WO2009129744A1 - 分体式太阳能热水器及其工作方法 - Google Patents

分体式太阳能热水器及其工作方法 Download PDF

Info

Publication number
WO2009129744A1
WO2009129744A1 PCT/CN2009/071421 CN2009071421W WO2009129744A1 WO 2009129744 A1 WO2009129744 A1 WO 2009129744A1 CN 2009071421 W CN2009071421 W CN 2009071421W WO 2009129744 A1 WO2009129744 A1 WO 2009129744A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
pipe
circulating
water tank
indoor
Prior art date
Application number
PCT/CN2009/071421
Other languages
English (en)
French (fr)
Inventor
王克涛
Original Assignee
Wang Ketao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Ketao filed Critical Wang Ketao
Publication of WO2009129744A1 publication Critical patent/WO2009129744A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1057Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0005Domestic hot-water supply systems using recuperation of waste heat
    • F24D17/001Domestic hot-water supply systems using recuperation of waste heat with accumulation of heated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0015Domestic hot-water supply systems using solar energy
    • F24D17/0021Domestic hot-water supply systems using solar energy with accumulation of the heated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1042Arrangement or mounting of control or safety devices for water heating systems for central heating the system uses solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • F24S10/45Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors the enclosure being cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/30Arrangements for connecting the fluid circuits of solar collectors with each other or with other components, e.g. pipe connections; Fluid distributing means, e.g. headers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/14Solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/18Domestic hot-water supply systems using recuperated or waste heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the invention relates to the field of solar water heaters, in particular to an indoor water tank combination supporting device and a working method capable of switching pressure in a split type solar water heating device.
  • solar water heaters used in people's lives mainly include integral machine-mounted, centralized and split type.
  • the principle is to absorb the solar energy through the solar collector, and use the heat exchange cycle of water or the indirect heat exchange form of the heat transfer medium to heat the low temperature water in the water storage tank for people to use.
  • the overall model Because its model and specifications are not uniform, it causes messy on the roof of the residential building, affects the city appearance, and damages the waterproof layer of the roof to varying degrees. For the safety, lightning protection and shock resistance of the building. There are certain hidden dangers.
  • the hot water output line of the whole machine solar water heater is long, and a large amount of cold water needs to be discharged during use, resulting in waste of water resources and heat energy.
  • the heat storage tank placed outdoors is hot in winter night.
  • the split type solar water heating device whether it is pressure-bearing or non-pressure-bearing, is direct water heat transfer or medium heat conduction.
  • the heat energy loss of the heat exchange circulation pipe is very large, resulting in solar water heating.
  • the heating efficiency of the device is low, especially in the case of low ambient temperature in winter. In winter, steam distillation and freezing block generate steam explosion tube, and the antifreeze heating cable is improperly used and the quality problem is easy to burn.
  • the present invention provides an indoor water tank combination supporting device and a working method capable of switching pressure in a split type solar water heating device, so as to solve the existing global machine installed, centralized and split type solar water heater products in use.
  • There are problems such as low heating efficiency, freezing of pipelines, and leakage of steam expansion pipes.
  • An indoor water tank combination supporting device capable of switching pressure, the device is provided with an indoor water tank, and a water supply pipeline connected to the water inlet of the indoor water tank, and a water control valve is arranged on the upper water pipe; the indoor water tank is connected with a circulation
  • the water pipeline and the circulating sewage pipeline are equipped with a circulating pipeline control valve on the circulating water pipe, and a circulating water pump is installed on the circulating water pipe; a check valve is arranged on the circulating water pipe; the water outlet of the indoor water tank is connected with heat
  • the water outlet pipe is equipped with a water stop breathing valve at the upper end of the indoor water tank; a water tank temperature sensor is installed in the indoor water tank.
  • the switchable pressure indoor water tank combination supporting device has a sewage water discharge pipe connected between the circulating water pipe and the circulating sewage pipe; a check valve is arranged on the sewage water discharge pipe, on the circulation A water discharge pipe is connected to the water pipe, and the water discharge pipe is connected with the sewage water discharge pipe, and the water discharge pipe is installed on the water discharge pipe.
  • the control valve is equipped with a fault alarm on the water discharge line.
  • the switchable pressure indoor water tank combination supporting device has an emptying pipeline connected between the circulating water supply pipeline at the water inlet end of the circulating water pump and the water supply pipeline crossing the circulation pipeline control valve, and is installed on the emptying pipeline There is an empty line check valve.
  • the switchable pressure indoor water tank combination supporting device is provided with a sensor on a hot water outlet pipe connected to the water outlet of the indoor water tank, or a control switch is installed at a water use place of the indoor water tank.
  • the indoor water tank combination supporting device capable of switching pressure has a heat insulation partition wall in the indoor water tank, and a communication pipeline is arranged on the heat insulation partition wall.
  • the switchable pressure indoor water tank combination supporting device, the circulating water supply pipe connected to the indoor water tank and the circulating lower water pipe end are connected with a solar collector, and the collector is provided with a collector water tank at the upper end;
  • the upper end of the water line is either at the upper end of the circulating water line or at the upper end of the collector tank, and is equipped with a respirator.
  • the switchable pressure indoor water tank combination supporting device is provided with a plug-in inlet port and a plug-in outlet port respectively at upper ends of the collector tank, which are respectively connected with the circulating water pipe and the circulating sewage pipe;
  • a vacuum heat collecting tube is arranged under the collector water tank with the plug-in inlet port and the plug-in outlet port, the vacuum heat collecting tube is provided with a metal heat exchange tube, and the metal heat exchange tube has a bell mouth sealing tube head and a horn.
  • One end of the mouth sealing tube head is a heat exchange tube nozzle, and the other end of the bell mouth sealing tube head is connected with a bottom sealed heat exchange tube body, and the metal heat exchange tube is connected to the water tank through the sealing ring at the position of the bell mouth sealing tube head The mouth is connected.
  • the working method of an indoor water tank combination supporting device capable of switching pressure the device is applied in a solar water heating device, as a part of a solar water heating device, a circulating water supply pipe connected with an indoor water tank and a circulating water pipe end With solar collectors, through various control valve control, in the solar water heating device, the low-temperature water in the indoor water tank and the solar collector absorbs the high-temperature water generated by the solar energy, and the circulating heat exchange is performed through the circulation pipeline.
  • the indoor water tank In the process, and the water in the circulation pipeline after the circulating heat exchange is discharged into the indoor water tank by the natural drop, the indoor water tank is in a state of no pressure, and the indoor water tank is automatically switched to the pressure state after the emptying; or, after the emptying is finished
  • the indoor water tank is still in a normal pressure state, and when the hot water is used, the indoor water tank is automatically switched to a pressure state.
  • the working method of the switchable pressure indoor water tank combination supporting device wherein, in the non-heat exchange circulation state of the system, the indoor water tank is cut off by various control valves and has been emptied after the last heat exchange cycle
  • the circulating water pipeline and the circulating sewage pipeline are connected. Therefore, when the system circulating heat exchange and the circulating heat exchange pipeline are empty: only the control system command automatically opens the circulation pipeline control valve to close the water supply control on the upper water pipe. Valve, cut off the water supply pipeline, the pressurized water in the water supply pipeline or the pressurized tap water can not enter the indoor water tank; the indoor water tank is in the normal pressure state during the circulating heat exchange and the heat exchange pipeline emptying process; After the heat exchange pipeline is exhausted, it is closed by the control system.
  • the circulating pipeline control valve on the water pipe on the ring cuts off the circulating water pipe, and then automatically opens the water control valve.
  • the check pipe on the circulating water pipe cuts off the pipe section where the circulating water pipe is reversed, with pressurized water or pressure.
  • the tap water can only enter the indoor water tank through the water supply pipeline, but cannot enter the circulating water supply pipeline and the circulating sewage pipeline; in this process, the indoor water tank is under pressure;
  • the control system directs the circulation pipeline control valve on the circulating water pipe to shut off the circulating water pipeline, and the water supply control valve on the upper water pipeline is still closed.
  • cut off the water supply pipeline when the hot water is used:
  • the water supply control valve is automatically opened by the control system, and the circulating pipeline control valve closed on the circulating water pipe line cuts off the circulating water supply pipeline; the circulation water pipe is closed under the check valve
  • the pipeline section where the water pipeline is reversed, the pressurized water or the pressurized tap water can only enter the indoor water tank through the water supply pipeline, and cannot enter the circulating water supply pipeline and the circulating sewage pipeline; in this process, the indoor water tank is under pressure.
  • the indoor water tank combination supporting device capable of switching pressure of the invention is a novel split type solar system consisting of a pressurized indoor water tank, a heat exchange circulation pipeline, a circulating water pump, various control, sensing components and an intelligent control system.
  • the indoor water tank combination supporting device capable of switching pressure in the hot water device can realize the unified centralized arrangement of the solar heat collectors in the split type solar water heating device of each household, and the hot water storage tank (that is, the indoor water tank) Placed indoors, solves a series of problems such as messy, affecting the city appearance, and destroying the waterproof surface of the roof in the use of existing products, achieving solar energy and building integration.
  • the indoor water tank is in a normal pressure circulation state when the heat exchange cycle of the solar water heating system and the circulation pipeline are empty; when the hot water is used, the indoor water tank is under pressure status. Because of the design of the automatic conversion of the indoor water tank without pressure during the system circulating heat exchange and the use of hot water, the water in the circulating pipeline flows into the indoor water tank by the natural drop, so that the heat transfer The circulating pipeline can be drained; when using hot water, the pressurized water (tap water) is injected into the indoor water tank through the water supply pipeline, and the hot water in the indoor water tank is discharged through the hot water outlet pipe through the water outlet pipe, so that the mixing valve is allowed to When using hot water, users are as convenient, comfortable and safe as using a pressurized water storage electric water heater.
  • the circulating pipe is evacuated, and the circulating pipe of the former split type solar water heating device in the form of direct water circulation heat exchange is solved.
  • the heat energy loss of the water in the road is cold and the indirect heat exchange mode of the heat exchange medium is used, the heat energy loss in the heat exchange process greatly improves the efficiency of the solar water heating.
  • the device adopts the design of the heat insulating partition wall and the connecting pipeline passing through the heat insulating partition wall, so that the device can complete the system heat exchange cycle and cycle.
  • the low-temperature tap water is prevented from entering the water tank.
  • the hot and cold water is mixed to reduce the overall temperature of the water in the indoor water tank, thereby ensuring the heat insulation partition wall.
  • the water in the high temperature tank in the indoor water tank that is cut off cannot be directly cooled by the low temperature tap water, so that hot water with a higher temperature can be used when hot water is used.
  • the design of the emptying pipeline is increased, and the water in the circulating sewage pipeline and the circulating water pipeline is simultaneously flowed into the indoor water tank, thereby improving the circulation pipeline row.
  • the airspeed reduces the delay time of the control valve that needs to be delayed and opened in the system of the present invention, that is, the energy saving cannot affect the normal use of the hot water because of the cyclic heat exchange and the excessive emptying time of the circulation pipeline.
  • the circulation pipeline realizes emptying, and there is no water in the circulation pipeline after the circulating heat exchange, so the pipeline freezing phenomenon is not generated, and the past is solved to prevent The pipeline is blocked by freezing, and the energy loss caused by the heating cable and the safety hazard caused by improper use of the heating cable in the heating cable are added.
  • the sewage water discharge pipe and the water discharge pipe and the pipeline fault alarm are designed: cyclic heat exchange and circulation After the pipeline is drained, although the water in the collector tank and the indoor tank still maintains the volume of water before the heat exchange cycle, there is a pressure in the circulating water pipe and the circulating water pipe before the heat exchanger cycle The state is switched to a small amount of expansion water generated during the normal pressure state after the heat exchange cycle. When the amount of expansion water is too large, the system can be discharged through the sewage water discharge pipe and the water discharge pipe to avoid accumulation of expansion water in the circulation pipe.
  • the circulating water pipeline is discharged through the water discharge pipe; when the water supply control valve is damaged, before the end of the system circulating heat exchange and emptying process, the pressurized water or the pressurized tap water enters the indoor water tank through the water supply pipe and enters the circulating water pipe.
  • the high-temperature expansion gas and the trace high-temperature expansion water can be smoothly released and discharged through the circulated circulation pipeline, the sewage water discharge pipeline and the accumulated water discharge pipeline, and the solar collector can only be breathed through in the past.
  • the history of valve respiration avoids the occurrence of accidents such as steam explosion and cracking of the solar collector in the winter respiratory valve due to vaporization and freezing.
  • the vacuum heat collecting tube absorbs the solar light energy, and the water in the metal heat exchange tube is heated to make the temperature rise to the low temperature water in the collector water tank. Heat exchange, complete the hot water process of the collector. Since there is no water in the vacuum heat collecting tube, there is no heat exchange by directly storing the water in the vacuum collecting tube, and the water leakage occurs due to the difference of cold and heat, freezing, and expansion, and the collector is made. Thermal operation is safer and more reliable.
  • the plug-in inlet port and the plug-in outlet port are inserted into the collector tank from the upper end of the collector tank for a length (5-20 mm), After the circulation line is emptied, the original water quantity is still maintained in the collector water tank, and the siphon phenomenon is generated so that the water at the upper end of the collector water tank is also siphoned out, and the water icing expansion is reserved for a special cold case. A safe space.
  • the indoor water tank is designed according to the standard of the pressurized water storage type electric water heater, and has the basic functions of the electric water heater.
  • the indoor water tank of the present invention also has an overpressure relief function.
  • Figure 1 is a schematic structural view of the present invention
  • FIG. 3 is a schematic structural view of a metal true heat exchange tube in a vacuum collector tube of a collector according to an embodiment of the present invention; 33-metal heat exchange tube; 36-horn seal tube head; 37-heat exchange tube body; 38-heat exchange Pipe nozzle.
  • FIG. 4 is a cross-sectional view showing a connection between a collector water tank, a vacuum heat collecting tube, and a metal heat exchange tube according to an embodiment of the present invention; 20-collector water tank; 25-vacuum heat collecting tube; 33-metal heat exchange tube; 38-heat exchange Pipe nozzle; 39-seal ring; 40- water tank connection.
  • FIG. 2 A denotes an expanded water storage area in the system of the present invention; in Fig. 1 and Fig. 2, G denotes a high temperature water tank in the indoor water tank 1, and D denotes a low temperature water tank in the indoor water tank 1.
  • the structure of the indoor water tank combination supporting device capable of switching pressure is mainly composed of an indoor water tank 1, a circulating water supply pipeline 6, a circulating sewage pipeline 13, a circulating water pump 8, and various control valves, and the indoor water tank 1 is connected with a circulation.
  • the water pipe 6 and the circulating sewage pipe 13, the connection between the indoor water tank 1 and the circulating water supply pipe 6 and the circulating sewage pipe 13 can be respectively provided with a connection port on the indoor water tank 1, or the water outlet of the indoor water tank can be used.
  • the nozzles serve as the connection ports of the circulating water supply line 6 and the circulating water supply line 13, respectively, or the water outlets and the water inlets of the indoor water tank can also be used as the connection ports of the circulating sewage line 13 and the circulating water supply line 6, respectively. Its specific structure is as follows:
  • the device is provided with a water supply pipe 3 connected to the water inlet 34 of the indoor water tank 1, and the water inlet 34 is connected with a circulating water supply pipe 6, and the circulating water supply pipe 6 communicates with the water supply pipe 3.
  • the water supply pipe 3 is provided with a water supply control valve 4 (generally a solenoid valve); a circulating pipeline control valve 7 (generally a solenoid valve) is installed on the circulating water pipe 6;
  • the circulating water pump 8 is installed thereon;
  • the water outlet 35 of the indoor water tank 1 is connected with a hot water outlet pipe 32, and the hot water outlet pipe 32 is provided with a sensor 10; or, the water switch of the indoor water tank 1 is equipped with a control switch 9 ( Generally, the proximity switch sensor can be connected to the intelligent controller 28 through a control line or via a wireless remote control signal;
  • a water mixing valve 31 is installed between the hot water outlet pipe 32 and the water supply pipe 3;
  • There is a lower water outlet 11 a lower water outlet 11 is connected with a circulating water pipe 13 , a check valve 14 is arranged on the circulating water pipe 13 , and a heat insulating partition wall 5 is arranged in the indoor water tank 1 ;
  • the indoor water tank 1 is partitioned
  • the upper end of the water tank 1 is equipped with a water stop breathing valve 2, in which the water tank temperature sensor 27 and the electric heater 30 are installed; the functional valve members on the pipeline below the indoor water tank 1: water control valve 4, water flow sensor 10, circulation At the junction of the line control valve 7 and the like, there is a valve block connecting plate body 29.
  • a respirator 21 is installed at the upper end of the circulating sewer line 13; or, at the upper end of the circulating water line 6, or at the upper end of the collector tank 20, a respirator 21 is provided;
  • the heat collector 12, the heat collector 12 is provided with a collector water tank 20, and the collector water tank temperature sensor 24 is installed in the collector water tank 20;
  • the plug-in water inlet port is respectively installed at the top ends of the collector water tank 20; 22 and the plug-in outlet port 23, the plug-in inlet port 22 and the plug-in outlet port 23 are both inserted from the top end of the collector tank 20 into the inner side of the tank liner (generally 5-20 mm), respectively
  • the circulating water pipe 6 is connected to the circulating water pipe 13; as shown in FIG.
  • a row of vacuum heat collecting tubes 25 is installed under the collector water tank 20, and the vacuum heat collecting tubes 25 are provided with metal heat exchange tubes 33,
  • the metal heat exchange tube 33 has a bell mouth sealing tube head 36.
  • One end of the bell mouth sealing tube head 36 is a heat exchange tube nozzle 38, and the other end of the bell mouth sealing tube head 36 is connected with a bottom sealed heat exchange tube body 37.
  • the metal heat exchange tube 33 is sealed at the bell mouth The position of 36 is connected to the tank connection port 40 through a seal ring 39;
  • an evacuation line 15 is connected between the circulating water supply line 6 at the water inlet end of the circulating water pump 8 and the water supply line 3 across the circulation line control valve 7;
  • the draining pipe check valve 16 is connected; between the circulating water pipe 6 and the circulating sewage pipe 13, there is a sewage water discharge pipe 41, and the sewage water discharge pipe 41 is provided with a check valve 42 on the circulation.
  • a water discharge pipe 17 is connected to the water pipe 6, and the water discharge pipe 17 communicates with the sewage water discharge pipe 41.
  • the water discharge pipe 17 is provided with a water pipe control valve 18 (generally Solenoid valve); a fault alarm 19 (generally a water flow sensor) is installed on the water discharge pipe 17, and the water discharge pipe 17 communicates with the floor drain 46;
  • the intelligent controller 28 passes through the electronic control circuit and the water supply control valve 4, the circulation pipeline control valve 7, the circulating water pump 8, the collector water tank temperature sensor 24, and the water tank temperature.
  • the electronic control lines of the sensor 27 and the electric heater 30 are connected;
  • the intelligent controller 28 is respectively connected to the electronic control lines of the control switch 9, the sensor 10, the water storage line control valve 18, and the fault alarm 19 through the electronic control line;
  • the intelligent controller 28 receives the signals to direct the corresponding electronic control components, and after the circulating heat exchange and the circulating heat exchange, the water in the circulation pipeline flows into the indoor water tank 1, the intelligent controller 28 receives the signals and commands correspondingly.
  • the electronic control unit operates, cuts off the circulation line, and completes the solar heating process.
  • pressurized water (tap water) is introduced into the indoor water tank 1 to discharge the hot water out of the mixing valve 31.
  • the intelligent controller 28 is programmed by a conventional PLC or a single-chip programming component to complete the intelligent control program of the present invention.
  • the device of the invention receives the signal from the sensing component through its control system, and commands the control valve, the circulating water pump and the like to operate, so that the low temperature water in the indoor water tank of the device of the invention and the high temperature water generated by the collector absorb the sunlight energy.
  • the cycle heat exchange is carried out, and after several cycles of heat exchange, the temperature of the water in the indoor water tank is raised to complete the solar water heating process.
  • the indoor water tank has no pressure and the indoor water tank is pressurized with the hot water, and the two states are automatically converted, so that the water in the circulation pipeline after the circulating heat exchange flows into the indoor water tank by the natural drop, so that The heat exchange circulation line can be drained; when using hot water, the pressurized water (tap water) pushes the hot water in the indoor water tank out of the water outlet through the water outlet valve, so that when the user uses the hot water, it is like using the pressure
  • the storage water heater is as convenient, comfortable and safe.
  • the solar collectors such as the high-temperature expansion gas, can be discharged through the draining and emptying pipes, and the water discharge pipe is smoothly released, which changes the history that the solar collector can only breathe through the breathing valve. .
  • the system will automatically enter the indoor water tank water supply mode (the intelligent controller 28 will execute this mode after each power failure):
  • the pressurized water or pressurized tap water enters the indoor water tank 1 through the water supply pipeline 3 and the water supply control valve 4, and the mixing water valve 31 is rotated to the hot water end to open, the indoor water tank 1 is filled with water, and the water mixing valve 31 is discharged. The mixing valve 31 is closed.
  • the circulating pipeline control valve 7 (generally a normally closed solenoid valve) closed on the circulating water pipeline 6 cuts off the communication between the indoor water tank 1 and the water supply pipeline 3 and the circulating water supply pipeline 6;
  • the check valve 14 on the circulating sewage pipe 13 cuts off the pipe section in which the circulating sewage pipe 13 at the upper end of the check valve 14 is reversed; and in (Fig.
  • pressurized water or pressurized tap water enters the indoor water tank 1 through the water supply pipeline, and cannot enter the circulating water supply pipeline 6 and the circulation.
  • the circulation line control valve 7 (generally a normally closed solenoid valve) closed on the circulating water supply line 6 cuts off the communication between the indoor water tank 1 and the water supply line 3 and the circulating water supply line 6; the circulating sewage line 13 is stopped.
  • the return valve 14 cuts off the pipeline section in which the circulating sewage pipe 13 at the upper end of the check valve 14 is reversed; and in (Fig.
  • the temperature difference cycle heat exchange program is started, the water supply control valve 4 is closed, the water supply pipe 3 is cut off, and the water pipe is closed.
  • the pressurized water or pressurized tap water in the road 3 cannot enter the indoor water tank; the circulation line control valve 7 is opened, the circulating water pump 8 is started, the water in the low temperature water tank D in the indoor water tank 1 is taken out, and the water in the high temperature water tank G passes.
  • the communication line 26 extending through the heat insulating partition wall 5 to the bottom of the high temperature water tank G is sucked into the low temperature water tank D, while the indoor water tank 1 sucks in air through the upper end water stopping breathing valve 2; meanwhile, the water collecting line control valve 18 is closed.
  • the water discharge discharge line 17 is cut off, and the section of the sewage water discharge line 41 on the left side of the check valve 42 on the sewage water discharge line 41 is unidirectionally stopped by the check valve 42 to cut off the circulating water supply line 6 to the circulation.
  • Under The water-splitting water discharge pipe 41 directly enters the circulating sewage pipe 13; can only enter the collector water tank 20, eject the high-temperature water in the collector water tank 20, and has been evacuated after the last cycle.
  • the road 13 passes through the check valve 14 and flows into the high temperature water tank G in the indoor water tank 1 through the lower water outlet 11 of the indoor water tank 1, and then sucks into the low temperature water tank through the communication line 26 extending through the heat insulating partition wall 5 to the bottom of the high temperature water tank G.
  • the intelligent controller 28 sends a signal to the command system.
  • Each component automatically operates (manually press the cycle button on the intelligent controller 28).
  • the circulating water pump 8 is stopped. At this time, the circulating sewage pipe 13 water flows into the indoor water tank 1 through the lower water pipe opening 11 of the indoor water tank 1 through the check valve 14 through the natural drop;
  • the water in 6 also depends on the natural drop through the circulating water pump 8, the circulation line control valve 7, and enters the indoor water tank 1 through the water supply line 3, and the indoor water tank 1 is sucked through the upper end of the water stop breathing valve 2 during the heat exchange process.
  • the circulation pipeline control valve 7 is closed, and the water storage pipeline control valve 18 and the water supply control valve 4 are automatically opened again;
  • the circulating water pump 8 is stopped, and the circulation line control valve 7 is closed. At this time, the circulating sewage pipe 13 water flows into the indoor water tank through the lower water pipe opening 11 of the indoor water tank 1 via the check valve 14 by the natural drop.
  • the water in the circulating water pipeline 6 also enters the indoor water tank 1 through the circulating water pump 8, the emptying pipeline 15, the emptying pipeline check valve 16, and the water inlet pipe 3 through the natural water drop, and the indoor water tank 1 is again The gas sucked in during the cyclic heat exchange is discharged through the upper water stop breathing valve 2; after the water in the circulating water pipe 6, the circulating water pipe 13 is drained, the water pipe control valve 18 and the water supply control valve 4 re-automatically open; connect the pressurized water pipe 3 to open, the indoor water tank 1 is switched from the atmospheric pressure state in the process of circulating heat exchange and heat exchange pipeline to the pressure state; except for a small amount of expansion water in the circulation pipeline
  • the water in the collector water tank 20 and the indoor water tank 1 basically maintains the amount of water filled before the heat exchange cycle, and the system operates according to the above-mentioned conditions, and sequentially repeats the heat exchange cycle and the heat exchange cycle after the heat exchanger cycle The process heats the water in the water tank 1
  • the temperature difference cycle heat exchange program is started, the circulation line control valve 7 is opened, the circulating water pump 8 is started, the water supply control valve 4 closed on the water supply line 3 cuts off the water supply line 3, and the pressurized water or pressure in the water supply line 3
  • the tap water cannot enter the indoor water tank; the water in the low temperature water tank D in the indoor water tank 1 is withdrawn, and the water in the high temperature water tank G is sucked into the low temperature water tank D through the communication line 26 that extends through the heat insulating partition wall 5 to the bottom of the high temperature water tank G.
  • the indoor water tank 1 sucks in air through the upper water stop breathing valve 2; at the same time, the water storage line control valve 18 is closed, the water discharge discharge line 17 is cut off, and the check valve 42 on the sewage water discharge line 41 is left.
  • the section of the sewage water discharge pipe 41 is unidirectionally stopped by the check valve 42 to cut off the communication of the circulating water pipe 6 to the circulating sewage pipe 13;
  • the intelligent controller 28 sends a signal, and the components of the command system automatically operate (manually press the cycle button on the intelligent controller 28) ).
  • the circulating water pump 8 is stopped. At this time, the circulating sewage pipe 13 water flows into the indoor water tank 1 through the lower water pipe opening 11 of the indoor water tank 1 through the check valve 14 through the natural drop;
  • the water in 6 also depends on the natural drop through the circulating water pump 8, the circulation line control valve 7, and the water supply pipe 3 into the indoor water tank 1, and the indoor water tank 1 passes through the upper end of the water stop breathing valve 2 to suck during the heat exchange process.
  • the incoming gas is discharged; after the circulating water pipe 6 and the circulating water pipe 13 are drained, the circulation pipe control valve 7 is closed, and the water pipe control valve 18 is automatically opened; or, as shown in FIG.
  • the cycle The water pump 8 is stopped, and the circulation pipeline control valve 7 is closed.
  • the circulating sewage pipeline 13 water flows into the indoor water tank 1 through the lower water outlet 11 of the indoor water tank 1 through the check valve 14 through the natural drop; the circulating water pipeline 6
  • the water also depends on the natural drop through the circulating water pump 8, the emptying line 15, the emptying line check valve 16, and the upper water line 3 into the indoor water tank 1, and the indoor water tank 1 passes through the upper end of the water stop breathing valve 2
  • the gas sucked in during the cyclic heat exchange process is discharged; After the water in the ring water pipe 6 and the circulating water pipe 13 are drained, the water pipe control valve 18 is automatically opened, and the water supply control valve 4 is still closed, and the indoor water tank 1 and the pressurized water pipe 3 are cut off.
  • the indoor water tank 1 is still in a normal pressure state during the process of circulating heat exchange and heat exchange pipeline emptying, and the water in the collector water tank 20 and the indoor water tank 1 basically maintains the water filling amount before the heat exchange cycle.
  • the system operates according to the above conditions, and sequentially repeats the heat exchange cycle and the heat exchange cycle after the circulation pipeline emptying process, and heats the water in the indoor water tank 1 to complete the solar water heating process;
  • the water supply control valve 4 on the water supply pipe 3 is a normally open valve: the water mixing valve 31 is turned to the hot water end, and the pressurized water or pressurized tap water is introduced into the indoor water tank 1 through the water supply pipe 3
  • the higher temperature water in the upper layer of the low temperature water tank D is pushed into the bottom layer of the high temperature water tank G through the communication line 26 extending from the upper end of the heat insulation partition wall 5 to the bottom of the high temperature water tank G, and the high temperature water at the upper end of the high temperature water tank G passes through the indoor water tank.
  • the water outlet 35 of the 1 is discharged from the water mixing valve 31 through the hot water outlet pipe 32; the hot water is stopped, the mixing valve 31 is closed, and the hot water process is completed, and the indoor water tank 1 is in addition to the system circulating heat exchange and circulation line In the empty process, except for the normal pressure state, other working processes are under pressure;
  • the water supply control valve 4 on the water supply pipe 3 is a normally closed valve: the water mixing valve 31 is turned to the hot water end, the hot water outlet pipe 32 of the indoor water tank 1 and the water in the circulating sewage pipe 13
  • the water supply valve 31 is discharged from the natural water drop, and the sensor 10 (generally the water flow switch) on the hot water outlet pipe 32 acts to send a signal, and the intelligent controller 28 receives the signal from the sensor 10 to open the water supply control valve 4; or
  • the control switch 9 (generally a proximity switch type sensor) sends a wired signal or a wireless remote control signal, and the intelligent controller 28 receives a signal to open the water supply control valve 4,
  • the circulation line control valve 7 has an interlocking function with the water supply control valve 4, that is, when the system cyclic heat exchange is turned on to open the circulation line control valve 7, the water supply control valve 4 cannot be opened; and the hot water control valve is used. When the 4 is opened, the circulation line control valve 7 cannot be opened;
  • the indoor water tank 1 After the system circulating heat exchange is emptied, although the water in the collector water tank 20 and the indoor water tank 1 still maintains the amount of water filled before the heat exchange cycle, the indoor water tank 1 under the pressure state before the heat exchange is switched to heat exchange.
  • the indoor water tank 1 in the normal pressure state after the cycle a small amount of expanded water generated in the process (A in Fig. 2 indicates the expanded water storage area in the system of the present invention), and if it is improperly discharged, it will accumulate in the circulation line, so that the indoor The water in the circulation line at the upper end of the water tank 1 cannot be completely drained;
  • the water supply control valve 4 on the water supply pipeline 3 is a normally open valve: as shown in FIG. 2, when the water discharge in the circulating water supply pipeline 6 and the circulating sewage pipeline 13 ends, the water supply pipeline 3 is The water supply control valve 4 is re-opened, and the connected water source water line 3 is opened, and the indoor water tank 1 is switched from the atmospheric pressure state during the circulating heat exchange and the heat exchange pipeline emptying to the pressure state, and the next system cycle is changed.
  • the hot water tank 1 is switched to the normal pressure state again, a small amount of expanded water is generated in this process, and when the expanded water accumulates too much, it can be discharged through the sewage water discharge pipe 41, the check valve 42, and the water discharge pipe 17. Outside the system, ensure that no expansion water accumulates in the circulation line, and the circulation line is normally emptied;
  • the circulation sewage pipe 13 and Circulating water pipeline 6 may be When there is a cyclic heat exchange, after the hot water is used, the pressure state of the indoor water tank 1 is switched to a small amount of expansion water generated during the normal pressure state after the cyclic heat exchange; when the expansion water accumulates too much, the water discharge water discharge line 41 can be passed through.
  • the check valve 42 and the water discharge pipe 17 are discharged outside the system to ensure that no expansion water accumulates in the circulation pipe, and the circulation line is normally emptied;
  • the circulating water supply pipe 6 is discharged through the accumulated water discharge pipe 17; when the water supply control valve 4 is damaged, before the end of the system circulating heat exchange and the emptying process, the pressurized water or the pressurized tap water enters the indoor water tank through the water supply pipe 1 The circulating water pipe 6 and the circulating water pipe 13 are entered.
  • the water is discharged through the water discharge pipe 17; when the water pipe control valve 18 is damaged, the system Circulating heat transfer The heat exchange water is discharged through the water discharge pipe 17 through the circulating water supply pipe 6; when the atmospheric water state of the indoor water tank 1 is excessively generated during the switching of the pressure state, the water discharge pipe 41 can be passed through the sewage water discharge pipe 41 and The accumulated water discharge line 17 is discharged from the system; therefore, the design of the sewage water discharge line 41 and the accumulated water discharge line 17 avoids the circulation of the water discharge line 13 due to damage of various control valve members of the system or excessive expansion of water.
  • the circulating water pipe 6 is filled with water, which cannot achieve normal emptying, resulting in the freezing of the winter circulation pipeline; the system water discharge pipe 17 is equipped with a fault alarm 19, when the system is a control valve
  • the damage generates an alarm when the abnormal water flow passes, so that the damaged control valve member can be maintained as soon as possible; and the solar collector 12 can pass through the circulated circulation pipeline and the sewage if the high-temperature expansion gas and the trace high-temperature expansion water are generated.
  • the water discharge line 41 and the water discharge line 17 are smoothly released and discharged, and the history that the solar collector 12 can only be breathed through the breathing valve is changed. To avoid the occurrence of the solar collector 12 is generated by the steam evaporated during the winter frozen block breathing valve squib accident steam expansion, cracking gall.
  • a fault alarm 19 is installed on the water discharge line 17 of the device system, and when a certain control valve member is damaged, an abnormal water flow is generated, and the alarm is promptly maintained, so that the damaged control valve member can be maintained as soon as possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Description

分体式太阳能热水器及其工作方法 技术领域
本发明涉及太阳能热水器领域, 具体是一种分体式太阳能制热水装置中可切换压力 的室内水箱组合配套装置以及工作方法。
背景技术
目前, 人们在生活中使用的太阳能热水器, 主要有整体机安装式、 集中式和分体式 等。 其原理都是通过太阳能集热器吸收太阳光能, 利用水的热交换循环或导热介质间接 换热形式将储水箱内的低温水加热供人们生活使用。但由于住宅楼的建筑结构及各种热 水器自身结构问题, 在使用中都存在一定的实际问题。 例如, 整体机式: 由于它的型号 和规格不统一, 造成在住宅楼顶摆放凌乱, 影响市容, 又在不同程度上破坏楼顶的防水 层面, 对于建筑物的安全、 防雷、 抗震性都存在一定的隐患。 整体机太阳能热水器热水 输出管线长, 使用时需放掉大量冷水, 造成水资源、 热能的浪费; 另外置于室外的储热 水箱在冬季夜晚热损量大。以往分体式太阳能制热水装置,无论是承压式还是非承压式, 是水直接换热还是介质导热, 在热交换过程中换热循环管路的热能损失非常大, 造成太 阳能制热水装置制热效率低, 尤其在冬季环境温度较低的情况下制热效率会更低; 在冬 季, 汽馏、 冻堵产生汽胀爆管, 防冻伴热带使用不当和质量问题易燃烧起火。
发明内容
针对上述情况, 本发明提供一种在分体式太阳能制热水装置可切换压力的室内水箱 组合配套装置以及工作方法, 以解决现有整体机安装式、 集中式和分体式等太阳能热水 器产品在使用中存在的制热效率低、 管路冻堵、 汽胀炸管漏水等问题。
本发明的技术方案是:
一种可切换压力的室内水箱组合配套装置, 该装置设有室内水箱, 以及与室内水箱 的进水口相连的上水管路, 在上水管路上装有上水控制阀; 室内水箱分别连有循环上水 管路和循环下水管路, 在循环上水管路上装有循环管路控制阀, 在循环上水管路上装有 循环水泵; 在循环下水管路上装有止回阀; 室内水箱的出水口连有热水出水管路, 在室 内水箱的上端装有止水呼吸阀; 在室内水箱内装有水箱温度传感器。
所述的可切换压力的室内水箱组合配套装置, 在循环上水管路与循环下水管路之间 连有下水积水排放管路; 在下水积水排放管路上装有逆止阀, 在循环上水管路上连有积 水排放管路, 积水排放管路与下水积水排放管路相通, 在积水排放管路上装有积水管路 控制阀, 在积水排放管路上装有故障报警器。
所述的可切换压力的室内水箱组合配套装置, 在循环水泵进水口端的循环上水管路 和跨过循环管路控制阀的上水管路之间连有排空管路,在排空管路上装有排空管路止回 阀。
所述的可切换压力的室内水箱组合配套装置, 在与室内水箱的出水口相连的热水出 水管路上装有传感器, 或者在室内水箱的水的使用处装有控制开关。
所述的可切换压力的室内水箱组合配套装置, 在室内水箱内设有保温隔断壁, 在保 温隔断壁上设有连通管路。
所述的可切换压力的室内水箱组合配套装置, 与室内水箱连接的循环上水管路和循 环下水管路上端连有太阳能集热器, 在集热器上端设有集热器水箱; 在循环下水管路的 上端或者在循环上水管路的上端或者在集热器水箱上端, 装有呼吸器。
所述的可切换压力的室内水箱组合配套装置, 在集热器水箱两侧上端分别装有插入 式进水管口和插入式出水管口, 它们分别与循环上水管路和循环下水管路相连; 在装有 插入式进水管口和插入式出水管口的集热器水箱下面装有真空集热管,真空集热管里面 装有金属换热管, 金属换热管上有喇叭口密封管头, 喇叭口密封管头的一端为换热管管 口、 喇叭口密封管头的另一端连有底部封堵的换热管体, 金属换热管在喇叭口密封管头 的位置通过密封环与水箱连接口相连。
一种可切换压力的室内水箱组合配套装置的工作方法, 该装置应用于太阳能制热水 装置中, 作为太阳能制热水装置的一部分, 与室内水箱连接的循环上水管路和循环下水 管路上端连有太阳能集热器, 通过各种控制阀控制, 实现太阳能制热水装置中, 在室内 水箱里的低温水与太阳能集热器吸收太阳光能产生的高温水通过循环管路进行循环换 热过程中, 以及循环换热后循环管路中的水依靠自然落差排空流入室内水箱的过程中室 内水箱无压力状态, 排空结束后室内水箱自动切换为带压力状态; 或者, 排空结束后室 内水箱仍为常压状态, 当使用热水时室内水箱再自动切换为带压力状态。
所述的可切换压力的室内水箱组合配套装置的工作方法, 该装置中, 在系统非换热 循环状态时, 室内水箱分别通过各种控制阀切断与上次换热循环后已被排空的循环上水 管路、 循环下水管路的连通, 所以在系统循环换热及循环换热管路排空时: 只需由控制 系统指挥自动开启循环管路控制阀, 关闭上水管路上的上水控制阀, 切断上水管路, 上 水管路中的带压水或带压自来水无法进入室内水箱; 室内水箱在此循环换热及换热管路 排空过程中处于常压状态; 在循环换热及换热管路排空结束后, 由控制系统指挥关闭循 环上水管路上的循环管路控制阀, 切断循环上水管路, 再自动开启上水控制阀, 循环下 水管路上止回阀切断循环下水管路被逆止的管路段, 带压水或带压自来水只能通过上水 管路进入室内水箱, 而不能进入循环上水管路和循环下水管路; 此过程中室内水箱处于 承压状态;
或者, 在循环换热及换热管路排空结束后, 由控制系统指挥关闭循环上水管路上的 循环管路控制阀, 切断循环上水管路, 上水管路上的上水控制阀仍然处于关闭状态, 切 断上水管路, 在热水使用时: 由控制系统指挥自动开启上水控制阀, 循环上水管路上关 闭的循环管路控制阀切断循环上水管路; 循环下水管路上止回阀切断循环下水管路被逆 止的管路段, 带压水或带压自来水只能通过上水管路进入室内水箱, 而不能进入循环上 水管路和循环下水管路; 此过程中室内水箱处于承压状态。
本发明的有益效果是:
1、 本发明可切换压力的室内水箱组合配套装置, 是由承压室内水箱、 换热循环管 路、 循环水泵和各种控制、 传感部件以及智能控制系统组成的一种新型分体式太阳能制 热水装置中可切换压力的室内水箱组合配套装置, 可以使每户的分体式太阳能制热水装 置中的太阳能集热器在建筑上实现统一集中布置,储热水箱(即是室内水箱)放置室内, 解决了现有产品在使用中存在的摆放凌乱、 影响市容、 破坏楼顶的防水层面等一系列问 题, 实现太阳能与建筑一体化。
2、 本发明可切换压力的室内水箱组合配套装置中, 在太阳能制热水系统换热循环 及循环管路排空时,室内水箱处于常压循环状态;热水使用时,室内水箱处于承压状态。 由于采用了系统循环换热时室内水箱无压力和使用热水时室内水箱带压力两种状态自 动转换的设计, 使循环换热后循环管路中的水靠自然落差流入室内水箱, 让换热循环管 路得以排空; 在使用热水时, 带压水 (自来水) 经上水管路注入室内水箱, 将室内水箱 中的热水通过出水口经热水出水管路顶出混水阀, 让用户在使用热水时, 就象使用承压 贮水式电热水器一样方便、 舒适、 安全。
3、 本发明可切换压力的室内水箱组合配套装置中, 由于实现了循环管路排空, 解 决了以往分体式太阳能制热水装置在采用水直接循环换热形式时, 换热后的循环管路中 水变冷的热能损耗和采用换热介质间接换热形式时, 在换热过程中的热能损耗问题, 大 大提高了太阳能制热水效率。
4、 本发明可切换压力的室内水箱组合配套装置中, 因为实现了循环管路排空, 循 环管路在系统换热时, 热能损耗非常少, 循环管路可以适度加长, 使贮水箱可以相对的 远离太阳能集热器而放置于室内, 解决了以往太阳能热水器贮水箱离用水点远, 在使用 热水时, 需放掉大量凉水的问题。
5、 本发明可切换压力的室内水箱组合配套装置中, 由于在室内水箱内采用了保温 隔断壁以及穿过保温隔断壁的连通管路的设计, 使本装置在能够完成系统换热循环、 循 环管路排空等功能程序的同时, 在使用热水时避免了低温自来水顶进水箱, 热水停止使 用后冷热水混合使室内水箱中的水整体降温问题,保证了通过保温隔断壁而隔断出的室 内水箱内的高温箱中的水不能直接被低温自来水混合降温, 从而在使用热水时能够有较 高温度的热水。
6、 本发明可切换压力的室内水箱组合配套装置中, 因为多增加了排空管路设计, 使循环下水管路和循环上水管路中的水同时流进室内水箱, 提高了循环管路排空速度, 减少了本发明系统中需延时开启、 关闭的控制阀延时时间, 即节能又不能因为循环换热 和循环管路排空时间过长影响热水的正常使用。
7、 本发明可切换压力的室内水箱组合配套装置中, 循环管路实现了排空, 循环换 热后循环管路中无存水, 故此不会产生管路冻堵现象, 解决了过去为防止管路冻堵而加 设伴热带造成的能源损耗以及伴热带使用不当起火燃烧的安全隐患问题。
8、 本发明可切换压力的室内水箱组合配套装置应用时, 采用了下水积水排放管路 和积水排放管路及管路上故障报警器(一般可为水流传感器)设计: 循环换热和循环管 路排空后, 虽然集热器水箱和室内水箱中的水仍保持换热循环前的注满水量, 但循环下 水管路和循环上水管路中会有换热循环前室内水箱的承压状态切换为换热循环后常压 状态过程中产生的少量膨胀水,膨胀水量过多时可以通过下水积水排放管路和积水排放 管路排出系统, 可避免循环管路中因为膨胀水蓄积的现象而不能实现循环管路正常排空 问题的发生; 另外, 当循环下水管路上的止回阀损坏时,在上水控制阀处在开启状态时, 带压水经循环下水管路和循环下水管路上损坏的止回阀、 下水积水排放管路、 积水排放 管路排放出去; 而当上水管路与循环上水管路之间的控制阀, 如循环管路控制阀或排空 止回阀损坏时, 在上水控制阀处在开启状态时, 上水管路中的带压水或带压自来水一部 份顶进室内水箱, 一部份水经循环上水管路通过积水排放管路排放出去; 上水控制阀损 坏时, 系统循环换热、 排空程序结束前, 带压水或带压自来水通过上水管路进入室内水 箱也进入循环上水管路和循环下水管路, 当系统循环换热、 排空程序结束时, 这部分水 会通过积水排放管路排放出去; 积水管路控制阀损坏时, 系统循环换热时, 循环换热水 会经循环上水管路通过积水排放管路排放出去; 因此下水积水排放管路和积水排放管路 的设计,避免了因系统各种控制阀件的损坏或膨胀水量过多而造成的循环下水管路或循 环上水管路中充满水不能实现正常排空, 致使冬季循环管路冻堵问题的发生; 在该装置 系统积水排放管路上装有故障报警器, 当系统某个控制阀件的损坏产生不正常水流通过 时及时报警, 使损坏的控制阀件尽快得以维护; 并且太阳能集热器如果产生高温膨胀气 体和微量的高温膨胀水都能通过已排空的循环管路、下水积水排放管路和积水排放管路 顺畅的释放和排出, 改变了过去太阳能集热器只能通过呼吸阀呼吸的历史, 避免了太阳 能集热器在冬季呼吸阀因汽馏冻堵而产生汽胀爆管、 裂胆等事故的发生。
9、 本发明可切换压力的室内水箱组合配套装置应用时, 采用真空集热管吸收太阳 光能, 焖晒其中金属换热管中的水, 使其升温来与集热器水箱中的低温水进行热交换, 完成集热器制热水过程。 由于真空集热管中无水, 所以不存在以往采用真空集热管直接 储水进行热交换, 而出现的因为冷热差大、 结冻、 汽胀等情况下产生爆管漏水现象, 集 热器制热运行更安全可靠。
10、 本发明可切换压力的室内水箱组合配套装置应用时, 插入式进水管口和插入式 出水管口由于都从集热器水箱上端插入集热器水箱内一段长度 (5-20mm) , 因此在循 环管路排空后集热器水箱内仍保持原来的水量, 同时产生的虹吸现象使集热器水箱上端 的水也被虹吸出来, 为特殊寒冷情况下, 其中的水结冰膨胀预留了安全空间。
11、 本发明可切换压力的室内水箱组合配套装置中, 室内水箱按承压贮水式电热水 器标准设计, 具备电热水器的基本功能, 当在天气影响下太阳能制热水温度不够时, 可 随时采用电辅助加热以保证热水的连续使用。 同时, 本发明中室内水箱也具备超压卸压 功能。
附图说明
图 1为本发明结构示意图;
1-室内水箱; 2-止水呼吸阀; 3-上水管路; 4-上水控制阀; 5-保温隔断壁; 6-循环上 水管路; 7-循环管路控制阀; 8-循环水泵; 11-下水管口; 13-循环下水管路; 14-止回阀; 26-连通管路; 27-水箱温度传感器; 28-智能控制仪; 29-阀组连接板体; 30-电加热器; 31-混水阀; 32-热水出水管路; 34-进水口; 35-出水口; 46-地漏。
图 2为本发明实施应用例结构示意图;
1-室内水箱; 2-止水呼吸阀; 3-上水管路; 4-上水控制阀; 5-保温隔断壁; 6-循环上 水管路; 7-循环管路控制阀; 8-循环水泵; 9-控制开关; 10-传感器; 11-下水管口; 12- 集热器; 13-循环下水管路; 14-止回阀; 15-排空管路; 16-排空管路止回阀; 17-积水排 放管路; 18-积水管路控制阀; 19-故障报警器; 20-集热器水箱; 21-呼吸器; 22-插入式 进水管口; 23-插入式出水管口; 24-集热器水箱温度传感器; 25-真空集热管; 26-连通 管路; 27-水箱温度传感器; 28-智能控制仪; 29-阀组连接板体; 30-电加热器; 31-混水 阀; 32-热水出水管路; 33-金属换热管; 34-进水口; 35-出水口; 41-下水积水排放管路; 42-逆止阀; 46-地漏。
图 3为本发明实施应用例中集热器真空集热管中金属真换热管结构示意图; 33-金属换热管; 36-喇叭口密封管头; 37-换热管体; 38-换热管管口。
图 4为本发明实施应用例中集热器水箱与真空集热管、 金属换热管连接剖面图; 20-集热器水箱; 25-真空集热管; 33-金属换热管; 38-换热管管口; 39-密封环; 40- 水箱连接口。
图 2中, A表示本发明系统中膨胀水存放区; 图 1、 图 2中, G表示室内水箱 1内 的高温水箱, D表示室内水箱 1内的低温水箱。
具体实施方式
本发明可切换压力的室内水箱组合配套装置结构主要由室内水箱 1、 循环上水管路 6、 循环下水管路 13、 循环水泵 8和各种控制阀等部分构成, 室内水箱 1分别连有循环 上水管路 6和循环下水管路 13, 室内水箱 1与循环上水管路 6和循环下水管路 13的连 接可分别单独在室内水箱 1上设有连接口, 也可利用室内水箱的出水口和进水口分别作 为循环上水管路 6和循环下水管路 13的连接口, 或者也可利用室内水箱的出水口和进 水口分别作为循环下水管路 13和循环上水管路 6的连接口。 其具体结构如下:
如图 1、 图 2所示, 该装置设有与室内水箱 1的进水口 34相连的上水管路 3, 进水 口 34连有循环上水管路 6,循环上水管路 6与上水管路 3相通,在上水管路 3上装有上 水控制阀 4 (一般可为电磁阀) ; 在循环上水管路 6上装有循环管路控制阀 7 (—般可 为电磁阀); 在循环上水管路 6上装有循环水泵 8; 室内水箱 1的出水口 35连有热水出 水管路 32, 热水出水管路 32上装有传感器 10; 或者, 在室内水箱 1的水的使用处装有 控制开关 9 (一般可为接近开关式传感器)与智能控制仪 28通过控制线相连或通过无线 遥控信号形式相连控制; 热水出水管路 32和上水管路 3之间装有混水阀 31 ; 在室内水 箱 1内设有下水管口 11, 下水管口 11连有循环下水管路 13, 在循环下水管路 13上装 有止回阀 14, 在室内水箱 1内设有保温隔断壁 5; 保温隔断壁 5将室内水箱 1内隔断为 高温水箱 G和低温水箱 D, 穿过保温隔断壁 5在保温隔断壁 5上设有连通管路 26, 可 利用多个保温隔断壁 5和连通管路 26让室内水箱内可设有多级高、 低温水箱。 在室内 水箱 1上端装有止水呼吸阀 2,在室内水箱 1内装有水箱温度传感器 27和电加热器 30; 在室内水箱 1下面管路上的各功能阀件: 水控制阀 4、 水流传感器 10、 循环管路控制阀 7等连接处有一阀组连接板体 29。
如图 2所示, 在循环下水管路 13的上端装有呼吸器 21 ; 或者, 在循环上水管路 6 的上端, 或者, 在集热器水箱 20上端装有呼吸器 21 ; 该装置设有集热器 12, 集热器 12 设有集热器水箱 20, 在集热器水箱 20内装有集热器水箱温度传感器 24; 在集热器水箱 20两侧顶端分别装有插入式进水管口 22和插入式出水管口 23, 插入式进水管口 22和 插入式出水管口 23 都从集热器水箱 20 顶端插入水箱内胆里侧一段距离 (一般可为 5-20mm) , 它们分别与循环上水管路 6和循环下水管路 13相连; 如图 3、 图 4所示, 在集热器水箱 20下面装有一排真空集热管 25,真空集热管 25里面装有金属换热管 33, 金属换热管 33上有喇叭口密封管头 36, 喇叭口密封管头 36的一端为换热管管口 38, 喇叭口密封管头 36的另一端连有底部封堵的换热管体 37,金属换热管 33在喇叭口密封 管头 36的位置通过密封环 39与水箱连接口 40相连;
如图 2所示, 在循环水泵 8进水口端的循环上水管路 6和跨过循环管路控制阀 7的 上水管路 3之间连有排空管路 15; 在排空管路 15上装有排空管路止回阀 16; 在循环上 水管路 6与循环下水管路 13之间连有下水积水排放管路 41,下水积水排放管路 41上装 有逆止阀 42, 在循环上水管路 6上连有积水排放管路 17, 积水排放管路 17与下水积水 排放管路 41相通, 在积水排放管路 17上装有积水管路控制阀 18 (—般可为电磁阀) ; 在积水排放管路 17上装有故障报警器 19 (一般可为水流传感器) , 积水排放管路 17 与地漏 46相通;
如图 1、 图 2所示, 本发明中, 智能控制仪 28通过电控线路分别与上水控制阀 4、 循环管路控制阀 7、 循环水泵 8、 集热器水箱温度传感器 24、 水箱温度传感器 27、 电加 热器 30的电控线相接;
如图 2所示, 本发明中, 智能控制仪 28通过电控线路分别又与控制开关 9、 传感器 10、 积水管路控制阀 18、 故障报警器 19的电控线相接;
智能控制仪 28 通过接收各信号指挥相应的电控部件动作, 循环换热及循环换热后 循环管路中的水排空流入室内水箱 1中之后, 智能控制仪 28又接收各信号指挥相应的 电控部件动作, 切断循环管路, 完成太阳能制热水过程。使用热水时, 带压水(自来水) 进入室内水箱 1中将其中热水顶出混水阀 31。在本发明中该装置运行过程可实现自动故 障报警, 保证使用更安全。 智能控制仪 28通过常规 PLC或单片机等程序编程元件编程完成本发明所述的智能 控制程序。
该发明装置通过其控制系统接收传感组件发出的信号, 指挥各控制阀、 循环水泵等 部件动作,使本发明装置中室内水箱中的低温水与集热器吸收太阳光能后产生的高温水 进行循环换热,经过数次循环换热使室内水箱中的水温度升高,完成太阳能制热水过程。 并且由于采用了系统循环换热时, 室内水箱无压力和室内水箱带压力使用热水的两种状 态自动转换的设计, 使循环换热后循环管路中的水靠自然落差流入室内水箱, 让换热循 环管路得以排空; 在使用热水时, 带压水 (自来水)将室内水箱中的热水经出水口顶出 混水阀, 让用户在使用热水时, 就象使用承压贮水式电热水器一样方便、 舒适、 安全。 同时, 太阳能集热器如产生高温膨胀气体能通过排空的循环管路和排空管路, 经积水排 放管路顺畅的释放, 改变了过去太阳能集热器只能通过呼吸阀呼吸的历史。
系统安装完毕时, 本发明的工作过程是:
一、 室内水箱上水模式:
开启智能控制仪 28电源, 系统自动进入室内水箱上水模式 (智能控制仪 28每次断 电后再启动时都会执行此模式) :
方案一, 上水管路 3上的上水控制阀 4为常开阀时 (一般为常开电磁阀) :
1、 带压水或带压自来水经上水管路 3和上水控制阀 4进入室内水箱 1, 将混水阀 31旋至热水端开启, 室内水箱 1注满水, 混水阀 31出水后关闭混水阀 31。
2、 图 1、 图 2中, 循环上水管路 6上关闭的循环管路控制阀 7 (—般为常闭电磁阀) 切断室内水箱 1和上水管路 3与循环上水管路 6的连通; 循环下水管路 13上止回阀 14 切断止回阀 14上端的循环下水管路 13被逆止的管路段; 而在 (图 2) 中, 在循环水泵 8进水口端的循环上水管路 6和跨过循环管路控制阀 7的上水管路 3之间连有排空管路 15; 在排空管路 15上的排空管路止回阀 16切断排空管路止回阀 16右侧上端与其连接 的循环上水管路 6被逆止的管路段;
致使图 1、 图 2中, 该发明装置系统中在上水和非换热循环状态时, 带压水或带压 自来水通过上水管路进入室内水箱 1, 而不能进入循环上水管路 6和循环下水管路 13; 方案二, 上水管路 3上的上水控制阀 4为常闭阀时 (一般为常闭电磁阀) , 如图 2 所示:
1、 在系统上水时, 将混水阀 31旋至热水端开启, 上水管路 3上的上水控制阀 4开 启并延时 (一般延时 3— 10分钟后关闭) , 带压水或带压自来水经上水管路 3和上水控 制阀 4进入室内水箱 1, 室内水箱 1注满水混水阀 31出水后关闭混水阀 31, 上水控制 阀 4开启延时结束, 上水控制阀 4自动关闭。
2、 循环上水管路 6上关闭的循环管路控制阀 7 (—般为常闭电磁阀)切断室内水箱 1和上水管路 3与循环上水管路 6的连通; 循环下水管路 13上止回阀 14切断止回阀 14 上端的循环下水管路 13被逆止的管路段; 而在(图 2)中, 在循环水泵 8进水口端的循 环上水管路 6和跨过循环管路控制阀 7的上水管路 3之间连有排空管路 15;在排空管路 15上的排空管路止回阀 16切断排空管路止回阀 16右侧上端与其连接的循环上水管路 6 被逆止的管路段; 致使该发明装置中, 水箱在上水时, 带压水或带压自来水通过上水管 路进入室内水箱, 而不能进入循环上水管路 6和循环下水管路 13中;
3、 将混水阀 31旋至热水端开启无水或有水又断流时, 按智能控制仪 28上的上水 键, 上水控制阀 4开启并延时 (一般延时 3— 10分钟后关闭) , 带压水 (自来水) 经上 水管路 3和上水控制阀 4进入室内水箱 1,室内水箱 1注满水后混水阀 31出水,关闭混 水阀 31, 上水控制阀 4开启延时结束, 上水控制阀 4自动关闭。
二、 换热循环、 热水使用模式:
如图 2所示:
1、 自动温差换热、 循环、 排空模式: 当集热器 12上的真空集热管 25吸收太阳光 能, 将其中金属换热管 33中的水进行焖晒加热, 产生热水与集热器水箱 20内的低温水 进行重力式冷热交换, 使其温度上升, 当升至与室内水箱 1中的水温温差设定值时, 智 能控制仪 28接受集热器水箱温度传感器 24和水箱温度传感器 27发出的信号指挥系统 各组件动作, 自动启动温差循环换热程序 (如手动强制循环时, 按智能控制仪 28上循 环键) :
方案一, 上水管路 3上的上水控制阀 4为常开阀 (一般为常开电磁阀) 时: 温差循 环换热程序启动, 上水控制阀 4关闭, 切断上水管路 3, 上水管路 3中的带压水或带压 自来水无法进入室内水箱; 循环管路控制阀 7开启, 循环水泵 8起动, 室内水箱 1内低 温水箱 D中的水被抽出,同时高温水箱 G中的水通过穿过保温隔断壁 5伸到高温水箱 G 底部的连通管路 26被吸入低温水箱 D中, 同时室内水箱 1通过上端的止水呼吸阀 2吸 进空气; 同时积水管路控制阀 18关闭, 切断积水排放管路 17, 下水积水排放管路 41 上的逆止阀 42左侧的下水积水排放管路 41路段被逆止阀 42单向逆止, 切断循环上水 管路 6至循环下水管路 13方向的连通; 从室内水箱 1内低温水箱 D中被抽出的水通过 上次循环后已被排空的循环上水管路 6时, 不能进入积水排放管路 17和也不能通过下 水积水排放管路 41直接进入循环下水管路 13; 只能进入集热器水箱 20内,将集热器水 箱 20中高温水顶出,经上次循环后已被排空的循环下水管路 13经止回阀 14,通过室内 水箱 1的下水管口 11先流入室内水箱 1内高温水箱 G中, 再通过穿过保温隔断壁 5伸 到高温水箱 G底部的连通管路 26吸入低温水箱 D中; 当集热器水箱 20与室内水箱 1 中的水经过循环换热后温差降到设定值时, 或者到预设的循环换热结束时间时, 智能控 制仪 28发出信号, 指挥系统各组件自动动作 (手动再按智能控制仪 28上循环键) 。
如图 1、 图 2所示, 循环水泵 8停止, 此时循环下水管路 13水依靠自然落差经止回 阀 14通过室内水箱 1的下水管口 11流进室内水箱 1中; 循环上水管路 6中的水也依靠 自然落差经循环水泵 8、 循环管路控制阀 7、 通过上水管路 3进入室内水箱 1中, 室内 水箱 1又通过上端的止水呼吸阀 2将循环换热过程中吸进的气体排出;循环上水管路 6、 循环下水管路 13中的水排空后, 循环管路控制阀 7关闭, 积水管路控制阀 18和上水控 制阀 4重新自动开启;
或者, 如图 2所示, 循环水泵 8停止, 循环管路控制阀 7关闭, 此时循环下水管路 13水依靠自然落差经止回阀 14通过室内水箱 1的下水管口 11流进室内水箱 1中;循环 上水管路 6中的水也依靠自然落差经循环水泵 8、排空管路 15、排空管路止回阀 16、通 过上水管路 3进入室内水箱 1中, 室内水箱 1又通过上端的止水呼吸阀 2将循环换热过 程中吸进的气体排出; 循环上水管路 6、循环下水管路 13中的水排空后, 积水管路控制 阀 18和上水控制阀 4重新自动开启; 连接带压自来水上水管路 3开通, 室内水箱 1由 循环换热及换热管路排空过程中的常压状态切换为承压状态; 除了循环管路有微量的膨 胀水外, 集热器水箱 20和室内水箱 1中的水基本上仍保持换热循环前的注满水量, 系 统按上述情况动作, 依次反复自动完成换热循环和换热循环后循环管路排空过程, 将室 内水箱 1中水升温, 完成太阳能制热水过程;
方案二, 上水管路 3上的上水控制阀 4为常闭阀时:
