WO2009133218A1 - Sistema de control de la presurización, ventilación y acondicionamiento del aire de una aeronave - Google Patents

Sistema de control de la presurización, ventilación y acondicionamiento del aire de una aeronave Download PDF

Info

Publication number
WO2009133218A1
WO2009133218A1 PCT/ES2009/000143 ES2009000143W WO2009133218A1 WO 2009133218 A1 WO2009133218 A1 WO 2009133218A1 ES 2009000143 W ES2009000143 W ES 2009000143W WO 2009133218 A1 WO2009133218 A1 WO 2009133218A1
Authority
WO
WIPO (PCT)
Prior art keywords
pneumatic
independent
apu
aircraft
air conditioning
Prior art date
Application number
PCT/ES2009/000143
Other languages
English (en)
French (fr)
Inventor
Carlos Casado Montero
Hugo Casado Abarquero
Original Assignee
Airbus España, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus España, S.L. filed Critical Airbus España, S.L.
Priority to EP09738255.0A priority Critical patent/EP2272756B1/en
Priority to BRPI0910829A priority patent/BRPI0910829A2/pt
Priority to CA2720895A priority patent/CA2720895C/en
Publication of WO2009133218A1 publication Critical patent/WO2009133218A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D41/00Power installations for auxiliary purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0611Environmental Control Systems combined with auxiliary power units (APU's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0644Environmental Control Systems including electric motors or generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency

Definitions

  • the present invention consists of a pressurization, ventilation and air conditioning control system of an aircraft, which at least comprises pneumatic air conditioning modules.
  • PACK pneumatic independent compressor
  • CAC electrically powered pneumatic independent compressors
  • the invention eliminates two of the CACs so that when a fault occurs in one of the remaining CACs, its operation is replaced by the auxiliary power unit (APU) that conventionally includes aircraft.
  • APU auxiliary power unit
  • the APU that supplies the electrical and pneumatic power for the ventilation and air conditioning of the cabin of the aircraft (understood as the cabin the volume enclosed between the two pressure bulkheads, suitable for passengers and crew and which is likely to be pressurized at altitude) during refueling, boarding and landing operations passage, resupply of food and consumables for the following flights, loading and unloading, cleaning, maintenance of the aircraft, etc., not forgetting the start of the main engines either electrically or pneumatically.
  • the APU is included as an essential system in the certification of the aircraft except for some exceptions such as ETOPS flights (Extended-range Twin-engine Operation Performance Standards - Performance standards in extended operations with two engines) and operating conditions with some component declared failed.
  • ETOPS flights Extended-range Twin-engine Operation Performance Standards - Performance standards in extended operations with two engines
  • each PACK is connected to two independent electrically powered pneumatic compressors (CACs) for pneumatic feeding of said PACKs. Therefore, the CACs are duplicated, forming a redundant pneumatic power configuration in which a malfunction of a CAC, of the two that has feeding a PACK, is addressed with an increase in the power of the operational CAC without being generate a degraded flight situation that forces the crew to go to an alternative airport as an emergency condition or to move to a flight condition other than the one initially set.
  • This configuration allows its certification without the need of any other pneumatic component such as the APU.
  • an auxiliary power unit is normally included, which is intended to provide electric, pneumatic power or both generally for use on land, functions that are carried out by the main motors.
  • Much of the APUs could also supply these generally focused flight powers to reinforce the electrical and / or pneumatic generation when one of the generation systems fails.
  • the APU for aircraft with the most electrical configuration continues to take the same role as in the more conventional configuration, although it now only supplies electrical and non-pneumatic power. Allowing the aircraft to continue to have autonomy on the ground without the need to start any of the electric motors or be powered by ground services, that is to say it still does not have a relevant role in the certification of the aircraft except for the cases mentioned above.
  • the invention has developed a new system for controlling the pressurization, ventilation and air conditioning of an aircraft, which, like those provided in the prior art, comprises Pneumatic air conditioning modules (PACK), independent electrically powered pneumatic compressors (CAC), an auxiliary power unit (APU), with pneumatic compressor and with at least one electric power generator, and pneumatic distribution means for pneumatically feeding the PACKS
  • PACK Pneumatic air conditioning modules
  • CAC independent electrically powered pneumatic compressors
  • APU auxiliary power unit
  • pneumatic compressor pneumatic compressor and with at least one electric power generator
  • pneumatic distribution means for pneumatically feeding the PACKS
  • the main novelty of the invention resides in the fact that the duplication of the CACs is eliminated, one being left by PACK, and therefore comprises two CACs that are connected to a controller independent of CACs;
  • the APU is sized to power each PACK independently or together in aircraft operations both on the ground and in flight, and said APU is connected to an independent APU controller; and the PACKs are connected to a separate PACK controller.
  • It also comprises a central controller that is connected to the independent CAC controller, the APU independent controller and the controller. independent of PACKs, so that the PACKs are fed individually by a source selected between a CAC and the APU, and so that the feeding of a single PACK or the feeding of several PACKs can be carried out.
  • central controller is connected to an electrical system of the aircraft that governs the demand and distribution of electrical power of the system.
  • This configuration has the great advantage that only two CACs are used instead of four as conventionally, which reduces the number of CACs, the weight of the aircraft, its operating cost, and also by reducing the number of components the general reliability of the system is increased without reducing the tolerance to the failure of the CACs, since its function can be replaced by the APU.
  • the PACKs can be fed individually by a CAC or by the APU, so that in flight operation each PACK is fed by a CAC. If in this situation a failure of a CAC occurs and becomes inoperative, it is detected by the independent controller that communicates it to the central controller, so that it makes a power change, feeding the PACK, whose CAC is inoperative, by means of the APU, an operation that is carried out in a manual-automatic way, that is, it can be executed directly by the central controller, or manually acting either on it, or directly on the APU.
  • the invention provides that the APU sizing is provided so that in the case where each CAC is pneumatically feeding a PACK and a CAC becomes inoperative, the APU provides at least the power pneumatic to the PACK that was being fed by the inoperative CAC to an equivalent extent that does not degrade the operation of the aircraft both on the ground and in flight, that is, that the cabin pressurization capacity and the maintenance of ventilation requirements and cabin temperature would not be penalized; having also provided that the APU provide the necessary pneumatic power without simultaneous extraction of electrical power in the operation of the aircraft in flight.
