WO2009133759A1 - Method for cleaning euv exposure apparatus - Google Patents

Method for cleaning euv exposure apparatus Download PDF

Info

Publication number
WO2009133759A1
WO2009133759A1 PCT/JP2009/057249 JP2009057249W WO2009133759A1 WO 2009133759 A1 WO2009133759 A1 WO 2009133759A1 JP 2009057249 W JP2009057249 W JP 2009057249W WO 2009133759 A1 WO2009133759 A1 WO 2009133759A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
exposure apparatus
euv exposure
cleaning
molybdenum
Prior art date
Application number
PCT/JP2009/057249
Other languages
French (fr)
Japanese (ja)
Inventor
亮 和泉
昌美 井田
一樹 阿部
Original Assignee
国立大学法人九州工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州工業大学 filed Critical 国立大学法人九州工業大学
Publication of WO2009133759A1 publication Critical patent/WO2009133759A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70916Pollution mitigation, i.e. mitigating effect of contamination or debris, e.g. foil traps

Definitions

  • the present invention relates to a method for cleaning an EUV exposure apparatus for performing EUV (Extreme Ultra Violet) lithography.
  • the atomic hydrogen was generated by catalytic cracking reaction by contacting a peeling gas containing hydrogen atoms and hydrogen molecules with a heated high melting point catalyst such as tungsten, and used for semiconductor production.
  • a heated high melting point catalyst such as tungsten
  • the EUV exposure apparatus for performing the EUV lithography is generally used in a vacuum state.
  • the contamination of the optical element with carbon is a problem.
  • the exposure apparatus often contains a residual gas containing an organic compound caused by oil or lubricant of a vacuum pump.
  • a wafer coated with a photoresist is introduced into the vacuum chamber of the apparatus.
  • ultra-short ultraviolet rays are irradiated here, the solvent remaining in the apparatus evaporates, or the resin constituting the photoresist. Is decomposed and desorbed, so that a gas containing an organic compound is released into the apparatus.
  • the gas molecules containing the organic compound adhere as foreign matters to various interfaces of the EUV exposure apparatus.
  • foreign matter caused by a plasma generation source using a tin raw material or the like used for generating EUV radiation may adhere to the exposure apparatus.
  • the methods and means using hydrogen radicals, halogen molecules, etc. proposed so far (for example, Patent Document 3 or 4). There is a problem that is not always sufficient.
  • the EUV exposure optical system is an ultra-high precision precision instrument optical system adjusted to the order of nm in a vacuum atmosphere, and requires precise temperature management. Therefore, even when cleaning with hydrogen radicals is performed, it must be performed at as low a temperature as possible, but such consideration has not been made in the prior art.
  • An object of the present invention is to provide a method for cleaning an EUV exposure apparatus without damage or with low damage.
  • the temperature of the heated metal catalyst body that generates hydrogen radicals or the like is lowered as much as possible in order not to damage the EUV exposure apparatus system or to minimize the extent of damage. There is a need.
  • the temperature of the metal catalyst body is preferably high. Accordingly, the present inventors have solved the above-mentioned conflicting technical matters, and have earnestly studied a method for generating hydrogen radicals at high temperature and high density at a low temperature as much as possible. is there.
  • the present invention relates to a method for cleaning an EUV exposure apparatus to which foreign matter has adhered using hydrogen radicals, obtained by contacting a hydrogen molecule-containing gas with molybdenum or a molybdenum alloy heated to 1000 to 1600 ° C., and hydrogen radicals
  • the EUV exposure apparatus cleaning method is characterized in that a hydrogen radical-containing gas having a density of 1 ⁇ 10 9 to 1 ⁇ 10 16 / cm 3 is used.
  • EUV means light having a wavelength of about 150 nm or less or soft X-ray.
  • the EUV exposure apparatus is a member such as a lens, a mirror, a mask, an EUV generation source, other accessories, and a material such as a resist used in addition to an exposure apparatus for performing EUV lithography. It means the whole including.
  • Patent Document 2 as a resist stripping method that simplifies the step of stripping the resist, or a resist stripping method that cleans the base layer at the same time as stripping the resist, a heated refractory catalyst body, a hydrogen atom, A method is described in which atomic hydrogen is generated by a catalytic decomposition reaction with a stripping gas containing hydrogen molecules, the generated atomic hydrogen is brought into contact with the resist, and the resist is stripped in a gas phase. And as a refractory metal (catalyst body), 1 type of metal selected from the metal group which consists of tungsten, tantalum, molybdenum, vanadium, platinum, and thorium, or 2 or more types of metals selected from the said metal group are included. Alloys are mentioned.
  • a silicon substrate on which a positive resist having a thickness of about 1 ⁇ m is formed by a resist removal apparatus is applied to a tungsten wire (high melting point) with a hydrogen flow rate of 100 sccm (standard cubic centimeter per minutes) and a diameter of 0.5 mm. It is only described that the catalyst body was stripped for 30 minutes at a tungsten temperature of about 1700 ° C.
  • the density of hydrogen radicals effective for cleaning an EUV exposure apparatus at a temperature lower by 300 ° C. or more than that of tungsten is 1 ⁇ 10 9 to 1 ⁇ .
  • the present invention provides a metal catalyst body capable of generating hydrogen radicals as dense as possible at as low a temperature as possible from the viewpoint of providing a method for efficiently and effectively cleaning an EUV exposure apparatus without damage or low damage.
  • the known high-temperature catalyst body made of tungsten is not simply replaced with molybdenum.
  • the EUV exposure apparatus is cleaned using a hydrogen radical-containing gas having a high hydrogen radical density at a temperature of 1000 to 1600 ° C., which is lower than the temperature in the prior art. Cleaning can be performed efficiently and effectively with low damage.
  • FIG. 1 It is a schematic diagram of an EUV exposure apparatus equipped with a hydrogen radical generator used in the cleaning method of the present invention. It is a figure which shows the relationship between the temperature of each metal catalyst body, and the density of the generated hydrogen radical.
  • the present invention relates to a hydrogen radical obtained by contacting a hydrogen-containing gas with heated molybdenum or a molybdenum alloy in a method for cleaning an EUV exposure apparatus to which organic and / or inorganic foreign matter has adhered using hydrogen radicals.
  • the contained gas is used.
  • the hydrogen radical means atomic hydrogen
  • the hydrogen-containing gas may be a pure hydrogen molecular gas or a mixed gas with an inert gas other than hydrogen molecules.