温差循环换热程序启动, 循环管路控制阀 7开启, 循环水泵 8起动, 上水管路 3上 关闭的上水控制阀 4切断上水管路 3, 上水管路 3中的带压水或带压自来水无法进入室 内水箱; 室内水箱 1内低温水箱 D中的水被抽出, 同时高温水箱 G中的水通过穿过保 温隔断壁 5伸到高温水箱 G底部的连通管路 26被吸入低温水箱 D中, 同时室内水箱 1 通过上端的止水呼吸阀 2吸进空气; 同时积水管路控制阀 18关闭, 切断积水排放管路 17, 下水积水排放管路 41上的逆止阀 42左侧的下水积水排放管路 41路段被逆止阀 42 单向逆止, 切断循环上水管路 6至循环下水管路 13方向的连通; 使从室内水箱 1内低 温水箱 D中被抽出的水通过上次循环后已被排空的循环上水管路 6时,不能进入积水排 放管路 17和也不能通过下水积水排放管路 41直接进入循环下水管路 13;只能进入集热 器水箱 20内, 将集热器水箱 20中高温水顶出, 经上次循环后已被排空的循环下水管路 13经止回阀 14通过室内水箱 1的下水管口 11流入室内水箱 1内高温水箱 G中, 再通 过穿过保温隔断壁 5伸到高温水箱 G底部的连通管路 26吸入低温水箱 D中; 当集热器 水箱 20与室内水箱 1中的水经过循环换热后温差降到设定值时, 或者到预设的循环换 热结束时间时, 智能控制仪 28发出信号, 指挥系统各组件自动动作 (手动再按智能控 制仪 28上循环键) 。 如图 1、 图 2所示, 循环水泵 8停止, 此时循环下水管路 13水依 靠自然落差经止回阀 14通过室内水箱 1的下水管口 11流进室内水箱 1中; 循环上水管 路 6中的水也依靠自然落差经循环水泵 8、 循环管路控制阀 7、 通过上水管路 3进入室 内水箱 1中,室内水箱 1又通过上端的止水呼吸阀 2将循环换热过程中吸进的气体排出; 循环上水管路 6、循环下水管路 13中的水排空后, 循环管路控制阀 7关闭, 积水管路控 制阀 18自动开启; 或者, 如图 2所示, 循环水泵 8停止, 循环管路控制阀 7关闭, 此 时循环下水管路 13水依靠自然落差经止回阀 14通过室内水箱 1的下水管口 11流进室 内水箱 1中; 循环上水管路 6中的水也依靠自然落差经循环水泵 8、 排空管路 15、 排空 管路止回阀 16、通过上水管路 3进入室内水箱 1中,室内水箱 1又通过上端的止水呼吸 阀 2将循环换热过程中吸进的气体排出;循环上水管路 6、循环下水管路 13中的水排空 后, 积水管路控制阀 18 自动开启, 上水控制阀 4仍处于关闭状态, 切断室内水箱 1与 带压自来水上水管路 3的连通, 室内水箱 1由循环换热及换热管路排空过程中的仍为常 压状态, 集热器水箱 20和室内水箱 1中的水基本上仍保持换热循环前的注满水量, 系 统按上述情况动作, 依次反复自动完成换热循环和换热循环后循环管路排空过程, 将室 内水箱 1中水升温, 完成太阳能制热水过程;
2、 热水使用过程:
方案一, 上水管路 3上的上水控制阀 4为常开阀时: 打开混水阀 31转至热水端, 带压水或带压自来水通过上水管路 3顶进室内水箱 1 内低温水箱 D中, 将低温水箱 D 上层较高温度的水通过保温隔断壁 5上端伸到高温水箱 G底部的连通管路 26顶进高温 水箱 G的底层, 将高温水箱 G上端的高温水经室内水箱 1的出水口 35通过热水出水管 路 32顶出混水阀 31 ; 停止使用热水, 关闭混水阀 31, 完成使用热水过程, 室内水箱 1 除了在系统循环换热和循环管路排空过程中为常压状态外, 其它工作过程都为承压状 态; 方案二, 上水管路 3上的上水控制阀 4为常闭阀时: 打开混水阀 31转至热水端, 室内水箱 1的热水出水管路 32和循环下水管路 13中的水靠自然落差流出混水阀 31,热 水出水管路 32上的传感器 10 (—般可为水流开关)动作发出信号, 智能控制仪 28接受 传感器 10发出的信号打开上水控制阀 4; 或者, 控制开关 9 (一般可为接近开关式传感 器)发出有线信号或无线遥控信号, 智能控制仪 28接受信号打开上水控制阀 4, 此时带 压水或带压自来水通过上水管路 3顶进室内水箱 1内低温水箱 D中, 将低温水箱 D上 层较高温度的水通过保温隔断壁 5上端伸到高温水箱 G底部的连通管路 26顶进高温水 箱 G的底层, 将高温水箱 G上端的高温水经室内水箱 1的出水口 35通过热水出水管路 32顶出混水阀 31 ; 停止使用热水, 关闭混水阀 31, 传感器 10动作, 或控制开关 9 (一 般可为接近开关式传感器) 动作, 智能控制仪 28接受信号指挥上水控制阀 4关闭, 切 断上水管路 3, 完成使用热水过程, 此过程中室内水箱 1处于承压状态;
循环管路控制阀 7与上水控制阀 4有互锁功能, 即在系统循环换热开启循环管路控 制阀 7时, 上水控制阀 4不能被开启; 而在使用热水上水控制阀 4开启时, 循环管路控 制阀 7不能被开启;
三、 膨胀水的排放与积水排放管路的安全、 报警:
在系统循环换热排空后, 虽然集热器水箱 20和室内水箱 1 中的水仍保持换热循环 前的注满水量,但将循环换热前承压状态的室内水箱 1切换为换热循环后常压状态的室 内水箱 1,在此过程中会产生的少量膨胀水(图 2中 A表示本发明系统中膨胀水存放区), 如不当即排放会蓄积在循环管路中,使室内水箱 1上端的循环管路中的水不能实现彻底 排空;
1、 膨胀水的排放:
方案一, 上水管路 3上的上水控制阀 4为常开阀时: 如图 2所示, 循环上水管路 6、 循环下水管路 13中的水排空结束时, 上水管路 3上的上水控制阀 4重新开启, 连接带 压自来水上水管路 3开通, 室内水箱 1由循环换热及换热管路排空过程中的常压状态切 换为承压状态, 下次系统循环换热时室内水箱 1再次切换为常压状态, 此过程会产生微 量的膨胀水, 当膨胀水蓄积过多时可通过下水积水排放管路 41、 逆止阀 42、 积水排放 管路 17排放出系统外, 保证循环管路中无膨胀水蓄积, 实现循环管路正常排空;
方案二, 上水管路 3上的上水控制阀 4为常闭阀时:
如图 2所示, 该装置循环换热和循环管路排空后, 虽然集热器水箱 20和室内水箱 1 中的水仍保持换热循环前的注满水量, 但循环下水管路 13和循环上水管路 6中可能会 存有循环换热时,使用热水后室内水箱 1的承压状态切换为循环换热后常压状态过程中 产生的少量膨胀水; 当膨胀水蓄积过多时可通过下水积水排放管路 41、 逆止阀 42、 积 水排放管路 17排放出系统外, 保证循环管路中无膨胀水蓄积, 实现循环管路正常排空;
2、 积水排放管路的安全与报警:
当循环下水管路 13上的止回阀 14损坏时, 在上水控制阀 4处在开启状态时, 带压 水经循环下水管路 13和循环下水管路上损坏的止回阀 14、 下水积水排放管路 41、 积水 排放管路 17排放出去; 而当上水管路 3与循环上水管路 6之间的控制阀, 如循环管路 控制阀 7或排空管路止回阀 16损坏时, 在室内水箱 1承压状态下, 并上水控制阀 4处 在开启状态时, 上水管路 3中的带压水或带压自来水一部份顶进室内水箱 1, 一部份水 经循环上水管路 6通过积水排放管路 17排放出去; 上水控制阀 4损坏时, 系统循环换 热、 排空程序结束前, 带压水或带压自来水通过上水管路进入室内水箱 1也进入循环上 水管路 6和循环下水管路 13, 当系统循环换热、排空程序结束时, 这部分水会通过积水 排放管路 17排放出去; 积水管路控制阀 18损坏时, 系统循环换热时, 循环换热水会经 循环上水管路 6通过积水排放管路 17排放出去; 室内水箱 1的常压状态与承压状态切 换过程中产生的膨胀水量过多时能通过下水积水排放管路 41和积水排放管路 17排出系 统; 因此下水积水排放管路 41和积水排放管路 17的设计避免了因系统各种控制阀件的 损坏或膨胀水量过多而造成的循环下水管路 13或循环上水管路 6中充满水不能实现正 常排空, 致使冬季循环管路冻堵问题的发生; 在该装置系统积水排放管路 17上装有故 障报警器 19, 当系统某个控制阀件的损坏产生不正常水流通过时及时报警,使损坏的控 制阀件尽快得以维护; 并且太阳能集热器 12如果产生高温膨胀气体和微量的高温膨胀 水都能通过已排空的循环管路、下水积水排放管路 41和积水排放管路 17顺畅的释放和 排出, 改变了过去太阳能集热器 12只能通过呼吸阀呼吸的历史, 避免了太阳能集热器 12在冬季呼吸阀因汽馏冻堵而产生汽胀爆管、 裂胆等事故的发生。
在该装置系统积水排放管路 17上装有故障报警器 19, 当系统某个控制阀件的损坏 产生不正常水流通过时及时报警, 使损坏的控制阀件尽快得以维护。

