固醇是通过 LDL受体的内吞来实现的。 NPC1L1 蛋白的内吞提示 NPC1L1蛋白可能通过类似的过程介导胆固醇的吸收。 为了验证这个想 法, 本发明人用 Filipin来染细胞内的胆固醇。 CRL-1601和 CRL-1601/NPC 1L1-EGFP细 胞作图 1A中所示的处理, 在不同的时间点固定, Filipin染色, 并用双光子共聚焦观察 荧光定位。 结果如图 2A所示, 用环化糊精 (CDX)处理细胞来降低胆固醇后, 几乎看不 到 Filipin的信号, 说明细胞内胆固醇的量很低; 与此同时 NPC1L1蛋白也定位在细胞质 膜 (时间点为 0 min)。 用递给胆固醇的培养基处理细胞可以看到细胞内 Filipin信号逐渐 增强, 提示胆固醇增多。 并且, CRL1601/NPC1L1-EGFP细胞对胆固醇的吸收多于对照 的 CRL-1601细胞 (时间点从 30-120 min)。随着 NPC1L1蛋白的内吞,胆固醇也发生内吞。 含有 NPC 1L1 蛋白的囊泡和胆固醇的囊泡有很好的共定位。 荧光定量表明 CRL1601/NPC1L1-EGFP细胞摄取的胆固醇是对照细胞的两倍 (;图 2B, 时间点从 30-120 min)o 用不同浓度 (7.5 μ g/ml , 15 μ g/ml , 30 μ g/ml)的胆固醇递给细胞也得到了类似的结 果(图 3A和 B)。
为了进一步确认以上现象, 本发明人将含有 NPC1L1蛋白编码区的 pEGFP-Nl载体转染 HEK293T细胞, 在 HE 293T细胞中瞬时表达 NPC1 U-EGFP。 发现 NPC1L1-EGFP的定位 也受到调控, 而且过表达 NPC1 L1-EGFP的细胞比对照的细胞吸收更多的胆固醇 (图 3C)。
本发明人接下来用反转录病毒介导的 RNAi来减少 L02细胞内源的 NPC1 L1蛋白的 表达, 由图 2C可知, RNAi可有效减低细胞内 NPC1 L1 蛋白的表达。 发现当 NPC1 L1 蛋白表达降低后, 胆固醇的摄取也降低了 60%左右 (图 2D-E)。 在 Huh7细胞中也得到了 类似的效果。
此外, 本发明人也观察了胆固醇的外排, 发现 NPC1 L1蛋白并不影响胆固醇外排。 实施例 3 缺失笼形蛋白 /AP2降低 NPC1L1蛋白的内吞和胆固醇摄取
为了寻找参与 NPC1 L1 蛋白内吞的因子, 本发明人进行了大量的免疫共沉淀。 对于
NPC1 L1 蛋白特异性的条带用串联质谱进行了鉴定。 其中一个蛋白是 AP2 复合体的 μ2 亚基。 ΑΡ2复合体由 α, β2, μ2和 σ2等组成, 己知其功能是结合蛋白进入笼形蛋白包被 的小泡中参与内吞。 免疫共沉淀验证了质谱的结果, 说明 NPC1 L1-EGFP, μ2 和 CHC 在同一个复合体中, 见图 4。
对图 4Α中各 NPC1 L1蛋白结合蛋白(Bandl -7)的质谱鉴定见表 1 ,其中 Band5是 AP2 复合体的 μ2亚基。
Band 蛋白名称 蛋白序列
1 Similar to Putative pre-mRNA-splicing iactoi REVDDLGPEVGDIKI
ATP-dependent RNA helicase DHX15 RFAHIDGDHLTLLNVYHAFKQ
RHQSFVLVGETGSG T XP_214053 RTLATDIL GVLKE
2 Heat shock 70 kD protein 5 KDAGTtAGLNV RI
KDNHLLGTFDLTGIPPAPRG NP„037215 KELEEIVQPIISKL
KFEELNMDLFR3
3 Heal shock protein 8 KATVEDEKLQGKI
KDNNLLGKF NP一 077327 HWPF VVNDAGRPKV
KLD SQIHDIVLVGGSTRI
4 Ribophorin I KAVTSEiAVLQSRL
KDIPAYSQDTFKV NP_037199 KDTYIENEKLSSGKR
KGEDEEDNNLEVRE
5 AP2 complex su unil μ2 KASENAIVWKt
KLNYSDHDVIK NP_446289 IGQLFIYNHKG
R3PVTNIART
6 ARP3 actin-related protein 3 homolog KOYEEIGPSICRH
Kb'FNKYDTDGSKW
NP_112330 KERYSYVCPDLVKE
KNIVLSGGSTMFRD
7 Cleavage and polyadenylation specificity factor 5 KKLFLVQLQEKA
KLFLVQLQEKA
NP_001034093 KLPGGELNPGEDEVEQLKRL
RQVNQFGNKY
接下来本发明人用 RNAi方法来降低内源 μ2和 CHC的表达, Western blot验证 RNAi