  • atomic hydrogen or hydrogen ions may be included.
  • the molybdenum alloy means an alloy composed mainly of molybdenum and one or more other metals.
  • EUV in the present invention means light having a wavelength of about 150 nm or less or soft X-ray, and the EUV exposure apparatus of the present invention performs lithography using such EUV.
  • the density of hydrogen radicals obtained by contacting a hydrogen-containing gas as described above with molybdenum or a molybdenum alloy heated to 1000 to 1600 ° C., preferably 1000 to 1400 ° C. is 1 ⁇ 10 9 to 1
  • a hydrogen radical-containing gas in the range of ⁇ 10 16 / cm 3 , preferably in the range of 1 ⁇ 10 9 to 1 ⁇ 10 15 / cm 3 is used.
  • a means for cleaning is attached to the EUV exposure apparatus. That is, an exposure apparatus for EUV lithography, in order to clean the apparatus to which foreign matter has adhered using hydrogen radicals, the apparatus includes a hydrogen-containing gas introduction part, a catalyst body made of molybdenum or a molybdenum alloy, This is an EUV exposure apparatus equipped with a hydrogen radical generator (generation unit) comprising a shutter.
  • a hydrogen radical generator generation unit
  • FIG. 1 is a schematic view of an example of an EUV exposure apparatus for explaining the cleaning method of the present invention. Since decomposition cleaning of the EUV exposure apparatus is virtually impossible, industrially, as shown in FIG. 1, a hydrogen radical generator or cleaning device (in FIG. 1, a hydrogen-containing gas introduction part 2 and a heated metal) A catalyst body (molybdenum wire) 4 and a portion composed of a shutter 5) are used by being attached to an EUV exposure apparatus. At that time, in order to further reduce the temperature rise and to create a light source passage, it is preferable to install the cleaning object and the hydrogen radical generator separately as described later.
  • a hydrogen radical generator or cleaning device in FIG. 1, a hydrogen-containing gas introduction part 2 and a heated metal
  • a catalyst body (molybdenum wire) 4 and a portion composed of a shutter 5) are used by being attached to an EUV exposure apparatus. At that time, in order to further reduce the temperature rise and to create a light source passage, it is preferable to install the cleaning object and the hydrogen radical generator
  • 1 is a vacuum chamber
  • 2 is a hydrogen-containing gas introduction unit
  • 3 is a gas exhaust unit comprising a vacuum pump and a control valve
  • 4 is a heated metal catalyst body (molybdenum wire)
  • 5 is a shutter
  • 5 constitutes a hydrogen radical generator.
  • a metal catalyst body heating part for heating the molybdenum wire 4 is also necessary, but this is not shown.
  • Reference numeral 6 denotes a substrate holding unit for holding a substrate with resist (not shown).
  • 7 is an EUV (ultrashort ultraviolet) light source
  • 8 is a hydrogen radical monitor.
  • a twin black circle 9 schematically represents molecular hydrogen
  • a single black circle 10 schematically represents a hydrogen radical.
  • the gas exhaust unit can also be used as an exhaust system of the exposure apparatus. Further, it is not necessary to provide a radical monitor for measuring hydrogen radicals.
  • a mass flow controller is installed in the introduction part 2 of the hydrogen-containing gas, the generation rate of hydrogen radicals can be controlled. Therefore, it is preferable to install a flow rate control device such as a mass flow controller in the gas introduction part.
  • a conductance control valve is installed in the gas exhaust unit 3, the gas pressure in the vacuum chamber 1 can be controlled. Therefore, it is preferable to install a gas pressure control device such as a conductance control valve in the gas exhaust unit 3. Or you may make it control the gas pressure in the vacuum chamber 1 using the vacuum pump etc. which can control exhaust speed.
  • the molybdenum wire 4 of the hydrogen radical generator (4 and 5) needs to be held insulated from the surroundings.
  • the diameter of the molybdenum wire 4 is preferably in the range of 0.3 to 0.8 mm. Further, in order to make the removal rate of foreign matters by cleaning uniform, it is preferable to keep the temperature of the molybdenum wire 4 constant. Therefore, it is preferable that the temperature of the molybdenum wire 4 is configured to be monitored and feedback controlled.
  • the shutter 5 shown in FIG. 1 is a partition wall having pores provided between a metal catalyst body that generates hydrogen radicals and a resist-coated substrate, and suppresses contamination of the resist-coated substrate surface due to evaporation of the metal catalyst body. And it has the effect
  • a metal catalyst body is disposed in the vacuum chamber 1, it is preferable to use such a shutter.
  • a hydrogen radical generator (generated by a hydrogen-containing gas introduction part, a catalyst body made of molybdenum or a molybdenum alloy, and a shutter, which is separate from the vacuum chamber but connected thereto) Part), and a gas containing hydrogen radicals generated by the generator (generator) may be introduced into the vacuum chamber (see FIG. 1).
  • the temperature of the molybdenum wire 4 can be measured from the outside of the vacuum chamber via a view port installed in the vacuum chamber 1 by a radiation thermometer, for example (not shown).
  • the hydrogen-containing gas supplied to the gas introduction unit 2 is brought into contact with the molybdenum wire 4 heated to 1000 to 1600 ° C., and the density of hydrogen radicals is 1 ⁇ 10 9 to 1.
  • a hydrogen radical-containing gas in the range of ⁇ 10 16 / cm 3 can be generated.
  • Metal catalyst bodies include tungsten (W), tantalum (Ta), molybdenum (Mo), manganin (Mn 12-15%, Ni 2-4%, Cu 80-85%), nickel (Ni), 5% rhenium. -Tungsten (Re5%, W95%) and platinum (Pt) were used.
  • EUV was irradiated from the light source 7 and hydrogen radicals generated by the radical detector 8 were measured.
  • the measurement conditions for hydrogen radicals were an absorption length of 250 mm, a measurement wavelength of 121.9 nm, a reference time of 3 minutes, a gas pressure in the vacuum chamber of 1.9 Pa, and a hydrogen molecular gas flow rate of 50 sccm.
  • the input current was 5 to 13.5 A, and the input voltage was 8.37 to 33.0 V.
  • tungsten that has been conventionally used for lithographic cleaning is effectively used in processes that can be processed at high temperatures, but molybdenum generates hydrogen radicals more efficiently at lower temperatures.
  • molybdenum generates hydrogen radicals more efficiently at lower temperatures.
  • typically about 2 ⁇ 10 11 / cm 3 of hydrogen radicals can be generated at about 1250 ° C., which is about 300 ° C. lower than about 1550 ° C. in the case of molybdenum. That is, even when the metal catalyst body temperature was set to about 300 ° C. lower than that of tungsten, a hydrogen radical-containing gas having a hydrogen radical density equal to or higher than that of tungsten could be obtained.
  • a hydrogen radical-containing gas in the range of 1 ⁇ 10 9 to 1 ⁇ 10 13 / cm 3 can be generated stably.

