WO2009133893A1 - Multicylinder steam engine - Google Patents

Multicylinder steam engine Download PDF

Info

Publication number
WO2009133893A1
WO2009133893A1 PCT/JP2009/058364 JP2009058364W WO2009133893A1 WO 2009133893 A1 WO2009133893 A1 WO 2009133893A1 JP 2009058364 W JP2009058364 W JP 2009058364W WO 2009133893 A1 WO2009133893 A1 WO 2009133893A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
rotation output
cylinder
reciprocating
steam
Prior art date
Application number
PCT/JP2009/058364
Other languages
French (fr)
Japanese (ja)
Inventor
勝重 中村
Original Assignee
三鷹光器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三鷹光器株式会社 filed Critical 三鷹光器株式会社
Publication of WO2009133893A1 publication Critical patent/WO2009133893A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B25/00Regulating, controlling, or safety means
    • F01B25/02Regulating or controlling by varying working-fluid admission or exhaust, e.g. by varying pressure or quantity
    • F01B25/08Final actuators
    • F01B25/10Arrangements or adaptations of working-fluid admission or discharge valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B29/00Machines or engines with pertinent characteristics other than those provided for in preceding main groups
    • F01B29/08Reciprocating-piston machines or engines not otherwise provided for
    • F01B29/10Engines
    • F01B29/12Steam engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/04Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis the piston motion being transmitted by curved surfaces