- 16- 替换页(细则第 26条) 干扰效率(图 5A)。 RNAi μ2和 CHC抑制了转铁蛋白(Tranferrin, TnR)的内吞,说明 RNAi 有效 (图 6B)。
将 CRL-1601/NPC1L1-EGFP细胞作图 6A中所示的处理, 在不同的时间点固定、 染 色并用双光子共聚焦观察荧光定位。对 NPC1L1蛋白内吞分析发现 NPC1L1蛋白的内吞 也依赖于此途径, RNAi μ2或者 CHC会抑制 50% NPC1L1蛋白的内吞和胆固醇的摄取(图 5B)。 用生物素标记细胞质膜的实验也证明了以上结论 (图 5C)。 生物素标记细胞膜蛋白 实验还证明, 笼型蛋白对 NPC1L1蛋白内吞是必要的(图 6C)。
进一步试验还发现, 当递给细胞不同浓度 (7.5 g/ml, 15 g/ml, 30 g/ml)的胆固醇 时, Ι ΝΑί μ2或者 CHC也会抑制 NPC1L1蛋白的内吞和胆固醇摄取(图 6D-E)。
此外, RNAi沉默降低内源的 Caveolin-1的表达不影响 NPC1L1蛋白和胆固醇的内吞
(图 7)。 实施例 4 Ezetimibe抑制 NPC1L1蛋白和胆固醇内吞
Ezetimibe是胆固醇吸收的有效的抑制剂, 而且已被认可到临床治疗高胆固醇血症。 并且已知 NPC1L1蛋白结合 Ezetimibe。 但是 Ezetimibe怎样抑制 NPC1L1蛋白介导胆固 醇的吸收还不明确。
本发明人用 CDX降低细胞内的胆固醇使 NPC1L1蛋白定位在细胞质膜,用不同浓度 的药物 (Ezetimibe 或 U18666A)处理细胞后再给细胞递送胆固醇(图 8A)。 发现随着 Ezetimibe浓度的提高, NPC1L1蛋白的内吞受到抑制, 胆固醇的摄取也减少(图 8B、 C)。 Ul 8666 A是影响 LDL来源的胆固醇运输的药物,其靶点可能是 NPC 1,其不影响 NPC 1L1 蛋白的内吞。
用生物素标记质膜蛋白的方法也证明了以上的现象 (图 8D), Ezetimibe不影响转铁蛋 白受体的内吞。 说明 Ezetimibe的作用是特异的。
接下来的免疫共沉淀试验表明, Ezetimibe胆固醇诱导的 NPC1L1蛋白的内吞是通过 抑制 NPC1L1 蛋白进入笼形蛋白包被的小泡来实现的(图 8E)。 在 L02 细胞中内源的 NPC1L1蛋白的内吞和胆固醇的摄取也受到 Ezetimibe的抑制 (;图 8F、 G、 H)。
总之, Ezetimibe通过抑制 NPC 1L1蛋白进入笼形蛋白包被的小泡来抑制 NPC1L1蛋 白的内吞和胆固醇的摄取。 实施例 5 NPC1L1蛋白的 NH2-结构域 (18-260氨基酸)结合胆固醇, 对胆固醇吸收至 关重要
为了检测 NPC1L1 蛋白是否结合胆固醇, 发明人利用免疫沉淀的方法从 CRL1601/NPC1L1-EGFP 细胞中纯化出其羧基端带有 EGFP 的人全长的 NPC1L1 蛋白 (GenBank登录号: FJ4811 11),再加入 标记的胆固醇后,检测 NPC1L1蛋白能结合 [3H] 胆固醇, 如图 9A所示, 随着 [3H]胆固醇量的增加, NPC1L1蛋白与 [3H]胆固醇的结合呈 饱和曲线, 该结果表明 NPCILI蛋白特异性结合胆固醇分子。
进而,本发明人采用常规方法将 NPC1L1蛋白 NH2端区域 (18-260 氨基酸)进行缺失, 发现缺失氨基酸 18-260显著影响 NPC1L1 蛋白结合胆固醇的能力, 这表明 NPC1L1蛋 白 NH2端区域的 18-260氨基酸是胆固醇结合结构域 (图 9B)。
为了研究 NPCILI蛋白 NH2端 18-260氨基酸结构域对胆固醇吸收的影响,在大鼠肝 细胞 CRL-1601中, 分别瞬时转染表达人 NPC1L1-EGFP蛋白, 或 NH2-端 18-260氨基酸 缺失的人 NPC1L1-EGFP蛋白, 在不同的时间点进行固定, filipin染色, 并用双光子共 聚焦显微镜观察。 通过对各个时间点细胞内胆固醇含量, 以及胞内 NPC1L1蛋白进行定 量分析, 发现全长 NPC1L1蛋白逐渐回到细胞内, 同时吸收大量胆固醇进入细胞; 而表 达 NH2-端 18-260 氨基酸缺失 NPC1L1蛋白回到细胞内及介导的胆固醇吸收都显著减少 (图 9C)。表明人 NPCILI蛋白 NH2-端结构域 (18-260氨基酸)能够结合胆固醇分子, 并且 对于胆固醇吸收至关重要。 实施例 6 化合物 25-羟胆固醇抑制 NPC1L1蛋白和胆固醇结合, 进而减少胆固醇的 吸收
由于 NPC1L1 蛋白能够与胆固醇特异性结合, 本发明人设想, 如果找到一种化合物 竞争 NPC1L1蛋白与胆固醇的结合, 就能起到抑制胆固醇吸收的作用。 根据这个假说, 发明人发现 25-羟胆固醇 (结构见图 10A), 能够竞争 [3H]标记的胆固醇与 NPCILI蛋白的 结合 (图 10B)。