Abstract

Disclosed is a method for cleaning an EUV exposure apparatus, to which foreign matter adheres, by using hydrogen radicals. In the method, there is used a hydrogen radical-containing gas which is obtained by bringing a hydrogen-containing gas into contact with molybdenum or a molybdenum alloy which is heated to 1000-1600˚C, and having a hydrogen radical density of from 1 × 109 to 1 × 1016 /cm3. The method is capable of efficiently and effectively cleaning an EUV exposure apparatus without or hardly damaging the EUV exposure apparatus by using a hydrogen radical-containing gas having a high hydrogen radical density at relatively low temperatures when compared with conventional cleaning methods.

Description

EUV露光装置のクリーニング方法Cleaning method for EUV exposure apparatus
本発明は、EUV(Extreme Ultra Violet、極短紫外線)リソグラフィを行うためのEUV露光装置のクリーニング方法に関する。 The present invention relates to a method for cleaning an EUV exposure apparatus for performing EUV (Extreme Ultra Violet) lithography.
ICやLSI等の半導体集積回路の製造に際しては、製造装置の汚染物の除去並びに汚染の防止が非常に重要であり、従来から色々な方法が確立されている。そして、半導体基板の界面の汚染のうち、特に従来の方法では除去できない炭素の一重結合を含む汚染物を除去し、清浄な界面を得る方法として、
水素ラジカル並びに水素イオンなどの活性化した水素を、プラズマ法又は触媒法によって形成し、得られた活性化水素によって、基板上に積層形成された積層物の表面上の炭素の一重結合を含む汚染物を、ガス化して除去する方法が知られている(特許文献1)。また、水素原子や水素分子を含む剥離ガスと、加熱したタングステン等の高融点触媒体とを接触させて接触分解反応で原子状水素を生成させ、生成した原子状水素と、半導体製造に用いたフォトレジストとの接触反応により、フォトレジストをガス化して剥離する方法、そして、その際、炭素-炭素の単結合を切断することによって、フォトレジストとフォトレジストの下地層との界面を清浄化する方法も提案されている(特許文献2)。
When manufacturing semiconductor integrated circuits such as ICs and LSIs, it is very important to remove contaminants from the manufacturing apparatus and prevent contamination, and various methods have been established. And among the contamination of the interface of the semiconductor substrate, in particular, as a method of removing a contaminant containing a carbon single bond that cannot be removed by the conventional method, to obtain a clean interface,
Activated hydrogen such as hydrogen radicals and hydrogen ions are formed by a plasma method or a catalytic method, and the resulting activated hydrogen contaminates carbon single bonds on the surface of the laminate formed on the substrate. A method of gasifying and removing an object is known (Patent Document 1). In addition, the atomic hydrogen was generated by catalytic cracking reaction by contacting a peeling gas containing hydrogen atoms and hydrogen molecules with a heated high melting point catalyst such as tungsten, and used for semiconductor production. Method of gasifying and stripping photoresist by contact reaction with photoresist, and at that time, cleaning the interface between the photoresist and the underlying layer of the photoresist by cutting a carbon-carbon single bond A method has also been proposed (Patent Document 2).
ところで、近年、半導体集積回路の微細化に伴い、光の回折限界によって制限される光学系の解像力を向上させるために、従来の紫外線に代えて、これより短い波長(例えば、11~14nm)の極短紫外線(軟X線)を使用した投影リソグラフィ技術が開発されている。そして、この技術は、最近ではEUV(Extreme UltraViolet)リソグラフィと呼ばれており、従来の波長190nm程度の光線を用いた光リソグラフィでは実現不可能な、70nm以下の解像力が得られる技術として期待されている(特許文献3参照)。そして、EUVリソグラフィにおいては、反射を利用した光学系において極短紫外線反射鏡が使用される。 Incidentally, in recent years, with the miniaturization of semiconductor integrated circuits, in order to improve the resolving power of an optical system limited by the diffraction limit of light, instead of conventional ultraviolet rays, a wavelength shorter than this (for example, 11 to 14 nm) is used. Projection lithography technology using ultrashort ultraviolet rays (soft X-rays) has been developed. This technique is recently called EUV (Extreme UltraViolet) lithography, and is expected to provide a resolution of 70 nm or less, which is impossible to achieve with conventional optical lithography using light having a wavelength of about 190 nm. (See Patent Document 3). In EUV lithography, an ultrashort ultraviolet reflecting mirror is used in an optical system utilizing reflection.
前記EUVリソグラフィを行うためのEUV露光装置は、真空状態で使用されるのが一般的であるが、縮小投影リソグラフィにおいて極短紫外線反射鏡を用いた場合、炭素による光学素子のコンタミネーションが問題となる。即ち、露光装置には、真空ポンプのオイルや潤滑剤に起因する有機化合物を含有する残留ガスが含まれていることが多い。また、装置の真空チャンバ中にフォトレジストを塗布したウエハが導入されるが、ここに極短紫外線が照射された場合、装置内に残留している溶剤が蒸発したり、フォトレジストを構成する樹脂が分解脱離し、このため有機化合物を含むガスが装置内に放出されることになる。そして、この有機化合物を含んだガス分子は、EUV露光装置の各種界面に異物として付着する。また、EUV放射を発生させるために用いられる、スズ原料等を用いたプラズマ発生源に起因する異物も露光装置内に付着することもある。ところが、かかる異物を、EUV露光装置に損傷を与えることなく効率的に除去するには、これまで提案されている水素ラジカルやハロゲン分子等を用いる方法・手段(例えば、特許文献3又は4)では、必ずしも十分ではないという問題がある。 