WO2009136366A2 - Device and method of combusting solid fuel with oxygen - Google Patents

Device and method of combusting solid fuel with oxygen Download PDF

Info

Publication number
WO2009136366A2
WO2009136366A2 PCT/IB2009/051844 IB2009051844W WO2009136366A2 WO 2009136366 A2 WO2009136366 A2 WO 2009136366A2 IB 2009051844 W IB2009051844 W IB 2009051844W WO 2009136366 A2 WO2009136366 A2 WO 2009136366A2
Authority
WO
WIPO (PCT)
Prior art keywords
conduit
stream
oxygen
ballast gas
gas flow
Prior art date
Application number
PCT/IB2009/051844
Other languages
French (fr)
Other versions
WO2009136366A3 (en
Inventor
Rajani Varagani
Patrick Recourt
Remi Tsiava
Xulin Sun
Brenice Belasse
Original Assignee
L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Publication of WO2009136366A2 publication Critical patent/WO2009136366A2/en
Publication of WO2009136366A3 publication Critical patent/WO2009136366A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/003Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • This invention relates to a method combusting solid fuei with oxygen.
  • one proposed solution is to reinject flue gas produced by the said combustion or another combustion to partly make up for the absence of nitrogen. This procedure serves to avoid a high production of NO x due both to the absence of nitrogen, and also to a iower flame temperature than in all- oxygen combustion.
  • the reinjected flue gas often nullifies the benefits of oxycombustion, such as, in particular, lower downstream flue gas treatment, efficiency increase due to high temperature combustion process etc..
  • Coal is a major source of fuel in the world. Different devices and methods are available today to combust coai. Coal is usually combusted with air or with a mixture of oxygen and flue gases ('synthetic air'). Prior art exists today where oxygen is mixed with flue gas and introduced into the combustor. Separate injection of fuel, oxygen, and flue gas have been proposed for gaseous and liquid fuels, where the mixing of fuel and oxidants are relatively easy. A!so, there is no conveying media required to transport gaseous or liquid fuels, whereas such a conveying media is required for a solid fuel combustion.
  • Synthetic air requires mixing of oxygen with flue gases and there is less flexibility with respect to the oxygen to flue gas ratio (typically about 18% to about 40%) due to safety and technical issues. Synthetic air also dilutes the combustion which makes it difficult to burn low quality coal.
  • the present invention is a method of combustion of a solid fuel stream with oxygen.
  • the present invention includes introducing a first stream, comprising a first portion of substantially pure oxygen, into a first conduit.
  • the present invention includes introducing a second stream, comprising a solid fuel stream and a conveying media, into a second conduit, wherein said second conduit is concentric with, and surrounding, said first conduit.
  • the present invention includes introducing a third stream, comprising a second portion of substantially pure oxygen, into a third conduit, wherein said third conduit is concentric with, and surrounding, said first conduit and said second conduit.
  • the present invention includes igniting said first stream, said second stream, and said third stream as they exit said first conduit, said second conduit and said third conduit, in such a way as to create a flame.
  • the present invention includes introducing a fourth stream, comprising a first portion of ballast gas, into a fourth conduit, wherein said fourth conduit is concentric with, and surrounding, said first conduit, said second conduit, and said third conduit
  • the present invention includes introducing a fifth stream, comprising a second portion of ballast gas, into a fifth conduit, wherein said fifth conduit is concentric with, and surrounding, said first conduit, said second conduit, said third conduit and said fourth conduit
  • the present invention includes surrounding said with said fourth stream and said fifth stream, as they exit said fourth conduit and said fifth conduit
  • Figure 1 is a schematic representation of one embodiment of the present invention
  • Figure 2 is a schematic representation of another embodiment of the present invention, indicating the fourth stream being divergent and the fifth stream being convergent
  • Figure 3 is a schematic representation of another embodiment of the present invention, indicating the swirling devices in the fourth and fifth streams, as well as the dampers