进一步, 用 25-羟胆固醇处理 CRL-1601/NPC1L1-EGFP细胞, 在不同的时间点固定、 染色并用双光子共聚焦显微镜观察荧光定位, 通过对细胞内胆固醇含量及细胞内 NPC1L1 蛋白的定位进行定量分析, 发现 25-羟胆固醇能够显著抑制胆固醇的吸收及 NPC1L1蛋白的内吞(图 10C;)。
综上所述, 化合物 25-羟胆固醇能够通过竞争胆固醇与 NPC1L1的结合, 从而抑制细 胞对胆固醇的摄取。 因此, NPC1L1蛋白的 NH2-结构域 (18-260氨基酸)可以作为筛选胆 固醇吸收抑制剂的靶点; 25-羟胆固醇及其类似物可能作为新的胆固醇吸收抑制剂。 实施例 7在 NPC1L1氨基酸序列的 986和 987位插入 3 X Myc后, NPC1L1仍具有 正常的生理功能
为了进一步研究 NPC1L1 的拓扑结构和功能, 本发明人经过大量探索, 鉴定出在
NPC1L1蛋白的第 986位氨基酸残基后插入 3 X Myc标签不影响 NPC1L1 的转运和对胆 固醇的吸收(图 11, 12)。
正常培养条件下, NPClLl/S986-3 X Myc-L987主要定位在细胞核旁的区域(图 11B, -60 min)。 当用 1.5%的环化糊精处理细胞 1个小时 (;图 12B, Omin), 使细胞胆固醇水平 降低, NPClLl/S986-3 X Myc-L987蛋白被转运到细胞质膜。 当再给细胞递送环化糊精包 被的胆固醇 1个小时后, NPC1L1/S986-3 X Myc-L987又内吞到细胞质内并定位到 ERC(图 12B , 60min;)。 该循环定位与野生型的 NPC1L1相一致。
为了更进一步验证 NPClLl/S986-3 X Myc-L987蛋白对胆固醇吸收的功能是否正常, 本发明人用 Filipin染色的方法来定量细胞内的胆固醇。首先用环化糊精去除细胞膜的胆 固醇, 然后再递送胆固醇, 用 Filipin染色观察胆固醇的吸收情况。 如图 11B, 11C所示, 在没有 Ezetimibe存在的条件下, NPC1L1/S986-3 X Myc-L987能够携带大量胆固醇进入 细胞。 在 ΙΟμΜ Ezetimibe处理的条件下, NPC1L1/S986-3 X Myc-L987部分被内吞进细 胞质, 胆固醇也部分被吸收。 然而当用 40μΜ Ezetimibe 处理细胞, NPC1L1/S986-3 X Myc-L987完全被抑制在细胞质膜上, 胆固醇同时不能被内吞进入细胞。
因此, NPClLl/S986-3 X Myc-L987与野生型 NPC1L1表现出相同的特性, 即细胞内 的胆固醇水平调节 NPC1L1蛋白在细胞质膜和内吞循环体之间的循环转运, 这一蛋白能 介导胆固醇的吸收, 并且吸收过程能被 Ezetimibe特异性抑制。
本实施例所用的细胞是 CRL1601 , 用瞬时转染的方法转染入含有 NPC1L1/S986-3 X Myc-L987表达框的 pEGFP-Nl质粒。 实施例 8 用免疫组化、 流式细胞检测的方法分析 NPC1L1在细胞内的定位 根据发明人对 NPC1L1拓扑结构的研究,发明人认为, 当 NPClLl/S986-3 xMyc-L987 蛋白转运到细胞质膜上时, 3 xMyc 标签将会暴露到细胞外基质。 如果不通透的细胞 (不 通透是指不通透细胞膜, 在此条件下, 外界小分子 (如抗体) 不能进入细胞内, 抗体只 标记细胞膜表面的 NPC1L1 , 不能标记细胞内的 NPC1L1)与抗 Myc的抗体孵育, 只有细 胞膜上的 NPClLl/S986-3 xMyc-L987可以被 Myc抗体检测,因此可以利用这一特点来标 记细胞膜上的 NPC1L1。
如图 12B所示, 在没有通透的细胞中加入 Myc抗体, 然后用荧光标记的二抗检测, 只有细胞膜上的 NPC1L1/S986-3 X Myc-L987 被检测(图 12B, Omin) , 细胞内的 NPClLl/S986-3 X Myc-L987则不能被检测到(图 12B, -60min和 60min;)。 而在完全通透 的细胞 (通透是指在细胞膜上打孔, 这样外界的小分子 (如抗体)就能进入细胞膜, 因此 能够标记细胞内和细胞膜表面的 NPC1L1 蛋白)中, 细胞内外的 NPC1L1/S986-3 X Myc-L987都可以被抗 Myc抗体检测到(图 12B, 通透细胞染色)。 该方法可以快速简便 地分析 NPC1L1的亚细胞定位。
为了对 NPC1L1的蛋白定位更深入研究, 发明人将含有 NPClLl/S986-3 X Myc-L987 蛋白编码框的 pEGFP-Nl 载体转染大鼠的肝细胞系 CRL1601 , 获得稳定表达 NPC1L1/S986-3 X Myc-L987-EGFP 的细胞株, 命名为 CRL1601/NPC1L1/S986-3 X Myc-L987-EGFP。 利用 CRL1601/ NPC1L1/S986-3 X Myc-L987-EGFP细胞, 发明人用流 式细胞仪分析了在环化糊精 CCDX)抽提胆固醇前后, NPC 1 L 1 /S986-3 X Myc-L987-EGFP 蛋白的细胞亚定位变化。 可以很明显的发现, CDX处理后, 细胞膜上的 NPC1L1/S986-3 X Myc-L987-EGFP的量明显增加(图 12 C, D)D 这又是一种快速简便地分析 NPC1L1蛋 白亚细胞定位的方法。