The EUV exposure apparatus for performing the EUV lithography is generally used in a vacuum state. However, when an ultrashort ultraviolet reflector is used in the reduction projection lithography, the contamination of the optical element with carbon is a problem. Become. That is, the exposure apparatus often contains a residual gas containing an organic compound caused by oil or lubricant of a vacuum pump. In addition, a wafer coated with a photoresist is introduced into the vacuum chamber of the apparatus. When ultra-short ultraviolet rays are irradiated here, the solvent remaining in the apparatus evaporates, or the resin constituting the photoresist. Is decomposed and desorbed, so that a gas containing an organic compound is released into the apparatus. The gas molecules containing the organic compound adhere as foreign matters to various interfaces of the EUV exposure apparatus. In addition, foreign matter caused by a plasma generation source using a tin raw material or the like used for generating EUV radiation may adhere to the exposure apparatus. However, in order to efficiently remove such foreign matters without damaging the EUV exposure apparatus, the methods and means using hydrogen radicals, halogen molecules, etc. proposed so far (for example, Patent Document 3 or 4). There is a problem that is not always sufficient.
EUV露光光学系は、真空雰囲気下にnmオーダーで調整した超高精度精密機器光学系であり、精密な温度管理が必要である。従って、水素ラジカルによるクリーニングを行うにしても出来るだけ低温で行わなければならないのであるが、従来技術ではこのような配慮がなされていなかった。 The EUV exposure optical system is an ultra-high precision precision instrument optical system adjusted to the order of nm in a vacuum atmosphere, and requires precise temperature management. Therefore, even when cleaning with hydrogen radicals is performed, it must be performed at as low a temperature as possible, but such consideration has not been made in the prior art.
特開平9-139370号公報JP-A-9-139370 特開2002-289586号公報JP 2002-289586 A 特開2005-332972号公報JP 2005-332972 A 特開2007-165874号公報JP 2007-165874 A
本発明の課題は、EUV露光装置を無損傷又は低損傷下にクリーニングする方法を提供することにある。 An object of the present invention is to provide a method for cleaning an EUV exposure apparatus without damage or with low damage.
水素ラジカル等を用いるクリーニングにおいて、EUV露光装置系に損傷を与えないためには、あるいは損傷の程度を出来るだけ低く抑えるためには、水素ラジカル等を発生させる加熱金属触媒体の温度を出来るだけ下げる必要がある。一方、クリーニングの効率と性能をアップするためには、出来るだけ高密度の水素ラジカルを得る必要があり、そのためには金属触媒体の温度は高い方が好ましい。そこで本発明者らは、この様な相反する技術的事項を解決し、出来るだけ低温で高効率に、且つ、高密度に水素ラジカルを発生させる方法について鋭意研究を行い本発明に到達したものである。 In cleaning using hydrogen radicals or the like, the temperature of the heated metal catalyst body that generates hydrogen radicals or the like is lowered as much as possible in order not to damage the EUV exposure apparatus system or to minimize the extent of damage. There is a need. On the other hand, in order to improve the cleaning efficiency and performance, it is necessary to obtain as high a density of hydrogen radicals as possible. For this purpose, the temperature of the metal catalyst body is preferably high. Accordingly, the present inventors have solved the above-mentioned conflicting technical matters, and have earnestly studied a method for generating hydrogen radicals at high temperature and high density at a low temperature as much as possible. is there.
本発明は、水素ラジカルを用いて異物が付着したEUV露光装置をクリーニングする方法において、水素分子含有ガスを、1000~1600℃に加熱したモリブデン又はモリブデン合金に接触させて得られ、且つ、水素ラジカルの密度が1×10~1×1016/cmの範囲にある水素ラジカル含有ガスを用いることを特徴とするEUV露光装置のクリーニング方法である。なお、本発明でEUVというときには、波長が約150nm以下の光又は軟X線を意味するものである。また、本発明においてEUV露光装置とは、EUVリソグラフィを行うための露光装置の他に、レンズ、ミラー、マスク等の部材、EUV発生源や、その他の付属物や、使用されるレジスト等の材料を含む全体を意味する。 The present invention relates to a method for cleaning an EUV exposure apparatus to which foreign matter has adhered using hydrogen radicals, obtained by contacting a hydrogen molecule-containing gas with molybdenum or a molybdenum alloy heated to 1000 to 1600 ° C., and hydrogen radicals The EUV exposure apparatus cleaning method is characterized in that a hydrogen radical-containing gas having a density of 1 × 10 9 to 1 × 10 16 / cm 3 is used. In the present invention, EUV means light having a wavelength of about 150 nm or less or soft X-ray. Further, in the present invention, the EUV exposure apparatus is a member such as a lens, a mirror, a mask, an EUV generation source, other accessories, and a material such as a resist used in addition to an exposure apparatus for performing EUV lithography. It means the whole including.
前記特許文献2には、レジストを剥離する工程を簡素化するレジスト剥離方法、あるいはレジストを剥離すると同時に下地層の清浄化を行うレジスト剥離方法として、加熱された高融点触媒体と、水素原子や水素分子を含む剥離ガスとの接触分解反応により原子状水素を生成させ、生成した原子状水素とレジストとを接触させて、気相的にレジストを剥離する方法が記載されている。そして、高融点金属(触媒体)として、タングステン、タンタル、モリブデン、バナジウム、白金、トリウムよりなる金属群から選択される1種の金属、又は前記金属群から選択される2種以上の金属を含む合金が挙げられている。 In Patent Document 2, as a resist stripping method that simplifies the step of stripping the resist, or a resist stripping method that cleans the base layer at the same time as stripping the resist, a heated refractory catalyst body, a hydrogen atom, A method is described in which atomic hydrogen is generated by a catalytic decomposition reaction with a stripping gas containing hydrogen molecules, the generated atomic hydrogen is brought into contact with the resist, and the resist is stripped in a gas phase. And as a refractory metal (catalyst body), 1 type of metal selected from the metal group which consists of tungsten, tantalum, molybdenum, vanadium, platinum, and thorium, or 2 or more types of metals selected from the said metal group are included. Alloys are mentioned.
