WO2009132521A1 - 足底软组织检测系统 - Google Patents
足底软组织检测系统 Download PDFInfo
- Publication number
- WO2009132521A1 WO2009132521A1 PCT/CN2009/000470 CN2009000470W WO2009132521A1 WO 2009132521 A1 WO2009132521 A1 WO 2009132521A1 CN 2009000470 W CN2009000470 W CN 2009000470W WO 2009132521 A1 WO2009132521 A1 WO 2009132521A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- soft tissue
- data
- foot
- plantar
- ultrasonic
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/1036—Measuring load distribution, e.g. podologic studies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6829—Foot or ankle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/42—Details of probe positioning or probe attachment to the patient
- A61B8/4272—Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
- A61B8/4281—Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by sound-transmitting media or devices for coupling the transducer to the tissue
Definitions
- Plantar soft tissue detection system Plantar soft tissue detection system
- the invention relates to a human body detecting system, in particular to a foot soft tissue detecting system which integrates various sensors and integrates the mechanical properties of human foot soft tissue.
- the sole is divided into two parts, the forefoot and the hindfoot, each with a different structure. Even the role played during the walk is different. Most of the force on the hind foot comes from the impact force, and the forefoot is the main load that will push the human body forward. How the skin soft tissue absorbs shocks, and what kind of material properties are exhibited after stress is the focus of attention.
- the frequency of human walking and running is different.
- the force frequency and deformation speed of the soft tissue of the sole are different. Only the living test is used to explore the mechanical properties of the soft tissue of the foot. Physiological and pathological changes in biological soft tissues often lead to changes in tissue elasticity and other mechanical properties. Older people often have pain in the soles of the feet, and some of the patients with diabetes also have plantar ulceration. In both cases, the soft tissue of the sole has produced a qualitative variation.
- An object of the present invention is to provide a detection system for the elasticity of the plantar soft tissue with high detection accuracy, in which the subject can maintain a standing posture at the time of detection.
- the present invention adopts the following technical solutions:
- the plantar soft tissue detecting system of the invention comprises a data collecting unit and a data preprocessing unit connected with the data collecting unit, wherein
- the data acquisition unit comprises at least one ultrasonic sensor connected to the output shaft of the stepping motor and moving up and down with the output shaft of the motor for transmitting and receiving ultrasonic waves to the sole of the foot, at least one for inductive loading to the soft tissue pressure of the foot.
- Pressure sensor connected to the output shaft of the stepping motor and moving up and down with the output shaft of the motor for transmitting and receiving ultrasonic waves to the sole of the foot, at least one for inductive loading to the soft tissue pressure of the foot.
- the data preprocessing unit includes a filtering module and a data integration module for processing ultrasonic data and pressure data input by the data acquisition unit, obtaining skin soft tissue thickness data, and further obtaining soft tissue force-shaped variable data.
- the data processing unit is further connected to the data preprocessing unit, and the data processing unit fits a straight line with a soft tissue hardness through a plurality of sets of soft tissue force-shaped variable data, thereby obtaining soft tissue hardness data.
- the data processing unit calculates the Young's modulus of elasticity by the soft tissue force-shaped variable data, the radius of the ultrasonic probe, the initial thickness of the soft tissue of the foot, and the Poisson's ratio.
- the data processing module obtains non-linear parameters of the strain-dependent nonlinear change of the soft tissue through the plurality of sets of soft tissue stress-shaped variable data and the initial thickness of the tissue and the ultrasonic probe area.
- the data processing module obtains the viscoelastic parameters of the strain of the soft tissue as a function of stress through a plurality of sets of soft tissue force-shaped variable data, a pressure value that changes with time, a shape variable that changes with time, an initial thickness of the tissue, and an ultrasonic probe area.
- It also includes a weighing sensor unit for measuring the weight data of the detected foot.
- At least one displacement sensor for detecting the stroke of the stepper motor.
- a first camera connected to the data processing unit for monitoring whether the position of the sole is detected correctly and monitoring the detection process.
- a second camera coupled to the data processing unit for recording appearance information of the soft tissue of the bipedal foot prior to testing.
- a motor drive control module for controlling the rotation of the stepping motor is further provided in the data processing unit.
- the ultrasonic sensor, the pressure sensor, the displacement sensor and the stepping motor in the data acquisition unit are installed in the housing, and a top cover portion of the housing is provided with a cover plate with a through hole, and the output of the stepping motor
- a nut is fixedly mounted on the shaft, and a screw is fitted to the nut.
- the pressure sensor is mounted on the lead screw.
- the ultrasonic probe of the ultrasonic sensor is mounted on the top end of the screw and can protrude through the through hole in the cover.
- the displacement sensor is a linear displacement differential transformer comprising a vertically fixedly mounted housing, a moving element moving up and down relative to the fixed housing, wherein a sensing rod is fixed to the moving element, and the other end of the sensing rod is fixed to the lead screw.
- the present invention includes a data acquisition unit and a data preprocessing unit coupled to the data acquisition unit.
- the data acquisition unit processes the acquired ultrasonic data and pressure data into the data preprocessing unit to obtain the soft tissue thickness data and the force-shape variable data of the plantar soft tissue at the position. If the soft tissue is diseased, its mechanical properties will change greatly. It can be used to assess the health of the plantar soft tissue, thus helping people who are prone to foot lesions, such as diabetic patients, to detect the foot disease regularly and quantitatively. The occurrence of the disease.
- the data acquisition unit is located under the foot of the human body, that is, the human body is kept in a standing posture, which is consistent with the normal state of the foot force in daily life, and therefore, the soft tissue detection of the sole of the present invention is
- the system has high detection accuracy and good evaluation of the health of the plantar soft tissue.
- the data, signals and images detected in the invention can also be transmitted remotely through the network for evaluation by experts, and the use is very convenient.
- the present invention can further calculate the mechanical properties of the local Young's modulus, hardness, nonlinearity and viscoelasticity in the soft tissue by the force-shaped variable data, so that the evaluation is more accurate.
- FIG. 1 is a schematic structural view of a plantar soft tissue detecting system of the present invention
- Figure 2 is a longitudinal cross-sectional view of Figure 1;
- Figure 3 is a control flow chart of the plantar soft tissue detecting system of the present invention.
- Figure 4 is a graph showing the ultrasonic echo signal generated by the ultrasonic sensor during the detection process of the plantar soft tissue detecting system of the present invention
- Figure 5 is a perspective view showing a plantar soft tissue detecting system according to the present invention fitted through a plurality of sets of pressure and deformation data;
- FIG. 6 is a data signal diagram of a pressure sensor and a displacement sensor during a process of loading and loading a sole position in a detection process of the sole soft tissue detecting system of the present invention
- FIG. 7 is a graph showing the strain of the soft tissue of the sole. a curve that varies nonlinearly with stress
- Figure 8 shows the pressure-recovery curve of strain on the soft tissue of the foot as a function of stress.
- the mechanical structure of the plantar soft tissue detecting system of the present invention includes and is disposed in the left and right housings 3, 4.
- the left housing 3 houses an ultrasonic sensor, a pressure sensor, a displacement sensor, and a stepping motor that constitute the data acquisition unit.
- a weighing and sensing unit is mounted in the right housing 4.
- the left casing 3 and the right casing 4 are two separate parts from each other, and it is of course also possible to form a unitary structure.
- a top cover portion of the left casing 3 is provided with a cover plate 11 with a through hole.
- the output shaft 12 of the stepper motor is mounted vertically upwards.
- a nut 13 is fixedly mounted on the output shaft 12, and a screw 14 is fitted to the nut 13.
- the pressure sensor is mounted on the lead screw 14.
- the ultrasonic sensor includes an ultrasonic transmitter, an ultrasonic receiver, and an ultrasonic probe. Where the ultrasonic probe is mounted on the lead screw The top part of 14.
- the transmission mechanism mounted on the output shaft of the stepping motor is not limited to the above-described situation. For example, when the stepping motor is horizontally mounted, the transmission mechanism mounted on the output shaft of the motor needs to convert the rotation of the motor into a vertical movement, any A transmission mechanism capable of achieving this function is possible.
- the displacement sensor can be a linear displacement differential transformer (LVDT,
- the LVDT is a sensor that converts mechanical displacement into a DC voltage and is used to detect positional changes in an object during motion.
- the structure of the LVDT includes a cylindrical housing 5 that is vertically fixedly mounted, a moving member 6 that is movable up and down relative to the housing 5, and a sensing rod 8 is fixedly coupled to the top end of the moving member 6, and the other end of the sensing rod 8 is fixedly connected to the wire.
- Other types of displacement sensors can also be used in this embodiment, as long as the stroke of the stepping motor can be accurately detected.
- the data preprocessing module in this embodiment may be a digital signal processor (DSP) or other type of data processor.
- DSP digital signal processor
- the ultrasonic sensor, the pressure sensor, the displacement sensor, and the stepping motor can be multiple sets, so that multiple positions of the sole can be simultaneously measured. At this time, it is necessary to simultaneously provide the same number of through holes for the ultrasonic probe to protrude from the cover 11 of the left casing 3.
- the camera may further include two cameras, wherein the first camera connected to the data processing unit is configured to monitor whether the position to be detected by the sole is aligned with the through hole on the cover, and monitor the detection of the soft tissue detection system in real time.
- the process which can be mounted in the housing 3, is preferably made of a transparent material, and the entire housing can also be made entirely of a transparent material.
- a second camera connected to the data processing unit is mounted outside the casing for recording information on the appearance of redness, mass, and the like on both sides of the foot before testing.
- the electrical structure of the plantar soft tissue detecting system of the present invention comprises a data acquisition unit, a data preprocessing unit, a data processing unit, and two cameras connected to the data processing unit, respectively.
- the data acquisition unit comprises a weighing sensor unit located under one foot of the human body and an ultrasonic sensor under the other foot of the human body connected to the motor output shaft and controlled to move up and down by the motor for transmitting and receiving ultrasonic waves to the sole of the foot, A pressure sensor for sensing the pressure applied to the soft tissue of the sole and a displacement sensor for detecting the stroke of the stepper motor.
- the data pre-processing unit includes a filtering module and a data integration module for processing ultrasonic data, pressure data, weighing sensor unit data and displacement sensor data input by the data acquisition unit, and obtaining foot soft tissue thickness data and soft tissue stress- Shape variable data;
- the processed data is input into the data processing unit, and the data processing unit further calculates the body weight data of the soft tissue of the foot and the mechanical properties such as hardness and Young's modulus of elasticity.
- the plantar soft tissue detecting system of the present invention can measure data in the following aspects - 1. Measuring the body weight data of the detected plantar soft tissue
- the left foot to be detected is stepped on the ultrasonic sensor, pressure sensor, displacement sensor and stepping.
- the data collected by the load cell in the weighing sensor unit is amplified by the amplifier, analog-digital converted by the AD converter, and input to the data pre-processing module, filtered by the filter module, integrated by the data integration mode, and output.
- the data processing module calculates a portion of the weight value of the left foot that is detected.
- the specific algorithm is: the weight sensor shows the part of the weight of the right foot, and the total body weight minus the part of the weight of the right foot can be used to obtain the part of the body weight that the left foot is subjected to at that time.
- the starting step motor is controlled by the motor driving controller in the data processing module, and the pressure sensor, the sensing rod 8 of the displacement sensor and the ultrasonic probe are moved up and down;
- the ultrasonic sensor is excited by the high-voltage pulse generating circuit to transmit ultrasonic waves, and the ultrasonic waves are transmitted in the soft tissue of the plantar, and the ultrasonic echoes generated by the reflection of the tissue interface are generated, and the echo signals received by the ultrasonic receiver are received.
- Fig. 4 the abscissa indicates time, the ordinate indicates amplitude, and the curve in the figure is the ultrasonic echo signal curve, and the portion whose amplitude changes drastically is the echo signal reflected by the tissue-bone interface.
- the transmitting signal and the echo signal of the ultrasonic sensor are amplified by an amplifier, and the high-speed AD converter performs analog-to-digital conversion, and then input into the data pre-processing module, and the filtering module performs filtering, and then the data integration module transmits the signal multiple times.
- the echo signal is averaged to increase the signal-to-noise ratio and finally calculate the thickness of the soft tissue there.
- the ultrasonic wave propagates in the soft tissue after the ultrasonic probe is emitted, and the ultrasonic wave is reflected back to the ultrasonic probe when reaching the tissue-bone interface, and the ultrasonic stroke is twice the distance between the ultrasonic probe and the tissue-bone interface.
- the data pre-processing module when the ultrasonic probe is in close contact with the soft tissue of the sole, can calculate the initial thickness value of the soft tissue of the foot at the position without stress; when the soft tissue of the position is loaded and During the unloading process, the data preprocessing module can calculate the thickness value of the soft tissue at that position as a function of force.
- the LVDT can be activated and the travel of the stepper motor is detected by the LVDT, which is the thickness of the soft tissue.
- the lead screw 14 performs force loading and unloading on the soft tissue of the foot with the reciprocating motion of the stepping motor.
- the pressure sensor detects the force signal between the ultrasonic sensor and the surface of the soft tissue during the loading and unloading process of the force.
- the force signal of the process is amplified by the amplifier, the analog-to-digital conversion of the low-speed AD converter, and the input data pre-processing module performs filtering. , data integration processing.
- the LVDT detects the stroke of the stepping motor, that is, detects the positional movement signal of the ultrasonic probe.
- the signal is amplified by the amplifier, and the analog converter of the low-speed AD converter is input, and the input data preprocessing module performs filtering and data integration.
- the data preprocessing module can calculate the shape variable of the soft tissue at the position according to the initial thickness data of the soft tissue at the position of the sole and the motor stroke (or the soft tissue thickness calculated by the data preprocessing module), and then according to the data of the force at this time, Calculate the hardness value of the soft tissue at this position.
- the abscissa indicates the shape variable
- the ordinate indicates the magnitude of the force.
- Each point in the graph indicates the shape variable under the pressure of the position, the pressure is different, and the shape variables are different. By measuring several sets of force and shape variable values, several such points are obtained, from which a diagonal line is fitted, the slope of which can generally be simply regarded as the hardness value.
- the data processing module can calculate the Young's elastic modulus according to the force signal and the shape variable signal, and then synthesize the radius of the ultrasonic probe, the initial thickness of the tissue, the tissue force and the deformation ratio, and the specific algorithm is as follows.
- the abscissa is the strain value and the ordinate is the stress value.
- the curve in the figure shows that the stress-strain relationship of the soft tissue is nonlinear.
- the strain value is obtained by dividing the tissue shape variable by the initial thickness; the stress value is obtained by dividing the pressure by the area of the ultrasonic probe. According to the results of the study, the soft tissue of the diseased foot has a relatively large nonlinearity.
- the nonlinear parameters of the organization can be obtained by the following formula.
- the abscissa is the strain value
- the ordinate is the stress value
- the curve is the pressure-recovery curve.
- the rising and falling sections of the stress-strain curve cannot be repeated, meaning that there is energy loss during the pressure-recovery process.
- the strain value is obtained by dividing the tissue shape variable by the initial thickness; the stress value is obtained by dividing the pressure by the area of the ultrasonic probe.
- the soft tissue of the diseased foot has a relatively large viscoelasticity, that is, a relatively large energy loss or a relatively long time constant.
- the energy loss during the pressure-recovery process can be obtained by calculating the area of the closed region formed by the pressure-recovery curve in Fig. 8.
- the time constant can be obtained by applying different viscoelastic models.
- the parameters E0, El, ⁇ , ⁇ in equation (3) can be obtained from P(t) and u(t) by curve fitting. Reference can be made to "Huang YP, Zheng YP, and Leung SF. Quasilinear viscoelastic parameters of neck tissues with fibrosis induced by radiotherapy. Clinical Biomechanics. 20: 145-154, 2005, "
- the method of using the plantar soft tissue detecting system of the present invention comprises the following steps - (1) Use the second camera to record whether there is redness, mass and other appearance information on the soles of the feet before the test: first place the left foot on the panel in front of the camera, and the operator presses the acquisition button in the computer program to get the left foot information. , change the right foot, the same operation; the acquired biped's appearance information is input into the data processing module through the data transmission channel such as USB, and will be automatically merged into a double-footed appearance picture and saved to the specified database for each check. Check and compare. Some partial images of the sole of the foot can also be recorded with the camera 1.
- the stepping motor is started by the motor drive controller in the data processing unit.
- the stepping motor drives the ultrasonic probe of the pressure sensor and the ultrasonic sensor to move up and down, and the ultrasonic probe acts on the circle of the foot.
- Data such as soft tissue thickness data, hardness data, Young's modulus of elasticity, and stress-dependent strain at the site of the foot are displayed on the display module, and the data can be used to assess the health of the plantar soft tissue at that location.
- the first camera can be used to monitor whether the pressure applied by the ultrasonic probe acts on the sole position of the sole, whether the position to be detected is aligned with the through hole on the cover plate, and the soft tissue of the sole is deformed.
- Appearance information which is also input to the data processing module via USB or IEEE1394.
- real-time ultrasonic RF signals, mechanical signals, etc. can be recorded simultaneously, making it easy to analyze data offline.
- the system of the present invention can also be used to derive the aforementioned evaluation parameters by moving the center of gravity of the body and changing the effect on the weight of the plantar foot.
- a detection system having a plurality of sets of pressure sensors, ultrasonic sensors, displacement sensors, and stepping motors is used, multiple positions can be simultaneously detected, which is advantageous for improving detection efficiency.
- Kangren's plantar health status which is a reference to a general range of parameters indicating health; then, the results of a specific individual's speculation are compared with the reference value, and the plantar soft tissue can be roughly evaluated. Health status.
- the plantar soft tissue detecting system of the present invention can measure soft tissue thickness data and force-shaped variable data of the plantar soft tissue at the position, thereby evaluating the health of the plantar soft tissue, thereby facilitating the People who cause foot lesions, such as diabetic patients, are regularly and quantitatively tested to prevent the occurrence of foot patients.
- the data acquisition unit is located under the foot of the human body during the detection, that is, the human body is kept in a standing posture, which is consistent with the normal state of the foot force in daily life, the detection accuracy of the plantar soft tissue detection system of the present invention is high. , the evaluation of the health of the plantar soft tissue is good.
- the data, signals and images detected in the invention can also be transmitted remotely through the network for evaluation by experts, and the use is very convenient.
- the present invention can further calculate the mechanical properties of local Young's modulus, hardness, nonlinearity and viscoelasticity in the soft tissue by the force-shaped variable data, so that the evaluation is more accurate.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Dermatology (AREA)
- Acoustics & Sound (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
足底软组织检测系统
技术领域
本发明涉及一种人体检测系统, 特别是一种集各种传感器于一体的检测 人体足底软组织力学特性的足底软组织检测系统。
背景技术
随着生活水平的提高,人们越来越多地关注健康问题。于是市场上的 各种健身器材得以迅速发展和普及,其中包括专门针对人体某个部位的仪 器, 譬如脚按摩器、 颈按摩棒等。 随着医学的不断进步, 人们对病理机制 了解的逐渐深入, 对病理研究会更加细化。譬如对糖尿病的研究, 以前很 少有人知道糖尿病对足部健康有影响,这糖尿病造成了很多足部截肢的案 例。 据世界卫生组织统计: 40-70%的小腿或脚截肢都与糖尿病有关。 全 球现有约 2亿糖尿病人口,每 30秒就有一名病患者因糖尿病失去一只脚。 如果糖尿病人注重对足部的护理,一半以上的截肢都是可以避免的。 由此 引起了各国研究者对足底健康问题的极大关注。
足底分为前足与后足两部分,各有不同的结构。就连走路过程中所发 挥的作用也有所不同。后足的受力大多来自于冲击力,前足则主要负荷将 人体往前推移的地面反作用力。究竟足底软组织如何吸震, 以及受力后表 现出怎样的材料特性是被瞩目的重点。人类走路与跑步的频率不同,足底 软组织的受力频率、变形快慢等受力情况有所不同,只有用活体试验来探 讨足底软组织的机械特性才是最真实的模态。生物软组织的生理、病理变 化往往导致组织弹性及其他力学特性的改变。老年人常常足底疼痛,糖尿 病患者中有的也发生足底溃烂这两种情形下,足底软组织已经产生了性质 上的变异。
随着研究的深入以及糖尿病患者数量的快速增多,对足底软组织的弹 性特性的测试需求越来越多。但市面上几乎没有现成的产品可以针对足底 软组织的弹性特性作出比较好的测试。现有的可用于足底软组织弹性和厚
度测量的仪器,在检测过程中基本上都不能让被测者保持站立的姿势, 从 而影响检测效果和检测精度。另外,现有的仪器也不能同时对足底的表面 及内部组织进行捡测。
发明内容
本发明的目的是针对上述现有技术的不足,提供一种在检测时被测者 能保持站立姿势, 从而检测精度高的足底软组织弹性的检测系统。
为实现上述目的, 本发明采用如下技术方案:
本发明的足底软组织检测系统,包括数据采集单元、与数据采集单元 连接的数据预处理单元, 其中
数据采集单元包括位于人体脚底下的与步进电机输出轴相连并随电 机输出轴上下移动的至少一个用于向足底发射和接收超声波的超声波传 感器、 至少一个用于感应加载到足底软组织压力的压力传感器;
数据预处理单元包括滤波模块和数据整合模块,用于处理数据采集单 元输入的超声波数据、压力数据, 得到足底软组织厚度数据, 并进一步得 出软组织受力-形变量数据。
其中还包括与数据预处理单元相连的数据处理单元,该数据处理单元 通过若干组软组织受力 -形变量数据拟合出一条斜率为软组织硬度的直 线, 从而得到软组织硬度数据。
所述数据处理单元通过软组织受力-形变量数据、超声波探头的半径、 足底软组织初始厚度、 泊松比计算出杨氏弹性模量。
所述数据处理模块通过多组软组织受力 -形变量数据及组织初始厚 度、 超声波探头面积得到软组织的应变随应力非线性变化的非线性参数。
所述数据处理模块通过多组软组织受力-形变量数据、 随时间变化的 压力值、随时间变化的形变量、组织初始厚度、超声波探头面积得到软组 织的应变随应力变化的粘弹性参数。
其中还包括用于测量被检测脚承受体重数据的称重传感单元。
其中还包括至少一个用于检测步进电机行程的位移感测器。
其中还包括与所述数据处理单元相连的第一摄像头,用于监测足底被 检测位置是否正确并监测检测过程。
其中还包括与所述数据处理单元相连的第二摄像头,用于记录测试前 双足底软组织的外观信息。
所述数据处理单元中还设有用于控制步进电机转动的电机驱动控制 模块。
所述数据采集单元中的超声波传感器、压力传感器、位移感测器和步 进电机安装在壳体内,所述壳体的顶端部设有一块带通孔的盖板,所述步 进电机的输出轴上固定安装有螺母,螺母上配合有丝杠,所述压力传感器 安装在丝杠上,所述超声波传感器的超声波探头安装在丝杠的顶端部,能 通过盖板上的通孔伸出。
所述位移感测器是线性位移差分变压器, 包括竖直固定安装的外壳、 相对固定外壳上下移动的移动元件,其中在移动元件上固定有感应杆,感 应杆的另一端固定在丝杠上。
本发明所述的足底软组织检测系统的优点和积极效果是: 本发明包括数 据采集单元、 与数据采集单元连接的数据预处理单元。 数据采集单元将所采 集的超声波数据、 压力数据输入数据预处理单元处理后, 得出软组织厚度数 据和该位置的足底软组织的受力-形变量数据。若软组织发生病变, 其力学特 性会发生较大的变化, 可以以此来评估足底软组织的健康状况, 从而帮助易 引起足部病变的人群, 如糖尿病患者定期、 定量地检测, 预防足部病患的发 生。
使用本发明的系统检测时,数据采集单元位于人体脚底下, 即是在人 体保持站立的姿势下进行检测的,这符合日常生活中足部受力的常态,所 以,本发明的足底软组织检测系统检测精度高,对足底软组织健康状况的 评估效果好。本发明中检测得到的数据、信号及图像还可以通过网络进行 远程传输, 以供专家进行评估, 使用非常便捷。 另外, 本发明还可以进一 步通过受力-形变量数据计算出软组织内局部杨氏弹性模量、 硬度、 非线 性和黏弹性等力学特性, 使评估更加准确。
通过以下参照附图对优选实施例的说明, 本发明的上述以及其它目的、 特征和优点将更加明显。
附图说明
图 1是本发明的足底软组织检测系统的结构示意图;
图 2是图 1的纵向剖视图;
图 3是本发明的足底软组织检测系统的控制流程图;
图 4是本发明的足底软组织检测系统在检测过程中,超声波传感器产 生的超声回波信号曲线;
图 5 表示根据本发明的足底软组织检测系统通过若干组压力和形变 量数据拟合出的一条斜线图;
图 6是本发明的足底软组织检测系统在检测过程中,对某位置多次进 行加载和载过程中, 压力传感器、 位移感测器所采集的数据信号图; 图 7表示足底软组织的应变随应力非线性变化的曲线;
图 8表示足底软组织应变随应力变化的施压 -复原曲线。
具体实施方式
下面将详细描述本发明的具体实施例。 应当注意, 这里描述的实施例只 用于举例说明, 并不用于限制本发明。
如图 1所示,本发明的足底软组织检测系统的机械结构,包括并排放 置的左壳体 3和右壳体 4内。左壳体 3内装有构成数据采集单元中的超声 波传感器、压力传感器、位移感测器和步进电机。右壳体 4内装有称重传 感单元。左壳体 3和右壳体 4是相互独立的两个部分,当然也可以制成一 体结构。
如图 2所示, 左壳体 3顶端部设有一个带通孔的盖板 11。 步进电机 的输出轴 12是竖直向上安装的。 输出轴 12上固定安装有螺母 13, 螺母 13上配合有丝杠 14。压力传感器安装在丝杠 14上。超声波传感器包括超 声波发射器、 超声波接收器和超声波探头。 其中超声波探头安装在丝杠
14 的顶端部。 安装在步进电机输出轴上的传动机构不限于上述所描述的 情形,例如当步进电机水平安装时,安装在电机输出轴上的传动机构需要 将电机的转动转换成竖直方向移动,任何能够实现该功能的传动机构都是 可行的。
本实施例中, 位移感测器可以采用线性位移差分变压器 (LVDT,
Linear Variable Differential Transformer)。 LVDT是一种将机械位移转换成 直流电压的传感器, 用来检测某物体在运动中的位置变化信息。 LVDT的 结构包括竖直固定安装的圆筒状外壳 5、相对外壳 5可上下移动的移动元 件 6, 在移动元件 6的顶端部固定连接有感应杆 8, 感应杆 8的另一端固 定连接在丝杠 14上。 本实施例中也可以采用其他类型的位移感测器, 只 要能够精确地捡测到步进电机的行程即可。本实施例中的数据预处理模块 可以是数字信号处理器 (DSP ) 或者其他类型的数据处理器。
本实施例中, 超声波传感器、压力传感器、位移感测器和步进电机可 以是多套, 这样可以同时测量足底的多个位置。 这时左壳体 3的盖板 11 上需要同时设置同样数量的供超声波探头伸出的通孔。
本实施例中还可以包括两个摄像头,其中与数据处理单元连接的第一 摄像头用于监测足底要检测的位置与盖板上的通孔是否对正,并实时监测 足底软组织检测系统检测过程, 其可以安装在壳体 3内, 这时盖板 11最 好是由透明材料制成,整个壳体也可以全部由透明材料制成。与数据处理 单元连接的第二摄像头安装在壳体外, 用于记录测试前双足底是否有红 肿、 包块等外观信息。
如图 1和图 3所示,本发明的足底软组织检测系统的电气结构,包括 依次连接的数据采集单元、数据预处理单元、数据处理单元, 以及两个分 别与数据处理单元连接的摄像头。
数据采集单元包括位于人体一只脚底下的称重传感单元及位于人体 另一脚底下的与电机输出轴相连并由其控制上下移动的一个用于向足底 发射和接收超声波的超声波传感器、一个用于感应加载到足底软组织的压 力的压力传感器和一个用于检测步进电机行程的位移感测器。
数据预处理单元包括滤波模块和数据整合模块,用于处理数据采集单 元输入的超声波数据、 压力数据、 称重传感单元数据和位移感测器数据, 得到足底软组织厚度数据和软组织受力-形变量数据; 将处理后的数据输 入数据处理单元,由数据处理单元进一步计算出足底软组织的体重数据及 硬度、 杨氏弹性模量等力学特性。
具体来说, 本发明的足底软组织检测系统可以测出如下几方面的数 据- 一、 测量被检测的足底软组织承受的体重数据
被检测人的两脚分幵站立, 右脚踩到装有称重传感单元的右壳体 4 上, 要检测的左脚踩到装有超声波传感器、压力传感器、位移感测器和步 进电机的左壳体 3上(见图 1 ) 。 这时, 称重传感单元中的称重传感器所 釆集的数据经放大器放大、 AD转换器模数转换后输入到数据预处理模块 中, 由其中的滤波模块滤波、 数据整合模整合后输出到数据处理模块中, 数据处理模块计算出被检测的左脚所承受的部分体重值。具体算法为:称 重传感器显示出右脚所承受的部分体重,用总的体重减去右脚所承受的部 分体重即可得出该时刻左脚所承受的部分体重值。
二、 测量被检测的足底软组织某位置的厚度数据
由数据处理模块中的电机驱动控制器控制启动步迸电机,带动压力传 感器、 位移感测器的感应杆 8和超声波探头上下移动;
在此过程中, 通过高压脉冲发生电路激励超声波传感器发射超声波, 超声波在足底软组织中传输,遇到组织界面反射产生超声回波,经超声波 接收器收到的回波信号。 图 4中: 横坐标表示时间, 纵坐标表示振幅, 图 中曲线为超声回波信号曲线, 其振幅剧烈变化的部分为组织 -骨界面反射 的回波信号。超声波传感器的发射信号和回波信号经放大器进行放大、高 速 AD转换器进行模数转换后,输入数据预处理模块中, 由其中的滤波模 块进行滤波后, 再由数据整合模块对多次发射信号和回波信号进行平均, 从而提高信噪比, 并最终计算出该处软组织的厚度。具体算法为: 声波在 软组织中的平均传播速度是 v=1540米 /秒。由于采用接收发送一体的超声
波探头, 超声波在超声波探头发射后在软组织内传播, 当到达组织 -骨界 面时超声波反射回超声波探头, 超声波的行程是超声波探头到组织 -骨界 面之间的距离的 2倍。从图 4中可以得出接收到反射的回波信号的时间 t, 从而得出软组织厚度数据为: 软组织厚度 =v*t/2。
本发明中, 当超声波探头与足底软组织刚好接触时,数据预处理模块 可以计算出该位置的足底软组织在未受力情况下的初始厚度值;当对该位 置的软组织进行力的加载和卸载作用过程中,数据预处理模块可以计算出 该位置的软组织随着力的变化而实时变化的厚度值。当在检测过程中追踪 不到超声回波数据时,可以启用 LVDT,通过 LVDT检测到步进电机的行 程, 该行程即为软组织的厚度。
三、 测量足底软组织的力学特性
(一) 测量被检测的足底软组织某位置的硬度数据
在步进电机往复行程中, 丝杠 14随着步进电机的往复运动, 对足底 软组织进行力的加载和卸载作用。压力传感器检测到在力的加载和卸载过 程中超声波传感器和软组织表面之间的作用力信号,该过程的作用力信号 经放大器放大、低速 AD转换器模数转换后, 输入数据预处理模块进行滤 波、 数据整合处理。
与此同时, LVDT检测步进电机的行程, 即检测到超声波探头的位置 移动信号, 该信号经放大器放大、低速 AD转换器模数转换后, 输入数据 预处理模块进行滤波、 数据整合等处理。
数据预处理模块根据足底该位置软组织的初始厚度数据及电机行程 (或者由数据预处理模块计算出的软组织厚度),能够计算出该位置软组 织的形变量, 再根据此时作用力的数据, 计算出该位置软组织的硬度值。 如图 5所示, 横坐标表示形变量, 纵坐标表示力的大小, 图中每一个点表 示在该位置的某压力作用下的形变量, 压力不同, 形变量不同。通过测量 若干组力和形变量值, 得到若干个这样的点, 由这些点拟合出一条斜线, 其斜率一般可以简单地视为硬度值。
(二) 测量被检测的足底软组织某位置的杨氏弹性模量
数据处理模块可以根据力的信号和形变量信号, 再综合超声波探头 的半径、组织初始厚度、组织受力和形变的比率等数据, 计算出杨氏弹性 模量, 具体算法如下。 一 P(l - 2)
Ά 一 (1)
4αωκ (a / h,v)
其中 是杨氏杨氏弹性模量; a是超声波探头的半径; h 是组织的初始 厚度; P 是由超声波探头所施加的压力; ω 是组织的形变量; V 是泊 松比 (Poisson's ratio) ; /h, v) 是决定于 和 v的一个修正量, 在 文献 "Hayes WC, Keer LM, Herrmann G, Mockros LF. A mathematical analysis for indentation tests of articular cartilage. Journal of Biomechanics. 5: 541-551, 1972." 已经给出。
(三)得出被检测的足底软组织某位置应变随应力非线性变化的非线 如图 6所示, 横坐标表示时间, 纵坐标表示力的大小或者位移, 随着 时间的推移, 向足底某一位置多次进行力的加载和卸载作用,该位置的软 组织的形变量曲线如图中上面的曲线 a所示;该位置的压力曲线如图中下 面的曲线 b所示。从图中可以看出, 当位移比较小时, 压力也比较小, 当 位移比较大时,压力也比较大。但压力的变化量与位移的变化量之向并不 是线性关系。 ·
如图 7所示, 横坐标为应变值, 纵坐标为应力值, 图中曲线表示出软 组织的应力-应变关系是非线性的。 其中应变值由组织形变量除以初始厚 度得到; 应力值由压力除以超声波探头面积得到。根据研究结果, 有病变 的足底软组织有比较大的非线性。 组织的非线性参数可以由以下公式得 到。
(l -
(2)
h αωκ (a / h,v) 其中 表示在形变量非常小时的杨氏弹性模量; ^表示杨氏弹性模量的
非线性量; P 是由超声波探头所施加的压力; ω 是组织的形变量; 通过 多对 Ρ和 ω的值, 就可以计算得到^和 。
(四)测量被检测的足底软组织某位置应变随应力变化的粘弹性参数 如图 8所示, 横坐标为应变值, 纵坐标为应力值, 图中曲线为施压- 复原曲线, 表示出应力 -应变曲线的上升段和下降段不能重复, 意味着在 施压-复原的过程中有能量的损耗。 其中应变值由组织形变量除以初始厚 度得到; 应力值由压力除以超声波探头面积得到。根据研究结果, 有病变 的足底软组织有比较大的粘弹性,即有比较大的能量损耗或有比较长的时 间常数。施压 -复原过程中的能量损耗可以通过计算图 8中施压-复原曲线 所形成封闭区域的面积得到。时间常数可以通过应用不同的粘弹性模型得 到。
其中 " 、 h、 v、 E0、 与公式 (1 )及公式 (2 ) 中描述的一样。 是随 时间变化的压力值; u(t) 是随时间变化的形变量; α表示粘性相对于弹性 的程度; τ是粘弹性的时间常数。 修正量 考虑了其非线性, 即在不 同形变量下有不同的修正量。具体值可参考" Zhang M, Zheng YP, and Mak AFT. Estimating the effective Young's modulus of soft tissues from indentation tests ― Nonlinear finite element analysis of effects of friction and large deformation. Medical Engineering and Physics 19(6): 512-517, 1997. "
公式 (3 ) 中的参数 E0、 El、 α、 τ可以通过曲线拟合的方式从 P(t) 和 u(t)得到。 可参考 "Huang YP, Zheng YP, and Leung SF. Quasilinear viscoelastic parameters of neck tissues with fibrosis induced by radiotherapy. Clinical Biomechanics. 20: 145-154, 2005, "
使用本发明的足底软组织检测系统的方法, 包括如下步骤-
( 1 ) 用第二摄像头记录测试前的双脚足底是否有红肿、 包块等外观 信息:先放置左脚在摄像头前的面板上,操作员按下电脑程序中的采集键 得到左脚信息, 换右脚, 同样操作; 采集到的双足的外观信息通过 USB 等数据传输通道输入数据处理模块中,会自动合并成一张双脚的外观图片 并保存到指定数据库中, 以备每次检査做比对。用该摄像头 1也可以记录 足底的一些局部图像。
( 2) 先在左足底需要测量的位置画上圆圈, 然后被检测人的两脚分 开站立,右脚踩到装有称重单元的右壳体 4上,要检测的左脚踩到装有超 声波传感器、压力传感器、位移感测器和步进电机的左壳体 3上, 使足底 的圆圈与盖板上的通孔对正;这时称重单元显示右脚所承受的体重,左脚 所承受的体重由数据处理单元计算出来并在其显示模块上显示;
( 3 ) 由数据处理单元中的电机驱动控制器控制启动步进电机, 步进 电机带动压力传感器和超声波传感器的超声波探头上下移动,超声波探头 作用于足底画圆圈的位置。足底该位置的软组织厚度数据、硬度数据、杨 氏弹性模量、 应力-应变量的变化情况等数据都会在显示模块上显示, 可 以通过这些数据来评估该位置的足底软组织的健康状况。
在上述检测过程中,可以用第一摄像头全程监测超声波探头施加的压 力作用于足底的具体位置是否正确,即要检测的位置是否与盖板上的通孔 对正, 以及足底软组织变形的外观信息, 该信息也通过 USB或 IEEE1394 输入到数据处理模块中。另外可以同时记录实时的超声射频信号、力学信 号等, 便于离线分析数据。
如果还需要检测足底软组织其他位置的健康状况,将这些位置画上圆 圈, 并分别使这些画圈位置与盖板上的通孔对正进行检测即可。另外, 使 用本发明的系统还可以通过移动身体重心,改变作用于被捡测足底体重情 况下得出前述的评估参数。本发明中, 如果采用具有多套压力传感器、超 声波传感器、位移感测器和步进电机的检测系统,则可以同时检测多个位 置, 有利于提高检测效率。
本发明中,在评估足底软组织的健康状况时,可以事先检测出大量健
康人的足底健康状况,从而统计出一个大致的表明健康的参数范围作为参 考; 然后, 再针对某个具体个人进行捡测的结果与参考值进行比对, 即可 大致评估其足底软组织的健康状况。另外,如果针对一个人有过多次检测 记录,还可以通过比较各次检测参数发生的变化及变化趋势来评估足底软 组织的健康状况。
虽然已参照几个典型实施例描述了本发明,但应当理解,所用的术语 是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实 施而不脱离发明的精神或实质,所以应当理解,上述实施例不限于任何前 述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释, 因此 ' 落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所 涵盖。 工业实用性
综上所述, 本发明的的足底软组织检测系统能够测出软组织厚度数据和 该位置的足底软组织的受力-形变量数据, 可以以此来评估足底软组织的健 康状况, 从而帮助易引起足部病变的人群, 如糖尿病患者定期、定量地检测, 预防足部病患的发生。 并且由于检测时数据采集单元位于人体脚底下, 即是 在人体保持站立的姿势下进行检测的, 这符合日常生活中足部受力的常态, 所以, 本发明的足底软组织检测系统检测精度高, 对足底软组织健康状况的 评估效果好。 同时本发明中检测得到的数据、 信号及图像还可以通过网络进 行远程传输, 以供专家进行评估, 使用非常便捷。 另外, 本发明还可以进一 步通过受力-形变量数据计算出软组织内局部杨氏弹性模量、硬度、非线性和 黏弹性等力学特性, 使评估更加准确。
通过以上较佳具体实施例的详述, 是希望能更加清楚描述本发明的特征 与精神,而并非以上述所披露的较佳具体实施例来对本发明的范围加以限制。 相反地, 其目的是希望能于本发明的保护范围内涵盖各种改变及具有等同性 的安排。 因此, 本发明的保护范围应该根据上述的说明作最宽广的解释, 以 致使其涵盖所有可能的改变以及具有等同性的安排。
Claims
1.一种足底软组织检测系统, 包括数据采集单元、 与数据采集单元连 接的数据预处理单元, 其特征在于- 数据采集单元包括位于人体脚底下的与步进电机输出轴相连并随电 机输出轴上下移动的至少一个用于向足底发射和接收超声波的超声波传 感器、 至少一个用于感应加载到足底软组织压力的压力传感器;
数据预处理单元包括滤波模块和数据整合模块,用于处理数据采集单 • 元输入的超声波数据、压力数据, 得到足底软组织厚度数据, 并进一步得 出软组织受力-形变量数据。
2. 根据权利要求 1所述的足底软组织检测系统, 其特征在于还包括 与数据预处理单元相连的数据处理单元,该数据处理单元通过若干组软组 织受力-形变量数据拟合出一条斜率为软组织硬度的直线, 从而得到软组 织硬度数据。
3. 根据权利要求 2所述的足底软组织检测系统, 其特征在于所述数 据处理单元通过软组织受力-形变量数据、 超声波探头的半径、 足底软组 织初始厚度、 泊松比计算出杨氏弹性模量。
4. 根据权利要求 2所述的足底软组织检测系统, 其特征在于所述数 据处理模块通过多组软组织受力-形变量数据及组织初始厚度、 超声波探 头面积得到软组织的应变随应力非线性变化的非线性参数。
5. 根据权利要求 2所述的足底软组织检测系统, 其特征在于所述数 据处理模块通过多组软组织受力-形变量数据、 随时间变化的压力值、 随 时间变化的形变量、组织初始厚度、超声波探头面积得到软组织的应变随 应力变化的粘弹性参数。
6. 根据权利要求 1-5 之任一项所述的足底软组织检测系统, 其特征 在于还包括用于测量被检测脚承受体重数据的称重传感单元。
7. 根据权利要求 6所述的足底软组织检测系统, 其特征在于还包括 至少一个用于检测步进电机行程的位移感测器。
8. 根据权利要求 7所述的足底软组织检测系统, 其特征在于还包括
与所述数据处理单元相连的第一摄像头,用于监测足底被检测位置是否正 确并监测检测过程。
9. 根据权利要求 8所述的足底软组织检测系统, 其特征在于还包括 与所述数据处理单元相连的第二摄像头,用于记录测试前双足底软组织的 外观信息。
10. 根据权利要求 9所述的足底软组织检测系统,其特征于所述数据 处理单元中还设有用于控制步进电机转动的电机驱动控制模块。
11. 根据权利要求 7所述的足底软组织检测系统,其特征在于所述数 据采集单元中的超声波传感器、压力传感器、位移感测器和步进电机安装 在壳体内, 所述壳体的顶端部设有一块带通孔的盖板 (11 ) , 所述步进 电机的输出轴 (12) 上固定安装有螺母 (13 ) , 螺母 (13 ) 上配合有丝 杠 (14) , 所述压力传感器安装在丝杠 (14) 上, 所述超声波传感器的 超声波探头安装在丝杠 (14) 的顶端部, 能通过盖板 (11 ) 上的通孔伸 出。
12.根据权利要求 11所述的足底软组织捡测系统, 其特征在于所述位 移感测器是线性位移差分变压器, 包括竖直固定安装的外壳(5)、相对固定 外壳(5)上下移动的移动元件(6) , 其中在移动元件(6)上固定有感应杆 (8) , 感应杆 (8) 的另一端固定在丝杠 (14)上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100943838A CN101569544B (zh) | 2008-04-29 | 2008-04-29 | 足底软组织检测系统 |
CN200810094383.8 | 2008-04-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009132521A1 true WO2009132521A1 (zh) | 2009-11-05 |
Family
ID=41229128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/000470 WO2009132521A1 (zh) | 2008-04-29 | 2009-04-29 | 足底软组织检测系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101569544B (zh) |
WO (1) | WO2009132521A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112155547A (zh) * | 2020-10-19 | 2021-01-01 | 广东工业大学 | 一种生物组织识别系统 |
CN114112657A (zh) * | 2021-10-28 | 2022-03-01 | 东南大学江北新区创新研究院 | 压电测试装置 |
CN115868935A (zh) * | 2022-12-16 | 2023-03-31 | 临沂中科睿鹤智慧科技有限公司 | 一种基于可穿戴的便携式平衡评估装置 |
CN117664705A (zh) * | 2024-01-30 | 2024-03-08 | 复旦大学 | 多维度广谱足底软组织材料力学性质临床在线检测设备 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101791215B (zh) * | 2010-01-12 | 2012-06-27 | 黄红拾 | 一种辅助评价足底和/或踝关节和/或膝关节受力状态的方法 |
GB201507099D0 (en) | 2015-04-27 | 2015-06-10 | Univ Staffordshire | Improvements related to ultrasound imaging |
TWI629972B (zh) * | 2017-02-14 | 2018-07-21 | 紅崴科技股份有限公司 | Automated foot detection and analysis system |
CN110755095B (zh) * | 2019-10-31 | 2021-01-08 | 清华大学 | 一种骨骼肌运动机能测试系统及其测试方法 |
CN112545862B (zh) * | 2020-11-18 | 2022-12-23 | 未来穿戴技术有限公司 | 按摩区域识别方法及筋膜枪、服务器、计算机可读存储介质 |
WO2023077267A1 (zh) * | 2021-11-02 | 2023-05-11 | 深圳迈瑞动物医疗科技股份有限公司 | 一种跟腱的检查方法和超声成像设备 |
CN115500814A (zh) * | 2022-10-14 | 2022-12-23 | 复旦大学 | 一种足底软组织在体多维应力-应变检测设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05115460A (ja) * | 1991-09-11 | 1993-05-14 | Matsura Kenkyusho Kk | 足圧等の分布測定装置 |
WO1995012352A1 (de) * | 1993-11-04 | 1995-05-11 | Paromed Medizintechnik Gmbh | Vorrichtung und verfahren zur ulcusprophylaxe und zur früherkennung der neuropathie beim diabetischen fuss |
CN2540911Y (zh) * | 2002-02-07 | 2003-03-26 | 华中科技大学同济医学院附属同济医院 | 平板式足底压力分布测量装置 |
EP1518497A1 (en) * | 2003-09-24 | 2005-03-30 | Dabic, Obrad | Device for inspection of diabetic foot |
US20050097762A1 (en) * | 2002-06-12 | 2005-05-12 | Biesbrouck Gerardus M. | Device and method for examining a diabetic foot |
JP2005192744A (ja) * | 2004-01-06 | 2005-07-21 | Yaskawa Electric Corp | 足底圧センサ |
CN1939210A (zh) * | 2005-09-28 | 2007-04-04 | 林维政 | 用以检测足部的扫描系统及其使用的方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2358836Y (zh) * | 1998-03-31 | 2000-01-19 | 中国人民解放军杭州疗养院 | 站立姿势平衡测试仪 |
-
2008
- 2008-04-29 CN CN2008100943838A patent/CN101569544B/zh active Active
-
2009
- 2009-04-29 WO PCT/CN2009/000470 patent/WO2009132521A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05115460A (ja) * | 1991-09-11 | 1993-05-14 | Matsura Kenkyusho Kk | 足圧等の分布測定装置 |
WO1995012352A1 (de) * | 1993-11-04 | 1995-05-11 | Paromed Medizintechnik Gmbh | Vorrichtung und verfahren zur ulcusprophylaxe und zur früherkennung der neuropathie beim diabetischen fuss |
CN2540911Y (zh) * | 2002-02-07 | 2003-03-26 | 华中科技大学同济医学院附属同济医院 | 平板式足底压力分布测量装置 |
US20050097762A1 (en) * | 2002-06-12 | 2005-05-12 | Biesbrouck Gerardus M. | Device and method for examining a diabetic foot |
EP1518497A1 (en) * | 2003-09-24 | 2005-03-30 | Dabic, Obrad | Device for inspection of diabetic foot |
JP2005192744A (ja) * | 2004-01-06 | 2005-07-21 | Yaskawa Electric Corp | 足底圧センサ |
CN1939210A (zh) * | 2005-09-28 | 2007-04-04 | 林维政 | 用以检测足部的扫描系统及其使用的方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112155547A (zh) * | 2020-10-19 | 2021-01-01 | 广东工业大学 | 一种生物组织识别系统 |
CN114112657A (zh) * | 2021-10-28 | 2022-03-01 | 东南大学江北新区创新研究院 | 压电测试装置 |
CN115868935A (zh) * | 2022-12-16 | 2023-03-31 | 临沂中科睿鹤智慧科技有限公司 | 一种基于可穿戴的便携式平衡评估装置 |
CN115868935B (zh) * | 2022-12-16 | 2024-03-08 | 临沂中科睿鹤智慧科技有限公司 | 一种基于可穿戴的便携式平衡评估装置 |
CN117664705A (zh) * | 2024-01-30 | 2024-03-08 | 复旦大学 | 多维度广谱足底软组织材料力学性质临床在线检测设备 |
CN117664705B (zh) * | 2024-01-30 | 2024-05-14 | 复旦大学 | 多维度广谱足底软组织材料力学性质临床在线检测设备 |
Also Published As
Publication number | Publication date |
---|---|
CN101569544B (zh) | 2011-04-06 |
CN101569544A (zh) | 2009-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009132521A1 (zh) | 足底软组织检测系统 | |
JP4465535B2 (ja) | 弾性画像表示方法及び超音波診断装置 | |
EP0955890B1 (en) | Device for imaging the prostata | |
US5038795A (en) | Muscle tonometer apparatus and method | |
US20090270728A1 (en) | System for measuring and tracking human body fat | |
US20100022895A1 (en) | Diagnosis system of deficient and forceful pulse | |
US20130109989A1 (en) | Method and apparatus for obtaining and processing ballistocardiograph data | |
US20020103432A1 (en) | Non-invasive diagnostic method and apparatus for musculoskeletal systems | |
US20160095580A1 (en) | Lung ventilation measurements using ultrasound | |
WO2013017105A1 (en) | Ultrasonic imaging system and method for measuring elasticity of biological tissues | |
CN103654729B (zh) | 一种压痛力学测试仪 | |
CN107920768A (zh) | 用于测量由颈动脉中的涡流产生的声频的无创方法 | |
US20070016061A1 (en) | System for measuring and tracking human body fat | |
CN115700106A (zh) | 估计介质的非线性剪切波弹性的超声方法和系统 | |
TW200924719A (en) | Inspection device and method for irregular bone defects of dental implant | |
JP5787286B2 (ja) | 超音波生体組織測定装置 | |
CN113208646B (zh) | 基于软组织形态评估超声探头接触状态的方法及装置 | |
JP7093093B2 (ja) | 超音波尿量測定装置、学習モデル生成方法、学習モデル | |
CN117297586A (zh) | 患心血管疾病的风险预测系统及装置 | |
JP2006519045A (ja) | 血圧マイクロセンサ及び該血圧マイクロセンサを用いた測定機器 | |
JP7246635B2 (ja) | 超音波測定方法、超音波測定プログラム、及び超音波測定装置 | |
JP4716792B2 (ja) | 超音波診断装置 | |
JP2013169270A (ja) | 超音波診断装置および超音波画像生成方法 | |
CN102068248B (zh) | 心肌兴奋收缩耦联时间诊断仪及其应用 | |
Zabihollahy et al. | Continuous monitoring of mechanical properties of plantar soft tissue for diabetic patients using wearable ultrasonic and force sensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09737632 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09737632 Country of ref document: EP Kind code of ref document: A1 |