通透细胞的制备方法本领域已知,本实施例中,采用 0.1-0.2%的 Triton X 100处理细 胞 5分钟, 获得通透细胞。
实施例 7至实施例 8表明, 发明人构建了一个新的带有 3 X Myc标签的 NPC1L1蛋 白表达质粒, 当表达的 NPC1L1定位在细胞膜上时, 3 X Myc标签会暴露在细胞外基质。 利用这一特点, 发明人用免疫组化的方法标记膜上的 NPC1L1蛋白, 并且利用流式细胞 检测也能简便的鉴定 NPC1L1的亚细胞定位。 因此, 本发明人成功创建了一种新的分析 NPC1L1亚细胞定位的方法, 利用这一方法, 能够快速简便地识别出 NPC1L1在细胞内 的定位。 这一方法的建立, 为高通量分析 NPC1L1在细胞内的定位奠定了基础。 实施例 9 药物筛选方法
一. 筛选方法如下:
1. 初筛
以约 20种化合物为一次筛选, 将表达 NPC1L1-EGFP的细胞种于 12孔板;
48小时后用 CDX处理细胞, 减少细胞内的胆固醇, 使 NPC1L1蛋白定位于细胞膜; 用待选药物处理细胞一个小时;
将含有待选药物的培养基中加入 CDX包被的胆固醇;
一个小时后观察 NPC1L1蛋白的定位, 找出影响 NPC1L1蛋白定位的药物。
结果, 本发明人在最初筛选的 180多种化合物中发现了一个可以抑制 NPC1L1蛋白 内吞的化合物: β , β -二甲基丙烯酰阿卡宁(β,β-DIMETHYLACRYL ALKANNIN, C6X图 13Α-Β) ο
2.细筛
选择初筛中的阳性药物, 用前述类似的方法处理细胞;
在不同的时间点固定, Filipin染色和封片;
用双光子显微镜观察,拍照,荧光定量细胞内的 NPC1L1和胆固醇 (图 13C-D)。可见, β , β -二甲基丙烯酰阿卡宁 (C6),可以抑制大概 50%左右的 NPC1L1的内吞和胆固醇的吸 收。 所以 β , β -二甲基丙烯酰阿卡宁可以作为一个潜在的抑制胆固醇吸收的化合物。
二. 筛选方法如下:
本筛选方法采用的细胞是 CRL1601 , 其中转染入含有 NPC1L1 蛋白的 ΝΗ2-结构域
(18-260氨基酸)表达框的 pEGFP-Nl 质粒, 从而使细胞稳定表达 NPC1L1 蛋白的 NH2- 结构域(18-260氨基酸;) -EGFP, 所述细胞命名为 CRL-1601/NPClLl(18-260)-EGFP, 细胞 裂解后, 利用抗 EGFP抗体免疫纯化得到 NPClLlC18-260)-EGFP蛋白, 并在蛋白中加入 [3H]标记的胆固醇, 将上述制得的混合样品分为两组:
测试组: NPC1L1(18-260 EGFP蛋白, 其中加入候选物质; 对照组: NPC1L1(18-260 EGFP蛋白, 其中不加入候选物质。
检测两组中 [3H]标记的胆固醇与 NPC1L1蛋白的 NH2端结构域 (18-260氨基酸)的结合 情况,如测试组中胆固醇与 NPC1L1蛋白的 NH2端结构域的结合量显著低于对照组中 [3H] 标记的胆固醇与 NPCILI蛋白的 NH2端结构域的结合量 (低 30%以上), 则所述候选物质 是降胆固醇物质。
以 25-羟胆固醇或 27-羟胆固醇作为候选物质, 结果发现, 它们均能够竞争性地与 NPC1L1 蛋白的 NH2-结构域 (18-260 氨基酸)结合, 从而抑制胆固醇与 NPC1L1 蛋白的 NH2-结构域 (18-260氨基酸)的结合。 讨论
本发明人的数据表明 Ezetimibe通过抑制 NPC1L1蛋白的内吞来抑制胆固醇的吸收。 其分子机制是 Ezetimib e影响 NPC 1 L 1蛋白进入笼形蛋白包被的小泡。有趣的是 Ezetimib e 不影响转铁蛋白和 LDL的内吞。 这些结果均表明 Ezetimibe是 NPC1L1蛋白有效和特异 的抑制剂。 但是 Ezetimibe怎样影响 NPC1L1蛋白进入笼形蛋白包被的小泡还不知道。 要阐明此问题, 本发明人从 NPC1L1蛋白内吞的初始阶段入手。 NPC1L1蛋白含有甾醇 感受结构域。 人基因组中有 6个蛋白含有此结构域: HMGCR, SCAP, NPC1 , Patched, TRC8 , 和 NPC1L1。 可以推测 NPCILI蛋白的甾醇感受域可能直接结合胆固醇, 通过构 象变化从而与笼形蛋白 /AP2复合体结合导致内吞。 Ezetimibe可能竞争胆固醇与 NPC1L1 蛋白的结合。 另一种可能是 Ezetimib 会影响 NPC1L1 蛋白的构象导致胆固醇不能促进 NPC1L1 蛋白与笼形蛋白 /AP2复合体结合。 Ezetimibe也可能影响 NPC1L1 蛋白周围的 胆固醇的分布导致 NPC1L1蛋白内吞的阻抑。