しかしながら、具体的には、レジスト除去装置により、厚さ約1μmのポジ型レジストが形成されたシリコン基板を、水素流量100sccm(standard cubic centimeter per minutes)で、直径0.5mmのタングステン線(高融点触媒体)を用い、タングステン温度約1700℃の条件で30分間剥離処理したことが記載されているのみである。本発明で見出された、モリブデン又はモリブデン合金を用いると、タングステンの場合よりも300℃以上も低い温度で、EUV露光装置のクリーニングに有効な、水素ラジカルの密度が1×10~1×1016/cmの範囲にある水素ラジカル含有ガスを発生させることができるという技術的事項については、何ら教示も示唆もするところもない。本発明は、EUV露光装置を無損傷又は低損傷下に効率的に且つ効果的にクリーニングする方法を提供するという観点から、出来るだけ低温で出来るだけ高密度の水素ラジカルを発生し得る金属触媒体とその適用条件を見出したものであり、タングステンからなる公知の高温触媒体を単にモリブデンに置き換えたものではない。 However, specifically, a silicon substrate on which a positive resist having a thickness of about 1 μm is formed by a resist removal apparatus is applied to a tungsten wire (high melting point) with a hydrogen flow rate of 100 sccm (standard cubic centimeter per minutes) and a diameter of 0.5 mm. It is only described that the catalyst body was stripped for 30 minutes at a tungsten temperature of about 1700 ° C. When molybdenum or a molybdenum alloy found in the present invention is used, the density of hydrogen radicals effective for cleaning an EUV exposure apparatus at a temperature lower by 300 ° C. or more than that of tungsten is 1 × 10 9 to 1 ×. There is no teaching or suggestion about the technical matter that a hydrogen radical-containing gas in the range of 10 16 / cm 3 can be generated. The present invention provides a metal catalyst body capable of generating hydrogen radicals as dense as possible at as low a temperature as possible from the viewpoint of providing a method for efficiently and effectively cleaning an EUV exposure apparatus without damage or low damage. The known high-temperature catalyst body made of tungsten is not simply replaced with molybdenum.
本発明においては、従来技術における温度よりも低い1000~1600℃という温度で、水素ラジカルの密度が高い水素ラジカル含有ガスを用いてEUV露光装置をクリーニングするものであるから、装置系を無損傷又は低損傷下に効率的に且つ効果的にクリーニングすることができる。 In the present invention, the EUV exposure apparatus is cleaned using a hydrogen radical-containing gas having a high hydrogen radical density at a temperature of 1000 to 1600 ° C., which is lower than the temperature in the prior art. Cleaning can be performed efficiently and effectively with low damage.
本発明のクリーニング方法において用いられる、水素ラジカル発生装置を装着したEUV露光装置の模式図である。It is a schematic diagram of an EUV exposure apparatus equipped with a hydrogen radical generator used in the cleaning method of the present invention. 各金属触媒体の温度と発生した水素ラジカルの密度との関係を示す図である。It is a figure which shows the relationship between the temperature of each metal catalyst body, and the density of the generated hydrogen radical.
本発明は、水素ラジカルを用いて、有機系及び/又は無機系の異物が付着したEUV露光装置をクリーニングする方法において、水素含有ガスを、加熱したモリブデン又はモリブデン合金に接触させて得られる水素ラジカル含有ガスを用いるものである。水素ラジカルとは、原子状水素を意味し、水素含有ガスとは、純粋の水素分子ガスであっても水素分子以外の不活性ガスとの混合ガスであっても良い。また、水素分子以外に、原子状の水素や水素イオンを含んでいても良い。モリブデン合金とは、モリブデンを主体とし他の1種以上の金属との合金を意味する。 The present invention relates to a hydrogen radical obtained by contacting a hydrogen-containing gas with heated molybdenum or a molybdenum alloy in a method for cleaning an EUV exposure apparatus to which organic and / or inorganic foreign matter has adhered using hydrogen radicals. The contained gas is used. The hydrogen radical means atomic hydrogen, and the hydrogen-containing gas may be a pure hydrogen molecular gas or a mixed gas with an inert gas other than hydrogen molecules. In addition to hydrogen molecules, atomic hydrogen or hydrogen ions may be included. The molybdenum alloy means an alloy composed mainly of molybdenum and one or more other metals.
前述のごとく本発明でEUVというときには、波長が約150nm以下の光又は軟X線を意味するものであり、また、本発明のEUV露光装置とは、この様なEUVを用いてリソグラフィを行うための装置や、そこで使用される各種部品や付属物、各種材料を含む全体を意味する。 As described above, EUV in the present invention means light having a wavelength of about 150 nm or less or soft X-ray, and the EUV exposure apparatus of the present invention performs lithography using such EUV. This means the entire system, including various devices, various parts and accessories used therein, and various materials.
本発明においては、前記の様な水素含有ガスを、1000~1600℃、好ましくは1000~1400℃に加熱したモリブデン又はモリブデン合金に接触させて得られる、水素ラジカルの密度が1×10~1×1016/cm、好ましくは1×10~1×1015/cm範囲にある水素ラジカル含有ガスが用いられる。 In the present invention, the density of hydrogen radicals obtained by contacting a hydrogen-containing gas as described above with molybdenum or a molybdenum alloy heated to 1000 to 1600 ° C., preferably 1000 to 1400 ° C. is 1 × 10 9 to 1 A hydrogen radical-containing gas in the range of × 10 16 / cm 3 , preferably in the range of 1 × 10 9 to 1 × 10 15 / cm 3 is used.
本発明において、異物が付着したEUV露光装置を、水素ラジカル含有ガスを用いてクリーニングする方法としては、特に制限はない。公知の方法や手段を、本発明の条件下で利用することによって、本発明の目的と効果を達成することができる。 In the present invention, there is no particular limitation on the method for cleaning the EUV exposure apparatus to which foreign matter has adhered using a hydrogen radical-containing gas. By using known methods and means under the conditions of the present invention, the objects and effects of the present invention can be achieved.