Definitions

  • the present invention relates to a multi-cylinder steam engine.
  • the present invention has been made paying attention to such conventional technology, and provides a multi-cylinder steam engine that can be used for power generation using steam and can be reduced in size.
  • a multi-cylinder steam engine is a rotary output portion having a cylindrical side surface, and is rotatable around a virtual axis along a longitudinal direction passing through the center of a cross section. And an endless cam groove formed so as to make one side of the side surface of the rotation output portion around the virtual axis, and the rotation output portion arranged in a predetermined radial direction of the cross section of the rotation output portion.
  • a plurality of reciprocating steam drive units interacting with the output unit, each having a piston rod that reciprocates in a direction parallel to the virtual axis, and an engagement unit fixed to the piston rod, the cam A control unit having information for controlling a reciprocating motion of each of the plurality of reciprocating steam driving units, and a control unit which engages with a groove and applies a driving force to the rotation output unit, and a side surface of the rotation output unit.
  • the information elements of the control information are distributed and fixed so as to make a round around the imaginary axis, and the plurality of reciprocating steam driving units are reciprocated in conjunction with each other based on the information of the information elements. Accordingly, the rotation output unit continuously rotates.
  • each of the reciprocating steam driving units further includes a cylinder in which a pair of supply ports and discharge ports are formed adjacent to each other at both ends, and a piston that reciprocates in the cylinder. And the piston rod integrally connected to the piston and projecting outward from the cylinder, and reciprocating at both ends of the cylinder, respectively, and alternately closing and closing the supply port and the discharge port at both ends of the cylinder by different combinations. And a pair of control valves.
  • the information element of the control unit is an endless control groove formed on a side surface of the rotation output unit so as not to intersect the cam groove, The reciprocating motion is controlled by engaging the control valve with the control groove.
  • FIG. 1 is a plan view of a multi-cylinder steam engine according to an embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional view of a multi-cylinder steam engine viewed from the direction indicated by the arrow DA in FIG. 1.
  • FIG. 3 is a partial cross-sectional view corresponding to FIG. 2, illustrating a state in which the rotation output unit is rotated 90 ° from FIG. 2.
  • FIG. 4 is a partial cross-sectional view corresponding to FIG. 3, illustrating a state where the rotation output unit is rotated 90 ° from FIG. 3.
  • the side view which shows a rotation output part.
  • the developed view of the side surface of the rotation output part which shows the curve of a cam groove and a control groove.
  • the enlarged view which shows a cam follower and a cam groove.
  • the expanded sectional view which shows the cylinder part of a cylinder.
  • FIGS. 1 is a plan view of the whole (the center pulley and the like are not shown)
  • FIG. 2 is a partial sectional view as seen from the direction of the arrow DA in FIG. 1 (the central part is not shown)
  • FIG. FIG. 4 is a partial cross-sectional view showing a state where the rotation output portion is further rotated by 90 ° from FIG. 2 to 4 are all in the same viewing direction.
  • the multi-cylinder steam engine of this embodiment is composed of one rotation output unit 1 and four reciprocating steam drive units 2.
  • the rotation output portion 1 has a cylindrical shape that is long in the vertical direction, and is supported by a pair of upper and lower bearings 3 so as to be rotatable in a fixed direction R around an axis X passing through the center of the cross section.
  • the bearing 3 is provided with a bearing mechanism (not shown).
  • four reciprocating steam driving units 2 are arranged at the quarter positions of the cross section.
  • the reciprocating steam drive unit 2 has a known structure generally used as a steam engine except for the control structure of the control valve 4 by a control groove 22 as a control unit described later.
  • control of the control valve is more important for steam engines because the driving force changes continuously compared to engines that use explosive power. Therefore, the multi-cylinder steam engine of the present invention has a control structure in which a plurality of steam engines are stably linked as will be described later.
  • a piston 6 that can reciprocate up and down is accommodated in a cylinder 5 having a cylindrical section.
  • a piston ring 7 that slides with the inner surface of the cylinder 5 is provided on the side surface of the piston 6.
  • a piston rod 8 extending upward in a state parallel to the axis X of the rotation output unit 1 is integrally coupled to the piston 6.
  • the piston rod 8 passes through a cylindrical portion 9 provided at the upper part of the cylinder 5 and protrudes to the upper part of the cylinder 5.
  • a plurality of balls 10 for smoothly moving the piston rod 8 up and down are held on the inner surface of the cylindrical portion 9 (see FIG. 9).
  • the cylinder portion 9 has a certain length and holds the piston rod 8 vertically.
  • a control passage portion 11 is formed outside the cylinder 5 along the vertical direction. On the side surface of the cylinder 5 corresponding to the control passage portion 11, one set is formed in each of the upper and lower ends with the supply port 12 and the discharge port 13 being adjacent to each other. In each set, the supply port 12 is positioned on the outer side and the discharge port 13 is positioned on the inner side in the vertical direction (see FIG. 5).
  • control valves 4 are accommodated in a state where they are coupled by a control rod 14.
  • the control rod 14 is also parallel to the axis X of the rotation output unit 1.
  • the control rod 14 protrudes upward through the upper wall of the control passage portion 11.
  • the control valve 4 reciprocates up and down in a pair of upper and lower sides. When the control valve 4 moves upward, the control valve 4 closes the upper supply port 12 and the lower discharge port 13. When the control valve 4 moves downward, the upper discharge port 1. And the lower supply port 12 is closed.
  • a supply pipe 15 for supply-side steam A is connected to the upper and lower ends of the control passage section 11, and a discharge pipe 16 for discharge-side steam B is connected to the center. 2 to 5, the supply side water vapor A is shown in black, and the discharge side water vapor B is shown in a dotted grid.
  • the rotation output unit 1 has a cylindrical shape that is long in the vertical direction, and the vertical direction is rotatably supported by the bearing 3 as described above.
  • a center pulley 18 on which four V-groove belts 17 can be wound up and down is attached to the upper portion of the rotation output unit 1.
  • the center pulley 18 rotates in a fixed direction R integrally with the rotation output unit 1.
  • a generator 19 is supported on the four sides of the rotation output unit 1, and the V-groove belt 17 is wound around a pulley 20 at the end of the rotation shaft.
  • the generator 19 is large enough to be used as an engine accessory for an automobile, and even if the entire size of the multi-cylinder steam engine is horizontal, the generator 19 is compact enough to enter the engine room of an automobile.
  • a cam groove 21 for converting the reciprocating motions of the plurality of reciprocating steam driving units 2 into rotational motions is formed on the cylindrical side surface of the rotational output unit 1.
  • the cam groove 21 is formed by a modified sine curve (see FIG. 7) obtained by correcting the sine curve, and is associated with the radial position ⁇ of the rotation output unit 1 (a declination of cylindrical coordinates). Therefore, the deformed sine curve of the cam groove 21 is a non-stop and endless continuous curve, and when the rotation output portion 1 makes one rotation, the member engaged with the cam groove 21 reciprocates once in the vertical direction.
  • the cam groove 21 is formed in a state in which the ratio in the vertical direction is greatly enlarged.
  • the inclination angle ⁇ with respect to the axis X (piston rod 8) at the stroke center position of the cam groove 21 is set. It has become very small.
  • This angle ⁇ is preferably 45 ° or less (in this embodiment, about 20 °).
  • a control groove 22 is formed below the rotation output unit 1. That is, according to the present invention, the control groove 22 and the cam groove 21 are integrally formed so as to be fixed to the rotation output portion 1. This feature is important for multi-cylinder steam engines. By actively controlling the reciprocating steam drive units to be linked via a common rotation output unit 1, the engine starts smoothly and generates stable torque. Can be maintained.
  • control groove is a control unit having control information for controlling the reciprocating motion of each reciprocating steam drive unit 2 and is associated with the control information so as to go around the side surface of the rotation output unit 1.
  • Information elements are fixed in distribution.
  • control information associated with the radial position ⁇ of the rotation output unit 1 is one-dimensionally distributed and fixed on the side surface of the rotation output unit.
  • control information elements are the control groove 22 and its position (Z) in the rotation main axis direction.
  • the control information associated with the radial position ⁇ is transmitted to the control valve 4 of the reciprocating steam drive unit 2 via the driven unit 24 engaged with the control groove 22 to directly control the stroke position.
  • each reciprocating steam drive unit 2 and the position information of the piston 6 are transmitted to the rotation output unit 1 via each cam follower (engagement unit) 23 engaged with the cam groove 21 and fixed to the rotation output unit 1.
  • Control of the control valve 4 that is optimal for the position of the piston of the reciprocating steam drive unit 2 is performed via the control groove 22 and the driven portion 24 fixed to the piston rod 8.
  • the control groove 22 as the control unit is formed integrally with the rotation output unit 1 together with the cam groove 21 to control the reciprocating motion based on the control information corresponding to the position of the cam groove 21 in the radial direction.
  • the interlocking state with the other reciprocating steam drive unit is stable due to the degree of freedom such as a gap in the engagement state with the rotation output unit. In other words, stable control may become difficult during start-up or steady operation, and the control mechanism of each control valve 4 becomes complicated.
  • each reciprocating steam drive unit 2 is controlled to reciprocate based on control information corresponding to the radial position. Since the driving force is transmitted to the rotation output unit 1 via the cam follower 23, the plurality of reciprocating steam driving units 2 can be controlled uniformly with a simple configuration.
  • control information of the cam groove 21 and the control unit are both associated with the radial position ⁇ , the control unit is changed even if the number and arrangement of the reciprocating steam driving units 2 are changed. There is no need.
  • control groove 22 has a single continuous control curve that is formed at a position separated from the cam groove 21 so as not to intersect with the cam groove 21.
  • the control curve has a local maximum portion and a local minimum portion in the rotation main shaft direction (Z) when the radial position ⁇ is near 0 ° (360 °) and 180 °.
  • the shape of the control curve of the control groove corresponds to the position of the control valve 4, so it is not similar to the modified sine curve of the cam groove 21, and greatly deviates from the sine curve, and the maximum portion (near 0 °, 360 °) and The minimum part (near 180 °) stops and becomes flat.
  • the displacement difference between the top dead center and the bottom dead center of the control groove 22 corresponds to the reciprocating stroke of the control valve 4 in the vertical direction, and the cam groove 21 is in a curved state that is upside down. (See FIG. 7).
  • the control valve 4 controlled by the control groove 22 is controlled so that the rotation output unit 1 rotates in a constant direction R.
  • cam followers 23 extending in the horizontal direction are attached to the upper ends of the piston rods 8 projecting upward from the cylinders 5 of the four reciprocating steam driving units 2, and each cam follower 23 engages with a corresponding position of the cam groove 21. ing. The cam follower 23 is engaged with the side wall of the cam groove 21 while rotating, and the sliding resistance with the cam groove 21 is small.
  • a driven portion 24 extending in the horizontal direction is also attached to the upper end of the control rod 14 protruding upward from the control passage portion 11, and the tip of the driven portion 24 is engaged with the corresponding position of the control groove 22.
  • the driven portion 24 has a detoured shape so as not to interfere with the cylindrical portion 9.
  • the tip of the follower 24 is also engaged with the side wall of the control groove 22 while rotating, and the sliding resistance with the control groove 22 is small.
  • Supply-side steam A sent from a steam generator (not shown) is supplied to the four reciprocating steam driving units 2 via the supply pipe 15.
  • the control valves 4 of the four reciprocating steam driving units 2 have different stroke positions when the driven portion 24 of the control rod 14 is engaged with the control groove 22. For example, as shown in FIG. In the cylinder 5, when either the upper or lower discharge port 13 is closed by the control valve 4 and the supply port 12 is opened, the supply port 12 is closed by the control valve 4 on the opposite side and the discharge port 13 is reversed. Is released.
  • the supply-side water vapor A is supplied from the supply port 12 to the cylinder 5 to move the piston 6 from one end side to the other end side, and at the other end side of the piston 6 gas (discharge-side water vapor). B) is discharged from the supply port 12 through the discharge pipe 16 to the outside.
  • the pistons 6 of the four reciprocating steam driving units 2 are simultaneously moved in a preset direction by the pressure of the supply-side steam A.
  • the piston 6 repeats the above operation, and the piston rod 8 reciprocates to continuously rotate the rotation output unit 1 in a predetermined direction R with a predetermined rotational torque.
  • the control valve 4 is controlled by the engagement of the control groove 22 formed on the side surface of the rotation output portion 1 and the driven portion 24 provided on the control rod 14, the cam follower 23 of the piston rod 8 that pushes the cam groove 21. And the movement of the control valve 4 that controls the moving direction of the piston 6 can be completely synchronized, and there is no deviation in the movement of both.
  • the rotation output unit 1 can be reliably rotated even if the pressure of the supply-side water vapor A is small.
  • the stroke amount of the piston rod 8 must be increased accordingly.
  • the rotation output unit 1 continuously rotates in a certain direction R, the rotational torque is transmitted to the four generators 19 via the V-groove belt 17, and power can be generated by each generator 19.
  • the position (Z) of the control curve in the rotation main axis direction of the control groove 22 as the control unit is the control information, but for example, the depth of the groove may be the control information.
  • the distribution of the magnetic poles in the radial direction (N pole, S pole) may be used as the control information.
  • a cam groove that engages with an engaging portion of each reciprocating steam drive unit and a control unit for controlling the reciprocating motion of each reciprocating steam drive unit are integrated with the rotation output unit. Therefore, the reciprocating motion can be controlled based on the control information corresponding to the position of the cam groove in the rotational direction. Further, even if the number and arrangement of the reciprocating steam driving units are changed, it is not necessary to change the control unit and the control mechanism of the reciprocating steam driving unit. Furthermore, it is possible to change the characteristics of the steam engine simply by exchanging the cam groove and the rotation output section formed with the control section according to the torque characteristics.
  • the energy of the water vapor is first converted into a linear reciprocating motion by the reciprocating steam driving unit.
  • the energy of the water vapor can be efficiently converted into a linear reciprocating motion, and the size can be reduced.
  • the cam follower provided at the tip of the piston rod that reciprocates linearly is engaged with the cam groove formed on the side surface of the rotation output unit, and converted into the rotation motion of the rotation output unit. Since it is converted into a rotational motion by the engagement of the cam groove and the cam follower, the size can be reduced.
  • the reciprocating steam drive unit is arranged at three or more equal positions in the cross section of the rotation output unit, at least one cam follower always engages with a point other than the top dead center or bottom dead center of the cam groove. Since the cam follower always applies a rotational torque in a certain direction to the rotation output portion, the cam follower can pass through the top dead center or the bottom dead center smoothly, and a reliable rotational motion can be obtained.
  • the piston rod can be surely moved back and forth.
  • control valve is controlled by the engagement of the control groove formed on the side surface of the rotation output part and the driven part provided on the control rod integral with the control valve, the cam follower of the piston rod that pushes the cam groove;
  • the movement of the control valve that regulates the moving direction of the piston can be completely synchronized.
  • the pair of reciprocating steam driving units facing each other need only reverse their movements, and the adjacent reciprocating steam driving units. Since the drive units need only be displaced by a quarter, the design is easy.
  • the rotation output portion can be reliably rotated even if the water vapor pressure is small.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Transmission Devices (AREA)

Abstract

A reciprocal steam drive section (2) converts energy of steam into linear reciprocal motion.  A cam follower (23) provided at the distal end of a piston rod (8) performing linear reciprocal motion is made to engage with a cam groove (21) formed in the side of a rotation output section (1) and linear reciprocal motion is converted into rotary motion of the rotation output section (1).  Since linear reciprocal motion is converted into rotary motion through engagement of the cam groove (21) and the cam follower (23), compaction can be attained.  Since the reciprocal steam drive sections (2) are arranged at  positions dividing the cross-section of the rotation output section (1) equally into three or more, one or more cam followers (23) engage at points of the cam groove (21) other than the top and bottom dead centers, and since a rotary torque is always imparted to the rotation output section in a fixed direction by the cam follower (23), the cam follower (23) passes through the top or bottom dead center smoothly and reliable rotary motion is obtained.

Description

多気筒蒸気エンジンMulti-cylinder steam engine
 本発明は、多気筒蒸気エンジンに関するものである。 The present invention relates to a multi-cylinder steam engine.
 大気汚染や地球温暖化などの環境問題から、クリーンエネルギーとしての太陽光線による熱を利用したり、金属溶解炉やゴミ焼却炉において無駄に廃棄されていた熱を利用して水蒸気を発生させ、その水蒸気によって発電を行う技術が知られている。すなわち、発生した高温高圧の水蒸気により蒸気タービンを回転させ、蒸気タービンと連結された発電機により発電している。関連する特許文献としては、日本国特許公開公報特開2002-310401号がある。 Due to environmental problems such as air pollution and global warming, heat generated by sunlight as clean energy is used, or water that is wasted in metal melting furnaces and garbage incinerators is used to generate water vapor. A technique for generating electricity with water vapor is known. That is, the steam turbine is rotated by the generated high-temperature and high-pressure steam, and power is generated by a generator connected to the steam turbine. As related patent documents, there is Japanese Patent Publication No. 2002-310401.
 しかしながら、このような従来の技術にあっては、蒸気タービンを利用するため、圧力の高い蒸気が大量に必要となり且つ装置全体が大型化する。 However, in such a conventional technique, since a steam turbine is used, a large amount of high-pressure steam is required and the entire apparatus is enlarged.
 本発明は、このような従来の技術に着目してなされたものであり、水蒸気を利用した発電に利用でき且つ小型化が可能な多気筒蒸気エンジンを提供するものである。 The present invention has been made paying attention to such conventional technology, and provides a multi-cylinder steam engine that can be used for power generation using steam and can be reduced in size.
課題を解決するための手段
 本発明の技術的側面によれば、多気筒蒸気エンジンは、円筒側面を有する回転出力部であって断面中心を貫通する長手方向に沿った仮想軸線のまわりに回転自在に支持されるものと、前記回転出力部の側面を前記仮想軸線の回りに一周するように形成される無端のカム溝と、前記回転出力部の断面の所定の動径方向に配置され前記回転出力部と相互作用する複数のレシプロ蒸気駆動部であって、前記仮想軸線と平行な方向に往復運動するピストンロッドを有するものと、前記ピストンロッドに位置固定された係合部であって前記カム溝と係合して前記回転出力部に駆動力を付加するものと、各前記複数のレシプロ蒸気駆動部の往復運動を制御するための情報を有する制御部であって、前記回転出力部の側面を前記仮想軸線のまわりに一周するように前記制御情報の情報要素が分布して固定されるものとを具備し、前記情報要素の情報に基づいて前記複数のレシプロ蒸気駆動部を連動して往復運動させることにより前記回転出力部が連続回転することを特徴とする。
Means for Solving the Problems According to a technical aspect of the present invention, a multi-cylinder steam engine is a rotary output portion having a cylindrical side surface, and is rotatable around a virtual axis along a longitudinal direction passing through the center of a cross section. And an endless cam groove formed so as to make one side of the side surface of the rotation output portion around the virtual axis, and the rotation output portion arranged in a predetermined radial direction of the cross section of the rotation output portion. A plurality of reciprocating steam drive units interacting with the output unit, each having a piston rod that reciprocates in a direction parallel to the virtual axis, and an engagement unit fixed to the piston rod, the cam A control unit having information for controlling a reciprocating motion of each of the plurality of reciprocating steam driving units, and a control unit which engages with a groove and applies a driving force to the rotation output unit, and a side surface of the rotation output unit The provisional The information elements of the control information are distributed and fixed so as to make a round around the imaginary axis, and the plurality of reciprocating steam driving units are reciprocated in conjunction with each other based on the information of the information elements. Accordingly, the rotation output unit continuously rotates.
 本発明の別の技術的側面によれば、さらに、前記各レシプロ蒸気駆動部が、両端にそれぞれ供給口と排出口が隣接状態で一組ずつ形成されたシリンダと、シリンダ内で往復運動するピストンと、ピストンと一体的に結合されシリンダから外部に突出した前記ピストンロッドと、シリンダの両端でそれぞれ往復運動し、シリンダの両端の供給口と排出口をそれぞれ異なる方同士の組み合わせで交互に閉塞する一対の制御弁とを具備することを特徴とする。 According to another technical aspect of the present invention, each of the reciprocating steam driving units further includes a cylinder in which a pair of supply ports and discharge ports are formed adjacent to each other at both ends, and a piston that reciprocates in the cylinder. And the piston rod integrally connected to the piston and projecting outward from the cylinder, and reciprocating at both ends of the cylinder, respectively, and alternately closing and closing the supply port and the discharge port at both ends of the cylinder by different combinations. And a pair of control valves.
 本発明のさらに別の技術的側面によれば、前記制御部の情報要素は1本の無端の制御溝であって、前記カム溝と交差しないように前記回転出力部の側面に形成され、各前記制御弁が前記制御溝と係合することにより往復運動が制御されることを特徴とする。 According to still another technical aspect of the present invention, the information element of the control unit is an endless control groove formed on a side surface of the rotation output unit so as not to intersect the cam groove, The reciprocating motion is controlled by engaging the control valve with the control groove.
本発明の一実施形態に係る多気筒蒸気エンジンの平面図。1 is a plan view of a multi-cylinder steam engine according to an embodiment of the present invention. 図1中矢示DA方向から見た多気筒蒸気エンジンの部分断面図。FIG. 2 is a partial cross-sectional view of a multi-cylinder steam engine viewed from the direction indicated by the arrow DA in FIG. 1. 回転出力部を図2より90°回転させた状態を示す図2相当の部分断面図。FIG. 3 is a partial cross-sectional view corresponding to FIG. 2, illustrating a state in which the rotation output unit is rotated 90 ° from FIG. 2. 回転出力部を図3より90°回転させた状態を示す図3相当の部分断面図。FIG. 4 is a partial cross-sectional view corresponding to FIG. 3, illustrating a state where the rotation output unit is rotated 90 ° from FIG. 3. 一つのシリンダを示す分解断面図。The exploded sectional view showing one cylinder. 回転出力部を示す側面図。The side view which shows a rotation output part. カム溝及び制御溝の曲線を示す回転出力部の側面の展開図。The developed view of the side surface of the rotation output part which shows the curve of a cam groove and a control groove. カムフォロアとカム溝を示す拡大図。The enlarged view which shows a cam follower and a cam groove. シリンダの筒部を示す拡大断面図。The expanded sectional view which shows the cylinder part of a cylinder.
 本発明の好適な実施形態を図1~図9に基づいて説明する。尚、図1は全体の平面図(センタプーリ等は図示省略)、図2は図1の矢示DA方向から見た部分断面図(中央部分は図示省略)、図3は図2から回転出力部が90°回転した状態の部分断面図、図4は図3から回転出力部が更に90°回転した状態の部分断面図である。図2~図4は、いずれも見ている方向は同じである。 A preferred embodiment of the present invention will be described with reference to FIGS. 1 is a plan view of the whole (the center pulley and the like are not shown), FIG. 2 is a partial sectional view as seen from the direction of the arrow DA in FIG. 1 (the central part is not shown), and FIG. FIG. 4 is a partial cross-sectional view showing a state where the rotation output portion is further rotated by 90 ° from FIG. 2 to 4 are all in the same viewing direction.
 この実施形態の多気筒蒸気エンジンは、1つの回転出力部1と、4つのレシプロ蒸気駆動部2から構成されている。回転出力部1は上下方向に長い円柱形状で、その断面中心を貫通する軸線Xを中心にして、上下一対の軸受3により一定方向Rへ回転自在に支持されている。軸受3には図示せぬベアリング機構が設けられている。この回転出力部1の下方で、その断面の四等分位置に、それぞれ4つのレシプロ蒸気駆動部2が配置されている。 The multi-cylinder steam engine of this embodiment is composed of one rotation output unit 1 and four reciprocating steam drive units 2. The rotation output portion 1 has a cylindrical shape that is long in the vertical direction, and is supported by a pair of upper and lower bearings 3 so as to be rotatable in a fixed direction R around an axis X passing through the center of the cross section. The bearing 3 is provided with a bearing mechanism (not shown). Below the rotation output unit 1, four reciprocating steam driving units 2 are arranged at the quarter positions of the cross section.
 まず、レシプロ蒸気駆動部2の構造を説明する。4つのレシプロ蒸気駆動部2は同じ構造をしている。このレシプロ蒸気駆動部2は、後述する制御部としての制御溝22による制御弁4の制御構造以外は、一般に蒸気機関として使用されている公知の構造のものである。 First, the structure of the reciprocating steam drive unit 2 will be described. The four reciprocating steam driving units 2 have the same structure. The reciprocating steam drive unit 2 has a known structure generally used as a steam engine except for the control structure of the control valve 4 by a control groove 22 as a control unit described later.
 蒸気機関は爆発力を利用するエンジンに比べて駆動力が連続的に変化するため制御弁の制御がより重要である。したがって、本発明の多気筒蒸気エンジンは後述するように複数の蒸気エンジンが安定して連動するような制御構造を有する。 ∙ Control of the control valve is more important for steam engines because the driving force changes continuously compared to engines that use explosive power. Therefore, the multi-cylinder steam engine of the present invention has a control structure in which a plurality of steam engines are stably linked as will be described later.
 断面円筒状のシリンダ5の内部には上下に往復運動自在なピストン6が収納されている。ピストン6の側面にはシリンダ5の内面と摺動するピストンリング7が設けられている。 A piston 6 that can reciprocate up and down is accommodated in a cylinder 5 having a cylindrical section. A piston ring 7 that slides with the inner surface of the cylinder 5 is provided on the side surface of the piston 6.
 ピストン6には、前記回転出力部1の軸線Xと平行な状態で上方へ向けて延びるピストンロッド8が一体的に結合されている。ピストンロッド8はシリンダ5の上部に設けられた筒部9を通過してシリンダ5の上部へ突出している。筒部9の内面にはピストンロッド8を円滑に上下動させるための複数のボール10が保持されている(図9参照)。筒部9はある程度の長さを有し、ピストンロッド8を垂直に保持している。 A piston rod 8 extending upward in a state parallel to the axis X of the rotation output unit 1 is integrally coupled to the piston 6. The piston rod 8 passes through a cylindrical portion 9 provided at the upper part of the cylinder 5 and protrudes to the upper part of the cylinder 5. A plurality of balls 10 for smoothly moving the piston rod 8 up and down are held on the inner surface of the cylindrical portion 9 (see FIG. 9). The cylinder portion 9 has a certain length and holds the piston rod 8 vertically.
 シリンダ5の外側には上下方向に沿う制御通路部11が形成されている。この制御通路部11に対応するシリンダ5の側面には、上下端部に供給口12と排出口13が隣接した状態で一組ずつ形成されている。各組において、上下方向で供給口12が外側、排出口13が内側にそれぞれ位置している(図5参照)。 A control passage portion 11 is formed outside the cylinder 5 along the vertical direction. On the side surface of the cylinder 5 corresponding to the control passage portion 11, one set is formed in each of the upper and lower ends with the supply port 12 and the discharge port 13 being adjacent to each other. In each set, the supply port 12 is positioned on the outer side and the discharge port 13 is positioned on the inner side in the vertical direction (see FIG. 5).
 制御通路部11には2つの制御弁4が制御ロッド14にて結合された状態で収納されている。この制御ロッド14も前記回転出力部1の軸線Xと平行である。制御ロッド14は制御通路部11の上壁を貫通して上方へ突出している。制御弁4は上下一対で上下往復運動し、上方へ移動した時は、制御弁4が上方の供給口12と下方の排出口13を閉塞し、下方へ移動した時は、上方の排出口1と下方の供給口12を閉塞する。 In the control passage portion 11, two control valves 4 are accommodated in a state where they are coupled by a control rod 14. The control rod 14 is also parallel to the axis X of the rotation output unit 1. The control rod 14 protrudes upward through the upper wall of the control passage portion 11. The control valve 4 reciprocates up and down in a pair of upper and lower sides. When the control valve 4 moves upward, the control valve 4 closes the upper supply port 12 and the lower discharge port 13. When the control valve 4 moves downward, the upper discharge port 1. And the lower supply port 12 is closed.
 制御通路部11の上下両端部には、供給側水蒸気Aの供給パイプ15が接続され、中央部には排出側水蒸気Bの排出パイプ16が接続されている。図2~図5において、供給側水蒸気Aは黒塗りで示され、排出側水蒸気Bは点線格子状で示されている。 A supply pipe 15 for supply-side steam A is connected to the upper and lower ends of the control passage section 11, and a discharge pipe 16 for discharge-side steam B is connected to the center. 2 to 5, the supply side water vapor A is shown in black, and the discharge side water vapor B is shown in a dotted grid.
<回転出力部>
 回転出力部1は上下方向に長い円柱形状で、上下は前述ように軸受3により回転自在に支持されている。回転出力部1の上部には、上下に4本のV溝ベルト17を巻回可能なセンタプーリ18が取付けられている。このセンタプーリ18は回転出力部1と一体的に一定方向Rへ回転する。
<Rotation output part>
The rotation output unit 1 has a cylindrical shape that is long in the vertical direction, and the vertical direction is rotatably supported by the bearing 3 as described above. A center pulley 18 on which four V-groove belts 17 can be wound up and down is attached to the upper portion of the rotation output unit 1. The center pulley 18 rotates in a fixed direction R integrally with the rotation output unit 1.
 回転出力部1の四方には発電機19が支持され、その回転軸の先端プーリ20に前記V溝ベルト17がそれぞれ巻回されている。この発電機19は自動車のエンジン補機として利用される程度の大きさであり、多気筒蒸気エンジン全体の大きさとしても、横にすれば、自動車のエンジンルームに入るくらいのコンパクトさである。 A generator 19 is supported on the four sides of the rotation output unit 1, and the V-groove belt 17 is wound around a pulley 20 at the end of the rotation shaft. The generator 19 is large enough to be used as an engine accessory for an automobile, and even if the entire size of the multi-cylinder steam engine is horizontal, the generator 19 is compact enough to enter the engine room of an automobile.
 回転出力部1の円筒状の側面には複数のレシプロ蒸気駆動部2の往復運動を回転運動に変換するためのカム溝21が形成されている。このカム溝21は、正弦曲線を修正した変形正弦曲線(図7参照)で形成され回転出力部1の動径方向の位置φ(円柱座標の偏角)に関連づけられている。従って、このカム溝21の変形正弦曲線は、無停留且つ無端の連続曲線となり、回転出力部1が一回転することにより、カム溝21に係合する部材は上下方向で一往復する。 A cam groove 21 for converting the reciprocating motions of the plurality of reciprocating steam driving units 2 into rotational motions is formed on the cylindrical side surface of the rotational output unit 1. The cam groove 21 is formed by a modified sine curve (see FIG. 7) obtained by correcting the sine curve, and is associated with the radial position φ of the rotation output unit 1 (a declination of cylindrical coordinates). Therefore, the deformed sine curve of the cam groove 21 is a non-stop and endless continuous curve, and when the rotation output portion 1 makes one rotation, the member engaged with the cam groove 21 reciprocates once in the vertical direction.
 また、このカム溝21は上下方向での比率を大きく拡大した状態で形成されており、図6に示すように、カム溝21のストローク中央位置における軸線X(ピストンロッド8)に対する傾斜角度θが大変に小さくなっている。この角度θは45°以下が好ましい(この実施形態では約20°)。 Further, the cam groove 21 is formed in a state in which the ratio in the vertical direction is greatly enlarged. As shown in FIG. 6, the inclination angle θ with respect to the axis X (piston rod 8) at the stroke center position of the cam groove 21 is set. It has become very small. This angle θ is preferably 45 ° or less (in this embodiment, about 20 °).
<制御溝>
 回転出力部1の下部には制御溝22が形成されている。すなわち、本発明によれば制御溝22とカム溝21が回転出力部1に位置固定されるように一体的に形成されている。多気筒蒸気エンジンではこの特徴は重要であり、各レシプロ蒸気駆動部が共通の回転出力部1を介して連動するように能動的に制御することによりエンジンがスムーズに始動し、安定したトルク発生を維持することができる。
<Control groove>
A control groove 22 is formed below the rotation output unit 1. That is, according to the present invention, the control groove 22 and the cam groove 21 are integrally formed so as to be fixed to the rotation output portion 1. This feature is important for multi-cylinder steam engines. By actively controlling the reciprocating steam drive units to be linked via a common rotation output unit 1, the engine starts smoothly and generates stable torque. Can be maintained.
 本実施形態において、制御溝は各レシプロ蒸気駆動部2の往復運動を制御するための制御情報を有する制御部であって、回転出力部1の側面を一周するように制御情報に関連づけられた制御情報要素が分布固定されている。 In the present embodiment, the control groove is a control unit having control information for controlling the reciprocating motion of each reciprocating steam drive unit 2 and is associated with the control information so as to go around the side surface of the rotation output unit 1. Information elements are fixed in distribution.
 より詳細には、回転出力部1の動径方向の位置φに関連づけられた制御情報が回転出力部の側面に一次元的に分布し固定されている。本実施形態では制御情報要素は制御溝22およびその回転主軸方向の位置(Z)である。後述するように、動径方向の位置φに関連づけられた制御情報は制御溝22に係合する従動部24を介してレシプロ蒸気駆動部2の制御弁4に伝達されストローク位置を直接制御する。 More specifically, the control information associated with the radial position φ of the rotation output unit 1 is one-dimensionally distributed and fixed on the side surface of the rotation output unit. In the present embodiment, the control information elements are the control groove 22 and its position (Z) in the rotation main axis direction. As will be described later, the control information associated with the radial position φ is transmitted to the control valve 4 of the reciprocating steam drive unit 2 via the driven unit 24 engaged with the control groove 22 to directly control the stroke position.
 カム溝21と係合する各カムフォロア(係合部)23を介して各レシプロ蒸気駆動部2の駆動力とピストン6の位置情報が回転出力部1に伝達され、回転出力部1に固定された制御溝22とピストンロッド8に固定された従動部24を介して当該レシプロ蒸気駆動部2のピストンの位置に最適な制御弁4の制御が行われる。 The driving force of each reciprocating steam drive unit 2 and the position information of the piston 6 are transmitted to the rotation output unit 1 via each cam follower (engagement unit) 23 engaged with the cam groove 21 and fixed to the rotation output unit 1. Control of the control valve 4 that is optimal for the position of the piston of the reciprocating steam drive unit 2 is performed via the control groove 22 and the driven portion 24 fixed to the piston rod 8.
 したがって、制御部としての制御溝22がカム溝21とともに回転出力部1に一体的に形成されることによりカム溝21の動径方向の位置に相応した制御情報に基づいて往復運動を制御することができる。各レシプロ蒸気駆動部に往復運動に相応した独立の制御機構を設ける方法では、回転出力部との係合状態にギャップ等の自由度があることなどにより他のレシプロ蒸気駆動部との連動が安定せず、始動時や定常運転において安定な制御が困難となる場合もあり、また、各制御弁4の制御機構が複雑になる。 Therefore, the control groove 22 as the control unit is formed integrally with the rotation output unit 1 together with the cam groove 21 to control the reciprocating motion based on the control information corresponding to the position of the cam groove 21 in the radial direction. Can do. In the method in which each reciprocating steam drive unit is provided with an independent control mechanism corresponding to the reciprocating motion, the interlocking state with the other reciprocating steam drive unit is stable due to the degree of freedom such as a gap in the engagement state with the rotation output unit. In other words, stable control may become difficult during start-up or steady operation, and the control mechanism of each control valve 4 becomes complicated.
 これに対して本発明の多気筒蒸気エンジンは回転出力部1に1つの制御部が固定され、各レシプロ蒸気駆動部2が動径位置に応じた制御情報に基づいて往復運動が制御され、各カムフォロア23を介して駆動力が回転出力部1に伝達されるため、複数のレシプロ蒸気駆動部2を簡単な構成で統一的に制御することができる。 On the other hand, in the multi-cylinder steam engine of the present invention, one control unit is fixed to the rotation output unit 1, and each reciprocating steam drive unit 2 is controlled to reciprocate based on control information corresponding to the radial position. Since the driving force is transmitted to the rotation output unit 1 via the cam follower 23, the plurality of reciprocating steam driving units 2 can be controlled uniformly with a simple configuration.
 また、カム溝21と制御部の制御情報はいずれも動径方向の位置φに関連づけられるように形成されているため、レシプロ蒸気駆動部2の数や配置を変更しても制御部を変更する必要がない。 In addition, since the control information of the cam groove 21 and the control unit are both associated with the radial position φ, the control unit is changed even if the number and arrangement of the reciprocating steam driving units 2 are changed. There is no need.
 より具体的には、制御溝22はカム溝21と交差しない程度の離隔した位置に形成され無端で連続した一本の制御曲線を有する。図7に示すように制御曲線は動径方向の位置φが0°(360°)および180°の近傍において回転主軸方向(Z)に極大部分と極小部分を有する。本実施形態では制御溝の制御曲線の形状は制御弁4の位置に対応するのでカム溝21の変形正弦曲線と相似ではなく、正弦曲線から大きくはずれ、極大部分(0°、360°近傍)および極小部分(180°近傍)では停留して扁平な形状となる。 More specifically, the control groove 22 has a single continuous control curve that is formed at a position separated from the cam groove 21 so as not to intersect with the cam groove 21. As shown in FIG. 7, the control curve has a local maximum portion and a local minimum portion in the rotation main shaft direction (Z) when the radial position φ is near 0 ° (360 °) and 180 °. In the present embodiment, the shape of the control curve of the control groove corresponds to the position of the control valve 4, so it is not similar to the modified sine curve of the cam groove 21, and greatly deviates from the sine curve, and the maximum portion (near 0 °, 360 °) and The minimum part (near 180 °) stops and becomes flat.
 すなわち、制御溝22に係合する部材の上下方向での移動が一時的に停止する部分がある。この制御溝22の上死点と下死点の変位差は前記制御弁4の上下方向での往復運動ストロークに相当し、カム溝21とは凹凸状態が上下逆の曲線状態になっている(図7参照)。この制御溝22により制御された制御弁4は、回転出力部1が一定方向Rに回転するように制御される。 That is, there is a portion in which the movement of the member engaged with the control groove 22 in the vertical direction temporarily stops. The displacement difference between the top dead center and the bottom dead center of the control groove 22 corresponds to the reciprocating stroke of the control valve 4 in the vertical direction, and the cam groove 21 is in a curved state that is upside down. (See FIG. 7). The control valve 4 controlled by the control groove 22 is controlled so that the rotation output unit 1 rotates in a constant direction R.
 そして、4つのレシプロ蒸気駆動部2のシリンダ5から上方へ突出しているピストンロッド8の上端には水平方向に延びるカムフォロア23が取付けられ、各カムフォロア23はカム溝21の対応位置にそれぞれ係合している。カムフォロア23は回転しながらカム溝21の側壁に係合するもので、カム溝21との摺動抵抗が小さい。 Further, cam followers 23 extending in the horizontal direction are attached to the upper ends of the piston rods 8 projecting upward from the cylinders 5 of the four reciprocating steam driving units 2, and each cam follower 23 engages with a corresponding position of the cam groove 21. ing. The cam follower 23 is engaged with the side wall of the cam groove 21 while rotating, and the sliding resistance with the cam groove 21 is small.
 また、制御通路部11から上方へ突出している制御ロッド14の上端にも水平方向に延びる従動部24が取付けられ、該従動部24の先端は制御溝22の対応位置にそれぞれ係合している。従動部24は筒部9と干渉しないように迂回した形状をしている。この従動部24の先端も回転しながら制御溝22の側壁に係合するもので、制御溝22との摺動抵抗が小さい。 A driven portion 24 extending in the horizontal direction is also attached to the upper end of the control rod 14 protruding upward from the control passage portion 11, and the tip of the driven portion 24 is engaged with the corresponding position of the control groove 22. . The driven portion 24 has a detoured shape so as not to interfere with the cylindrical portion 9. The tip of the follower 24 is also engaged with the side wall of the control groove 22 while rotating, and the sliding resistance with the control groove 22 is small.
 次に、この実施形態の作用を説明する。図示せぬ蒸気発生装置から送られてきた供給側水蒸気Aを、供給パイプ15を介して、4つのレシプロ蒸気駆動部2に供給する。4つのレシプロ蒸気駆動部2の各制御弁4は、制御ロッド14の従動部24が制御溝22に係合することにより、ストローク位置が相違しており、例えば図2に示すように、1つのシリンダ5において、上下いずれか一方の排出口13が制御弁4により閉塞されて供給口12が開放される場合は、対向する側では逆に供給口12が制御弁4により閉塞されて排出口13が開放される。 Next, the operation of this embodiment will be described. Supply-side steam A sent from a steam generator (not shown) is supplied to the four reciprocating steam driving units 2 via the supply pipe 15. The control valves 4 of the four reciprocating steam driving units 2 have different stroke positions when the driven portion 24 of the control rod 14 is engaged with the control groove 22. For example, as shown in FIG. In the cylinder 5, when either the upper or lower discharge port 13 is closed by the control valve 4 and the supply port 12 is opened, the supply port 12 is closed by the control valve 4 on the opposite side and the discharge port 13 is reversed. Is released.
 従って、各シリンダ5において、供給側水蒸気Aは供給口12からシリンダ5に供給されて、ピストン6を一端側から他端側へ移動させると共に、ピストン6の他端側にある気体(排出側水蒸気B)を供給口12から排出パイプ16を介して外部へ排出する。4つのレシプロ蒸気駆動部2の各ピストン6は供給側水蒸気Aの圧力により、同時に予め設定された方向へ移動する。 Accordingly, in each cylinder 5, the supply-side water vapor A is supplied from the supply port 12 to the cylinder 5 to move the piston 6 from one end side to the other end side, and at the other end side of the piston 6 gas (discharge-side water vapor). B) is discharged from the supply port 12 through the discharge pipe 16 to the outside. The pistons 6 of the four reciprocating steam driving units 2 are simultaneously moved in a preset direction by the pressure of the supply-side steam A.
 ピストン6が移動し、それと一体のピストンロッド8が移動すると、先端のカムフォロア23がカム溝21に係合しているため、回転出力部1を一定方向Rへ回転させる。回転出力部1が一定方向Rに回転すると、制御溝22に係合している従動部24を介して、制御弁4を今の状態とは反対側の方向へ移動させる。制御弁4が反対側へ移動すると、各ピストン6の上下端部において制御弁4により閉塞される供給口12及び排出口13が逆になり、供給側水蒸気Aの供給が他端側に変更になるため、ピストン6は他端側から一端側へ戻るように移動する。 When the piston 6 moves, and the piston rod 8 integrated therewith moves, the cam follower 23 at the tip is engaged with the cam groove 21, so that the rotation output portion 1 is rotated in a fixed direction R. When the rotation output unit 1 rotates in a certain direction R, the control valve 4 is moved in the direction opposite to the current state via the driven unit 24 engaged with the control groove 22. When the control valve 4 moves to the opposite side, the supply port 12 and the discharge port 13 closed by the control valve 4 at the upper and lower ends of each piston 6 are reversed, and the supply of the supply side water vapor A is changed to the other end side. Therefore, the piston 6 moves so as to return from the other end side to the one end side.
 以下、ピストン6は上記の動作を繰り返し、ピストンロッド8は往復運動して、回転出力部1を一定方向Rへ所定の回転トルクで連続回転させる。制御弁4の制御を、回転出力部1の側面に形成した制御溝22と、制御ロッド14に設けられた従動部24との係合により行うため、カム溝21を押すピストンロッド8のカムフォロア23と、ピストン6の移動方向を制御する制御弁4との動きを完全に同期させることができ、両者の動きに狂いが生じない。 Hereinafter, the piston 6 repeats the above operation, and the piston rod 8 reciprocates to continuously rotate the rotation output unit 1 in a predetermined direction R with a predetermined rotational torque. Since the control valve 4 is controlled by the engagement of the control groove 22 formed on the side surface of the rotation output portion 1 and the driven portion 24 provided on the control rod 14, the cam follower 23 of the piston rod 8 that pushes the cam groove 21. And the movement of the control valve 4 that controls the moving direction of the piston 6 can be completely synchronized, and there is no deviation in the movement of both.
 90°ずつ角度が相違した4つのピストンロッド8のカムフォロア23が、回転出力部1のカム溝21に係合しているため、対向位置にある2つのカムフォロア23がカム溝21の上死点及び下死点に位置したとしても、それ以外のカムフォロア23は必ず上死点及び下死点以外の位置にある。そのため、回転出力部1には一定方向Rへの回転トルクが常に付与され、カムフォロア23のカム溝21における上死点又は下死点の通過が円滑となり、確実な回転運動が得られる。 Since the cam followers 23 of the four piston rods 8 having different angles by 90 ° are engaged with the cam grooves 21 of the rotation output portion 1, the two cam followers 23 at the opposing positions are the top dead center and the cam groove 21. Even if it is located at the bottom dead center, the other cam followers 23 are always located at positions other than the top dead center and the bottom dead center. Therefore, a rotational torque in a fixed direction R is always applied to the rotation output unit 1, and the passage of the top dead center or the bottom dead center in the cam groove 21 of the cam follower 23 becomes smooth, and a reliable rotational motion is obtained.
 また、この実施形態では、ピストンロッド8のストローク中央位置でのカム溝21に対する傾斜角度θが小さいため、供給側水蒸気Aの圧力が小さくても回転出力部1を確実に回転させることができる。但し、その分、ピストンロッド8のストローク量は必を大きくする必要がある。 Further, in this embodiment, since the inclination angle θ with respect to the cam groove 21 at the center position of the stroke of the piston rod 8 is small, the rotation output unit 1 can be reliably rotated even if the pressure of the supply-side water vapor A is small. However, the stroke amount of the piston rod 8 must be increased accordingly.
 回転出力部1が一定方向Rへ連続回転すれば、その回転トルクがV溝ベルト17を介して4つの発電機19に伝達され、各発電機19により発電を行うことができる。 If the rotation output unit 1 continuously rotates in a certain direction R, the rotational torque is transmitted to the four generators 19 via the V-groove belt 17, and power can be generated by each generator 19.
変更実施形態 
 以上の実施形態では、4つのレシプロ蒸気駆動部2を回転出力部1の断面の四等分位置にそれぞれ配置しため、対向する一対のレシプロ蒸気駆動部2同士は動きを逆にすれば良く、且つ隣接するレシプロ蒸気駆動部2同士は動きを1/4変位させれば良いため、設計が容易である。但し、レシプロ蒸気駆動部2の配置は四等分位置に限定されるものでなく、3つ又は5つ以上の等分配置にしても良い。
Modified embodiment
In the above embodiment, since the four reciprocating steam driving units 2 are respectively arranged at the quadrant positions in the cross section of the rotation output unit 1, the pair of opposing reciprocating steam driving units 2 only have to reverse their movements. In addition, the adjacent reciprocating steam drive units 2 need only be displaced by ¼, so that the design is easy. However, the arrangement of the reciprocating steam driving unit 2 is not limited to the quarterly position, and may be three or five or more equally.
 図2に示す実施形態では制御部としての制御溝22は制御曲線の回転主軸方向の位置(Z)が制御情報であるとしたが、たとえば溝の深さを制御情報としてもよい。また、制御溝22に代えて動径方向の磁極(N極、S極)の分布を制御情報としてもよい。 In the embodiment shown in FIG. 2, the position (Z) of the control curve in the rotation main axis direction of the control groove 22 as the control unit is the control information, but for example, the depth of the groove may be the control information. Further, instead of the control groove 22, the distribution of the magnetic poles in the radial direction (N pole, S pole) may be used as the control information.
発明の効果
 本発明によれば、それぞれのレシプロ蒸気駆動部の係合部が係合するカム溝とそれぞれのレシプロ蒸気駆動部の往復運動を制御するための制御部が回転出力部に対して一体的に形成されているので、カム溝の回転方向の位置に相応した制御情報に基づいて往復運動を制御することができる。また、レシプロ蒸気駆動部の数や配置を変更しても制御部やレシプロ蒸気駆動部の制御機構を変更する必要がない。さらにトルク特性に応じたカム溝と制御部が形成された回転出力部に交換するだけで蒸気エンジンの特性を変更することができる。
Advantageous Effects of Invention According to the present invention, a cam groove that engages with an engaging portion of each reciprocating steam drive unit and a control unit for controlling the reciprocating motion of each reciprocating steam drive unit are integrated with the rotation output unit. Therefore, the reciprocating motion can be controlled based on the control information corresponding to the position of the cam groove in the rotational direction. Further, even if the number and arrangement of the reciprocating steam driving units are changed, it is not necessary to change the control unit and the control mechanism of the reciprocating steam driving unit. Furthermore, it is possible to change the characteristics of the steam engine simply by exchanging the cam groove and the rotation output section formed with the control section according to the torque characteristics.
 より具体的には、本発明の技術的側面によれば、まずレシプロ蒸気駆動部により水蒸気のエネルギーを直進往復運動に変換する。密閉されたシリンダ内への水蒸気の供給・排出により、水蒸気のエネルギーを効率的に直進往復運動に変換することができ、小型化が可能である。そして、直進往復運動するピストンロッドの先端に設けられたカムフォロアを、回転出力部の側面に形成されたカム溝に係合させ、回転出力部の回転運動に変換する。カム溝とカムフォロアの係合により回転運動に変換するため、小型化が可能である。回転出力部の断面の三等分以上の等分位置にレシプロ蒸気駆動部が配置されているため、カム溝の上死点又は下死点以外の点に必ず1つ以上のカムフォロアが係合しており、そのカムフォロアにより回転出力部に一定方向への回転トルクが常に付与されるため、カムフォロアの上死点又は下死点の通過が円滑で、確実な回転運動が得られる。 More specifically, according to the technical aspect of the present invention, the energy of the water vapor is first converted into a linear reciprocating motion by the reciprocating steam driving unit. By supplying and discharging the water vapor into the sealed cylinder, the energy of the water vapor can be efficiently converted into a linear reciprocating motion, and the size can be reduced. Then, the cam follower provided at the tip of the piston rod that reciprocates linearly is engaged with the cam groove formed on the side surface of the rotation output unit, and converted into the rotation motion of the rotation output unit. Since it is converted into a rotational motion by the engagement of the cam groove and the cam follower, the size can be reduced. Since the reciprocating steam drive unit is arranged at three or more equal positions in the cross section of the rotation output unit, at least one cam follower always engages with a point other than the top dead center or bottom dead center of the cam groove. Since the cam follower always applies a rotational torque in a certain direction to the rotation output portion, the cam follower can pass through the top dead center or the bottom dead center smoothly, and a reliable rotational motion can be obtained.
 本発明によれば、シリンダ内におけるピストンの両側の空間に、制御弁により供給口から水蒸気を交互に供給し且つ排出口から水蒸気を排出するため、ピストンロッドの確実な直進往復運動が得られる。 According to the present invention, since the steam is alternately supplied from the supply port to the space on both sides of the piston in the cylinder and discharged from the discharge port, the piston rod can be surely moved back and forth.
 また、制御弁の制御を、回転出力部の側面に形成した制御溝と、制御弁と一体の制御ロッドに設けられた従動部との係合により行うため、カム溝を押すピストンロッドのカムフォロアと、ピストンの移動方向を規制する制御弁との動きを完全に同期させることができる。 In addition, since the control valve is controlled by the engagement of the control groove formed on the side surface of the rotation output part and the driven part provided on the control rod integral with the control valve, the cam follower of the piston rod that pushes the cam groove; The movement of the control valve that regulates the moving direction of the piston can be completely synchronized.
 さらに、4つのレシプロ蒸気駆動部が回転出力部の断面の四等分位置にそれぞれ配置されているため、対向する一対のレシプロ蒸気駆動部同士は動きを逆にすれば良く、且つ隣接するレシプロ蒸気駆動部同士は動きを1/4変位させれば良いため、設計が容易である。 Furthermore, since the four reciprocating steam driving units are respectively arranged at the four-quarter positions in the cross section of the rotation output unit, the pair of reciprocating steam driving units facing each other need only reverse their movements, and the adjacent reciprocating steam driving units. Since the drive units need only be displaced by a quarter, the design is easy.
 また、ピストンロッドのストローク中央位置でのカム溝に対する角度が45°未満であるため、水蒸気の圧力が小さくても回転出力部を確実に回転させることができる。 Also, since the angle with respect to the cam groove at the center position of the stroke of the piston rod is less than 45 °, the rotation output portion can be reliably rotated even if the water vapor pressure is small.
産業上の利用可能性
(米国指定)
 本国際特許出願は米国指定に関し、2008年5月2日に出願された日本国特許出願第2008-120282号(2008年5月2日出願)について米国特許法第119条(a)に基づく優先権の利益を援用し、当該開示内容を引用する。
Industrial applicability (US designation)
This international patent application is based on US designation 119 (a) regarding Japanese patent application No. 2008-120282 (filed on May 2, 2008) filed on May 2, 2008 with respect to designation in the United States. Incorporate the interests of the right and cite the disclosure.

Claims (9)

  1.  円筒側面を有する回転出力部であって断面中心を貫通する長手方向に沿った仮想軸線のまわりに回転自在に支持されるものと、
     前記回転出力部の側面を前記仮想軸線の回りに一周するように形成される無端のカム溝と、
     前記回転出力部の断面の所定の動径方向に配置され前記回転出力部と相互作用する複数のレシプロ蒸気駆動部であって、前記仮想軸線と平行な方向に往復運動するピストンロッドを有するものと、
     前記ピストンロッドに位置固定された係合部であって前記カム溝と係合して前記回転出力部に駆動力を付加するものと、
     各前記複数のレシプロ蒸気駆動部の往復運動を制御するための情報を有する制御部であって、前記回転出力部の側面を前記仮想軸線のまわりに一周するように前記制御情報の情報要素が分布して固定されるものとを具備し、
     前記情報要素の情報に基づいて前記複数のレシプロ蒸気駆動部を連動して往復運動させることにより前記回転出力部が連続回転することを特徴とする多気筒蒸気エンジン。
    A rotation output portion having a cylindrical side surface, which is rotatably supported around an imaginary axis along the longitudinal direction passing through the center of the cross section;
    An endless cam groove formed so as to make a round of the side surface of the rotation output portion around the virtual axis;
    A plurality of reciprocating steam drive units arranged in a predetermined radial direction of a section of the rotation output unit and interacting with the rotation output unit, and having a piston rod that reciprocates in a direction parallel to the virtual axis; ,
    An engaging portion fixed to the piston rod, which engages with the cam groove and applies a driving force to the rotation output portion;
    A control unit having information for controlling reciprocating motion of each of the plurality of reciprocating steam driving units, wherein information elements of the control information are distributed so as to make a round of the side surface of the rotation output unit around the virtual axis And is fixed,
    The multi-cylinder steam engine, wherein the rotation output unit continuously rotates by reciprocating the plurality of reciprocating steam driving units in conjunction with each other based on information of the information element.
  2.  前記係合部は前記ピストンロッドの先端に設けられたカムフォロアであり、
     前記複数のレシプロ蒸気駆動部は前記回転出力部の断面を動径方向に等分割した方向に配置されることを特徴とする請求項1記載の多気筒蒸気エンジン。
    The engagement portion is a cam follower provided at the tip of the piston rod,
    2. The multi-cylinder steam engine according to claim 1, wherein the plurality of reciprocating steam driving units are arranged in a direction in which a section of the rotation output unit is equally divided in a radial direction.
  3.  前記係合部が係合する前記カム溝の係合位置に関連づけて各前記レシプロ蒸気駆動部の往復運動を制御するように前記情報要素が前記制御部に固定されることを特徴とする請求項1記載の多気筒蒸気エンジン。 The information element is fixed to the control unit so as to control a reciprocating motion of each reciprocating steam drive unit in association with an engagement position of the cam groove with which the engagement unit is engaged. The multi-cylinder steam engine according to claim 1.
  4.  前記各レシプロ蒸気駆動部が、
     両端にそれぞれ供給口と排出口が隣接状態で一組ずつ形成されたシリンダと、
     シリンダ内で往復運動するピストンと、
     ピストンと一体的に結合されシリンダから外部に突出した前記ピストンロッドと、
     シリンダの両端でそれぞれ往復運動し、シリンダの両端の供給口と排出口をそれぞれ異なる方同士の組み合わせで交互に閉塞する一対の制御弁とを具備することを特徴とする請求項1乃至3のいずれか1項記載の多気筒蒸気エンジン。
    Each of the reciprocating steam driving units,
    A cylinder having a pair of supply ports and discharge ports adjacent to each other at both ends;
    A piston that reciprocates in a cylinder;
    The piston rod integrally connected to the piston and protruding outward from the cylinder;
    4. A control valve according to claim 1, further comprising a pair of control valves that reciprocate at both ends of the cylinder and alternately close the supply port and the discharge port at both ends of the cylinder in different combinations. A multi-cylinder steam engine according to claim 1.
  5.  前記制御部の情報要素は1本の無端の制御溝であって、前記カム溝と交差しないように前記回転出力部の側面に形成され、各前記制御弁が前記制御溝と係合することにより往復運動が制御されることを特徴とする請求項4記載の多気筒蒸気エンジン。 The information element of the control unit is an endless control groove formed on a side surface of the rotation output unit so as not to intersect the cam groove, and each control valve is engaged with the control groove. The multi-cylinder steam engine according to claim 4, wherein the reciprocating motion is controlled.
  6.  前記制御溝は前記カム溝の形状に相応して前記仮想軸線方向に極大および極小となる曲線を有し、前記極大および極小となる部分において前記ピストンが実質的に停留するような曲線であることを特徴とする請求項5記載の多気筒蒸気エンジン。 The control groove has a curve having a maximum and a minimum in the imaginary axis direction corresponding to the shape of the cam groove, and is a curve in which the piston substantially stops at the maximum and minimum portions. The multi-cylinder steam engine according to claim 5.
  7.  制御弁に回転出力部の軸線と平行な方向に沿う制御ロッドを一体的に結合すると共に、該制御ロッドの先端に前記制御溝に係合して往復運動する従動部を設けたことを特徴とする請求項5または6記載の多気筒蒸気エンジン。 A control rod is integrally coupled to the control valve along a direction parallel to the axis of the rotation output portion, and a follower that reciprocates by engaging with the control groove is provided at the tip of the control rod. The multi-cylinder steam engine according to claim 5 or 6.
  8.  4つのレシプロ蒸気駆動部が回転出力部の断面の四等分位置にそれぞれ配置されていることを特徴とする請求項1乃至7のいずれか1項記載の多気筒蒸気エンジン。 The multi-cylinder steam engine according to any one of claims 1 to 7, wherein the four reciprocating steam driving sections are respectively arranged at the quarterly positions of the cross section of the rotation output section.
  9.  ピストンロッドのストローク中央位置でのカム溝に対する傾斜角度が45°未満であることを特徴とする請求項1乃至8のいずれか1項に記載の多気筒蒸気エンジン。 The multi-cylinder steam engine according to any one of claims 1 to 8, wherein an inclination angle with respect to a cam groove at a stroke center position of the piston rod is less than 45 °.
PCT/JP2009/058364 2008-05-02 2009-04-28 Multicylinder steam engine WO2009133893A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-120282 2008-05-02
JP2008120282A JP2009270459A (en) 2008-05-02 2008-05-02 Multiple cylinder steam-engine

Publications (1)

Publication Number Publication Date
WO2009133893A1 true WO2009133893A1 (en) 2009-11-05

Family

ID=41255109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058364 WO2009133893A1 (en) 2008-05-02 2009-04-28 Multicylinder steam engine

Country Status (2)

Country Link
JP (1) JP2009270459A (en)
WO (1) WO2009133893A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1352985A (en) * 1918-04-20 1920-09-14 Murphy Engineering Company Explosive-engine
US1918840A (en) * 1930-04-01 1933-07-18 Oliver H Eriksen Internal combustion engine
JPS5744701A (en) * 1980-06-13 1982-03-13 Haintsuuyoahimu Shiyumitsuto Pinston engine
WO1988005495A1 (en) * 1987-01-16 1988-07-28 Geelong Engine Co., Pty. Ltd. Axial engine
JP2004530068A (en) * 2000-10-30 2004-09-30 チャールズ ラッセル トーマス Homogeneous charge compression ignition barrel engine
US20060174613A1 (en) * 2005-02-09 2006-08-10 Edward Pritchard Valve and auxiliary exhaust system for high efficiency steam engines and compressed gas motors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1352985A (en) * 1918-04-20 1920-09-14 Murphy Engineering Company Explosive-engine
US1918840A (en) * 1930-04-01 1933-07-18 Oliver H Eriksen Internal combustion engine
JPS5744701A (en) * 1980-06-13 1982-03-13 Haintsuuyoahimu Shiyumitsuto Pinston engine
WO1988005495A1 (en) * 1987-01-16 1988-07-28 Geelong Engine Co., Pty. Ltd. Axial engine
JP2004530068A (en) * 2000-10-30 2004-09-30 チャールズ ラッセル トーマス Homogeneous charge compression ignition barrel engine
US20060174613A1 (en) * 2005-02-09 2006-08-10 Edward Pritchard Valve and auxiliary exhaust system for high efficiency steam engines and compressed gas motors

Also Published As

Publication number Publication date
JP2009270459A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
US10337452B2 (en) Energy recovery system
JP5923801B2 (en) Improved assembly
US20060071561A1 (en) Electromagnetic power device
US9540994B2 (en) Planetary crank gear design for internal combustion engines
US11408286B2 (en) Rotational displacement apparatus
US8839687B2 (en) Reciprocating piston mechanism with extended piston offset
US9528585B2 (en) Piston engine
WO2009133893A1 (en) Multicylinder steam engine
US20210131540A1 (en) External heat engine with non-sinusoidal motion
KR20140045520A (en) Desmodronic shaft and yoke assembly for translating linear to rotary motion
US20220345004A1 (en) Linear electric device
US8826800B2 (en) Reciprocating piston mechanism with extended piston offset
US11384639B2 (en) Engine with at least one of non-sinusoidal motion and embedded pistons
US8997627B2 (en) Thermal engine with an improved valve system
US6799542B2 (en) Engine having piston-cam assembly powertrain
KR101150327B1 (en) Swash plate type inflator and auxiliary power unit using the same
JP2005171857A (en) 4-cycle reciprocating engine
JP6437332B2 (en) Variable expansion ratio mechanism
US10309301B2 (en) Constant-volume combustion engine
JP2002369487A (en) Power-generating equipment
KR20040080866A (en) Axial flow 4 stroke reciprocating engine
US10954886B2 (en) Stirling cycle and linear-to-rotary mechanism systems, devices, and methods
JP2009007950A (en) Gas pressure engine and air compressor
JP5482764B2 (en) Fluid machinery
EP3246239A1 (en) Converter of dynamic to rotation motion by means of a side link

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09738830

Country of ref document: EP

Kind code of ref document: A1