人通过从头合成和食物吸收获得胆固醇。与抑制胆固醇合成的药物 (如:他汀类)相比, Ezetimibe是市场上唯一的抑制胆固醇吸收的药物。由于不同的个体基因型的差异导致不 同人对 Ezetimibe的敏感程度不同。 因此, 寻找更多的胆固醇吸收抑制剂显得尤为重要。 本发明人的工作揭示了胆固醇吸收的分子机制,可以为新药筛选奠定生物学基础。同时, 本发明人建立的细胞水平观察 NPC1L1蛋白亚细胞定位的系统可以用于筛选 NPC1L1蛋 白内吞的抑制剂, 这些抑制剂具有抑制胆固醇吸收药物的可能性。
细胞从外界物质交换主要通过四种方式: 自由扩散、 协助扩散、 主动运输和胞吞和 胞吐。 其中自由扩散是疏水和简单的小分子直接通过细胞质膜磷脂双分子层, 此过程不 需要蛋白参与; 协助扩散是细胞质膜上的通道蛋白介导的小分子从浓度高的一侧到低的 一侧, 如离子通道等; 主动运输需要消耗能量, 其也是蛋白介导的, 如离子泵等; 胞吞 是通过细胞质膜的内陷介导的物质交换, 包括吞噬作用和胞饮, 胞饮又包括网格蛋白介 导的内吞, caveolin介导的内吞和其他未知形式的内吞。
协助扩散和主动运输的介导蛋白是通道蛋白, 其特点是此类蛋白是单体或者多聚体 在细胞膜形成通道, 让物质直接进出细胞膜, 这些物质多为单分子小物质如水、 葡萄糖 和氨基酸等。 内吞是通过细胞膜上的受体介导的。
LDL受体是胆固醇运输和内吞常见的分子受体, 其特征是一次跨膜的膜蛋白。 它的 胞外区域可以结合 LDL或者 VLDL, 然后通过胞质内一些特殊的 motif募集内吞相关的 蛋白进行内吞。 而对于 NPC1L1来说, 它含有大概 13次跨膜区域, 而且 NPC1L1促进 的是单分子物质胆固醇的吸收, 因此无论是在拓扑结构和配体方面, NPC1L1和 LDL受 体都大不相同, 因此通常人们不会认为 NPC1L1 的功能和 LDL受体类似。 有意思的是 参与胆固醇外排的蛋白 ABCG5/8 是由两个六次跨膜的蛋白组成的双分子复合体, 其拓 扑结构和 NPC1L1有类似之处。 有预测 ABCG5/8通过类似于泵的方式通过水解 ATP来 外排胆固醇, 与 ABCG5/8很相似的 ABCG1和 ABCA1也被推测是分子泵。 NPC1是和 NPC1L1同源性很高的蛋白(同源性 50%), 其拓扑结构和 NPC1L1非常相似。 NPC1在胆 固醇从溶酶体向外(内质网和质膜)运输过程中起到关键作用。 有报道表明体外表达的 NPC1蛋白有泵脂肪酸的能力, 但是不能泵胆固醇。 结合 ABCG5/8禾 P NPC1研究, 本领 域人员通常很自然会推测 NPC1L1可能是一个分子泵, 通过向细胞内泵胆固醇来促进胆 固醇的吸收。
而本发明人的实验结果却恰恰出乎意料。 首先是如果 NPC1L1 是一个分子泵, 那么 无论在人体内还是细胞培养中, 游离的单分子胆固醇将是最有效的底物。 但是在人体中 胆固醇要和胆汁酸形成 micelle才能被有效吸收, 而且在细胞培养中用 CDX包被的胆固 醇比游离的胆固醇更容易被 NPC1L1吸收; 其次, 如果 NPC1L1是一个分子泵, 那么当 给细胞胆固醇时, 应该看到胆固醇先进入细胞, 但是本发明人看到的是 NPC1L1和胆固 醇同时进入细胞内; 最后, 如果 NPC1L1是一个分子泵, 无论用微丝抑制剂还是沉默网 格蛋白来降低 NPC1L1 内吞, 都将增加胆固醇的吸收, 但是本发明人看到的是胆固醇吸 收也被抑制住了。 这些结果不但不支持 NPC1L1是分子泵的假说, 反而证明了 NPC1L1 介导的胆固醇的吸收是类似于 LDL受体内吞的方式。其实在 NPC1的报道中不难看出在 NPC1 的体外实验中的分子泵底物是脂肪酸而不是其生理条件下的底物胆固醇, 这说明 NPC1在体内运输胆固醇的方式不像是分子泵,况且游离的单分子胆固醇对细胞有毒性, 如果 NPC1或者 NPC1L1直接将游离单分子胆固醇泵入细胞质中,对细胞健康十分不利。
以上说明 NPC1L1类似于胆固醇的受体, NPC1L1通过囊泡内吞的方式吸收胆固醇。 目前现有技术中没有任何证据说明 NPC1L1是胆固醇的受体而不是胆固醇通道, 也没有 说明当 NPC1L1蛋白定位于细胞膜时是怎样吸收胆固醇的。 并且现有技术中还没有提出 具体的将 NPC1L1 蛋白作为靶点来筛选降胆固醇药物的方案。 本发明第一次揭示了从 NPC1L1 蛋白的功能入手来筛选潜在降胆固醇物质, 这比体外结合实验更可靠。 正是由 于首次揭示了 NPC1L1蛋白通过囊泡内吞途径吸收胆固醇,所以本发明人才提出该发明, 即通过分析 NPC1L1蛋白内吞来筛选潜在的降胆固醇物质, 并且筛选获得了一种活性化 合物。 在本发明提及的所有文献都在本申请中引用作为参考, 就如同每一篇文献被单独引 用作为参考那样。 此外应理解, 在阅读了本发明的上述讲授内容之后, 本领域技术人员 可以对本发明作各种改动或修改, 这些等价形式同样落于本申请所附权利要求书所限定 的范围。

