WO2009134977A1 - Cross-linkers and their uses - Google Patents

Cross-linkers and their uses Download PDF

Info

Publication number
WO2009134977A1
WO2009134977A1 PCT/US2009/042267 US2009042267W WO2009134977A1 WO 2009134977 A1 WO2009134977 A1 WO 2009134977A1 US 2009042267 W US2009042267 W US 2009042267W WO 2009134977 A1 WO2009134977 A1 WO 2009134977A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
branched
antibody
cell
conjugate
Prior art date
Application number
PCT/US2009/042267
Other languages
French (fr)
Inventor
Ravi V. J. Chari
Robert Yongxin Zhao
Yelena Kovtun
Rajeeva Singh
Wayne Charles Widdison
Original Assignee
Immunogen, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41255419&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009134977(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to KR1020217000204A priority Critical patent/KR20210005318A/en
Priority to ES09739779.8T priority patent/ES2648122T3/en
Priority to KR1020167012866A priority patent/KR101764081B1/en
Application filed by Immunogen, Inc. filed Critical Immunogen, Inc.
Priority to MX2014002587A priority patent/MX347442B/en
Priority to NO09739779A priority patent/NO2281006T3/no
Priority to MX2010011807A priority patent/MX2010011807A/en
Priority to KR1020107026849A priority patent/KR101764927B1/en
Priority to BRPI0910746A priority patent/BRPI0910746B8/en
Priority to KR1020207014337A priority patent/KR20200058590A/en
Priority to NZ588884A priority patent/NZ588884A/en
Priority to UAA201014267A priority patent/UA113830C2/en
Priority to DK09739779.8T priority patent/DK2281006T3/en
Priority to AU2009243010A priority patent/AU2009243010B2/en
Priority to SI200931755T priority patent/SI2281006T1/en
Priority to MX2017000162A priority patent/MX359706B/en
Priority to KR1020177021215A priority patent/KR101892411B1/en
Priority to JP2011507634A priority patent/JP5769616B2/en
Priority to KR1020237031373A priority patent/KR20230133952A/en
Priority to KR1020217024975A priority patent/KR20210100223A/en
Priority to KR1020227007353A priority patent/KR20220035504A/en
Priority to KR1020227043110A priority patent/KR20230003298A/en
Priority to LTEP09739779.8T priority patent/LT2281006T/en
Priority to CA2722696A priority patent/CA2722696C/en
Priority to KR1020187023847A priority patent/KR101985885B1/en
Priority to EP09739779.8A priority patent/EP2281006B1/en
Priority to PL09739779T priority patent/PL2281006T3/en
Priority to CN200980125288.2A priority patent/CN102076717B/en
Priority to KR1020197015397A priority patent/KR102114915B1/en
Priority to RU2010148743/04A priority patent/RU2503687C2/en
Publication of WO2009134977A1 publication Critical patent/WO2009134977A1/en
Priority to IL208936A priority patent/IL208936B/en
Priority to HRP20171612TT priority patent/HRP20171612T2/en
Priority to IL264672A priority patent/IL264672B/en
Priority to IL283205A priority patent/IL283205A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/5365Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/65Peptidic linkers, binders or spacers, e.g. peptidic enzyme-labile linkers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6807Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug or compound being a sugar, nucleoside, nucleotide, nucleic acid, e.g. RNA antisense
    • A61K47/6809Antibiotics, e.g. antitumor antibiotics anthracyclins, adriamycin, doxorubicin or daunomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6849Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6889Conjugates wherein the antibody being the modifying agent and wherein the linker, binder or spacer confers particular properties to the conjugates, e.g. peptidic enzyme-labile linkers or acid-labile linkers, providing for an acid-labile immuno conjugate wherein the drug may be released from its antibody conjugated part in an acidic, e.g. tumoural or environment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/44Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members
    • C07D207/444Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/46Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with hetero atoms directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/02Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
    • C07K5/0202Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link containing the structure -NH-X-X-C(=0)-, X being an optionally substituted carbon atom or a heteroatom, e.g. beta-amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/06026Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atom, i.e. Gly or Ala
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0804Tripeptides with the first amino acid being neutral and aliphatic
    • C07K5/0806Tripeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atoms, i.e. Gly, Ala
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0819Tripeptides with the first amino acid being acidic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to the synthesis of novel charged cross linkers and cross linkers which can be processed by a target cell to give charged moieties.
  • the present invention also relates to methods of making cell-binding agent-drug conjugates comprising modification of cell-binding agents with these cross-linkers, followed by reaction with drugs, or modification of the drugs with these crosslinkers, followed by reaction with cell-binding agents.
  • the improved method of making conjugates provides the ability to link a higher number of drug molecules per cell-binding agent resulting in greater potency and providing greater aqueous solubility to the conjugates.
  • the bifunctional modification reagent iV-succinimidyl 3-(2- pyridyldithio) propionate (SPDP) has been used to link two proteins together through a disulfide bond.
  • the reagent is reacted with the first protein to introduce an active disulfide-containing group in the modification step.
  • a second protein, which contains a free thiol group, is then added to form a disulfide bond between the two proteins in the conjugation step.
  • Many derivatives of SPDP and imide versions of SPDP have been described (U.S. Patent 4,563,304; J. Carlsson et al. 173 Biochem. J. 723-737 (1978); Goff D. A., Carroll, S. F.
  • Conjugates of cell-binding agents with highly cytotoxic drugs have been described (U.S. Patent Nos. 5,208,020, 5,416,064; 5,475,092, 5,585,499, 6,436,931, 6,372,738 and 6,340,701; R.V.J. Chari et al., 52 Cancer Res. 127-131 (1992)).
  • the cell-binding agents are first modified with a bifunctional agent such as SPDP, SPP or SMCC to introduce an active disulfide or a maleimido moiety.
  • Reaction with a thiol-containing cytotoxic drug provides a conjugate in which the cell-binding agent, such as a monoclonal antibody, and drug are linked via disulfide bonds or thioether bonds.
  • Heterobifunctional cross-linkers comprising a nitropyridyldithio, dinitropyridyldithio, N. iV-dialkylcarboxamidopyridyldithio or di-(iV.iV-dialkylcarboxamido) pyridyldithio group and a reactive carboxylic ester group such as a iV-succinimidyl ester group or a iV-sulfosuccinimidyl ester group have been described (U.S. Patent No. 6,913,748).
  • the present invention provides charged linkers, wherein the charges are retained both after modification of the cell-binding agent and in the resulting drug conjugate. More specifically, the present invention relates to the use of charged linkers to link drugs to a cell-binding agent (e.g., an antibody). In one aspect of the invention, the charged linkers are used to modify cell-binding agents and link them to drugs. In another aspect of the invention, the charged linkers are used to modify drugs and link them to cell- binding agents. In yet another aspect of the invention, the charged linkers are used to simultaneously link drugs and the cell-binding agents.
  • a cell-binding agent e.g., an antibody
  • the preferred end result is a drug-charged linker-cell-binding agent conjugate, which can be represented by the formula, CB-(-L c -D) q , wherein CB is a cell- binding agent, L c is a charged linker, D is a drug molecule, and q is an integer from 1 to 20.
  • a charged group(s) in the linker in the cell- binding agent-drag conjugate provides several advantages, such as i) greater water solubility of the final product, ii) ability to operate at a higher concentration in aqueous solutions, iii) ability to link a greater number of drug molecules per molecule of cell-binding agent, resulting in higher potency, iv) potential for the charged conjugate species to be retained inside the target cell, resulting in higher potency, and v) improved sensitivity of multidrug resistant cells, which would be unable to export the charged drug species from the cell.
  • the invention also describes linkers, which can be coupled to a drug and a cell binding agent to give a conjugate which can be metabolized in a cell to produce a drag metabolite containing one or more charged moieties.
  • linkers will be referred to as pro-charged linkers.
  • Moieties of the linker which will become charged after cell processing will be referred to as pro-charged moieties.
  • the charged or pro- charged cross linker is represented by formula (I) wherein Y' can react with a cell-binding agent and Q can react with a cytotoxic drug:
  • Q represents a functional group that enables linkage of a cytotoxic drug via a disulfide, thioether, thioester, peptide, hydrazone, ether, ester, carbamate or amide bond;
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , and R 10 are the same or different and are H, linear alkyl having from 1-6 carbon atoms, branched or cyclic alkyl having from 3 to 6 carbon atoms, linear, branched or cyclic alkenyl or alkynyl having from 2 to 6 carbon atoms, anions, such as but not limited to, SO 3 " , X-SO 3 " , OPO 3 2" , X-OPO 3 2" , PO 3 2" , X-PO 3 2” , CO 2 " , and cations, such as but not limited to, a nitrogen containing heterocycle, N + R 11 R 12 R 13 or X-N + R 11 R 12 Ri 3 , or a phenyl, wherein:
  • Rn, Rj 2 and Rj 3 are the same or different and are H, linear alkyl having from 1 to 6 carbon atoms, or branched or cyclic alkyl having from 3 to 6 carbon atoms and X represents phenyl or a linear alkyl having from 1 to 6 carbon atoms, or a branched or cyclic alkyl having from 3 to 6 carbon atoms;
  • n are O or an integer from 1 to 4.
  • A is a phenyl or a substituted phenyl, wherein the substituent is a linear alkyl having from 1 to 6 carbon atoms, or a branched or cyclic alkyl having from 3 to 6 carbon atoms, or a charged substituent selected from anions, such as but not limited to, SO 3 " , X-SO 3 " , OPO 3 2" , X-OPO 3 2" , PO 3 2" , X- PO 3 2” , CO 2 " , and cations, such as but not limited to, a nitrogen containing heterocycle, N + R 11 Ri 2 Ri 3 or X-N + RnRi 2 R 13 , wherein X has the same definition as above, and wherein g is 0 or 1 ;
  • the present invention provides a cell-binding agent-drug conjugate of formula (II), in which the cell-binding agent, CB, and the drug, D, have reacted at the two ends of the charged or pro-charged cross linker:
  • CB represents a cell-binding agent
  • D represents the drug linked to the cell-binding agent by a disulfide, thioether, thioester, peptide, hydrazone, ether, ester, carbamate, or amide bond;
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , and R 10 are the same or different and are H, linear alkyl having from 1-6 carbon atoms, branched or cyclic alkyl having from 3 to 6 carbon atoms, linear, branched or cyclic alkenyl or alkynyl having from 2 to 6 carbon atoms, anions, such as but not limited to, SO 3 " . X- SO 3 " .
  • R 11 , R 12 and Rj 3 are the same or different and are H, linear alkyl having from 1 to 6 carbon atoms, branched or cyclic alkyl having from 3 to 6 carbon atoms and X represents phenyl or a linear alkyl having from 1 to 6 carbon atoms, or a branched or cyclic alkyl having from 3 to 6 carbon atoms; 1, m and n are 0 or an integer from 1 to 4; and A is a phenyl or substituted phenyl, wherein the substituent is a linear alkyl having from 1 to 6 carbon atoms, or a branched or cyclic alkyl having from 3 to 6 carbon atoms, or a charged substituent selected from anions, such as but not limited to, SO 3 " .
  • the present invention provides a modified cell-binding agent of formula (III), in which the cell-binding agent, CB, has reacted with the cross linker, which still has Q, a group capable of reacting with a cytotoxic drug:
  • the present invention provides a modified drug of formula (IV), in which the drug, D, has reacted with the cross linker, which still has Y', a group capable of reacting with the cell- binding agent:
  • the present invention further relates to a method of making a cell-binding agent drug conjugate of formula (II), wherein the drug is linked to a cell-binding agent via a charged or pro-charged linker.
  • the present invention also relates to a method of making a modified cell-binding agent of formula (III), wherein the cell-binding agent is reacted with the charged or pro-charged linker.
  • the present invention also relates to a method of making a modified drug of formula (IV), wherein the drug is reacted with the charged or pro-charged linker.
  • the present invention includes a composition (e.g., a pharmaceutical composition) comprising conjugates or derivatives thereof (and/or solvates, hydrates and/or salts thereof) and a carrier (a pharmaceutically acceptable carrier).
  • a composition e.g., a pharmaceutical composition
  • the present invention also includes a composition (e.g., a pharmaceutical composition) comprising conjugates or derivatives thereof, (and/or solvates, hydrates and/or salts thereof) and a carrier (a pharmaceutically acceptable carrier), further comprising a second therapeutic agent.
  • the present compositions are useful for inhibiting abnormal cell growth or treating a proliferative disorder in a mammal (e.g., human).
  • the present invention includes a method of inhibiting abnormal cell growth or treating a proliferative disorder in a mammal (e.g., human) comprising administering to said mammal a therapeutically effective amount of the conjugates or derivatives thereof, (and/or solvates and salts thereof) or a composition thereof, alone or in combination with a second therapeutic agent.
  • a mammal e.g., human
  • the compounds of this invention, derivatives thereof, or conjugates thereof, and compositions comprising them are useful for treating or lessening the severity of disorders, such as, characterized by abnormal growth of cells (e.g., cancer).
  • compositions or conjugates of this invention include, but are not limited to, treating osteoporosis, depression, anxiety, stress, phobias, panic, dysphoria, psychiatric disorders, and pain or as antiepileptics, antibacterials, diuretics and hypotensives, hypolipidemics, and anti-depressants.
  • Figure 1 shows the synthesis of sulfonic acid-containing cross- linking reagents that contain a nitropyridyldisulfide group and a reactive carboxylic acid ester. Hydroxyalkanoate esters are first converted into dibromoalkanoate esters as shown, followed by conversion of the ⁇ -bromo substituent into a sulfonic acid.
  • Figure 2 shows the synthesis of sulfonic acid-containing cross- linking reagents that contain a pyridyldisulf ⁇ de group and a reactive carboxylic acid ester.
  • Figures 3, 4 and 5 show various routes for the synthesis of charged cross-linking agents bearing a reactive carboxylic acid ester and maleimido substituent, enabling linkage via thioether bonds.
  • Figures 6 and 7 show the synthesis of phosphate-containing cross-linking reagents that contain a pyridyldisulfide group and a reactive carboxylic acid ester.
  • Figure 8 shows the synthesis of phosphate-containing cross- linking reagents that contain a nitropyridyldisulfide group and a reactive carboxylic acid ester
  • Figures 9 and 10 show different routes for the synthesis of phosphate-containing charged cross-linking agents bearing a reactive carboxylic acid ester and a maleimido substituent, enabling linkage via thioether bonds.
  • Figure 11 shows the synthesis of sulfonic acid-containing cross-linking reagents, where the sulfonate substituent is attached to a branched alkyl group. These reagents also bear a pyridyldisulfide group and a reactive carboxylic acid ester.
  • Figure 12 shows the synthesis of sulfonic acid-containing cross-linking reagents, where the sulfonate substituent is attached to a branched alkyl group. These reagents also bear a reactive carboxylic acid ester and a maleimido group that allows for linkage via thioether bonds.
  • Figure 13 shows the synthesis of quartenary amine-containing cross-linking reagents that contain a pyridyldisulfide group and a reactive carboxylic acid ester.
  • Figure 14 shows the synthesis of quartenary amine cross- linking agents bearing a reactive carboxylic acid ester and maleimido substituent, enabling linkage via thioether bonds.
  • Figure 15 shows the synthesis of sulfonic acid-containing cross-linking reagents that contain a pyridyldisulfide group and a reactive carboxylic acid ester. In these compounds, the sulfonate substituent is on the carbon atom on the position ⁇ to the carboxyl ester.
  • Figure 16 shows the synthesis of phosphate-containing cross- linking reagents that contain a pyridyldisulfide group and a reactive carboxylic acid ester.
  • the phosphate substituent is on the ⁇ -position relative to the carboxyl ester.
  • Figures 17, 18 and 19 show the synthesis of various sulfonic acid-containing cross-linking reagents that contain a polyethyleneglycol (PEG) chain, along with a nitropyridyldisulfide group and a reactive carboxylic acid ester.
  • Figures 20 and 21 show the synthesis of various sulfonic acid- containing cross-linking reagents that contain a polyethyleneglycol (PEG) chain, along with a maleimido group and a reactive carboxylic acid ester.
  • Figure 22 shows the synthesis of phosphate-containing cross- linking reagents, where the phosphate substituent is attached to an aromatic group.
  • FIG. 23 shows the synthesis of phosphate-containing cross- linking reagents, where the phosphate substituent is attached to a branched alkyl group. These reagents also bear a reactive carboxylic acid ester and a nitropyridyldithio group that allows for linkage via disulfide bonds.
  • Figures 24 - 31 show the synthesis of sulfonate-containing cross-linking reagents that also incorporate a hydrazide moiety allowing for linkage via acid-labile bonds.
  • Figures 32 - 36 show the synthesis of phosphate-containing cross-linking reagents that also incorporate a hydrazide moiety allowing for linkage via acid-labile bonds.
  • Figures 37 - 38 show the synthesis of quartenary amine- containing cross-linking reagents that also incorporate a hydrazide moiety allowing for linkage via acid-labile bonds.
  • Figures 39 - 42 show the synthesis of charged cross-linking reagents that also incorporate a polyethyleneglycol (PEG) moiety.
  • Figures 43-44 show the synthesis of phosphate-containing cross-linking reagents, where the phosphate substituent is attached to an aromatic residue or to an alkyl group. These reagents also bear a reactive carboxylic acid ester and a nitropyridyldithio group that allows for linkage via disulfide bonds.
  • Figures 45-49 show the synthesis of charged cross-linking agents bearing reactive carboxylic acid ester and a haloacetyl substituent, enabling linkage via thioether bonds.
  • Figure 50 shows the synthesis of a procharged linker that would generate a negatively charged carboxylate metabolite.
  • Figure 51 shows a conjugate of linker 158 to a drug and a monoclonal antibody and how the conjugate would be processed in the lysosome of a target cell to give a metabolite containing the drug bearing a negatively charged carboxylate.
  • Figure 52 shows the synthesis of a procharged linker that would generate a positively charged amine-containing metabolite.
  • Figure 53 shows a conjugate of a procharged linker to a drug and a monoclonal antibody and how the conjugate would be processed in the lysosome of a target cell to give a metabolite of the drug bearing a positively charged amine.
  • Figure 54 shows the synthesis of a procharged linker that would generate a charged carboxylate metabolite.
  • Figure 55 shows a conjugate of linker 172 to a drug and a moloclonal antibody and how the conjugate would be processed in the lysosome of a target cell to give a metabolite containing the drug bearing a carboxylic acid and a lysine residue.
  • Figure 56 shows the use of charged linker in modifying a cell- binding agent and producing a cell-binding agent-drug conjugate bearing a charged linker.
  • Figures 57(A), (B) and (C) show the in vitro potency of cell- binding agent-drug conjugates in which a charged crosslinker is incorporated.
  • Figure 58 shows the in vitro potency and target selectivity of cell-binding agent-drug conjugates bearing a charged crosslinker.
  • Figure 59 shows the mass spectrum of cell-binding agent-drug conjugates bearing a charged crosslinker.
  • Figure 60 shows the cytotoxicity of Anti-CanAg (huC242) - sulfonate linker-maytansinoid conjugates with increasing maytansinoids load (E:A) toward COLO205 cells.
  • Figure 61 shows the cytotoxicity of Anti-CanAg (huC242) - sulfonate linker-maytansinoid conjugates with increasing maytansinoids load (E: A) toward multi-drug resistant COLO205-MDR cells.
  • Figure 62 compares cytotoxicity of Anti-CanAg (huC242) - maytansinoid conjugates with or without sulfonate group in the linker toward multi-drug resistant COLO205-MDR cells.
  • Figure 63 compares the cytotoxicity of Anti-EpCAM (B38.1) - maytansinoid conjugates with or without sulfonate group in linker toward multi-drug resistant COLO205-MDR cells.
  • Figure 64 compares the cytotoxicity of Anti-EpCAM (B38.1)- maytansinoid conjugates with or without sulfonate group in linker toward multi-drug resistant HCTl 5 cells.
  • Figure 65 compares the cytotoxicity of Anti-EpCAM (B38.1) - maytansinoid conjugates with or without sulfonate group in linker toward multi-drug resistant COLO205-MDR cells.
  • Figure 66 shows the in vivo anti-tumor activity of anti-EpCAM antibody-maytansinoid conjugates on COLO205 mdr xenografts (individual tumors).
  • Figure 67 shows the in vivo anti-tumor activity of anti-EpCAM antibody-maytansinoid conjugates on COLO205 xenografts (individual tumors).
  • Figures 68 - 70 show the methods of synthesis of sulfonic acid- containing cross-linking reagents. These reagents bear a reactive carboxylic acid ester and a maleimido group that allows for linkage via thioether bonds.
  • Figure 71 shows the methods of synthesis of quartenary amine - containing cross-linking reagents. These reagents also bear a reactive carboxylic acid ester and a pyridyldithio group that allows for linkage via disulfide bonds.
  • Figures 72(A) and (B) show Plasma pharmacokinetics of huC242 Antibody-Sulfo-Mal-[ 3 H-labeled]-DM4 conjugates with 3.5 DM4/Ab or 6.4 DM4/Ab dosed at 12.9 mg/kg and 7.9 mg/kg (i.v.) respectively in CD-I mice.
  • B. Maytansinoid (DM4)/ Antibody (Ab) ratio versus time after administration.
  • m represents 0 or an integer from 1 to 2000.
  • the novel conjugates disclosed herein use charged or pro- charged cross-linkers. Examples of some suitable cross-linkers and their synthesis are shown in Figures 1 to 10.
  • the charged or pro-charged cross-linkers are those containing sulfonate, phosphate, carboxyl or quaternary amine substituents that significantly increase the solubility of the modified cell-binding agent and the cell-binding agent-drug conjugates, especially for monoclonal antibody-drug conjugates with 2 to 20 drugs/antibody linked.
  • Conjugates prepared from linkers containing a pro-charged moiety would produce one or more charged moieties after the conjugate is metabolized in a cell.
  • FIG. 1 The synthetic routes to produce charged crosslinkers of the present invention are shown in Figures 1-49.
  • Synthetic routes to produce linkers with pro-charged moieties are shown in figures 50, 52, and 54.
  • Figures 51, 53 and 55 show a conjugate of each of the respective pro-charged linkers with a drug and a monoclonal antibody and how these conjugates would be metabolized in a target cell to give charged metabolites.
  • the crosslinkers possess three elements: a) a substituent that is either charged or will become charged when conjugates employing these linkers are metabolized in cells.
  • the charge will be either anionic, such as but not limited to, carboxylate, sulfonate or phosphate, or cationic, such as but not limited to, a tertiary, quaternary, or primary amine or a nitrogen-containing heterocycle, b) a group, such as a N-hydroxysuccimimide ester, maleimido group, haloacetyl group, and hydrazide, capable of reaction with a cell-binding agent, and c) a group, such as but not limited to, a disulfide, maleimide, haloacetyl, and hydrazide, capable of reaction with a drug.
  • the charged or pro-charged substituent can be introduced by methods described herein.
  • a sulfonate charge can be introduced by first treating a commercially available haloester compound with thioacetate to produce a thioacetyl compound, followed by oxidation of the thioacetyl group, using hydrogen peroxide, to a sulfonate group.
  • Phosphate containing crosslinkers can be synthesized by methods described herein.
  • a positively charged quaternary amine substituent can be introduced in the crosslinker by reaction of an amine with an ⁇ , ⁇ -unsaturated ketone (see, for example, Figures 13 and 37).
  • a charged amine substituent can be introduced by displacement of a halogen with the amine or nitrogen containing heterocycle of choice.
  • the cross-linkers are compounds of the formula (I) below:
  • Q represents a functional group that enables linkage of a drug via a disulfide, thioether , thioester, peptide, hydrazone, ester, ether, carbamate or amide bond;
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R7, Rs 5 R ⁇ > > and R 10 are the same or different and are H, linear alkyl having from 1-6 carbon atoms, branched or cyclic alkyl having from 3 to 6 carbon atoms, linear, branched or cyclic alkenyl or alkynyl having from 2 to 6 carbon atoms, anions, such as but not limited to, SO 3 ; X-SO 3 " , OPO 3 2" , X-OPO 3 2" , PO 3 2" , X-PO 3 2” , CO 2 -, cations, such as but not limited to, a nitrogen containing heterocycle, N + R 11 R 12 R 13 or
  • Rn, R 12 and R 13 are the same or different and are H, linear alkyl having from 1 to 6 carbon atoms, or branched or cyclic alkyl having from 3 to 6 carbon atoms and X represents phenyl or a linear alkyl having from 1 to 6 carbon atoms, or a branched or cyclic alkyl having from 3 to 6 carbon atoms;
  • n are O or an integer from 1 to 4;
  • A is a phenyl or substituted phenyl, wherein the substituent is a linear alkyl having from 1 to 6 carbon atoms, or a branched or cyclic alkyl having from 3 to 6 carbon atoms, or a charged substituent selected from anions, such as but not limited to, SO 3 " . X-SO 3 " .
  • Examples of the functional group, Y', that enables reaction with a cell-binding agent include amine reacting agents such as but not limited to N-hydroxysuccinmide esters, p-nitrophenyl esters, dinitrophenyl esters, pentafluorophenyl esters; thiol reactive agents such as but not limited to pyridyldisulfides, nitropyridyldisulfides, maleimides, haloacetates and carboxylic acid chlorides.
  • amine reacting agents such as but not limited to N-hydroxysuccinmide esters, p-nitrophenyl esters, dinitrophenyl esters, pentafluorophenyl esters
  • thiol reactive agents such as but not limited to pyridyldisulfides, nitropyridyldisulfides, maleimides, haloacetates and carboxylic acid chlorides.
  • Examples of the functional group, Q which enables linkage of a cytotoxic drug, include groups that enable linkage via a disulfide, thioether, thioester, peptide, hydrazone, ester, carbamate, or amide bond.
  • Such functional groups include, but are not limited to, thiol, disulfide, amino, carboxy, aldehydes, maleimido, haloacetyl, hydrazines, and hydroxy.
  • linear alkyls include methyl, ethyl, propyl, butyl, pentyl and hexyl.
  • branched or cyclic alkyls having 3 to 6 carbon atoms include isopropyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.
  • Examples of linear alkenyls having 2 to 6 carbon atoms include ethenyl, propenyl, butenyl, pentenyl, hexenyl.
  • Examples of branched or cyclic alkenyls having 2 to 6 carbon atoms include isobutenyl, isopentenyl,
  • Examples of linear alkynyls having 2 to 6 carbon atoms include ethynyl, propynyl, butynyl, pentynyl, hexynyl.
  • Examples of branched or cyclic alkynyls having up to 6 carbon atoms include 3 -methyl- 1 -butynyl, 3- methyl- 1 -penynyl, 4-methyl-2-hexynyl.
  • Figure 57 exemplifies that cell-binding agent-drug conjugates prepared using a charged crosslinker of the present invention display high potency.
  • the potency is target selective (see, for example, Figure 58), since, even after linkage of a high number of drug molecules, the conjugate is highly potent towards target cells, but much less potent towards non-target cells.
  • mass spectral analysis demonstrates that the drugs are linked covalently to the cell-binding agent via the charged crosslinker.
  • the conjugates of the present invention can be represented by the following formula, CB-(-L c -D) q , wherein CB is a cell-binding agent, L c is a charged or pro-charged linker, D is a drug molecule, and q is an integer from 1 to 20.
  • the conjugates have the following formula (II):
  • D represents a drug linked to the cell-binding agent by a disulfide, thioether, thioester, peptide, hydrazone, ester, carbamate or amide bond;
  • Ri, R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , and R 10 are the same or different and are H, linear alkyl having from 1-6 carbon atoms, branched or cyclic alkyl having from 3 to 6 carbon atoms, linear, branched or cyclic alkenyl or alkynyl having from 2 to 6 carbon atoms, anions, such as but not limited to, SO 3 " . X-SO 3 ' .
  • Rn, Rj 2 and Ri 3 are same or different and are H, linear alkyl having from 1 to 6 carbon atoms, branched or cyclic alkyl having from 3 to 6 carbon atoms and X represents phenyl or a linear alkyl having from 1 to 6 carbon atoms, or a branched or cyclic alkyl having from 3 to 6 carbon atoms;
  • n are O or an integer from 1 to 4;
  • A is a phenyl or substituted phenyl, wherein the substituent is a linear alkyl having from 1 to 6 carbon atoms, or a branched or cyclic alkyl having from 3 to 6 carbon atoms, or a charged substituent selected from anions, such as but not limited to, SO 3 " . X-SO 3 " .
  • Y represents a carbonyl, thioether, amide, disulfide, or hydrazone group; and q is an integer from 1 to 20.
  • the drug can be any of many small molecule drugs, including, but not limited to, maytansinoids, CC- 1065 analogs, morpholinos, doxorubicins, taxanes, cryptophycins, epothilones, calicheamicins, auristatins, and pyrrolobenzodiazepine dimers.
  • Z is an F1-E1-P-E2-F2 unit,
  • the number of drugs bound to each cell-binding agent is 1-20, more preferably 2-18, and even more preferably 2-16, and most preferably 2-10.
  • the cell-binding agent can be modified with the crosslinkers of the present invention to introduce reactive disulfide groups, maleimido, haloacetyl or hydrazide groups.
  • Synthesis of the cell-binding agent-drug conjugates linked via disulfide bonds is achieved by a disulfide exchange between the disulfide bond in the modified cell-binding agent and a drug containing a free thiol group.
  • Synthesis of the cell-binding agent-drug conjugates linked via thioether is achieved by reaction of the maleimido or haloacetyl modified cell-binding agent and a drug containing a free thiol group.
  • Synthesis of conjugates bearing an acid labile hydrazone link can be achieved by reaction of a carbonyl group with the hydrazide moiety in the linker, by methods known in the art (see, for example, P. Hamann et al., BioConjugate Chem., 13; 40-46, 2002; B. Laguzza et al., J.Med. Chem., 32; 548-555, 1959; P. Trail et al., Cancer Res., 57; 100-105, 1997).
  • the drug can be modified with the crosslinkers of the present invention to give a modified drug of formula (IV) bearing a functionality capable of reacting with a cell binding agent.
  • a thiol-containing drug can be reacted with the charged or pro-charged crosslinker of formula (I) bearing a maleimdo substituent at neutral pH in aqueous buffer to give a drug connected to the charged linker via a thioether link.
  • a thiol-containg drug can undergo disulfide exchange with a charged linker bearing a pyrdiyldithio moiety to give a modified drug attached via a disulfide bond to the charged crosslinker.
  • a drug bearing a hydroxyl group can be reacted with a charged or pro-charged crosslinker bearing a halogen, in the presence of a mild base, to give a modified drug bearing an ether link.
  • a hydroxyl group containing drug can be condensed with a charged crosslinker of formula (I) bearing a carboxyl group, in the presence of a dehydrating agent, such as dicyclohexylcarbodimide, to give an ester link.
  • a dehydrating agent such as dicyclohexylcarbodimide
  • An amino group containing drug can similarly undergo condensation with a carboxyl group on the charged or pro-charged crosslinker of formula (I) to give an amide bond.
  • the conjugate may be purified by standard biochemical means, such as gel filtration on a Sephadex G25 or Sephacryl S300 column, adsorption chromatography, and ion exchange or by dialysis as previously described.
  • the cell-binding agent-drug conjugates can be purified by chromatography such as by HPLC, medium pressure column chromatography or ion exchange. Modified cell-binding agents
  • the cell-binding agent modified by reaction with crosslinkers of the present invention are preferably represented by the formula (III)
  • Z is an F1-E1-P-E2-F2 unit
  • Z is an F1-E1-P-E2-F2 unit
  • the modified cell-binding agent can be prepared by reacting the cell-binding agent with the charged crosslinkers by methods known in the art for other crosslinkers (U.S. Patent Nos. 6,340,701 Bl, 5,846,545, 5,585,499, 5,475,092, 5,414,064, 5,208,020, and 4,563,304; R.V.J. Chari et al. Cancer Research 52, 127-131, 1992; R.V.J. Chari et al. Cancer Research 55, 4079-4084, 1995; J. Carlsson et al. 173 Biochem. J. (1978) 723-737(1978); Goff, D. A., Carroll, S. F. 1 BioConjugate Chem.
  • the reaction between the cell-binding agent and the cross-linker can be conducted in aqueous solution.
  • the cross- linking reagent is dissolved in aqueous buffer, optionally containing a small amount (typically ⁇ 10% by volume) of a polar organic solvent that is miscible with water, for example different alcohols, such as methanol, ethanol, and propanol, dimethyl formamide, dimethyl acetamide, or dimethylsulfoxide at a high concentration, for example 1-100 mM, and then an appropriate aliquot is added to the buffered aqueous solution of the cell-binding agent.
  • a polar organic solvent that is miscible with water
  • a polar organic solvent that is miscible with water
  • different alcohols such as methanol, ethanol, and propanol
  • dimethyl formamide dimethyl acetamide
  • dimethylsulfoxide dimethylsulfoxide
  • An appropriate aliquot is an amount of solution that introduces 1-10 cross-linking groups per cell-binding agent, preferably 1 -5 groups, and the volume to be added should not exceed 10 %, preferably 5 %, and most preferably 0-3 % of the volume of the cell-binding agent solution.
  • the aqueous solutions for the cell -binding agents are buffered between pH 6 and 9, preferably between 6.5 and 7.5 and can contain any non-nucleophilic buffer salts useful for these pH ranges.
  • Typical buffers include phosphate, triethanolamine.HCl, HEPES, and MOPS buffers, which can contain additional components, such as sucrose and salts, for example, NaCl.
  • the reaction is incubated at a temperature of from 4 0 C to 40 0 C, preferably at ambient temperature.
  • the progress of the reaction can be monitored by measuring the increase in the absorption at 495 nm or another appropriate wavelength.
  • isolation of the modified cell-binding agent can be performed in a routine way, using for example gel filtration chromatography, or adsorptive chromatography.
  • FIG. 56 shows the results from the modification of the cell-binding agent, the C242 antibody, with a sulfonate crosslinker of the present invention.
  • the time course of linker/antibody (L/ A) incorporation is shown, for example, along with the drugs/antibody (D/ A) linked.
  • the charged or pro-charged crosslinkers described herein have diverse functional groups that can react with any cell-binding agent that possesses a suitable substituent.
  • cell-binding agents bearing an amino or hydroxyl substituent can react with crosslinkers bearing an N-hydroxysuccinimide ester
  • cell-binding agents bearing a thiol substituent can react with crosslinkers bearing a maleimido or haloacetyl group
  • cell-binding agents bearing a carbonyl substituent can react with crosslinkers bearing a hydrazide.
  • One skilled in the art can readily determine which crosslinker to use based on the known reactivity of the available functional group on the cell-binding agent.
  • Crosslinkers bearing a positive charge for example, compound
  • a cell binding agent 214, Figure 71 can be directly reacted with a cell binding agent in aqueous buffer at a pH between 5 and 9, optionally containing an organic cosolvent (such as 1 to 20% dimethylaceatmide or ethanol) to provide a modified cell binding agent bearing a positive charge and a thiol group.
  • the thiol group of the cell binding agent can be reacted with a cytotoxic drug bearing either a maleimido, haloacetamido or an active disulfide (example pyridyldithio, nitropyridyldithio group) to provide a conjugate.
  • the conjugate can be purified by the methods described above.
  • crosslinkers bearing a positive charge and a reactive ester for example, compound 216, Figure 71
  • a cell binding agent for example, through its lysine amino group
  • Reaction with a thiol- containing cytotoxic drug as described above can provide a conjugate bearing a positive charge.
  • cytotoxic drugs modified by reaction with crosslinkers of the present invention are preferably represented by the formula (IV):
  • Z is an Fl-El-P -E2-F2 unit
  • Z is an F1-E1-P-E2-F2 unit
  • the modified drugs can be prepared by reacting the drug with the crosslinkers of the present invention to give a modified drug of formula (IV) bearing a functionality capable of reacting with a cell binding agent.
  • a thiol-containing drug can be reacted with the charged or pro- charged crosslinker of formula (I) bearing a maleimdo substituent at neutral pH in aqueous buffer to give a drug connected to the charged or pro-charged linker via a thioether link.
  • a thiol-containg drug can undergo disulfide exchange with a charged or pro-charged linker bearing a pyrdiyldithio moiety to give a modified drug attached via a disulfide bond to the charged or pro- charged crosslinker.
  • a drug bearing a hydroxyl group can be reacted with a charged crosslinker bearing a halogen, in the presence of a mild base, to give a modified drug bearing an ether link.
  • a hydroxyl group containing drug can be condensed with a charged crosslinker of formula (I) bearing a carboxyl group, in the presence of a dehydrating agent, such as dicyclohexylcarbodimide, to give an ester link.
  • An amino group containing drug can similarly undergo condensation with a carboxyl group on the charged or pro-charged crosslinker of formula (I) to give an amide bond.
  • the modified drug can be purified by standard methods such as column chromatography over silica gel or alumina, crystallization, preparatory thin layer chromatography, ion exchange chromatography or HPLC.
  • the cell-binding agent that comprises the conjugates and the modified cell-binding agents of the present invention may be of any kind presently known, or that become known, and includes peptides and non-peptides.
  • the cell-binding agent may be any compound that can bind a cell, either in a specific or non-specific manner. Generally, these can be antibodies (especially monoclonal antibodies and antibody fragments), adnectins (US Publication No.: 20070082365), interferons, lymphokines, hormones, growth factors, vitamins, nutrient-transport molecules (such as transferrin), or any other cell-binding molecule or substance.
  • the cell-binding agent is an antibody (for example, a murine, human humanized, resurfaced or a chimeric or any other antibody known to one of skill in the art), it binds to an antigen that is a polypeptide and may be a transmembrane molecule (e.g. receptor) or a ligand such as a growth factor.
  • an antibody for example, a murine, human humanized, resurfaced or a chimeric or any other antibody known to one of skill in the art
  • an antigen that is a polypeptide and may be a transmembrane molecule (e.g. receptor) or a ligand such as a growth factor.
  • antigens include molecules such as renin; a growth hormone, including human growth hormone and bovine growth hormone; growth hormone releasing factor; parathyroid hormone; thyroid stimulating hormone; lipoproteins; alpha- 1 -antitrypsin; insulin A-chain; insulin B-chain; proinsulin; follicle stimulating hormone; calcitonin; luteinizing hormone; glucagon; clotting factors such as factor vmc, factor IX, tissue factor (TF), and von Willebrands factor; anti-clotting factors such as Protein C; atrial natriuretic factor; lung surfactant; a plasminogen activator, such as urokinase or human urine or tissue-type plasminogen activator (t-PA); bombesin; thrombin; hemopoietic growth factor; tumor necrosis factor-alpha and -beta; enkephalinase; RANTES (regulated on activation normally T-cell expressed and secreted); human macrophage inflammatory protein (
  • Preferred antigens for antibodies encompassed by the present invention also include CD proteins, such as CD3, CD4, CD8, CD 19, CD20, CD34, and CD46; members of the ErbB receptor family, such as the EGF receptor, HER2, HER3 or HER4 receptor; cell adhesion molecules, such as LFA-I, Macl, pl50.95, VLA-4, ICAM-I, VCAM, EpCAM, alpha 4 /beta 7 integrin, and alpha v/beta3 integrin including either alpha or beta subunits thereof (e.g.
  • anti-CD 11a, anti-CD 18 or anti-CDl lb antibodies growth factors, such as VEGF; tissue factor (TF); TGF- ⁇ .; alpha interferon (alpha- IFN); an interleukin, such as IL-8; IgE; blood group antigens Apo2, death receptor; flk2/flt3 receptor; obesity (OB) receptor; mpl receptor; CTL A-4; protein C etc.
  • growth factors such as VEGF; tissue factor (TF); TGF- ⁇ .; alpha interferon (alpha- IFN); an interleukin, such as IL-8; IgE; blood group antigens Apo2, death receptor; flk2/flt3 receptor; obesity (OB) receptor; mpl receptor; CTL A-4; protein C etc.
  • Preferred antibodies that can be used are antibodies to CD2, CD3, CD4, CD5, CD6, CDI l, CD19, CD20, CD22, CD26, CD30, CD33, CD37, CD38, CD40, CD44, CD56, CD79, CD105, CD138, EphA receptors (e.g., EphA2 receptor), EphB receptors, EGFr, EGFRvIII, HER2, HER3, trastuzumab, pertuzumab mesothelin, cripto, integrins, VEGF, VEGFR, folate receptor (for example, FOLRl), transferrin receptor, GD3, EpCAM or an antibody which binds to one or more tumor-associated antigens or cell-surface receptors disclosed in US Publication No. 20080171040 or US Publication No. 20080305044 and are incorporated in their entirety by reference.
  • EphA receptors e.g., EphA2 receptor
  • EphB receptors EphB receptors
  • cell-binding agents that can be used include:
  • -humanized or fully human antibodies selected from but not limited to, huMy9-6, huB4, huC242, huN901, DS6, CD38, IGF-IR, CNTO 95, B-B4, trastuzumab, pertuzumab, bivatuzumab, sibrotuzumab, and rituximab (see, e.g., U.S. Patent Nos. 5,639,641, 5,665,357; and 7,342,110, U.S. Provisional Patent Application No. 60/424,332, International Patent Application WO 02/16,401, U.S. Patent Publication Number 20060045877, U.S. Patent Publication Number 20060127407, U.S.
  • Additional cell-binding agents include other cell-binding proteins and polypeptides exemplified by, but not limited to:
  • -interferons e.g. ⁇ , ⁇ , ⁇
  • -lymphokines such as IL-2, IL-3, IL-4, IL-6;
  • -hormones such as insulin, TRH (thyrotropin releasing hormones), MSH (melanocyte-stimulating hormone), steroid hormones, such as androgens and estrogens;
  • -vitamins such as folic acid
  • -growth factors and colony-stimulating factors such as EGF, TGF- ⁇ , G-CSF, M-CSF and GM-CSF (Burgess, Immunology Today 5:155- 158 (1984)); and
  • Monoclonal antibody techniques allow for the production of specific cell-binding agents in the form of monoclonal antibodies.
  • Particularly well known in the art are techniques for creating monoclonal antibodies produced by immunizing mice, rats, hamsters or any other mammal with the antigen of interest such as the intact target cell, antigens isolated from the target cell, whole virus, attenuated whole virus, and viral proteins such as viral coat proteins. Sensitized human cells can also be used.
  • sFv single chain variable region
  • the monoclonal antibody My9 is a murine IgG 2a antibody that is specific for the CD33 antigen found on Acute Myeloid Leukemia (AML) cells (Roy et al. Blood 77:2404-2412 (1991)) and can be used to treat AML patients.
  • the monoclonal antibody anti-B4 is a murine IgGj, which binds to the CD 19 antigen on B cells (Nadler et al, J Immunol. 131:244-250 (1983)) and can be used if the target cells are B cells or diseased cells that express this antigen such as in non-Hodgkin's lymphoma or chronic lymphoblastic leukemia.
  • the antibody N901 is a murine monoclonal IgGi antibody that binds to CD56 found on small cell lung carcinoma cells and on cells of other tumors of the neuroendocrine origin (Roy et al. J Nat. Cancer Inst. 88:1136-1145 (1996)), C242 antibody that binds to the CanAg antigen, pertuzumab, trastuzumab that binds to HER2/neu, and anti-EGF receptor antibody.
  • GM-CSF which binds to myeloid cells
  • IL-2 which binds to activated T-cells
  • MSH which binds to melanocytes
  • Folic acid which targets the folate receptor expressed on ovarian and other cancers is also a suitable cell-binding agent.
  • Drugs that can be used in the present invention include chemotherapeutic agents.
  • “Chemotherapeutic agent” is a chemical compound useful in the treatment of cancer.
  • chemotherapeutic agents include alkylating agents, such as thiotepa and cyclophosphamide (CYTOXANTM); alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines, such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethylenethiophosphaoramide and trimethylolomelamine; acetogenins (especially bullatacin and bullatacinone); a camptothecin (including the synthetic analogue topotecan); bryostatin; callystatin; CC- 1065 (including its adozeles
  • calicheamicin especially calicheamicin .gammaland calicheamicin theta I, see, e.g., Angew Chem Intl. Ed. Engl. 33:183-186 (1994); dynemicin, including dynemicin A; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antiobiotic chromomophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, carminomycin, carzinophilin; chromomycins, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L- norleucine, doxorabicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyr
  • paclitaxel TAXOL ® , Bristol-Myers Squibb Oncology, Princeton, N.J.
  • doxetaxel TAXOTERE ® , Rhone- Poulenc Rorer, Antony, France
  • chlorambucil gemcitabine
  • 6-thioguanine mercaptopurine
  • methotrexate platinum analogs such as cisplatin and carboplatin; vinblastine; platinum; etoposide (VP- 16); ifosfamide; mitomycin C; mitoxantrone; vincristine; vinorelbine; navelbine; novantrone; teniposide; daunomycin; aminopterin; xeloda; ibandronate; CPT-I l; topoisomerase inhibitor RFS 2000; difluoromethylomithine (DMFO); retinoic acid; capecitabine; and pharmaceutically acceptable salts, acids or derivatives of any of the above.
  • anti-hormonal agents that act to regulate or inhibit hormone action on tumors
  • anti-estrogens including for example tamoxifen, raloxifene, aromatase inhibiting 4(5)-imidazoles, 4-hydroxytamoxifen, trioxifene, keoxifene, LYl 17018, onapristone, and toremifene (Fareston); and anti-androgens, such as flutamide, nilutamide, bicalutamide, leuprolide, and goserelin; siRNA and pharmaceutically acceptable salts, acids or derivatives of any of the above.
  • Other chemotherapeutic agents that can be used with the present invention are disclosed in US Publication No.
  • chemotherapeutic drugs are essentially small molecule drugs.
  • a "small molecule drug” is broadly used herein to refer to an organic, inorganic, or organometallic compound that may have a molecular weight of for example 100 to 1500, more suitably from 120 to 1200, favorably from 200 to 1000, and typically having a molecular weight of less than about 1000.
  • Small molecule drugs of the invention encompass oligopeptides and other biomolecules having a molecular weight of less than about 1000.
  • Small molecule drugs are well characterized in the art, such as in WO05058367A2, European Patent Application Nos. 85901495 and 8590319, and in U.S. Patent No. 4,956,303, among others and are incorporated in their entirety by reference.
  • Preferable small molecule drugs are those that allow for linkage to the cell-binding agent.
  • the invention includes known drugs as well as those that may become known.
  • Especially preferred small molecule drugs include cytotoxic agents.
  • the cytotoxic agent may be any compound that results in the death of a cell, or induces cell death, or in some manner decreases cell viability, wherein each cytotoxic agent comprises a thiol moiety.
  • Preferred cytotoxic agents are maytansinoid compounds, taxane compounds, CC- 1065 compounds, daunorubicin compounds and doxorubicin compounds, pyrrolobenzodiazepine dimers, calicheamicins. Auristatins and analogues and derivatives thereof, some of which are described below.
  • Other cytotoxic agents which are not necessarily small molecules, such as siRNA, are also encompassed within the scope of the instant invention.
  • siRNAs can be linked to the crosslinkers of the present invention by methods commonly used for the modification of oligonucleotides (see, for example, US Patent Publications 20050107325 and 20070213292).
  • siRNA in its 3' or 5'-phosphoromidite form is reacted with one end of the crosslinker bearing a hydroxyl functionality to give an ester bond between the siRNA and the crosslinker.
  • reaction of the siRNA phosphoramidite with a crosslinker bearing a terminal amino group results in linkage of the crosslinker to the siRNA through an amine.
  • siRNA are described in detail in U.S.
  • Maytansinoids that can be used in the present invention are well known in the art and can be isolated from natural sources according to known methods or prepared synthetically according to known methods.
  • suitable maytansinoids include maytansinol and maytansinol analogues.
  • suitable maytansinol analogues include those having a modified aromatic ring and those having modifications at other positions.
  • Maytansinoids with a thiol moiety at the C-3 position, the C- 14 position, the C- 15 position or the C-20 position are all expected to be useful.
  • the C-3 position is preferred and the C-3 position of maytansinol is especially preferred.
  • an iV-methyl-alanine-containing C-3 thiol moiety maytansinoid, and an iV-methyl-cysteine-containing C-3 thiol moiety maytansinoid, and analogues of each.
  • iV-methyl-alanine-containing C-3 thiol moiety maytansinoid derivatives useful in the present invention are represented by the formulae Ml, M2, M3, M6 and M7.
  • / is an integer of from 1 to 10; and may is a maytansinoid.
  • R 1 and R 2 are H, CH 3 or CH 2 CH 3 , and may be the same or different; m is 0, 1, 2 or 3; and may is a maytansinoid.
  • n is an integer of from 3 to 8; and may is a maytansinoid.
  • M6 wherein: / is 1, 2 or 3; Y 0 is Cl or H; and X 3 is H or CH 3 .
  • R 1 , R 2 , R 3 , R 4 are H, CH 3 or CH 2 CH 3 , and may be the same or different; m is O, 1, 2 or 3; and may is a maytansinoid.
  • N-methyl-cysteine-containing C-3 thiol moiety maytansinoid derivatives useful in the present invention are represented by the formulae M4 and M5.
  • M4 wherein: o is 1, 2 or 3; p is an integer of O to 10; and may is a maytansinoid.
  • M5 wherein: o is 1, 2 or 3; q is an integer of from 0 to 10;
  • Y 0 is Cl or H
  • X 3 is H or CH 3 .
  • Preferred maytansinoids are those described in U.S. Patent Nos. 5,208,020; 5,416,064; 6,333.410; 6,441,163; 6,716,821; RE39,151 and 7,276,497.
  • the cytotoxic agent according to the present invention may also be a taxane.
  • Taxanes that can be used in the present invention have been modified to contain a thiol moiety.
  • Some taxanes useful in the present invention have the formula Tl shown below:
  • R 1, Rj ', and R 1 " are the same or different and are H, an electron withdrawing group, such as F, NO 2 , CN, Cl, CHF 2 , or CF 3 or an electron donating group, such as -OCH 3 , -OCH 2 CH 3 , -NR 7 R 8 , -OR 9 , wherein R 7 and R 8 are the same or different and are linear, branched, or cyclic alkyl groups having 1 to 10 carbon atoms or simple or substituted aryl having 1 to 10 carbon atoms. Preferably the number of carbon atoms for R 7 and R 8 is 1 to 4. Also, preferably R 7 and R 8 are the same.
  • R 8 groups include dimethyl amino, diethyl amino, dipropyl amino, and dibutyl amino, where the butyl moiety is any of primary, secondary, tertiary or isobutyl.
  • R 9 is linear, branched or cyclic alkyl having 1 to 10 carbon atoms.
  • R 1 preferably is OCH 3 , F, NO 2 , or CF 3 .
  • R 1 is in the meta position and R 1 ' and R 1 " are
  • R 2 in embodiments (1), (2) and (4) is H, heterocyclic, a linear, branched, or cyclic ester having from 1 to 10 carbon atoms or heterocyclic, a linear, branched, or cyclic ether having from 1 to 10 carbon atoms or a carbamate of the formula -CONRj 0 Rn, wherein R 10 and R 11 are the same or different and are H, linear alkyl having from 1-6 carbon atoms, branched, or cyclic alkyl having 3 to 10 atoms or simple or substituted aryl having 6 to 10 carbon atoms.
  • preferred examples include -COCH 2 CH 3 and
  • -COCH 2 CH 2 CH 3 preferred examples include -CH 2 CH 3 and
  • R 2 in embodiment (3) is a thiol-containing moiety.
  • R 3 in embodiments (1), (3) and (4), is aryl, or is linear, branched or cyclic alkyl having 1 to 10 carbon atoms, preferably
  • R 4 in all four embodiments is -OC(CH 3 ) 3 or -C 6 H 5 .
  • R 5 in embodiments (1) and (2) is a thiol-containing moiety
  • R 6 has the same definition as above for R 2 for embodiments (1), (2) and (4).
  • R 5 and R 6 in embodiment (3) are the same or different, and have the same definition as above for R 2 for embodiments (1), (2) and (4).
  • R 5 in embodiment (4) has the same definition as above for R 2 for embodiments (1), (2) and (4) and R 6 is a thiol moiety.
  • the preferred positions for introduction of the thiol-containing moiety are R 2 and R 5 , with R 2 being the most preferred.
  • the side chain carrying the thiol moiety can be linear or branched, aromatic or heterocyclic. One of ordinary skill in the art can readily identify suitable side chains.
  • thiol moieties include -(CH 2 ) n SH, -CO(CH 2 ) n SH, -(CH 2 ) n CH(CH 3 )SH, -CO(CH 2 ) n CH(CH 3 )SH, -(CH 2 ) n C(CH 3 ) 2 SH, -CO(CH 2 ) n C(CH 3 ) 2 SH, -CONR 12 (CH 2 ) n SH, -CONR 12 (CH 2 ) n CH(CH 3 )SH, or -CONRi 2 (CH 2 ) n C(CH 3 ) 2 SH, -CO- morpholino-XSH, -CO-piperazino-XSH, -CO-piperidino-XSH, and -CO-N- methylpiperazino-XSH wherein
  • X is a linear alkyl or branched alkyl having 1-10 carbon atoms.
  • R 12 is a linear alkyl, branched alkyl or cyclic alkyl having 1 to 10 carbon atoms, or simple or substituted aryl having from 1 to 10 carbon atoms or heterocyclic, and can be H, and
  • n is an integer of 0 to 10.
  • linear alkyls examples include methyl, ethyl, propyl, butyl, pentyl and hexyl.
  • Examples of branched alkyls include isopropyl, isobutyl, sec-butyl, tert.-butyl, isopentyl and 1-ethyl-propyl.
  • Examples of cyclic alkyls include cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • Examples of simple aryls include phenyl and naphthyl.
  • substituted aryls include aryls such as those described above substituted with alkyl groups, with halogens, such as Cl, Br,
  • heterocyclics are compounds wherein the heteroatoms are selected from O, N, and S, and include morpholino, piperidino, piperazino, iV-methylpiperazino, pyrrollyl, pyridyl, furyl and thiophene.
  • the taxanes having a thiol moiety can be synthesized according to known methods.
  • the starting material for the synthesis is the commercially available 10-deacetylbaccatin III.
  • the chemistry to introduce various substituents is described in several publications (Ojima et al, J Med. Chem.
  • the substituent Ri on the phenyl ring and the position of the substituent Ri can be varied until a compound of the desired toxicity is obtained. Furthermore, the degree of substitution on the phenyl ring can be varied to achieve a desired toxicity. That is, the phenyl ring can have one or more substituents (e.g., mono-, di-, or tri-substitution of the phenyl ring) which provide another means for achieving a desired toxicity.
  • substituents e.g., mono-, di-, or tri-substitution of the phenyl ring
  • the thiol moiety can be introduced at one of the positions where a hydroxyl group already exists.
  • the chemistry to protect the various hydroxyl groups, while reacting the desired one, has been described previously (see, for example, the references cited supra).
  • the substituent is introduced by simply converting the free hydroxyl group to a disulfide-containing ether, a disulfide-containing ester, or a disulfide-containing carbamate. This transformation is achieved as follows.
  • the desired hydroxyl group is deprotonated by treatment with the commercially-available reagent lithium hexamethyldisilazane (1.2 equivalents) in tetrahydrofuran at -4O 0 C as described in Ojima et al.
  • the desired hydroxyl group can be esterified directly by reaction with an acyl halide, such as 3-bromopropionyl chloride, to give a bromo ester.
  • an acyl halide such as 3-bromopropionyl chloride
  • Displacement of the bromo group by treatment with potassium thioacetate and further processing as described above will provide the thiol-containing taxane ester.
  • Preferred taxoids are those described in U.S. Patent Nos. 6,340,701; 6,372,738; 6.436,931; 6,596,757; 6,706,708; 7,008,942; 7,217,819 and 7,276,499.
  • the cytotoxic agent according to the present invention may also be a CC- 1065 analogue.
  • the CC- 1065 analogues contain an A subunit and a B or a B-C subunit.
  • the A subunits are CPI (cyclopropapyrroloindole unit) in its natural closed cyclopropyl form or in its open chloromethyl form, or the closely related CBI unit (cyclopropylbenzindole unit) in the closed cyclopropyl form or the open chloromethyl form.
  • the B and C subunits of CC- 1065 analogues are very similar and are 2-carboxy-indole and 2-carboxy-benzofuran derivatives.
  • the analogues of CC- 1065 need at least one such 2-carboxy-indole subunit or 2-carboxy-benzofuran subunit, although two subunits (i.e., B-C) render the analogue more potent.
  • two subunits i.e., B-C
  • the B and C subunits can also carry different substituents at different positions on the indole or benzofuran rings.
  • CC- 1065 analogues containing a thiol moiety can be any of the following A subunits of the formulae A-I ⁇ CPI (Cyclopropyl form) ⁇ , A-2 ⁇ CPI (Chloromethyl form) ⁇ , A-3 ⁇ CBI (Cyclopropyl form) ⁇ , and A-4 ⁇ CBI (Chloromethyl form) ⁇ covalently linked via an amide bond from the secondary amino group of the pyrrole moiety of the A subunit to the C-2 carboxy group of either a B subunit of the formula F-I or a B-C subunit of the formulae F-3 or F-7.
  • a subunits of the formulae A-I ⁇ CPI (Cyclopropyl form) ⁇
  • A-2 ⁇ CPI Chloromethyl form
  • A-3 ⁇ CBI Cyclopropyl form
  • A-4 ⁇ CBI (Chloromethyl form) ⁇ covalently linked via an amide bond from the secondary amino group of the pyrrole mo
  • each W 1 and W 2 may be the same or different and may be O or NH; and wherein, in Formula F-I R 4 is a thiol moiety, in Formula F-3 one of R or R 4 is a thiol moiety, in Formula F-7 one of R' or R 4 is a thiol- containing moiety; when R or R' is a thiol moiety, then R 1 to R 6 , which may be the same or different, are hydrogen, C 1 -C 3 linear alkyl, methoxy, hydroxyl, primary amino, secondary amino, tertiary amino, or amido; and when R 4 is a thiol moiety, R, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 , which may be the same or different, are hydrogen, C 1 -C 3 linear alkyl, methoxy, hydroxyl, primary amino, secondary amino, tertiary amino, or amido,
  • R and R' are thiol moieties and Ri and R 2 are each hydrogen. In another preferred embodiment, R and R' are thiol moieties and R 1 to R 6 are each hydrogen.
  • R or R 4 is
  • Examples of primary amines include methyl amine, ethyl amine and isopropyl amine.
  • Examples of secondary amines include dimethyl amine, diethylamine and ethylpropyl amine.
  • tertiary amines include trimethyl amine, triethyl amine, and ethyl-isopropyl-methyl amine.
  • amido groups include N-methylacetamido,
  • N-methyl-propionamido N-acetamido, and N-propionamido.
  • alkyl represented by R' when R' is not a linking group, include C 1 -C 5 linear or branched alkyl.
  • Examples of O-alkyl represented by R' when R' is not a linking group include compounds where the alkyl moiety is a C 1 -C 5 linear or branched alkyl.
  • the above-described CC- 1065 analogues may be isolated from natural sources and methods for their preparation, involving subsequent modification, synthetic preparation, or a combination of both, are well- described (see, e.g., U.S. patent nos. 5,475,092, 5,585,499 and 5,846,545).
  • Preferred CC-1065 analogs are those described in U.S. Patent Nos. 5,475,092; 5,595,499; 5,846,545; 6,534,660; 6,586,618; 6,756,397 and 7,049,316
  • the cytotoxic agent according to the present invention may also be a daunorubicin analogue or a doxorubicin analogue.
  • the daunorubicin and doxorubicin analogues of the present invention can be modified to comprise a thiol moiety.
  • X is H or OH
  • Y is O or NR 2 , wherein R 2 is linear or branched alkyl having 1 to 5 carbon atoms;
  • R is a thiol moiety, H, or liner or branched alkyl having 1 to 5 carbon atoms;
  • R' is a thiol moiety, H, or -ORi, wherein Ri is linear or branched alkyl having 1 to 5 carbon atoms; provided that R and R' are not thiol moieties at the same time.
  • Ri is linear or branched alkyl having 1 to 5 carbon atoms; provided that R and R' are not thiol moieties at the same time.
  • NR 2 is NCH 3 .
  • R' is -O.
  • the thiol moiety is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N
  • Examples of the linear or branched alkyl having 1 to 5 carbon atoms, represented by R, R 1 , and R 2> include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec. -butyl, tert.-butyl, and pentyl, in any of its eight isomeric arrangements.
  • Ri and R 2 preferably are methyl.
  • linear alkyls examples include methyl, ethyl, propyl, butyl, pentyl and hexyl.
  • Examples of branched alkyls include isopropyl, isobutyl, sec-butyl, tert.-butyl, isopentyl and 1-ethyl-propyl.
  • R or R' is not a linking group
  • the substituent in that position can be varied until a compound of the desired toxicity is obtained.
  • High toxicity is defined as having an IC 50 towards cultured cancer cells in the range of 1 x 10 ⁇ 12 to 1 x 10 "9 M, upon a 72 hour exposure time.
  • substituents are H, alkyl, and O-alkyl, as described above.
  • One of ordinary skill in the art can determine the appropriate chemical moiety for R and R' using only routine experimentation.
  • methyl and methoxy substituents are expected to increase the cytotoxic potency, while a hydrogen is not expected to increase the potency as compared to the parent daunorubicin analogues with substituents at the different positions will be initially prepared and evaluated for in vitro cytotoxicity.
  • the modified doxorubicin/daunorubicin analogues of the present invention which have a thiol moiety, are described in WO 01/38318.
  • the modified doxorubicin/daunorubicin analogues can be synthesized according to known methods (see, e.g., U.S. Patent No. 5,146,064).
  • Auristatin include auristatin E, auristatin EB (AEB), auristatin
  • EFP EFP
  • MMAE monomethyl auristatin E
  • the cytotoxic agents according to the present invention include pyrrolobenzodiazepine dimers that are known in the art (US Patent Nos 7,049,311; 7.067.511; 6,951,853; 7,189,710; 6,884,799; 6,660,856.
  • cytotoxic agents [170]
  • cytotoxic agents described herein can be modified in such a manner that the resulting compound still retains the specificity and/or activity of the starting compound.
  • the skilled artisan will also understand that many of these compounds can be used in place of the cytotoxic agents described herein.
  • the cytotoxic agents of the present invention include analogues and derivatives of the compounds described herein.
  • Therapeutic Use [171]
  • the cell-binding agent drug conjugates (e.g., immunoconjugates) of this invention can also be used in combination with other chemotherapeutic agents. Such chemotherapeutic agents are listed above or are described in U.S. Patent No. 7,303,749.
  • the cell-binding agent drug conjugates (e.g., immunoconjugates) of the present invention can be administered in vitro, in vivo and/or ex vivo to treat patients and/or to modulate the growth of selected cell populations including, for example, cancer of the lung, blood, plasma, breast, colon, prostate, kidney, pancreas, brain, bones, ovary, testes, and lymphatic organs; autoimmune diseases, such as systemic lupus, rheumatoid arthritis, and multiple sclerosis; graft rejections, such as renal transplant rejection, liver transplant rejection, lung transplant rejection, cardiac transplant rejection, and bone marrow transplant rejection; graft versus host disease; viral infections, such as CMV infection, HIV infection, and AIDS; and parasite infections, such as giardiasis, amoebiasis, schistosomiasis, and the like.
  • autoimmune diseases such as systemic lupus, rheumatoid arthritis, and multiple sclerosis
  • the immunoconjugates and chemotherapeutic agents of the invention are administered in vitro, in vivo and/or ex vivo to treat cancer in a patient and/or to modulate the growth of cancer cells, including, for example, cancer of the blood, plasma, lung, breast, colon, prostate, kidney, pancreas, brain, bones, ovary, testes, and lymphatic organs; more preferably lung, colon prostrate, plasma, blood or colon cancer.
  • Modemating the growth of selected cell populations includes inhibiting the proliferation of selected cell populations (e.g., multiple myeloma cell populations, such as MOLP-8 cells, OPM2 cells, H929 cells, and the like) from dividing to produce more cells; reducing the rate of increase in cell division as compared, for example, to untreated cells; killing selected cell populations; and/or preventing selected cell populations (such as cancer cells) from metastasizing.
  • selected cell populations e.g., multiple myeloma cell populations, such as MOLP-8 cells, OPM2 cells, H929 cells, and the like
  • the growth of selected cell populations can be modulated in vitro, in vivo or ex vivo.
  • the cell-binding agent drug conjugates can be administered in vitro, in vivo, or ex vivo.
  • the cell-binding agent drug conjugates e.g., immunoconjugates
  • suitable pharmaceutically acceptable carriers, diluents, and/or excipients which are well known, and can be determined, by one of skill in the art as the clinical situation warrants.
  • Suitable carriers, diluents and/or excipients include: (1) Dulbecco's phosphate buffered saline, pH about 6.5, which would contain about 1 mg/ml to 25 mg/ml human serum albumin, (2) 0.9% saline (0.9% w/v NaCl), and (3) 5% (w/v) dextrose.
  • the compounds and compositions described herein may be administered in appropriate form, preferably parenterally, more preferably intravenously.
  • the compounds or compositions can be aqueous or nonaqueous sterile solutions, suspensions or emulsions.
  • Propylene glycol, vegetable oils and injectable organic esters, such as ethyl oleate, can be used as the solvent or vehicle.
  • the compositions can also contain adjuvants, emulsii ⁇ ers or dispersants.
  • compositions can also be in the form of sterile solid compositions that can be dissolved or dispersed in sterile water or any other injectable sterile medium.
  • the "therapeutically effective amount" of the cell-binding agent drug conjugate (e.g., immunoconjugates) described herein refers to the dosage regimen for modulating the growth of selected cell populations and/or treating a patient's disease, and is selected in accordance with a variety of factors, including the age, weight, sex, diet and medical condition of the patient, the severity of the disease, the route of administration, and pharmacological considerations, such as the activity, efficacy, pharmacokinetic and toxicology profiles of the particular compound used.
  • the "therapeutically effective amount” can also be determined by reference to standard medical texts, such as the Physicians Desk Reference 2004.
  • the patient is preferably an animal, more preferably a mammal, most preferably a human.
  • the patient can be male or female, and can be an infant, child or adult.
  • Examples of suitable protocols of cell-binding agent drug conjugates are as follows.
  • the conjugates can be given daily for about 5 days either as an i.v., bolus each day for about 5 days, or as a continuous infusion for about 5 days.
  • the conjugates can be administered once a week for six weeks or longer.
  • the conjugates can be administered once every two or three weeks.
  • Bolus doses are given in about 50 to about 400 ml of normal saline to which about 5 to about 10 ml of human serum albumin can be added.
  • Continuous infusions are given in about 250 to about 500 ml of normal saline, to which about 25 to about 50 ml of human serum albumin can be added, per 24 hour period. Dosages will be about 10 pg to about 1000 mg/kg per person, i.v. (range of about 100 ng to about 100 mg/kg).
  • kits comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compounds and/or compositions of the present invention, including, one or more immunoconjugates and one or more chemotherapeutic agents.
  • kits can also include, for example, other compounds and/or compositions, a device(s) for administering the compounds and/or compositions, and written instructions in a form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products.
  • the compounds and conjugates e.g., immunoconjugates could also be used for the manufacture of a medicament useful for treating or lessening the severity of disorders, such as, characterized by abnormal growth of cells (e.g., cancer).
  • PDR Physician's Desk Reference
  • the PDR discloses dosages of the agents that have been used in treatment of various cancers.
  • the dosing regimen and dosages of these aforementioned chemotherapeutic agents and conjugates that are therapeutically effective will depend on the particular cancer being treated, the extent of the disease and other factors familiar to the physician of skill in the art and can be determined by the physician.
  • the 2006 edition of the Physician's Desk Reference discloses that Taxotere (see p.
  • Methyl 4-N-maleimido-2-suIfo-butyrate [200] In an opened round bottom flask, methyl 4-N-(3, 6-endoxo- ⁇ - tetrahydrophthalido)-2-sulfo-butyrate (0.30 g, 0.87 mmol) in 20 ml of 1:1 DMA/ 100 mM NaH 2 PO 4 , pH 7.0 was heated at 120 ⁇ 14O 0 C for 4 h. During the reaction time, 5 x 10 ml of water was gradually added to keep the reaction volume around 15 ml.
  • the huC242 is modified with sulfo linker at 8 mg/mL antibody, a 15 fold molar excess of sulfo linker ( ⁇ 30mM stock solution in DMA).
  • the reaction is carried out in 100 mM NaPi, pH8.0 buffer with DMA (5% v/v) for 15, 30, 120, and 200 minutes at 25 0 C.
  • the modified huC242 was purified by G25 column with 50 mM NaPi, 50 mM NaCl, and 2 mM EDTA, pH6.5 to remove the excess sulfo linker.
  • the molar ratio of Spy-NO 2 released per mole of huC242 antibody was calculated by measuring the A 280 of the sample and then the increase in the A 394 of the sample after adding DTT (50 ⁇ L of 1 M DTT/mL of sample).
  • the concentration of DTT-released 2- mercaptopyridine is calculated using a S 394 nm of 14,205 M -1 Cm "1 .
  • the concentration of antibody can then be calculated using a ⁇ 28 o n m of 217,560 M " 1 Cm "1 after subtracting the contribution of Spy-NO 2 absorbance at 280 nm (A 394 nm post DTT x 3344/14205) from the total A 280 nm measured before DTT addition.
  • the molar ratio of Spy-NO 2 :Ab can then be calculated.
  • the mg/mL (g/L) concentration of huC242 is calculated using a molecular weight of 147,000 g/mole.
  • the modified huC242 was reacted with a 1.7-fold molar excess of DM4 (based on DM4 stock SH concentration) over Spy-NO 2 .
  • the reaction is carried out at 2.5 mg/mL antibody in 50 niM NaPi, 50 mM NaCl, 2 mM EDTA, pH6.5 and DMA (5% v/v). After addition of DM4, the reaction was incubated 25 0 C for ⁇ 20 hours.
  • the final conjugate was purified by G25 column with 10 mM Histidine, 130 mM Glycine, 5% sucrose, pH5.5 to remove the excess DM4 drug.
  • the huC242 and DM4 both absorb at the two wavelengths used to measure each component separately, i.e., 280 and 252 nm.
  • the extinction coefficient at 280 nm for huC242 is 217,560 and for DM4 is 5180 M "1 .
  • the 252 nm/280 nm absorbance ratios of huC242 and DM4 are 0.368 and 5.05 respectively.
  • SPP or SSNPP linker was dissolved in ethanol at a concentration of approximately 10 mM.
  • Antibody was dialyzed into buffer A (50 mM KPi, 50 mM NaCl, 2 mM EDTA, pH 6.5).
  • buffer A 50 mM KPi, 50 mM NaCl, 2 mM EDTA, pH 6.5.
  • the linker reaction the antibody was at 8 mg/ml, and 7 equivalents of linker were added while stirring in the presence of 5% (v/v) ethanol. The reaction was allowed to proceed at ambient temperature for 90 minutes. Unreacted linker was removed from the antibody by Sephadex G25 gel filtration using a Sephadex G25 column equilibrated with Buffer A at pH 6.5 or 150 mM potassium phosphate buffer containing 100 mM NaCl, pH 7.4 as indicated.
  • thiol-containing drug either DMl or DC4 was dissolved in DMA (N, iV-dimethylacetamide) at a concentration of approximately 10 mM.
  • the drug (0.8 - 1.7-fold molar excess relative to the number of linker molecules per antibody as indicated) was slowly added with stirring to the antibody which was at a concentration of 2.5 mg/ml in buffer A (pH 6.5 or pH 7.4) in a final concentration of 3% (v/v) DMA.
  • the reaction was allowed to proceed at ambient temperature for the indicated times.
  • Drug- conjugated antibody was purified using a Sephadex G25 column equilibrated with buffer B (PBS, pH 6.5). For DML, the extent of drug conjugation to antibody was assessed by measuring A 252 and A 280 of the conjugate as described below. A similar approach was used for DC4 (see below).
  • the molar ratio of pyridine-2-thione released per mole of antibody is calculated by measuring the A 280 of the sample and then the increase in the A 343 of the sample after adding DTT (50 ⁇ L of 1 M DTT/mL of sample).
  • the concentration of DTT-released pyridine-2-thione is calculated using an ⁇ 343 of 8080 M -1 Cm '1 .
  • the concentration of antibody can then be calculated using an ⁇ 280 of 194,712 M -1 Cm "1 after subtracting the contribution of pyridine-2-thione absorbance at 280 run (A 343 plentiful react, post DTT x 5100/8080) from the total A 280 nm measured before DTT addition.
  • the molar ratio of pyridine-2-thione:Ab can then be calculated.
  • the mg/mL (g/L) concentration of Ab is calculated using a molecular weight of 147,000 g/mole.
  • the molar ratio of the 4-nitropyridyl-2-dithio groups linked per mole of antibody is calculated by measuring the A 280 and A 325 of the sample without DTT treatment.
  • the number of antibody-bound 4-nitropyridyl-2- dithio groups is calculated using an ⁇ 325 nm of 10,964 M -1 Cm "1 .
  • the concentration of antibody can then be calculated using an ⁇ 280 nm of 194,712 M -1 Cm "1 after subtracting the contribution of the 5-nitropyridyl-2-dithio group absorbance at 280 nm (A 325 nm x 3344/10964) from the total A 280 nm measured.
  • the molar ratio of 4-nitropyridyl-2-dithio groups :Ab can then be calculated.
  • the mg/mL (g/L) concentration of Ab is calculated using a molecular weight of 147,000 g/mole.
  • the cytotoxic effects of the antibody-maytansinoid conjugates with thioether and disulfide linkers containing a sulfonate group_ were typically evaluated using a WST-8 cell-viability assay after a 4-5 day continuous incubation of the cancer cells with the conjugates.
  • the antigen-expressing cancer cells (-1000-5000 cells per well) were incubated in 96-well plates in regular growth medium containing fetal bovine serum with various concentrations of the antibody-maytansinoid conjugates for about 5 days.
  • the WST-8 reagent was then added and the plate absorbance was measured at 450 run after ⁇ 2-5 h.
  • the survival fraction was plotted versus conjugate concentration to determine the /C 50 value (50% cell killing concentration) of the conjugate.
  • Figures 60 and 61 show the enhancement in cytotoxicities of
  • Anti-CanAg (huC242) - maytansinoid conjugates with the sulfonate- containing disulfide-bonded linker (huC242-Sulfo-SPDB-DM4) bearing 6.0 to 7.6 maytansinoid/ Ab compared to the conjugate with 3.3 maytansinoid/Ab toward CanAg-positive COLO205 and COLO205-MDR cells.
  • the potency of the conjugates with high maytansinoids loads indicate that the decoration of the antibody with up to 8 maytansinoid molecules did not affect the conjugate binding to the target COLO205 cells.
  • Figure 64 shows the cytotoxic activities of anti-CanAg Ab- maytansinoid conjugates with similar maytansinoid load against CanAg antigen-positive COLO205-MDR cells.
  • the presence of sulfonate group in disulfide linker significantly enhanced conjugate potency toward these multiple drug resistant cells.
  • the enhanced potency of the sulfonate-linked conjugate is a novel finding and potentially very promising for therapeutic applications.
  • Figure 63 shows the cytotoxic activities of anti-EpC AM Ab- maytansinoid conjugates with similar maytansinoid load against EpCAM antigen-positive COLO205-MDR cells.
  • the presence of a sulfonate group in disulfide linker significantly enhanced conjugate potency toward these multiple drug resistant cells.
  • the enhanced potency of the sulfonate-linked conjugate is a novel finding and potentially very promising for therapeutic applications.
  • Figure 64 shows the cytotoxic activities of anti-EpCAM Ab- maytansinoid conjugates with similar maytansinoid load against EpCAM antigen-positive HCT cells.
  • the presence of a sulfonate group in the disulfide linker significantly enhanced conjugate potency toward these multiple drug resistant cells.
  • the enhanced potency of the sulfonate-linked conjugate is a novel finding and potentially very promising for therapeutic applications.
  • Figure 65 shows the cytotoxic activities of anti-EpCAM Ab- maytansinoid conjugates with similar maytansinoid load against EpCAM antigen-positive COLO205-MDR cells.
  • the presence of a sulfonate group in the thioether linker significantly enhanced conjugate potency toward these multiple drug resistant cells.
  • the enhanced potency of the sulfonate-linked conjugate is a novel finding and potentially very promising for therapeutic applications.
  • Example 4 Comparison of in vivo anti-tumor activity of the anti- EpCAM-maytansinoid conjugates, B38.1-SPDB-DM4 and B38.1-sulfo- SPDB-DM4, on colon cancer, COLO205 and COLO205-MDR, xenografts:
  • SPDB-DM4 conjugates was evaluated in a xenograft model of human colon carcinoma, COLO205 and COLO205-MDR, which was engineered to overexpress P-glycoprotein.
  • the cells were injected subcutaneously in the area under the right shoulder of SCID mice. When the tumor's volume reached approximately 200 mm 3 in size, the mice were randomized by tumor volume and divided into three groups. Each group was treated with a single i.v. bolus of either B38.1-SPDB-DM4 (10 mg conjugate protein/kg), B38.1- sulfo-SPDB-DM4 (10 mg conjugate protein/kg) or phosphate-buffered saline (vehicle control). Tumor growth was monitored by measuring tumor size twice per week. Tumor size was calculated with the formula: length x width x height x 1 A.
  • the column was eluted at 100 mL/min with deionized water containing 0.3 % formic acid and 5% acetonitrile for 10 min followed by a 13 min linear gradient from 5% acetonitrile to 33 % acetonitrile.
  • Product fractions (retention time of 21 min) were combined and solvent was removed by rotary evaporation under vacuum to give 832 mg (62 %) of the title compound.
  • the column was eluted at 18 mL/min with deionized water containing 0.3 % formic acid and 5% 1,4- dioxane for 3 min followed by a 15 min linear gradient from 5% 1,4-dioxane to 30 % 1,4-dioxane.
  • Product fractions (retention time 6.5 min) were collected in a flask and immediately frozen in a dry ice acetone bath. Solvent was removed by lyophilization at ambient temperature to give 40 mg (42%) of the title compound.
  • the column was run at 18 mL/min with deionized water containing 0.3% formic acid and 5% 1,4-dioxane for 3 min followed by an 18 min linear gradient from 5% 1,4-dioxane to 30% 1,4-dioxane.
  • Product fractions (retention time 7.3 min) were collected in a flask and immediately frozen in a dry ice/acetone bath. The combined frozen material was lyophilized to give 80 mg (70 %) of the title compound.
  • the purified conjugate was allowed to hold for 2d at 25 'C to allow any labile drug linkages to hydrolyze and then the conjugate was further purified from free drug by dialysis in PBS overnight, and then 10 mM histidine/130 mM glycine buffer pH 5.5 (Ix o/n).
  • the dialyzed conjugate was filtered using a 0.2 um filter and assayed by UVTVis to calculate number of maytansinoids per Ab using known extinction coefficients for maytansinoid and antibody at 252 and 280 nm. The recovery was -70% and number of maytansinoids/antibody measured for each conjugate ranged from 3.7 to 6.8 depending on the linker excess used.
  • Example 8 In vivo Pharmacokinetics;
  • the antibody values of plasma samples were measured by ELISA (based on capture using goat-anti-hulgG antibody and detection using donkey-anti-huIgG antibody-horseradish peroxidase conjugate) and by 3 H- counting (scintillation counting).
  • Figure 72 A shows that these two measurements of conjugate concentrations by ELISA and by 3 H-counting showed similar values for each conjugate.
  • Both the 3.5 and 6.4 D/A Antibody-Sulfo-Mal-DM4 conjugates showed good plasma stability over 4 weeks with half-life of approximately 14.9 days and 9.7 days respectively, which are similar to the half-life of approximately 11.8 days for the unconjugated antibody.
  • N901 antibody with DMl Conjugation was conducted for 2 hours at the indicated H usin a 1.7-fold molar excess of DMl er linker.
  • N901 antibody with DC4 Conjugation was conducted for the indicated time at pH 7.4 using a 1.4-fold molar excess of DC4 per linker.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cell Biology (AREA)
  • Pulmonology (AREA)
  • Urology & Nephrology (AREA)
  • Dermatology (AREA)
  • Reproductive Health (AREA)
  • Endocrinology (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

Charged or pro-charged cross-linking moieties and conjugates of cell binding agents and drugs comprising the charged or pro-charged cross-linking moieties and method of making the same.

Description

CROSS-LINKERS AND THEIR USES
This application claims priority to United States Provisional Application No. 61/049,291, filed April 30, 2008 and to United States Provisional Application No. 61/147,966, filed January 28, 2009.
FIELD QF THE INVENTION
[01] The present invention relates to the synthesis of novel charged cross linkers and cross linkers which can be processed by a target cell to give charged moieties. The present invention also relates to methods of making cell-binding agent-drug conjugates comprising modification of cell-binding agents with these cross-linkers, followed by reaction with drugs, or modification of the drugs with these crosslinkers, followed by reaction with cell-binding agents. The improved method of making conjugates provides the ability to link a higher number of drug molecules per cell-binding agent resulting in greater potency and providing greater aqueous solubility to the conjugates.
BACKGROUND OF THE INVENTION
[02] The bifunctional modification reagent iV-succinimidyl 3-(2- pyridyldithio) propionate (SPDP) has been used to link two proteins together through a disulfide bond. The reagent is reacted with the first protein to introduce an active disulfide-containing group in the modification step. A second protein, which contains a free thiol group, is then added to form a disulfide bond between the two proteins in the conjugation step. Many derivatives of SPDP and imide versions of SPDP have been described (U.S. Patent 4,563,304; J. Carlsson et al. 173 Biochem. J. 723-737 (1978); Goff D. A., Carroll, S. F. 1 BioConjugate Chem. 381-386 (1990); L. Delprino et al. 82 J. Pharm. Sci. 506-512 (1993); S. Arpicco et al., 8 BioConjugate Chem 327-337 (1997)).
[03] Conjugates of cell-binding agents with highly cytotoxic drugs have been described (U.S. Patent Nos. 5,208,020, 5,416,064; 5,475,092, 5,585,499, 6,436,931, 6,372,738 and 6,340,701; R.V.J. Chari et al., 52 Cancer Res. 127-131 (1992)). In these conjugates, the cell-binding agents are first modified with a bifunctional agent such as SPDP, SPP or SMCC to introduce an active disulfide or a maleimido moiety. Reaction with a thiol-containing cytotoxic drug provides a conjugate in which the cell-binding agent, such as a monoclonal antibody, and drug are linked via disulfide bonds or thioether bonds.
[04] Heterobifunctional cross-linkers comprising a nitropyridyldithio, dinitropyridyldithio, N. iV-dialkylcarboxamidopyridyldithio or di-(iV.iV-dialkylcarboxamido) pyridyldithio group and a reactive carboxylic ester group such as a iV-succinimidyl ester group or a iV-sulfosuccinimidyl ester group have been described (U.S. Patent No. 6,913,748). The presence of a iV-sulfosuccinimidyl group was claimed to provide higher aqueous solubility to these cross-linkers. However, once the cell-binding agent has been reacted with these cross-linkers, the 7V-sulfosuccinimidyl group is displaced and the solubility advantage is lost, both for the modified cell-binding agent and its drug conjugate. Since cytotoxic drugs used in cell-binding agent-drug conjugates are often only sparingly soluble in aqueous solutions, it is often difficult to link a sufficient number of drug molecules to the cell-binding agent and still maintain aqueous solubility. In addition, reactions have to be conducted in dilute solutions, which are cumbersome to scale up because of the need to use large volumes of solution.
SUMMARY OF THE INVENTION
[05] The present invention provides charged linkers, wherein the charges are retained both after modification of the cell-binding agent and in the resulting drug conjugate. More specifically, the present invention relates to the use of charged linkers to link drugs to a cell-binding agent (e.g., an antibody). In one aspect of the invention, the charged linkers are used to modify cell-binding agents and link them to drugs. In another aspect of the invention, the charged linkers are used to modify drugs and link them to cell- binding agents. In yet another aspect of the invention, the charged linkers are used to simultaneously link drugs and the cell-binding agents. In all instances, the preferred end result is a drug-charged linker-cell-binding agent conjugate, which can be represented by the formula, CB-(-Lc-D)q, wherein CB is a cell- binding agent, Lc is a charged linker, D is a drug molecule, and q is an integer from 1 to 20. The presence of a charged group(s) in the linker in the cell- binding agent-drag conjugate provides several advantages, such as i) greater water solubility of the final product, ii) ability to operate at a higher concentration in aqueous solutions, iii) ability to link a greater number of drug molecules per molecule of cell-binding agent, resulting in higher potency, iv) potential for the charged conjugate species to be retained inside the target cell, resulting in higher potency, and v) improved sensitivity of multidrug resistant cells, which would be unable to export the charged drug species from the cell. The invention also describes linkers, which can be coupled to a drug and a cell binding agent to give a conjugate which can be metabolized in a cell to produce a drag metabolite containing one or more charged moieties. These linkers will be referred to as pro-charged linkers. Moieties of the linker which will become charged after cell processing will be referred to as pro-charged moieties.
[06] In one aspect of the present invention, the charged or pro- charged cross linker is represented by formula (I) wherein Y' can react with a cell-binding agent and Q can react with a cytotoxic drug:
Figure imgf000005_0001
(I) wherein: Y' represents a functional group that enables reaction with a cell-binding agent;
Q represents a functional group that enables linkage of a cytotoxic drug via a disulfide, thioether, thioester, peptide, hydrazone, ether, ester, carbamate or amide bond;
R1, R2, R3, R4, R5, R6, R7, R8, R9, and R10 are the same or different and are H, linear alkyl having from 1-6 carbon atoms, branched or cyclic alkyl having from 3 to 6 carbon atoms, linear, branched or cyclic alkenyl or alkynyl having from 2 to 6 carbon atoms, anions, such as but not limited to, SO3 ", X-SO3 ", OPO3 2", X-OPO3 2", PO3 2", X-PO3 2", CO2 ", and cations, such as but not limited to, a nitrogen containing heterocycle, N+R11R12R13 or X-N+R11R12Ri3, or a phenyl, wherein:
Rn, Rj2 and Rj3 are the same or different and are H, linear alkyl having from 1 to 6 carbon atoms, or branched or cyclic alkyl having from 3 to 6 carbon atoms and X represents phenyl or a linear alkyl having from 1 to 6 carbon atoms, or a branched or cyclic alkyl having from 3 to 6 carbon atoms;
1, m and n are O or an integer from 1 to 4; and
A is a phenyl or a substituted phenyl, wherein the substituent is a linear alkyl having from 1 to 6 carbon atoms, or a branched or cyclic alkyl having from 3 to 6 carbon atoms, or a charged substituent selected from anions, such as but not limited to, SO3 ", X-SO3 ", OPO3 2", X-OPO3 2", PO3 2", X- PO3 2", CO2 ", and cations, such as but not limited to, a nitrogen containing heterocycle, N+R11Ri2Ri3 or X-N+RnRi2R13, wherein X has the same definition as above, and wherein g is 0 or 1 ;
Z is an optional polyethyleneoxy unit of formula (OCH2CH2)P, wherein p is 0 or an integer from 2 to about 1000, or F1-E1-P-E2-F2 unit in which El and E2 are the same or different and are C=O, O, or NRi4, wherein R14 is H, a linear alkyl having from 1-6 carbon atoms, a branched or cyclic alkyl having from 3 to 6 carbon atoms, a linear, branched or cyclic alkenyl or alkynyl having from 2 to 6 carbon atoms; P is a peptide unit between 2 and 20 amino acids in length, wherein El or E2 can be linked to the peptide through the terminal nitrogen, terminal carbon or through a side chain of one of the amino acids of the peptide; and Fl and F2 are the same or different and are an optional polyethyleneoxy unit of formula (OCH2CH2)P, wherein p is 0 or an integer from 2 to about 1000, provided that when Z is not F1-E1-P-E2-F2, at least one of Ri, R2, R3, R4, R5, R6, R7, Rs5 Rξ>, and R10 is a charged substituent or when g is 1, at least one of A, R1, R2, R3, R4, R5, R6, R7, Rg, R9, and Rj0 is a charged substituent.
[07] In another aspect, the present invention provides a cell-binding agent-drug conjugate of formula (II), in which the cell-binding agent, CB, and the drug, D, have reacted at the two ends of the charged or pro-charged cross linker:
Figure imgf000008_0001
(H) wherein:
CB represents a cell-binding agent;
D represents the drug linked to the cell-binding agent by a disulfide, thioether, thioester, peptide, hydrazone, ether, ester, carbamate, or amide bond;
R1, R2, R3, R4, R5, R6, R7, R8, R9, and R10 are the same or different and are H, linear alkyl having from 1-6 carbon atoms, branched or cyclic alkyl having from 3 to 6 carbon atoms, linear, branched or cyclic alkenyl or alkynyl having from 2 to 6 carbon atoms, anions, such as but not limited to, SO3 ". X- SO3 ". OPO3 2", X-OPO3 2", PO3 2" , X-PO3 2", CO2 ", cations, such as but limited to, a nitrogen containing heterocycle, N+R11R12R13 or X-N+R11R12R13, or a phenyl, wherein:
R11, R12 and Rj3 are the same or different and are H, linear alkyl having from 1 to 6 carbon atoms, branched or cyclic alkyl having from 3 to 6 carbon atoms and X represents phenyl or a linear alkyl having from 1 to 6 carbon atoms, or a branched or cyclic alkyl having from 3 to 6 carbon atoms; 1, m and n are 0 or an integer from 1 to 4; and A is a phenyl or substituted phenyl, wherein the substituent is a linear alkyl having from 1 to 6 carbon atoms, or a branched or cyclic alkyl having from 3 to 6 carbon atoms, or a charged substituent selected from anions, such as but not limited to, SO3 ". X-SO3 ". OPO3 2", X-OPO3 2", PO3 2" , X- PO3 2", CO2-, cations, such as but not limited to, a nitrogen containing heterocycle, N+R11Ri2R13 or X-N+RnRi2R13, wherein X has the same definition as above, and wherein g is O or 1 ;
Z is an optional polyethyleneoxy unit of formula (OCH2CH2)P, wherein p is O or an integer from 2 to about 1000, or F1-E1-P-E2-F2 unit in which El and E2 are the same or different and are C=O, O, or NR14, wherein R14 is H, a linear alkyl having from 1 -6 carbon atoms, a branched or cyclic alkyl having from 3 to 6 carbon atoms, a linear, branched or cyclic alkenyl or alkynyl having from 2 to 6 carbon atoms; P is a peptide unit between 2 and 20 amino acids in length, wherein El or E2 can be linked to the peptide through the terminal nitrogen, terminal carbon or through a side chain of one of the amino acids of the peptide; and Fl and F2 are the same or different and are an optional polyethyleneoxy unit of formula (OCH2CH2)P, wherein p is O or an integer from 2 to about 1000, provided that when Z is not F1-E1-P-E2-F2, at least one of Ri, R2, R3, R4, R5, R6, R7, R8, R9, and R10 is a charged substituent or when g is 1, at least one of A, R1, R2, R3, R4, R5, R6, R7, R8, R9, and Rj0 is a charged substituent; Y represents a carbonyl, thioether, amide, disulfide, or hydrazone group; and q represents an integer from 1 to 20. [08] In a further aspect, the present invention provides a modified cell-binding agent of formula (III), in which the cell-binding agent, CB, has reacted with the cross linker, which still has Q, a group capable of reacting with a cytotoxic drug:
Figure imgf000010_0001
(III)
wherein the substituents are as defined above.
[09] In an even further aspect, the present invention provides a modified drug of formula (IV), in which the drug, D, has reacted with the cross linker, which still has Y', a group capable of reacting with the cell- binding agent:
Figure imgf000011_0001
(IV) wherein the substituents are as defined above.
[10] The present invention further relates to a method of making a cell-binding agent drug conjugate of formula (II), wherein the drug is linked to a cell-binding agent via a charged or pro-charged linker. [11] The present invention also relates to a method of making a modified cell-binding agent of formula (III), wherein the cell-binding agent is reacted with the charged or pro-charged linker.
[12] The present invention also relates to a method of making a modified drug of formula (IV), wherein the drug is reacted with the charged or pro-charged linker.
[13] The present invention includes a composition (e.g., a pharmaceutical composition) comprising conjugates or derivatives thereof (and/or solvates, hydrates and/or salts thereof) and a carrier (a pharmaceutically acceptable carrier). The present invention also includes a composition (e.g., a pharmaceutical composition) comprising conjugates or derivatives thereof, (and/or solvates, hydrates and/or salts thereof) and a carrier (a pharmaceutically acceptable carrier), further comprising a second therapeutic agent. The present compositions are useful for inhibiting abnormal cell growth or treating a proliferative disorder in a mammal (e.g., human).
[14] The present invention includes a method of inhibiting abnormal cell growth or treating a proliferative disorder in a mammal (e.g., human) comprising administering to said mammal a therapeutically effective amount of the conjugates or derivatives thereof, (and/or solvates and salts thereof) or a composition thereof, alone or in combination with a second therapeutic agent. [15] The compounds of this invention, derivatives thereof, or conjugates thereof, and compositions comprising them, are useful for treating or lessening the severity of disorders, such as, characterized by abnormal growth of cells (e.g., cancer). Other applications for compounds or conjugates of this invention include, but are not limited to, treating osteoporosis, depression, anxiety, stress, phobias, panic, dysphoria, psychiatric disorders, and pain or as antiepileptics, antibacterials, diuretics and hypotensives, hypolipidemics, and anti-depressants.
BRIEF DESCRIPTION OF THE DRAWINGS
[16] Figure 1 shows the synthesis of sulfonic acid-containing cross- linking reagents that contain a nitropyridyldisulfide group and a reactive carboxylic acid ester. Hydroxyalkanoate esters are first converted into dibromoalkanoate esters as shown, followed by conversion of the α-bromo substituent into a sulfonic acid.
[17] Figure 2 shows the synthesis of sulfonic acid-containing cross- linking reagents that contain a pyridyldisulfϊde group and a reactive carboxylic acid ester.
[18] Figures 3, 4 and 5 show various routes for the synthesis of charged cross-linking agents bearing a reactive carboxylic acid ester and maleimido substituent, enabling linkage via thioether bonds. [19] Figures 6 and 7 show the synthesis of phosphate-containing cross-linking reagents that contain a pyridyldisulfide group and a reactive carboxylic acid ester.
[20] Figure 8 shows the synthesis of phosphate-containing cross- linking reagents that contain a nitropyridyldisulfide group and a reactive carboxylic acid ester
[21] Figures 9 and 10 show different routes for the synthesis of phosphate-containing charged cross-linking agents bearing a reactive carboxylic acid ester and a maleimido substituent, enabling linkage via thioether bonds.
[22] Figure 11 shows the synthesis of sulfonic acid-containing cross-linking reagents, where the sulfonate substituent is attached to a branched alkyl group. These reagents also bear a pyridyldisulfide group and a reactive carboxylic acid ester. [23] Figure 12 shows the synthesis of sulfonic acid-containing cross-linking reagents, where the sulfonate substituent is attached to a branched alkyl group. These reagents also bear a reactive carboxylic acid ester and a maleimido group that allows for linkage via thioether bonds. [24] Figure 13 shows the synthesis of quartenary amine-containing cross-linking reagents that contain a pyridyldisulfide group and a reactive carboxylic acid ester.
[25] Figure 14 shows the synthesis of quartenary amine cross- linking agents bearing a reactive carboxylic acid ester and maleimido substituent, enabling linkage via thioether bonds. [26] Figure 15 shows the synthesis of sulfonic acid-containing cross-linking reagents that contain a pyridyldisulfide group and a reactive carboxylic acid ester. In these compounds, the sulfonate substituent is on the carbon atom on the position β to the carboxyl ester.
[27] Figure 16 shows the synthesis of phosphate-containing cross- linking reagents that contain a pyridyldisulfide group and a reactive carboxylic acid ester. In these compounds, the phosphate substituent is on the β-position relative to the carboxyl ester.
[28] Figures 17, 18 and 19 show the synthesis of various sulfonic acid-containing cross-linking reagents that contain a polyethyleneglycol (PEG) chain, along with a nitropyridyldisulfide group and a reactive carboxylic acid ester. [29] Figures 20 and 21 show the synthesis of various sulfonic acid- containing cross-linking reagents that contain a polyethyleneglycol (PEG) chain, along with a maleimido group and a reactive carboxylic acid ester. [30] Figure 22 shows the synthesis of phosphate-containing cross- linking reagents, where the phosphate substituent is attached to an aromatic group. These reagents also bear a reactive carboxylic acid ester and a nitropyridyldithio group that allows for linkage via disulfide bonds. [31] Figure 23 shows the synthesis of phosphate-containing cross- linking reagents, where the phosphate substituent is attached to a branched alkyl group. These reagents also bear a reactive carboxylic acid ester and a nitropyridyldithio group that allows for linkage via disulfide bonds. [32] Figures 24 - 31 show the synthesis of sulfonate-containing cross-linking reagents that also incorporate a hydrazide moiety allowing for linkage via acid-labile bonds.
[33] Figures 32 - 36 show the synthesis of phosphate-containing cross-linking reagents that also incorporate a hydrazide moiety allowing for linkage via acid-labile bonds.
[34] Figures 37 - 38 show the synthesis of quartenary amine- containing cross-linking reagents that also incorporate a hydrazide moiety allowing for linkage via acid-labile bonds.
[35] Figures 39 - 42 show the synthesis of charged cross-linking reagents that also incorporate a polyethyleneglycol (PEG) moiety. [36] Figures 43-44 show the synthesis of phosphate-containing cross-linking reagents, where the phosphate substituent is attached to an aromatic residue or to an alkyl group. These reagents also bear a reactive carboxylic acid ester and a nitropyridyldithio group that allows for linkage via disulfide bonds.
[37] Figures 45-49 show the synthesis of charged cross-linking agents bearing reactive carboxylic acid ester and a haloacetyl substituent, enabling linkage via thioether bonds.
[38] Figure 50 shows the synthesis of a procharged linker that would generate a negatively charged carboxylate metabolite.
[39] Figure 51 shows a conjugate of linker 158 to a drug and a monoclonal antibody and how the conjugate would be processed in the lysosome of a target cell to give a metabolite containing the drug bearing a negatively charged carboxylate.
[40] Figure 52 shows the synthesis of a procharged linker that would generate a positively charged amine-containing metabolite.
[41] Figure 53 shows a conjugate of a procharged linker to a drug and a monoclonal antibody and how the conjugate would be processed in the lysosome of a target cell to give a metabolite of the drug bearing a positively charged amine.
[42] Figure 54 shows the synthesis of a procharged linker that would generate a charged carboxylate metabolite. [43] Figure 55 shows a conjugate of linker 172 to a drug and a moloclonal antibody and how the conjugate would be processed in the lysosome of a target cell to give a metabolite containing the drug bearing a carboxylic acid and a lysine residue.
[44] Figure 56 shows the use of charged linker in modifying a cell- binding agent and producing a cell-binding agent-drug conjugate bearing a charged linker.
[45] Figures 57(A), (B) and (C) show the in vitro potency of cell- binding agent-drug conjugates in which a charged crosslinker is incorporated. [46] Figure 58 shows the in vitro potency and target selectivity of cell-binding agent-drug conjugates bearing a charged crosslinker. [47] Figure 59 shows the mass spectrum of cell-binding agent-drug conjugates bearing a charged crosslinker.
[48] Figure 60 shows the cytotoxicity of Anti-CanAg (huC242) - sulfonate linker-maytansinoid conjugates with increasing maytansinoids load (E:A) toward COLO205 cells.
[49] Figure 61 shows the cytotoxicity of Anti-CanAg (huC242) - sulfonate linker-maytansinoid conjugates with increasing maytansinoids load (E: A) toward multi-drug resistant COLO205-MDR cells. [50] Figure 62 compares cytotoxicity of Anti-CanAg (huC242) - maytansinoid conjugates with or without sulfonate group in the linker toward multi-drug resistant COLO205-MDR cells.
[51] Figure 63 compares the cytotoxicity of Anti-EpCAM (B38.1) - maytansinoid conjugates with or without sulfonate group in linker toward multi-drug resistant COLO205-MDR cells.
[52] Figure 64 compares the cytotoxicity of Anti-EpCAM (B38.1)- maytansinoid conjugates with or without sulfonate group in linker toward multi-drug resistant HCTl 5 cells.
[53] Figure 65 compares the cytotoxicity of Anti-EpCAM (B38.1) - maytansinoid conjugates with or without sulfonate group in linker toward multi-drug resistant COLO205-MDR cells.
[54] Figure 66 shows the in vivo anti-tumor activity of anti-EpCAM antibody-maytansinoid conjugates on COLO205 mdr xenografts (individual tumors).
[55] Figure 67 shows the in vivo anti-tumor activity of anti-EpCAM antibody-maytansinoid conjugates on COLO205 xenografts (individual tumors).
[56] Figures 68 - 70 show the methods of synthesis of sulfonic acid- containing cross-linking reagents. These reagents bear a reactive carboxylic acid ester and a maleimido group that allows for linkage via thioether bonds. [57] Figure 71 shows the methods of synthesis of quartenary amine - containing cross-linking reagents. These reagents also bear a reactive carboxylic acid ester and a pyridyldithio group that allows for linkage via disulfide bonds.
[58] Figures 72(A) and (B) show Plasma pharmacokinetics of huC242 Antibody-Sulfo-Mal-[3H-labeled]-DM4 conjugates with 3.5 DM4/Ab or 6.4 DM4/Ab dosed at 12.9 mg/kg and 7.9 mg/kg (i.v.) respectively in CD-I mice. A. Ab concentrations (measured by ELISA or by 3H counts) versus time after administration. B. Maytansinoid (DM4)/ Antibody (Ab) ratio versus time after administration.
[59] In Figures 1-71, where applicable, n reperesents 0 or an integer from 1 to 10, and m represents 0 or an integer from 1 to 2000.
DETAILED DESCRIPTION OF THE INVENTION
[60] The novel conjugates disclosed herein use charged or pro- charged cross-linkers. Examples of some suitable cross-linkers and their synthesis are shown in Figures 1 to 10. Preferably, the charged or pro-charged cross-linkers are those containing sulfonate, phosphate, carboxyl or quaternary amine substituents that significantly increase the solubility of the modified cell-binding agent and the cell-binding agent-drug conjugates, especially for monoclonal antibody-drug conjugates with 2 to 20 drugs/antibody linked. Conjugates prepared from linkers containing a pro-charged moiety would produce one or more charged moieties after the conjugate is metabolized in a cell.
Cross-linkers
[61] The synthetic routes to produce charged crosslinkers of the present invention are shown in Figures 1-49. Synthetic routes to produce linkers with pro-charged moieties are shown in figures 50, 52, and 54. Figures 51, 53 and 55 show a conjugate of each of the respective pro-charged linkers with a drug and a monoclonal antibody and how these conjugates would be metabolized in a target cell to give charged metabolites. The crosslinkers possess three elements: a) a substituent that is either charged or will become charged when conjugates employing these linkers are metabolized in cells. The charge will be either anionic, such as but not limited to, carboxylate, sulfonate or phosphate, or cationic, such as but not limited to, a tertiary, quaternary, or primary amine or a nitrogen-containing heterocycle, b) a group, such as a N-hydroxysuccimimide ester, maleimido group, haloacetyl group, and hydrazide, capable of reaction with a cell-binding agent, and c) a group, such as but not limited to, a disulfide, maleimide, haloacetyl, and hydrazide, capable of reaction with a drug. The charged or pro-charged substituent can be introduced by methods described herein. For example, a sulfonate charge can be introduced by first treating a commercially available haloester compound with thioacetate to produce a thioacetyl compound, followed by oxidation of the thioacetyl group, using hydrogen peroxide, to a sulfonate group. Phosphate containing crosslinkers can be synthesized by methods described herein. First the desired reactive group, such as but not limited to, thiol, maleimide, haloacetyl and hydrazide, is introduced by the reactions shown in Figures 6-10, followed by hydrolysis of the phosphate ester to give the charged crosslinker bearing a phosphate. A positively charged quaternary amine substituent can be introduced in the crosslinker by reaction of an amine with an α,β -unsaturated ketone (see, for example, Figures 13 and 37). Alternatively a charged amine substituent can be introduced by displacement of a halogen with the amine or nitrogen containing heterocycle of choice. [62] Preferably, the cross-linkers are compounds of the formula (I) below:
Figure imgf000021_0001
(I) wherein Y' represents a functional group that enables reaction with a cell-binding agent;
Q represents a functional group that enables linkage of a drug via a disulfide, thioether , thioester, peptide, hydrazone, ester, ether, carbamate or amide bond; R1, R2, R3, R4, R5, R6, R7, Rs5 Rξ>> and R10 are the same or different and are H, linear alkyl having from 1-6 carbon atoms, branched or cyclic alkyl having from 3 to 6 carbon atoms, linear, branched or cyclic alkenyl or alkynyl having from 2 to 6 carbon atoms, anions, such as but not limited to, SO3; X-SO3 ", OPO3 2", X-OPO3 2", PO3 2" , X-PO3 2", CO2-, cations, such as but not limited to, a nitrogen containing heterocycle, N+R11R12R13 or X-N+R11R12Ri3 or a phenyl, wherein:
Rn, R12 and R13 are the same or different and are H, linear alkyl having from 1 to 6 carbon atoms, or branched or cyclic alkyl having from 3 to 6 carbon atoms and X represents phenyl or a linear alkyl having from 1 to 6 carbon atoms, or a branched or cyclic alkyl having from 3 to 6 carbon atoms;
1, m and n are O or an integer from 1 to 4;
A is a phenyl or substituted phenyl, wherein the substituent is a linear alkyl having from 1 to 6 carbon atoms, or a branched or cyclic alkyl having from 3 to 6 carbon atoms, or a charged substituent selected from anions, such as but not limited to, SO3 ". X-SO3 ". OPO3 2", X-OPO3 2", PO3 2' , X- PO3 ", CO2-, and cations, such as but not limited to, a nitrogen containing heterocycle, N+RnRi2Rn or X-N+RHRI2RI3, wherein X has the same definition as above, and wherein g is O or 1 ;
Z is an optional polyethyleneoxy unit of formula (OCH2CH2)P, wherein p is O or an integer from 2 to about 1000, or F1-E1-P-E2-F2 unit in which El and E2 are the same or different and are C=O, O, or NRl 4, wherein Ri4 is H, a linear alkyl having from 1-6 carbon atoms, a branched or cyclic alkyl having from 3 to 6 carbon atoms, a linear, branched or cyclic alkenyl or alkynyl having from 2 to 6 carbon atoms; P is a peptide unit between 2 and 20 amino acids in length, wherein El or E2 can be linked to the peptide through the terminal nitrogen, terminal carbon or through a side chain of one of the amino acids of the peptide; and Fl and F2 are the same or different and are an optional polyethyleneoxy unit of formula (OCH2CH2)P, wherein p is 0 or an integer from 2 to about 1000, provided that when Z is not F1-E1-P-E2-F2, at least one OfR1, R2, R3, R4, R5, R6, R7, Rs, R9, and Ri0 is a charged substituent or when g is 1, at least one of A, Ri, R2, R3, R4, R5, R6, R7, R8, R9, and Ri0 is a charged substituent.
[63] Examples of the functional group, Y', that enables reaction with a cell-binding agent include amine reacting agents such as but not limited to N-hydroxysuccinmide esters, p-nitrophenyl esters, dinitrophenyl esters, pentafluorophenyl esters; thiol reactive agents such as but not limited to pyridyldisulfides, nitropyridyldisulfides, maleimides, haloacetates and carboxylic acid chlorides.
[64] Examples of the functional group, Q, which enables linkage of a cytotoxic drug, include groups that enable linkage via a disulfide, thioether, thioester, peptide, hydrazone, ester, carbamate, or amide bond. Such functional groups include, but are not limited to, thiol, disulfide, amino, carboxy, aldehydes, maleimido, haloacetyl, hydrazines, and hydroxy.
[65] Examples of linear alkyls include methyl, ethyl, propyl, butyl, pentyl and hexyl. Examples of branched or cyclic alkyls having 3 to 6 carbon atoms include isopropyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.
[66] Examples of linear alkenyls having 2 to 6 carbon atoms include ethenyl, propenyl, butenyl, pentenyl, hexenyl. Examples of branched or cyclic alkenyls having 2 to 6 carbon atoms include isobutenyl, isopentenyl,
2-methyl-l -pentenyl, 2-methyl-2-pentenyl.
[67] Examples of linear alkynyls having 2 to 6 carbon atoms include ethynyl, propynyl, butynyl, pentynyl, hexynyl. Examples of branched or cyclic alkynyls having up to 6 carbon atoms include 3 -methyl- 1 -butynyl, 3- methyl- 1 -penynyl, 4-methyl-2-hexynyl.
[68] In preferred embodiments, one Of R1, R2, R3, R4, Rg, Rj0 is a charged substituent selected from sulfonate, phosphate or trialkylammonium, and the rest are H, 1, g and m are each 0, n = 1, Q and Y' are each independently, a disulfide substituent, a maleimido, a haloacetyl group, or a
N-hydroxy succinimide ester. In another more preferred embodiment, one of
R1, R2, R3, R4, R9, R10 is a sulfonate, and the rest are H, 1, g and m are each 0, n = 1 , Q is a disulfide, maleimido or haloacetyl moiety, and Y' is a maleimido moiety or a N-hydroxy succinimide ester. In a further more preferred embodiment, one OfR1, R2, R3, R4, R9, R10 is a sulfonate, and the rest are H, 1, g and m are each O, n = 1 , Q is a pyridyldithio or nitropyridyldithio group, maleimido or haloacetyl moiety, and Y' is a JV-hydroxy succinimide ester. [69] The synthesis of 2-dithionitropyridyl and 2-dithio- dinitropyridyl containing cross-linkers of formulae (I) is shown, for example, in Figures 1, 2 and the synthesis of the corresponding 4-dithionitropyridyl and 4-dithio-dinitropyridyl containing cross-linkers of the formula (I) is shown, for example, in Figure 6. The synthesis of maleimido-containing charged cross linkers of the formula (I) with a sulfonate group is shown, for example, in Figures 3, 4 and 5. The synthesis of maleimido-containing charged cross linkers of the formula (I) with a phosphate group is shown, for example, in Figures 9 and 10. The synthesis of quaternary amine-containing charged crosslinkers of formula (I) is shown, for example, in Figures 13 and 14. The synthesis of polyethylene glycol-containing charged cross linkers of formula (I) are shown, for example, in Figures 17 -21. The synthesis of charged cross linkers of formula (I) bearing a hydrazide moiety enabling linkage via acid- labile bonds is shown, for example, in Figures 24-36.
Cell-binding agent drug -conjugates
[70] Using the charged or pro-charged crosslinkers a high number
(>6) of drug molecules can be introduced. In non limiting examples, Figure 57 exemplifies that cell-binding agent-drug conjugates prepared using a charged crosslinker of the present invention display high potency. In addition, the potency is target selective (see, for example, Figure 58), since, even after linkage of a high number of drug molecules, the conjugate is highly potent towards target cells, but much less potent towards non-target cells. As exemplified in Figure 59, mass spectral analysis demonstrates that the drugs are linked covalently to the cell-binding agent via the charged crosslinker. [71] The conjugates of the present invention can be represented by the following formula, CB-(-Lc-D)q, wherein CB is a cell-binding agent, Lc is a charged or pro-charged linker, D is a drug molecule, and q is an integer from 1 to 20.
[72] Preferably, the conjugates have the following formula (II):
Figure imgf000026_0001
(H) wherein CB represents a cell-binding agent,
D represents a drug linked to the cell-binding agent by a disulfide, thioether, thioester, peptide, hydrazone, ester, carbamate or amide bond; Ri, R2, R3, R4, R5, R6, R7, R8, R9, and R10 are the same or different and are H, linear alkyl having from 1-6 carbon atoms, branched or cyclic alkyl having from 3 to 6 carbon atoms, linear, branched or cyclic alkenyl or alkynyl having from 2 to 6 carbon atoms, anions, such as but not limited to, SO3 ". X-SO3 '. OPO3 2", X-OPO3 2", PO3 2" , X-PO3 2", CO2 ", cations, such as but not limited to, a nitrogen containing heterocycle, N+R11Ri2R13 or X-N+RHRI2RI3, or a phenyl, wherein:
Rn, Rj2 and Ri3 are same or different and are H, linear alkyl having from 1 to 6 carbon atoms, branched or cyclic alkyl having from 3 to 6 carbon atoms and X represents phenyl or a linear alkyl having from 1 to 6 carbon atoms, or a branched or cyclic alkyl having from 3 to 6 carbon atoms;
1, m and n are O or an integer from 1 to 4;
A is a phenyl or substituted phenyl, wherein the substituent is a linear alkyl having from 1 to 6 carbon atoms, or a branched or cyclic alkyl having from 3 to 6 carbon atoms, or a charged substituent selected from anions, such as but not limited to, SO3 ". X-SO3 ". OPO3 2', X-OPO3 2", PO3 2" , X- PO3 2", CO2 ", cations, such as but not limited to, a nitrogen containing heterocycle, N+RHRI2RI3 or X-N+RHRI2RI3, wherein X has the same definition as above, and wherein g is O or 1 ;
Z is an optional polyethyleneoxy unit of formula (OCH2CH2)P, wherein p is O or an integer from 2 to about 1000, or F1-E1-P-E2-F2 unit in which El and E2 are the same or different and are C=O, O, or NRl 4, wherein R14 is H, a linear alkyl having from 1-6 carbon atoms, a branched or cyclic alkyl having from 3 to 6 carbon atoms, a linear, branched or cyclic alkenyl or alkynyl having from 2 to 6 carbon atoms; P is a peptide unit between 2 and 20 amino acids in length, wherein El or E2 can be linked to the peptide through the terminal nitrogen, terminal carbon or through a side chain of one of the amino acids of the peptide; and Fl and F2 are the same or different and are an optional polyethyleneoxy unit of formula (OCH2CH2)P, wherein p is 0 or an integer from 2 to about 1000, provided that when Z is not F1-E1-P-E2-F2, at least one OfR1, R2, R3, R4, R5, R6, R7, R8, R9, and R10 is a charged substituent or when g is 1, at least one of A, R1, R2, R3, R4, R5, R6, R7, R8, R9, and R10 is a charged substituent;
Y represents a carbonyl, thioether, amide, disulfide, or hydrazone group; and q is an integer from 1 to 20.
[73] As described in more detail below, the drug can be any of many small molecule drugs, including, but not limited to, maytansinoids, CC- 1065 analogs, morpholinos, doxorubicins, taxanes, cryptophycins, epothilones, calicheamicins, auristatins, and pyrrolobenzodiazepine dimers. [74] In preferred embodiments, one of R1, R2, R3, R4, R9, R10 is a charged substituent selected from sulfonate, phosphate, carboxylate or trialkylammonium, and the rest are H, 1, g and m are each 0, n = 1 , D is a maytansinoid, a CC- 1065 analog or a pyrrolobenzodiazepine dimer. In another more preferred embodiment, one of R1, R2, R3, R4, R9, R10 is a sulfonate, and the rest are H, 1, g and m are each 0, n = 1, D is a maytansinoid, CC- 1065 analog or a pyrrolobenzodiazepine dimer linked via a disulfide, thioester, or thioether bond. In a further more preferred embodiment, one of Ri, R2, R3, R4, R9, Rio is a sulfonate, and the rest are H, 1, g and m are each 0, n = 1, and Q is a maytansinoid, a CC- 1065 analog, or a taxane. [75] In a preferred embodiment, when Z is an F1-E1-P-E2-F2 unit,
El and E2 are the same or different and are C=O or NRl 4, wherein Ri4 is H, a linear alkyl having from 1-6 carbon atoms, a branched or cyclic alkyl having from 3 to 6 carbon atoms, P is a peptide unit between 2 and 8 amino acids in length, wherein El or E2 can be linked to the peptide through the terminal nitrogen, terminal carbon or through a side chain of one of the amino acids of the peptide, preferred amino acid residues are glycine (gly), alanine (ala), leucine (leu), glutamic acid (glu), or lysine (lys), which can be used in any combination or any order (e.g., gly-gly-gly or ala-leu-ala-leu, etc.); and Fl and F2 are the same or different and are an optional polyethyleneoxy unit of formula (OCH2CH2)P, wherein p is 0 or an integer from 2 to about 1000. [76] In a more preferred embodiment, when Z is an F1-E1-P-E2-F2 unit, El and E2 are the same or different and are C=O or NRl 4, wherein Ri4 is H or a linear alkyl having from 1-6 carbon atoms, P is a peptide unit between 2 and 5 amino acids in length, wherein El or E2 can be linked to the peptide through the terminal nitrogen, terminal carbon or through a side chain of one of the amino acids of the peptide; and Fl and F2 are the same or different and are an optional polyethyleneoxy unit of formula (OCH2CH2)P, wherein p is 0 or an integer from 2 to 24.
[77] Preferably, q, the number of drugs bound to each cell-binding agent is 1-20, more preferably 2-18, and even more preferably 2-16, and most preferably 2-10.
[78] To synthesize the conjugate, the cell-binding agent can be modified with the crosslinkers of the present invention to introduce reactive disulfide groups, maleimido, haloacetyl or hydrazide groups. Synthesis of the cell-binding agent-drug conjugates linked via disulfide bonds is achieved by a disulfide exchange between the disulfide bond in the modified cell-binding agent and a drug containing a free thiol group. Synthesis of the cell-binding agent-drug conjugates linked via thioether is achieved by reaction of the maleimido or haloacetyl modified cell-binding agent and a drug containing a free thiol group. Synthesis of conjugates bearing an acid labile hydrazone link can be achieved by reaction of a carbonyl group with the hydrazide moiety in the linker, by methods known in the art (see, for example, P. Hamann et al., BioConjugate Chem., 13; 40-46, 2002; B. Laguzza et al., J.Med. Chem., 32; 548-555, 1959; P. Trail et al., Cancer Res., 57; 100-105, 1997). [79] Alternatively, the drug can be modified with the crosslinkers of the present invention to give a modified drug of formula (IV) bearing a functionality capable of reacting with a cell binding agent. For example a thiol-containing drug can be reacted with the charged or pro-charged crosslinker of formula (I) bearing a maleimdo substituent at neutral pH in aqueous buffer to give a drug connected to the charged linker via a thioether link. A thiol-containg drug can undergo disulfide exchange with a charged linker bearing a pyrdiyldithio moiety to give a modified drug attached via a disulfide bond to the charged crosslinker. A drug bearing a hydroxyl group can be reacted with a charged or pro-charged crosslinker bearing a halogen, in the presence of a mild base, to give a modified drug bearing an ether link. A hydroxyl group containing drug can be condensed with a charged crosslinker of formula (I) bearing a carboxyl group, in the presence of a dehydrating agent, such as dicyclohexylcarbodimide, to give an ester link. An amino group containing drug can similarly undergo condensation with a carboxyl group on the charged or pro-charged crosslinker of formula (I) to give an amide bond.
[80] The conjugate may be purified by standard biochemical means, such as gel filtration on a Sephadex G25 or Sephacryl S300 column, adsorption chromatography, and ion exchange or by dialysis as previously described. In some cases (e.g. folic acid, melanocyte stimulating hormone, EGF etc) the cell-binding agent-drug conjugates can be purified by chromatography such as by HPLC, medium pressure column chromatography or ion exchange. Modified cell-binding agents
[81] The cell-binding agent modified by reaction with crosslinkers of the present invention are preferably represented by the formula (III)
Figure imgf000032_0001
(III) wherein the substituents are as described above for the charged or pro-charged linker and the cell-binding agent drug conjugate. [82] In preferred embodiments, one of Ri, R2, R3, R4, R9, Rio is a charged substituent selected from sulfonate, phosphate, carboxyl or trialkylammonium, and the rest are H, 1, g and m are each 0, n = 1 , Q is a disulfide substituent, a maleimido, haloacetyl group, or a iV-hydroxy succinimide ester, and Y is thioether, amide, or disulfide. In another more preferred embodiment, one of Ri, R2, R3, R4, R9, Rio is a sulfonate, and the rest are H, 1, g and m are each 0, n = 1 , Q is a disulfide, maleimido or haloacetyl moiety, and Y is thioether, amide, or disulfide. In a further more preferred embodiment, one of R1, R2, R3, R4, R9, Rio is a sulfonate, and the rest are H, 1, g and m are each 0, n = 1, Q is a pyridyldithio or nitropyridyldithio group, and Y is thioether, amide, or disulfide. [83] In a preferred embodiment, when Z is an F1-E1-P-E2-F2 unit,
El and E2 are the same or different and are C=O or NR14, wherein Rj4 is H, a linear alkyl having from 1-6 carbon atoms, a branched or cyclic alkyl having from 3 to 6 carbon atoms, P is a peptide unit between 2 and 8 amino acids in length, wherein El or E2 can be linked to the peptide through the terminal nitrogen, terminal carbon or through a side chain of one of the amino acids of the peptide, preferred amino acid residues are glycine (gly), alanine (ala), leucine (leu), glutamic acid (glu), or lysine (lys), which can be used in any combination or any order (e.g., gly-gly-gly or ala-leu-ala-leu, etc.); and Fl and F2 are the same or different and are an optional polyethyleneoxy unit of formula (OCH2CH2)P, wherein p is 0 or an integer from 2 to about 1000. [84] In a more preferred embodiment, when Z is an F1-E1-P-E2-F2 unit, El and E2 are the same or different and are C=O or NR14, wherein Ri4 is H or a linear alkyl having from 1-6 carbon atoms, P is a peptide unit between 2 and 5 amino acids in length, wherein El or E2 can be linked to the peptide through the terminal nitrogen, terminal carbon or through a side chain of one of the amino acids of the peptide; and Fl and F2 are the same or different and are an optional polyethyleneoxy unit of formula (OCH2CH2)P, wherein p is 0 or an integer from 2 to 24.
[85] The modified cell-binding agent can be prepared by reacting the cell-binding agent with the charged crosslinkers by methods known in the art for other crosslinkers (U.S. Patent Nos. 6,340,701 Bl, 5,846,545, 5,585,499, 5,475,092, 5,414,064, 5,208,020, and 4,563,304; R.V.J. Chari et al. Cancer Research 52, 127-131, 1992; R.V.J. Chari et al. Cancer Research 55, 4079-4084, 1995; J. Carlsson et al. 173 Biochem. J. (1978) 723-737(1978); Goff, D. A., Carroll, S. F. 1 BioConjugate Chem. 381-386 (1990); L. Delprino et al. 82 J. Pharm. Sci. 506-512 (1993); S. Arpicco et al., 8 BioConjugate Chem 327-337 (1997)). Advantageously, because the cross-linker groups are soluble in water or require only a small percentage of organic solvent to maintain solubility in aqueous solution, the reaction between the cell-binding agent and the cross-linker can be conducted in aqueous solution. The cross- linking reagent is dissolved in aqueous buffer, optionally containing a small amount (typically <10% by volume) of a polar organic solvent that is miscible with water, for example different alcohols, such as methanol, ethanol, and propanol, dimethyl formamide, dimethyl acetamide, or dimethylsulfoxide at a high concentration, for example 1-100 mM, and then an appropriate aliquot is added to the buffered aqueous solution of the cell-binding agent. An appropriate aliquot is an amount of solution that introduces 1-10 cross-linking groups per cell-binding agent, preferably 1 -5 groups, and the volume to be added should not exceed 10 %, preferably 5 %, and most preferably 0-3 % of the volume of the cell-binding agent solution. The aqueous solutions for the cell -binding agents are buffered between pH 6 and 9, preferably between 6.5 and 7.5 and can contain any non-nucleophilic buffer salts useful for these pH ranges. Typical buffers include phosphate, triethanolamine.HCl, HEPES, and MOPS buffers, which can contain additional components, such as sucrose and salts, for example, NaCl. After the addition the reaction is incubated at a temperature of from 4 0C to 40 0C, preferably at ambient temperature. The progress of the reaction can be monitored by measuring the increase in the absorption at 495 nm or another appropriate wavelength. After the reaction is complete, isolation of the modified cell-binding agent can be performed in a routine way, using for example gel filtration chromatography, or adsorptive chromatography.
[86] The extent of modification can be assessed by measuring the absorbance of the nitropyridine thione, dinitropyridine dithione, carboxamidopyridine dithione or dicarboxamidopyridine dithione group released. In a non limiting example, Figure 56 shows the results from the modification of the cell-binding agent, the C242 antibody, with a sulfonate crosslinker of the present invention. The time course of linker/antibody (L/ A) incorporation is shown, for example, along with the drugs/antibody (D/ A) linked. The charged or pro-charged crosslinkers described herein have diverse functional groups that can react with any cell-binding agent that possesses a suitable substituent. For example cell-binding agents bearing an amino or hydroxyl substituent can react with crosslinkers bearing an N-hydroxysuccinimide ester, cell-binding agents bearing a thiol substituent can react with crosslinkers bearing a maleimido or haloacetyl group. Additionally, cell-binding agents bearing a carbonyl substituent can react with crosslinkers bearing a hydrazide. One skilled in the art can readily determine which crosslinker to use based on the known reactivity of the available functional group on the cell-binding agent.
[87] Crosslinkers bearing a positive charge (for example, compound
214, Figure 71) can be directly reacted with a cell binding agent in aqueous buffer at a pH between 5 and 9, optionally containing an organic cosolvent (such as 1 to 20% dimethylaceatmide or ethanol) to provide a modified cell binding agent bearing a positive charge and a thiol group. The thiol group of the cell binding agent can be reacted with a cytotoxic drug bearing either a maleimido, haloacetamido or an active disulfide (example pyridyldithio, nitropyridyldithio group) to provide a conjugate. The conjugate can be purified by the methods described above.
[88] Alternatively, crosslinkers bearing a positive charge and a reactive ester (for example, compound 216, Figure 71) can be directly reacted with a cell binding agent (for example, through its lysine amino group) to introduce a positive charge and an active disulfide. Reaction with a thiol- containing cytotoxic drug as described above can provide a conjugate bearing a positive charge.
Modified Cytotoxic Drugs
[89] The cytotoxic drugs modified by reaction with crosslinkers of the present invention are preferably represented by the formula (IV):
Figure imgf000037_0001
(IV) wherein the substituents are as described above for the charged or pro-charged linker and the cell-binding agent drug conjugate. [90] In preferred embodiments, one Of R1, R2, R3, R4, Rg, R10 is a charged substituent selected from sulfonate, phosphate, carboxyl or trialkylammonium, and the rest are H, 1, g and m are each 0, n = 1, and Y' is a disulfide substituent, a maleimido, haloacetyl group, or a iV-hydroxy succinimide ester. In another more preferred embodiment, one OfR1, R2, R3, R4, R9, Rio is a sulfonate, and the rest are H, 1, g and m are each 0, n = 1 , and Y' is a maleimido moiety or a N-hydroxy succinimide ester. In a further more preferred embodiment, one OfR1, R2, R3, R4, R9, R10 is a sulfonate, and the rest are H, 1, g and m are each 0, n = 1, and Y' is a N-hydroxy succinimide ester. [91] In a preferred embodiment, when Z is an Fl-El-P -E2-F2 unit,
El and E2 are the same or different and are C=O or NRl 4, wherein R14 is H, a linear alkyl having from 1-6 carbon atoms, a branched or cyclic alkyl having from 3 to 6 carbon atoms, P is a peptide unit between 2 and 8 amino acids in length, wherein El or E2 can be linked to the peptide through the terminal nitrogen, terminal carbon or through a side chain of one of the amino acids of the peptide, preferred amino acid residues are glycine (gly), alanine (ala), leucine (leu), glutamic acid (glu), or lysine (lys), which can be used in any combination or any order (e.g., gly-gly-gly or ala-leu-ala-leu, etc.); and Fl and F2 are the same or different and are an optional polyethyleneoxy unit of formula (OCH2CH2)P, wherein p is 0 or an integer from 2 to about 1000. [92] In a more preferred embodiment, when Z is an F1-E1-P-E2-F2 unit, El and E2 are the same or different and are C=O or NRl 4, wherein R14 is H or a linear alkyl having from 1-6 carbon atoms, P is a peptide unit between 2 and 5 amino acids in length, wherein El or E2 can be linked to the peptide through the terminal nitrogen, terminal carbon or through a side chain of one of the amino acids of the peptide; and Fl and F2 are the same or different and are an optional polyethyleneoxy unit of formula (OCH2CH2)P, wherein p is 0 or an integer from 2 to 24.
[93] The modified drugs can be prepared by reacting the drug with the crosslinkers of the present invention to give a modified drug of formula (IV) bearing a functionality capable of reacting with a cell binding agent. For example a thiol-containing drug can be reacted with the charged or pro- charged crosslinker of formula (I) bearing a maleimdo substituent at neutral pH in aqueous buffer to give a drug connected to the charged or pro-charged linker via a thioether link. A thiol-containg drug can undergo disulfide exchange with a charged or pro-charged linker bearing a pyrdiyldithio moiety to give a modified drug attached via a disulfide bond to the charged or pro- charged crosslinker. A drug bearing a hydroxyl group can be reacted with a charged crosslinker bearing a halogen, in the presence of a mild base, to give a modified drug bearing an ether link. A hydroxyl group containing drug can be condensed with a charged crosslinker of formula (I) bearing a carboxyl group, in the presence of a dehydrating agent, such as dicyclohexylcarbodimide, to give an ester link. An amino group containing drug can similarly undergo condensation with a carboxyl group on the charged or pro-charged crosslinker of formula (I) to give an amide bond. The modified drug can be purified by standard methods such as column chromatography over silica gel or alumina, crystallization, preparatory thin layer chromatography, ion exchange chromatography or HPLC.
Cell-binding Agents
[94] The cell-binding agent that comprises the conjugates and the modified cell-binding agents of the present invention may be of any kind presently known, or that become known, and includes peptides and non-peptides. The cell-binding agent may be any compound that can bind a cell, either in a specific or non-specific manner. Generally, these can be antibodies (especially monoclonal antibodies and antibody fragments), adnectins (US Publication No.: 20070082365), interferons, lymphokines, hormones, growth factors, vitamins, nutrient-transport molecules (such as transferrin), or any other cell-binding molecule or substance.
[95] Where the cell-binding agent is an antibody (for example, a murine, human humanized, resurfaced or a chimeric or any other antibody known to one of skill in the art), it binds to an antigen that is a polypeptide and may be a transmembrane molecule (e.g. receptor) or a ligand such as a growth factor. Exemplary antigens include molecules such as renin; a growth hormone, including human growth hormone and bovine growth hormone; growth hormone releasing factor; parathyroid hormone; thyroid stimulating hormone; lipoproteins; alpha- 1 -antitrypsin; insulin A-chain; insulin B-chain; proinsulin; follicle stimulating hormone; calcitonin; luteinizing hormone; glucagon; clotting factors such as factor vmc, factor IX, tissue factor (TF), and von Willebrands factor; anti-clotting factors such as Protein C; atrial natriuretic factor; lung surfactant; a plasminogen activator, such as urokinase or human urine or tissue-type plasminogen activator (t-PA); bombesin; thrombin; hemopoietic growth factor; tumor necrosis factor-alpha and -beta; enkephalinase; RANTES (regulated on activation normally T-cell expressed and secreted); human macrophage inflammatory protein (MIP-I -alpha); a serum albumin, such as human serum albumin; Muellerian-inhibiting substance; relaxin A-chain; relaxin B-chain; prorelaxin; mouse gonadotropin- associated peptide; a microbial protein, such as beta-lactamase; DNase; IgE; a cytotoxic T-lymphocyte associated antigen (CTLA), such as CTLA-4; inhibin; activin; vascular endothelial growth factor (VEGF); receptors for hormones or growth factors; protein A or D; rheumatoid factors; a neurotrophic factor such as bone-derived neurotrophic factor (BDNF), neurotrophin-3, -4, -5, or -6 (NT-3, NT4, NT-5, or NT-6), or a nerve growth factor such as NGF-β; platelet-derived growth factor (PDGF); fibroblast growth factor such as aFGF and bFGF; epidermal growth factor (EGF); transforming growth factor (TGF) such as TGF-alpha and TGF-beta, including TGF-βl, TGF-β2, TGF- β3, TGF-β4, or TGF- β5; insulin-like growth factor-I and -II (IGF-I and IGF-II); des(l-3)-IGF-I (brain IGF-I), insulin-like growth factor binding proteins, EpCAM, GD3, FLT3, PSMA, PSCA, MUCl, MUC16, STEAP, CEA, TENB2, EphA receptors, EphB receptors, folate receptor, mesothelin, cripto, alphaybetaβ, integrins, VEGF, VEGFR, tarnsferrin receptor, IRTAl, IRT A2, IRTA3, IRTA4, IRTA5; CD proteins such as CD2, CD3, CD4, CD5, CD6, CD8, CDI l, CD14, CD19, CD20, CD21, CD22, CD23, CD25, CD26, CD28, CD30, CD33, CD36, CD37, CD38, CD40, CD44, CD52, CD55, CD56, CD59, CD70, CD79, CD80, CD81, CD103, CD105, CD134, CD137, CD138, CD152 or an antibody which binds to one or more tumor-associated antigens or cell- surface receptors disclosed in US Publication No. 20080171040 or US Publication No. 20080305044 and are incorporated in their entirety by reference; erythropoietin; osteoinductive factors; immunotoxins; a bone morphogenetic protein (BMP); an interferon, such as interferon-alpha, -beta, and -gamma; colony stimulating factors (CSFs), e.g., M-CSF, GM-CSF, and G-CSF; interleukins (ILs), e.g., IL-I to IL-10; superoxide dismutase; T-cell receptors; surface membrane proteins; decay accelerating factor; viral antigen such as, for example, a portion of the HIV envelope; transport proteins; homing receptors; addressins; regulatory proteins; integrins, such as CDl Ia, CDl Ib, CDl Ic, CDl 8, an ICAM, VLA-4, EpCAM and VCAM; a tumor associated antigen such as HER2, HER3 or HER4 receptor; and fragments of any of the above-listed polypeptides.
[96] Preferred antigens for antibodies encompassed by the present invention also include CD proteins, such as CD3, CD4, CD8, CD 19, CD20, CD34, and CD46; members of the ErbB receptor family, such as the EGF receptor, HER2, HER3 or HER4 receptor; cell adhesion molecules, such as LFA-I, Macl, pl50.95, VLA-4, ICAM-I, VCAM, EpCAM, alpha4/beta7 integrin, and alpha v/beta3 integrin including either alpha or beta subunits thereof (e.g. anti-CD 11a, anti-CD 18 or anti-CDl lb antibodies); growth factors, such as VEGF; tissue factor (TF); TGF-β.; alpha interferon (alpha- IFN); an interleukin, such as IL-8; IgE; blood group antigens Apo2, death receptor; flk2/flt3 receptor; obesity (OB) receptor; mpl receptor; CTL A-4; protein C etc. Preferred antibodies that can be used are antibodies to CD2, CD3, CD4, CD5, CD6, CDI l, CD19, CD20, CD22, CD26, CD30, CD33, CD37, CD38, CD40, CD44, CD56, CD79, CD105, CD138, EphA receptors (e.g., EphA2 receptor), EphB receptors, EGFr, EGFRvIII, HER2, HER3, trastuzumab, pertuzumab mesothelin, cripto,
Figure imgf000043_0001
integrins, VEGF, VEGFR, folate receptor (for example, FOLRl), transferrin receptor, GD3, EpCAM or an antibody which binds to one or more tumor-associated antigens or cell-surface receptors disclosed in US Publication No. 20080171040 or US Publication No. 20080305044 and are incorporated in their entirety by reference.
[97] Additional examples of cell-binding agents that can be used include:
-resurfaced antibodies (U.S. patent no. 5,639,641);
-humanized or fully human antibodies, selected from but not limited to, huMy9-6, huB4, huC242, huN901, DS6, CD38, IGF-IR, CNTO 95, B-B4, trastuzumab, pertuzumab, bivatuzumab, sibrotuzumab, and rituximab (see, e.g., U.S. Patent Nos. 5,639,641, 5,665,357; and 7,342,110, U.S. Provisional Patent Application No. 60/424,332, International Patent Application WO 02/16,401, U.S. Patent Publication Number 20060045877, U.S. Patent Publication Number 20060127407, U.S. Patent Publication Number 20050118183, Pedersen et al., (1994) J MoI. Biol. 235, 959-973, Roguska et al., (1994) Proceedings of the National Academy of Sciences, VoI 91, 969-973, supra, Colomer et al., Cancer Invest., 19: 49-56 (2001), Heider et al., Eur. J. Cancer, 31A: 2385-2391 (1995), Welt et al., J Clin. Oncol, 12: 1193-1203 (1994), and Maloney et al., Blood, 90: 2188-2195 (1997)); and
-epitope-binding fragments of antibodies such as sFv, Fab, Fab', and F(ab')2 (Parham, J Immunol. 131:2895-2902 (1983); Spring et al, J Immunol. 113:470-478 (1974); Nisonoff et al, Arch. Biochem. Biophys. 89:230-244 (1960)).
Additional cell-binding agents include other cell-binding proteins and polypeptides exemplified by, but not limited to:
- Ankyrin repeat proteins (DARPins; Zahnd et al., J. Biol. Chem., 281, 46, 35167-35175, (2006); Binz, H.K., Amstutz, P. & Pluckthun, A. (2005) Nature Biotechnology, 23, 1257-1268) or ankyrin-like repeats proteins or synthetic peptides described, for example, in U.S. Patent Publication Number 20070238667; U.S. Patent No. 7,101,675; and WO/2007/147213; WO/2007/062466);
-interferons (e.g. α, β, γ);
-lymphokines such as IL-2, IL-3, IL-4, IL-6;
-hormones such as insulin, TRH (thyrotropin releasing hormones), MSH (melanocyte-stimulating hormone), steroid hormones, such as androgens and estrogens;
-vitamins such as folic acid; -growth factors and colony-stimulating factors such as EGF, TGF-α, G-CSF, M-CSF and GM-CSF (Burgess, Immunology Today 5:155- 158 (1984)); and
-transferrin (O'Keefe et al, J Biol. Chem. 260:932-937 (1985)). [98] Monoclonal antibody techniques allow for the production of specific cell-binding agents in the form of monoclonal antibodies. Particularly well known in the art are techniques for creating monoclonal antibodies produced by immunizing mice, rats, hamsters or any other mammal with the antigen of interest such as the intact target cell, antigens isolated from the target cell, whole virus, attenuated whole virus, and viral proteins such as viral coat proteins. Sensitized human cells can also be used. Another method of creating monoclonal antibodies is the use of phage libraries of sFv (single chain variable region), specifically human sFv {see, e.g., Griffiths et al, U.S. Patent No. 5,885,793; McCafferty et al, WO 92/01047; and Liming et al, WO 99/06587.)
[99] Selection of the appropriate cell-binding agent is a matter of choice that depends upon the particular cell population that is to be targeted, but in general monoclonal antibodies and epitope binding fragments thereof are preferred, if an appropriate one is available.
[100] For example, the monoclonal antibody My9 is a murine IgG2a antibody that is specific for the CD33 antigen found on Acute Myeloid Leukemia (AML) cells (Roy et al. Blood 77:2404-2412 (1991)) and can be used to treat AML patients. Similarly, the monoclonal antibody anti-B4 is a murine IgGj, which binds to the CD 19 antigen on B cells (Nadler et al, J Immunol. 131:244-250 (1983)) and can be used if the target cells are B cells or diseased cells that express this antigen such as in non-Hodgkin's lymphoma or chronic lymphoblastic leukemia. Similarly, the antibody N901 is a murine monoclonal IgGi antibody that binds to CD56 found on small cell lung carcinoma cells and on cells of other tumors of the neuroendocrine origin (Roy et al. J Nat. Cancer Inst. 88:1136-1145 (1996)), C242 antibody that binds to the CanAg antigen, pertuzumab, trastuzumab that binds to HER2/neu, and anti-EGF receptor antibody.
[101] Additionally, GM-CSF, which binds to myeloid cells, can be used as a cell-binding agent to diseased cells from acute myelogenous leukemia. IL-2, which binds to activated T-cells, can be used for prevention of transplant graft rejection, for therapy and prevention of graft- versus-host disease, and for treatment of acute T-cell leukemia. MSH, which binds to melanocytes, can be used for the treatment of melanoma. Folic acid, which targets the folate receptor expressed on ovarian and other cancers is also a suitable cell-binding agent.
[102] Cancers of the breast and testes can be successfully targeted with estrogen (or estrogen analogues) or androgen (or androgen analogues), respectively, as cell-binding agents. Drugs
[103] Drugs that can be used in the present invention include chemotherapeutic agents. "Chemotherapeutic agent" is a chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents include alkylating agents, such as thiotepa and cyclophosphamide (CYTOXAN™); alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines, such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethylenethiophosphaoramide and trimethylolomelamine; acetogenins (especially bullatacin and bullatacinone); a camptothecin (including the synthetic analogue topotecan); bryostatin; callystatin; CC- 1065 (including its adozelesin, carzelesin and bizelesin synthetic analogues); cryptophycins (particularly cryptophycin 1 and cryptophycin 8); dolastatin; duocarmycin (including the synthetic analogues, KW-2189 and CBI-TMI); eleutherobin; pancratistatin; a sarcodictyin; spongistatin; nitrogen mustards such as chlorambucil, chlornaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosureas such as carmustine, chlorozotocin, fotemustine, lomustine, nimustine, ranimustine; antibiotics, such as the enediyne antibiotics (e.g. calicheamicin, especially calicheamicin .gammaland calicheamicin theta I, see, e.g., Angew Chem Intl. Ed. Engl. 33:183-186 (1994); dynemicin, including dynemicin A; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antiobiotic chromomophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, carminomycin, carzinophilin; chromomycins, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L- norleucine, doxorabicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin and deoxydoxorubicin), epirubicin, esorubicin, idarubicin, marcellomycin, nitomycins, mycophenolic acid, nogalamycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites, such as methotrexate and 5-fluorouracil (5-FU); folic acid analogues, such as denopterin, methotrexate, pteropterin, trimetrexate; purine analogs, such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; pyrimnidine analogs such as, ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine, 5-FU; androgens, such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, testolactone; anti-adrenals, such as aminoglutethimide, mitotane, trilostane; folic acid replenisher, such as frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; elfomithine; elliptinium acetate; an epothilone; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidamine; maytansinoids, such as maytansine and ansamitocins; mitoguazone; mitoxantrone; mopidamol; nitracrine; pentostatin; phenamet; pirarubicin; podophyllinic acid; 2-ethylhydrazide; procarbazine; PSK®; razoxane; rhizoxin; sizofiran; spirogermanium; tenuazonic acid; triaziquone; 2, 2',2"-trichlorotriethylamine; trichothecenes (especially T-2 toxin, verracurin A, roridin A and anguidine); urethan; vindesine; dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside ("Ara-C"); cyclophosphamide; thiotepa; taxoids, e.g. paclitaxel (TAXOL®, Bristol-Myers Squibb Oncology, Princeton, N.J.) and doxetaxel (TAXOTERE®, Rhone- Poulenc Rorer, Antony, France); chlorambucil; gemcitabine; 6-thioguanine; mercaptopurine; methotrexate; platinum analogs such as cisplatin and carboplatin; vinblastine; platinum; etoposide (VP- 16); ifosfamide; mitomycin C; mitoxantrone; vincristine; vinorelbine; navelbine; novantrone; teniposide; daunomycin; aminopterin; xeloda; ibandronate; CPT-I l; topoisomerase inhibitor RFS 2000; difluoromethylomithine (DMFO); retinoic acid; capecitabine; and pharmaceutically acceptable salts, acids or derivatives of any of the above. Also included in this definition are anti-hormonal agents that act to regulate or inhibit hormone action on tumors, such as anti-estrogens including for example tamoxifen, raloxifene, aromatase inhibiting 4(5)-imidazoles, 4-hydroxytamoxifen, trioxifene, keoxifene, LYl 17018, onapristone, and toremifene (Fareston); and anti-androgens, such as flutamide, nilutamide, bicalutamide, leuprolide, and goserelin; siRNA and pharmaceutically acceptable salts, acids or derivatives of any of the above. Other chemotherapeutic agents that can be used with the present invention are disclosed in US Publication No. 20080171040 or US Publication No. 20080305044 and are incorporated in their entirety by reference. [104] In a preferred embodiment, chemotherapeutic drugs are essentially small molecule drugs. A "small molecule drug" is broadly used herein to refer to an organic, inorganic, or organometallic compound that may have a molecular weight of for example 100 to 1500, more suitably from 120 to 1200, favorably from 200 to 1000, and typically having a molecular weight of less than about 1000. Small molecule drugs of the invention encompass oligopeptides and other biomolecules having a molecular weight of less than about 1000. Small molecule drugs are well characterized in the art, such as in WO05058367A2, European Patent Application Nos. 85901495 and 8590319, and in U.S. Patent No. 4,956,303, among others and are incorporated in their entirety by reference.
[105] Preferable small molecule drugs are those that allow for linkage to the cell-binding agent. The invention includes known drugs as well as those that may become known. Especially preferred small molecule drugs include cytotoxic agents.
[106] The cytotoxic agent may be any compound that results in the death of a cell, or induces cell death, or in some manner decreases cell viability, wherein each cytotoxic agent comprises a thiol moiety. [107] Preferred cytotoxic agents are maytansinoid compounds, taxane compounds, CC- 1065 compounds, daunorubicin compounds and doxorubicin compounds, pyrrolobenzodiazepine dimers, calicheamicins. Auristatins and analogues and derivatives thereof, some of which are described below. [108] Other cytotoxic agents, which are not necessarily small molecules, such as siRNA, are also encompassed within the scope of the instant invention. For example, siRNAs can be linked to the crosslinkers of the present invention by methods commonly used for the modification of oligonucleotides (see, for example, US Patent Publications 20050107325 and 20070213292). Thus the siRNA in its 3' or 5'-phosphoromidite form is reacted with one end of the crosslinker bearing a hydroxyl functionality to give an ester bond between the siRNA and the crosslinker. Similarly reaction of the siRNA phosphoramidite with a crosslinker bearing a terminal amino group results in linkage of the crosslinker to the siRNA through an amine. siRNA are described in detail in U.S. Patent Publication Numbers: 20070275465, 20070213292, 20070185050, 20070161595, 20070054279, 20060287260, 20060035254, 20060008822, 20050288244, 20050176667, which are incorporated herein in their entirety by reference.
Maytansinoids
[109] Maytansinoids that can be used in the present invention are well known in the art and can be isolated from natural sources according to known methods or prepared synthetically according to known methods. [110] Examples of suitable maytansinoids include maytansinol and maytansinol analogues. Examples of suitable maytansinol analogues include those having a modified aromatic ring and those having modifications at other positions.
[Ill] Specific examples of suitable analogues of maytansinol having a modified aromatic ring include:
(1) C-19-dechloro (U.S. Patent No. 4,256,746) (prepared by LAH reduction of ansamitocin P2);
(2) C-20-hydroxy (or C-20-demethyl) +/-C-19-dechloro (U.S. Patent Nos. 4,361,650 and 4,307,016) (prepared by demethylation using Streptomyces or Actinomyces or dechlorination using LAH); and
(3) C-20-demethoxy, C-20-acyloxy (-OCOR), +/-dechloro (U.S. Patent No. 4,294,757) (prepared by acylation using acyl chlorides). [112] Specific examples of suitable analogues of maytansinol having modifications of other positions include:
(1) C-9-SH (U.S. Patent No. 4,424,219) (prepared by the reaction of maytansinol with H2S or P2S5);
(2) C-14-alkoxymethyl (demethoxy/CH2OR) (U.S. Patent No. 4,331,598);
(3) C-14-hydroxymethyl or acyloxymethyl (CH2OH or CH2OAc) (U.S. Patent No. 4,450,254) (prepared from Nocardia); (4) C-15-hydroxy/acyloxy (U.S. Patent No. 4,364,866) (prepared by the conversion of maytansinol by Streptomyces);
(5) C-15-methoxy (U.S. Patent Nos. 4,313,946 and 4,315,929) (isolated from Trewia nudiflora);
(6) C-18-N-demethyl (U.S. Patent Nos. 4,362,663 and 4,322,348) (prepared by the demethylation of maytansinol by Streptomyces); and
(7) 4,5-deoxy (U.S. Patent No. 4,371,533) (prepared by the titanium trichloride/LAH reduction of maytansinol).
[113] The synthesis of thiol-containing maytansinoids useful in the present invention is fully disclosed in U.S. Patent Nos. 5,208,020, 5,416,064, and U. S. Patent Application No. 20040235840.
[114] Maytansinoids with a thiol moiety at the C-3 position, the C- 14 position, the C- 15 position or the C-20 position are all expected to be useful. The C-3 position is preferred and the C-3 position of maytansinol is especially preferred. Also preferred are an iV-methyl-alanine-containing C-3 thiol moiety maytansinoid, and an iV-methyl-cysteine-containing C-3 thiol moiety maytansinoid, and analogues of each.
[115] Specific examples of iV-methyl-alanine-containing C-3 thiol moiety maytansinoid derivatives useful in the present invention are represented by the formulae Ml, M2, M3, M6 and M7.
Figure imgf000053_0001
Ml
wherein:
/ is an integer of from 1 to 10; and may is a maytansinoid.
Figure imgf000054_0001
M2
wherein:
R1 and R2 are H, CH3 or CH2CH3, and may be the same or different; m is 0, 1, 2 or 3; and may is a maytansinoid.
Figure imgf000054_0002
M3 wherein: n is an integer of from 3 to 8; and may is a maytansinoid.
Figure imgf000055_0001
M6 wherein: / is 1, 2 or 3; Y0 is Cl or H; and X3 is H or CH3.
Figure imgf000055_0002
M7 wherein:
R1, R2, R3, R4 are H, CH3 or CH2CH3, and may be the same or different; m is O, 1, 2 or 3; and may is a maytansinoid.
[116] Specific examples of N-methyl-cysteine-containing C-3 thiol moiety maytansinoid derivatives useful in the present invention are represented by the formulae M4 and M5.
Figure imgf000056_0001
M4 wherein: o is 1, 2 or 3; p is an integer of O to 10; and may is a maytansinoid.
Figure imgf000057_0001
M5 wherein: o is 1, 2 or 3; q is an integer of from 0 to 10;
Y0 is Cl or H; and
X3 is H or CH3.
Preferred maytansinoids are those described in U.S. Patent Nos. 5,208,020; 5,416,064; 6,333.410; 6,441,163; 6,716,821; RE39,151 and 7,276,497.
Taxanes
[117] The cytotoxic agent according to the present invention may also be a taxane.
[118] Taxanes that can be used in the present invention have been modified to contain a thiol moiety. Some taxanes useful in the present invention have the formula Tl shown below:
Figure imgf000058_0001
[119] Four embodiments of these novel taxanes are described below.
[120] In embodiments (1), (2), (3), and (4), R1, Rj ', and R1" are the same or different and are H, an electron withdrawing group, such as F, NO2, CN, Cl, CHF2, or CF3 or an electron donating group, such as -OCH3, -OCH2CH3, -NR7R8, -OR9, wherein R7 and R8 are the same or different and are linear, branched, or cyclic alkyl groups having 1 to 10 carbon atoms or simple or substituted aryl having 1 to 10 carbon atoms. Preferably the number of carbon atoms for R7 and R8 is 1 to 4. Also, preferably R7 and R8 are the same. Examples of preferred -NR7R8 groups include dimethyl amino, diethyl amino, dipropyl amino, and dibutyl amino, where the butyl moiety is any of primary, secondary, tertiary or isobutyl. R9 is linear, branched or cyclic alkyl having 1 to 10 carbon atoms.
[121] R1 preferably is OCH3, F, NO2, or CF3.
[122] Also preferably, R1 is in the meta position and R1 ' and R1 " are
H or OCH3. [123] R2 in embodiments (1), (2) and (4), is H, heterocyclic, a linear, branched, or cyclic ester having from 1 to 10 carbon atoms or heterocyclic, a linear, branched, or cyclic ether having from 1 to 10 carbon atoms or a carbamate of the formula -CONRj0Rn, wherein R10 and R11 are the same or different and are H, linear alkyl having from 1-6 carbon atoms, branched, or cyclic alkyl having 3 to 10 atoms or simple or substituted aryl having 6 to 10 carbon atoms. For esters, preferred examples include -COCH2CH3 and
-COCH2CH2CH3. For ethers, preferred examples include -CH2CH3 and
-CH2CH2CH3. For carbamates, preferred examples include -CONHCH2CH3> -
CONHCH2CH2CH3, -CO-morpholino, -CO-piperazino, -CO-piperidino, or -
CO- JV-methylpiperazino .
[124] R2 in embodiment (3), is a thiol-containing moiety.
[125] R3 in embodiments (1), (3) and (4), is aryl, or is linear, branched or cyclic alkyl having 1 to 10 carbon atoms, preferably
-CH2CH(CH3)2.
[126] R3 in embodiment (2), is -CH=C(CH3)2
[127] R4 in all four embodiments, is -OC(CH3)3 or -C6H5.
[128] R5 in embodiments (1) and (2), is a thiol-containing moiety and
R6 has the same definition as above for R2 for embodiments (1), (2) and (4).
[129] R5 and R6 in embodiment (3), are the same or different, and have the same definition as above for R2 for embodiments (1), (2) and (4). [130] R5 in embodiment (4), has the same definition as above for R2 for embodiments (1), (2) and (4) and R6 is a thiol moiety. [131] The preferred positions for introduction of the thiol-containing moiety are R2 and R5, with R2 being the most preferred. [132] The side chain carrying the thiol moiety can be linear or branched, aromatic or heterocyclic. One of ordinary skill in the art can readily identify suitable side chains. Specific examples of thiol moieties include -(CH2)nSH, -CO(CH2)nSH, -(CH2)nCH(CH3)SH, -CO(CH2)nCH(CH3)SH, -(CH2)nC(CH3)2SH, -CO(CH2)nC(CH3)2SH, -CONR12(CH2)nSH, -CONR12(CH2)nCH(CH3)SH, or -CONRi2(CH2)nC(CH3)2SH, -CO- morpholino-XSH, -CO-piperazino-XSH, -CO-piperidino-XSH, and -CO-N- methylpiperazino-XSH wherein
X is a linear alkyl or branched alkyl having 1-10 carbon atoms.
R12 is a linear alkyl, branched alkyl or cyclic alkyl having 1 to 10 carbon atoms, or simple or substituted aryl having from 1 to 10 carbon atoms or heterocyclic, and can be H, and
n is an integer of 0 to 10.
[133] Examples of linear alkyls include methyl, ethyl, propyl, butyl, pentyl and hexyl.
[134] Examples of branched alkyls include isopropyl, isobutyl, sec-butyl, tert.-butyl, isopentyl and 1-ethyl-propyl. [135] Examples of cyclic alkyls include cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
[136] Examples of simple aryls include phenyl and naphthyl.
[137] Examples of substituted aryls include aryls such as those described above substituted with alkyl groups, with halogens, such as Cl, Br,
F, nitro groups, amino groups, sulfonic acid groups, carboxylic acid groups, hydroxy groups or alkoxy groups.
[138] Examples of heterocyclics are compounds wherein the heteroatoms are selected from O, N, and S, and include morpholino, piperidino, piperazino, iV-methylpiperazino, pyrrollyl, pyridyl, furyl and thiophene.
[139] The taxanes having a thiol moiety can be synthesized according to known methods. The starting material for the synthesis is the commercially available 10-deacetylbaccatin III. The chemistry to introduce various substituents is described in several publications (Ojima et al, J Med. Chem.
39:3889-3896 (1996); Ojima et al., J Med. Chem. 40:267-278 (1997); Ojima et al., Proc. Natl. Acad. ScL, 96:4256-4261 (1999); U.S. Patent No. 5,475,011 and U.S. Patent No. 5,811,452).
[140] The substituent Ri on the phenyl ring and the position of the substituent Ri can be varied until a compound of the desired toxicity is obtained. Furthermore, the degree of substitution on the phenyl ring can be varied to achieve a desired toxicity. That is, the phenyl ring can have one or more substituents (e.g., mono-, di-, or tri-substitution of the phenyl ring) which provide another means for achieving a desired toxicity. One of ordinary skill in the art can determine the appropriate chemical moiety for R1 and the appropriate position for Ri using only routine experimentation. [141] For example, electron withdrawing groups at the meta position increase the cytotoxic potency, while substitution at the para position is not expected to increase the potency as compared to the parent taxane. Typically, a few representative taxanes with substituents at the different positions (ortho, meta and para) will be initially prepared and evaluated for in vitro cytotoxicity.
[142] The thiol moiety can be introduced at one of the positions where a hydroxyl group already exists. The chemistry to protect the various hydroxyl groups, while reacting the desired one, has been described previously (see, for example, the references cited supra). The substituent is introduced by simply converting the free hydroxyl group to a disulfide-containing ether, a disulfide-containing ester, or a disulfide-containing carbamate. This transformation is achieved as follows. The desired hydroxyl group is deprotonated by treatment with the commercially-available reagent lithium hexamethyldisilazane (1.2 equivalents) in tetrahydrofuran at -4O0C as described in Ojima et al. (1999), supra. The resulting alkoxide anion is then reacted with an excess of a dihalo compound, such as dibromoethane, to give a halo ether. Displacement of the halogen with a thiol (by reaction with potassium thioacetate and treatment with mild base or hydroxylamine) will provide the desired thiol-containing taxane.
[143] Alternatively, the desired hydroxyl group can be esterified directly by reaction with an acyl halide, such as 3-bromopropionyl chloride, to give a bromo ester. Displacement of the bromo group by treatment with potassium thioacetate and further processing as described above will provide the thiol-containing taxane ester. Preferred taxoids are those described in U.S. Patent Nos. 6,340,701; 6,372,738; 6.436,931; 6,596,757; 6,706,708; 7,008,942; 7,217,819 and 7,276,499.
CC- 1065 analogues
[144] The cytotoxic agent according to the present invention may also be a CC- 1065 analogue.
[145] According to the present invention, the CC- 1065 analogues contain an A subunit and a B or a B-C subunit. The A subunits are CPI (cyclopropapyrroloindole unit) in its natural closed cyclopropyl form or in its open chloromethyl form, or the closely related CBI unit (cyclopropylbenzindole unit) in the closed cyclopropyl form or the open chloromethyl form. The B and C subunits of CC- 1065 analogues are very similar and are 2-carboxy-indole and 2-carboxy-benzofuran derivatives. For activity, the analogues of CC- 1065 need at least one such 2-carboxy-indole subunit or 2-carboxy-benzofuran subunit, although two subunits (i.e., B-C) render the analogue more potent. As is obvious from the natural CC- 1065 and from the analogues published (e.g., Warpehoski et al, J Med. Chem. 31:590-603 (1988), D. Boger et al., J Org. Chem; 66; 6654-6661, 2001; U. S. Patent Nos 5,739,350; 6,060,608; 6.310.209), the B and C subunits can also carry different substituents at different positions on the indole or benzofuran rings.
[146] CC- 1065 analogues containing a thiol moiety can be any of the following A subunits of the formulae A-I {CPI (Cyclopropyl form)}, A-2 {CPI (Chloromethyl form)}, A-3 {CBI (Cyclopropyl form)}, and A-4 {CBI (Chloromethyl form)} covalently linked via an amide bond from the secondary amino group of the pyrrole moiety of the A subunit to the C-2 carboxy group of either a B subunit of the formula F-I or a B-C subunit of the formulae F-3 or F-7. A subunits
Figure imgf000064_0001
B and covalently bound B and C subunits
Figure imgf000065_0001
wherein each W1 and W2 may be the same or different and may be O or NH; and wherein, in Formula F-I R4 is a thiol moiety, in Formula F-3 one of R or R4 is a thiol moiety, in Formula F-7 one of R' or R4 is a thiol- containing moiety; when R or R' is a thiol moiety, then R1 to R6, which may be the same or different, are hydrogen, C1 -C3 linear alkyl, methoxy, hydroxyl, primary amino, secondary amino, tertiary amino, or amido; and when R4 is a thiol moiety, R, R1, R2, R3, R4, R5 and R6, which may be the same or different, are hydrogen, C1 -C3 linear alkyl, methoxy, hydroxyl, primary amino, secondary amino, tertiary amino, or amido, and R' is NH2, alkyl, O-alkyl, primary amino, secondary amino, tertiary amino, or amido. In addition, the chlorine atom in A-2 and A-4 subunits can be replaced with another suitable halogen.
[147] In a preferred embodiment, R and R' are thiol moieties and Ri and R2 are each hydrogen. In another preferred embodiment, R and R' are thiol moieties and R1 to R6 are each hydrogen.
[148] In an especially preferred embodiment, R or R4 is
-NHCO(CH2)/SH, -NHCOC6H4(CH2)/SH, or -O(CH2)/SH, and R' is
-(CH2)/SH, -NH(CH2)/SH or -O(CH2)/SH wherein / is an integer of 1 to 10.
[149] Examples of primary amines include methyl amine, ethyl amine and isopropyl amine.
[150] Examples of secondary amines include dimethyl amine, diethylamine and ethylpropyl amine.
[151] Examples of tertiary amines include trimethyl amine, triethyl amine, and ethyl-isopropyl-methyl amine.
[152] Examples of amido groups include N-methylacetamido,
N-methyl-propionamido, N-acetamido, and N-propionamido.
[153] Examples of alkyl represented by R', when R' is not a linking group, include C1-C5 linear or branched alkyl.
[154] Examples of O-alkyl represented by R' when R' is not a linking group, include compounds where the alkyl moiety is a C1-C5 linear or branched alkyl. [155] The above-described CC- 1065 analogues may be isolated from natural sources and methods for their preparation, involving subsequent modification, synthetic preparation, or a combination of both, are well- described (see, e.g., U.S. patent nos. 5,475,092, 5,585,499 and 5,846,545). Preferred CC-1065 analogs are those described in U.S. Patent Nos. 5,475,092; 5,595,499; 5,846,545; 6,534,660; 6,586,618; 6,756,397 and 7,049,316
Daunorubicin/Doxorubicin Analogues
[156] The cytotoxic agent according to the present invention may also be a daunorubicin analogue or a doxorubicin analogue.
[157] The daunorubicin and doxorubicin analogues of the present invention can be modified to comprise a thiol moiety.
[158] The modified doxorubicin/daunorubicin analogues useful in the present invention have the formula Dl shown below:
Figure imgf000068_0001
wherein,
X is H or OH;
Y is O or NR2, wherein R2 is linear or branched alkyl having 1 to 5 carbon atoms;
R is a thiol moiety, H, or liner or branched alkyl having 1 to 5 carbon atoms; and
R' is a thiol moiety, H, or -ORi, wherein Ri is linear or branched alkyl having 1 to 5 carbon atoms; provided that R and R' are not thiol moieties at the same time. [159] In a preferred embodiment, NR2 is NCH3. In another preferred embodiment, R' is -O.
[160] In an especially preferred embodiment, the thiol moiety is
-(CH2)nSH, -O(CH2)nSH, -(CH2)nCH(CH3)SH, -O(CH2)nCH(CH3)SH, -(CH2)nC(CH3)2SH, or -O(CH2)nC(CH3)2SH, wherein n is an integer of 0 to 10. [161] Examples of the linear or branched alkyl having 1 to 5 carbon atoms, represented by R, R1, and R2> include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec. -butyl, tert.-butyl, and pentyl, in any of its eight isomeric arrangements.
[162] Ri and R2 preferably are methyl.
[163] Examples of linear alkyls include methyl, ethyl, propyl, butyl, pentyl and hexyl.
[164] Examples of branched alkyls include isopropyl, isobutyl, sec-butyl, tert.-butyl, isopentyl and 1-ethyl-propyl.
[165] When either R or R' is not a linking group, the substituent in that position can be varied until a compound of the desired toxicity is obtained. High toxicity is defined as having an IC50 towards cultured cancer cells in the range of 1 x 10~12 to 1 x 10"9 M, upon a 72 hour exposure time.
Representative examples of substituents are H, alkyl, and O-alkyl, as described above. One of ordinary skill in the art can determine the appropriate chemical moiety for R and R' using only routine experimentation.
[166] For example, methyl and methoxy substituents are expected to increase the cytotoxic potency, while a hydrogen is not expected to increase the potency as compared to the parent daunorubicin analogues with substituents at the different positions will be initially prepared and evaluated for in vitro cytotoxicity. [167] The modified doxorubicin/daunorubicin analogues of the present invention, which have a thiol moiety, are described in WO 01/38318. The modified doxorubicin/daunorubicin analogues can be synthesized according to known methods (see, e.g., U.S. Patent No. 5,146,064). [168] Auristatin include auristatin E, auristatin EB (AEB), auristatin
EFP (AEFP), monomethyl auristatin E (MMAE) and are described in U.S. Patent No. 5,635,483, Int. J. Oncol. 15:367-72 (1999); Molecular Cancer Therapeutics, vol. 3, No. 8, pp. 921-932 (2004); U.S. Application Number 11/134826. U.S. Patent Publication Nos. 20060074008, 2006022925. [169] The cytotoxic agents according to the present invention include pyrrolobenzodiazepine dimers that are known in the art (US Patent Nos 7,049,311; 7.067.511; 6,951,853; 7,189,710; 6,884,799; 6,660,856.
Analogues and derivatives
[170] One skilled in the art of cytotoxic agents will readily understand that each of the cytotoxic agents described herein can be modified in such a manner that the resulting compound still retains the specificity and/or activity of the starting compound. The skilled artisan will also understand that many of these compounds can be used in place of the cytotoxic agents described herein. Thus, the cytotoxic agents of the present invention include analogues and derivatives of the compounds described herein. Therapeutic Use [171] The cell-binding agent drug conjugates (e.g., immunoconjugates) of this invention can also be used in combination with other chemotherapeutic agents. Such chemotherapeutic agents are listed above or are described in U.S. Patent No. 7,303,749. [172] The cell-binding agent drug conjugates (e.g., immunoconjugates) of the present invention can be administered in vitro, in vivo and/or ex vivo to treat patients and/or to modulate the growth of selected cell populations including, for example, cancer of the lung, blood, plasma, breast, colon, prostate, kidney, pancreas, brain, bones, ovary, testes, and lymphatic organs; autoimmune diseases, such as systemic lupus, rheumatoid arthritis, and multiple sclerosis; graft rejections, such as renal transplant rejection, liver transplant rejection, lung transplant rejection, cardiac transplant rejection, and bone marrow transplant rejection; graft versus host disease; viral infections, such as CMV infection, HIV infection, and AIDS; and parasite infections, such as giardiasis, amoebiasis, schistosomiasis, and the like. Preferably, the immunoconjugates and chemotherapeutic agents of the invention are administered in vitro, in vivo and/or ex vivo to treat cancer in a patient and/or to modulate the growth of cancer cells, including, for example, cancer of the blood, plasma, lung, breast, colon, prostate, kidney, pancreas, brain, bones, ovary, testes, and lymphatic organs; more preferably lung, colon prostrate, plasma, blood or colon cancer. [173] "Modulating the growth of selected cell populations" includes inhibiting the proliferation of selected cell populations (e.g., multiple myeloma cell populations, such as MOLP-8 cells, OPM2 cells, H929 cells, and the like) from dividing to produce more cells; reducing the rate of increase in cell division as compared, for example, to untreated cells; killing selected cell populations; and/or preventing selected cell populations (such as cancer cells) from metastasizing. The growth of selected cell populations can be modulated in vitro, in vivo or ex vivo.
[174] In the methods of the present invention, the cell-binding agent drug conjugates (e.g., immunoconjugates) can be administered in vitro, in vivo, or ex vivo. The cell-binding agent drug conjugates (e.g., immunoconjugates) can be used with suitable pharmaceutically acceptable carriers, diluents, and/or excipients, which are well known, and can be determined, by one of skill in the art as the clinical situation warrants. Examples of suitable carriers, diluents and/or excipients include: (1) Dulbecco's phosphate buffered saline, pH about 6.5, which would contain about 1 mg/ml to 25 mg/ml human serum albumin, (2) 0.9% saline (0.9% w/v NaCl), and (3) 5% (w/v) dextrose.
[175] The compounds and compositions described herein may be administered in appropriate form, preferably parenterally, more preferably intravenously. For parenteral administration, the compounds or compositions can be aqueous or nonaqueous sterile solutions, suspensions or emulsions. Propylene glycol, vegetable oils and injectable organic esters, such as ethyl oleate, can be used as the solvent or vehicle. The compositions can also contain adjuvants, emulsiiϊers or dispersants.
[176] The compositions can also be in the form of sterile solid compositions that can be dissolved or dispersed in sterile water or any other injectable sterile medium.
[177] The "therapeutically effective amount" of the cell-binding agent drug conjugate (e.g., immunoconjugates) described herein refers to the dosage regimen for modulating the growth of selected cell populations and/or treating a patient's disease, and is selected in accordance with a variety of factors, including the age, weight, sex, diet and medical condition of the patient, the severity of the disease, the route of administration, and pharmacological considerations, such as the activity, efficacy, pharmacokinetic and toxicology profiles of the particular compound used. The "therapeutically effective amount" can also be determined by reference to standard medical texts, such as the Physicians Desk Reference 2004. The patient is preferably an animal, more preferably a mammal, most preferably a human. The patient can be male or female, and can be an infant, child or adult.
[178] Examples of suitable protocols of cell-binding agent drug conjugates (e.g., immunoconjugate) administration are as follows. The conjugates can be given daily for about 5 days either as an i.v., bolus each day for about 5 days, or as a continuous infusion for about 5 days. [179] Alternatively, the conjugates can be administered once a week for six weeks or longer. As another alternative, the conjugates can be administered once every two or three weeks. Bolus doses are given in about 50 to about 400 ml of normal saline to which about 5 to about 10 ml of human serum albumin can be added. Continuous infusions are given in about 250 to about 500 ml of normal saline, to which about 25 to about 50 ml of human serum albumin can be added, per 24 hour period. Dosages will be about 10 pg to about 1000 mg/kg per person, i.v. (range of about 100 ng to about 100 mg/kg).
[180] About one to about four weeks after treatment, the patient can receive a second course of treatment. Specific clinical protocols with regard to route of administration, excipients, diluents, dosages, and times can be determined by the skilled artisan as the clinical situation warrants. [181] The present invention also provides pharmaceutical kits comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compounds and/or compositions of the present invention, including, one or more immunoconjugates and one or more chemotherapeutic agents. Such kits can also include, for example, other compounds and/or compositions, a device(s) for administering the compounds and/or compositions, and written instructions in a form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products. [182] The compounds and conjugates (e.g., immunoconjugates could also be used for the manufacture of a medicament useful for treating or lessening the severity of disorders, such as, characterized by abnormal growth of cells (e.g., cancer).
[183] Cancer therapies and their dosages, routes of administration and recommended usage are known in the art and have been described in such literature as the Physician's Desk Reference (PDR). The PDR discloses dosages of the agents that have been used in treatment of various cancers. The dosing regimen and dosages of these aforementioned chemotherapeutic agents and conjugates that are therapeutically effective will depend on the particular cancer being treated, the extent of the disease and other factors familiar to the physician of skill in the art and can be determined by the physician. For example, the 2006 edition of the Physician's Desk Reference discloses that Taxotere (see p. 2947) is an inhibitor of tubulin depolymerization; Doxorubicin (see p 786), Doxil (see p 3302) and oxaliplatin (see p 2908) are DNA interacting agents, Irinotecal (see p. 2602) is a Topoisomerase I inhibitor, Erbitux (see p 937) and Tarceva (see p 2470) interact with the epidermal growth factor receptor. The contents of the PDR are expressly incorporated herein in their entirety by reference. One of skill in the art can review the PDR, using one or more of the following parameters, to determine dosing regimens and dosages of the chemotherapeutic agents and conjugates, which can be used in accordance with the teachings of this invention. These parameters include:
1. Comprehensive index a) by Manufacturer b) Products (by company's or trademarked drug name) c) Category index (for example, "antihistamines", "DNA alkylating agents" taxanes etc.) d) Generic/chemical index (non-trademark common drug names)
2. Color images of medications
3. Product information, consistent with FDA labeling a) Chemical information b) Function/action c) Indications & Contraindications d) Trial research, side effects, warnings
[184] All references cited herein and in the examples that follow are expressly incorporated by reference in their entireties. EXAMPLES
[185] The invention will now be described by reference to non- limiting examples. Unless otherwise specified, all percents and ratios are by volume.
Example 1: Materials and Methods Methyl 2-(acetylthio)-4-bromobutanoate
Figure imgf000077_0001
[186] 10.0 g (38.4 mmol) of methyl 2,4-dibromobutanoate in 100 ml of dry THF at 2O0C was added drop wise the mixture of 2.75 ml (38.5 mmol) of thiolacetic acid in 8.5 ml (48.9 mmol) of DIPEA and 50 ml of dry THF in 1.5 hour. After stirring overnight at -2O0C then O0C for 2 hours under Ar, the mixture was concentrated, diluted with EtAc/Hexane, washed with 1.0 M NaH2PO4, dried over MgSO4, filtered, evaporated, and SiO2 chromatographic purification (1:12 to 1:10 EtAc/Hexane) to afford 9.5 g (96%) of the title compound. IH NMR (CDC13) 4.38 (IH, t, J = 7.1Hz), 3.74 (s, 3H), 3.40 (m, 2H), 2.57 ~ 2.47 (m, IH), 2.37 (s, 3H), 2.36 ~ 2.21 (m, IH); 13C NMR 193.24, 171.36, 53.15, 44.45, 34.67, 30.46, 29.46; MS m/z+ 276.9 (M+Na), 278.9 (M+2+Na)
4-Bromo-l-methoxy-l-oxobutane-2-sulfonic acid
Figure imgf000077_0002
[187] 9.2 g (36.3 mmol) of methyl 2-(acetylthio)-4-bromobutanoate in 80 ml of acetic acid was added 40 ml of hydrogen peroxide (35% in water). The mixture was stirred overnight, then evaporated, diluted with water, neutralized with NaHCO3, washed with 1 :1 Hexane/EtAc. The aqueous solution was evaporated, dissolved in methanol, concentrated, and crystallized with methanol/toluene to afford 8.6 g (90% yield) of the title compound, m.p. = 288- 293 (decomp); IH NMR (D2O) 4.12 (dd, IH, J - 4.8, 9.3 Hz), 3.83 (s, 3H), 3.64 (m, IH), 3.53 (m, IH), 2.54 (m, 2H); 13C NMR 172.16, 66.73, 55.66, 33.39, 32.70; MS m/z- 260.8 (M-I).
4-(Acetylthio)-l-methoxy-l-oxobutane-2-sulfonic acid
Figure imgf000078_0001
[188] 5.0 g (19.2 mmol) of 4-bromo-l-methoxy-l-oxobutane-2- sulfonic acid in 100 ml of THF was added 3.0 ml of thioacetic acid and 9.0 ml of DIPEA in 100 ml of THF. The mixture was stirred overnight then refluxed at 7O0C for 1 hr, evaporated and co-evaporated with 3 x 100 ml of water after being neutralized to pH 7 with NaHCO3. The mixture was redissolved in methanol, filtered through celite, concentrated and purified with SiO2 chromatography eluted with CH3OH/CH2C12/HCOOH 37.5:250:1 to 50:250:1) to afford 4.4 g (90% yield) of the title compound. IH NMR(D20) 3.95 (dd, IH, J = 4.1, 10.3 Hz), 3.83 (s, 3H), 3.74 (m, 2H), 3.22 (dd, 2H, J = 7.4, 14.9 Hz), 2.39 (s, 3H); 13C NMR 203.88, 172.91, 67.32, 56.17, 29.04, 20.61; MS m/z- 254.8 (M-H) 4-((5-nitropyridin-2-yl)disuIfanyl)-2-sulfobutanoic acid
Figure imgf000079_0001
[189] 3.0 g (11.7 mmol) of 4-(Acetylthio)-l-methoxy-l-oxobutane-2- sulfonic acid in 100 ml of water was added 50 ml of 3 M NaOH. After being stirred under Ar for 3 h, the mixture was neutralized with 1 M H2PO4 to pH 7.2 under Ar. The mixture was added dropwise to the solution of 10.0 g (32.2 mmol) of l,2-bis(5-nitropyridin-2-yl)disulfane in 200 ml of DMA. After being stirred for 4 h under Ar, the mixture was concentrated, diluted with water, filtered, evaporated and purified with C- 18 4.0 x 20 cm column eluted with water/methanol (95:5) to afford 3.1 g (75% yield) of the title compound, m.p. = 288 ~ 2910C (decomp.) IH NMR (DMF-d7) 9.29 (d, IH, J = 2.2 Hz), 8.63 (dd, IH, J = 2.7, 8.9 Hz), 8.17 (d, IH, J = 8.9 Hz), 3.73 (t, IH, J = 7.2 Hz), 3.22 ~ 3.17 (m, IH), 3.15 - 3.10 (m, IH), 2.41 ~ 2.33 (m, 2H); 13C NMR 170.92, 169.10, 146.04, 143.67, 133.65, 120.72, 64.22, 37.82, 29.26; MS m/z- 352.8 (M-H).
l-(2,5-dioxopyrrolidin-l-yloxy)-4-((5-nitropyridin-2-yl)disulfanyl)-l- oxobutane-2-sulfonic acid
Figure imgf000080_0001
[190] 220 mg (0.62 mmol) of 4-((5-nitropyridin-2-yl)disulfanyl)-2- sulfobutanoic acid in 15 DMA was added 130 mg (1.13 mmol) of NHS and 480 mg (2.50 mmol) of EDC. The mixture was stirred under Ar overnight, evaporated and purified on SiO2 chromatography eluted with CH2CH2/CH3OH/HCOOH (10000:1000:1 to 10000:1500:1) to afford 227 mg (82% yield) of the title compound. IH NMR (DMSO-d6) 9.25 (d, IH, J = 5.2 Hz), 8.57 (dd, IH, J = 2.5, 8.9 Hz), 8.04 (t, IH, J = 8.0 + 8.9 Hz), 3.86 (dd, IH, J = 4.9, 9.7 Hz), 3.13 ~ 3.12 (m, 2H), 2.76 (s, 4H), 2.36 -2.30 (m, IH), 2.25 ~ 2.21 (m, IH); 13C NMR 166.96, 165.01, 144.93, 142.26, 132.63, 119.61, 61.00, 35.03, 29.30, 25.39; MS m/z- 449.8 (M-H).
Methyl 2-(acetylthio)-4-bromobutanoate
Figure imgf000080_0002
[191] 10.0 g (38.4 mmol) of methyl 2,4-dibromobutanoate in 100 ml of dry THF at -2O0C was added dropwise the mixture of 2.75 ml (38.5 mmol) of thiolacetic acid in 8.5 ml (48.9 mmol) of DIPEA and 50 ml of dry THF in 1.5 hour. After stirring overnight at -2O0C then O0C for 2 hours under Ar, the mixture was concentrated, diluted with EtAc/Hexane, washed with 1.0 M NaH2PO4, dried over MgSO4, filtered, evaporated, and SiO2 chromatographic purification (1:12 to 1:10 EtAc/Hexane) to afford 9.5 g (96%) of the title compound. IH NMR (CDC13) 4.38 (IH, t, J = 7.1Hz), 3.74 (s, 3H), 3.40 (m, 2H), 2.57 ~ 2.47 (m, IH), 2.37 (s, 3H), 2.36 ~ 2.21 (m, IH); 13C NMR 193.24, 171.36, 53.15, 44.45, 34.67, 30.46, 29.46; MS m/z+ 276.9 (M+Na), 278.9 (M+2+Na)
4-Bromo-l-methoxy-l-oxobutane-2-sulfonic acid
Figure imgf000081_0001
[192] 9.2 g (36.3 mmol) of methyl 2-(acetylthio)-4-bromobutanoate in 80 ml of acetic acid was added 40 ml of hydrogen peroxide (35% in water). The mixture was stirred overnight, then evaporated, diluted with water, neutralized with NaHCO3, washed with 1:1 Hexane/EtAc. The aqueous solution was evaporated, dissolved in methanol, concentrated, and crystallized with methanol/toluene to afford 8.6 g (90% yield) of the title compound, m.p. = 288- 293 (decomp); IH NMR (D2O) 4.12 (dd, IH, J = 4.8, 9.3 Hz), 3.83 (s, 3H), 3.64 (m, IH), 3.53 (m, IH), 2.54 (m, 2H); 13C NMR 172.16, 66.73, 55.66, 33.39, 32.70; MS m/z- 260.8 (M-I).
4-(Acetylthio)-l-methoxy-l-oxobutane-2-sulfonic acid
Figure imgf000082_0001
[193] 5.0 g (19.2 mmol) of 4-bromo-l-methoxy-l-oxobutane-2- sulfonic acid in 100 ml of THF was added 3.0 ml of thioacetic acid and 9.0 ml of DIPEA in 100 ml of THF. The mixture was stirred overnight then refluxed at 7O0C for 1 hr, evaporated and co-evaporated with 3 x 100 ml of water after neutralized to pH 7 with NaHCO3. The mixture was redissolved in methanol, filtered through celite, concentrated and purified with SiO2 chromatography eluted with CH3OH/CH2C12/HCOOH 37.5:250:1 to 50:250:1) to afford 4.4 g (90% yield) of the title compound. IH NMR(D20) 3.95 (dd, IH, J = 4.1, 10.3 Hz), 3.83 (s, 3H), 3.74 (m, 2H), 3.22 (dd, 2H, J = 7.4, 14.9 Hz), 2.39 (s, 3H); 13C NMR 203.88, 172.91, 67.32, 56.17, 29.04, 20.61; MS m/z- 254.8 (M-H)
4-((5-nitropyridin-2-yl)disulfanyl)-2-sulfobutanoic acid
Figure imgf000082_0002
[194] 3.0 g (11.7 mmol) of 4-(Acetylthio)-l-methoxy-l-oxobutane-2- sulfonic acid in 100 ml of water was added 50 ml of 3 M NaOH. After stirring under Ar for 3 h, the mixture was neutralized with 1 M H2PO4 to pH 7.2 under Ar. The mixture was added dropwise to the solution of 10.0 g (32.2 mmol) of l,2-bis(5-nitropyridin-2-yl)disulfane in 200 ml of DMA. After stirring for 4 h under Ar, the mixture was concentrated, diluted with water, filtered, evaporated and purified with C- 18 4.0 x 20 cm column eluted with water/methanol (95:5) to afford 3.1 g (75% yield) of the title compound, m.p. = 288 ~ 2910C (decomp.) IH NMR (DMF-d7) 9.29 (d, IH, J = 2.2 Hz), 8.63 (dd, IH, J = 2.7, 8.9 Hz), 8.17 (d, IH, J = 8.9 Hz), 3.73 (t, IH, J = 7.2 Hz), 3.22 ~ 3.17 (m, IH), 3.15 ~ 3.10 (m, IH), 2.41 ~ 2.33 (m, 2H); 13C NMR 170.92, 169.10, 146.04, 143.67, 133.65, 120.72, 64.22, 37.82, 29.26; MS m/z- 352.8 (M-H).
l-(2,5-dioxopyrrolidin-l-yloxy)-4-((5-nitropyridin-2-yl)disulfanyl)-l- oxobutane-2-sulfonic acid
Figure imgf000083_0001
[195] 220 mg (0.62 mmol) of 4-((5-nitropyridin-2-yl)disulfanyl)-2- sulfobutanoic acid in 15 DMA was added 130 mg (1.13 mmol) of NHS and 480 mg (2.50 mmol) of EDC. The mixture was stirred under Ar overnight, evaporated and purified on SiO2 chromatography eluted with CH2CH2/CH3OH/HCOOH (10000:1000:1 to 10000:1500:1) to afford 227 mg (82% yield) of the title compound. IH NMR (DMSO-d6) 9.25 (d, IH, J = 5.2 Hz), 8.57 (dd, IH, J = 2.5, 8.9 Hz), 8.04 (t, IH, J = 8.0 + 8.9 Hz), 3.86 (dd, IH, J = 4.9, 9.7 Hz), 3.13 ~ 3.12 (m, 2H), 2.76 (s, 4H), 2.36 -2.30 (m, IH), 2.25 ~ 2.21 (m, IH); 13C NMR 166.96, 165.01, 144.93, 142.26, 132.63, 119.61, 61.00, 35.03, 29.30, 25.39; MS m/z- 449.8 (M-H).
4-(pyridin-2-yldisulfanyl)-2-sulfobutanoic acid
Figure imgf000084_0001
[196] 1.5 g (5.85 mmol) of 4-(Acetylthio)-l-methoxy-l-oxobutane-2- sulfonic acid was added to 100 ml of 0.5 M NaOH solution. After stirring under Ar for 3 h, the mixture was concentrated to ~ 50 ml and neutralized with 1 M H2PO4 to pH 7.2 under Ar. The mixture was added dropwise to the solution of 4.0 g (18.1 mmol) of 2,2'-dithiodipyridine in 60 ml of DMA. After stirring for 4 h under Ar, the mixture was concentrated, diluted with water, filtered, evaporated and purified with C- 18 4.0 x 20 cm column eluted with water/methanol (99:1 to 90:10) to afford 1.32 g (73% yield) of the title compound. IH NMR (DMF-d7) 8.39 (dd, IH, J = 3.5, 4.8 Hz), 7.86 (m, 2H), 7.25 (m, IH), 3.59 (dd, IH, J = 5.2, 9.4 Hz), 2.90 (m, 2H), 2.28 (m, 2H); 13C NMR 172.60, 159.16, 148.93, 138.09, 121.03, 119.38, 67.49, 36.39, 28.666; MS m/z- 307.8 (M-H).
l-(2,5-dioxopyrrolidin-l-yloxy)-l-oxo-4-(pyridin-2-yldisulfanyl)butane-2- sulfonic acid
Figure imgf000085_0001
[197] 680 mg (2.20 mmol) of 4-(pyridin-2-yldisulfanyl)-2- sulfobutanoic acid in 50 DMA was added 300 mg (2.60 mmol) of NHS and 800 mg (4.16 mmol) of EDC. The mixture was stirred under Ar overnight, evaporated and purified on SiO2 chromatography eluted with CH2CH2/CH3OH/HCOOH (10000:1000:1 to 10000:1500:1) to afford 720 mg (80% yield) of the title compound. IH NMR (DMSO-d6) 8.40 (dd, IH, J = 3.5, 4.7 Hz), 7.85 (m, 2H), 7.24 (m, IH), 3.58 (dd, IH, J = 5.1, 9.4 Hz), 2.94 ~ 2.90 (m, 2H), 2.74 (s, 4H), 2.31 -2.27 (m, 2H); 13C NMR 168.16, 161.11, 147.91, 139.22, 121.63, 119.31, 66.80, 36.30, 28.36, 25.42; MS m/z- 404.9 (M-H).
3, 6-endoxo-Δ-tetrahydrophthalhide
Figure imgf000085_0002
[198] Maleimide (5.0 g, 51.5 mmol) in ethylether (200 ml) was added furan (5.5 ml, 75.6 mmol). The mixture was heated inside a 1 L of autoclave bomb at 1000C for 8 h. The bomb was cooled down to room temperature, and the inside solid was rinsed with methanol, concentrated and crystallized in ethyl acetate/hexane to afford 8.4 g (99%) of the title compound. IH NMR (DMF-d7): 11.08 (s, IH) (NH), 6.60 (m, 2H), 5.16 (m, 2H), 2.95 (m, 2H). 13C NMR 178.84, 137.69, 82.00, 49.92. MS m/z+ 188.4 (MW + Na).
Methyl 4-N-(3, 6-endoxo-Δ-tetrahydrophthaIido)-2-sulfo-butyrate
Figure imgf000086_0001
[199] 3, 6-Endoxo-Δ-tetrahydrophthalhide (0.80 g, 4.85 mmol) in
DMA (20 ml) was added K2CO3 (1.4 g, 10.13 mmol) and KI (0.19 g, 1.14 mmol). After stirring under Ar for 1 hr, methyl 4-bromo-2-sulfo-butyrate (0.98 g, 3.77 mmol) in DMA (10 ml) was added. The mixture was stirred under Ar overnight, evaporated, re-dissolved in 1% HAc in methanol, filtered, evaporated and purified by SiO2 chromatography and eluted with 1:5:0.01 to 1:4:0.01 CH3OH/CH2Cl2/HAc to afford 0.98 (75%) g of the title compound. IH NMR (DMF-d7): 6.59 (m, 2H), 5.16 (dd, 2H, J = 0.8, 7.8 Hz), 3.65-3.63 (m, 3H), 3.47 (m, 2H), 3.01 (s, 3H), 2.83 (m, 2H). 13C NMR 172.94, 162.86, 137.68, 81.98, 52.39, 49.91, 48.58, 36.01, 21.97. MS m/z- 343.9 (MW - H).
Methyl 4-N-maleimido-2-suIfo-butyrate
Figure imgf000086_0002
[200] In an opened round bottom flask, methyl 4-N-(3, 6-endoxo-Δ- tetrahydrophthalido)-2-sulfo-butyrate (0.30 g, 0.87 mmol) in 20 ml of 1:1 DMA/ 100 mM NaH2PO4, pH 7.0 was heated at 120 ~ 14O0C for 4 h. During the reaction time, 5 x 10 ml of water was gradually added to keep the reaction volume around 15 ml. The mixture was concentrated to dryness and purified by SiO2 chromatography eluted with 1:5:0.01 to 1:4:0.01 CH3OH/CH2Cl2/HAc to afford 0.230 g (95%) of the title compound. 1H NMR (DMF-d7): 6.60 (s, 2H), 4.06 (d, IH), 3.60 (m, 3H), 3.47 (m, 2H), 2.43 (m, 2H); 13C NMR 171.59, 164.96, 136.10, 66.20, 51.71, 34.82, 22.10. MS m/z- 276.6 (MW - H).
Methyl 4-azido-2-sulfo-butyrate
Figure imgf000087_0001
[201] Methyl 4-bromo-2-sulfo-butyrate (1.07 g, 4.11 mmol) and sodium azide (0.70 g (10.7 mmol) in DMF (50 ml) was stirred overnight. The mixture was evaporated and purified by SiO2 chromatography and eluted with 1:5:0.01 CH3OH/CH2Cl2/HAc and crystallized with CH3OH/Toluene/Hexane to afford 1.00 g (95%) of the title compound, m.p = 267 -272 0C (decomp). IH NMR (DMF-d7): 12.06 (br, IH), 3.65 (s, 3H), 3.59 (dd, IH, J = 5.4, 8.9 Hz), 3.47 (m, 2H), 2.24 (m, 2H). 13C NMR 171.10, 64.29, 52.24, 50.64, 21.35. ESI MS m/z+ 267.9 (M + 2Na-H), m/z- 222.0 (M-H). HRMS m/z- (C5H9N3O5S - H) calcd 222.0185, found 222.0179.
4-azido-2-suIfo-butyric acid
O O
IM HCl
T HAc IOOC J UM
SO3H >95o/o SO3H
[202] Methyl 4-azido-2-sulfo-butyrate (1.00 g, 4.08 mmol) in the mixture of HCl (50 ml, 1.0 M) and HAC (5 ml) was heated at 1000C for 8 hrs. The mixture was evaporated and co-evaporated 3x 50 ml of water, and crystallized with water/acetone to afford 1.0 g (99%) of the title compound. 1H NMR (DMF-d7): 3.60 (m, 2H), 3.52 (m, IH), 2.24 (m, 2H). 13C NMR 170.96, 63.04, 50.66, 29.12. ESI MS m/z- 207.7 (MW -H); HRMS m/z- (C4H7N3O5S - H) calcd 208.0028, found 208.0021.
4-Amino-2-sulfo-butyric acid
Figure imgf000089_0001
[203] 4-Azido-2-sulfo-butyric acid (500 mg, 2.40 mmol), water (20 ml) and Pd/C (110 mg, 10% Pd, 50% water based) were placed into a 250 ml hydrogenation shaking bottle. After the air in the bottle was sucked out by a vacuum, 20 psi of hydrogen was let into the bottle. The mixture was shaken for 8 h, then filtered through celite, washed with DMF, evaporated and co- evaporated with dry DMF to afford 476 mg (91% HCl salt) of the title product. ESI MS m/z- 181.8 (MW -H). This product was used directly without further purification.
(Z)-4-(3-carboxy-3-suIfopropylamino)-4-oxobut-2-enoic acid
Figure imgf000089_0002
[204] The above 4-Amino-2-sulfo-butyric acid, HCl salt (476 mg,
2.16 mmol) in dry DMF (20 ml) was added maleic anhydride (232 mg, 2.36 mmol). The mixture was stirred under Ar overnight, evaporated and purified on self packed c-18, φl.O x 25 cm column, eluted with water. The fractions contained product were pooled, evaporated and crystallized with H2O/acetone to afford 552 mg (91%) of the title product. 1U NMR (DMF-d7): 9.70 (br, IH), 6.73 (d, IH, J = 12.8 Hz), 6.32 (d, IH, J = 12.8 Hz), 3.69 (m, IH), 3.47 (m, 2H), 2.27 (m, 2H). 13C NMR 171.47, 167.32, 165.87, 135.44, 133.07, 63.82, 39.13, 27.62. ESI MS m/z- 279.8 (MW -H); HRMS m/z- (C8HnNO8S - H) calcd 280.0127, found 280.0121.
4-N-Maleimido-2-suIfo-butanoic acid
Figure imgf000090_0001
[205] (Z)-4-(3-carboxy-3-sulfopropylamino)-4-oxobut-2-enoic acid
(310 mg, 1.10 mmol) in mixture dry DMA (5 ml) and dry toluene (20 ml) was heated. After the temperature reached at 8O0C, HMDS (hexamethyldisilazane) (1.40 ml, 6.71 mmol) and ZnCl2 (1.85 ml, 1.0 M in diethyl ether, 1.85 mmol) was added. The mixture was continued heated to 115 ~ 1250C and toluene was collected through Dean-Stark trap. The reaction mixture was fluxed at 120 0C for 6 h. During this period, 2 x 20 ml of dry toluene was added to keep the mixture volume around 8 ~ 10 ml. Then the mixture was cooled, 1 ml of 1:10 HCl (conc)/CH3OH was added, evaporated, purified on SiO2 chromatography eluted with CH3OH/CH2Cl2/HAc (1 :5:0.01 to 1 :4:0.01) to afford 260mg (92%) of the title product. 1H NMR (DMF-d7): 10.83(br, IH)5 6.95 (s, 2H) , IH, J = 12.8 Hz), 3.65 (m, IH), 3.54 (m, 2H), 2.27 (m, 2H). 13C NMR 173.61, 172.04, 135.47, 64.18, 37.1, 27.89. ESI MS m/z- 261.8 (MW -H). HRMS m/z- (C8H9NO7S -H) calcd 262.0021, found 262.0027.
Succinimidyl 4-N-maleimido-2-sulfo-butyrate
Figure imgf000091_0001
[206] 4-N-maleimido-2-sulfo-butanoic acid (260 mg, 0.99 mmol) in
DMA (10 ml) was added to NHS (220 mg, 1.91 mmol) and EDC (500 mg, 2.60 mmol). The mixture was stirred under Ar overnight, evaporated and purified on SiO2 chromatography eluted with CH2CH2/CH3OH/HAc (10000:1000:1 to 10000:2000:1), then crystallized with DMA/EtAc/Hexane to afford 285 mg (81% yield) of the title compound. 1H NMR (DMF-d7) 6.99 (s, IH), 3.83 (m, IH), 3.64 (m, 2H), 2.75 (s, 4H), 2.34 (m, 2H); 13C NMR 171.97, 171.82, 166.64, 135.58, 62.00, 36.66, 26.62; ESI MS m/z- 358.9 (M-H); HRMS m/z- (Ci2Hi2N2O9S -H) calcd 359.0185, found 359.0178
(E)-Methyl 4-azidobut-2-enoate
Figure imgf000091_0002
[207] To the solution Of NaN3 (2.80 g, 43.01 mmol) in 100 ml of
DMF at -2O0C was added methyl 4-bromocrotonate (5.00 ml, 85%, 36.10 mmol). After stirred at -2O0C for 30 min, the mixture was stirred at O0C for 4 h, evaporated, suspended with EtAc/Hexane (1 :1), filtered, evaporated and chromatographic purification on SiO2 column eluted with EtAc/Hexane (1 :25 to 1: 10 ) to afford HRMS for 4.08 g (80%) of the title product. 1H NMR (CDCl3) 6.88 (m, IH), 6.06 (ddd, IH, J -= 1.7, 3.4, 15.6 Hz), 3.97 (dd, 2H, J = 1.2, 4.96 Hz), 3.73 (s, 3H); 13C NMR 166.23, 140.86, 123.49, 51.95, 51.36; ESI MS m/z+ 182.5 (M+ Na + H2O); HRMS m/z+ (C5H7N3O2 + H2O + Na) calcd 182.0542, found 182.0548.
Methyl 3-(acetylthio)-4-azidobutanoate
Figure imgf000092_0001
[208] To the solution of (E)-Methyl 4-azidobut-2-enoate (4.0Og,
28.37 mmol) in 60 ml of THF at O0C was added the mixture of thiolacetic acid (3.0 ml, 42.09 mmol) and DIPEA (8.0 ml, 45.92 mmol) in 60 ml of THF in 20 min. After stirred at O0C for 1 hr, the mixture was stirred at RT overnight, evaporated, redissolved in CH2Cl2, washed with NaHCO3 (sat.) and 1 M NaH2PO4/NaCl (sat.), pH 4 respectively, dried over MgSO4, filtered, evaporated and chromatographic purification on SiO2 column eluted with EtAc/Hexane (1 :8 to 1: 4) to afford HRMS for 4.98 g (81%) of the title product. 1H NMR (CDCl3) 3.66 (m, IH), 3.62 (s, 3H), 3.40 (dd, IH, J = 7.5, 12.7 Hz), 3.31 (m, IH), 2.78 (m, IH), 2.60 (m, IH), 2.32 (s, 3H); 13C NMR (DMF-d7) 192.20, 172.48, 56.56, 53.60, 51.31, 34.58, 30.56; ESI MS m/z+ 240.0 (M+ Na), 255.9 (M+ K); HRMS m/z+ (C7H11N3O3S+ Na) calcd 240.0419, found 240.0415.
Azido-4-methoxy-4-oxobutane-2-sulfonic acid
Figure imgf000093_0001
[209] Methyl 3-(acetylthio)-4-azidobutanoate (4.00 g, 18.43 mmol) in
75 ml of acetic acid was added 25 ml Of H2O2 (30%). The mixture was stirred overnight, evaporated and co-evaporated with EtOH/toluene and purified on SiO2 chromatography eluted with CH3OH/CH2Cl2/HAc (100:800:1 to 100:500:1) to afford 3.85 (93%) g the title compound. 1H NMR (CD3OD) 3.78 (dd, IH, J = 5.0, 12.7 Hz), 3.62 (s, 3H), 3.44 (dd, IH, J = 7.5, 12.7 Hz), 3.33 (m, IH), 2.84 (dd, IH, J = 5.6, 16.5 Hz), 2.57 (dd, IH, J = 7.5, 16.5 Hz); 13C NMR (DMF-d7) 173.37, 57.31, 52.54, 52.49, 34.51; ESI MS m/z- 221.7 (M+ H),
4-Azido-3-sulfobutanoic acid
Figure imgf000093_0002
[210] Azido-4-methoxy-4-oxobutane-2-sulfonic acid (3.80 g, 17.04 mmol) in 150 ml of 1.0 M HCl was added 8.0 ml of HAc. The mixture was refluxed at 12O0C overnight, evaporated and co-evaporated with water, EtOH, EtOH/toluene respectively and purified on SiO2 chromatography eluted with CH3OH/CH2Cl2/HAc (100:500:1 to 100:400:1) to afford 3.02 (85%) g the title compound. 1H NMR (CD3OD) 3.77 (dd, IH, J = 5.1, 12.8 Hz), 3.45 (dd, IH, J = 7.0, 12.8 Hz), 3.31 (m, IH), 2.86 (dd, IH, J = 4.7, 16.7 Hz), 2.51 (dd, IH, J = 8.4, 16.7 Hz); 13C NMR (DMF-d7) 173.98, 67.50, 59.78, 27.82; ESI MS m/z- 207.7 (M -H).
4-amino-3-sulfobutanoic acid
Figure imgf000094_0001
[211] In a 500 ml of hydrogenation bottle was added 4-azido-3- sulfobutanoic acid (3.00 g, 14.35 mmol), 150 ml of methanol and 0.32 g of Pd/C (10% Pd, 50% wet). After sucked out air, 30 psi of H2 was conducted, and the mixture was shaken overnight, filtered through celite, evaporated, and coevaporated with dry EtOH to afford about 2.50 g (95%) of 4-amino-3- sulfobutanoic acid. 1H NMR (CD3OD) 3.24 (m, IH), 3.17 (m, IH), 2.90 (dd, IH, J = 2.6, 16.5 Hz), 2.33 (dd, IH, J = 10.1, 16.5 Hz), ESI MS m/z- 181.60 (M-H). The resulted compound was unstable and was used directly without further purification.
(Z)-4-(3-carboxy-2-sulfopropylamino)-4-oxobut-2-enoic acid
Figure imgf000095_0001
[212] To the solution of 4-amino-3-sulfobutanoic acid (~ 2.50 g,
13.66 mmol) in 100 ml of DMA was added maleic anhydride (1.48 g, 15.10 mmol) and the mixture was stirred over night, evaporated, purified on C- 18 column (2 x 30 cm) eluted with 1% HAc in water and crystallized with MeOH/Acetone/toluene to afford 3.34 g (83%) of (Z)-4-(3-carboxy-2- sulfoρropylamino)-4-oxobut-2-enoic acid. 1H NMR (CD3OD) 6.33 (d, IH, J = 12.6 Hz), 6.10 (d, IH, J = 12.6 Hz), 3.64 (dd, IH, J = 5.8, 14.0 Hz), 3.54 (m, IH), 3.30 (m, IH), 2.78 (dd, IH, J = 4.9, 16.8 Hz), 2.39 (m, IH); 13C NMR 173.52, 168.68, 167.98, 135.59, 127.79, 57.31, 40.56, 34.52; ESI MS m/z- 279.7 (M -H).
4-(2,5-dioxo-2,5-dihydro-lH-pyrroI-l-yl)-3-sulfobutanoic acid
Figure imgf000095_0002
[213] (Z)-4-(3-carboxy-2-sulfopropylamino)-4-oxobut-2-enoic acid
(450 mg, 1.60 mmol) in mixture of 10 ml of dry DMA and 50 ml of dry toluene was heated. After the temperature reached at 8O0C, HMDS (hexamethyldisilazane, 1.80 ml, 8.63 mmol, ) and ZnCl2 (3.2 ml, 1.0 M in diethyl ether) were added. The mixture was continued heated to 115 - 125 0C and toluene was collected through Dean-Stark trap. The reaction mixture was fluxed at 120 0C for 6 h. During this period, 2 x 20 ml of dry toluene was added to keep the mixture volume around 8 — 10 ml. Then the mixture was cooled, 1 ml of 1:10 HCl (conc)/CH3OH was added, evaporated, purified on SiO2 chromatography eluted with 1 :5:0.01 CH3OH/CH2Cl2/HAc to afford 315 mg (75%) of the title product. 1H NMR (DMF-d7) 6.96 (s, 2H), 4.04 (dd, IH, J = 4.3, 13.8 Hz), 3.47 (m, IH), 3.23 (dd, IH, J = 7.4, 14.7Hz), 2.99 (dd, IH, J = 3.3 , 16.8 Hz), 2.35 (dd, IH, J = 8.1, 16.9 Hz); 13C NMR 173.58, 172.18, 135.54, 54.61, 40.24, 32.43, ESI MS m/z- 261.70 (M -H).
l-(2,5-Dioxo-2,5-dihydro-lH-pyrrol-l-yl)-4-(2,5-dioxopyrrolidin-l-yloxy)- 4-oxobutane-2-sulfonic acid
Figure imgf000096_0001
[214] 4-(2,5-Dioxo-2,5-dihydro-lH-pyrrol-l-yl)-3-sulfobutanoic acid
(110 mg, 0.418 mmol), EDC (240 mg, 1.25 mmol) and N-hydroxysuccinimide (58 mg, 0.504 mmol) was stirred in 10 ml of DMA for overnight, evaporated and purified on SiO2 chromatography eluted with CH3OH/CH2Cl2/HAc (100:900:1 to 100: 600:1) to afford 112 mg (75%) of the title product. 1H NMR (DMF-d7) 6.93 (s, 2H), 4.06 (dd, IH, J = 4.8, 13.1 Hz), 3.80 (dd, IH, J = 10.7, 13.9 Hz), 3.35 (dd, IH J = 3.3, 17.8 Hz), 3.25 (m, IH), 3.10 (dd, IH, J = 2.2, 16.4 Hz), 2.87 (m, 4H); 13C NMR 172.27, 170.88, 169.29, 135.55, 55.28, 40.22, 32.69, 26.66; ESI MS m/z- 261.70 (M -H).
Ethyl 3-(acetylthio)-3-cyanopropanoate
CN O HSAc/EtSN <TN §
0 THF, 0*C, 65% ACJ> °
[215] (Z)-ethyl 3-cyanoacrylate (5.01 g, 40.00 mmol) in 80 ml of
THF at -2O0C was added the solution of thiol acetic acid (5.0 ml, 70.15 mmol) and DIPEA (16.0 ml, 92.03 mmol) in 20 ml of THF in 30 min. The reaction was kept at -2O0C for 4 hr then room temperature overnight. The mixture was concentrated, diluted with CH2Cl2, washed with saturated NaHCO3, dried over MgSO4, filtered, evaporated and purified by SiO2 chromatography (1:4 EtAC/Hexane) to afford 5.22 g (65%) of the title compound. Rf =0.25 (1 :4 EtAC/Hexane); 1U NMR (CDCl3), 4.44 (m, IH), 4.11 (dd, 2H, J = 7.1, 14.3 Hz), 3.38 (m, IH), 3.15 (m, IH), 2.17 (s, 3H), 1.19 (t, 3H, J = 7.2 Hz); 13C NMR 194.12, 173.21, 119.82, 61.35, 33.52, 30.08, 14.62; MS m/z+ 225.9 (MW + Na), m/z- 201.7 (MW-H).
Cyano-S-ethoxy-S-oxopropane-l-sulfonic acid
Figure imgf000097_0001
[216] Ethyl 3-(acetylthio)-3-cyanopropanoate (2.0Og, 9.95 mmol) in acetic acid (40 ml) was added H2O2 (12 ml, 30%). The mixture was stirred overnight, evaporated and purified on silica gel chromatography eluted with methanol/dichloromethane/acetic acid (1 :8:0.01 to 1 :5:0.01) to afford 1.72 g (84%) of the title compound. 1R NMR (DMSO), 4.63 (m, IH), 4.12 (dd, 2H, J = 7.1, 14.3 Hz), 3.27 (m, IH), 3.05 (m, IH), 1.28 (t, 3H, J = 7.2 Hz); 13C NMR 173.15, 113.85, 61.38, 48.32, 26.33, 14.15; MS m/z- 205.7 (MW-H).
l-(tert-Butoxycarbonylamino)-4-ethoxy-4-oxobutane-2-sulfonic acid
Figure imgf000098_0001
[217] In a hydrogenation bottle was added Cyano-3-ethoxy-3- oxopropane-1 -sulfonic acid (2.50 g, 12.06 mmol), ethanol (80 ml), fresh filtered Raney Nickel (0.40 g) and BOC anhydride (3.30 g, 15.12 mmol). After the air inside the bottle was sucked out by vacuum, 20 psi of hydrogen was conducted to the bottle. The bottle was shaken over night, filtered through celite, evaporated, and purified on silica gel chromatography eluted with methanol/dichloromethane/acetic acid (1 :6:0.01) to afford 3.18 g (85%) of the title compound. 1H NMR (DMSO), 6.82 (s, IH), 4.26 (m, IH), 4.11 (dd, 2H, J = 7.1, 14.3 Hz), 3.53 (dd, IH, J = 4.2, 13.4 Hz), 3.36 (m, IH), 2.86 (m, IH), 2.51 (m, IH), 1.38 (s, 9H), 1.22 (t, 3H, J = 7.2 Hz); 13C NMR 173.35, 155.72, 80.44, 62.05, 52.55, 41.61, 34.50, 28.85, 14.52; MS m/z- 309.8 (MW-H).
4-(tert-butoxycarbonylamino)-3-sulfobutanoic acid
Figure imgf000099_0001
[218] 1 -(tert-Butoxycarbonylamino)-4-ethoxy-4-oxobutane-2- sulfonic acid (402 mg, 1.29 mmol) in the mixture of THF/H2O (1:2, 60 ml) was added lithium hydroxide monohydrate (2.0 g, 47.6 mmol). The mixture was stirred under Ar overnight, concentrated, purified on C- 18 column (2 x 30 cm) eluted with from 100% water to 10% methanol in water to afford 328 mg (90%) of the title compound. 1H NMR (DMSO), 6.78 (s, IH), 4.03 (m, IH), 3.57 (dd, IH, J = 4.2, 13.4 Hz), 3.41 (m, IH), 2.89 (m, IH), 2.61 (m, IH), 1.39 (s, 9H); 13C NMR 174.21, 155.82, 79.85, 59.95, 42.06, 32.52, 28.88, 14.55; ESI MS 281.8 (M-H);
(Z)-4-(3-carboxy-2-sulfopropylamino)-4-oxobut-2-enoic acid
Figure imgf000099_0002
[219] 4-(Tert-butoxycarbonylamino)-3-sulfobutanoic acid (321 mg,
1.13 mmol) was stirred in the mixture of HCl (conc)/Dioxane (1:4, 15 ml) for 30 min, evaporated and coevaporated with EtOH/Toluene (1 :1, 4 x 20 ml) to dryness. To the dryness material was added maleic anhydride (121 mg, 1.23 mmol) and DMA (20 ml) and the mixture was stirred overnight, evaporated and run through C-18 column eluted with water and crystallized with EtOH/Hexane to afford 263 mg (83%) of the title compound. ESI MS 279.8 (M- H). The NMR data are the same through the route with 4-azido-3- sulfobutanoic acid.
N,N,N-trimethyl-2-oxotetrahydrothiophen-3-aminium
Figure imgf000100_0001
[220] 3-aminodihydrothiophen-2(3H)-one hydrochloride (6.00 g,
39.1 mmol), sodium bicarbonate (3.28 g, 39.1 mmol) and iodomethane (13 mL, 209 mmol) were stirred in dry methanol (100 ml) overnight, filtered through celite, evaporated, purified on SiO2 column eluted with MeOH/CH2Cl2/HAc (1 :5:0.01), and crystallized with EtOH/Hexane to afford
5.25 g (84%) of the title product, mp 228- 2310C. 1H NMR (CD3OD) 4.27 (m, IH), 3.25 (s, 9H), 2.56 - 2.47 (m, 2H), 2.34 (m, IH), 2.26 (m, IH); 13C NMR 168.97, 75.06, 53.25, 30.85, 16.46; ESI MS m/z+ 160.0 (M+).
l-carboxy-N,N,N-trimethyl-3-(pyridm-2-yldisuIfanyI)propan-l-aminium
Figure imgf000100_0002
[221] N,N,N-trimethyl-2-oxotetrahydrothiophen-3-aminium acetate
(2 g, 9.13 mmol) was stirred in 75 ml of 1 M NaOH (3 g NaOH in 75 ml H2O) for 45 min. neutralized with 4 M H3PO4 to pH 7.4, concentrated, added to 1 ,2- di(pyridin-2-yl)disulfane (11 g, 49.9 mmol) in 200 ml of MeOH. The mixture was stirred over night, extracted with EtAc. The aqueous solution was evaporated, suspended with MeOH, filtered salt, evaporated and purified on C-18 column (2 cm x 30 cm) eluted with water/methanol (100 water to 20% methanol/water) to afford 2.6 g (75%) of the title product. ESI MS m/z+ 309.1 (M +Na-H).
1. Modification of antibody with sulfo linker
[222] The huC242 is modified with sulfo linker at 8 mg/mL antibody, a 15 fold molar excess of sulfo linker (~30mM stock solution in DMA). The reaction is carried out in 100 mM NaPi, pH8.0 buffer with DMA (5% v/v) for 15, 30, 120, and 200 minutes at 25 0C. The modified huC242 was purified by G25 column with 50 mM NaPi, 50 mM NaCl, and 2 mM EDTA, pH6.5 to remove the excess sulfo linker.
2. Measurement of releasable Spy-NO2 and antibody concentration of modified huC242
[223] The assay and spectral measurement were carried in 100 mM
NaPi, pH7.5 at room temperature. The molar ratio of Spy-NO2 released per mole of huC242 antibody was calculated by measuring the A280 of the sample and then the increase in the A394 of the sample after adding DTT (50 μL of 1 M DTT/mL of sample). The concentration of DTT-released 2- mercaptopyridine is calculated using a S394 nm of 14,205 M-1Cm"1. The concentration of antibody can then be calculated using a ε28o nm of 217,560 M" 1Cm"1 after subtracting the contribution of Spy-NO2 absorbance at 280 nm (A394 nm post DTT x 3344/14205) from the total A280 nm measured before DTT addition. The molar ratio of Spy-NO2:Ab can then be calculated. The mg/mL (g/L) concentration of huC242 is calculated using a molecular weight of 147,000 g/mole.
3. Conjugation reaction
[224] The modified huC242 was reacted with a 1.7-fold molar excess of DM4 (based on DM4 stock SH concentration) over Spy-NO2. The reaction is carried out at 2.5 mg/mL antibody in 50 niM NaPi, 50 mM NaCl, 2 mM EDTA, pH6.5 and DMA (5% v/v). After addition of DM4, the reaction was incubated 250C for ~20 hours. The final conjugate was purified by G25 column with 10 mM Histidine, 130 mM Glycine, 5% sucrose, pH5.5 to remove the excess DM4 drug.
4. Calculation of huC242 and DM4 concentration
[225] The huC242 and DM4 both absorb at the two wavelengths used to measure each component separately, i.e., 280 and 252 nm. The extinction coefficient at 280 nm for huC242 is 217,560 and for DM4 is 5180 M"1. The 252 nm/280 nm absorbance ratios of huC242 and DM4 are 0.368 and 5.05 respectively. The concentrations were calculated with following equation Cn= A2J2 - 0-368A2ML _CAb= A9.gn - 5180Cn
24692.4 217,560
Results
Figure imgf000103_0001
C242-Sulfo-DM4 linker titration
Figure imgf000103_0002
Conjugation protocol:
[226] Modification was done at pH 8.0, buffer A and 5% DMA for 90 min at room temperature, the antibody concentration is 7 mg/ml. The modificed antibody was purified by NAP column using Buffer A pH6.5. The conjugation was down at Buffer A, pH6.5 with 5-10% DMA at room temperature overnight. The drug to linker ratio ranged from 1.3 to 1.7 deepening on the total drug added. Example 2: Conjugate Synthesis.
[227] SPP or SSNPP linker was dissolved in ethanol at a concentration of approximately 10 mM. Antibody was dialyzed into buffer A (50 mM KPi, 50 mM NaCl, 2 mM EDTA, pH 6.5). For the linker reaction, the antibody was at 8 mg/ml, and 7 equivalents of linker were added while stirring in the presence of 5% (v/v) ethanol. The reaction was allowed to proceed at ambient temperature for 90 minutes. Unreacted linker was removed from the antibody by Sephadex G25 gel filtration using a Sephadex G25 column equilibrated with Buffer A at pH 6.5 or 150 mM potassium phosphate buffer containing 100 mM NaCl, pH 7.4 as indicated. For the SPP linker, the extent of modification was assessed by release of pyridine-2-thione using 50 mM DTT and measuring the absorbance at 343 nm as described below (ε343 = 8080 M"1 cm"1 for free pyridine-2-thione). For SSNPP, modification was assessed directly by measuring the absorbance at 325 nm (ε325 = 10,964 M"1 cm"1 for the 4-nitropyridyl-2-dithio group linked to antibody). For the conjugation reaction, thiol-containing drug (either DMl or DC4) was dissolved in DMA (N, iV-dimethylacetamide) at a concentration of approximately 10 mM. The drug (0.8 - 1.7-fold molar excess relative to the number of linker molecules per antibody as indicated) was slowly added with stirring to the antibody which was at a concentration of 2.5 mg/ml in buffer A (pH 6.5 or pH 7.4) in a final concentration of 3% (v/v) DMA. The reaction was allowed to proceed at ambient temperature for the indicated times. Drug- conjugated antibody was purified using a Sephadex G25 column equilibrated with buffer B (PBS, pH 6.5). For DML, the extent of drug conjugation to antibody was assessed by measuring A252 and A280 of the conjugate as described below. A similar approach was used for DC4 (see below).
Measurement of Releasable Pyridine-2-thione and Ab Concentration of SPP- Modifϊed Ab.
[228] The molar ratio of pyridine-2-thione released per mole of antibody is calculated by measuring the A280 of the sample and then the increase in the A343 of the sample after adding DTT (50 μL of 1 M DTT/mL of sample). The concentration of DTT-released pyridine-2-thione is calculated using an ε343 of 8080 M-1Cm'1. The concentration of antibody can then be calculated using an ε280 of 194,712 M-1Cm"1 after subtracting the contribution of pyridine-2-thione absorbance at 280 run (A343 „„, post DTT x 5100/8080) from the total A280 nm measured before DTT addition. The molar ratio of pyridine-2-thione:Ab can then be calculated. The mg/mL (g/L) concentration of Ab is calculated using a molecular weight of 147,000 g/mole.
Measurement of antibody-linked 5-Nitropyridyl-2-dithio Groups and Ab Concentration of SSNPP-Modified Ab. [229] The molar ratio of the 4-nitropyridyl-2-dithio groups linked per mole of antibody is calculated by measuring the A280 and A325 of the sample without DTT treatment. The number of antibody-bound 4-nitropyridyl-2- dithio groups is calculated using an ε325 nm of 10,964 M-1Cm"1. The concentration of antibody can then be calculated using an ε280 nm of 194,712 M-1Cm"1 after subtracting the contribution of the 5-nitropyridyl-2-dithio group absorbance at 280 nm (A325 nm x 3344/10964) from the total A280 nm measured. The molar ratio of 4-nitropyridyl-2-dithio groups :Ab can then be calculated. The mg/mL (g/L) concentration of Ab is calculated using a molecular weight of 147,000 g/mole.
Calculating Ab and DMl component concentrations of Ab-DMl. [230] The Ab and DMl both absorb at the two wavelengths used to measure each component separately, i.e., 280 and 252 nm. The components are quantified using the following algebraic expressions which account for the contribution of each component at each wavelength (CAb is the molar concentration of Ab and CD is the molar concentration of DMl):
1) Total A280 =194,712CAb + 5,700CD
2) Total A252=(194,712 x 0.37)CAb+ (4.7 x 5,700) CD
Each equation is solved for CA^
Figure imgf000106_0001
Figure imgf000107_0001
and an equality is set up (equation Ia = equation 2a) and solved for CD:
Figure imgf000107_0002
[231] Once the CD is calculated, the value is used to solve for CAb in equation Ia (or 2a) above. The ratio of DMl :Ab can then be calculated. The mg/mL (g/L) concentration of antibody is calculated using a molecular weight of 147,000 g/mole and the concentration of DMl is calculated using a molecular weight of 736.5 g/mole (linked DMl)
Efficiency of disulfide exchange is increased with SSNPP. [232] As shown in Table 1, the efficiency of conjugation is enhanced in reactions where SSNPP is used as the cross-linker compared to reactions using SPP. The percent efficiency was calculated by dividing the value for DMl per antibody by the linker per antibody ratio times 100. Conjugations of the N901 antibody using SSNPP resulted in cross-linking efficiencies of 93% at both pH 6.5 and 7.4. The efficiency of conjugation of N901 with SPP in these experiments was 70% at pH 6.5 and 77% at pH 7.4. The increased efficiency with SSNPP demonstrates that a target DMl to antibody ratio can be achieved using antibody that is modified with a reduced number of linker molecules. In fact, a similar drug to antibody ratio (4.3) was achieved in the final conjugate with an antibody preparation having 4.2 (5-nitropyridyl-2- dithio)-groups per antibody introduced with SSNPP compared to an antibody having 5.6 pyridyl-2-dithio groups introduced with SPP (Table 2). The amount of drug required to obtain comparable conjugation results was therefore 25% lower for the SSNPP-modified antibody than the SPP-modified antibody under these conditions. An additional potential benefit of the increased efficiency with SSNPP is that a reduced molar excess of DMl may be used in the conjugation reaction. A comparison of the DMl per antibody ratios following conjugation with a range of drug equivalents in the reaction (0.8 — 1.7 fold excess) shows that a 1.1 -fold molar excess is sufficient to achieve 100% conjugation efficiency using the SSNPP cross-linker (Figure 7). A comparison of the time course of the reaction of DMl with antibody that had been modified with SSNPP or SPP is shown, for example, in Figure 8. In each case the modified antibody was treated with a 1.1 -fold molar excess of DMl per mole of linker incorporated. The reaction with the SSNPP-modified antibody is considerably faster than with the SPP-modified antibody (Figure 8). Even, a molar excess of 1.7-fold is not sufficient to achieve a similar efficiency using SPP. The ability to use 1) a lower molar excess of DMl and 2) fewer linkers per antibody allows a reduction in the amount of drug needed to achieve a target DMl to antibody ratio by as much as 50% when using SSNPP as the cross-linker instead of SPP.
[233] The increased efficiency of conjugation using the SSNPP linker is accomplished without compromise in the monomeric character of the conjugate and in the amount of unconjugated (free) drug associated with the antibody conjugate. SEC analysis is used to determine the amount of monomer, dimer, trimer, or higher molecular weight aggregates. Typical results of greater than 90% monomer were obtained with either linker as shown in Table 1. The level of unconjugated drug was measured by reverse phase HPLC analysis of the conjugate sample. The percent free drug for either reaction was less than 2%. In addition, shorter conjugation reaction times are possible with SSNPP compared with SPP (U.S. Patent No.6,913,748), which may decrease loss of some antibodies that are sensitive to prolonged exposure to organic solvent required in the conjugation reaction. Shorter reaction times should also decrease drug loss due to DMl dimerization, which is a competing side reaction during conjugation. The resulting increases in yield and reduced side reactions should further contribute to reduced DMl requirements.
[234] The enhanced rate and efficiency of conjugation when using
SSNPP was also observed when conjugating a different drug to the antibody demonstrating the broad applicability of this new linker reagent. A comparison of conjugation efficiencies using SSNPP and SPP when conjugating the N901 antibody with the DNA-alkylating drug, DC4, a CC- 1065 analogue, is shown, for example, in Table 3. By 2 hours the reaction using the SSNPP cross-linking reagent was complete whereas the reaction using the SPP reagent showed only 73% completeness by 2 hours and significant incorporation of drug beyond 2 hours (91% after 18 hours). Only much prolonged reaction times may lead to 100% completeness.
Example 3. In vitro Cytotoxicity Evaluation of Maytansinoid Conjugates of Antibodies with Thioether (Non-Cleavable) and Disulfide Linkers Containing sulfonate group:
[235] The cytotoxic effects of the antibody-maytansinoid conjugates with thioether and disulfide linkers containing a sulfonate group_were typically evaluated using a WST-8 cell-viability assay after a 4-5 day continuous incubation of the cancer cells with the conjugates. The antigen-expressing cancer cells (-1000-5000 cells per well) were incubated in 96-well plates in regular growth medium containing fetal bovine serum with various concentrations of the antibody-maytansinoid conjugates for about 5 days. The WST-8 reagent was then added and the plate absorbance was measured at 450 run after ~2-5 h. The survival fraction was plotted versus conjugate concentration to determine the /C50 value (50% cell killing concentration) of the conjugate.
[236] Figures 60 and 61 show the enhancement in cytotoxicities of
Anti-CanAg (huC242) - maytansinoid conjugates with the sulfonate- containing disulfide-bonded linker (huC242-Sulfo-SPDB-DM4) bearing 6.0 to 7.6 maytansinoid/ Ab compared to the conjugate with 3.3 maytansinoid/Ab toward CanAg-positive COLO205 and COLO205-MDR cells. The potency of the conjugates with high maytansinoids loads indicate that the decoration of the antibody with up to 8 maytansinoid molecules did not affect the conjugate binding to the target COLO205 cells.
[237] Figure 64 shows the cytotoxic activities of anti-CanAg Ab- maytansinoid conjugates with similar maytansinoid load against CanAg antigen-positive COLO205-MDR cells. The presence of sulfonate group in disulfide linker significantly enhanced conjugate potency toward these multiple drug resistant cells. The enhanced potency of the sulfonate-linked conjugate is a novel finding and potentially very promising for therapeutic applications.
[238] Figure 63 shows the cytotoxic activities of anti-EpC AM Ab- maytansinoid conjugates with similar maytansinoid load against EpCAM antigen-positive COLO205-MDR cells. The presence of a sulfonate group in disulfide linker significantly enhanced conjugate potency toward these multiple drug resistant cells. The enhanced potency of the sulfonate-linked conjugate is a novel finding and potentially very promising for therapeutic applications.
[239] Figure 64 shows the cytotoxic activities of anti-EpCAM Ab- maytansinoid conjugates with similar maytansinoid load against EpCAM antigen-positive HCT cells. The presence of a sulfonate group in the disulfide linker significantly enhanced conjugate potency toward these multiple drug resistant cells. The enhanced potency of the sulfonate-linked conjugate is a novel finding and potentially very promising for therapeutic applications. [240] Figure 65 shows the cytotoxic activities of anti-EpCAM Ab- maytansinoid conjugates with similar maytansinoid load against EpCAM antigen-positive COLO205-MDR cells. The presence of a sulfonate group in the thioether linker significantly enhanced conjugate potency toward these multiple drug resistant cells. The enhanced potency of the sulfonate-linked conjugate is a novel finding and potentially very promising for therapeutic applications.
Example 4. Comparison of in vivo anti-tumor activity of the anti- EpCAM-maytansinoid conjugates, B38.1-SPDB-DM4 and B38.1-sulfo- SPDB-DM4, on colon cancer, COLO205 and COLO205-MDR, xenografts:
[241] The anti-tumor effect of B38.1-SPDB-DM4 and B38.1-sulfo-
SPDB-DM4 conjugates was evaluated in a xenograft model of human colon carcinoma, COLO205 and COLO205-MDR, which was engineered to overexpress P-glycoprotein. The cells were injected subcutaneously in the area under the right shoulder of SCID mice. When the tumor's volume reached approximately 200 mm3 in size, the mice were randomized by tumor volume and divided into three groups. Each group was treated with a single i.v. bolus of either B38.1-SPDB-DM4 (10 mg conjugate protein/kg), B38.1- sulfo-SPDB-DM4 (10 mg conjugate protein/kg) or phosphate-buffered saline (vehicle control). Tumor growth was monitored by measuring tumor size twice per week. Tumor size was calculated with the formula: length x width x height x 1A.
[242] The changes in volumes of individual COLO205-MDR tumors are shown in Figure 66. Treatment with either conjugate resulted in significant tumor growth delay. B38.1 -sulfo-SPDB-DM4 was more efficacious than B38.1-sulfo-SPDB-DM4 in this human colon cancer xenograft model.
[243] The changes in volumes of individual COLO205 tumors are shown in Figure 67. Treatment with either conjugated resulted in significant tumor growth delay. Two of six animals treated with B38.1-sulfo-SPDB-DM4 had complete tumor regressions. Thus, B38.1-sulfo-SPDB-DM4 was significantly more efficacious than B38.1-sulfo-SPDB-DM4 in this model.
Example 5. Synthesis of procharged linkers (CXl-I): Z-Gly-Gly-Gly-β -AIa-OtBu
Figure imgf000113_0001
[244] 1.3 g (4.0 mmol) of Z-Gly-Gly-Gly-OH, 0.583 g (4.0 mmol) of tert-butyl-3-aminopropionate 0.651 g (4.25 mmol) of hydroxybenzotriazole and 0.81 g (4.23 mmol) of iV-(3-dimethylaminopropyl)-JV'-ethylcarbodiimide hydrochloride were weighed into a 50 mL flask then dissolved in 20 mL of dimethylformamide with magnetic stirring under a nitrogen atmosphere. After 3 hours the reaction mixture was purified in 5 mL portions by reverse phase HPLC using a 5.0 cm x 25 cm Cl 8 column. The column was run at 100 mL/min with deionized water containing 0.3 % formic acid 5% acetonitrile for 10 min followed by a 15 min linear gradient from 5% acetonitrile to 90% acetonitrile. Product fractions (retention time of 19 min) were combined and solvent was removed by rotary evaporation under vacuum to give 1.35 g (75%) of the title compound. 1H NMR (d6-DMSO) 8.16 (t, J = 5.2 Hz5IH), 8.10 (t, J = 5.2 Hz, IH), 7.82 (t, J = 5.2 Hz, IH), 7.25 - 7.4 (m, 5H), 5.04 (s, 2H), 3.74 (d, J = 5.6 Hz, 2H), 3.67 (t, J = 6.4 Hz, 4H), 3.25 (q, J = 6.1 Hz, 2H), 2.35 (t, J = 6.8 Hz, 2H), 1.39 (s, 9H). 13C NMR (d6-DMSO) 170.45, 169.61, 169.00, 168.63, 156.49, 136.94, 128.30, 127.76, 127.69, 79.89, 65.51, 43.56, 42.10, 41.90, 34.89, 34.78, 27.70. HRMS ( M +Na+) CaIc. 473.2012 found 473.1995.
H-Gly-Gly-Gly-β-Ala-OtBu
Figure imgf000114_0001
[245] 1.3 g (2.89 mmol) of Z-Gly-Gly-Gly-β- AIa-OtBu was disolved in 80 mL of 95:5 methanol: deionized water in a 250 mL parr shaker flask to which was added 0.12 g of 10% palladium on carbon. The flask was shaken under a hydrogen atmosphere (42 PSI) for 7 hours. The mixture was vacuum filtered through celite filter aid and the filtrate was concentrated by rotary evaporation under vacuum to give 0.88 g (96%) of the title compound. 1H NMR (d6-DMSO) 8.12 (t, J= 1.6Hz 2H), 8.08 (t, 7=1.6 Hz, IH), 3.75 (s,2H), 3.64 (d, J= 5.9 2H), 3.28 (bs, 2H), 3.24 (q, J= 6.0 Hz, 2H), 3.13 (s, 2H), 2.35 (t, J = 6.8 Hz, 2H), 1.39 (s, 9H). 13C NMR (d6-DMSO) 173.38, 170.46, 169.18, 168.70, 79.89, 44.65, 41.95, 34.88, 34.78, 27.71. HRMS (M + H+) CaIc. 317.1825, found 317.1801
Mal-Gaba-Gly-Gly-Gly-β -AIa-OtBu
Figure imgf000115_0001
[246] 513 mg (2.8 mmol) of 4-(2,5-dioxo-2,5-dihydro-lH-pyrrol-l- yl)butanoic acid, 800 mg (0.2.8 mmol) tert-butyl 3-(2-(2-(2- aminoacetamido)acetamido)acetamido)propanoate and 583 mg (3.0 mmol) N- (3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride were disolved in 12 mL of dimethyl formamide and stirred for 3 hours. The reaction mixture was purified in four equal portions by reverse phase HPLC using a 5.0 cm x 25 cm Cl 8 column. The column was eluted at 100 mL/min with deionized water containing 0.3 % formic acid and 5% acetonitrile for 10 min followed by a 13 min linear gradient from 5% acetonitrile to 33 % acetonitrile. Product fractions (retention time of 21 min) were combined and solvent was removed by rotary evaporation under vacuum to give 832 mg (62 %) of the title compound. 1H NMR (d6-DMSO) 8.10-8.16 (m, 2H), 8.07 (t, J= 4.8 Hz, IH), 7.0 - 7.15(m, IH), 3.747 (t, J= 6.0 Hz, 3H), 3.64 (d, J= 5.6 Hz, 2H), 3.41 (t, J= 6.8, 2H), 3.1-3.33 (m, IH), 3.19-3.26 (m, 2H), 2.348 (t, J= 6.8, 2H), 2.132 (t, J = 7.2 Hz, 2H), 1.67 - 1.76 (m, 2H), 1.39 (s, 9H). 13C NMR (d6-DMSO) 171.80, 170.98, 170.39, 169.48, 168.96, 168.56, 134.37, 79.83, 42.05, 41.83, 37.38, 34.82, 34.71, 32.26, 27.83, 23.95. HRMS (M + Na+) CaIc. 504.2070 found 504.2046
Mal-Gaba-Gly-Gly-Gly-β -AIa-OH
Figure imgf000116_0001
[247] 820 mg (1.7 mmol) of Mal-Gaba-Gly-Gly-Gly-β- AIa-OtBu was disolved in 9.0 niL of 95:5 trifluoroacetic acid: deionized water and magnetically stirred for 3 hours. Solvent was removed by rotary evaporation under vacuum to give 730 mg (100%) of the title compound. 1H NMR (d6- DMSO) 12.1 (bs, IH), 8.05-8.20 (m, 3H), 7.82 (t, J = 6.0 Hz, IH), 7.00 (s, 2H), 3.71 (t, J= 6.0 Hz, 4H), 3.65 (d, J= 6.0 Hz, 2H), 3.41 (t, J= 7.2 Hz, 2H), 3.26 (q, J = 5.6 Hz, 2H), 2.38 (t, J = 7.2 Hz, 2H,), 2.14 (q, J = 8.0 Hz, 2H), 1.67-1.77 (m, 2H). 13C NMR (d6-DMSO) 172.70, 171.83, 171.01, 169.50, 168.99, 168.51, 134.38, 42.07, 41.84, 36.75, 34.70, 33.69, 32.28, 23.97 HRMS (M + Na+) CaIc. 448.1444 found 448.1465
Mal-Gaba-Gly-GIy-Gly-β -AIa-ONHS (CXl-I)
Figure imgf000118_0001
[248] 76 mg (0.18 mmol) of Mal-Gaba-Gly-Gly-Gly-β- AIa-OH, 72 mg, (0.376 mmol) of N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride and 66 mg (0.575 mmol) of N-hydroxysuccinimide were disolved in 1.0 mL of dimethylformamide with magnetic stirring. After 2 hours the reaction mixture was purified in two equal portions by reverse phase HPLC using a 1.9 cm x 10 cm C8 column. The column was eluted at 18 mL/min with deionized water containing 0.3 % formic acid and 5% 1,4- dioxane for 3 min followed by a 15 min linear gradient from 5% 1,4-dioxane to 30 % 1,4-dioxane. Product fractions (retention time 6.5 min) were collected in a flask and immediately frozen in a dry ice acetone bath. Solvent was removed by lyophilization at ambient temperature to give 40 mg (42%) of the title compound. 1H NMR (d6-DMSO) 8.08-8.11 (m, 3H), 7.99 (t, J = 6.4 Hz, IH), 7.00 (s, 2H), 3.6-3.75 (m, 6H), 3.0-3.2 (m, 4H), 2.84 ( s, 4H), 2.13 (t, J = 7.6 Hz), 1.83-1.93 (m, 2H), 1.69-1.72 (m, 2H). HRMS (M + Na+) calc. 545.1608 found 545.1638 Z-GIu(OtBu)-GIy-GIy-NH2
Figure imgf000119_0001
[249] 40 mL of Dimethyl formamide was added to 2.52 g (7.47 mmol) Of Z-GIu(OtBu)-OH, 1.3 g (8.49 mmol) of hydroxybenzotriazole, 1.3 g (7.76 mmol) of H-Gly-GlyNH2, and 1.52 g ( 7.93 mmol) of JV-(3- dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride. 2.5 mL (14.3 mmol) of diisopropyl ethyl amine was added and the reaction was stirred over night. The reaction mixture was purified in three equal portions by direct injection on a preparative 5 cm x 25 cm Cl 8 HPLC column. The column was run at 100 mL/min with deionized water containing 0.3 % formic acid with 5% acetonitrile for 10 min followed by a 15 min linear gradient from 5% acetonitrile to 90% acetonitrile. Product fractions (retention time 18 - 20 min) were combined and solvent was removed by rotary evaporation under vacuum to give 2.9 g (83%) of the title compound. 1H NMR (400 MHz, CDCl3) δ 7.79 - 7.68 (m, IH), 7.64 (s, IH), 7.27 (q, J= 4.9, 5H), 6.90 (s, IH), 6.42 (s, IH), 6.35 (d, J = 6.8, IH), 5.08 (d, J= 12.0, IH), 4.98 (d, J= 12.2, IH), 4.20 (dd, J = 12.9, 7.6, IH), 3.84-3.95 (m, 2H), 3.83 (d, J= 5.0, 2H), 2.42 - 2.19 (m, 2H), 2.07 (d, J= 6.9, IH), 1.96 - 1.83 (m, IH), 1.39 (s, 9H). 13C NMR (101 MHz, DMSO) δ 171.79, 171.65, 170.82, 168.87, 163.04, 156.08, 136.86, 128.31, 127.74, 79.64, 65.58, 53.96, 42.17, 41.81, 31.25, 27.73, 27.01. H-GIu(OtBu)-GIy-GIy-NH2
Figure imgf000120_0001
[250] 940 mg (2.09 mmol) of Z-Glu(OtBu)-Gly-GlyNH2 was dissolved in 40 niL of 95:5 methanol: de-ionized water in a 250 mL glass PARR hydrogenation shaker flak. 222 mg of 10% palladium on carbon was added to the flask and the contents were hydrogenated with shaking under hydrogen (40 PSI) for 4 hours. The mixture was vacuum filtered though celite filter aid and solvent was removed from the filtrate by rotary evaporation to give 640 mg (94%) of the title compound. 1H NMR (400 MHz, DMSO) δ 4.03 (s, IH), 3.75 (d, J= 3.3, 2H), 3.63 (s, 2H), 3.30 - 3.22 (m, J = 3.6, IH), 3.14 - 3.10 (m, IH), 2.27 (t, J= 7.9, 2H), 1.84 (td, J= 13.6, 7.4, IH), 1.63 (td, J = 15.0, 7.5, IH), 1.39 (s, 9H). 13C NMR (101 MHz, MeOD) δ 176.53, 174.24, 172.00, 170.32, 81.82, 55.21, 43.64, 43.16, 40.44, 32.31, 30.45, 28.41. HRMS (M + H+) CaIc. 317.1825 found 317.1800.
E001008-28 MaI-GaBa-GIu(OtBu)-GIy-GIy-NH2
Figure imgf000121_0001
[251] 603 HIg (LQ mInOl) Of H-GIu(OtBu)-GIy-GIy-NHZ, 372 mg
(2.03 mmol) of Mal-Gaba-OH and 430 mg (2.24 mmol) of N-(3- dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride were dissolved in 4.5 mL of dimethyl formamide and 800 μL of dichloromethane. The reaction was stirred for 3 hours at ambient temperature. The reaction mixture was purified in two equal portions by direct injection on a preparative 5 cm x 25 cm Cl 8 HPLC column. The column was run at 100 mL/min with deionized water containing 0.3 % formic acid 5% acetonitrile for 10 min followed by a 15 min linear gradient from 5% acetonitrile to 90% acetonitrile. Product fractions (retention time 17.4 - 19.2 min) were combined and solvent was removed by rotary evaporation under vacuum to give 2.9 g (83%) of the title compound. 1H NMR (400 MHz, CDCl3) δ 8.16 (t, J = 5.7, IH), 8.06 (d, J = 7.4, IH), 7.99 (t, J = 5.8, IH), 7.19 (s, IH), 7.06 (s, 2H), 4.18 (dd, J = 13.4, 7.9, IH), 3.70 (d, J= 5.7, 2H), 3.62 (d, J= 5.8, 2H), 3.42 - 3.37 (m, 2H), 2.23 (t, J = 8.0, 2H), 2.12 (dd, J = 8.1, 6.4, 2H), 1.87 (dt, J = 14.2, 7.9, IH), 1.70 (dt, J = 13.7, 6.8, 2H), 1.38 (s, 9H). 13C NMR (101 MHz, DMSO) δ 173.12, 171.77, 171.65, 171.03, 170.79, 168.89, 134.43, 79.62, 52.02, 42.14, 41.81, 36.80, 32.29, 31.22, 27.73, 26.95, 24.02. HRMS (M + Na+) CaIc. 504.2070 found 504.2053.
Mal-Gaba-Glu(OH)-GIy-Gly-NH2
Figure imgf000122_0001
[252] 105 mg (0.218 mmol) of Mal-Gaba-Glu(OtBu)-Gly-Gly-NH2 was dissolved in 5 mL of 95:5 trifluoroacetic acid:de-ionized water and magnetically stirred for 2 hours. Solvent was removed by rotary evaporation and residue was taken up in 6 mL acetonitrile + 1.5 mL toluene to give a suspension. Solvent was evaporated from the suspension by rotary evaporation under vacuum to give 92 mg (100%) of the title compound. 1H NMR (400 MHz, DMSO) δ 6.99 (s, 2H), 4.18 (dd, J = 8.2, 5.7, IH), 3.70 (s, 2H), 3.61 (s, 2H), 3.40 (t, J = 6.8, 2H), 2.26 (t, J = 7.8, 2H), 2.19 - 2.05 (m, 2H), 1.90 (dt, J = 13.7, 7.4, IH), 1.73 (dt, J = 14.2, 7.5, 3H). 13C NMR (101 MHz, DMSO) δ 173.76, 171.72, 170.99, 170.70, 168.81, 134.37, 52.00, 41.97, 41.63, 36.75, 32.19, 29.95, 26.79, 23.93.
Mal-Gaba-Glu(ONHS)-Gly-Gly-NH2
Figure imgf000123_0001
[253] 94 mg (0.22 mmol) of Mal-Gaba-Glu(OH)-Gly-Gly-NH2, 75 mg (0.65 mmol) N-hydroxysuccinimide and 110 mg (0.57 mmol) of N-(3- dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride were magnetically stirred in 1 mL of dimethyl formamide for 3 hours. The crude reaction mixture was purified in three equal portions by direct injection on a 1.9 cm x 10 cm C8 column. The column was run at 18 mL/min with deionized water containing 0.3% formic acid and 5% 1,4-dioxane for 3 min followed by an 18 min linear gradient from 5% 1,4-dioxane to 30% 1,4-dioxane. Product fractions (retention time 7.3 min) were collected in a flask and immediately frozen in a dry ice/acetone bath. The combined frozen material was lyophilized to give 80 mg (70 %) of the title compound. 1H NMR (400 MHz, DMSO) δ 8.20 (t, J= 5.4, IH), 8.13 (d, J= 7.3, IH), 8.03 (t, J= 5.6, IH), 7.21 (s, IH), 7.06 (s, IH), 7.01 (s, 2H), 4.29 (dd, J= 13.7, 6.5, IH), 3.84 - 3.69 (m, 2H), 3.63 (d, J= 5.7, 2H), 3.57 (s, 2H), 3.41 (t, J= 6.8, 2H), 2.81 (s, 3H), 2.78 - 2.69 (m, 2H), 2.15 (dd, J= 9.1, 6.2, IH), 2.10 - 1.95 (m, IH), 1.88 (dt, J = 17.0, 7.5, IH), 1.73 (dd, J= 14.0, 6.9, 2H). HRMS (M + Na+) CaIc. 545.1608 found 545.1627. Example 6. Synthesis of positively charged linker
Figure imgf000124_0001
7
213 217
Figure imgf000124_0002
3-(Dimethylamino)dihydrothiophen-2(3H)-one (217).
[254] 3-aminodihydrothiophen-2(3H)-one hydrochloride (213) (1.0 g,
6.51 mmol) and formaldehyde (3 ml, 40.3 mmol) in methanol was added sodium cynoboronhydride (0.409 g, 6.51 mmol) in five portions in 1 h. After being stirred for 2 h, the mixture was evaporated, redissolved in EtAc, washed with 1 M NaH2PO4, dried over MgSO4, filtered, concentrated and purified by SiO2 column eluted with MeOH/DCM (1 :30) to afford 0.812 g (86%) of the title compound. IH NMR (CDCl3) 3.49 (dd, IH, J = 6.3, 12.1 Hz), 3.24 (m, 2H), 2.42 (s, 6H), 2.38 (m, IH), 2.21 (m, IH); 13C NMR 206.58, 73.24, 41.62, 27.47, 25.51; ESI MS m/z+146.0 (M +H), 168.0 (M +Na). 2-(dimethylamino)-4-(pyridin-2-yldisulfanyl)butanoic acid (218).
[255] 3-(dimethylamino)dihydrothiophen-2(3H)-one (217) (0.95 g,
6.54 mmol) was stirred in 15 ml of 0.5 M NaOH and 10 ml of methanol solution for 30 min, nutralized with H3PO4 to pH 7.2, and l,2-di(pyridin-2- yl)disulfane (5.76 g, 26.2 mmol) in 50 ml of methanol was added. The mixture was stirred overnight, concentrated, washed with EtAc and the aquoues solution was loaded on C- 18 column, eluted from 5% methanol in 0.01% formic acid to 30% methanol in 0.01% formic acid to afford the title product (368 mg, 20.65 % yield). 1H NMR (CDl3OD) 8.31 (dd, IH, J = 0.7, 4.7 Hz), 7.77 (m, 2H), 7.15 (dd, IH, J = 0.8, 5.8 Hz), 3.22 (m, IH), 2.85 (m, 2H), 2.51 (s, 6H), 2.05 (m, 2H); 13C NMR 175.00, 161.28, 150.46, 139.40, 122.60, 121.49, 71.20, 42.46, 36.29, 29.88; ESI MS m/z+ 272.9 (M + H), 295.0 (M+Na).
2,5-dioxopyrrolidin-l-yI 2-(dimethyIamino)-4-(pyridin-2- yldisulfanyl)butanoate (219)
[256] 2-(dimethylamino)-4-(pyridin-2-yldisulfanyl)butanoic acid
(218) (92 mg, 0.338 mmol), l-hydroxypyrrolidine-2,5-dione (65 mg, 0.565 mmol) and EDC (185 mg, 0.965 mmol) was stirred in 3 ml of DMA at 5O0C overnight. The mixture was evaporated and purified on a SiO2 column eluted with fromhlO to 1:4 of methanol/CH2Cl2 to afford 43 mg (35%) of the title product. 1H NMR (CDl3OD) 8.40 (m, IH), 7.83 (m, 2H), 7.22 (m, IH), 3.34 (m, IH), 2.82 (m, 2H), 2.75 (s, 4H), 2.66 (s, 6H), 1.98 (m, 2H); 13C NMR 177.21, 161.78, 161.12, 150.68, 139.37, 122.70, 121.66, 70.80, 44.16, 43.15, 36.06, 27.38; ESI MS m/z+ 369.2 (M + H).
Example 7. Preparation of huMv9-6-CXl-l-DMl procharged linker conjugates:
[257] The following stock solutions were used: 39.6 mM DMl in
DMA; (2) 17.8 mM solution of CXl-I linker in DMA; (3) 200 mM succinate buffer pH 5.0 with 2 mM EDTA. The reaction mixture containing between 8, 12 or 16 equivalents of linker to antibody were added to a solution of the antibody at 4 mg/ml in 90% phosphate buffer pH 6.5)/ 10% DMA and allowed to react for 2h at 250C. pH 5.0, followed by reaction with DMl . [258] The Ab conjugate was separated from excess small molecule reactants using a G25 column equilibrated in PBS pH 7.4. The purified conjugate was allowed to hold for 2d at 25 'C to allow any labile drug linkages to hydrolyze and then the conjugate was further purified from free drug by dialysis in PBS overnight, and then 10 mM histidine/130 mM glycine buffer pH 5.5 (Ix o/n). The dialyzed conjugate was filtered using a 0.2 um filter and assayed by UVTVis to calculate number of maytansinoids per Ab using known extinction coefficients for maytansinoid and antibody at 252 and 280 nm. The recovery was -70% and number of maytansinoids/antibody measured for each conjugate ranged from 3.7 to 6.8 depending on the linker excess used. Example 8. In vivo Pharmacokinetics;
[259] The plasma pharmacokinetics of charged Sulfo-Mal linker conjugates of a humanized antibody C242 with 3H-labeled-DM4 (3.5 and 6.4 DM4/ Ab) in CD-I mice were analyzed by antibody ELISA and by 3H- counting (Figure 72). The Ab-SuIfO-MaI-[3H] -DM4 conjugates bearing 3.5 and 6.4 D/A were dosed i.v. at 12.9 and 7.9 mg/kg (antibody dose) respectively. The antibody values of plasma samples were measured by ELISA (based on capture using goat-anti-hulgG antibody and detection using donkey-anti-huIgG antibody-horseradish peroxidase conjugate) and by 3H- counting (scintillation counting). Figure 72 A shows that these two measurements of conjugate concentrations by ELISA and by 3H-counting showed similar values for each conjugate. Both the 3.5 and 6.4 D/A Antibody-Sulfo-Mal-DM4 conjugates showed good plasma stability over 4 weeks with half-life of approximately 14.9 days and 9.7 days respectively, which are similar to the half-life of approximately 11.8 days for the unconjugated antibody. The DM4/ Ab ratio of the two Ab-Sulfo-Mal-DM4 conjugates (initially 3.5 and 6.4 D/A) were also stable over 4 weeks in plasma circulation, importantly even at the relatively high 6.4 D/A load (Figure 72 B). The half life of Sulfo-Mal-linked huC242 Ab-Sulfo-Mal-DM4 conjugate with 3.5 D/A load dosed at 12.9 mg/kg was 14.9 days (AUC = 38449 hr.μg/mL), compared to a half life of 12.6 days (AUC = 25910 hr.μg/mL) for SMCC- linked huC242 Ab-SMCC-DMl conjugate with a similar 4.2 D/A load dosed at 12 mg/kg, and thus was much improved over that of the SMCC conjugate (Figure 38 B).
Table 1. Comparison of SSNPP and SPP linker in the conjugation of
N901 antibody with DMl . Conjugation was conducted for 2 hours at the indicated H usin a 1.7-fold molar excess of DMl er linker.
Figure imgf000128_0001
Table 2. Reduced linker to antibody ratio required to reach target DMl to antibody ratio with SSNPP as linker. Conjugation was conducted for 2 hours at pH 7.4 using a 1.1 -fold molar excess of DMl per linker.
Figure imgf000128_0002
Table 3. Comparison of SSNPP and SPP linker in the conjugation of
N901 antibody with DC4. Conjugation was conducted for the indicated time at pH 7.4 using a 1.4-fold molar excess of DC4 per linker.
Figure imgf000128_0003

Claims

WHAT IS CLAIMED IS:
1. A cell-binding agent-drug conjugate of formula (II)
Figure imgf000129_0001
(H) wherein:
CB represents a cell-binding agent;
D represents the drug linked to the cell-binding agent by a disulfide, thioether, thioester, peptide, hydrazone, ester, ether, carbamate, or amide bond;
R1, R2, R3, R4, R5, R6, R7, R8, R9, and R10 are the same or different and are H, linear alkyl having from 1-6 carbon atoms, branched or cyclic alkyl having from 3 to 6 carbon atoms, linear, branched or cyclic alkenyl or alkynyl having from 2 to 6 carbon atoms, a charged substituent selected from anions selected from SO3 '. X-SO3 ', OPO3 2', X-OPO3 2', PO3 2' , X-PO3 2', CO2-, and cations selected from a nitrogen containing heterocycle, N+R11R12R13 and X- N+R11R12R13, or a phenyl; wherein: R11, Rj2 and R13 are same or different and are H, linear alkyl having from 1 to 6 carbon atoms, branched or cyclic alkyl having from 3 to 6 carbon atoms and X represents phenyl or a linear alkyl from 1 to 6 carbon atoms, or branched or cyclic alkyl having from 3 to 6 carbon atoms;
1, m and n are 0 or an integer from 1 to 4;
A is a phenyl or substituted phenyl, wherein the substituent is a linear alkyl having from 1 to 6 carbon atoms, or a branched or cyclic alkyl having from 3 to 6 carbon atoms, or a charged substituent selected from anions selected from SO3 ", X-SO3 ', OPO3 2", X-OPO3 2", PO3 2", X-PO3 2", CO2-, and cations selected from a nitrogen containing heterocycle, N+R11R12R13 and X- N+R1 1R12RJ3, wherein X has the same definition as above, and wherein g is O or l;
Z is an optional polyethyleneoxy unit of formula (OCH2CH2)P, wherein p is O or an integer from 2 to about 1000, or F1-E1-P-E2-F2 unit in which El and E2 are the same or different and are C=O, O, or NRl 4, wherein R14 is H, a linear alkyl having from 1-6 carbon atoms, a branched or cyclic alkyl having from 3 to 6 carbon atoms, a linear, branched or cyclic alkenyl or alkynyl having from 2 to 6 carbon atoms; P is a peptide unit between 2 and 20 amino acids in length, wherein El or E2 can be linked to the peptide through the terminal nitrogen, terminal carbon or through a side chain of one of the amino acids of the peptide; and Fl and F2 are the same or different and are an optional polyethyleneoxy unit of formula (OCH2CH2)P, wherein p is O or an integer from 2 to about 1000, provided that when Z is not F1-E1-P-E2-F2, at least one OfR1, R2, R3, R4, R5, R6, R7, Rg, R9, and R10 is a charged substituent or when g is 1, at least one of A, R1, R2, R3, R4, R5, R6, R7, R8, R9, and Rj0 is a charged substituent;
Y represents a carbonyl, thioether, amide, disulfide, or hydrazone group; and q represents an integer from 1 to 20.
2. The conjugate of claim 1, wherein D is selected from thiotepa; cyclophosphamide (CYTOXAN(TM)); alkyl sulfonates selected from busulfan, improsulfan and piposulfan; aziridines selected from benzodopa, carboquone, meturedopa, and uredopa; ethylenimines; and methylamelamines; acetogenins selected from bullatacin and bullatacinone; a camptothecin; bryostatin; callystatin; CC- 1065; adozelesin, carzelesin or bizelesin synthetic analogues of CC- 1065; cryptophycins; dolastatin; duocarmycin; KW-2189 or CBI-TMI synthetic analogues of duocarmycin,; eleutherobin; pancratistatin; a sarcodictyin; spongistatin; nitrogen mustards selected from chlorambucil, chlornaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosureas such as carmustine, chlorozotocin, fotemustine, lomustine, nimustine, ranimustine; antibiotics such as the enediyne antibiotics (e.g. calicheamicin, especially calicheamicin gammal and calicheamicin theta I; dynemicin, including dynemicin A; an esperamicin; neocarzinostatin chromophore and related chromoprotein enediyne antiobiotic chromomophores, aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, carminomycin, carzinophilin; chromomycins, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L- norleucine, doxorubicin epirubicin, esorubicin, idarubicin, marcellomycin, nitomycins, mycophenolic acid, nogalamycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites selected from methotrexate and 5-fluorouracil (5-FU); folic acid analogues selected from denopterin, methotrexate, pteropterin, trimetrexate; purine analogs selected from fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; pyrimnidine analogs selected from ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine, 5-FU; androgens selected from calusterone, dromostanolone propionate, epitiostanol, mepitiostane, testolactone; anti-adrenals such as aminoglutethimide, mitotane, trilostane; folic acid replenisher selected from frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; elfomithine; elliptinium acetate; an epothilone; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidamine; maytansinoids selected from maytansine and ansamitocins; mitoguazone; mitoxantrone; mopidamol; nitracrine; pentostatin; phenamet; pirarubicin; podophyllinic acid; 2-ethylhydrazide; procarbazine; PSK®; razoxane; rhizoxin; sizofiran; spirogermanium; tenuazonic acid; triaziquone; 2, 2',2"-trichlorotriethylamine; trichothecenes selected from T-2 toxin, verracurin A, roridin A and anguidine; urethan; vindesine; dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside ("Ara-C"); cyclophosphamide; thiotepa; taxanes; chlorambucil; gemcitabine; 6-thioguanine; mercaptopurine; methotrexate; platinum analogs selected from cisplatin and carboplatin; vinblastine; platinum; etoposide (VP- 16); ifosfamide; mitomycin C; mitoxantrone; vincristine; vinorelbine; navelbine; novantrone; teniposide; daunomycin; aminopterin; xeloda; ibandronate; CPT-Il; topoisomerase inhibitor RPS 2000; difluoromethylomithine (DMFO); retinoic acid; capecitabine; anti-hormonal agents selected from anti-estrogens including tamoxifen, raloxifene, aromatase inhibiting 4(5)-imidazoles, 4-hydroxytamoxifen, trioxifene, keoxifene, LYl 17018, onapristone, and toremifene (Fareston); and anti-androgens selected from flutamide, nilutamide, bicalutamide, leuprolide, and goserelin, siRNA or a combination thereof; and pharmaceutically acceptable salts, acids or derivatives of any of the above.
3. The conjugate of claim lor 2, wherein D is selected from maytansinoids, CC- 1065 analogs, morpholino doxorubicin, taxanes, calicheamicins, auristatins, pyrrolobenzodiazepine dimmer, siRNA or a combination thereof, and pharmaceutically acceptable salts, acids or derivatives of any of the above.
4. The conjugate of claim 1 , wherein the cell-binding agent binds to target cells selected from tumor cells, virus infected cells, microorganism infected cells, parasite infected cells, autoimmune cells, activated cells, myeloid cells, activated T-cells, B cells, or melanocytes, cells expressing one or more of IGF-IR, CanAg, EGFR, EphA2 receptor, MUCl, MUC 16, VEGF, TF, MY9, anti-B4, EpCAM, CD2, CD3, CD4, CD5, CD6, CDl 1, CD 1 Ia, CD18, CD19, CD20, CD22, CD26, CD30, CD33, CD37, CD38, CD40, CD44, CD56, CD79, CD105, CD138, EphA receptors, EphB receptors, EGFr, EGFRvIII, HER2/neu, HER3, mesothelin, cripto, alphavbeta3, integrin, alphavbeta5 integrin, alphaybetaβ integrin, Apo2, and C242 antigens; and cells expressing insulin growth factor receptor, epidermal growth factor receptor, or folate receptor.
5. The conjugate of claim 1 , wherein the cell-binding agent is an antibody, a single chain antibody, an antibody fragment that binds to the target cell, a monoclonal antibody, a single chain monoclonal antibody, or a monoclonal antibody fragment that binds the target cell, a chimeric antibody, a chimeric antibody fragment that binds to the target cell, a domain antibody, a domain antibody fragment that binds to the target cell, adnectins that mimic antibodies, DARPins, a lymphokine, a hormone, a vitamin, a growth factor, a colony stimulating factor, or a nutrient-transport molecule.
6. The conjugate of claim 5, wherein the antibody is a resurfaced antibody, a resurfaced single chain antibody, or a resurfaced antibody fragment thereof.
7. The conjugate of claim 5, wherein the antibody is a monoclonal antibody, a single chain monoclonal antibody, or a monoclonal antibody fragment thereof.
8. The conjugate of claim 5, wherein the antibody is a human antibody, a humanized antibody or a resurfaced antibody, a humanized single chain antibody, or a humanized antibody fragment thereof.
9. The conjugate of claim 5, wherein the antibody is a chimeric antibody, a chimeric antibody fragment, a domain antibody, or a domain antibody fragment thereof.
10. The conjugate of claim 8, wherein the antibody is My9-6, B4, C242, N901, DS6, EpCAM, EphA2 receptor, CD38, IGF-IR, CNTO 95, B- B4, trastuzumab, pertuzumab, bivatuzumab, sibrotuzumab, pertuzumab, or rituximab.
11. The conjugate of claim 4, wherein the tumor cells are selected from breast cancer cells, prostate cancer cells, ovarian cancer cells, colorectal cancer cells, gastric cancer cells, squamous cancer cells, small-cell lung cancer cells, and testicular cancer cells.
12. A method of treating a tumor comprising administering to a subject in need of treatment a therapeutically effective amount of a conjugate of claim 1.
13. A cross linker represented by formula (I)
Figure imgf000136_0001
(I) wherein:
Y' represents a functional group that enables reaction with a cell- binding agent;
Q represents a functional group that enables linkage of a cytotoxic drug via a disulfide, thioether, thioester, peptide, hydrazone, ester, ether, carbamate or amide bond;
Ri, R2, R3, R4, R5, R6, R7, R8, R9, and R10 are the same or different and are H, linear alkyl having from 1-6 carbon atoms, branched or cyclic alkyl having from 3 to 6 carbon atoms, linear, branched or cyclic alkenyl or alkynyl having from 2 to 6 carbon atoms, a charged substituent selected from anionsselected from SO3 ", X-SO3 ", OPO3 2", X-OPO3 2", PO3 2", X-PO3 2", CO2-, and cations selected from a nitrogen containing heterocycle, N+RπR12R13,and X-N+Rj1R12R13, or a phenyl, wherein: R11, R12 and R13 are same or different and are H, linear alkyl having from 1 to 6 carbon atoms, or branched or cyclic alkyl having from 3 to 6 carbon atoms and X represents phenyl or a linear alkyl having from 1 to 6 carbon atoms, or branched or cyclic alkyl having from 3 to 6 carbon atoms;
1, m and n are 0 or an integer from 1 to 4;
A is a phenyl or substituted phenyl, wherein the substituent is a linear alkyl having from 1 to 6 carbon atoms, or a branched or cyclic alkyl having from 3 to 6 carbon atoms, or a charged substituent selected from anions selected from SO3 ", X-SO3 ", OPO3 2", X-OPO3 2", PO3 2", X-PO3 2", CO2-, and cations selected from a nitrogen containing heterocycle, N+R11R12R13, andX- N+R11Rj2R13, wherein X has the same definition as above, and wherein g is O or 1 ; and
Z is an optional polyethyleneoxy unit of formula (OCH2CH2)P, wherein p is O or an integer from 2 to about 1000, or F1-E1-P-E2-F2 unit in which El and E2 are the same or different and are C=O, O, or NRl 4, wherein Ri4 is H, a linear alkyl having from 1-6 carbon atoms, a branched or cyclic alkyl having from 3 to 6 carbon atoms, a linear, branched or cyclic alkenyl or alkynyl having from 2 to 6 carbon atoms; P is a peptide unit between 2 and 20 amino acids in length, wherein El or E2 can be linked to the peptide through the terminal nitrogen, terminal carbon or through a side chain of one of the amino acids of the peptide; and Fl and F2 are the same or different and are an optional polyethyleneoxy unit of formula (OCH2CH2)P, wherein p is O or an integer from 2 to about 1000, provided that when Z is not F1-E1-P-E2-F2, at least one Of R1, R2, R3, R4, R5, R6, R7, R8, R9, and R10 is a charged substituent or when g is 1, at least one of A, Ri, R2, R3, R4, R5, R6, R7, R8, R9, and Ri0 is a charged substituent.
14. A compound of formula (III) :
Figure imgf000138_0001
(III) wherein:
CB represents a cell-binding agent;
Q represents a functional group that enables linkage of a cytotoxic drug via a disulfide, thioether, thioester, peptide, hydrazone, ester, ether, carbamate or amide bond;
Ri, R2, R3, R4, R5, R6, R7, R8, R9, and R10 are the same or different and are H, linear alkyl having from 1-6 carbon atoms, branched or cyclic alkyl having from 3 to 6 carbon atoms, linear, branched or cyclic alkenyl or alkynyl having from 2 to 6 carbon atoms, a charged substituent selected from anions selected from SO3 ", X-SO3 ", OPO3 2", X-OPO3 2", PO3 2" , X-PO3 2", CO2-, and cations selcted from a nitrogen containing heterocycle, N+RnRi2Ri3 and X- N+R11Rj2R13, or a phenyl, wherein: Rn, Ri2 and Rn are same or different and are H, linear alkyl having from 1 to 6 carbon atoms, or branched or cyclic alkyl having from 3 to 6 carbon atoms and X represents phenyl or a linear alkyl having from 1 to 6 carbon atoms, or branched or cyclic alkyl having from 3 to 6 carbon atoms;
1, m and n are 0 or an integer from 1 to 4;
A is a phenyl or substituted phenyl, wherein the substituent is a linear alkyl having from 1 to 6 carbon atoms, or a branched or cyclic alkyl having from 3 to 6 carbon atoms, or a charged substituent selected from anions selected from SO3 ", X-SO3 ", OPO3 2", X-OPO3 2", PO3 2", X-PO3 2", CO2-, and cations selected from a nitrogen containing heterocycle, N+Ri1R12R13 and X- N+RnRi2Ri3, wherein X has the same definition as above, and wherein g is O or 1;
Z is an optional polyethyleneoxy unit of formula (OCH2CH2)P, wherein p is O or an integer from 2 to about 1000, or F1-E1-P-E2-F2 unit in which El and E2 are the same or different and are C=O, O, or NR14, wherein Ri4 is H, a linear alkyl having from 1-6 carbon atoms, a branched or cyclic alkyl having from 3 to 6 carbon atoms, a linear, branched or cyclic alkenyl or alkynyl having from 2 to 6 carbon atoms; P is a peptide unit between 2 and 20 amino acids in length, wherein El or E2 can be linked to the peptide through the terminal nitrogen, terminal carbon or through a side chain of one of the amino acids of the peptide; and Fl and F2 are the same or different and are an optional polyethyleneoxy unit of formula (OCH2CH2)P, wherein p is O or an integer from 2 to about 1000, provided that when Z is not F1-E1-P-E2-F2, at least one of R1, R2, R3, R4, R5, R6, R7, R8, R9, and R10 is a charged substituent or when g is 1, at least one of A, R1, R2, R3, R4, R5, R6, R7, R8, R9, and Rio is a charged substituent; and
Y represents a carbonyl, thioether, amide, disulfide, or hydrazone group; and q represents an integer from 1 to 20.
15. A compound of formula (IV) :
Figure imgf000140_0001
wherein:
Y' represents a functional group that enables reaction with a cell- binding agent;
D represents the drug linked to the cell-binding agent by a disulfide, thioether, thioester, peptide, hydrazone, ester, ether, carbamate, or amide bond;
R1, R2, R3, R4, R5, R6, R7, R8, R9, and Rj0 are the same or different and are H, linear alkyl having from 1-6 carbon atoms, branched or cyclic alkyl having from 3 to 6 carbon atoms, linear, branched or cyclic alkenyl or alkynyl having from 2 to 6 carbon atoms, a charged substituent selected from anions selected from SO3 ", X-SO3 ", OPO3 2", X-OPO3 2", PO3 2" , X-PO3 2", CO2-, and cations selected from a nitrogen containing heterocycle, N+R11R12R13 and X- N+R11Ri2Ri3, or a phenyl, wherein:
Rn, Ri2 and Ri3 are same or different and are H, linear alkyl having from 1 to 6 carbon atoms, or branched or cyclic alkyl having from 3 to 6 carbon atoms and X represents phenyl or a linear alkyl having from 1 to 6 carbon atoms, or branched or cyclic alkyl having from 3 to 6 carbon atoms;
1, m and n are O or an integer from 1 to 4;
A is a phenyl or substituted phenyl, wherein the substituent is a linear alkyl having from 1 to 6 carbon atoms, or a branched or cyclic alkyl having from 3 to 6 carbon atoms, or a charged substituent selected from SO3 ", X-SO3 ", OPO3 2', X-OPO3 2", PO3 2", X-PO3 2", CO2-, a nitrogen containing heterocycle, N+RHRI2RI3 or X-N+RURI2RI3, wherein X has the same definition as above, and wherein g is O or 1 ; and
Z is an optional polyethyleneoxy unit of formula (OCH2CH2)P, wherein p is O or an integer from 2 to about 1000, or F1-E1-P-E2-F2 unit in which El and E2 are the same or different and are C=O, O, or NRl 4, wherein Ri4 is H, a linear alkyl having from 1-6 carbon atoms, a branched or cyclic alkyl having from 3 to 6 carbon atoms, a linear, branched or cyclic alkenyl or alkynyl having from 2 to 6 carbon atoms; P is a peptide unit between 2 and 20 amino acids in length, wherein El or E2 can be linked to the peptide through the terminal nitrogen, terminal carbon or through a side chain of one of the amino acids of the peptide; and Fl and F2 are the same or different and are an optional polyethyleneoxy unit of formula (OCH2CH2)P, wherein p is 0 or an integer from 2 to about 1000, provided that when Z is not F1-E1-P-E2-F2, at least one OfR1, R2, R3, R4, R5, R6, R7, R8, R9, and R10 is a charged substituent or when g is 1, at least one of A, R1, R2, R3, R4, R5, R6, R7, R8, R9, and Rj0 is a charged substituent.
16. A pharmaceutical composition comprising an effective amount of the conjugate of claim 1, a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier, diluent or excipient.
PCT/US2009/042267 2008-04-30 2009-04-30 Cross-linkers and their uses WO2009134977A1 (en)

Priority Applications (33)

Application Number Priority Date Filing Date Title
KR1020177021215A KR101892411B1 (en) 2008-04-30 2009-04-30 Cross-linkers and their uses
JP2011507634A JP5769616B2 (en) 2008-04-30 2009-04-30 Crosslinkers and their use
KR1020167012866A KR101764081B1 (en) 2008-04-30 2009-04-30 Cross-linkers and their uses
ES09739779.8T ES2648122T3 (en) 2008-04-30 2009-04-30 Crosslinkers and their uses
MX2014002587A MX347442B (en) 2008-04-30 2009-04-30 Cross-linkers and their uses.
KR1020237031373A KR20230133952A (en) 2008-04-30 2009-04-30 Cross-linkers and their uses
MX2010011807A MX2010011807A (en) 2008-04-30 2009-04-30 Cross-linkers and their uses.
KR1020107026849A KR101764927B1 (en) 2008-04-30 2009-04-30 Cross-linkers and their uses
BRPI0910746A BRPI0910746B8 (en) 2008-04-30 2009-04-30 crosslinking agent, drug-cell binding agent conjugate, its use, compound and pharmaceutical composition
KR1020207014337A KR20200058590A (en) 2008-04-30 2009-04-30 Cross-linkers and their uses
NZ588884A NZ588884A (en) 2008-04-30 2009-04-30 Cross-linkers and their uses
UAA201014267A UA113830C2 (en) 2008-04-30 2009-04-30 STAPLING REAGENTS AND THEIR APPLICATIONS
DK09739779.8T DK2281006T3 (en) 2008-04-30 2009-04-30 CROSS-BONDING AGENTS AND APPLICATIONS THEREOF
AU2009243010A AU2009243010B2 (en) 2008-04-30 2009-04-30 Cross-linkers and their uses
SI200931755T SI2281006T1 (en) 2008-04-30 2009-04-30 Cross-linkers and their uses
MX2017000162A MX359706B (en) 2008-04-30 2009-04-30 Cross-linkers and their uses.
RU2010148743/04A RU2503687C2 (en) 2008-04-30 2009-04-30 Stitching reagents and their use
KR1020217000204A KR20210005318A (en) 2008-04-30 2009-04-30 Cross-linkers and their uses
NO09739779A NO2281006T3 (en) 2008-04-30 2009-04-30
KR1020217024975A KR20210100223A (en) 2008-04-30 2009-04-30 Cross-linkers and their uses
KR1020227007353A KR20220035504A (en) 2008-04-30 2009-04-30 Cross-linkers and their uses
KR1020227043110A KR20230003298A (en) 2008-04-30 2009-04-30 Cross-linkers and their uses
LTEP09739779.8T LT2281006T (en) 2008-04-30 2009-04-30 Cross-linkers and their uses
CA2722696A CA2722696C (en) 2008-04-30 2009-04-30 Cross-linkers and their uses
KR1020187023847A KR101985885B1 (en) 2008-04-30 2009-04-30 Cross-linkers and their uses
EP09739779.8A EP2281006B1 (en) 2008-04-30 2009-04-30 Cross-linkers and their uses
PL09739779T PL2281006T3 (en) 2008-04-30 2009-04-30 Cross-linkers and their uses
CN200980125288.2A CN102076717B (en) 2008-04-30 2009-04-30 Linking agent and their purposes
KR1020197015397A KR102114915B1 (en) 2008-04-30 2009-04-30 Cross-linkers and their uses
IL208936A IL208936B (en) 2008-04-30 2010-10-26 Cell binding agent drug conjugates, compositions comprising the same and uses thereof
HRP20171612TT HRP20171612T2 (en) 2008-04-30 2017-10-24 Cross-linkers and their uses
IL264672A IL264672B (en) 2008-04-30 2019-02-05 Cell binding agent drug conjugates, compositions comprising the same and uses thereof
IL283205A IL283205A (en) 2008-04-30 2021-05-13 Cell binding agent drug conjugates, compositions comprising the same and uses thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US4929108P 2008-04-30 2008-04-30
US61/049,291 2008-04-30
US14796609P 2009-01-28 2009-01-28
US61/147,966 2009-01-28

Publications (1)

Publication Number Publication Date
WO2009134977A1 true WO2009134977A1 (en) 2009-11-05

Family

ID=41255419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/042267 WO2009134977A1 (en) 2008-04-30 2009-04-30 Cross-linkers and their uses

Country Status (25)

Country Link
US (7) US8236319B2 (en)
EP (2) EP2281006B1 (en)
JP (7) JP5769616B2 (en)
KR (11) KR20220035504A (en)
CN (3) CN102076717B (en)
AU (1) AU2009243010B2 (en)
BR (1) BRPI0910746B8 (en)
CA (1) CA2722696C (en)
DK (1) DK2281006T3 (en)
ES (1) ES2648122T3 (en)
HK (1) HK1246695A1 (en)
HR (1) HRP20171612T2 (en)
HU (1) HUE034763T2 (en)
IL (3) IL208936B (en)
LT (1) LT2281006T (en)
MX (3) MX347442B (en)
MY (3) MY157165A (en)
NO (1) NO2281006T3 (en)
NZ (2) NZ588884A (en)
PL (1) PL2281006T3 (en)
PT (1) PT2281006T (en)
RU (1) RU2503687C2 (en)
SG (1) SG189811A1 (en)
SI (1) SI2281006T1 (en)
WO (1) WO2009134977A1 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001052A1 (en) 2009-06-29 2011-01-06 Sanofi-Aventis Novel conjugates, preparation thereof, and therapeutic use thereof
WO2011075736A1 (en) 2009-12-18 2011-06-23 Oligasis Multifunctional zwitterionic polymer conjugates
WO2011130694A2 (en) 2010-04-15 2011-10-20 Oligasis High molecular weight zwitterion-containing polymers
WO2011133039A2 (en) 2010-04-21 2011-10-27 Syntarga B.V. Novel conjugates of cc-1065 analogs and bifunctional linkers
WO2012014147A1 (en) 2010-07-26 2012-02-02 Sanofi Anticancer derivatives, preparation thereof and therapeutic use thereof
WO2012177837A2 (en) 2011-06-21 2012-12-27 Immunogen, Inc. Novel maytansinoid derivatives with peptide linker and conjugates thereof
WO2014079886A1 (en) 2012-11-20 2014-05-30 Sanofi Anti-ceacam5 antibodies and uses thereof
US8765917B2 (en) 2010-03-12 2014-07-01 Immunogen, Inc. CD37-binding molecules and immunoconjugates thereof
WO2014134483A2 (en) 2013-02-28 2014-09-04 Immunogen, Inc. Conjugates comprising cell-binding agents and cytotoxic agents
WO2014134457A2 (en) * 2013-02-28 2014-09-04 Immunogen, Inc. Conjugates comprising cell-binding agents and cytotoxic agents
WO2014134486A2 (en) 2013-02-28 2014-09-04 Immunogen, Inc. Conjugates comprising cell-binding agents and cytotoxic agents
WO2014145090A1 (en) 2013-03-15 2014-09-18 Regeneron Pharmaceuticals, Inc. Biologically active molecules, conjugates thereof, and therapeutic uses
WO2014144871A1 (en) 2013-03-15 2014-09-18 The Centre For Drug Research And Development Cytotoxic and anti-mitotic compounds, and methods of using the same
US8889868B2 (en) 2008-11-03 2014-11-18 Syntarga Bv CC-1065 analogs and their conjugates
WO2014194030A2 (en) 2013-05-31 2014-12-04 Immunogen, Inc. Conjugates comprising cell-binding agents and cytotoxic agents
WO2015009740A2 (en) 2013-07-15 2015-01-22 Cell Signaling Technology, Inc. Anti-mucin 1 binding agents and uses thereof
WO2015095953A1 (en) 2013-12-27 2015-07-02 The Centre For Drug Research And Development Sulfonamide-containing linkage systems for drug conjugates
WO2016041082A1 (en) 2014-09-17 2016-03-24 CDRD Ventures, Inc. Cytotoxic and anti-mitotic compounds, and methods of using the same
US9447189B2 (en) 2011-04-01 2016-09-20 Immunogen, Inc. CD37-binding molecules and immunoconjugates thereof
WO2016200676A1 (en) 2015-06-08 2016-12-15 Immunogen, Inc. Anti-cd37 immunoconjugate and anti-cd20 antibody combinations
EP3311846A1 (en) 2014-09-02 2018-04-25 ImmunoGen, Inc. Methods for formulating antibody drug conjugate compositions
EP2922818B1 (en) 2012-11-24 2018-09-05 Hangzhou Dac Biotech Co., Ltd Hydrophilic linkers and their uses for conjugation of drugs to cell binding molecules
WO2018159582A1 (en) 2017-02-28 2018-09-07 学校法人近畿大学 Method for treating egfr-tki-resistant non-small cell lung cancer by administration of anti-her3 antibody-drug conjugate
US10266606B2 (en) 2014-01-10 2019-04-23 Synthon Biopharmaceuticals B.V. Method for purifying Cys-linked antibody-drug conjugates
WO2020059772A1 (en) 2018-09-20 2020-03-26 第一三共株式会社 Treatment of her3 mutant cancer by administration of anti-her3 antibody-drug conjugate
US10640508B2 (en) 2017-10-13 2020-05-05 Massachusetts Institute Of Technology Diazene directed modular synthesis of compounds with quaternary carbon centers
US10918627B2 (en) 2016-05-11 2021-02-16 Massachusetts Institute Of Technology Convergent and enantioselective total synthesis of Communesin analogs
US10918735B2 (en) 2012-12-04 2021-02-16 Massachusetts Institute Of Technology Substituted pyrazino[1′,2′:1,5]pyrrolo[2,3-b]indole-1,4-diones for cancer treatment
US10973920B2 (en) 2014-06-30 2021-04-13 Glykos Finland Oy Saccharide derivative of a toxic payload and antibody conjugates thereof
US11046762B2 (en) 2008-04-30 2021-06-29 Immunogen, Inc. Cross-linkers and their uses
US11104740B2 (en) 2015-08-28 2021-08-31 Debiopharm International, S.A. Antibodies and assays for detection of CD37
WO2022014698A1 (en) 2020-07-17 2022-01-20 第一三共株式会社 Method for producing antibody-drug conjugate
US11278629B2 (en) 2016-11-02 2022-03-22 Debiopharm International, S.A. Methods for improving anti-CD37 immunoconjugate therapy
US11446292B2 (en) 2019-03-29 2022-09-20 Medimmune Limited Compounds and conjugates thereof
US11535634B2 (en) 2019-06-05 2022-12-27 Massachusetts Institute Of Technology Compounds, conjugates, and compositions of epipolythiodiketopiperazines and polythiodiketopiperazines and uses thereof
EP3991754A4 (en) * 2019-06-28 2023-05-17 Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd. Antibody-drug conjugate, intermediate thereof, preparation method therefor and application thereof
US11912784B2 (en) 2019-10-10 2024-02-27 Kodiak Sciences Inc. Methods of treating an eye disorder
US11932650B2 (en) 2017-05-11 2024-03-19 Massachusetts Institute Of Technology Potent agelastatin derivatives as modulators for cancer invasion and metastasis
US12030888B2 (en) 2021-02-24 2024-07-09 Massachusetts Institute Of Technology Himastatin derivatives, and processes of preparation thereof, and uses thereof

Families Citing this family (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7589180B2 (en) 2001-05-11 2009-09-15 Abbott Laboratories Inc. Specific binding proteins and uses thereof
US20100056762A1 (en) 2001-05-11 2010-03-04 Old Lloyd J Specific binding proteins and uses thereof
US8088387B2 (en) * 2003-10-10 2012-01-03 Immunogen Inc. Method of targeting specific cell populations using cell-binding agent maytansinoid conjugates linked via a non-cleavable linker, said conjugates, and methods of making said conjugates
US7276497B2 (en) * 2003-05-20 2007-10-02 Immunogen Inc. Cytotoxic agents comprising new maytansinoids
EP1789391B1 (en) 2004-07-23 2017-06-28 Endocyte, Inc. Bivalent linkers and conjugates thereof
US20110166319A1 (en) * 2005-02-11 2011-07-07 Immunogen, Inc. Process for preparing purified drug conjugates
EP1928503B1 (en) 2005-08-24 2012-10-03 ImmunoGen, Inc. Process for preparing maytansinoid antibody conjugates
CN104013956B (en) 2007-01-25 2018-12-18 达娜-法勃肿瘤研究所公司 Purposes of the anti-egfr antibodies in the mutant mediated disease for the treatment of EGFR
AU2008227123B2 (en) 2007-03-15 2014-03-27 Ludwig Institute For Cancer Research Ltd. Treatment method using EGFR antibodies and src inhibitors and related formulations
KR101540822B1 (en) 2007-03-27 2015-07-30 씨 레인 바이오테크놀로지스, 엘엘씨 constructs and libraries comprising antibody surrogate light chain sequences
US8895610B1 (en) 2007-05-18 2014-11-25 Heldi Kay Platinum (IV) compounds targeting zinc finger domains
US9877965B2 (en) 2007-06-25 2018-01-30 Endocyte, Inc. Vitamin receptor drug delivery conjugates for treating inflammation
US9138484B2 (en) 2007-06-25 2015-09-22 Endocyte, Inc. Conjugates containing hydrophilic spacer linkers
CA2696360C (en) 2007-08-14 2018-11-20 Ludwig Institute For Cancer Research Monoclonal antibody targeting the egfr receptor and uses thereof
JP5637855B2 (en) * 2007-11-08 2014-12-10 ザ ジェネラル ホスピタル コーポレイション Methods and compositions for the treatment of proteinuria
UY32560A (en) 2009-04-29 2010-11-30 Bayer Schering Pharma Ag IMMUNOCONJUGADOS OF ANTIMESOTELINA AND USES OF THE SAME
EP2430047B1 (en) 2009-05-13 2018-03-28 i2 Pharmaceuticals, Inc. Neutralizing molecules to influenza viruses
PL2437790T3 (en) 2009-06-03 2019-09-30 Immunogen, Inc. Conjugation methods
WO2011100403A1 (en) 2010-02-10 2011-08-18 Immunogen, Inc Cd20 antibodies and uses thereof
UA123257C2 (en) * 2010-02-24 2021-03-10 Іммуноджен, Інк. ILLUSTRATED POLYPEPTIDE ENCODING ANTIBODY TO FOLIC ACID RECEPTOR 1
JP5972864B2 (en) * 2010-04-15 2016-08-17 メディミューン リミテッド Pyrrolobenzodiazepines and their conjugates
WO2012019024A2 (en) 2010-08-04 2012-02-09 Immunogen, Inc. Her3-binding molecules and immunoconjugates thereof
WO2012027745A1 (en) * 2010-08-27 2012-03-01 University Of Miami Treatment of renal diseases
CA2815277A1 (en) 2010-10-29 2012-05-03 Immunogen, Inc. Novel egfr-binding molecules and immunoconjugates thereof
EA201390575A1 (en) 2010-10-29 2014-01-30 Иммьюноджен, Инк. NON-ANTAGONISTIC EGFR-BINDING MOLECULES AND THEIR IMMUNOCONJUGATES
EP3153504B1 (en) 2010-12-09 2018-09-26 ImmunoGen, Inc. Methods for the preparation of charged crosslinkers
EP3666289A1 (en) 2011-02-15 2020-06-17 ImmunoGen, Inc. Cytotoxic benzodiazepine derivatives
KR20220123130A (en) * 2011-03-29 2022-09-05 이뮤노젠 아이엔씨 Preparation of maytansinoid antibody conjugates by a one-step process
WO2012135517A2 (en) 2011-03-29 2012-10-04 Immunogen, Inc. Preparation of maytansinoid antibody conjugates by a one-step process
PT2694106T (en) 2011-04-01 2018-03-05 Immunogen Inc Methods for increasing efficacy of folr1 cancer therapy
WO2012138749A1 (en) * 2011-04-04 2012-10-11 Immunogen, Inc. Methods for decreasing ocular toxicity of antibody drug conjugates
EP2736928B1 (en) 2011-07-28 2019-01-09 i2 Pharmaceuticals, Inc. Sur-binding proteins against erbb3
EA201790757A1 (en) 2011-09-22 2017-07-31 Эмджен Инк. BONDING ANTIGEN CD27L PROTEINS
KR101877598B1 (en) * 2011-10-14 2018-07-11 메디뮨 리미티드 Pyrrolobenzodiazepines and conjugates thereof
RU2014121820A (en) 2011-11-21 2015-12-27 Иммьюноджен, Инк. METHOD FOR TREATING TUMORS RESISTANT TO ANTI-EGFR THERAPIES USING AN EGFR ANTIBODY CONJUGATE WITH CYTOTOXIC AGENT
CA2859744A1 (en) 2011-12-22 2013-06-27 Sea Lane Biotechnologies, Llc Surrogate binding proteins
AU2013209512B2 (en) 2012-01-20 2017-08-03 I2 Pharmaceuticals, Inc. Surrobody cojugates
WO2013126797A1 (en) 2012-02-24 2013-08-29 Purdue Research Foundation Cholecystokinin b receptor targeting for imaging and therapy
KR20230113821A (en) 2012-05-15 2023-08-01 씨젠 인크. Self-stabilizing linker conjugates
UY34813A (en) 2012-05-18 2013-11-29 Amgen Inc ANTIGEN UNION PROTEINS DIRECTED AGAINST ST2 RECEIVER
MX367055B (en) 2012-06-26 2019-08-02 Del Mar Pharmaceuticals Methods for treating tyrosine-kinase-inhibitor-resistant malignancies in patients with genetic polymorphisms or ahi1 dysregulations or mutations employing dianhydrogalactitol, diacetyldianhydrogalactitol, dibromodulcitol, or analogs or derivatives thereof.
NZ726258A (en) 2012-08-31 2019-07-26 Immunogen Inc Antibodies and uses thereof to detect folate receptor 1
US20150306242A1 (en) * 2012-10-04 2015-10-29 Immunogen, Inc. Process for preparing stable antibody maytansinoid conjugates
SG11201502429YA (en) 2012-10-04 2015-04-29 Immunogen Inc Use of a pvdf membrane to purify cell-binding agent cytotoxic agent conjugates
NZ740948A (en) 2012-10-11 2019-11-29 Daiichi Sankyo Co Ltd Glycinamide derivatives and production methods thereof
AU2013328580B2 (en) 2012-10-12 2016-01-21 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
ES2782248T3 (en) 2012-10-19 2020-09-11 Daiichi Sankyo Co Ltd Antibody-drug conjugate produced by binding through a linker having a hydrophilic structure
KR102460297B1 (en) * 2012-10-30 2022-10-28 에스퍼란스 파마슈티컬스, 인코포레이티드 Antibody/drug conjugates and methods of use
TW201425336A (en) 2012-12-07 2014-07-01 Amgen Inc BCMA antigen binding proteins
EP2948478B1 (en) 2013-01-25 2019-04-03 Amgen Inc. Antibodies targeting cdh19 for melanoma
NZ710745A (en) 2013-03-13 2019-03-29 Genentech Inc Pyrrolobenzodiazepines and conjugates thereof
US9498532B2 (en) 2013-03-13 2016-11-22 Novartis Ag Antibody drug conjugates
US9649390B2 (en) 2013-03-13 2017-05-16 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US9415118B2 (en) * 2013-03-13 2016-08-16 Novartis Ag Antibody drug conjugates
EP2968590B1 (en) 2013-03-15 2018-09-05 Novartis AG Antibody drug conjugates
JP2016519684A (en) 2013-04-08 2016-07-07 デニス エム ブラウン Methods and compositions for improving the efficacy of suboptimally administered medication and / or reducing side effects
NZ713636A (en) 2013-05-30 2022-07-01 Kiniksa Pharmaceuticals Ltd Oncostatin m receptor antigen binding proteins
WO2015013579A1 (en) 2013-07-26 2015-01-29 Update Pharma Inc. Compositions to improve the therapeutic benefit of bisantrene
TW201605896A (en) 2013-08-30 2016-02-16 安美基股份有限公司 GITR antigen binding proteins
SG10201907501QA (en) 2013-08-30 2019-10-30 Immunogen Inc Antibodies and assays for detection of folate receptor 1
SG10201801779XA (en) 2013-09-05 2018-04-27 Jackson Lab Compositions for rna-chromatin interaction analysis and uses thereof
WO2015054400A2 (en) 2013-10-08 2015-04-16 Immunogen, Inc. Anti-folr1 immunoconjugate dosing regimens
TWI541022B (en) 2013-12-18 2016-07-11 應克隆公司 Compounds to fibroblast growth factor receptor-3 (fgfr3) and methods of treatment
WO2015096982A1 (en) * 2013-12-23 2015-07-02 Bayer Pharma Aktiengesellschaft Antibody drug conjugates (adcs) with kinesin spindel protein (ksp)
SG11201605215YA (en) 2013-12-25 2016-08-30 Daiichi Sankyo Co Ltd Anti-trop2 antibody-drug conjugate
KR102275925B1 (en) 2014-01-31 2021-07-12 다이이찌 산쿄 가부시키가이샤 Anti-her2 antibody-drug conjugate
DK3122757T3 (en) 2014-02-28 2023-10-09 Hangzhou Dac Biotech Co Ltd CHARGED LINKERS AND THEIR USE FOR CONJUGATION
CN111228511B (en) 2014-04-10 2024-06-18 第一三共株式会社 Anti-HER 3 antibody-drug conjugates
US11185594B2 (en) 2014-04-10 2021-11-30 Daiichi Sankyo Company, Limited (Anti-HER2 antibody)-drug conjugate
US9982045B2 (en) 2014-08-12 2018-05-29 Novartis Ag Anti-CDH6 antibody drug conjugates
EP3189057A1 (en) 2014-09-03 2017-07-12 ImmunoGen, Inc. Cytotoxic benzodiazepine derivatives
CA2959630A1 (en) 2014-09-03 2016-03-10 Immunogen, Inc. Cytotoxic benzodiazepine derivatives
DK3191502T3 (en) 2014-09-11 2021-07-19 Seagen Inc TARGETED ADMINISTRATION OF TERTIARY AMOUNTING MEDICINAL PRODUCTS
GB201416112D0 (en) 2014-09-12 2014-10-29 Medimmune Ltd Pyrrolobenzodiazepines and conjugates thereof
CN108064244B (en) 2014-11-14 2021-09-17 诺华股份有限公司 Antibody drug conjugates
CA3184805A1 (en) 2014-12-04 2016-06-09 Celgene Corporation Biomolecule conjugates
CA2980462C (en) 2015-04-07 2023-08-01 The Curators Of The University Of Missouri Nanoparticle immunoconjugates
US10568852B2 (en) 2015-05-22 2020-02-25 Helmholtz Zentrum Munchen - Deutsches Forschungszentrum Fur Gesundheit Und Umwelt (Gmbh) Combination compositions and their use in methods for treating obesity and obesity-related disorders
TW201711702A (en) 2015-06-04 2017-04-01 應克隆公司 Therapies utilizing compounds to fibroblast growth factor receptor-3 (FGFR3)
US20190194315A1 (en) 2015-06-17 2019-06-27 Novartis Ag Antibody drug conjugates
CN116059395A (en) 2015-06-29 2023-05-05 第一三共株式会社 Method for selectively producing antibody-drug conjugates
MA42250B1 (en) 2015-06-29 2020-11-30 Immunogen Inc Cysteine-modified antibody conjugates
PL3325482T3 (en) 2015-07-21 2021-01-11 Immunogen, Inc. Methods of preparing cytotoxic benzodiazepine derivatives
WO2017025458A1 (en) 2015-08-07 2017-02-16 Gamamabs Pharma Antibodies, antibody drug conjugates and methods of use
KR102700777B1 (en) 2015-09-17 2024-08-29 이뮤노젠 아이엔씨 Combination of therapeutic agents comprising anti-FOLR1 immunoconjugates
US10358497B2 (en) 2015-09-29 2019-07-23 Amgen Inc. Methods of treating cardiovascular disease with an ASGR inhibitor
EP4335851A3 (en) 2015-11-25 2024-06-05 ImmunoGen, Inc. Pharmaceutical formulations and methods of use thereof
US11793880B2 (en) 2015-12-04 2023-10-24 Seagen Inc. Conjugates of quaternized tubulysin compounds
CA3006000A1 (en) 2015-12-04 2017-06-08 Seattle Genetics, Inc. Conjugates of quaternized tubulysin compounds
GB201601431D0 (en) 2016-01-26 2016-03-09 Medimmune Ltd Pyrrolobenzodiazepines
GB201602356D0 (en) 2016-02-10 2016-03-23 Medimmune Ltd Pyrrolobenzodiazepine Conjugates
GB201602359D0 (en) 2016-02-10 2016-03-23 Medimmune Ltd Pyrrolobenzodiazepine Conjugates
GB201607478D0 (en) 2016-04-29 2016-06-15 Medimmune Ltd Pyrrolobenzodiazepine Conjugates
CN109563167A (en) 2016-06-08 2019-04-02 艾伯维公司 Anti- B7-H3 antibody and antibody drug conjugates
LT3458479T (en) 2016-06-08 2021-02-25 Abbvie Inc. Anti-b7-h3 antibodies and antibody drug conjugates
BR112018075649A2 (en) 2016-06-08 2019-04-09 Abbvie Inc. anti-b7-h3 antibodies and antibody drug conjugates
JP2019524651A (en) 2016-06-08 2019-09-05 アッヴィ・インコーポレイテッド Anti-CD98 antibodies and antibody drug conjugates
IL263616B1 (en) 2016-07-07 2024-09-01 Univ Leland Stanford Junior Antibody adjuvant conjugates
CN109562152B (en) 2016-08-09 2024-04-02 西雅图基因公司 Drug conjugates containing self-stabilizing linkers with improved physiochemical properties
GB201617466D0 (en) 2016-10-14 2016-11-30 Medimmune Ltd Pyrrolobenzodiazepine conjugates
EP3528850A4 (en) 2016-10-18 2020-06-24 Seattle Genetics, Inc. Targeted delivery of nicotinamide adenine dinucleotide salvage pathway inhibitors
EP3544983A2 (en) 2016-11-23 2019-10-02 Immunogen, Inc. Selective sulfonation of benzodiazepine derivatives
TW201828993A (en) 2016-12-12 2018-08-16 日商第一三共股份有限公司 Combination of antibody-drug conjugate and immune checkpoint inhibitor
US20210388102A1 (en) 2016-12-23 2021-12-16 Immunogen, Inc. Immunoconjugates targeting adam9 and methods of use thereof
TW201825515A (en) 2017-01-04 2018-07-16 美商伊繆諾金公司 Met antibodies and immunoconjugates and uses thereof
BR112019012847A2 (en) 2017-01-17 2019-12-10 Daiichi Sankyo Co Ltd antibody or antibody functional fragment, polynucleotide, expression vector, host cells, method for producing an antibody of interest or antibody functional fragment and for producing an antibody-drug conjugate, antibody-drug conjugate, pharmaceutical composition , antitumor drug; and, method of treating a tumor.
JOP20190187A1 (en) 2017-02-03 2019-08-01 Novartis Ag Anti-ccr7 antibody drug conjugates
GB201702031D0 (en) 2017-02-08 2017-03-22 Medlmmune Ltd Pyrrolobenzodiazepine-antibody conjugates
CA3047683C (en) 2017-02-08 2020-03-10 Adc Therapeutics Sa Pyrrolobenzodiazepine-antibody conjugates
RU2765098C2 (en) 2017-02-28 2022-01-25 Иммуноджен, Инк. Maitanzinoid derivatives with self-splitting peptide linkers and their conjugates
WO2018185618A1 (en) 2017-04-03 2018-10-11 Novartis Ag Anti-cdh6 antibody drug conjugates and anti-gitr antibody combinations and methods of treatment
LT3612537T (en) 2017-04-18 2022-10-10 Medimmune Limited Pyrrolobenzodiazepine conjugates
WO2018195243A1 (en) 2017-04-20 2018-10-25 Immunogen, Inc. Cytotoxic benzodiazepine derivatives and conjugates thereof
MA51189A (en) 2017-04-27 2020-03-04 Seattle Genetics Inc QUATERNARIZED NICOTINAMIDE ADENINE DINUCLEOTIDE RECOVERY ROUTE INHIBITOR CONJUGATES
AR113224A1 (en) 2017-04-28 2020-02-19 Novartis Ag ANTIBODY CONJUGATES INCLUDING A STING AGONIST
TWI794230B (en) 2017-05-15 2023-03-01 日商第一三共股份有限公司 Anti cdh6 antibodies and anti cdh6 antibody drug conjugates, as well as manufacturing method thereof
LT3668874T (en) 2017-08-18 2022-03-25 Medimmune Limited Pyrrolobenzodiazepine conjugates
JP7366745B2 (en) 2017-08-31 2023-10-23 第一三共株式会社 Improved manufacturing method for antibody-drug conjugates
KR102422860B1 (en) 2017-08-31 2022-07-19 다이이찌 산쿄 가부시키가이샤 Novel method for preparing antibody-drug conjugates
TWI827575B (en) 2017-12-28 2024-01-01 美商伊繆諾金公司 Benzodiazepine derivatives
GB201803342D0 (en) 2018-03-01 2018-04-18 Medimmune Ltd Methods
BR112020019465A2 (en) 2018-03-28 2021-01-12 Mitsubishi Tanabe Pharma Corporation DRUG SETS OF MONOCLONAL CMET-BINDING AGENTS AND USES OF THE SAME
GB201806022D0 (en) 2018-04-12 2018-05-30 Medimmune Ltd Pyrrolobenzodiazepines and conjugates thereof
TWI825098B (en) 2018-05-18 2023-12-11 德商葛萊高托普公司 Anti-muc1 antibody
EP3814378A1 (en) 2018-06-26 2021-05-05 ImmunoGen, Inc. Immunoconjugates targeting adam9 and methods of use thereof
WO2020014306A1 (en) 2018-07-10 2020-01-16 Immunogen, Inc. Met antibodies and immunoconjugates and uses thereof
CA3107383A1 (en) 2018-07-23 2020-01-30 Magenta Therapeutics, Inc. Use of anti-cd5 antibody drug conjugate (adc) in allogeneic cell therapy
TW202029980A (en) 2018-10-26 2020-08-16 美商免疫遺傳股份有限公司 Epcam antibodies, activatable antibodies, and immunoconjugates, and uses thereof
EP3873938A1 (en) 2018-10-31 2021-09-08 Novartis AG Dc-sign antibody conjugates comprising sting agonists
WO2020089815A1 (en) 2018-10-31 2020-05-07 Novartis Ag Antibody conjugates comprising sting agonist
CN115671286B (en) 2018-12-04 2023-12-08 田德扬 Stereocomplex for delivery of anticancer agents
AU2020241686A1 (en) 2019-03-15 2021-11-04 Bolt Biotherapeutics, Inc. Immunoconjugates targeting HER2
BR112021018608A2 (en) 2019-03-20 2021-11-23 Univ California Antibodies to claudin-6 and drug conjugates
CA3134056A1 (en) 2019-03-20 2020-09-24 The Regents Of The University Of California Claudin-6 bispecific antibodies
TW202102506A (en) 2019-03-29 2021-01-16 美商伊繆諾金公司 Benzodiazepine derivatives
CN113766954B (en) 2019-04-26 2024-09-24 伊缪诺金公司 Camptothecin derivatives
CN111116904A (en) * 2019-11-14 2020-05-08 华东师范大学 Phenylboronic acid modified fluorine-containing high polymer material and application thereof in intracellular delivery of protein
WO2021125263A1 (en) 2019-12-18 2021-06-24 国立大学法人 岡山大学 Use of antibody-drug conjugates and antibodies for drug delivery
CN111039981B (en) * 2019-12-26 2022-10-04 上海科技大学 Compound, salt or solvate thereof and application thereof
WO2021173773A1 (en) 2020-02-25 2021-09-02 Mediboston, Inc. Camptothecin derivatives and conjugates thereof
US20230181756A1 (en) 2020-04-30 2023-06-15 Novartis Ag Ccr7 antibody drug conjugates for treating cancer
CN116390772A (en) 2020-07-07 2023-07-04 博泰康医药公司 Novel maytansine analogs as ADC payloads and their use in cancer treatment
JP7349578B2 (en) 2020-10-27 2023-09-22 エルシダ オンコロジー, インコーポレイテッド Nanoparticle drug conjugates targeted to folate receptors and their uses
EP4251648A2 (en) 2020-11-24 2023-10-04 Novartis AG Anti-cd48 antibodies, antibody drug conjugates, and uses thereof
AU2021406518A1 (en) 2020-12-23 2023-06-29 Forschungsverbund Berlin E.V Improved cd30 targeting antibody drug conjugates and uses thereof
AR124681A1 (en) 2021-01-20 2023-04-26 Abbvie Inc ANTI-EGFR ANTIBODY-DRUG CONJUGATES
US20220378929A1 (en) 2021-02-25 2022-12-01 MediBoston Limted Anti-her2 antibody-drug conjugates and uses thereof
AU2022386680A1 (en) 2021-11-09 2024-06-20 Tubulis Gmbh Conjugates comprising a phosphorus (v) and a camptothecin moiety
US20230330258A1 (en) 2021-11-09 2023-10-19 Tubulis Gmbh Conjugates comprising a phosphorus (v) and a drug moiety
WO2023157989A1 (en) 2022-02-17 2023-08-24 주식회사 노벨티노빌리티 Antibody-drug conjugate
WO2024023735A1 (en) 2022-07-27 2024-02-01 Mediboston Limited Auristatin derivatives and conjugates thereof
US20240190958A1 (en) 2022-10-18 2024-06-13 Tubulis Gmbh Novel antibody drug conjugates with novel napi2b antibodies, therapeutic methods and uses thereof
US20240245798A1 (en) 2022-10-18 2024-07-25 Tubulis Gmbh Novel anti-tpbg antibody and antibody-drug-conjugates based thereon, therapeutic methods and uses thereof
WO2024121632A1 (en) 2022-12-09 2024-06-13 Crispr Therapeutics Ag Use of anti-cd117 antibody drug conjugate (adc)
WO2024165045A1 (en) 2023-02-09 2024-08-15 Beigene, Ltd. Self-stabilizing linker conjugates
WO2024194851A1 (en) 2023-03-23 2024-09-26 Beigene Switzerland Gmbh Bioactive conjugate, preparation method therefor and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5219564A (en) * 1990-07-06 1993-06-15 Enzon, Inc. Poly(alkylene oxide) amino acid copolymers and drug carriers and charged copolymers based thereon
US20060233814A1 (en) * 2005-04-15 2006-10-19 Immunogen Inc. Elimination of heterogeneous or mixed cell population in tumors

Family Cites Families (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3420876A (en) * 1966-09-27 1969-01-07 Kaken Kagaku Kk Process for preparing 1-amino-3-carboxypropane-2-sulfonic acid
US4307016A (en) 1978-03-24 1981-12-22 Takeda Chemical Industries, Ltd. Demethyl maytansinoids
JPS6058232B2 (en) * 1978-07-13 1985-12-19 東洋醸造株式会社 Novel disulfide derivative
US4258193A (en) 1978-07-13 1981-03-24 Toyo Jozo Kabushiki Kaisha Disulfide derivatives having S--S exchange reactivity
FR2430943A1 (en) * 1978-07-13 1980-02-08 Toyo Jozo Kk NEW DISULFIDE DERIVATIVES
US4256746A (en) 1978-11-14 1981-03-17 Takeda Chemical Industries Dechloromaytansinoids, their pharmaceutical compositions and method of use
JPS55102583A (en) 1979-01-31 1980-08-05 Takeda Chem Ind Ltd 20-acyloxy-20-demethylmaytansinoid compound
JPS55162791A (en) 1979-06-05 1980-12-18 Takeda Chem Ind Ltd Antibiotic c-15003pnd and its preparation
JPS5645483A (en) 1979-09-19 1981-04-25 Takeda Chem Ind Ltd C-15003phm and its preparation
EP0028683A1 (en) 1979-09-21 1981-05-20 Takeda Chemical Industries, Ltd. Antibiotic C-15003 PHO and production thereof
JPS5645485A (en) 1979-09-21 1981-04-25 Takeda Chem Ind Ltd Production of c-15003pnd
WO1982001188A1 (en) 1980-10-08 1982-04-15 Takeda Chemical Industries Ltd 4,5-deoxymaytansinoide compounds and process for preparing same
US4450254A (en) 1980-11-03 1984-05-22 Standard Oil Company Impact improvement of high nitrile resins
US4315929A (en) 1981-01-27 1982-02-16 The United States Of America As Represented By The Secretary Of Agriculture Method of controlling the European corn borer with trewiasine
US4313946A (en) 1981-01-27 1982-02-02 The United States Of America As Represented By The Secretary Of Agriculture Chemotherapeutically active maytansinoids from Trewia nudiflora
US4563304A (en) 1981-02-27 1986-01-07 Pharmacia Fine Chemicals Ab Pyridine compounds modifying proteins, polypeptides or polysaccharides
JPS57192389A (en) 1981-05-20 1982-11-26 Takeda Chem Ind Ltd Novel maytansinoid
FR2546163B1 (en) * 1983-05-16 1987-10-09 Centre Nat Rech Scient NOVEL HYDROSOLUBLE ACYLATED DERIVATIVES OF PEPTIDES OR AMINO ACIDS, THEIR PREPARATION AND THEIR APPLICATION
US4956303A (en) 1986-04-28 1990-09-11 Antibody Technology Limited Secondary antibodies against complexes of small molecules and binding partners therefor, their preparation, and their use in diagnostic methods
US5208020A (en) 1989-10-25 1993-05-04 Immunogen Inc. Cytotoxic agents comprising maytansinoids and their therapeutic use
FR2656555B1 (en) 1989-12-29 1994-10-28 Serimer MECHANICAL SYSTEM FOR AUTOMATIC GUIDANCE OF ONE OR MORE TORCHES OF AN ARC WELDING UNIT.
KR100208957B1 (en) 1990-04-25 1999-07-15 로렌스 티. 마이젠헬더 Novel cc-1065 analogues
US5137877B1 (en) * 1990-05-14 1996-01-30 Bristol Myers Squibb Co Bifunctional linking compounds conjugates and methods for their production
WO1992000748A1 (en) * 1990-07-06 1992-01-23 Enzon, Inc. Poly(alkylene oxide) amino acid copolymers and drug carriers and charged copolymers based thereon
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
US5525491A (en) * 1991-02-27 1996-06-11 Creative Biomolecules, Inc. Serine-rich peptide linkers
ES2313867T3 (en) 1991-12-02 2009-03-16 Medical Research Council ANTI-AUTO ANTIBODY PRODUCTION OF ANTIBODY SEGMENT REPERTORIES EXPRESSED ON THE PAYMENT SURFACE.
ES2149768T3 (en) 1992-03-25 2000-11-16 Immunogen Inc CONJUGATES OF BINDING AGENTS OF CELLS DERIVED FROM CC-1065.
US5639641A (en) 1992-09-09 1997-06-17 Immunogen Inc. Resurfacing of rodent antibodies
US5635483A (en) 1992-12-03 1997-06-03 Arizona Board Of Regents Acting On Behalf Of Arizona State University Tumor inhibiting tetrapeptide bearing modified phenethyl amides
US5475011A (en) 1993-03-26 1995-12-12 The Research Foundation Of State University Of New York Anti-tumor compounds, pharmaceutical compositions, methods for preparation thereof and for treatment
US6214345B1 (en) 1993-05-14 2001-04-10 Bristol-Myers Squibb Co. Lysosomal enzyme-cleavable antitumor drug conjugates
DE4325824A1 (en) 1993-07-31 1995-02-02 Basf Ag Process for the preparation of homopolymers of ethylene or copolymers of ethylene
GB9320575D0 (en) 1993-10-06 1993-11-24 Amp Gmbh Coaxial connector having improved locking mechanism
IL111748A0 (en) 1993-12-03 1995-01-24 Zeneca Ltd Proteins
US5738846A (en) * 1994-11-10 1998-04-14 Enzon, Inc. Interferon polymer conjugates and process for preparing the same
US6355780B1 (en) 1995-02-22 2002-03-12 Yeda Research And Development Co. Ltd. Antibodies to the death domain motifs of regulatory proteins
SG50747A1 (en) * 1995-08-02 1998-07-20 Tanabe Seiyaku Co Comptothecin derivatives
CA2255703A1 (en) 1996-05-31 1997-12-04 Dale L. Boger Analogs of cc-1065 and the duocarmycins
JP2001501211A (en) * 1996-09-27 2001-01-30 ブリストル―マイヤーズ・スクイブ・カンパニー Hydrolysable prodrugs for delivery of anticancer drugs to metastatic cells
AU739028B2 (en) * 1996-09-27 2001-10-04 Bristol-Myers Squibb Company Hydrolyzable prodrugs for delivery of anticancer drugs to metastatic cells
US5811452A (en) 1997-01-08 1998-09-22 The Research Foundation Of State University Of New York Taxoid reversal agents for drug-resistance in cancer chemotherapy and pharmaceutical compositions thereof
WO1999006587A2 (en) 1997-08-01 1999-02-11 Morphosys Ag Novel method and phage for the identification of nucleic acid sequences encoding members of a multimeric (poly)peptide complex
JP2001525382A (en) 1997-12-08 2001-12-11 ザ スクリップス リサーチ インスティテュート Synthesis of CC-1065 / Duocarmycin analogs
US6153655A (en) * 1998-04-17 2000-11-28 Enzon, Inc. Terminally-branched polymeric linkers and polymeric conjugates containing the same
US6251382B1 (en) * 1998-04-17 2001-06-26 Enzon, Inc. Biodegradable high molecular weight polymeric linkers and their conjugates
ES2244210T3 (en) 1998-08-27 2005-12-01 Spirogen Limited PIRROLOBENZODIAZEPINAS.
US7115396B2 (en) 1998-12-10 2006-10-03 Compound Therapeutics, Inc. Protein scaffolds for antibody mimics and other binding proteins
US7303749B1 (en) 1999-10-01 2007-12-04 Immunogen Inc. Compositions and methods for treating cancer using immunoconjugates and chemotherapeutic agents
WO2001038318A1 (en) 1999-11-24 2001-05-31 Immunogen, Inc. Cytotoxic agents comprising taxanes and their therapeutic use
US6596503B1 (en) 2000-08-18 2003-07-22 East Carolina University Monoclonal antibody DS6, tumor-associated antigen CA6, and methods of use thereof
US6333410B1 (en) 2000-08-18 2001-12-25 Immunogen, Inc. Process for the preparation and purification of thiol-containing maytansinoids
FI113809B (en) 2000-11-01 2004-06-15 Rafsec Oy Method for making a smart sticker and a smart sticker
US7767802B2 (en) 2001-01-09 2010-08-03 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of anti-apoptotic genes
US6884869B2 (en) 2001-04-30 2005-04-26 Seattle Genetics, Inc. Pentapeptide compounds and uses related thereto
US6441163B1 (en) 2001-05-31 2002-08-27 Immunogen, Inc. Methods for preparation of cytotoxic conjugates of maytansinoids and cell binding agents
US6716821B2 (en) 2001-12-21 2004-04-06 Immunogen Inc. Cytotoxic agents bearing a reactive polyethylene glycol moiety, cytotoxic conjugates comprising polyethylene glycol linking groups, and methods of making and using the same
DE10202419A1 (en) 2002-01-22 2003-08-07 Ribopharma Ag Method of inhibiting expression of a target gene resulting from chromosome aberration
US6660856B2 (en) 2002-03-08 2003-12-09 Kaohsiung Medical University Synthesis of pyrrolo[2,1-c][1,4]benzodiazepine analogues
US6534660B1 (en) 2002-04-05 2003-03-18 Immunogen, Inc. CC-1065 analog synthesis
US6756397B2 (en) 2002-04-05 2004-06-29 Immunogen, Inc. Prodrugs of CC-1065 analogs
WO2003087824A2 (en) * 2002-04-08 2003-10-23 Amura Therapeutics Limited Charge-balanced chemoselective linkers
DK1507556T3 (en) * 2002-05-02 2016-09-12 Wyeth Holdings Llc Calicheamicin derivative-carrier conjugates
US6596757B1 (en) 2002-05-14 2003-07-22 Immunogen Inc. Cytotoxic agents comprising polyethylene glycol-containing taxanes and their therapeutic use
US7659241B2 (en) 2002-07-31 2010-02-09 Seattle Genetics, Inc. Drug conjugates and their use for treating cancer, an autoimmune disease or an infectious disease
AU2003259163B2 (en) * 2002-08-16 2008-07-03 Immunogen, Inc. Cross-linkers with high reactivity and solubility and their use in the preparation of conjugates for targeted delivery of small molecule drugs
WO2004043344A2 (en) 2002-11-07 2004-05-27 Immunogen, Inc. Anti-cd33 antibodies and method for treatment of acute myeloid leukemia using the same
JP4959136B2 (en) 2002-12-13 2012-06-20 イミューノメディクス、インコーポレイテッド Immunoconjugates with cleavable linkages in cells
DE60326060D1 (en) 2003-03-31 2009-03-19 Council Scient Ind Res Non-Crosslinking PYRROLOA2,1-CÜ1,4ÜBENZODIAZEPINE AS POTENTIAL ANTITUMOR AGENTS AND THEIR PREPARATION
EP2666858A1 (en) 2003-04-17 2013-11-27 Alnylam Pharmaceuticals Inc. Modified iRNA agents
US8088387B2 (en) * 2003-10-10 2012-01-03 Immunogen Inc. Method of targeting specific cell populations using cell-binding agent maytansinoid conjugates linked via a non-cleavable linker, said conjugates, and methods of making said conjugates
US7276497B2 (en) 2003-05-20 2007-10-02 Immunogen Inc. Cytotoxic agents comprising new maytansinoids
US7595306B2 (en) 2003-06-09 2009-09-29 Alnylam Pharmaceuticals Inc Method of treating neurodegenerative disease
AU2004263830B2 (en) 2003-06-13 2008-12-18 Alnylam Pharmaceuticals, Inc. Double-stranded ribonucleic acid with increased effectiveness in an organism
DE602004031239D1 (en) * 2003-07-21 2011-03-10 Immunogen Inc METHOD FOR THE APPLICATION THEREOF
EP1514561A1 (en) * 2003-09-10 2005-03-16 Philogen S.p.A. Targeting of tumor vasculature using radiolabelled antibody L19 against fibronectin ED-B
ES2733764T3 (en) 2003-12-16 2019-12-02 Nektar Therapeutics Method for the preparation of oligo ethylene glycol monodisperso
US6951853B1 (en) 2004-03-30 2005-10-04 Council Of Scientific And Industrial Research Process for preparing pyrrolo[2, 1-c] [1,4] benzodiazepine hybrids
US7189710B2 (en) 2004-03-30 2007-03-13 Council Of Scientific And Industrial Research C2-fluoro pyrrolo [2,1−c][1,4]benzodiazepine dimers
WO2005096789A2 (en) * 2004-04-12 2005-10-20 Georgia Tech Research Corporation Methods and compositions for imaging and biomedical applications
EP1768998A2 (en) 2004-04-27 2007-04-04 Alnylam Pharmaceuticals Inc. Single-stranded and double-stranded oligonucleotides comprising a 2-arylpropyl moiety
EP3034510A1 (en) 2004-04-30 2016-06-22 Alnylam Pharmaceuticals Inc. Oligonucleotides comprising a c5-modified pyrimidine
EP2286844A3 (en) 2004-06-01 2012-08-22 Genentech, Inc. Antibody-drug conjugates and methods
CA2572151A1 (en) 2004-06-30 2006-08-24 Alnylam Pharmaceuticals, Inc. Oligonucleotides comprising a non-phosphate backbone linkage
WO2006093526A2 (en) 2004-07-21 2006-09-08 Alnylam Pharmaceuticals, Inc. Oligonucleotides comprising a modified or non-natural nucleobase
JP4193771B2 (en) 2004-07-27 2008-12-10 セイコーエプソン株式会社 Gradation voltage generation circuit and drive circuit
EP1913011B1 (en) 2004-08-04 2016-11-02 Alnylam Pharmaceuticals Inc. Oligonucleotides comprising a ligand tethered to a modified or non-natural nucleobase
CA2486285C (en) 2004-08-30 2017-03-07 Viktor S. Goldmakher Immunoconjugates targeting syndecan-1 expressing cells and use thereof
NZ553500A (en) * 2004-09-23 2009-11-27 Genentech Inc Genentech Inc Cysteine engineered antibodies and conjugates withCysteine engineered antibodies and conjugates with a free cysteine amino acid in the heavy chain a free cysteine amino acid in the heavy chain
AU2005316844A1 (en) 2004-11-29 2006-06-22 Seattle Genetics, Inc. Engineered antibodies and immunoconjugates
NZ555601A (en) * 2004-12-09 2009-07-31 Centocor Inc Anti-integrin immunoconjugates, methods and uses
US7669219B2 (en) * 2005-04-15 2010-02-23 Microsoft Corporation Synchronized media experience
US20070213292A1 (en) 2005-08-10 2007-09-13 The Rockefeller University Chemically modified oligonucleotides for use in modulating micro RNA and uses thereof
EP1928503B1 (en) * 2005-08-24 2012-10-03 ImmunoGen, Inc. Process for preparing maytansinoid antibody conjugates
JP5102772B2 (en) 2005-11-29 2012-12-19 ザ・ユニバーシティ・オブ・シドニー Demibody: Dimerization activation therapeutic agent
US7897568B2 (en) 2006-03-03 2011-03-01 Vinay K. Singh Compositions for treatment of cancer
CA2655379A1 (en) 2006-06-22 2007-12-27 Walter And Eliza Hall Institute Of Medical Research Structure of the insulin receptor ectodomain
DE102006035083A1 (en) * 2006-07-28 2008-01-31 medac Gesellschaft für klinische Spezialgeräte mbH Protein binding methotrexate derivatives and medicaments containing them
LT2281006T (en) 2008-04-30 2017-11-27 Immunogen, Inc. Cross-linkers and their uses
SG189817A1 (en) 2008-04-30 2013-05-31 Immunogen Inc Potent conjugates and hydrophilic linkers
AU2009271401A1 (en) 2008-06-16 2010-01-21 Immunogen Inc. Novel synergistic effects
UA123257C2 (en) * 2010-02-24 2021-03-10 Іммуноджен, Інк. ILLUSTRATED POLYPEPTIDE ENCODING ANTIBODY TO FOLIC ACID RECEPTOR 1
EP3620467A1 (en) * 2010-03-12 2020-03-11 Debiopharm International SA Cd37-binding molecules and immunoconjugates thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5219564A (en) * 1990-07-06 1993-06-15 Enzon, Inc. Poly(alkylene oxide) amino acid copolymers and drug carriers and charged copolymers based thereon
US20060233814A1 (en) * 2005-04-15 2006-10-19 Immunogen Inc. Elimination of heterogeneous or mixed cell population in tumors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHARI ET AL.: "Targeted delivery of chemotherapeutics: tumor-activated prodrug therapy.", ADVANCED DRUG DELIVERY REVIEWS, vol. 31, 1998, pages 89 - 104, XP002204748 *

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11046762B2 (en) 2008-04-30 2021-06-29 Immunogen, Inc. Cross-linkers and their uses
US9815784B2 (en) 2008-11-03 2017-11-14 Syntarga B.V. CC-1065 analogs and their conjugates
US8889868B2 (en) 2008-11-03 2014-11-18 Syntarga Bv CC-1065 analogs and their conjugates
WO2011001052A1 (en) 2009-06-29 2011-01-06 Sanofi-Aventis Novel conjugates, preparation thereof, and therapeutic use thereof
US8952147B2 (en) 2009-06-29 2015-02-10 Sanofi Conjugates, preparation thereof, and therapeutic use thereof
EP3659591A1 (en) 2009-12-18 2020-06-03 Kodiak Sciences Inc. Multifunctional zwitterionic polymer conjugates
US11819531B2 (en) 2009-12-18 2023-11-21 Kodiak Sciences Inc. Multifunctional zwitterionic polymer conjugates
WO2011075736A1 (en) 2009-12-18 2011-06-23 Oligasis Multifunctional zwitterionic polymer conjugates
EP3254678A2 (en) 2009-12-18 2017-12-13 Kodiak Sciences Inc. Multifunctional zwitterionic polymer conjugates
US10202460B2 (en) 2010-03-12 2019-02-12 Debiopharm International, S.A. CD37-binding molecules and immunoconjugates thereof
US9346887B2 (en) 2010-03-12 2016-05-24 Immunogen, Inc. CD37-binding molecules and immunoconjugates thereof
US11466095B2 (en) 2010-03-12 2022-10-11 Debiopharm International S.A. CD37-binding molecules and immunoconjugates thereof
US8765917B2 (en) 2010-03-12 2014-07-01 Immunogen, Inc. CD37-binding molecules and immunoconjugates thereof
EP3549963A2 (en) 2010-04-15 2019-10-09 Kodiak Sciences Inc. High molecular weight zwitterion-containing polymers
EP4029510A1 (en) 2010-04-15 2022-07-20 Kodiak Sciences Inc. High molecular weight zwitterion-containing polymers
WO2011130694A2 (en) 2010-04-15 2011-10-20 Oligasis High molecular weight zwitterion-containing polymers
US11052155B2 (en) 2010-04-21 2021-07-06 Syntarga Bv Conjugates of CC-1065 analogs and bifunctional linkers
WO2011133039A2 (en) 2010-04-21 2011-10-27 Syntarga B.V. Novel conjugates of cc-1065 analogs and bifunctional linkers
US9629924B2 (en) 2010-04-21 2017-04-25 Syntarga Bv Conjugates of CC-1065 analogs and bifunctional linkers
EP3108886A2 (en) 2010-04-21 2016-12-28 Syntarga B.V. Conjugates of cc-1065 analogs and bifunctional linkers
EP3056203A1 (en) 2010-04-21 2016-08-17 Syntarga B.V. Conjugates of cc-1065 analogs and bifunctional linkers
US9056914B2 (en) 2010-07-26 2015-06-16 Sanofi Anticancer derivatives, preparation thereof and therapeutic use thereof
WO2012014147A1 (en) 2010-07-26 2012-02-02 Sanofi Anticancer derivatives, preparation thereof and therapeutic use thereof
US9447189B2 (en) 2011-04-01 2016-09-20 Immunogen, Inc. CD37-binding molecules and immunoconjugates thereof
US10556958B2 (en) 2011-04-01 2020-02-11 Debiopharm International, S.A. CD37-binding molecules and immunoconjugates thereof
WO2012177837A2 (en) 2011-06-21 2012-12-27 Immunogen, Inc. Novel maytansinoid derivatives with peptide linker and conjugates thereof
US9617345B2 (en) 2012-11-20 2017-04-11 Sanofi Anti-CEACAM5 antibodies and uses thereof
WO2014079886A1 (en) 2012-11-20 2014-05-30 Sanofi Anti-ceacam5 antibodies and uses thereof
US11332542B2 (en) 2012-11-20 2022-05-17 Sanofi Anti-CEACAM5 antibodies and uses thereof
US10457739B2 (en) 2012-11-20 2019-10-29 Sanofi Anti-CEACAM5 antibodies and uses thereof
EP3594243A1 (en) 2012-11-20 2020-01-15 Sanofi Anti-ceacam5 antibodies and uses thereof
EP2922818B1 (en) 2012-11-24 2018-09-05 Hangzhou Dac Biotech Co., Ltd Hydrophilic linkers and their uses for conjugation of drugs to cell binding molecules
US10918735B2 (en) 2012-12-04 2021-02-16 Massachusetts Institute Of Technology Substituted pyrazino[1′,2′:1,5]pyrrolo[2,3-b]indole-1,4-diones for cancer treatment
WO2014134457A2 (en) * 2013-02-28 2014-09-04 Immunogen, Inc. Conjugates comprising cell-binding agents and cytotoxic agents
US9999680B2 (en) 2013-02-28 2018-06-19 Immunogen, Inc. Conjugates comprising cell-binding agents and maytansinoids as cytotoxic agents
WO2014134486A2 (en) 2013-02-28 2014-09-04 Immunogen, Inc. Conjugates comprising cell-binding agents and cytotoxic agents
EP3566750A3 (en) * 2013-02-28 2020-04-08 ImmunoGen, Inc. Conjugates comprising cell-binding agents and cytotoxic agents
WO2014134483A2 (en) 2013-02-28 2014-09-04 Immunogen, Inc. Conjugates comprising cell-binding agents and cytotoxic agents
EP3566750A2 (en) 2013-02-28 2019-11-13 ImmunoGen, Inc. Conjugates comprising cell-binding agents and cytotoxic agents
WO2014134457A3 (en) * 2013-02-28 2014-12-04 Immunogen, Inc. Conjugates comprising cell-binding agents and cytotoxic agents
EP3964237A1 (en) 2013-03-15 2022-03-09 Regeneron Pharmaceuticals, Inc. Biologically active molecules, conjugates thereof, and therapeutic uses
WO2014145090A1 (en) 2013-03-15 2014-09-18 Regeneron Pharmaceuticals, Inc. Biologically active molecules, conjugates thereof, and therapeutic uses
WO2014144871A1 (en) 2013-03-15 2014-09-18 The Centre For Drug Research And Development Cytotoxic and anti-mitotic compounds, and methods of using the same
EP3590922A1 (en) 2013-03-15 2020-01-08 Zymeworks Inc. Cytotoxic and anti-mitotic compounds, and methods of using the same
WO2014194030A2 (en) 2013-05-31 2014-12-04 Immunogen, Inc. Conjugates comprising cell-binding agents and cytotoxic agents
WO2015009740A2 (en) 2013-07-15 2015-01-22 Cell Signaling Technology, Inc. Anti-mucin 1 binding agents and uses thereof
EP3699200A1 (en) 2013-07-15 2020-08-26 Cell Signaling Technology, Inc. Anti-mucin 1 binding agents and uses thereof
WO2015095953A1 (en) 2013-12-27 2015-07-02 The Centre For Drug Research And Development Sulfonamide-containing linkage systems for drug conjugates
US10266606B2 (en) 2014-01-10 2019-04-23 Synthon Biopharmaceuticals B.V. Method for purifying Cys-linked antibody-drug conjugates
US10973920B2 (en) 2014-06-30 2021-04-13 Glykos Finland Oy Saccharide derivative of a toxic payload and antibody conjugates thereof
EP3311846A1 (en) 2014-09-02 2018-04-25 ImmunoGen, Inc. Methods for formulating antibody drug conjugate compositions
US10603388B2 (en) 2014-09-02 2020-03-31 Immunogen, Inc. Methods for formulating antibody drug conjugate compositions
WO2016041082A1 (en) 2014-09-17 2016-03-24 CDRD Ventures, Inc. Cytotoxic and anti-mitotic compounds, and methods of using the same
EP4029873A1 (en) 2014-09-17 2022-07-20 Zymeworks Inc. Cytotoxic and anti-mitotic compounds, and methods of using the same
WO2016200676A1 (en) 2015-06-08 2016-12-15 Immunogen, Inc. Anti-cd37 immunoconjugate and anti-cd20 antibody combinations
US11395796B2 (en) 2015-06-08 2022-07-26 Debiopharm International, S.A. Anti-CD37 immunoconjugate and anti-CD20 antibody combinations
US11104740B2 (en) 2015-08-28 2021-08-31 Debiopharm International, S.A. Antibodies and assays for detection of CD37
US10918627B2 (en) 2016-05-11 2021-02-16 Massachusetts Institute Of Technology Convergent and enantioselective total synthesis of Communesin analogs
US11278629B2 (en) 2016-11-02 2022-03-22 Debiopharm International, S.A. Methods for improving anti-CD37 immunoconjugate therapy
WO2018159582A1 (en) 2017-02-28 2018-09-07 学校法人近畿大学 Method for treating egfr-tki-resistant non-small cell lung cancer by administration of anti-her3 antibody-drug conjugate
US11932650B2 (en) 2017-05-11 2024-03-19 Massachusetts Institute Of Technology Potent agelastatin derivatives as modulators for cancer invasion and metastasis
US10640508B2 (en) 2017-10-13 2020-05-05 Massachusetts Institute Of Technology Diazene directed modular synthesis of compounds with quaternary carbon centers
WO2020059772A1 (en) 2018-09-20 2020-03-26 第一三共株式会社 Treatment of her3 mutant cancer by administration of anti-her3 antibody-drug conjugate
US11446292B2 (en) 2019-03-29 2022-09-20 Medimmune Limited Compounds and conjugates thereof
US11535634B2 (en) 2019-06-05 2022-12-27 Massachusetts Institute Of Technology Compounds, conjugates, and compositions of epipolythiodiketopiperazines and polythiodiketopiperazines and uses thereof
EP3991754A4 (en) * 2019-06-28 2023-05-17 Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd. Antibody-drug conjugate, intermediate thereof, preparation method therefor and application thereof
US11912784B2 (en) 2019-10-10 2024-02-27 Kodiak Sciences Inc. Methods of treating an eye disorder
WO2022014698A1 (en) 2020-07-17 2022-01-20 第一三共株式会社 Method for producing antibody-drug conjugate
US12030888B2 (en) 2021-02-24 2024-07-09 Massachusetts Institute Of Technology Himastatin derivatives, and processes of preparation thereof, and uses thereof

Also Published As

Publication number Publication date
SG189811A1 (en) 2013-05-31
JP2017036300A (en) 2017-02-16
MY157165A (en) 2016-05-13
KR20230003298A (en) 2023-01-05
EP3266469A3 (en) 2018-03-28
IL264672B (en) 2021-05-31
AU2009243010B2 (en) 2015-02-05
JP2019218350A (en) 2019-12-26
CN102076717A (en) 2011-05-25
JP2011519864A (en) 2011-07-14
CN104524590B (en) 2019-06-21
JP2023036868A (en) 2023-03-14
HRP20171612T2 (en) 2018-12-28
SI2281006T1 (en) 2017-12-29
KR101985885B1 (en) 2019-06-04
KR20170091762A (en) 2017-08-09
KR20210100223A (en) 2021-08-13
ES2648122T3 (en) 2017-12-28
CN104524592A (en) 2015-04-22
KR20200058590A (en) 2020-05-27
US20150352223A1 (en) 2015-12-10
CN102076717B (en) 2016-02-03
JP2018090587A (en) 2018-06-14
MX359706B (en) 2018-10-08
KR20190064666A (en) 2019-06-10
KR101764081B1 (en) 2017-08-01
KR20160060781A (en) 2016-05-30
US20090274713A1 (en) 2009-11-05
JP2015120721A (en) 2015-07-02
AU2009243010A1 (en) 2009-11-05
KR101892411B1 (en) 2018-08-27
KR20180095739A (en) 2018-08-27
MY186725A (en) 2021-08-13
CN104524592B (en) 2018-06-05
CA2722696C (en) 2021-08-10
PT2281006T (en) 2017-12-06
IL283205A (en) 2021-06-30
KR102114915B1 (en) 2020-05-25
RU2503687C2 (en) 2014-01-10
HRP20171612T1 (en) 2017-12-15
PL2281006T3 (en) 2018-01-31
EP3266469A2 (en) 2018-01-10
KR20210005318A (en) 2021-01-13
MY197840A (en) 2023-07-20
CA2722696A1 (en) 2009-11-05
KR20110004889A (en) 2011-01-14
JP5769616B2 (en) 2015-08-26
EP2281006B1 (en) 2017-08-02
US10494431B2 (en) 2019-12-03
NZ588884A (en) 2013-05-31
CN104524590A (en) 2015-04-22
US8236319B2 (en) 2012-08-07
US20130011419A1 (en) 2013-01-10
IL208936B (en) 2019-02-28
KR20230133952A (en) 2023-09-19
NZ610239A (en) 2014-11-28
HK1246695A1 (en) 2018-09-14
US9498541B2 (en) 2016-11-22
MX2010011807A (en) 2011-03-04
DK2281006T3 (en) 2017-11-06
BRPI0910746B8 (en) 2021-05-25
US11046762B2 (en) 2021-06-29
HUE034763T2 (en) 2018-02-28
US20200148764A1 (en) 2020-05-14
JP6267304B2 (en) 2018-01-24
IL208936A0 (en) 2011-01-31
US9061995B2 (en) 2015-06-23
US20140178416A1 (en) 2014-06-26
JP6021963B2 (en) 2016-11-09
MX347442B (en) 2017-04-25
EP2281006A4 (en) 2012-09-19
BRPI0910746A2 (en) 2016-07-26
JP2021176864A (en) 2021-11-11
US20170157264A1 (en) 2017-06-08
US20180291100A1 (en) 2018-10-11
KR101764927B1 (en) 2017-08-03
RU2010148743A (en) 2012-06-10
US8613930B2 (en) 2013-12-24
LT2281006T (en) 2017-11-27
BRPI0910746B1 (en) 2021-04-06
KR20220035504A (en) 2022-03-22
NO2281006T3 (en) 2017-12-30
EP2281006A1 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
US11046762B2 (en) Cross-linkers and their uses
US20120282282A1 (en) Methods for Decreasing Ocular Toxicity of Antibody Drug Conjugates
AU2023263495A1 (en) Cross-linkers and their uses

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980125288.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09739779

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2722696

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/011807

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 588884

Country of ref document: NZ

Ref document number: 2009243010

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2011507634

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7124/CHENP/2010

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2009739779

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009739779

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009243010

Country of ref document: AU

Date of ref document: 20090430

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20107026849

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A201014267

Country of ref document: UA

Ref document number: 2010148743

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0910746

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101029