  • Figure 4 is a schematic representation of another embodiment of the present invention, indicating the control system and swirling devices in the 2 nd stream.
  • the proposed method detaches the oxygen and flue gas introduction and improves the flexibility of having a broad range to the oxygen to flue gas ratio.
  • the proposed method takes advantage of oxycombustion to generate high temperatures, thereby accelerating the devolatilization of coa! and thus the combustion of the coal. This dilution happens only after the combustion with pure oxygen to maintain the required furnace wall temperature.
  • the present invention proposes an innovative device and method to combust solid fuel such as coal with pure oxygen.
  • Fuel, oxygen, and flue gases are introduced separately into the boiler via the proposed device / burner.
  • This device enables independent fiow control of flue gas and oxygen compared to the state of the art, where oxygen and fiue gas are mixed then introduced.
  • the proposed method enhances the devolatilization of fuel with the use of pure oxygen and thus improves the combustion process. This promotes the utilization of low quality coals which are difficult to burn with air or synthetic air with existing technologies.
  • injector 100 is presented.
  • Coal is introduced through coal pipe 102 (second stream) of the burner, with a conveying media, preferably recycled flue gas (either alone or combined wtth oxygen).
  • the coal may be injected with or without inducing a swirl, depending on the quality of the coal, fSame length required etc.
  • a first portion of the substantially pure oxygen is introduced through lance 101 (first stream), to improve the flame stability.
  • a second portion of substantially pure oxygen is introduced into oxygen orifice 103 (third stream).
  • Oxygen orifice 103 (third stream) surrounds coal pipe 102 (second stream) and is introduced to facilitate the complete combustion of coal in an oxygen environment.
  • First recycled fiue gas stream 104 (fourth stream) and second recycled flue gas stream 105 (fifth stream) are introduced on the outer perimeter of oxygen orifice 103 (third stream), thereby maintaining the furnace temperature to an acceptable level.
  • the oxyflame is diluted to the required extent with recycled flue gases (104, 105) (fourth stream and fifth stream) around the pure oxygen injection (103).
  • injector 200 is presented.
  • Coal is introduced through coal pipe 202 (second stream) of the burner, with a conveying media, preferably recycled flue gas (either alone or combined with oxygen).
  • the coal may be Injected with or without inducing a swirl, depending on the quality of the coal.
  • a first portion of the substantially pure oxygen is introduced through lance 201 (first stream), to improve the flame stability.
  • a second portion of substantially pure oxygen is introduced into oxygen orifice 203 (third stream).
  • Oxygen orifice 203 (third stream) surrounds coal pipe 202 (second stream) and is introduced to facilitate the complete combustion of coal in an oxygen environment.
  • First recycied flue gas stream 204 (fourth stream) and second recycled flue gas stream 205 (fifth stream) are introduced on the outer perimeter of oxygen orifice 203 (third stream), thereby maintaining the furnace temperature to an acceptable level.
  • the oxyflame is diluted to the required extent with recycled flue gases (204, 205) (fourth stream and fifth stream) around the pure oxygen injection (203).
  • the flue gases (204, 205) can be injected in a non-axial fashion as shown in figure 2.
  • the majority of the flue gases are preferably injected at an angle that is divergent from the axial centreline CL of injector 200, with a minor flow being injected at an angle that is convergent with the axial centreline CL.
  • injector 300 is presented.
  • Coal is introduced through coal pipe 302 (second stream) of the burner, with a conveying media, preferably recycled flue gas (either alone or combined with oxygen).
  • the coal may be injected with or without inducing a swirl, depending on the quality of the coal, flame length required etc. tn order to further improve the combustibility of very low quality solid fuel, a secondary fuel such as oil or gas may be injected along with the solid fuel into coal pipe 302 (second stream). It is also possible to valorize low quality secondary fuel when the solid fuel does not need the assistance of the secondary fuel (i.e. good quality solid fuel).
  • a first portion of the substantially pure oxygen is introduced through lance 301 (first stream), to improve the flame stability.
  • a second portion of substantially pure oxygen is introduced into oxygen orifice 303 (third stream).
  • Oxygen orifice 303 (third stream) surrounds coal pipe 302 (second stream) and is introduced to facilitate the complete combustion of coal in an oxygen environment.
  • First recycled flue gas stream 304 (fourth stream) and second recycled flue gas stream 305 (fifth stream) are introduced on the outer perimeter of oxygen orifice 303 (third stream) thereby maintaining the furnace temperature to an acceptable level.
  • First recycled flue gas stream 304 (fourth stream) may be introduced with a clockwise swirl A or a counter-clockwise swirl B.
  • Second recycled flue gas stream 305 (fifth stream) may be introduced with a clockwise swiri C or a counter-clockwise swirl D.
  • the oxyflame is diluted to the required extent with recycled flue gases (304, 305) around the pure oxygen injection (303).
  • the flue gases (304, 305) can be injected in a non-axial fashion as shown in figure 3?.
  • the majority of the flue gases are preferably injected at an angle that is divergent from the axial centreline CL of injector 300, with a minor flow being injected at an angle that is convergent with the axial centreline CL.
  • swirl can be introduced into the flue gases (304, 305).
  • opposite swirls are preferably induced in the two zones of flue gas injection by element 306.
  • the flow between the two fiue gas injection zones can be changed with damper 307 positioned between these zones.
  • injector 400 is presented.
  • Coal is introduced through coal pipe 402 (second stream) of the burner, with a conveying media, preferably recycled flue gas (either alone or combined with oxygen).
  • the coa! may be injected with or without inducing a swirl, depending on the quality of the coal, flame length required etc.
  • a first portion of the substantially pure oxygen is introduced through lance 401 (first stream), to improve the flame stability.
  • a second portion of substantially pure oxygen is introduced into oxygen orifice 403 (third stream).
  • Oxygen orifice 403 (third stream) surrounds coal pipe 402 (second stream) and is introduced to facilitate the complete combustion of coal in an oxygen environment.
  • First recycled flue gas stream 404 (fourth stream) and second recycled flue gas stream 405 (fifth stream) are introduced on the outer perimeter of oxygen orifice 403 (third stream), thereby maintaining the furnace temperature to an acceptable level.
  • the oxyfiame is diluted to the required extent with recycled flue gases (404, 405) around the pure oxygen injection (403).
  • the flue gases (404, 405) can be injected in a non-axial fashion as shown in figure 4.
  • the majority of the flue gases are preferably injected at an angle that is divergent from the axial centreline CL of injector 400, with a minor flow being injected at an angle that is convergent with the axial centreline CL.
  • swirl can be introduced into the fiue gases (404, 405).
  • opposite swirls are preferably induced in the two zones of flue gas injection by element 406.
  • the flow between the two flue gas injection zones can be changed with damper 407 positioned between these zones.
  • a control system 408 may automatically adjust the combustion disturbances that may be caused with changing quality of coal or other purturbences.
  • the staging of oxygen between lance 401 and surrounding the coal pipe 402 can be changed along with the distribution of recycled flue gases in the two surrounding zones (404, 405).
  • the combustion characteristics can be measured by monitoring the flue gases (409) and the information then being fed to the control system.
  • the oxygen in another embodiment, in order to improve the efficiency of the combustion process, can be preheated to a higher temperature before introduction into the burner.
  • the heat source may be the flue gas exiting the boiler, or any other locally available heat source, or heat source that is part of the present process.
  • the oxygen streams (101,201 ,301,401, 103,203,303,403) can be injected in many different ways such as, but not limited to, axial, radial, convergent, divergent, with and with out swirl or the combination of some of these.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Supply (AREA)

Abstract

The present invention is a method of combustion of a solid fuel stream with oxygen. The present invention includes introducing a first stream, comprising a first portion of substantially pure oxygen, into a first conduit. The present invention includes introducing a second stream, comprising a solid fuel stream and a conveying media, into a second conduit, wherein the second conduit is concentric with, and surrounding, the first conduit. The present invention includes introducing a third stream, comprising a second portion of substantially pure oxygen, into a third conduit, wherein the third conduit is concentric with, and surrounding, the first conduit and the second conduit. The present invention includes igniting the first stream, the second stream, and the third stream as they exit the first conduit, the second conduit and the third conduit, in such a way as to create a flame. The present invention includes introducing a fourth stream, comprising a first portion of ballast gas, into a fourth conduit, wherein the fourth conduit is concentric with, and surrounding, the first conduit, the second conduit, and the third conduit. The present invention includes introducing a fifth stream, comprising a second portion of ballast gas, into a fifth conduit, wherein the fifth conduit is concentric with, and surrounding, the first conduit, the second conduit, the third conduit and the fourth conduit.

Description

DEVICE AND METHOD OF COMBUSTING SOLID FUEL WITH OXYGEN
Field of the Invention
This invention relates to a method combusting solid fuei with oxygen.
Background
With the increasingly stringent environmental restrictions, particularly in terms of the production of CO2 and NOx, the combustion of a fuei using oxygen or a high-oxygen-content gas is becoming increasingly attractive for the combustion of fossil fuels. However, the conventional combustion devices using air as oxidizer do not always have the geometry, nor the requisite materials, for operating with oxygen or a high-oxygen-content gas. This is because the absence of the nitrogen ballast in high-oxygen or all- oxygen combustion significantly modifies the heat transfer modes, the species concentrations, and the pressure conditions in the combustion chamber.
In order to operate with all-oxygen combustion in these installations, one proposed solution is to reinject flue gas produced by the said combustion or another combustion to partly make up for the absence of nitrogen. This procedure serves to avoid a high production of NOx due both to the absence of nitrogen, and also to a iower flame temperature than in all- oxygen combustion. However, the reinjected flue gas often nullifies the benefits of oxycombustion, such as, in particular, lower downstream flue gas treatment, efficiency increase due to high temperature combustion process etc..
Coal is a major source of fuel in the world. Different devices and methods are available today to combust coai. Coal is usually combusted with air or with a mixture of oxygen and flue gases ('synthetic air'). Prior art exists today where oxygen is mixed with flue gas and introduced into the combustor. Separate injection of fuel, oxygen, and flue gas have been proposed for gaseous and liquid fuels, where the mixing of fuel and oxidants are relatively easy. A!so, there is no conveying media required to transport gaseous or liquid fuels, whereas such a conveying media is required for a solid fuel combustion.
Synthetic air requires mixing of oxygen with flue gases and there is less flexibility with respect to the oxygen to flue gas ratio (typically about 18% to about 40%) due to safety and technical issues. Synthetic air also dilutes the combustion which makes it difficult to burn low quality coal.
Therefore, there exists a need in the industry for a solution that will allow the above problems to be circumvented.
Summary
The present invention is a method of combustion of a solid fuel stream with oxygen. The present invention includes introducing a first stream, comprising a first portion of substantially pure oxygen, into a first conduit. The present invention includes introducing a second stream, comprising a solid fuel stream and a conveying media, into a second conduit, wherein said second conduit is concentric with, and surrounding, said first conduit. The present invention includes introducing a third stream, comprising a second portion of substantially pure oxygen, into a third conduit, wherein said third conduit is concentric with, and surrounding, said first conduit and said second conduit. The present invention includes igniting said first stream, said second stream, and said third stream as they exit said first conduit, said second conduit and said third conduit, in such a way as to create a flame. The present invention includes introducing a fourth stream, comprising a first portion of ballast gas, into a fourth conduit, wherein said fourth conduit is concentric with, and surrounding, said first conduit, said second conduit, and said third conduit The present invention includes introducing a fifth stream, comprising a second portion of ballast gas, into a fifth conduit, wherein said fifth conduit is concentric with, and surrounding, said first conduit, said second conduit, said third conduit and said fourth conduit The present invention includes surrounding said with said fourth stream and said fifth stream, as they exit said fourth conduit and said fifth conduit
Brief Description of Drawings
The invention may be understood by reference to the following description taken in conjunction with the accompanying drawings, and in which
Figure 1 is a schematic representation of one embodiment of the present invention
Figure 2 is a schematic representation of another embodiment of the present invention, indicating the fourth stream being divergent and the fifth stream being convergent
Figure 3 is a schematic representation of another embodiment of the present invention, indicating the swirling devices in the fourth and fifth streams, as well as the dampers
Figure 4 is a schematic representation of another embodiment of the present invention, indicating the control system and swirling devices in the 2nd stream.
Description of Preferred Embodiments
The proposed method detaches the oxygen and flue gas introduction and improves the flexibility of having a broad range to the oxygen to flue gas ratio. The proposed method takes advantage of oxycombustion to generate high temperatures, thereby accelerating the devolatilization of coa! and thus the combustion of the coal. This dilution happens only after the combustion with pure oxygen to maintain the required furnace wall temperature.
The present invention proposes an innovative device and method to combust solid fuel such as coal with pure oxygen. Fuel, oxygen, and flue gases are introduced separately into the boiler via the proposed device / burner. This device enables independent fiow control of flue gas and oxygen compared to the state of the art, where oxygen and fiue gas are mixed then introduced. The proposed method enhances the devolatilization of fuel with the use of pure oxygen and thus improves the combustion process. This promotes the utilization of low quality coals which are difficult to burn with air or synthetic air with existing technologies.
Turning to Figure 1 , injector 100 is presented. Coal is introduced through coal pipe 102 (second stream) of the burner, with a conveying media, preferably recycled flue gas (either alone or combined wtth oxygen). The coal may be injected with or without inducing a swirl, depending on the quality of the coal, fSame length required etc. A first portion of the substantially pure oxygen is introduced through lance 101 (first stream), to improve the flame stability. A second portion of substantially pure oxygen is introduced into oxygen orifice 103 (third stream). Oxygen orifice 103 (third stream) surrounds coal pipe 102 (second stream) and is introduced to facilitate the complete combustion of coal in an oxygen environment. First recycled fiue gas stream 104 (fourth stream) and second recycled flue gas stream 105 (fifth stream) are introduced on the outer perimeter of oxygen orifice 103 (third stream), thereby maintaining the furnace temperature to an acceptable level. The oxyflame is diluted to the required extent with recycled flue gases (104, 105) (fourth stream and fifth stream) around the pure oxygen injection (103). Turning to Figure 2, injector 200 is presented. Coal is introduced through coal pipe 202 (second stream) of the burner, with a conveying media, preferably recycled flue gas (either alone or combined with oxygen). The coal may be Injected with or without inducing a swirl, depending on the quality of the coal. A first portion of the substantially pure oxygen is introduced through lance 201 (first stream), to improve the flame stability. A second portion of substantially pure oxygen is introduced into oxygen orifice 203 (third stream). Oxygen orifice 203 (third stream) surrounds coal pipe 202 (second stream) and is introduced to facilitate the complete combustion of coal in an oxygen environment. First recycied flue gas stream 204 (fourth stream) and second recycled flue gas stream 205 (fifth stream) are introduced on the outer perimeter of oxygen orifice 203 (third stream), thereby maintaining the furnace temperature to an acceptable level. The oxyflame is diluted to the required extent with recycled flue gases (204, 205) (fourth stream and fifth stream) around the pure oxygen injection (203). In this embodiment, in order to improve the mixing of the diiutant / flue gases (204, 205) with the flame (201, 202, 203) the flue gases (204, 205) can be injected in a non-axial fashion as shown in figure 2. The majority of the flue gases are preferably injected at an angle that is divergent from the axial centreline CL of injector 200, with a minor flow being injected at an angle that is convergent with the axial centreline CL.
Turning to Figure 3, injector 300 is presented. Coal is introduced through coal pipe 302 (second stream) of the burner, with a conveying media, preferably recycled flue gas (either alone or combined with oxygen). The coal may be injected with or without inducing a swirl, depending on the quality of the coal, flame length required etc. tn order to further improve the combustibility of very low quality solid fuel, a secondary fuel such as oil or gas may be injected along with the solid fuel into coal pipe 302 (second stream). It is also possible to valorize low quality secondary fuel when the solid fuel does not need the assistance of the secondary fuel (i.e. good quality solid fuel). A first portion of the substantially pure oxygen is introduced through lance 301 (first stream), to improve the flame stability. A second portion of substantially pure oxygen is introduced into oxygen orifice 303 (third stream). Oxygen orifice 303 (third stream) surrounds coal pipe 302 (second stream) and is introduced to facilitate the complete combustion of coal in an oxygen environment. First recycled flue gas stream 304 (fourth stream) and second recycled flue gas stream 305 (fifth stream) are introduced on the outer perimeter of oxygen orifice 303 (third stream) thereby maintaining the furnace temperature to an acceptable level. First recycled flue gas stream 304 (fourth stream) may be introduced with a clockwise swirl A or a counter-clockwise swirl B. Second recycled flue gas stream 305 (fifth stream) may be introduced with a clockwise swiri C or a counter-clockwise swirl D.
The oxyflame is diluted to the required extent with recycled flue gases (304, 305) around the pure oxygen injection (303). In this embodiment, in order to improve the mixing of the dilutant / flue gases (304, 305) with the flame (301, 302, 303) the flue gases (304, 305) can be injected in a non-axial fashion as shown in figure 3?. The majority of the flue gases are preferably injected at an angle that is divergent from the axial centreline CL of injector 300, with a minor flow being injected at an angle that is convergent with the axial centreline CL.
In order to further improve the mixing of the flue gases (304, 305) with the flame (301, 302, 303), swirl can be introduced into the flue gases (304, 305). As shown in Figure 3, opposite swirls are preferably induced in the two zones of flue gas injection by element 306. The flow between the two fiue gas injection zones can be changed with damper 307 positioned between these zones. Turning to Figure 4, injector 400 is presented. Coal is introduced through coal pipe 402 (second stream) of the burner, with a conveying media, preferably recycled flue gas (either alone or combined with oxygen). The coa! may be injected with or without inducing a swirl, depending on the quality of the coal, flame length required etc. A first portion of the substantially pure oxygen is introduced through lance 401 (first stream), to improve the flame stability. A second portion of substantially pure oxygen is introduced into oxygen orifice 403 (third stream). Oxygen orifice 403 (third stream) surrounds coal pipe 402 (second stream) and is introduced to facilitate the complete combustion of coal in an oxygen environment. First recycled flue gas stream 404 (fourth stream) and second recycled flue gas stream 405 (fifth stream) are introduced on the outer perimeter of oxygen orifice 403 (third stream), thereby maintaining the furnace temperature to an acceptable level. The oxyfiame is diluted to the required extent with recycled flue gases (404, 405) around the pure oxygen injection (403). In this embodiment, in order to improve the mixing of the dilutant / flue gases (404, 305) with the flame (401 , 402, 403) the flue gases (404, 405) can be injected in a non-axial fashion as shown in figure 4. The majority of the flue gases are preferably injected at an angle that is divergent from the axial centreline CL of injector 400, with a minor flow being injected at an angle that is convergent with the axial centreline CL.
In order to further improve the mixing of the flue gases (404, 405) with the flame (401 , 402, 403), swirl can be introduced into the fiue gases (404, 405). As shown in Figure 4, opposite swirls are preferably induced in the two zones of flue gas injection by element 406. The flow between the two flue gas injection zones can be changed with damper 407 positioned between these zones.
A control system 408 may automatically adjust the combustion disturbances that may be caused with changing quality of coal or other purturbences. The staging of oxygen between lance 401 and surrounding the coal pipe 402 can be changed along with the distribution of recycled flue gases in the two surrounding zones (404, 405). The combustion characteristics can be measured by monitoring the flue gases (409) and the information then being fed to the control system.
In another embodiment, in order to improve the efficiency of the combustion process, the oxygen can be preheated to a higher temperature before introduction into the burner. The heat source may be the flue gas exiting the boiler, or any other locally available heat source, or heat source that is part of the present process. It is also envisioned that the oxygen streams (101,201 ,301,401, 103,203,303,403) can be injected in many different ways such as, but not limited to, axial, radial, convergent, divergent, with and with out swirl or the combination of some of these.
Illustrative embodiments have been described above. While the method in the present application is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings, and have been herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the method in the present application to the particular forms disclosed, but on the contrary, the method in the present application is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the method in the present application, as defined by the appended claims.
It will, of course, be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system- related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but, would nevertheless, be a routine undertaking for those of ordinary skill in the art, having the benefit of this disclosure.

Claims

What is claimed is:
1. A method of combustion of a solid fuel stream, comprising: a) introducing a first stream, comprising a first portion of substantially pure oxygen, into a first conduit, b) introducing a second stream, comprising a solid fuel stream and a conveying media, into a second conduit, wherein said second conduit is concentric with, and surrounding, said first conduit; c) introducing a third stream, comprising a second portion of substantially pure oxygen, into a third conduit, wherein said third conduit is concentric with, and surrounding, said first conduit and said second conduit, d) igniting said first stream, said second stream, and said third stream as they exit said first conduit, said second conduit and said third conduit, in such a way as to create a flame, e) introducing a fourth stream, comprising a first portion of ballast gas, into a fourth conduit, wherein said fourth conduit is concentric with, and surrounding, said first conduit, said second conduit, and said third conduit, and f) introducing a fifth stream, comprising a second portion of baliast gas, into a fifth conduit, wherein said fifth conduit is concentric with, and surrounding, said first conduit, said second conduit, said third conduit and said fourth conduit.
2. The method of claim 1 , wherein said conveying media is recycled flue gas, substantially pure oxygen, or a combination.
3. The method of claim 1 , wherein said solid fuel is coal.
4. The method of claim 1 , wherein said first portion of ballast gas is recycled flue gas.
5. The method of claim 1 , wherein said second portion of ballast gas is recycled flue gas.
6. The method of claim 1 , wherein said first conduit has a longitudinal axis, wherein said fourth conduit directs said first portion of ballast gas flow in a direction essentially divergent from said longitudinal axis.
7. The method of claim 1, wherein said first conduit has a longitudinal axis, wherein said fifth conduit directs said second portion of ballast gas flow in a direction essentially convergent from said longitudinal axis.
8. The method of claim 1 , wherein said fourth conduit creates a clockwise swirl in said first portion of ballast gas flow.
9. The method of claim 1 , wherein said fourth conduit creates a counterclockwise swirl in said first portion of ballast gas flow.
10. The method of claim 1 , wherein said fifth conduit creates a ciockwise swirl in said second portion of ballast gas flow.
11. The method of claim 1 , wherein said fifth conduit creates a counterclockwise swirl in said second portion of ballast gas flow.
12. The method of cfaim 1 , further comprising at least one damper situated on the perimeter of said fourth conduit, wherein said at least one damper allows the ratio of said first portion of ballast gas flow and said second portion of ballast gas flow to be varied.
13. The method of claim 12, wherein at least three dampers are spaced equidistant around the perimeter of said fourth conduit.
14. The method of claim 12, further comprising sensing devices situated in said first conduit, said second conduit, said third conduit, on said at least one damper, and in the recycled flue gas stream.
15. The method of claim 12, wherein said sensing devices are connected to an automatic control system.
16. The method of ciaim 1 , wherein said substantially pure oxygen is preheated prior to introduction into said first conduit.
17. The method of claim 1 , wherein said substantially pure oxygen is preheated prior to introduction into said third conduit.
18. The method of claim 1 , wherein said second stream, further comprises a secondary fuel stream.
19. The method of claim 18, wherein said secondary fue! stream is selected from the group consisting of fuel oil or fuel gas.
20. The method of claim 18, wherein said secondary fuel stream comprises process off-gas.
21. The method of claim 1 , wherein said first stream and said first conduit are eliminated, and said second stream and said second conduit are the centremost.
PCT/IB2009/051844 2008-05-05 2009-05-05 Device and method of combusting solid fuel with oxygen WO2009136366A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US5051508P 2008-05-05 2008-05-05
US61/050,515 2008-05-05
US12/435,579 2009-05-05
US12/435,579 US20090280442A1 (en) 2008-05-05 2009-05-05 Device And Method Of Combusting Solid Fuel With Oxygen

Publications (2)

Publication Number Publication Date
WO2009136366A2 true WO2009136366A2 (en) 2009-11-12
WO2009136366A3 WO2009136366A3 (en) 2010-12-16

Family

ID=40909856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2009/051844 WO2009136366A2 (en) 2008-05-05 2009-05-05 Device and method of combusting solid fuel with oxygen

Country Status (2)

Country Link
US (1) US20090280442A1 (en)
WO (1) WO2009136366A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2500640A1 (en) 2011-03-16 2012-09-19 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Low NOx combustion process and burner therefor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120129111A1 (en) * 2010-05-21 2012-05-24 Fives North America Combustion, Inc. Premix for non-gaseous fuel delivery
US8707877B2 (en) 2011-06-05 2014-04-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Solid fuel and oxygen combustion with low NOx and efficient burnout
CN102322633A (en) * 2011-09-16 2012-01-18 徐州燃控科技股份有限公司 Pure-oxygen pulverized coal entraining combustor
JP6632226B2 (en) * 2015-06-12 2020-01-22 三菱日立パワーシステムズ株式会社 Burner, combustion device, boiler and burner control method
CN107300170A (en) * 2017-08-11 2017-10-27 云汇环保科技南通有限公司 A kind of fine coal all-oxygen combustion device on smelting kiln
CN111226076B (en) * 2018-09-26 2021-12-28 太平洋水泥株式会社 Burner device for cement kiln and operation method thereof
US10845052B1 (en) * 2019-12-20 2020-11-24 Jupiter Oxygen Corporation Combustion system comprising an annular shroud burner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266306A (en) * 1986-05-14 1987-11-19 Babcock Hitachi Kk Pulverized coal burner
US5129818A (en) * 1990-09-14 1992-07-14 Benno Balsiger Method of feeding back exhaust gases in oil and gas burners
EP0710726A1 (en) * 1994-11-02 1996-05-08 Nkk Corporation Scrap melting method
CA2608054A1 (en) * 2006-10-24 2008-04-24 Air Products And Chemicals, Inc. Pulverized solid fuel burner

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE525924A (en) * 1953-01-23
US4208180A (en) * 1978-02-06 1980-06-17 Ube Industries, Ltd. Mixed-firing burners for use with pulverized coal and heavy oil
DE3518080A1 (en) * 1985-05-20 1986-11-20 Stubinen Utveckling AB, Stockholm METHOD AND DEVICE FOR BURNING LIQUID AND / OR SOLID FUELS IN POWDERED FORM
US5178533A (en) * 1989-10-04 1993-01-12 Enterprise Generale De Chauffage Industries Pillard Process for exploiting a burner and burners for a rotary tubular furnance
DK169633B1 (en) * 1990-01-29 1994-12-27 Smidth & Co As F L Burner for solid and liquid or gaseous fuel
CA2093316C (en) * 1990-10-05 2002-12-03 Janos M. Beer Combustion system for reduction of nitrogen oxides
US6315551B1 (en) * 2000-05-08 2001-11-13 Entreprise Generale De Chauffage Industriel Pillard Burners having at least three air feed ducts, including an axial air duct and a rotary air duct concentric with at least one fuel feed, and a central stabilizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266306A (en) * 1986-05-14 1987-11-19 Babcock Hitachi Kk Pulverized coal burner
US5129818A (en) * 1990-09-14 1992-07-14 Benno Balsiger Method of feeding back exhaust gases in oil and gas burners
EP0710726A1 (en) * 1994-11-02 1996-05-08 Nkk Corporation Scrap melting method
CA2608054A1 (en) * 2006-10-24 2008-04-24 Air Products And Chemicals, Inc. Pulverized solid fuel burner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2500640A1 (en) 2011-03-16 2012-09-19 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Low NOx combustion process and burner therefor
WO2012123382A1 (en) 2011-03-16 2012-09-20 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Low nox combustion process and burner therefor
US9447969B2 (en) 2011-03-16 2016-09-20 L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude Low NOx combustion process and burner therefor

Also Published As

Publication number Publication date
US20090280442A1 (en) 2009-11-12
WO2009136366A3 (en) 2010-12-16

Similar Documents

Publication Publication Date Title
US20090280442A1 (en) Device And Method Of Combusting Solid Fuel With Oxygen
US7775791B2 (en) Method and apparatus for staged combustion of air and fuel
CA2485934C (en) Low nox combustion
US9447969B2 (en) Low NOx combustion process and burner therefor
US10281140B2 (en) Low NOx combustion method and apparatus
CA2509631C (en) Process and apparatus for oxygen enrichment in fuel conveying gases
US20120129111A1 (en) Premix for non-gaseous fuel delivery
US20150226421A1 (en) Method of Co-Firing Coal or Oil with a Gaseous Fuel in a Furnace
US20120244479A1 (en) Combustion System Using Recycled Flue Gas to Boost Overfire Air
CA2692666C (en) Systems for staged combustion of air and fuel
US20060275724A1 (en) Dynamic burner reconfiguration and combustion system for process heaters and boilers
AU2012300696B2 (en) Combustion apparatus with indirect firing system
IL127097A (en) Method of effecting control over an rsfc burner
US7491055B2 (en) Oxy-fuel reburn: a method for NOx reduction by fuel reburning with oxygen
US20100282185A1 (en) Burner and method for implementing an oxycombustion
US20170045219A1 (en) Apparatus and method of controlling the thermal performance of an oxygen-fired boiler
KR101171320B1 (en) Pure oxy/genair combustion combined burner and burning system having the same
KR102068037B1 (en) Low NOx combustion device through premixing and diffusion flame formation
EP2141413A1 (en) Method for oxycombustion of pulverized solid fuels
TW202403234A (en) Burner, system, and method for hydrogen-enhanced pulverized coal ignition
CA2570259C (en) Oxy-fuel reburn: a method for nox reduction by fuel reburning with oxygen
RU2433342C2 (en) BURNER WITH CENTRAL AIR JET AND METHOD TO REDUCE NOx EMISSION OF SPECIFIED BURNER (VERSIONS)
Schefer et al. Method for control of NOx emission from combustors using fuel dilution
GB2524167A (en) Method of co-firing coal or oil with a gaseous fuel in a furnace
ZA200504684B (en) Process and apparatus for oxygen enrichment in fuel conveying gases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09742539

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09742539

Country of ref document: EP

Kind code of ref document: A2