Claims

权 利 要 求
1. 一种筛选潜在的降胆固醇物质的方法, 其特征在于, 所述方法包括:
(1) 用胆固醇处理表达 NPC1L1蛋白的细胞,并确定细胞囊泡内吞 NPC1L1蛋白的程 度;
(2) 在候选物质存在下, 如(1)所述处理表达 NPC1L1蛋白的细胞, 再次确定囊泡内 吞 NPC1L1蛋白的程度; 和
(3) 比较 (1)和 (2)中囊泡内吞 NPC1L1蛋白的差异;
其中, 如果 (2)中囊泡内吞 NPC1L1蛋白的程度在统计学上低于 (1) 中囊泡内吞 NPC1L1蛋白的程度, 则所述候选物质是潜在的降胆固醇物质。
2. 如权利要求 1所述的方法, 其特征在于, (1)或 (2)中, 所述的表达 NPC1L1蛋白的 细胞在胆固醇处理前预先经过降胆固醇处理。
3. 如权利要求 1所述的方法, 其特征在于, (1)或 (2)中, 还包括: 确定细胞中笼型蛋 白与 NPC1L1蛋白的结合程度; 并且,
(3)中, 还包括: 比较 (1)和 (2)中笼形蛋白与 NPC1L1蛋白的结合程度;
其中, 如果 (2)中笼型蛋白与 NPC1L1蛋白的结合程度在统计学上低于 (1) 中笼型蛋 白与 NPC1L1蛋白的结合程度, 则所述候选物质是潜在的降胆固醇物质。
4. 如权利要求 1所述的方法, 其特征在于, (1)或 (2)中, 还包括: 确定细胞中 AP2 复合体相关蛋白与 NPC1L1蛋白的结合程度; 并且,
(3)中, 还包括: 比较 (1)和 (2)中 AP2复合体相关蛋白与 NPC1L1蛋白的结合程度; 其中,如果 (2)中 AP2复合体相关蛋白与 NPC1L1蛋白的结合程度在统计学上低于 (1) 中 AP2复合体相关蛋白与 NPC1L1蛋白的结合程度,则所述候选物质是潜在的降胆固醇 物质。
5. 如权利要求 1所述的方法, 其特征在于, 所述的细胞是重组细胞, 其基因组中含 有表达盒, 所述表达盒含有: 可操作性连接的 NPC1L1蛋白的编码基因和报告基因。
6. 如权利要求 1所述的方法, 其特征在于, 所述的 NPC1L1蛋白是一种融合蛋白, 其包含 NPC1L1蛋白与标签蛋白, 且所述的标签蛋白位于 NPC1L1蛋白的胞外区域。
7. 如权利要求 6所述的方法, 其特征在于, 所述的标签蛋白位于 NPC1L1蛋白的第 8跨膜区与第 9跨膜区之间。
8. 如权利要求 7所述的方法, 其特征在于, 所述的标签蛋白位于 NPC1L1蛋白上第
986位氨基酸与第 987位氨基酸之间。
9. 如权利要求 8 所述的方法, 其特征在于, 通过鉴定细胞标签蛋白的定位来确定 NPC1L1蛋白的定位, 进而确定细胞囊泡内吞 NPC1L1蛋白的程度。
10. 如权利要求 9所述的方法, 其特征在于, 所述通过鉴定细胞标签蛋白的定位来 确定 NPC1L1蛋白的定位, 进而确定细胞囊泡内吞 NPC1L1蛋白的程度的方法包括: (1) 在不通透细胞的情况下, 标记位于细胞膜上的标签蛋白;
(2) 在通透细胞的情况下, 标记全细胞的标签蛋白;
(3) 分析或计算 (1)中细胞膜上标签蛋白占 (2)中全细胞标签蛋白的百分比; 如细胞膜 上的标签蛋白所占百分比在统计学上明显增加, 则 NPC1L1蛋白定位在细胞膜上的比例 明显增加, 进而表明细胞囊泡内吞 NPC1L1蛋白的程度明显降低。
11. 如权利要求 1所述的方法, 其特征在于, 所述的方法还包括: 对获得的潜在物质 进行进一步的细胞实验和 /或动物试验, 选择和确定对于降胆固醇有用的物质。
12. 一种筛选潜在的降胆固醇物质的方法, 其特征在于, 所述方法包括:
(a) 用候选物质处理表达介导 NPC1L1内吞的蛋白的细胞;
(b) 检测所述细胞中所述蛋白的表达或活性;
其中, 若所述候选物质可降低所述蛋白的表达或活性, 则表明该候选物质是潜在的 降胆固醇物质。
13. 如权利要求 12所述的方法, 其特征在于,
步骤 (a)包括: 在测试组中, 将候选物质加入到表达介导 NPC1L1 内吞的蛋白的细胞 中; 和 /或
步骤 (b)包括: 检测测试组的细胞中所述蛋白的表达或活性, 并与对照组比较, 其中 所述的对照组是不添加所述候选物质的表达所述蛋白的细胞;
如果测试组中所述蛋白的表达或活性在统计学上低于对照组, 就表明该候选物是潜 在的降胆固醇物质。
14. 如权利要求 12或 13所述的方法, 其特征在于, 所述介导 NPC1L1 内吞的蛋白 是笼形蛋白和 /或 AP2复合体。
15. 一种抑制 NPC1L1蛋白内吞的物质在制备降胆固醇药物中的用途。
16. 如权利要求 15所述的用途, 其特征在于, 所述抑制 NPC1L1蛋白内吞的物质是 抑制笼形蛋白和 /或 AP2复合体与 NPC1L1蛋白相互作用的物质。
17. 如权利要求 15或 16所述的用途, 其特征在于, 所述抑制 NPC1L1蛋白内吞的 物质是 β , β -二甲基丙烯酰阿卡宁或 25-羟胆固醇。
18. —种筛选潜在的降胆固醇物质的方法, 其特征在于, 所述方法包括:
(1) 用胆固醇与 NPC1L1蛋白的 ΝΗ2端结构域接触, 检测胆固醇与 NPC1L1蛋白的 ΝΗ2端结构域的结合情况;
(2) 用胆固醇与 NPC1L1蛋白的 ΝΗ2端结构域接触, 并加入候选物质, 检测胆固醇 与 NPC1L1蛋白的 ΝΗ2端结构域的结合情况;
其中, 如 (2)中胆固醇与 NPC1L1蛋白的 ΝΗ2端结构域的结合强度显著弱于或结合量 显著低于 (1)中胆固醇与 NPC1L1蛋白的 ΝΗ2端结构域的结合强度或结合量, 则所述候 选物质是潜在的降胆固醇物质。
19. 一种筛选潜在的降胆固醇物质的方法, 其特征在于, 所述方法包括: 将候选物质 与 NPC1L1蛋白的 NH2端结构域接触, 检测候选物质与 NPC1L1蛋白的 NH2端结构域 的结合情况; 如候选物质与 NPC1L1蛋白的 NH2端结构域发生特异结合, 则所述候选物 质是潜在的降胆固醇物质。
20. 如权利要求 18或 19所述的方法, 其特征在于, 所述的 NPC1L1蛋白的 ΝΗ^ 结构域含有 GenBank登录号 FJ481 111所示序列中第 18-260位氨基酸。
21. 采用如权利要求 18或 19所述的方法筛选获得的物质。
22. 一种融合蛋白, 其特征在于, 所述蛋白包含 NPC1L1蛋白与标签蛋白, 且所述 的标签蛋白位于 NPC1L1蛋白的胞外区域。
23. 一种核酸序列, 其特征在于, 所述的核酸序列编码权利要求 22所述的融合蛋白。
24. 一种重组载体, 其特征在于, 所述的重组载体含有权利要求 23所述的核酸序列。
25. 一种宿主细胞, 其特征在于, 所述的宿主细胞含有权利要求 24所述的重组载体, 或其基因组中整合有权利要求 23所述的核酸序列。
26. 权利要求 25所述的宿主细胞的用途, 其特征在于, 用于分析 NPC1L1蛋白的细 胞亚定位。
PCT/CN2009/071776 2008-05-13 2009-05-13 基于分析npc1l1蛋白亚细胞定位变化筛选降胆固醇新药的方法 WO2009138035A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810037320.9 2008-05-13
CN200810037320 2008-05-13