本発明のクリーニング方法において好ましいもう一つの態様は、EUV露光装置にクリーニングのための手段を装着したものである。即ち、EUVリソグラフィ用の露光装置であって、異物が付着した該装置を水素ラジカルを用いてクリーニングするために、該装置に、水素含有ガス導入部と、モリブデン又はモリブデン合金からなる触媒体と、シャッターからなる水素ラジカル発生装置(発生部)を装着したEUV露光装置である。 In another preferred embodiment of the cleaning method of the present invention, a means for cleaning is attached to the EUV exposure apparatus. That is, an exposure apparatus for EUV lithography, in order to clean the apparatus to which foreign matter has adhered using hydrogen radicals, the apparatus includes a hydrogen-containing gas introduction part, a catalyst body made of molybdenum or a molybdenum alloy, This is an EUV exposure apparatus equipped with a hydrogen radical generator (generation unit) comprising a shutter.
以下、図を参照しながら本発明を詳述する。図1は、本発明のクリーニング方法を説明するための、EUV露光装置の一例の模式図である。EUV露光装置の分解洗浄は実質的に不可能であるので、工業的には、図1に示したように水素ラジカル発生装置又はクリーニング装置(図1では、水素含有ガスの導入部2と加熱金属触媒体(モリブデン線)4とシャッター5から構成される部分)を、EUV露光装置に装着して使用する。そして、その際、温度上昇をより低減化させる目的と光源の通路を作るために、後述のようにクリーニング対象物と水素ラジカル発生装置を離して設置するのが好ましい。 Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic view of an example of an EUV exposure apparatus for explaining the cleaning method of the present invention. Since decomposition cleaning of the EUV exposure apparatus is virtually impossible, industrially, as shown in FIG. 1, a hydrogen radical generator or cleaning device (in FIG. 1, a hydrogen-containing gas introduction part 2 and a heated metal) A catalyst body (molybdenum wire) 4 and a portion composed of a shutter 5) are used by being attached to an EUV exposure apparatus. At that time, in order to further reduce the temperature rise and to create a light source passage, it is preferable to install the cleaning object and the hydrogen radical generator separately as described later.
図1において、1は真空チャンバ、2は水素含有ガスの導入部、3は真空ポンプ及び制御バルブからなるガス排気部、4は加熱金属触媒体(モリブデン線)、5はシャッターであり、4と5で水素ラジカル生成部を構成している。モリブデン線4を加熱するための金属触媒体加熱部も必要であるが、これは図示されていない。6はレジスト付き基板(図示せず)を保持するための基板保持部である。7はEUV(極短紫外線)光源、8は水素ラジカルモニターである。このような装置と方法を用いることにより、EUV露光装置のクリーニングを行うことができる。図1において、双子の黒丸9は分子状水素を、シングルの黒丸10は水素ラジカルを模式的に表したものである。なお、前記の水素ラジカル発生装置又はクリーニング装置をEUV露光装置に装着して使用する場合には、前記ガス排気部は露光装置の排気系と兼用することができる。また、水素ラジカル測定のためのラジカルモニターも特に設ける必要はない。 In FIG. 1, 1 is a vacuum chamber, 2 is a hydrogen-containing gas introduction unit, 3 is a gas exhaust unit comprising a vacuum pump and a control valve, 4 is a heated metal catalyst body (molybdenum wire), 5 is a shutter, 5 constitutes a hydrogen radical generator. A metal catalyst body heating part for heating the molybdenum wire 4 is also necessary, but this is not shown. Reference numeral 6 denotes a substrate holding unit for holding a substrate with resist (not shown). 7 is an EUV (ultrashort ultraviolet) light source, and 8 is a hydrogen radical monitor. By using such an apparatus and method, the EUV exposure apparatus can be cleaned. In FIG. 1, a twin black circle 9 schematically represents molecular hydrogen, and a single black circle 10 schematically represents a hydrogen radical. When the hydrogen radical generator or the cleaning device is mounted on an EUV exposure apparatus and used, the gas exhaust unit can also be used as an exhaust system of the exposure apparatus. Further, it is not necessary to provide a radical monitor for measuring hydrogen radicals.
水素含有ガスの導入部2には、例えば、マス・フロー・コントローラ設置すれば水素ラジカルの生成速度を制御することが可能になる。従って、ガス導入部にはマス・フロー・コントローラ等の流量制御装置を設置するのが好ましい。 For example, if a mass flow controller is installed in the introduction part 2 of the hydrogen-containing gas, the generation rate of hydrogen radicals can be controlled. Therefore, it is preferable to install a flow rate control device such as a mass flow controller in the gas introduction part.
ガス排気部3には、例えば、コンダクタンス制御バルブを設置すれば、真空チャンバ1内のガス圧を制御することが可能になる。従って、ガス排気部3には、コンダクタンス制御バルブ等のガス圧制御装置を設置するのが好ましい。あるいは、排気速度制御可能な真空ポンプ等を用いて、真空チャンバ1内のガス圧を制御するようにしても良い。 For example, if a conductance control valve is installed in the gas exhaust unit 3, the gas pressure in the vacuum chamber 1 can be controlled. Therefore, it is preferable to install a gas pressure control device such as a conductance control valve in the gas exhaust unit 3. Or you may make it control the gas pressure in the vacuum chamber 1 using the vacuum pump etc. which can control exhaust speed.
水素ラジカル生成部(4と5)のモリブデン線4は、周囲と絶縁されて保持される必要がある。また、モリブデン線4の直径は、0.3~0.8mmの範囲にするのが好ましい。また、クリーニングによる異物の除去速度を均一にするためは、モリブデン線4の温度を一定に保つことが好ましい。従って、モリブデン線4の温度は、モニターしてフィードバック制御できるように構成しておくのが好ましい。 The molybdenum wire 4 of the hydrogen radical generator (4 and 5) needs to be held insulated from the surroundings. The diameter of the molybdenum wire 4 is preferably in the range of 0.3 to 0.8 mm. Further, in order to make the removal rate of foreign matters by cleaning uniform, it is preferable to keep the temperature of the molybdenum wire 4 constant. Therefore, it is preferable that the temperature of the molybdenum wire 4 is configured to be monitored and feedback controlled.