Claims

权 利 要 求
1、 一种可切换压力的室内水箱组合配套装置, 其特征在于: 该装置设有室内水箱 ( 1 ) , 以及与室内水箱的进水口相连的上水管路 (3) , 在上水管路 (3) 上装有上水 控制阀 (4) ; 室内水箱 (1 ) 分别连有循环上水管路 (6) 和循环下水管路 (13) , 在 循环上水管路 (6) 上装有循环管路控制阀 (7 ) , 在循环上水管路 (6) 上装有循环水 泵 (8) ; 在循环下水管路 (13) 上装有止回阀 (14) ; 室内水箱 (1 ) 的出水口连有热 水出水管路 (32) , 在室内水箱 (1 ) 的上端装有止水呼吸阀 (2) ; 在室内水箱 (1 ) 内装有水箱温度传感器 (27) 。
2、 按照权利要求 1 所述的可切换压力的室内水箱组合配套装置, 其特征在于: 在 循环上水管路 (6) 与循环下水管路 (13) 之间连有下水积水排放管路 (41 ) ; 在下水 积水排放管路 (41 ) 上装有逆止阀 (42) , 在循环上水管路 (6) 上连有积水排放管路 ( 17) , 积水排放管路 (17) 与下水积水排放管路 (41 ) 相通, 在积水排放管路 (17) 上装有积水管路控制阀 (18) , 在积水排放管路 (17) 上装有故障报警器 (19) 。
3、 按照权利要求 1 所述的可切换压力的室内水箱组合配套装置, 其特征在于: 在 循环水泵 (8 ) 进水口端的循环上水管路 (6) 和跨过循环管路控制阀 (7) 的上水管路 (3) 之间连有排空管路 (15) , 在排空管路 (15) 上装有排空管路止回阀 (16) 。
4、 按照权利要求 1 所述的可切换压力的室内水箱组合配套装置, 其特征在于: 在 与室内水箱 (1 ) 的出水口相连的热水出水管路上装有传感器 (10) , 或者在室内水箱 的水的使用处装有控制开关 (9) 。
5、 按照权利要求 1 所述的可切换压力的室内水箱组合配套装置, 其特征在于: 在 室内水箱 (1 ) 内设有保温隔断壁 (5) , 在保温隔断壁 (5) 上设有连通管路 (26) 。
6、 按照权利要求 1 所述的可切换压力的室内水箱组合配套装置, 其特征在于: 与 室内水箱 (1 )连接的循环上水管路 (6)和循环下水管路 (13) 上端连有太阳能集热器 ( 12) , 在集热器 (12) 上端设有集热器水箱 (20) ; 在循环下水管路 (13) 的上端或 者在循环上水管路 (6) 的上端或者在集热器水箱上端, 装有呼吸器 (21 ) 。
7、 按照权利要求 6所述的可切换压力的室内水箱组合配套装置, 其特征在于: 在 集热器水箱 (20) 两侧上端分别装有插入式进水管口 (22) 和插入式出水管口 (23) , 它们分别与循环上水管路(6)和循环下水管路(13)相连; 在装有插入式进水管口(22) 和插入式出水管口 (23) 的集热器水箱 (20) 下面装有真空集热管 (25) , 真空集热管 (25) 里面装有金属换热管 (33) , 金属换热管 (33) 上有喇叭口密封管头 (36) , 喇 叭口密封管头 (36) 的一端为换热管管口 (38) 、 喇叭口密封管头 (36) 的另一端连有 底部封堵的换热管体 (37) , 金属换热管 (33) 在喇叭口密封管头 (36) 的位置通过密 封环 (39) 与水箱连接口 (40) 相连。
8、 一种可切换压力的室内水箱组合配套装置的工作方法, 其特征在于: 该装置应 用于太阳能制热水装置中, 作为太阳能制热水装置的一部分, 与室内水箱 (1 ) 连接的 循环上水管路 (6) 和循环下水管路 (13) 上端连有太阳能集热器 (12) , 通过各种控 制阀控制, 实现太阳能制热水装置中, 在室内水箱里的低温水与太阳能集热器吸收太阳 光能产生的高温水通过循环管路进行循环换热过程中, 以及循环换热后循环管路中的水 依靠自然落差排空流入室内水箱的过程中室内水箱无压力状态,排空结束后室内水箱自 动切换为带压力状态; 或者, 排空结束后室内水箱仍为常压状态, 当使用热水时室内水 箱再自动切换为带压力状态。
9、 按照权利要求 8 所述的可切换压力的室内水箱组合配套装置的工作方法, 其特 征在于: 该装置中, 在系统非换热循环状态时, 室内水箱分别通过各种控制阀切断与上 次换热循环后已被排空的循环上水管路、 循环下水管路的连通, 所以在系统循环换热及 循环换热管路排空时: 只需由控制系统指挥自动开启循环管路控制阀, 关闭上水管路上 的上水控制阀, 切断上水管路, 上水管路中的带压水或带压自来水无法进入室内水箱; 室内水箱在此循环换热及换热管路排空过程中处于常压状态; 在循环换热及换热管路排 空结束后,由控制系统指挥关闭循环上水管路上的循环管路控制阀,切断循环上水管路, 再自动开启上水控制阀, 循环下水管路上止回阀切断循环下水管路被逆止的管路段, 带 压水或带压自来水只能通过上水管路进入室内水箱, 而不能进入循环上水管路和循环下 水管路; 此过程中室内水箱处于承压状态;
或者, 在循环换热及换热管路排空结束后, 由控制系统指挥关闭循环上水管路上的 循环管路控制阀, 切断循环上水管路, 上水管路上的上水控制阀仍然处于关闭状态, 切 断上水管路, 在热水使用时: 由控制系统指挥自动开启上水控制阀, 循环上水管路上关 闭的循环管路控制阀切断循环上水管路; 循环下水管路上止回阀切断循环下水管路被逆 止的管路段, 带压水或带压自来水只能通过上水管路进入室内水箱, 而不能进入循环上 水管路和循环下水管路; 此过程中室内水箱处于承压状态。
PCT/CN2009/071421 2008-04-23 2009-04-23 分体式太阳能热水器及其工作方法 WO2009129744A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810011160.0 2008-04-23
CNA2008100111600A CN101261020A (zh) 2008-04-23 2008-04-23 顶水洗浴分体式太阳能制热水装置

Publications (1)

Publication Number Publication Date
WO2009129744A1 true WO2009129744A1 (zh) 2009-10-29

Family

ID=39961626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071421 WO2009129744A1 (zh) 2008-04-23 2009-04-23 分体式太阳能热水器及其工作方法

Country Status (2)

Country Link
CN (13) CN101261020A (zh)
WO (1) WO2009129744A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109931717A (zh) * 2019-04-10 2019-06-25 山东桑乐太阳能有限公司 一种非承压满介质运行的分体式太阳能热水器
CN112629044A (zh) * 2020-12-31 2021-04-09 广西赫阳能源科技有限公司 一种太阳能中高温热水器

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101261020A (zh) * 2008-04-23 2008-09-10 王克涛 顶水洗浴分体式太阳能制热水装置
CN101846400A (zh) * 2010-06-09 2010-09-29 大连希奥特检测设备有限公司 玻璃集热管单工质承压循环分层蓄热分体太阳能热水器
CN102374678A (zh) * 2010-08-11 2012-03-14 王克涛 一种太阳能集热管内金属换热管装置
CN102374666B (zh) * 2010-08-27 2015-09-16 王克涛 采用低功率泵与太阳能热水器置换热水的储热水组合装置
TWI407064B (zh) * 2010-09-02 2013-09-01 Univ Feng Chia Forced circulation of solar water heaters
CN102109048A (zh) * 2011-01-11 2011-06-29 郝晓谷 一种水龙头及冷热水调度系统
CN102226583B (zh) * 2011-06-02 2012-08-01 江苏力源太阳能有限公司 一种阳台壁挂式太阳能热水器
CN102589176A (zh) * 2012-03-26 2012-07-18 苏州开来新能源有限公司 用于太阳能热水器的上下水控制装置
CN102818369A (zh) * 2012-08-03 2012-12-12 张应刚 用于出水管道较长的热水器的热水缓存储水箱
CN104344577A (zh) * 2013-07-23 2015-02-11 宋杰 新型太阳能辅助加热热处理窑及控制系统
CN103629831B (zh) * 2013-12-02 2016-07-06 王强 非承压分体即热恒压启动强制内循环太阳能热水器
CN104534697A (zh) * 2015-01-11 2015-04-22 滨州市甲力太阳能科技有限公司 分体式非承压太阳能热水器
CN107101250A (zh) * 2017-06-21 2017-08-29 宝莲华新能源技术(上海)股份有限公司 一种适用于寒冷地区太阳能供暖系统的夜间温度补偿装置
CN111854013B (zh) * 2020-07-29 2022-03-25 江苏西墅新能源科技有限公司 地暖空调联动的水力系统匹配装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1837711A (zh) * 2005-03-25 2006-09-27 海尔集团公司 分体式太阳能热水器
CN101059257A (zh) * 2007-06-04 2007-10-24 九日高科(营口)流体设备有限公司 中央单户式智能太阳能制热水系统
CN200968736Y (zh) * 2006-11-23 2007-10-31 王克涛 太阳能热水器节能节水室内储水箱
CN101149187A (zh) * 2006-09-20 2008-03-26 侯国山 分体式太阳热水器
CN101261020A (zh) * 2008-04-23 2008-09-10 王克涛 顶水洗浴分体式太阳能制热水装置
CN201225708Y (zh) * 2008-04-23 2009-04-22 王克涛 顶水洗浴分体式太阳能制热水装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1837711A (zh) * 2005-03-25 2006-09-27 海尔集团公司 分体式太阳能热水器
CN101149187A (zh) * 2006-09-20 2008-03-26 侯国山 分体式太阳热水器
CN200968736Y (zh) * 2006-11-23 2007-10-31 王克涛 太阳能热水器节能节水室内储水箱
CN101059257A (zh) * 2007-06-04 2007-10-24 九日高科(营口)流体设备有限公司 中央单户式智能太阳能制热水系统
CN101261020A (zh) * 2008-04-23 2008-09-10 王克涛 顶水洗浴分体式太阳能制热水装置
CN201225708Y (zh) * 2008-04-23 2009-04-22 王克涛 顶水洗浴分体式太阳能制热水装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109931717A (zh) * 2019-04-10 2019-06-25 山东桑乐太阳能有限公司 一种非承压满介质运行的分体式太阳能热水器
CN112629044A (zh) * 2020-12-31 2021-04-09 广西赫阳能源科技有限公司 一种太阳能中高温热水器
CN112629044B (zh) * 2020-12-31 2022-07-22 广西赫阳能源科技有限公司 一种太阳能中高温热水器

Also Published As

Publication number Publication date
CN201302299Y (zh) 2009-09-02
CN101566370A (zh) 2009-10-28
CN201297706Y (zh) 2009-08-26
CN101608811A (zh) 2009-12-23
CN101566369B (zh) 2011-06-08
CN201293394Y (zh) 2009-08-19
CN101608811B (zh) 2010-11-03
CN101261020A (zh) 2008-09-10
CN201277749Y (zh) 2009-07-22
CN101608834A (zh) 2009-12-23
CN101566397A (zh) 2009-10-28
CN101566400A (zh) 2009-10-28
CN101566394A (zh) 2009-10-28
CN101566369A (zh) 2009-10-28
CN201277648Y (zh) 2009-07-22

Similar Documents

Publication Publication Date Title
WO2009129744A1 (zh) 分体式太阳能热水器及其工作方法
CN103123176B (zh) 无补水箱弯导流管温度阶跃储热式太阳能热水器
CN201672678U (zh) 智能控温内置热交换器的高效保温水箱
CN201131642Y (zh) 一种即热式饮水机
CN201866963U (zh) 内置式单管虹吸排空防冻太阳能热水器整套装置
CN101441005A (zh) 太阳能输水管路自动排空防冻装置
CN204963244U (zh) 平板太阳能热水系统
CN201589440U (zh) 双内胆直插承压敞口玻璃真空管阳台壁挂式太阳能热水器
CN201225708Y (zh) 顶水洗浴分体式太阳能制热水装置
CN102374666A (zh) 采用低功率泵与太阳能热水器置换热水的储热水组合装置
CN203024437U (zh) 一种气水复合型太阳能高效集热装置
WO2021238494A1 (zh) 一种智能化太阳能热水器系统
CN103185400B (zh) 无补水箱弯斜导流管温度阶跃储热式太阳能热水器
CN201407834Y (zh) 一种储热水箱具有多个储水室的分体式太阳能制热水装置
CN202361653U (zh) 防冻智能化即热式太阳能热水器
CN101762082A (zh) 双内胆直插承压敞口玻璃真空管阳台壁挂式太阳能热水器
CN202195613U (zh) 单管双向式太阳能防冻系统
CN101270928A (zh) 一种太阳能热水器
CN103968581B (zh) 多功能太阳能热水器
CN203949395U (zh) 可双排空的分仓盘管式承压太阳能热水器
CN103968571B (zh) 太阳能自动开水器
CN201764711U (zh) 采用低功率泵与太阳能热水器置换热水的储热水组合装置
CN211739485U (zh) 相变蓄热的加热箱
CN109539573A (zh) 一种集热换热与建筑一体化的太阳能热水器
CN203132172U (zh) 热水器排空装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09735690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09735690

Country of ref document: EP

Kind code of ref document: A1