Publications (1)

Publication Number Publication Date
WO2009138035A1 true WO2009138035A1 (zh) 2009-11-19

Family

ID=41318370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071776 WO2009138035A1 (zh) 2008-05-13 2009-05-13 基于分析npc1l1蛋白亚细胞定位变化筛选降胆固醇新药的方法

Country Status (2)

Country Link
CN (1) CN101580871B (zh)
WO (1) WO2009138035A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922554A (en) * 1995-10-30 1999-07-13 The Regents Of The University Of California Inhibition of cellular uptake of cholesterol
US20040093629A1 (en) * 2002-07-19 2004-05-13 Schering Corporation NPC1L1 (NPC3) and methods of use thereof
WO2005069900A2 (en) * 2004-01-16 2005-08-04 Merck & Co., Inc. Npc1l1 (npc3) and methods of identifying ligands thereof
WO2006015365A1 (en) * 2004-07-30 2006-02-09 Mount Sinai School Of Medicine Of New York University Npc1l1 and npc1l1 inhibitors and methods of use thereof
WO2006065709A2 (en) * 2004-12-15 2006-06-22 Schering Corporation Functional assays for cholesterol absorption inhibitors
WO2007100807A2 (en) * 2006-02-24 2007-09-07 Schering Corporation Npc1l1 orthologues

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007008529A2 (en) * 2005-07-08 2007-01-18 Kalypsys, Inc Celullar cholesterol absorption modifiers
WO2007016643A2 (en) * 2005-08-01 2007-02-08 Mount Sinai School Of Medicine Of New York University A method for extending longevity using npc1l1 antagonists

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922554A (en) * 1995-10-30 1999-07-13 The Regents Of The University Of California Inhibition of cellular uptake of cholesterol
US20040093629A1 (en) * 2002-07-19 2004-05-13 Schering Corporation NPC1L1 (NPC3) and methods of use thereof
WO2005069900A2 (en) * 2004-01-16 2005-08-04 Merck & Co., Inc. Npc1l1 (npc3) and methods of identifying ligands thereof
WO2006015365A1 (en) * 2004-07-30 2006-02-09 Mount Sinai School Of Medicine Of New York University Npc1l1 and npc1l1 inhibitors and methods of use thereof
WO2006065709A2 (en) * 2004-12-15 2006-06-22 Schering Corporation Functional assays for cholesterol absorption inhibitors
WO2007100807A2 (en) * 2006-02-24 2007-09-07 Schering Corporation Npc1l1 orthologues

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ADAM C. BERGER ET AL.: "The subcellular localization of the Niemann-Pick type C proteins depends on the adaptor complex AP-3", JOURNAL OF CELL SCIENCE, vol. 120, 2007, pages 3640 - 3652 *
E. JOAN BLANCHETTE-MACKIE: "Intracellular cholesterol trafficking: role of the NPC protein", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1486, 2000, pages 171 - 183 *
GE, LIANG ET AL.: "The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1", CELL METABOLISM, vol. 7, June 2008 (2008-06-01), pages 508 - 519 *
HARALD PICHLER ET AL.: "Where sterols are required for endocytosis", BIOCHIMICA ET BIOPHYSICAACTA, vol. 1666, 2004, pages 51 - 61 *
SCOTT W ALTMANN ET AL.: "Niemann-Pick Cl like 1 protein is critical for intestinal cholesterol absorption", SCIENCE, vol. 303, 20 February 2004 (2004-02-20), pages 1201 - 1204 *
YU, LIQING ET AL.: "Cholesterol-regulated translocation of NPC1L1 to the cell surface facilitates free cholesterol uptake", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 281, no. 10, 10 March 2006 (2006-03-10), pages 6616 - 6624 *

Also Published As

Publication number Publication date
CN101580871B (zh) 2013-06-05
CN101580871A (zh) 2009-11-18

Similar Documents

Publication Publication Date Title
Teo et al. Unravelling cytosolic delivery of cell penetrating peptides with a quantitative endosomal escape assay
Ye et al. BBSome trains remove activated GPCRs from cilia by enabling passage through the transition zone
Schneider et al. Study of mucin turnover in the small intestine by in vivo labeling
Sheikh Abdul Kadir et al. Bile acid-induced arrhythmia is mediated by muscarinic M2 receptors in neonatal rat cardiomyocytes
Leung et al. The truncated ghrelin receptor polypeptide (GHS-R1b) acts as a dominant-negative mutant of the ghrelin receptor
Pak et al. Transport of LAPTM5 to lysosomes requires association with the ubiquitin ligase Nedd4, but not LAPTM5 ubiquitination
Silvis et al. Rab11b regulates the apical recycling of the cystic fibrosis transmembrane conductance regulator in polarized intestinal epithelial cells
Cui et al. Monocyte-derived alveolar macrophage apolipoprotein E participates in pulmonary fibrosis resolution
Méndez-Acevedo et al. A novel family of mammalian transmembrane proteins involved in cholesterol transport
Navarro et al. NCS-1 associates with adenosine A2A receptors and modulates receptor function
Fong-Ngern et al. Surface heat shock protein 90 serves as a potential receptor for calcium oxalate crystal on apical membrane of renal tubular epithelial cells
Tu et al. Unique leptin trafficking by a tailless receptor
Huang et al. Internalization of UT-A1 urea transporter is dynamin dependent and mediated by both caveolae-and clathrin-coated pit pathways
Artegiani et al. The interaction with HMG20a/b proteins suggests a potential role for β-dystrobrevin in neuronal differentiation
O-Uchi et al. Overexpression of ryanodine receptor type 1 enhances mitochondrial fragmentation and Ca2+-induced ATP production in cardiac H9c2 myoblasts
Sugiura et al. PDZK1 regulates two intestinal solute carriers (Slc15a1 and Slc22a5) in mice
Pons et al. Role of the ubiquitin–proteasome system in the regulation of P2Y 13 receptor expression: impact on hepatic HDL uptake
US8835171B2 (en) Materials and methods related to sodium/potassium adenosine triphosphase and cholesterol
Sud et al. Caveolin 1 is required for the activation of endothelial nitric oxide synthase in response to 17β-estradiol
Zhong et al. OSBP-related protein 7 interacts with GATE-16 and negatively regulates GS28 protein stability
van der Horst et al. Dynein regulates Kv7. 4 channel trafficking from the cell membrane
Jing et al. Beta2-GPI: a novel factor in the development of hepatocellular carcinoma
Carrasquillo et al. SNF8, a member of the ESCRT-II complex, interacts with TRPC6 and enhances its channel activity
Li et al. BVES is a novel interactor of ANO5 and regulates myoblast differentiation
Wei et al. 15-PGDH/15-KETE plays a role in hypoxia-induced pulmonary vascular remodeling through ERK1/2-dependent PAR-2 pathway

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09745419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09745419

Country of ref document: EP

Kind code of ref document: A1