図1に示したシャッター5は、水素ラジカルを発生する金属触媒体とレジスト付き基板との間に設けられた細孔を有する隔壁であり、金属触媒体の蒸発によるレジスト付き基板表面の汚染の抑制と、金属触媒体からの輻射熱を防ぐ作用を有する。真空チャンバ1内に金属触媒体を配置する場合には、かかるシャッターを用いるのが好ましい。 The shutter 5 shown in FIG. 1 is a partition wall having pores provided between a metal catalyst body that generates hydrogen radicals and a resist-coated substrate, and suppresses contamination of the resist-coated substrate surface due to evaporation of the metal catalyst body. And it has the effect | action which prevents the radiant heat from a metal catalyst body. When a metal catalyst body is disposed in the vacuum chamber 1, it is preferable to use such a shutter.
金属触媒体とレジスト付き基板との間隔は、水素ラジカルの寿命と、異物による汚染の度合いを考慮して決定することが重要である。また、水素ラジカルの寿命が長い場合には、真空チャンバとは別の、しかしこれに接続して、水素含有ガス導入部とモリブデン又はモリブデン合金からなる触媒体とシャッターからなる水素ラジカル発生装置(発生部)を設け、該発生装置(発生部)で発生した水素ラジカルを含むガスを、真空チャンバ内に導入する構造としても良い(図1参照)。 It is important to determine the distance between the metal catalyst body and the resist-coated substrate in consideration of the lifetime of hydrogen radicals and the degree of contamination by foreign substances. In addition, when the lifetime of hydrogen radicals is long, a hydrogen radical generator (generated by a hydrogen-containing gas introduction part, a catalyst body made of molybdenum or a molybdenum alloy, and a shutter, which is separate from the vacuum chamber but connected thereto) Part), and a gas containing hydrogen radicals generated by the generator (generator) may be introduced into the vacuum chamber (see FIG. 1).
モリブデン線4の温度は、例えば、放射温度計により真空チャンバ1に設置されたビューポートを介して真空チャンバの外部より測定することが可能である(図示せず)。 The temperature of the molybdenum wire 4 can be measured from the outside of the vacuum chamber via a view port installed in the vacuum chamber 1 by a radiation thermometer, for example (not shown).
上記のような水素ラジカル発生装置において、ガス導入部2に供給された水素含有ガスは、1000~1600℃に加熱されたモリブデン線4に接触せしめられ、水素ラジカルの密度が1×10~1×1016/cmの範囲にある水素ラジカル含有ガスを生成することができる。 In the hydrogen radical generator as described above, the hydrogen-containing gas supplied to the gas introduction unit 2 is brought into contact with the molybdenum wire 4 heated to 1000 to 1600 ° C., and the density of hydrogen radicals is 1 × 10 9 to 1. A hydrogen radical-containing gas in the range of × 10 16 / cm 3 can be generated.
以下、具体的な実施例により本発明を説明する。図1に示したような、水素ラジカル測定のためのラジカルモニター(NUエコ・エンジニアリング社製)を設けたEUV露光装置を用いて、水素ラジカルの生成と密度の測定を行った。金属触媒体(フィラメント)としては、タングステン(W)、タンタル(Ta)、モリブデン(Mo)、マンガニン(Mn12~15%、Ni2~4%、Cu80~85%)、ニッケル(Ni)、5%レニウム・タングステン(Re5%、W95%)、白金(Pt)を用いた。 Hereinafter, the present invention will be described with reference to specific examples. Using an EUV exposure apparatus provided with a radical monitor (manufactured by NU Eco-Engineering) for measuring hydrogen radicals as shown in FIG. 1, the generation and density of hydrogen radicals were measured. Metal catalyst bodies (filaments) include tungsten (W), tantalum (Ta), molybdenum (Mo), manganin (Mn 12-15%, Ni 2-4%, Cu 80-85%), nickel (Ni), 5% rhenium. -Tungsten (Re5%, W95%) and platinum (Pt) were used.
図1の装置において、光源7からEUVを照射し、ラジカル検出器8で生成した水素ラジカルを測定した。水素ラジカルの測定条件は、吸収長が250mm、測定波長が121.9nm、リファレンス時間は3分に統一し、真空チャンバ内のガス圧が1.9Pa、水素分子ガスの流量が50sccmに統一した。投入電流5~13.5A、投入電圧は8.37~33.0Vであった。 In the apparatus of FIG. 1, EUV was irradiated from the light source 7 and hydrogen radicals generated by the radical detector 8 were measured. The measurement conditions for hydrogen radicals were an absorption length of 250 mm, a measurement wavelength of 121.9 nm, a reference time of 3 minutes, a gas pressure in the vacuum chamber of 1.9 Pa, and a hydrogen molecular gas flow rate of 50 sccm. The input current was 5 to 13.5 A, and the input voltage was 8.37 to 33.0 V.
各金属触媒体の温度と発生した水素ラジカルの密度との関係を、まとめて図2に示した。図より、モリブデンの場合に、比較的低温で最も高い水素ラジカル密度が得られていることが分かる。なお、別な実験で、モリブデンとニッケル以外の金属触媒体では、水素ラジカル密度が飽和し図2の温度以上に触媒体の温度を上昇させても、水素ラジカルの発生量は増加しないことも分かった。 The relationship between the temperature of each metal catalyst body and the density of generated hydrogen radicals is shown together in FIG. From the figure, it can be seen that in the case of molybdenum, the highest hydrogen radical density is obtained at a relatively low temperature. In another experiment, it was found that in the case of a metal catalyst body other than molybdenum and nickel, the hydrogen radical density is saturated and the amount of hydrogen radicals generated does not increase even if the temperature of the catalyst body is raised above the temperature shown in FIG. It was.
また、図2から分かるように、リゾグラフィの洗浄に従来良く用いられているタングステンは、高温で処理可能なプロセスにおいては有効に用いられるが、モリブデンの方がより低温で効率良く水素ラジカルを発生し得ることが分かる。そして、典型的には、モリブデンの場合の約1550℃よりも約300℃低い約1250℃で、殆ど同程度の
2×1011/cmもの水素ラジカルを発生させ得ることが分かった。即ち、金属触媒体温度をタングステンよりも約300℃低温にしても、タングステンの場合と同等以上の水素ラジカル密度の水素ラジカル含有ガスを得ることができた。また、1×10~1×1013/cmの範囲の水素ラジカル含有ガスを、安定的に発生させることができることも分かった。
 