  • the independent controller of the auxiliary power unit comprises means for the APU electric power generator to supply at least all the power equivalent to that necessary to power the operation of a CAC and the independent CAC controller, in case of failure of the generators of the main engines and in the event that a main engine is inoperative.
  • CACs and PACKs may be located in the section of the final fuselage or in the fairing of the belly of the aircraft which facilitates its maintenance.
  • the invention provides that the APU is located in the tail cone of the plane.
  • FIGURE Figure 1 Shows a functional schematic block diagram of a possible embodiment of the system of the invention, in which the connections with thick lines represent the connections pneumatic and thin-line electrical control connections.
  • the invention is described in the case of an aircraft comprising two pneumatic air conditioning modules (PACK) 1 that perform ventilation and air conditioning in the cabin of the aircraft, and each of which is connected to an independent compressor electrically powered tire (CAC) 2, although pneumatic distribution means 7 allow cross-feeding, and an auxiliary power unit (APU) 3 via pneumatic distribution means 7 to perform pneumatic feeding of PACKs 1 as will be described with later.
  • PACK pneumatic air conditioning modules
  • CAC compressor electrically powered tire
  • APU auxiliary power unit
  • PACKs 1 are connected to an independent controller of PACKs 4, which in turn is connected to a central controller 12.
  • the CACs 2 are connected to a separate CACs 5 controller, which is also connected to the controller 12.
  • APU 3 is connected to an independent APU 6 controller, which in turn is connected to central controller 12.
  • the pneumatic distribution means 7 are constituted by pipes and valves, as described below.
  • a valve 8 is provided by means of which pneumatic power is allowed to be applied to the conduits of the means 7.
  • a fork in which pneumatic isolator valves 9 are interleaved whose outputs are connected to the pipes that connect each of the CAC 2 with their respective PACK 1.
  • a valve 10 is provided that It allows the application of pneumatic power to each one of the PACKs 1, whose power line also includes, for each of the branches that is present, a flow control valve 11.
  • valves of Flow control 11 can be eliminated without changing the functionality of the described architecture, since its function is to regulate the air flow at the entrance of the PACK 1, a function that can also be performed by each of the CAC 2 through its regulation in speed, as it is known in some conventional systems.
  • each of the CAC 2 feeds its corresponding PACK 1, for which the central controller 12 keeps the pneumatic isolating valves 9 and the valve 8 closed, while the valves 10 they are open and the flow control valves 11 are kept with the proper opening to provide the air flow required by each of the PACK 1 in these normal operating conditions in flight.
  • the central controller 12 can perform this functionality automatically, or provide a signal to be activated manually, and perform the aforementioned functionality, or even the power change process can be performed manually by acting independently on each of the sources Pneumatic feeding 2 and 3.
  • the APU 3 that supplies the pneumatic power, for which its operation is regulated by the independent APU 6 controller and the central controller 12 keeps the valves 10 closed, and valve 8 and pneumatic isolating valves 9 open. It also maintains the proper position of the flow control valves 11 at the required level of pneumatic flow to be applied on each PACKl.
  • the APU 3 must be sized to provide pneumatic power to a PACK 1 in flight or to two PACKs 1 on the ground (in combination with electrical power necessary on the ground) to an equivalent extent that does not degrade the operation of the aircraft both in its operational phases of ground and in flight, that is, in the entire operating envelope of the aircraft.
  • the APU provides at least the necessary pneumatic power without simultaneous extraction of electrical power in the operation of the aircraft in flight, so that it only performs the pneumatic feeding of the PACK 1, the electrical feeding being carried out by means of an electrical system of the aircraft (not shown), which governs the demand and distribution of electric power of the aircraft, and which is connected to the central controller 12 through a connection 13.
  • the electric power generation system can be constituted by the main generators of the main motors, one or two being able to be installed, so that in the case of failure of the generators of one of the main motors, or of a generator of each motor if it installs 2 per motor, and in the case of an inoperative main motor, the possibility is also provided that the APU electric power generator will supply at least all the electrical power equivalent to that necessary to power the operation of a CAC 2 and the independent controller of CACs 5, for which the independent APU controller 6 comprises means for the APU electric power generator to supply said commented equivalent power.
  • the pneumatic feeding of the PACKs can also be carried out by means of the CACs in which case they would act in a similar way to what has been described for the previous cases, for which in this case the CACs can be Powered electrically by the APU 3 electric power generator, by an external airport source, or by the main engine generators, provided one of them is on.
  • the CACs and PACKs are located in the final fuselage section, while APU 3 is located in the tail cone of the aircraft.
  • the CACs 2 and PACKs 1 are located in the fairing of the belly of the aircraft, and the APU 3, as in the previous case is located in the tail cone of the aircraft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

Comprende dos compresores independientes neumáticos alimentados eléctricamente (CAC) (2) que están conectados a un controlador independiente de (CACs) (5), una unidad de potencia auxiliar (APU) (3) dimensionada para alimentar cada (PAC) (1) de forma independiente en las operaciones de la aeronave tanto en tierra como en vuelo, que está conectado a un controlador independiente de (APU) (6) y un controlador central (12) conectado a los controladores (5 y 6) para que los (PACKs) sean alimentados individualmente bien por un (CAC) (2) o por el (APU) (3) y de forma que se alimente un único (PACK) (1) o varios de ellos.

Description

SISTEMA DE CONTROL DE LA PRESURIZACION, VENTILACIÓN Y
ACONDICIONAMIENTO DEL AIRE DE UNA AERONAVE
OBJETO DE LA INVENCIÓN
La presente invención, tal y como se expresa en el enunciado de esta memoria descriptiva, consiste en un sistema de control de la presurización, ventilación y acondicionamiento del aire de una aeronave, que al menos comprende módulos neumáticos de acondicionamiento de aire
(PACK) , y compresores independientes neumáticos alimentados eléctricamente (CAC) ; y cuyo principal objeto es reducir el número de CACs, de forma que se reduce el peso de la aeronave y aumenta la fiabilidad del sistema.
Para ello la invención elimina dos de los CACs de forma que cuando se produce un fallo en uno de los CACs restantes su funcionamiento es sustituido por la unidad de potencia auxiliar (APU) que convencionalmente incluyen las aeronaves .
ANTECEDENTES DE LA INVENCIÓN Tradicionalmente una aeronave comercial tanto de gran capacidad como de menor tamaño es alimentada neumáticamente para la presurización, ventilación, acondicionamiento y renovación del aire de la aeronave, mediante el aire extraído ("sangrado") de alguna etapa del compresor de los motores principales durante la mayor parte de las fases de vuelo el avión.
Las actuales aeronaves comerciales típicamente ( existe la excepción del B787 que ya incorpora motores sin sangrado) incluyen dos o más motores principales que alimentan unos módulos neumáticos de acondicionamiento de aire (PACK) .
Durante la operación en tierra con el avión estacionado y los motores principales parados, es el APU quien suministra la energía eléctrica y neumática para la ventilación y el acondicionamiento del aire de la cabina del avión (entendiéndose como cabina el volumen encerrado entre los dos mamparos de presión, apto para pasajeros y tripulación y que es susceptible de ser presurizado en altitud) durante las operaciones de repostaje, embarque y desembarque del pasaje, reabastecimiento de víveres y consumibles para los siguientes vuelos, carga y descarga, limpieza, tareas de mantenimiento de la aeronave, etc., sin olvidar la propia de arranque de los motores principales bien sea de forma eléctrica o neumática.
En ningún caso el APU está incluido como un sistema esencial en la certificación del avión salvo para algunas excepciones como pueden ser vuelos ETOPS (Extended-range Twin-engine Operation Performance Standards - Estándares de actuaciones en operaciones extendidas con dos motores) y condiciones de operación con algún componente declarado fallado .
Son muchos los aspectos que avalan la configuración tradicional: seguridad, flabilidad y una total capacidad en cuanto a actuaciones se refieren. A cambio la extracción del aire del flujo principal del motor reduce de una manera no despreciable el empuje que éste puede dar, y aumento del consumo de combustible, sobre todo en algunas fases de vuelo como puede ser el despegue. Es por tanto que se han revisado en la actualidad posibles opciones que hagan de la aeronave un elemento más eficiente energéticamente, y de su sistema neumático en particular.
Las nuevas tecnologías ofrecen un conjunto de arquitecturas alternativas dirigidas a lo que se ha denominado conceptos más eléctricos . Esto sugiere la eliminación de los puertos de aire de sangrado de los motores principales, ahora más enfocados al suministro puramente eléctrico (generación eléctrica) y siendo en algunas opciones sustituido por compresores independientes neumáticos alimentados eléctricamente
(CAC) . Para ello cada PACKs está conectado a dos compresores independientes neumáticos alimentados eléctricamente (CAC) para realizar la alimentación neumática de dichos PACKs. Por tanto los CACs se encuentran duplicados, formando una configuración de alimentación neumática redundante en la que un fallo de funcionamiento de un CAC, de los dos que tiene alimentando a un PACK, es abordado con un aumento de la potencia del CAC operativo sin que se genere una situación de vuelo degradado que fuerce a la tripulación a dirigirse a un aeropuerto alternativo como condición de emergencia o a pasar a una condición de vuelo distinta de la predefinida inicialmente . Esta configuración permite su certificación sin necesidad de ningún otro componente neumático como pueda ser el APU. Además en la configuración convencional, normalmente se incluye una unidad de potencia auxiliar (APU) , que está prevista para proporcionar potencia eléctrica, neumática o ambas generalmente para su uso en tierra, funciones que son llevadas a cabo por los motores principales. Gran parte de las APUs podrían también suministrar estas potencias en vuelo generalmente enfocadas para reforzar la generación eléctrica y/o neumática cuando uno de los sistemas de generación falla. El APU para las aeronaves con la configuración más eléctrica sigue tomando el mismo papel que en la configuración más convencional si bien ahora solamente suministra potencia eléctrica y no neumática. Permitiendo que la aeronave siga poseyendo la autonomía en tierra sin necesidad de arrancar ninguno de los motores eléctricos o de ser alimentado mediante los servicios de tierra, es decir sigue sin tener un rol relevante en la certificación del avión salvo para los casos antes mencionados .
Por lo tanto en las arquitecturas más eléctricas existe duplicidad de los CAC que proporcionan un mayor número de estos componentes, mayor coste operativo, mayor peso de la aeronave y menor fiabilidad del sistema de ventilación.
DESCRIPCIÓN DE LA INVENCIÓN Para conseguir los objetivos y resolver los inconvenientes anteriormente indicados, la invención ha desarrollado un nuevo sistema de control de la presurización, ventilación y acondicionamiento del aire de una aeronave, que al igual que los previstos en el estado de la técnica comprende módulos neumáticos de acondicionamiento de aire (PACK) , comprensores independientes neumáticos alimentados eléctricamente (CAC) , una unidad de potencia auxiliar (APU) , con compresor neumático y con al menos un generador de potencia eléctrica, y medios de distribución neumática para alimentar neumáticamente los PACKs.
La novedad principal de la invención reside en el hecho de que se elimina la duplicidad de los CACs, quedando uno por PACK, y por tanto comprende dos CACs que están conectados a un controlador independiente de CACs; el APU está dimensionado para alimentar cada PACK de forma independiente o conjunta en las operaciones de la aeronave tanto en tierra como en vuelo, y dicho APU está conectado a un controlador independiente de APU; y los PACKs están conectados a un controlador independiente de PACKs . Además comprende un controlador central que está conectado al controlador independiente de CACs, al controlador independiente de APU y al controlador independiente de PACKs, para que los PACKs sean alimentados individualmente por una fuente seleccionada entre un CAC y el APU, y de forma que pueda realizarse la alimentación de un único PACK o la alimentación de varios PACKs .
Además el controlador central está conectado a un sistema eléctrico de la aeronave que gobierna la demanda y distribución de potencia eléctrica del sistema.
Esta configuración tiene la gran ventaja de que únicamente se utilizan dos CACs en lugar de cuatro tal y como se realiza convencionalmente, lo que reduce el número de CACs, el peso de la aeronave, su coste operativo, y además al reducirse el número de componentes se aumenta la fiabilidad general del sistema sin reducirse la tolerancia al fallo de los CACs, ya que su función puede ser reemplazada por el APU.
Como se ha comentado los PACKs pueden ser alimentados individualmente por un CAC o por el APU, de forma, que en la operativa en vuelo cada PACK es alimentado por un CAC. Si en esta situación se produce una avería de un CAC y pasa a ser inoperativo, es detectado por el controlador independiente que lo comunica al controlador central, de forma que realiza un cambio de alimentación, pasando a alimentar el PACK, cuyo CAC está inoperativo, mediante el APU, operación que se realiza de manera seleccionada entre manual y automática, es decir, puede ser ejecutada directamente por el controlador central, o de forma manual bien actuándose sobre éste, o directamente sobre el APU. La invención prevé que el dimensionado del APU esté previsto para que en el caso en que cada CAC esté alimentando neumáticamente a un PACK y un CAC pase a ser inoperativo, el APU proporciona al menos la potencia neumática al PACK que estaba siendo alimentado por el CAC inoperativo en una medida equivalente que no degrade la operativa de la aeronave tanto en tierra como en vuelo, es decir, que la capacidad de presurización de la cabina y del mantenimiento de los requisitos de ventilación y temperatura en cabina no serían penalizados; habiéndose previsto que además el APU proporcione la potencia neumática necesaria sin extracción de potencia eléctrica simultánea en la operativa de la aeronave en vuelo. El controlador independiente de la unidad de potencia auxiliar comprende medios para que el generador de potencia eléctrica del APU suministre al menos toda la potencia equivalente a la necesaria para alimentar el funcionamiento de un CAC y del controlador independiente de CACs, en caso de fallo de los generadores de los motores principales y en el caso de que un motor principal esté inoperativo.
La invención prevé que los CACs y los PACKs puedan estar situados en la sección del fuselaje final o en el carenado de la panza de la aeronave lo que facilita su mantenimiento .
Además la invención prevé que el APU esté situado en el cono de cola del avión.
A continuación para facilitar una mejor comprensión de esta memoria descriptiva y formando parte integrante de la misma, se acompaña una única figura en la que con carácter ilustrativo y no limitativo se ha representado el objeto de la invención.
BREVE ENUNCIADO DE LA FIGURA Figura 1.- Muestra un diagrama de bloques esquemático funcional de un posible ejemplo de realización del sistema de la invención, en el que las conexiones con trazo grueso representan las conexiones neumáticas y las de trazo fino las conexiones eléctricas de control .
DESCRIPCIÓN DE LA FORMA DE REALIZACIÓN PREFERIDA
A continuación se realiza una descripción de la invención basada en la figura anteriormente comentada.
La invención se describe para el caso de una aeronave que comprende dos módulos neumáticos de acondicionamiento de aire (PACK) 1 que realizan la ventilación y acondicionamiento de aire en la cabina de la aeronave, y cada uno de los cuales están conectados a un compresor independiente neumático alimentado eléctricamente (CAC) 2, aunque unos medios de distribución neumática 7 permiten una alimentación cruzada, y a una unidad de potencia auxiliar (APU) 3 mediante los medios de distribución neumática 7 para realizar la alimentación neumática de los PACKs 1 según será descrito con posterioridad.
Además los PACKs 1 están conectados a un controlador independiente de PACKs 4, que a su vez está conectado a un controlador central 12.
Los CACs 2 están conectados a un controlador independiente de CACs 5, que también está conectado al controlador 12.
Por otro lado el APU 3 está conectado a un controlador independiente de APU 6, que a su vez está conectado al controlador central 12.
Los medios de distribución neumática 7 están constituidos por conducciones y válvulas, tal y como a continuación se describe. Así, en la salida del APU se prevé una válvula 8 mediante la cual se permite aplicar potencia neumática a las conducciones de los medios 7. Para realizar la conexión del APU 3 con los PACKs 1 se prevé una bifurcación en la que se intercalan unas válvulas neumáticas aisladora 9 cuyas salidas se conectan a las conducciones que unen cada uno de los CAC 2 con su respectivo PACK 1. Además a la salida de cada uno de los CACs 2 se ha previsto una válvula 10 que permite realizar la aplicación de potencia neumática a cada uno de los PACKs 1, en cuya línea de alimentación además se incluyen, por cada una de las ramificaciones que presente, una válvula de control de flujo 11. En este punto cabe señalar que las válvulas de control de flujo 11 pueden ser eliminadas sin cambiar la funcionalidad de la arquitectura descrita, ya que su función consiste en regular el caudal de aire a la entrada del PACK 1, función que también puede ser realizada por cada uno de los CAC 2 mediante su regulación en velocidad, tal y como es conocido en algunos sistemas convencionales.
Así, por ejemplo en las operaciones de la aeronave en vuelo cada uno de los CAC 2 alimenta a su correspondiente PACK 1, para lo que el controlador central 12 mantiene las válvulas neumáticas aisladoras 9 y la válvula 8 cerradas, en tanto que las válvulas 10 se encuentran abiertas y las válvulas de control de flujo 11 se mantienen con la apertura adecuada para aportar el flujo de aire requerido por cada uno de los PACK 1 en estas condiciones de funcionamiento normal en vuelo. Si uno de los CAC 2 pasa a ser inoperativo, esto es detectado por el controlador independiente de CACs 5, que lo comunica al controlador central 12 y éste cierra la correspondiente válvula 10 del CAC 2 inoperativo y abre la válvula 8 así como la válvula neumática aisladora 9 correspondiente al PACK 1 cuyo CAC 2 ha quedado inoperativo, de forma que es el APU 3 el que proporciona la potencia neumática al PACK 1, es decir realiza las funciones de equipo de reserva, a diferencia de cómo se realiza en el estado de la técnica en el que esta funcionalidad es sustituida por el CAC que permanece operativo (no representado por no pertenecer a la invención) .
El controlador central 12 puede realizar esta funcionalidad de forma automática, o bien proporcionar una señalización para que sea activado manualmente, y realice la funcionalidad comentada, o incluso ser realizado el proceso de cambio de alimentación de forma manual actuando independientemente sobre cada una de las fuentes de alimentación neumáticas 2 y 3.
Cuando se produce un fallo en el funcionamiento de un PACKs 1 ello es detectado por el controlador independiente de PACKs 4 que lo señaliza al controlador central 12 de forma que éste se lo comunica al controlador independiente de CACs 5 que inhibe el funcionamiento del CAC 2 que se encontraba alimentando al PACK 1 que ha pasado a estado inoperativo.
Para el caso en el que la aeronave se encuentre operando en tierra, es el APU 3 el que suministra la potencianeumática, para lo que su funcionamiento es regulado por el controlador independiente de APU 6 y el controlador central 12 mantiene las válvulas 10 cerradas, y la válvula 8 y las válvulas neumáticas aisladoras 9 abiertas. Además mantiene la posición adecuada de las válvulas de control de flujo 11 al nivel requerido de caudal neumático a aplicar sobre cada PACKl. En base a la descripción realizada, se comprende que el APU 3 debe de estar dimensionado para proporcionar la potencia neumática a un PACK 1 en vuelo o a dos PACKs 1 en tierra (en combinación con la potencia eléctrica necesaria en tierra) en una medida equivalente que no degrade la operativa de la aeronave tanto en sus fases operativas de tierra como en vuelo, es decir, en toda la envolvente de operación de la aeronave. Además, el APU proporciona al menos la potencia neumática necesaria sin extracción de potencia eléctrica simultánea en la operativa de la aeronave en vuelo, de manera que únicamente realiza la alimentación neumática de los PACK 1, efectuándose la alimentación eléctrica mediante un sistema eléctrico de la aeronave (no representado) , que gobierna la demanda y distribución de potencia eléctrica de la aeronave, y que está conectado al controlador central 12 mediante una conexión 13.
Así por ejemplo el sistema de generación de potencia eléctrica puede estar constituido por los generadores principales de los motores principales, pudiendo instalar uno o dos, de forma que en el caso de fallo de los generadores de uno de los motores principales, o de un generador de cada motor si éste instala 2 por motor, y en el caso de un motor principal inoperativo, también se prevé la posibilidad de que el generador de potencia eléctrica del APU suministre al menos toda la potencia eléctrica equivalente a la necesaria para alimentar el funcionamiento de un CAC 2 y del controlador independiente de CACs 5, para lo que el controlador independiente de APU 6 comprende medios para que el generador de potencia eléctrica del APU suministre dicha potencia equivalente comentada.
En la operación normal en tierra, también puede efectuarse la alimentación neumática de los PACKs mediante los CACs en cuyo caso se actuaría de forma similar a como ha sido descrito para los casos anteriores, para lo que en este caso los CACs pueden ser alimentados eléctricamente por el generador de potencia eléctrica del APU 3, por una fuente externa del aeropuerto, o por los generadores principales del motor, siempre que alguno de ellos se encuentre encendido. En una realización de la invención se prevé que los CACs y los PACKs se encuentren situados en la sección del fuselaje final, en tanto que APU 3 se sitúa en el cono de cola de la aeronave.
En otra realización de la invención los CACs 2 y los PACKs 1 se encuentran situados en el carenado de la panza de la aeronave, y el APU 3, al igual que en caso anterior se ubica en el cono de cola de la aeronave.

Claims

REIVINDICACIONES
1. - SISTEMA DE CONTROL DE LA PRESURIZACION, VENTILACIÓN Y ACONDICIONAMIENTO DEL AIRE DE UNA AERONAVE, que comprende módulos neumáticos de acondicionamiento de aire (PACK) (1) , compresores independientes neumáticos alimentados eléctricamente (CAC) (2) , una unidad de potencia (APU) (3) con compresor neumático y con al menos un generador de potencia eléctrica, y medios de distribución neumática (7) para alimentar neumáticamente los módulos neumáticos de acondicionamiento de aire (PACKs) (1) ; se caracteriza porque comprende dos compresores independientes neumáticos alimentados eléctricamente (CACs) (2), que están conectados a un controlador independiente de CACs (5) ; una unidad de potencia auxiliar (APU) (3) dimensionada para alimentar los módulos neumáticos de acondicionamiento de aire (PACK) (1) de forma seleccionada entre independiente y conjunta en las operaciones de la aeronave tanto en tierra como en vuelo, que está conectado a un controlador independiente de APU (6) ; un controlador independiente de módulos neumáticos de acondicionamiento de aire PACKs
(4); y un controlador central (12) conectado a los controladores independientes de CACs (5) , al controlador independiente de (APU) [S) , y al controlador independiente de módulos neumáticos de acondicionamiento de aire PACKs (4) para que los módulos neumáticos de acondicionamiento de aire (PACKs) (1) sean alimentados individualmente por una fuente seleccionada entre un compresor independiente neumático alimentado eléctricamente (CAC) (2) y la unidad de potencia auxiliar
(APU) (3) y de forma seleccionada entre alimentación de un único módulo neumático de accionamiento de aire (PACK)
(1) y alimentación de varios módulos neumáticos de acondicionamiento de aire (PACKs) (1) ; estando el controlador central (12) conectado con un sistema eléctrico de la aeronave que gobierna la demanda y distribución de potencia eléctrica de la aeronave.
2.- SISTEMA DE CONTROL DE LA PRESURIZACION, VENTILACIÓN Y ACONDICIONAMIENTO DEL AIRE DE UNA AERONAVE, según reivindicación 1, caracterizado porque un cambio de alimentar neumáticamente un módulo neumático de acondicionamiento de aire (PACK) (1) mediante un compresor independiente neumático alimentado eléctricamente (CAC) (2) asociado, a alimentarlo mediante la unidad auxiliar de potencia (APU) (2) , se realiza de manera seleccionada entre manual y automática.
3. - SISTEMA DE CONTROL DE LA PRESURIZACION, VENTILACIÓN Y ACONDICIONAMIENTO DEL AIRE DE UNA AERONAVE, según reivindicación 1, caracterizado porque el controlador independiente de la unidad de potencia auxiliar (APU) (6) , comprende medios para que el generador de potencia eléctrica de la unidad de potencia auxiliar (APU) , suministre al menos toda la potencia equivalente a la necesaria para alimentar el funcionamiento de unos compresores independientes neumáticos alimentados eléctricamente (CAC) (2) y su controlador independiente de (CAC) (5) en caso de fallo de los generadores de los motores principales y en caso de un motor principal inoperativo.
4.- SISTEMA DE CONTROL DE LA PRESURIZACION, VENTILACIÓN Y ACONDICIONAMIENTO DEL AIRE DE UNA AERONAVE, según reivindicación 1, caracterizado porque los compresores independientes neumáticos alimentados eléctricamente (CAC) (2) y los módulos neumáticos de acondicionamiento de aire (CACK) (1) están situados en una posición seleccionada entre la sección de fuselaje final y el carenado de la panza de la aeronave; estando la unidad de potencia auxiliar (APU) (2) situada en el cono de cola de la aeronave.
PCT/ES2009/000143 2008-04-30 2009-03-13 Sistema de control de la presurización, ventilación y acondicionamiento del aire de una aeronave WO2009133218A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09738255.0A EP2272756B1 (en) 2008-04-30 2009-03-13 System for controlling pressurisation, ventilation and air conditioning in an aircraft
BRPI0910829A BRPI0910829A2 (pt) 2008-04-30 2009-03-13 sistema de controle para pressurização, ventilação e condicionamento de ar de uma aeronave
CA2720895A CA2720895C (en) 2008-04-30 2009-03-13 Control system for pressurization, ventilation and air conditioning of an aircraft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200801250 2008-04-30
ES200801250A ES2355997B1 (es) 2008-04-30 2008-04-30 Sistema de control de la presurización, ventilación y acondicionamiento del aire de una aeronave.

Publications (1)

Publication Number Publication Date
WO2009133218A1 true WO2009133218A1 (es) 2009-11-05

Family

ID=41254792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/000143 WO2009133218A1 (es) 2008-04-30 2009-03-13 Sistema de control de la presurización, ventilación y acondicionamiento del aire de una aeronave

Country Status (6)

Country Link
US (1) US20090275276A1 (es)
EP (1) EP2272756B1 (es)
BR (1) BRPI0910829A2 (es)
CA (1) CA2720895C (es)
ES (1) ES2355997B1 (es)
WO (1) WO2009133218A1 (es)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3184429A1 (en) * 2015-12-21 2017-06-28 Airbus Operations, S.L. Aircraft with a bleed supply hybrid architecture
CA3038718C (en) 2016-09-29 2023-12-05 Airbus Operations, S.L. Auxiliary air supply for an aircraft
US10661907B2 (en) 2016-11-17 2020-05-26 Honeywell International Inc. Hybrid pneumatic and electric secondary power integrated cabin energy system for a pressurized vehicle
EP3760854B1 (en) * 2019-07-01 2023-05-24 Airbus Operations, S.L.U. Air management system
DE102019215058A1 (de) * 2019-09-30 2021-04-01 Airbus Operations Gmbh Avioniknetzwerk mit synchronisationsdomänen und verfahren zum synchronisieren von netzwerkteilnehmern in einem avioniknetzwerk

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3711044A (en) * 1971-03-17 1973-01-16 Garrett Corp Automatic interface control system
US4684081A (en) * 1986-06-11 1987-08-04 Lockheed Corporation Multifunction power system for an aircraft
US20020113167A1 (en) * 2001-02-16 2002-08-22 Jose Albero Aircraft architecture with a reduced bleed aircraft secondary power system
US20040129835A1 (en) * 2002-10-22 2004-07-08 Atkey Warren A. Electric-based secondary power system architectures for aircraft
US20050051668A1 (en) * 2003-09-09 2005-03-10 Atkey Warren A. High efficiency aircraft cabin air supply cooling system
EP1630099A2 (en) * 2004-08-23 2006-03-01 Honeywell International Inc. Integrated power and pressurization system
EP1860026A2 (en) * 2006-05-25 2007-11-28 Honeywell International Inc. Integrated environmental control and auxiliary power system for an aircraft

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4494372A (en) * 1983-06-10 1985-01-22 Lockheed Corporation Multi role primary/auxiliary power system with engine start capability for aircraft
US5939800A (en) * 1998-02-11 1999-08-17 Alliedsignal Inc. Aircraft electrical power system including air conditioning system generator
US6124646A (en) * 1998-02-11 2000-09-26 Alliedsignal Inc. Aircraft air conditioning system including electric generator for providing AC power having limited frequency range
DE102006023444A1 (de) * 2006-05-18 2007-11-22 Liebherr-Aerospace Lindenberg Gmbh Klimaanlage mit einer redundanten Zuführung von Versorgungsluft

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3711044A (en) * 1971-03-17 1973-01-16 Garrett Corp Automatic interface control system
US4684081A (en) * 1986-06-11 1987-08-04 Lockheed Corporation Multifunction power system for an aircraft
US20020113167A1 (en) * 2001-02-16 2002-08-22 Jose Albero Aircraft architecture with a reduced bleed aircraft secondary power system
US20040129835A1 (en) * 2002-10-22 2004-07-08 Atkey Warren A. Electric-based secondary power system architectures for aircraft
US20050051668A1 (en) * 2003-09-09 2005-03-10 Atkey Warren A. High efficiency aircraft cabin air supply cooling system
EP1630099A2 (en) * 2004-08-23 2006-03-01 Honeywell International Inc. Integrated power and pressurization system
EP1860026A2 (en) * 2006-05-25 2007-11-28 Honeywell International Inc. Integrated environmental control and auxiliary power system for an aircraft

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2272756A4 *

Also Published As

Publication number Publication date
EP2272756A1 (en) 2011-01-12
ES2355997B1 (es) 2012-02-27
EP2272756A4 (en) 2014-01-22
CA2720895A1 (en) 2009-11-05
US20090275276A1 (en) 2009-11-05
ES2355997A1 (es) 2011-04-04
BRPI0910829A2 (pt) 2015-10-06
CA2720895C (en) 2016-01-19
EP2272756B1 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
US8087255B2 (en) Air-conditioning system for aircraft
US7845188B2 (en) System for the preparation of compressed air
EP3323727B1 (en) Hybrid pneumatic and electric secondary power integrated cabin energy system for a pressurized vehicle
EP1778542B1 (en) System and method for cooling of air in an aircraft
CN101970297B (zh) 飞行器气囊系统
ES2920835T3 (es) Unidad de suministro de aire auxiliar para una aeronave
WO2009133218A1 (es) Sistema de control de la presurización, ventilación y acondicionamiento del aire de una aeronave
US20110062288A1 (en) Inerting system for an aircraft
US20110183595A1 (en) Aircraft with at least one pressurized fuselage area and at least one unpressurized area and method for ventilating of an unpressurized area of an aircraft
US11155370B2 (en) Spacecraft landing and recovery inflation system
CA2742891A1 (en) Method and system for emergency ventilation of an aircraft cabin
US7786615B2 (en) Power distribution architecture for actuating moving elements of an aircraft in sequence
US20190054332A1 (en) Common array mounting bottles engineered for reuse
US20170174357A1 (en) Aircraft With A Bleed Supply Hybrid Architecture
RU2224690C2 (ru) Силовая установка летательного аппарата
US10843805B2 (en) Systems to prevent inadvertent in-flight deployment of inflatable aircraft emergency evacuation slides
US9776740B2 (en) Aircraft capable of passing from the aerial domain to the spatial domain and method for automatically adapting the configuration of same
US10569885B2 (en) Environmental control system for an aeronautic vehicle
GEAR FCI FC2 UTI
NEAL et al. Canadair Challenger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738255

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2720895

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2009738255

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009738255

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0910829

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101026