Further, as can be seen from FIG. 2, tungsten that has been conventionally used for lithographic cleaning is effectively used in processes that can be processed at high temperatures, but molybdenum generates hydrogen radicals more efficiently at lower temperatures. I know you get. It has been found that typically about 2 × 10 11 / cm 3 of hydrogen radicals can be generated at about 1250 ° C., which is about 300 ° C. lower than about 1550 ° C. in the case of molybdenum. That is, even when the metal catalyst body temperature was set to about 300 ° C. lower than that of tungsten, a hydrogen radical-containing gas having a hydrogen radical density equal to or higher than that of tungsten could be obtained. It was also found that a hydrogen radical-containing gas in the range of 1 × 10 9 to 1 × 10 13 / cm 3 can be generated stably.

Claims (3)

  1. 水素ラジカルを用いて異物が付着したEUV露光装置をクリーニングする方法において、水素含有ガスを、1000~1600℃に加熱したモリブデン又はモリブデン合金に接触させて得られ、且つ、水素ラジカルの密度が1×10~1×1016/cmの範囲にある水素ラジカル含有ガスを用いることを特徴とするEUV露光装置のクリーニング方法。 In a method for cleaning an EUV exposure apparatus to which foreign matter has adhered using hydrogen radicals, a hydrogen-containing gas is obtained by contacting molybdenum or a molybdenum alloy heated to 1000 to 1600 ° C., and the density of hydrogen radicals is 1 ×. A cleaning method for an EUV exposure apparatus, comprising using a hydrogen radical-containing gas in a range of 10 9 to 1 × 10 16 / cm 3 .
  2. モリブデン又はモリブデン合金の加熱温度が1000~1400℃で、且つ、得られた水素ラジカル含有ガス中の水素ラジカルの密度が1×10~1×1015/cmの範囲にあることを特徴とする請求項1記載のEUV露光装置のクリーニング方法。 The heating temperature of molybdenum or molybdenum alloy is 1000 to 1400 ° C., and the density of hydrogen radicals in the obtained hydrogen radical-containing gas is in the range of 1 × 10 9 to 1 × 10 15 / cm 3. The method of cleaning an EUV exposure apparatus according to claim 1.
  3. EUVリソグラフィ用の露光装置であって、異物が付着した該装置を水素ラジカルを用いてクリーニングするために、該装置に、水素含有ガス導入部と、モリブデン又はモリブデン合金からなる触媒体と、シャッターからなる水素ラジカル発生装置(発生部)を装着したことを特徴とするEUV露光装置。
     
    An exposure apparatus for EUV lithography, in order to clean the apparatus on which foreign matter has adhered using hydrogen radicals, a hydrogen-containing gas introduction part, a catalyst body made of molybdenum or a molybdenum alloy, and a shutter An EUV exposure apparatus equipped with a hydrogen radical generator (generator).
PCT/JP2009/057249 2008-05-01 2009-04-09 Method for cleaning euv exposure apparatus WO2009133759A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-119471 2008-05-01
JP2008119471 2008-05-01

Publications (1)

Publication Number Publication Date
WO2009133759A1 true WO2009133759A1 (en) 2009-11-05

Family

ID=41254979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057249 WO2009133759A1 (en) 2008-05-01 2009-04-09 Method for cleaning euv exposure apparatus

Country Status (1)

Country Link
WO (1) WO2009133759A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006136967A2 (en) * 2005-06-21 2006-12-28 Philips Intellectual Property & Standards Gmbh Method of cleaning optical surfaces of an irradiation unit in a two-step process
JP2007165874A (en) * 2005-12-08 2007-06-28 Asml Netherlands Bv Radical cleaning configuration for lithography apparatus
JP2007184577A (en) * 2005-12-22 2007-07-19 Asml Netherlands Bv Method of cleaning lithographic apparatus module, cleaning structure for lithographic apparatus module, and lithographic apparatus equipped with cleaning structure
JP2009016640A (en) * 2007-07-06 2009-01-22 Ushio Inc Extreme ultraviolet light source device and cleaning method for extreme ultraviolet light converging mirror

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006136967A2 (en) * 2005-06-21 2006-12-28 Philips Intellectual Property & Standards Gmbh Method of cleaning optical surfaces of an irradiation unit in a two-step process
JP2007165874A (en) * 2005-12-08 2007-06-28 Asml Netherlands Bv Radical cleaning configuration for lithography apparatus
JP2007184577A (en) * 2005-12-22 2007-07-19 Asml Netherlands Bv Method of cleaning lithographic apparatus module, cleaning structure for lithographic apparatus module, and lithographic apparatus equipped with cleaning structure
JP2009016640A (en) * 2007-07-06 2009-01-22 Ushio Inc Extreme ultraviolet light source device and cleaning method for extreme ultraviolet light converging mirror

Similar Documents

Publication Publication Date Title
US10126663B2 (en) Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US7812330B2 (en) Radical cleaning arrangement for a lithographic apparatus
JP3867918B2 (en) Method for cleaning the surface of a component of a lithographic projection apparatus, lithographic projection apparatus, device manufacturing method and cleaning system
JP4573816B2 (en) Method for removing deposits on optical element and method for protecting optical element
JP4898765B2 (en) Method for removing deposit in optical element, method for protecting optical element, device manufacturing method, apparatus including optical element, and lithographic apparatus
US10852649B2 (en) Methods and apparatus for removing contamination from lithographic tool
JP6898867B2 (en) Methods for manufacturing membrane assemblies
JP5111283B2 (en) Cleaning method
EP1735665A2 (en) Cleaning of multi-layer mirrors
EP2383613A2 (en) Cleaning apparatus and cleaning method
US20230341767A1 (en) Method of fabricating and servicing a photomask
Hamamoto et al. Cleaning of extreme ultraviolet lithography optics and masks using 13.5 nm and 172 nm radiation
JP2007127698A (en) Multilayer film reflection mirror, its regeneration method, and exposure equipment
WO2009133759A1 (en) Method for cleaning euv exposure apparatus
JP2006245255A (en) Exposure device, exposure method, and method for manufacturing device having fine pattern
US8764905B1 (en) Cleaning organic residues from EUV optics and masks
JP5269074B2 (en) Hydrocarbon getters for lithographic exposure apparatus
US20230350301A1 (en) Method and apparatus for forming a patterned layer of material
US11360384B2 (en) Method of fabricating and servicing a photomask
Hamamoto et al. Investigation of contamination removal from finished EUVL mask
JP2007157981A (en) Aligner
JP2004186614A (en) Aligner apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09738696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP