WO2009128348A1 - Phenylphosphorylcholine derivatives - Google Patents

Phenylphosphorylcholine derivatives Download PDF

Info

Publication number
WO2009128348A1
WO2009128348A1 PCT/JP2009/056874 JP2009056874W WO2009128348A1 WO 2009128348 A1 WO2009128348 A1 WO 2009128348A1 JP 2009056874 W JP2009056874 W JP 2009056874W WO 2009128348 A1 WO2009128348 A1 WO 2009128348A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
phenylphosphorylcholine
present
derivative
phospholipase
Prior art date
Application number
PCT/JP2009/056874
Other languages
French (fr)
Japanese (ja)
Inventor
睦廣 伊逹
諭 狭場
祐介 中新井
友和 板井
和仁 谷本
Original Assignee
和光純薬工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 和光純薬工業株式会社 filed Critical 和光純薬工業株式会社
Priority to JP2010508169A priority Critical patent/JP5614281B2/en
Publication of WO2009128348A1 publication Critical patent/WO2009128348A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/84Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving inorganic compounds or pH
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/091Esters of phosphoric acids with hydroxyalkyl compounds with further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/12Esters of phosphoric acids with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/44Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving esterase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/916Hydrolases (3) acting on ester bonds (3.1), e.g. phosphatases (3.1.3), phospholipases C or phospholipases D (3.1.4)
    • G01N2333/918Carboxylic ester hydrolases (3.1.1)
    • G01N2333/92Triglyceride splitting, e.g. by means of lipase

Definitions

  • the present invention relates to a novel substance serving as a substrate for phospholipase D, a method for measuring phospholipase D using the same, and a method for quantifying calcium ions.
  • Phospholipase D is an enzyme having a high enzyme affinity for the phosphorylcholine structure, and is generally known to require a divalent cation in the enzyme reaction.
  • a method for measuring the enzyme activity of phospholipase D using a commercially available paranitrophenyl phosphorylcholine as a chromogenic substrate and a method for measuring a divalent cation using phospholipase D have been studied. .
  • An object of the present invention is to provide a good phospholipase D substrate, and to maintain a substrate stability in the measurement of enzyme activity and divalent cation, while the released dye is high near the optimum pH of phospholipase D.
  • An object of the present invention is to provide a chromogenic substrate that develops color, has excellent chromogenic stability, and has sufficient measurement sensitivity.
  • the present invention has been made for the purpose of solving the above-mentioned problems, and has the following configuration.
  • R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, a halogenated alkyl group, or a carboxyl group. However, at least one of R 1 to R 4 represents a halogen atom, a halogenated alkyl group, or a carboxyl group.
  • R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, a halogenated alkyl group, or a carboxyl group. However, at least one of R 1 to R 4 represents a halogen atom, a halogenated alkyl group, or a carboxyl group.
  • a reagent for measuring phospholipase D comprising a phenylphosphorylcholine derivative represented by the formula:
  • R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, a halogenated alkyl group, or a carboxyl group. However, at least one of R 1 to R 4 represents a halogen atom, a halogenated alkyl group, or a carboxyl group.
  • a phospholipase D is mixed with phospholipase D in the presence of phosphate monoesterase to start the reaction, and then the absorbance increase rate is measured, and this is performed based on the absorbance increase rate.
  • R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, a halogenated alkyl group, or a carboxyl group. However, at least one of R 1 to R 4 represents a halogen atom, a halogenated alkyl group, or a carboxyl group.
  • a reagent for quantifying calcium ions comprising a phenylphosphorylcholine derivative represented by the formula:
  • R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, a halogenated alkyl group, or a carboxyl group. However, at least one of R 1 to R 4 represents a halogen atom, a halogenated alkyl group, or a carboxyl group.
  • a kit for quantifying calcium ions comprising a phenylphosphorylcholine derivative represented by the formula: phospholipase D and phosphate monoesterase as constituent components.
  • the present inventors synthesized a phenylphosphorylcholine derivative of the present invention in which at least one electron-withdrawing group was introduced into paranitrophenylphosphorylcholine, and the derivative was released. It was found that the pKa of the dye is lower than that of the dye liberated from paranitrophenyl phosphorylcholine. As a result of further intensive research, it was found that the dye released from phenylphosphorischoline of the present invention produces a high color near neutral, which is the optimum pH of phospholipase D, and at a fixed measurement wavelength of 405 nm of an automatic analyzer. Thus, it was found that if the derivative was used as a substrate for phospholipase D and the calcium ion concentration was measured, the measurement could be performed with sufficient measurement sensitivity, and the present invention was completed.
  • the novel phenylphosphorylcholine derivative in which an electron withdrawing group is substituted on the dye skeleton of the present invention can be a good substrate of phospholipase D, and has excellent coloration stability in enzyme activity measurement and calcium ion measurement. It becomes a chromogenic substrate having measurement sensitivity.
  • FIG. 6 is a graph showing the relationship between the substrate concentration (mM) of each substrate and the absorbance increase rate ( ⁇ E / mim) obtained in Example 7.
  • FIG. 1 shows the conventional paranitrophenylphosphorylcholine as a substrate for phospholipase D
  • (b) and (c) show the phenylphosphorylcholine derivative of the present invention as a substrate for phospholipase D, ie, compound 8a or compound 8c. The result when each is used is shown.
  • It is the graph which showed the reaction time course at the time of measuring calcium ion concentration using each substrate obtained in Example 8, and plotted the light absorbency (ODx10000) in each photometry point (sec.).
  • ODx10000 light absorbency
  • FIG. 9 is a calibration curve showing the relationship between the calcium concentration (analyte Ca amount) of the calcium solution obtained in Example 8 and the calcium concentration (measured value) of the calcium solution obtained from the calibration curve.
  • the phenylphosphorylcholine derivative of the present invention is one in which at least one electron withdrawing group is introduced into paranitrophenylphosphorylcholine, and specifically, the following formula [1] [Wherein R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, a halogenated alkyl group, or a carboxyl group. However, at least one of R 1 to R 4 represents a halogen atom, a halogenated alkyl group, or a carboxyl group. ] It has the structure shown by.
  • R 1 to R 4 are each independently a hydrogen atom or an electron withdrawing group, and at least one of R 1 to R 4 is an electron withdrawing group.
  • the electron withdrawing group include a halogen atom, a halogenated alkyl group, and a carboxyl group, and a halogen atom and a halogenated alkyl group are preferable.
  • halogen atom examples include fluorine, chlorine, bromine and iodine, preferably fluorine, chlorine and bromine, more preferably fluorine and chlorine.
  • the alkyl group of the halogenated alkyl group may be linear, branched or cyclic, and includes a lower alkyl group having a main chain length of up to 6 carbons, specifically, methyl group, ethyl group Group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, pentyl group, isopentyl group, tert-pentyl group, 1-methylpentyl group, n-hexyl group, isohexyl group, cyclopropyl Group, cyclopentyl group, cyclohexyl group, and the like.
  • the main chain length is preferably 4 carbons or less, more preferably 2 carbons or less.
  • halogen atom of the halogenated alkyl group examples include fluorine, chlorine, bromine and iodine, preferably fluorine, chlorine and bromine, more preferably fluorine and chlorine.
  • phenylphosphorylcholine derivative represented by the formula [1] include, for example, O- (2-Chloro-4-Nitrophenylphosphoryl) choline, O- (2-Fluoro-4-Nitrophenylphosphoryl) choline, O- (3-Chloro-4-Nitrophenylphosphoryl) choline, O- (3-Fluoro-4-Nitrophenylphosphoryl) choline, O- (4-Nitro-3-Trifluoromethylphenylphosphoryl) choline, O- (2-Carboxy-4-Nitrophenylphosphoryl) choline, O- (3-Carboxy-4-Nitrophenylphosphoryl) choline, Etc.
  • the method for synthesizing the phenylphosphorylcholine derivative of the present invention is not particularly limited.
  • phosphorylcholine is synthesized by esterification with paranitrophenol by dehydration condensation (S.uriKurioka, Journal of Biochemistry, 63 (5), (678 (1998) , A method of synthesizing phenylphosphodichloridate using paranitrophenol derivatives and various phosphorylating reagents and condensing it with a choline compound (B. Chesebro and H. Metzger, Biochemistry 11,1766 (1972), S. Kurioka and M. Matsuda, Analytical Biochemistry 75, 281-289 (1976), E. Barbar et.al., Biochemistry 35 (9), 2959 (1996)) and the like.
  • the synthesis of the phenylphosphorylcholine derivative of the present invention includes (1) synthesis of a choline compound, and (2) phosphodichloridated paranitrophenol derivative according to the present invention (hereinafter referred to as “phenylphosphodichloridate according to the present invention”). And (3) condensation of the phenylphosphodichloridate according to the present invention with a choline compound.
  • choline compound 1.0-2.0 moles of iodomethane with respect to dimethylaminoethanol are mixed with a solvent (for example, ethers such as diethyl ether, tetrahydrofuran, dioxane, anisole, ethylene glycol monoethyl ether, methanol, ethanol, propanol, Reaction in alcohols such as isopropanol, butanol, ethylene glycol, 1,4-butanediol) at -20 to 100 ° C (preferably 0 to 50 ° C) for 0.1 to 24 hours (preferably 1 to 12 hours).
  • a solvent for example, ethers such as diethyl ether, tetrahydrofuran, dioxane, anisole, ethylene glycol monoethyl ether, methanol, ethanol, propanol, Reaction in alcohols such as isopropanol, butanol, ethylene glycol, 1,4-butanediol
  • the paranitrophenol derivative according to the present invention may be synthesized by a conventional method, but if a commercially available product is available, it may be used as it is.
  • Examples of the reagent for measuring phospholipase D of the present invention include those containing the phenylphosphorylcholine derivative of the present invention.
  • a test sample and the phenylphosphorylcholine derivative of the present invention are mixed in the presence of phosphate monoesterase or a divalent metal ion to start the reaction. After that, the absorbance increase rate was measured, and the result was expressed in a calibration curve showing the relationship between the phospholipase D activity and the absorbance increase rate obtained using, for example, a sample containing phospholipase D having a known concentration. It can be done by applying.
  • Examples of the phosphate monoesterase used in the above method include alkaline phosphatase, neutral phosphatase, and acid phosphatase.
  • JP 2002-238598 A, JP 7-170999 A, and Japanese Patent Application Laid-Open No. H7-170999 except that the phenylphosphorylcholine derivative of the present invention is used as a substrate for phospholipase D.
  • the color development (change in absorbance) of the paranitrophenol derivative may be measured.
  • test sample the phenylphosphorylcholine derivative of the present invention, and phospholipase D are mixed in the presence of phosphate monoesterase, and the rate of increase in absorbance is measured.
  • rate of increase in absorbance There is a method of quantification by fitting to a calibration curve showing the relationship between the calcium ion concentration obtained using a sample containing ions and the rate of increase in absorbance.
  • (1) a method in which a test sample is reacted with a test solution containing phospholipase D and phosphate monoesterase and then reacted with the phenylphosphorylcholine derivative of the present invention, and then the rate of increase in absorbance is measured;
  • Examples include a method of reacting a test sample with a test solution containing phospholipase D, then reacting a phosphate monoesterase with a test solution containing the phenylphosphorylcholine derivative of the present invention, and then measuring the rate of increase in absorbance.
  • the phenylphosphorylcholine derivative of the present invention used in the calcium ion quantification method according to the present invention and preferred specific examples thereof are as described above.
  • O- (2-Fluoro-4-Nitrophenylphosphoryl) choline O- (3-Chloro-4-Nitrophenylphosphoryl) choline, O- (3-Fluoro-4-Nitrophenylphosphoryl) choline, O- (4-Nitro-3-Trifluoromethylphenylphosphoryl) choline, Is mentioned.
  • O- (2-Fluoro-4-Nitrophenylphosphoryl) choline O- (3-Fluoro-4-Nitrophenylphosphoryl) choline, and O- (4-Nitro-3-Trifluoromethylphenylphosphoryl) choline, Is mentioned.
  • the concentration of the phenylphosphorylcholine derivative of the present invention used in the quantification method of the present invention is usually 2 to 200 mM, preferably 4 to 40 mM as the concentration in the test solution, and the concentration in the final reaction solution is usually 0.5 to 50 mM, preferably 1 to 10 mM.
  • Examples of the phospholipase D used in the calcium ion quantification method according to the present invention include those requiring calcium ions for enzyme reaction.
  • those derived from plants and animals such as cabbage, carrots, peanuts, and porcine pancreas
  • those derived from microorganisms such as Streptomyces sp (Japanese Patent Laid-Open No. 000-270857) and Nocardia (Japanese Patent Laid-Open No. 60-164483) Etc.
  • microorganism-derived enzymes such as Streptomyces chromofuscus are preferred.
  • the concentration of phospholipase D used may be appropriately selected from the range usually used in this field.
  • the concentration in the test solution is usually 0.075 to 15 U / ml, preferably 3 to 7.5 U / ml, and the concentration in the final reaction solution is usually 0.05 to 10 U / ml, preferably 2 ⁇ 5 U / ml.
  • alkaline phosphatase As the phosphate monoesterase used in the calcium ion quantification method according to the present invention, alkaline phosphatase, neutral phosphatase or acid phosphatase can be used as microorganisms and various enzymes of animal origin. In view of the stability and availability of the enzyme, alkaline phosphatase is preferable, and among them, alkaline phosphatase derived from Escherichia coli having excellent stability is preferable.
  • the concentration of phosphate monoesterase used may be appropriately selected from the range usually used in this field.
  • the concentration in the test solution is usually 0.4 to 80 U / ml, preferably 2 to 20 U / ml, and the concentration in the final reaction solution is usually 0.1 to 20 U / ml, preferably 0.8. 5-5 U / ml.
  • any agent that can eliminate the influence of divalent metal ions other than calcium ions can be used.
  • glycol ether diamine tetraacetic acid, diethylenetriaminepentaacetic acid and the like, and carboxylic acid compounds such as citric acid and oxalic acid can be mentioned.
  • carboxylic acid compounds such as citric acid and oxalic acid
  • the concentration of the chelating agent used is 4 ⁇ M to 1.2 mM, preferably 40 to 400 ⁇ M as the concentration in the test solution, and 1 ⁇ M to 300 mM, preferably 10 to 100 ⁇ M, in the final reaction solution.
  • the final concentration in the reaction solution is 5 to 200 ⁇ M for glycoletherdiaminetetraacetic acid, preferably 10 to 80 ⁇ M, and 1 to 50 ⁇ M for diethylenetriaminepentaacetic acid, preferably Is 5-20 ⁇ M.
  • magnesium ions are used as a stabilizer when a chelating agent is used.
  • magnesium ion also becomes an activator of phosphate monoesterase, it is desirable to use magnesium ion also from this point.
  • the method usually used in the form of a salt thereof is the simplest, but is not particularly limited to this method.
  • the type of the salt used in this case is not particularly limited as long as it does not inhibit the stability of the reagent coexisting in the solution.
  • a salt with an inorganic acid such as sulfuric acid or nitric acid, for example, chlorine
  • examples include salts (halides) with halogen atoms such as bromine and iodine, such as salts with organic acids such as acetic acid, citric acid, gluconic acid, propionic acid, and pantothenic acid.
  • the concentration is 1.5 to 450 mM, preferably 15 to 150 mM, as the concentration in the test solution, and 1 to 300 mM, preferably 10 to 100 mM, as the concentration in the final reaction solution.
  • the solvent for dissolving each reagent is preferably a buffer solution.
  • the preferred pH at the time of measurement in the quantification method of the present invention is pH 5 to 9, more preferably pH 6 to 7.5.
  • any buffer can be used as long as the enzyme activity is kept stable, the reagents are dissolved, and a predetermined pH is obtained.
  • the buffer include dimethyl glutarate buffer.
  • the concentration in the test solution is 7.5 mM to 2 M, preferably 30 to 400 mM, and the final concentration in the reaction solution is 5 to 500 mM, preferably 20 to 100 mM.
  • concentration range of these reagents and the like may be selected by appropriately selecting and using a concentration range ordinarily used in a calcium ion quantification method using phospholipase D known per se.
  • concentration range ordinarily used in a calcium ion quantification method using phospholipase D known per se may be selected by appropriately selecting and using a concentration range ordinarily used in a calcium ion quantification method using phospholipase D known per se.
  • the calcium ion quantification according to the present invention is sufficient. It is desirable to select an enzyme that is highly stable within the optimum pH range of the enzymes used in the method and that does not inhibit the color development of the paranitrophenol derivative produced by the enzyme reaction.
  • any of those usually used in this field can be used without exception.
  • the measurement may be performed according to the method used, but it can also be applied to continuous measurement using an automatic analyzer often used in clinical laboratories.
  • the change in absorbance may be obtained by single wavelength or two-wavelength photometry using a main wavelength and a sub wavelength.
  • the measurement wavelength for absorbance measurement may be appropriately selected depending on the type of phenylphosphorylcholine derivative used.
  • the rate of increase in absorbance at an arbitrary wavelength of 380 to 450 nm may be measured.
  • it may be measured near the main wavelength of 405 nm and the sub wavelength of 660 nm.
  • test sample applied to the quantification method of the present invention includes blood, biological fluids such as plasma, serum or urine, etc., drainage, microbial culture fluids, animal and plant culture fluids, biological material extracts and the like.
  • An example of the calcium ion quantification method according to the present invention includes, for example, a test sample, a reagent solution containing phospholipase D and phosphate monoesterase, and a reagent solution containing the phenylphosphorylcholine derivative of the present invention.
  • the mixture is sequentially mixed in the presence of a chelating agent and magnesium ions, and is usually reacted at 10 to 50 ° C., preferably 20 to 40 ° C., usually for 2 to 10 minutes, preferably about 5 minutes.
  • the color development derived from the paranitrophenol derivative according to the present invention produced is measured over time to obtain the rate of increase in absorbance.
  • the obtained value is measured in the same manner using, for example, a calcium ion standard solution with a known concentration as a sample, and applied to a calibration curve showing the relationship between the prepared calcium ion concentration and the rate of increase in absorbance.
  • the calcium ion concentration in the sample is determined.
  • a test sample for example, a test sample, a reagent solution containing phospholipase D, and a reagent solution containing the phenylphosphorylcholine derivative of the present invention and phosphate monoesterase are required.
  • the mixture is sequentially mixed in the presence of a chelating agent and magnesium ions, and is usually reacted at 10 to 50 ° C., preferably 20 to 40 ° C., usually 2 to 10 minutes, preferably about 5 minutes.
  • the color development derived from the paranitrophenol derivative according to the present invention produced is measured over time to obtain the rate of increase in absorbance.
  • the obtained value is measured in the same manner using, for example, a calcium ion standard solution with a known concentration as a sample, and applied to a calibration curve showing the relationship between the prepared calcium ion concentration and the rate of increase in absorbance.
  • the calcium ion concentration in the sample is determined.
  • the calcium ion measurement reagent of the present invention comprises the phenylphosphorylcholine derivative of the present invention, and preferred embodiments, specific examples, use concentrations, etc. are as described above.
  • the calcium ion measurement kit of the present invention only needs to comprise the phenylphosphorylcholine derivative of the present invention, phospholipase D, and phosphate monoesterase, and if necessary, a chelating agent and magnesium ions as constituent components. Preferred embodiments, specific examples, use concentrations and the like of each component are as described above.
  • kit of the present invention include, for example, the following two-component configuration.
  • the aforementioned chelating agent and / or magnesium ion may be contained in at least one of the first reagent solution and the second reagent solution.
  • each reagent of the kit may contain, for example, buffers, preservatives, surfactants, stabilizers, and the like that are usually used in this field, in a range normally used in this field.
  • a calcium ion standard product may be combined with the kit as necessary.
  • each reagent solution when the kit is composed of a plurality of reagent solutions, each reagent solution also contains reagents necessary for measuring the component to be measured. These reagents are used when the reagents are mixed. In order to start the component measurement reaction, it may be appropriately dispersed in any of the test solutions. The use concentration of the reagents constituting these reagent solutions may be appropriately selected from the range usually used in this field.
  • Buffer 50 mM glycine-HCl buffer (pH 2-5, 30 ° C) 50 mM MES buffer (pH 5-8, 30 ° C) 50 mM CHES buffer (pH 8-11, 30 ° C) About the obtained solution, an absorption curve was taken with a spectrophotometer (Hitachi U-3000 type), and OD value and pH at 405 nm and ⁇ max were plotted to obtain pKa. Further, the color development rate at 405 nm and ⁇ max (absorbance of paranitrophenol derivative in pH 7 buffer / 1 absorbance of paranitrophenol derivative in NaOH solution) was also determined. The results are shown in Table 1.
  • the optimum pH of phospholipase D used for the quantification of calcium ions is around neutral. Therefore, usually, when calcium ions are quantified using phospholipase D, the pH of the reaction solution is set near neutral in order to allow the reaction to proceed efficiently.
  • the fixed wavelength used is often around 405 nm.
  • the conventional paranitrophenol has a low coloration rate near 405 nm near neutrality.
  • the p-nitrophenol derivative according to the present invention has a lower pKa than that of the conventional para-nitrophenol, and is highly colored near neutrality, that is, the color development rate is increased.
  • Example 1 Synthesis of phenylphosphorylcholine derivative of the present invention (Compound 5a)
  • Compound 4a (15 g, 51.7 mmol) obtained in Experimental Example 3 was dissolved in acetonitrile (100 ml), and Compound 2 (11.9 g, obtained in Experimental Example 2) was dissolved therein.
  • 51.7 mmol) and quinoline (6.7 g, 51.7 mmol) were added and stirred at 0 ° C. for 6 hours. Thereafter, purified water (5 ml) and pyridine (23 ml) were added, and the mixture was stirred at room temperature for 1 hour.
  • Example 2 Synthesis of phenylphosphorylcholine derivative of the present invention (Compound 5b)
  • Compound 4b (14.4 g, 52.6 mmol) obtained in Experimental Example 4 was dissolved in acetonitrile (100 ml), and Compound 2 (12.2 g obtained in Experimental Example 2) was dissolved therein.
  • 52.6 mmol) and quinoline (6.8 g, 52.6 mmol) were added and stirred at 0 ° C. for 6 hours. Thereafter, purified water (5 ml) and pyridine (25 ml) were added, and the mixture was stirred at room temperature for 1 hour.
  • reaction solution was distilled off under reduced pressure and purified by silica gel column chromatography (eluent: methanol) and recrystallization (solvent: methanol, acetone) to obtain the phenylphosphorylcholine derivative (O- (2-Fluoro) of the present invention.
  • Example 3 Synthesis of phenylphosphorylcholine derivative of the present invention (Compound 8a)
  • Compound 7a (12.1 g, 41.7 mmol) obtained in Experimental Example 5 was dissolved in acetonitrile (100 ml), and Compound 2 (9.6 g, obtained in Experimental Example 2) was dissolved.
  • 41.7 mmol) and quinoline (5.4 g, 41.7 mmol) were added and stirred at 0 ° C. for 6 hours. Thereafter, purified water (5 ml) and pyridine (25 ml) were added, and the mixture was stirred at room temperature for 1 hour.
  • reaction solution was distilled off under reduced pressure and purified by silica gel column chromatography (eluent: methanol) and recrystallization (solvent: methanol, acetone) to obtain the phenylphosphorylcholine derivative (O- (3-Chloro) of the present invention.
  • Example 4 Synthesis of phenylphosphorylcholine derivative of the present invention (Compound 8b)
  • Compound 7b (14.4 g, 52.6 mmol) obtained in Experimental Example 6 was dissolved in acetonitrile (100 ml), and Compound 2 (12.2 g, obtained in Experimental Example 2) was dissolved.
  • 52.6 mmol) and quinoline (6.8 g, 52.6 mmol) were added and stirred at 0 ° C. for 6 hours. Thereafter, purified water (5 ml) and pyridine (25 ml) were added, and the mixture was stirred at room temperature for 1 hour.
  • reaction solution was distilled off under reduced pressure and purified by silica gel column chromatography (eluent: methanol) and recrystallization (solvent: methanol, acetone) to obtain the phenylphosphorylcholine derivative (O- (3-Fluoro) of the present invention.
  • FIG. Synthesis of phenylphosphorylcholine derivative of the present invention (Compound 8c)
  • Compound 7c (12.5 g, 38.6 mmol) obtained in Experimental Example 7 was dissolved in acetonitrile (100 ml), and Compound 2 (8.9 g, obtained in Experimental Example 2) was dissolved.
  • 38.6 mmol) and quinoline 5.0 g, 38.6 mmol
  • purified water 5 ml
  • pyridine 25 ml
  • reaction solution was distilled off under reduced pressure and purified by silica gel column chromatography (eluent: methanol) and recrystallization (solvent: methanol, acetone) to obtain the phenylphosphorylcholine derivative (O- (4-Nitro) of the present invention.
  • phenylphosphorylcholine derivative O- (4-Nitro) of the present invention.
  • -3-Trifluoromethylphenylphosphoryl) choline, compound 8c, in the compound 8 reaction scheme C, to give the compound of R CF 3) (3.3g, 23% yield).
  • Example 6 Synthesis of phenylphosphorylcholine derivative of the present invention (Compound 12)
  • Compound 11 (14.2 g, 48.6 mmol) obtained in Experimental Example 9 was dissolved in acetonitrile (100 ml), and Compound 2 (11.2 g, obtained in Experimental Example 2) was dissolved.
  • 48.6 mmol) and quinoline (6 g, 48.6 mmol) were added and stirred at 0 ° C. for 6 hours. Thereafter, purified water (6 ml) and pyridine (21 ml) were added, and the mixture was stirred at room temperature for 1 hour.
  • Example 7 Substrate specificity test (1) Preparation of reagent solution Each reagent solution having the following composition was prepared.
  • Test solution 1 4 U / ml phospholipase D (T-07 manufactured by Asahi Kasei Corporation, derived from Streptomyces chromofuscus ), 53.3 ⁇ M glycol ether diamine tetraacetic acid, 13.3 ⁇ M diethylenetriaminepentaacetic acid, 33.3 mM magnesium chloride, 0.13% Triton X 1.1 mM PIPES-NaOH buffer (pH 7.3) containing -100.
  • Reagent 2 0-100 mM paranitrophenylphosphorylcholine, or the phenylphosphorylcholine derivative of the present invention (compound 8a or compound 8c in Reaction Scheme C) synthesized in Examples 3 and 4 above, 5 mM PIPES containing 5 U / ml alkaline phosphatase -NaOH buffer (pH 7.2).
  • Calcium ion solution Calcium chloride (manufactured by Wako Pure Chemical Industries, Ltd., special grade) was diluted with purified water to prepare a 100 mg / dL aqueous solution as calcium ions to obtain a calcium ion solution.
  • FIG. 1 shows the relationship between the obtained substrate concentration (mM) and the rate of increase in absorbance ( ⁇ E / min).
  • (a) shows the conventional paranitrophenylphosphorylcholine as a substrate for phospholipase D
  • (b) to (c) show the phenylphosphorylcholine derivative of the present invention as a substrate for phospholipase D, that is, compound 8a or compound 8c, respectively.
  • the results when used are shown.
  • Km was calculated
  • Example 8 Quantification of calcium ions Calcium ions were quantified using the phenylphosphorylcholine derivatives of the present invention synthesized in the above examples.
  • Test solution 1 4 U / ml phospholipase D (T-07 manufactured by Asahi Kasei Corporation, derived from Streptomyces chromofuscus ), 53.3 ⁇ M glycol ether diamine tetraacetic acid, 13.3 ⁇ M diethylenetriaminepentaacetic acid, 33.3 mM magnesium chloride, 0.13% Triton X 61.1 mM PIPES-NaOH buffer (pH 7.3) containing -100.
  • Test solution 2 16 mM paranitrophenylphosphorylcholine, or the phenylphosphorylcholine derivative of the present invention synthesized in Examples 2, 3, 4 and 5 above (compound 5b in reaction scheme B, compound 8a in reaction scheme C, compound 8b, compound 8c) ) 5mMPIPES-NaOH buffer (pH 7.2) containing 5 U / ml alkaline phosphatase.
  • Calcium ion standard solution Multicalibrator A (Wako Pure Chemical Industries, Ltd.) 10 mg / dL.
  • Calcium ion solution Prepare a Ca: 20 mg / dL solution using [Calcium chloride, special grade, manufactured by Wako Pure Chemical Industries, Ltd.], dilute this product with purified water, and prepare an aqueous solution of each concentration (1 mg / dL 2 mg / dL, 4 mg / dL, 10 mg / dL, 20 mg / dL).
  • the reaction is carried out in the same manner as described above, the absorbance is measured over time, and the rate of increase in absorbance from the obtained reaction time course. And a calibration curve showing the relationship between the calcium ion concentration and the rate of increase in absorbance was prepared. Next, the absorbance increase rate obtained by performing measurement for each concentration of calcium solution obtained above was applied to a calibration curve to determine the concentration of each calcium solution.
  • FIGS. 3A to 3E show the relationship between the calcium ion concentration (analyte Ca amount) of each calcium solution and the calcium ion concentration (measured value) of the calcium solution obtained from the calibration curve.
  • (a) is a conventional paranitrophenyl phosphorylcholine as a substrate for phospholipase D
  • (b) to (e) are phenylphosphorylcholine derivatives of the present invention as substrates for phospholipase D, ie, compound 5b, compound 8a
  • the results when using Compound 8b and Compound 8c are shown.
  • FIGS. 3A to 3E show the relationship between the calcium ion concentration (analyte Ca amount) of each calcium solution and the calcium ion concentration (measured value) of the calcium solution obtained from the calibration curve.
  • (a) is a conventional paranitrophenyl phosphorylcholine as a substrate for phospholipase D
  • (b) to (e) are phenylphosphorylcho
  • the calcium concentration was measured using the phenylphosphorylcholine derivative of the present invention under the optimum conditions of the conventional substrate paranitrophenylphosphorylcholine.
  • the optimum measurement and composition conditions of the phenylphosphorylcholine derivative of the present invention are different from those of paranitrophenylphosphorylcholine. This is easily inferred from the fact that the phenylphosphorylcholine derivative of the present invention has a significantly different Km value from that of paranitrophenylphosphorylcholine (Example 7).
  • the measured values slightly deviate from the calibration curve within the high calcium ion concentration range (FIGS. 3 (c) and (e)). This is probably because the measurement was not performed under the conditions. If the measurement is performed under the optimum measurement / composition conditions for each of the compounds 8A and 8c, the measurement result is presumed to be on the calibration curve even at a high concentration of calcium.
  • Example 9 Stability of substrate over time (1) Preparation of test solution Test solution 1 and test solution 2 having the following composition were prepared.
  • Reagent 1 Same as Example 8.
  • Test solution 2 16 mM paranitrophenylphosphorylcholine, or the phenylphosphorylcholine derivative of the present invention (compound 8b or compound 8c) synthesized in Examples 4 and 5 above, 5 mM PIPES-NaOH buffer containing 5 U / ml alkaline phosphatase (PH 7.2).
  • sample solution 1 was mixed with 180 ⁇ L, sample solution 2 was mixed with 60 ⁇ L, and physiological saline, reacted at 37 ° C., and absorbance at 405 nm was measured. It was measured. Thereafter, the test solution 2 was stored under refrigerated (7 ° C.) and harsh (25 ° C.) conditions, and the same measurement was performed using physiological saline as a sample after 2 weeks and 4 weeks.
  • FIGS. 4 (a) to (c) show the results of using conventional paranitrophenylphosphorylcholine
  • (b) and (c) show the results of using the nitrophenylphosphorylcholine derivative of the present invention, ie, compound 8b or compound 8c, respectively.
  • 4 (a) to 4 (c) - ⁇ -indicates the results when stored under refrigeration (7 ° C), and- ⁇ -indicates the results when stored under severe conditions (25 ° C).
  • the phenylphosphorylcholine derivatives according to the present invention (compounds 8b and 8c) hardly change in absolute absorbance even when stored at 7 ° C. or 25 ° C. for 4 weeks. It can be seen that the stability is comparable to that of conventional paranitrophenyl phosphorylcholine (FIG. 4 (a)).
  • the novel phenylphosphorylcholine derivative in which an electron withdrawing group is substituted on the dye skeleton of the present invention can be a good substrate of phospholipase D, and has excellent coloration stability in enzyme activity measurement and calcium ion measurement. It becomes a chromogenic substrate having measurement sensitivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Phenylphosphorylcholine derivatives represented by general formula [1]; a method for calcium ion determination, characterized by mixing a derivative described above with phospholipase D in the presence of phosphomonoesterase to initiate a reaction, measuring the absorbance increase rate, and determining the quantity of calcium ion on the basis of the absorbance increase rate; reagents and kits for calcium ion determination, which contain the derivatives; and reagents for the determination of phospholipase D: [1] wherein R1 to R4 are each independently hydrogen, halogeno, halogenated alkyl, or carboxy, with the proviso that at least one of R1 to R4 is halogeno, halogenated alkyl, or carboxy.

Description

フェニルホスホリルコリン誘導体Phenyl phosphorylcholine derivative
 本発明は、ホスホリパーゼDの基質となる新規物質、及びこれを用いたホスホリパーゼDの測定方法及びカルシウムイオンの定量方法に関する。 The present invention relates to a novel substance serving as a substrate for phospholipase D, a method for measuring phospholipase D using the same, and a method for quantifying calcium ions.
 ホスホリパーゼDは、ホスホリルコリン構造に酵素親和性の高い酵素であり、また、その酵素反応において2価陽イオンを要求することが一般に知られている。この性質を利用して、近年では市販のパラニトロフェニルホスホリルコリンを発色性の基質として用いた、ホスホリパーゼDの酵素活性測定方法や、ホスホリパーゼDを用いた2価陽イオンの測定方法が検討されている。 Phospholipase D is an enzyme having a high enzyme affinity for the phosphorylcholine structure, and is generally known to require a divalent cation in the enzyme reaction. In recent years, using this property, a method for measuring the enzyme activity of phospholipase D using a commercially available paranitrophenyl phosphorylcholine as a chromogenic substrate and a method for measuring a divalent cation using phospholipase D have been studied. .
 パラニトロフェニルホスホリルコリン等のホスホリルコリン化合物を基質として用い、ホスホリパーゼDを用いた2価陽イオンの測定方法としては、カルシウム測定方法に応用した例(例えば特許文献1、特許文献2、特許文献3、特許文献4、特許文献5等)が知られている。しかしながら、特にパラニトロフェニルホスホリルコリンを基質として用いる測定系では、酵素反応により遊離する色素のpKaがその測定系の中で至適な状態にないため、色素が完全発色の状態に無い、発色安定性が悪い、十分な感度が得られない等の問題点を抱えていた。 Examples of a method for measuring a divalent cation using a phosphorylcholine compound such as paranitrophenylphosphorylcholine as a substrate and phospholipase D are applied to a calcium measuring method (for example, Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, Patent Document 5, etc.) are known. However, especially in the measurement system using paranitrophenylphosphorylcholine as a substrate, the dye pKa released by the enzymatic reaction is not in the optimum state in the measurement system, so the dye is not in a fully colored state, and the color stability However, there were problems such as poor sensitivity and insufficient sensitivity.
特開昭62-195297号公報Japanese Patent Laid-Open No. 62-195297 特開平4-187098号公報Japanese Patent Laid-Open No. 4-187098 特開平4-23999号公報JP-A-4-23999 特開平7-170999号公報Japanese Unexamined Patent Publication No. 7-170999 特開2002-238598号公報JP 2002-238598 A
 本発明の課題は、良好なホスホリパーゼDの基質を提供すると共に、酵素活性や2価陽イオンの測定において、基質安定性を保持しながらも、遊離する色素がホスホリパーゼDの至適pH付近で高発色し、発色安定性に優れ、十分な測定感度を有する発色基質を提供することにある。 An object of the present invention is to provide a good phospholipase D substrate, and to maintain a substrate stability in the measurement of enzyme activity and divalent cation, while the released dye is high near the optimum pH of phospholipase D. An object of the present invention is to provide a chromogenic substrate that develops color, has excellent chromogenic stability, and has sufficient measurement sensitivity.
 本発明は上記課題を解決する目的で成されたもので、以下の構成よりなる。 The present invention has been made for the purpose of solving the above-mentioned problems, and has the following configuration.
(1)下記式[1] 
Figure JPOXMLDOC01-appb-I000006
[式中、R~Rはそれぞれ独立して水素原子、ハロゲン原子、ハロゲン化アルキル基、若しくはカルボキシル基を表す。但し、R~Rの少なくとも一つはハロゲン原子、ハロゲン化アルキル基、若しくはカルボキシル基を表す。]
で示されるフェニルホスホリルコリン誘導体。
(1) The following formula [1]
Figure JPOXMLDOC01-appb-I000006
[Wherein R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, a halogenated alkyl group, or a carboxyl group. However, at least one of R 1 to R 4 represents a halogen atom, a halogenated alkyl group, or a carboxyl group. ]
A phenylphosphorylcholine derivative represented by:
(2)下記式[1] 
Figure JPOXMLDOC01-appb-I000007
[式中、R~Rはそれぞれ独立して水素原子、ハロゲン原子、ハロゲン化アルキル基、若しくはカルボキシル基を表す。但し、R~Rの少なくとも一つはハロゲン原子、ハロゲン化アルキル基、若しくはカルボキシル基を表す。]
で示されるフェニルホスホリルコリン誘導体を含む、ホスホリパーゼD測定用試薬。
(2) The following formula [1]
Figure JPOXMLDOC01-appb-I000007
[Wherein R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, a halogenated alkyl group, or a carboxyl group. However, at least one of R 1 to R 4 represents a halogen atom, a halogenated alkyl group, or a carboxyl group. ]
A reagent for measuring phospholipase D, comprising a phenylphosphorylcholine derivative represented by the formula:
(3)被検試料と、下記式[1] 
Figure JPOXMLDOC01-appb-I000008
[式中、R~Rはそれぞれ独立して水素原子、ハロゲン原子、ハロゲン化アルキル基、若しくはカルボキシル基を表す。但し、R~Rの少なくとも一つはハロゲン原子、ハロゲン化アルキル基、若しくはカルボキシル基を表す。]
で示されるフェニルホスホリルコリン誘導体と、ホスホリパーゼDとを、リン酸モノエステラーゼの存在下に混合して反応を開始させた後、吸光度増加速度を測定し、当該吸光度増加速度に基づいて行うことを特徴とする、カルシウムイオンの定量方法。
(3) Test sample and the following formula [1]
Figure JPOXMLDOC01-appb-I000008
[Wherein R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, a halogenated alkyl group, or a carboxyl group. However, at least one of R 1 to R 4 represents a halogen atom, a halogenated alkyl group, or a carboxyl group. ]
And a phospholipase D is mixed with phospholipase D in the presence of phosphate monoesterase to start the reaction, and then the absorbance increase rate is measured, and this is performed based on the absorbance increase rate. A method for quantifying calcium ions.
(4)下記式[1] 
Figure JPOXMLDOC01-appb-I000009
[式中、R~Rはそれぞれ独立して水素原子、ハロゲン原子、ハロゲン化アルキル基、若しくはカルボキシル基を表す。但し、R~Rの少なくとも一つはハロゲン原子、ハロゲン化アルキル基、若しくはカルボキシル基を表す。]
で示されるフェニルホスホリルコリン誘導体を含む、カルシウムイオン定量用試薬。
(4) The following formula [1]
Figure JPOXMLDOC01-appb-I000009
[Wherein R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, a halogenated alkyl group, or a carboxyl group. However, at least one of R 1 to R 4 represents a halogen atom, a halogenated alkyl group, or a carboxyl group. ]
A reagent for quantifying calcium ions, comprising a phenylphosphorylcholine derivative represented by the formula:
(5)下記式[1] 
Figure JPOXMLDOC01-appb-I000010
[式中、R~Rはそれぞれ独立して水素原子、ハロゲン原子、ハロゲン化アルキル基、若しくはカルボキシル基を表す。但し、R~Rの少なくとも一つはハロゲン原子、ハロゲン化アルキル基、若しくはカルボキシル基を表す。]
で示されるフェニルホスホリルコリン誘導体、ホスホリパーゼD及びリン酸モノエステラーゼを構成成分として含む、カルシウムイオン定量用キット。
(5) The following formula [1]
Figure JPOXMLDOC01-appb-I000010
[Wherein R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, a halogenated alkyl group, or a carboxyl group. However, at least one of R 1 to R 4 represents a halogen atom, a halogenated alkyl group, or a carboxyl group. ]
A kit for quantifying calcium ions, comprising a phenylphosphorylcholine derivative represented by the formula: phospholipase D and phosphate monoesterase as constituent components.
 本発明者等は、上記した如き課題を解決すべく鋭意検討の結果、パラニトロフェニルホスホリルコリンに電子吸引基が少なくとも一つ導入された本発明のフェニルホスホリルコリン誘導体を合成し、該誘導体は、遊離する色素のpKaがパラニトロフェニルホスホリルコリンから遊離する色素よりも低下していることを見出した。そして更に鋭意研究の結果、本発明のフェニルホスホリスコリンから遊離する色素は、ホスホリパーゼDの至適pHである中性付近で、また自動分析機の固定測定波長405nm付近で高発色することを見出し、該誘導体をホスホリパーゼDの基質として用い、カルシウムイオン濃度の測定を行えば、十分な測定感度で測定が行えることを見出し、本発明を完成するに到った。 As a result of intensive studies to solve the above-described problems, the present inventors synthesized a phenylphosphorylcholine derivative of the present invention in which at least one electron-withdrawing group was introduced into paranitrophenylphosphorylcholine, and the derivative was released. It was found that the pKa of the dye is lower than that of the dye liberated from paranitrophenyl phosphorylcholine. As a result of further intensive research, it was found that the dye released from phenylphosphorischoline of the present invention produces a high color near neutral, which is the optimum pH of phospholipase D, and at a fixed measurement wavelength of 405 nm of an automatic analyzer. Thus, it was found that if the derivative was used as a substrate for phospholipase D and the calcium ion concentration was measured, the measurement could be performed with sufficient measurement sensitivity, and the present invention was completed.
 本発明の、色素骨格に電子吸引基が置換された新規なフェニルホスホリルコリン誘導体は、ホスホリパーゼDの良好な基質となり得ると共に、酵素活性測定や、カルシウムイオンの測定における、発色安定性に優れ、十分な測定感度を有する発色基質となる。 The novel phenylphosphorylcholine derivative in which an electron withdrawing group is substituted on the dye skeleton of the present invention can be a good substrate of phospholipase D, and has excellent coloration stability in enzyme activity measurement and calcium ion measurement. It becomes a chromogenic substrate having measurement sensitivity.
実施例7で得られた、各基質の基質濃度(mM)と吸光度増加速度(ΔE/mim)との関係を示すグラフである。 図1において、(a)はホスホリパーゼDの基質として従来のパラニトロフェニルホスホリルコリンを、(b)及び(c)はホスホリパーゼDの基質として、本発明のフェニルホスホリルコリン誘導体を、すなわち化合物8a又は化合物8cをそれぞれ用いた場合の結果を示す。6 is a graph showing the relationship between the substrate concentration (mM) of each substrate and the absorbance increase rate (ΔE / mim) obtained in Example 7. In FIG. 1, (a) shows the conventional paranitrophenylphosphorylcholine as a substrate for phospholipase D, (b) and (c) show the phenylphosphorylcholine derivative of the present invention as a substrate for phospholipase D, ie, compound 8a or compound 8c. The result when each is used is shown. 実施例8で得られた、各基質を用いてカルシウムイオン濃度を測定した場合の反応タイムコースを示し、各測光ポイント(sec.)における吸光度(OD×10000)をプロットしたグラフである。図2において、(a)はホスホリパーゼDの基質として従来のパラニトロフェニルホスホリルコリンを、(b)~(e)はホスホリパーゼDの基質として、本発明のフェニルホスホリルコリン誘導体を、すなわち化合物5b、化合物8a、化合物8b、化合物8cをそれぞれ用いた場合の結果を示す。It is the graph which showed the reaction time course at the time of measuring calcium ion concentration using each substrate obtained in Example 8, and plotted the light absorbency (ODx10000) in each photometry point (sec.). In FIG. 2, (a) is a conventional paranitrophenyl phosphorylcholine as a phospholipase D substrate, (b) to (e) are phospholipase D substrates, and the phenylphosphorylcholine derivative of the present invention, ie, compound 5b, compound 8a, The results when using Compound 8b and Compound 8c are shown. 実施例8で得られた、カルシウム溶液のカルシウム濃度(検体Ca量)と、検量線から求めた該カルシウム溶液のカルシウム濃度(測定値)との関係を示す検量線である。図3において、(a)はホスホリパーゼDの基質として従来のパラニトロフェニルホスホリルコリンを、(b)~(e)はホスホリパーゼDの基質として、本発明のフェニルホスホリルコリン誘導体を、すなわち化合物5b、化合物8a、化合物8b、化合物8cをそれぞれ用いた場合の結果を示す。FIG. 9 is a calibration curve showing the relationship between the calcium concentration (analyte Ca amount) of the calcium solution obtained in Example 8 and the calcium concentration (measured value) of the calcium solution obtained from the calibration curve. In FIG. 3, (a) is a conventional paranitrophenyl phosphorylcholine as a substrate for phospholipase D, (b) to (e) are phenylphosphorylcholine derivatives of the present invention as substrates for phospholipase D, ie, compound 5b, compound 8a, The results when using Compound 8b and Compound 8c are shown. 実施例9において得られた各基質の、溶液状態での経時安定性を試験した結果を示し、各保存期間保存後の各基質溶液を用いて得られた、405nmにおける絶対吸光度をプロットしたグラフである。The graph which showed the result of having tested the temporal stability in the solution state of each substrate obtained in Example 9 and plotted the absolute absorbance at 405 nm obtained using each substrate solution after storage for each storage period. is there.
 本発明のフェニルホスホリルコリン誘導体は、パラニトロフェニルホスホリルコリンに電子吸引基が少なくとも一つは導入されたものであり、具体的には下記式[1]
Figure JPOXMLDOC01-appb-I000011

[式中、R~Rはそれぞれ独立して水素原子、ハロゲン原子、ハロゲン化アルキル基、若しくはカルボキシル基を表す。但し、R~Rの少なくとも一つはハロゲン原子、ハロゲン化アルキル基、若しくはカルボキシル基を表す。]
で示される構造を有する。
The phenylphosphorylcholine derivative of the present invention is one in which at least one electron withdrawing group is introduced into paranitrophenylphosphorylcholine, and specifically, the following formula [1]
Figure JPOXMLDOC01-appb-I000011

[Wherein R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, a halogenated alkyl group, or a carboxyl group. However, at least one of R 1 to R 4 represents a halogen atom, a halogenated alkyl group, or a carboxyl group. ]
It has the structure shown by.
 式[1]に於いて、R~Rは各々独立して水素原子又は電子吸引基であり、R~Rの少なくとも一つは電子吸引基である。電子吸引基としては、ハロゲン原子、ハロゲン化アルキル基若しくはカルボキシル基が挙げられ、好ましくはハロゲン原子、ハロゲン化アルキル基である。 In the formula [1], R 1 to R 4 are each independently a hydrogen atom or an electron withdrawing group, and at least one of R 1 to R 4 is an electron withdrawing group. Examples of the electron withdrawing group include a halogen atom, a halogenated alkyl group, and a carboxyl group, and a halogen atom and a halogenated alkyl group are preferable.
 ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられ、好ましくはフッ素、塩素、臭素、より好ましくはフッ素、塩素である。 Examples of the halogen atom include fluorine, chlorine, bromine and iodine, preferably fluorine, chlorine and bromine, more preferably fluorine and chlorine.
 ハロゲン化アルキル基のアルキル基としては、直鎖状でも分枝状でも或いは環状でも何れにても良く、主鎖長が6炭素までの低級アルキル基が挙げられ、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル 基、n-ブチル基、イソブチル基、sec-ブチル基、ペンチル基、イソペンチル基、tert-ペンチル基、1-メチルペンチル基、n-ヘキシル基、イソヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基、等が挙げられる。好ましくは4炭素以下、より好ましくは2炭素以下の主鎖長のものが挙げられる。 The alkyl group of the halogenated alkyl group may be linear, branched or cyclic, and includes a lower alkyl group having a main chain length of up to 6 carbons, specifically, methyl group, ethyl group Group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, pentyl group, isopentyl group, tert-pentyl group, 1-methylpentyl group, n-hexyl group, isohexyl group, cyclopropyl Group, cyclopentyl group, cyclohexyl group, and the like. The main chain length is preferably 4 carbons or less, more preferably 2 carbons or less.
 ハロゲン化アルキル基のハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられ、好ましくはフッ素、塩素、臭素、より好ましくはフッ素、塩素である。 Examples of the halogen atom of the halogenated alkyl group include fluorine, chlorine, bromine and iodine, preferably fluorine, chlorine and bromine, more preferably fluorine and chlorine.
 式[1]で表されるフェニルホスホリルコリン誘導体の具体例としては、例えば
O-(2-Chloro-4-Nitrophenylphosphoryl)choline、 
O-(2-Fluoro-4-Nitrophenylphosphoryl)choline、 
O-(3-Chloro-4-Nitrophenylphosphoryl)choline、 
O-(3-Fluoro-4-Nitrophenylphosphoryl)choline、 
O-(4-Nitro-3-Trifluoromethylphenylphosphoryl)choline、 
O-(2-Carboxy-4-Nitrophenylphosphoryl)choline、
O-(3-Carboxy-4-Nitrophenylphosphoryl)choline、
等が挙げられる。
Specific examples of the phenylphosphorylcholine derivative represented by the formula [1] include, for example,
O- (2-Chloro-4-Nitrophenylphosphoryl) choline,
O- (2-Fluoro-4-Nitrophenylphosphoryl) choline,
O- (3-Chloro-4-Nitrophenylphosphoryl) choline,
O- (3-Fluoro-4-Nitrophenylphosphoryl) choline,
O- (4-Nitro-3-Trifluoromethylphenylphosphoryl) choline,
O- (2-Carboxy-4-Nitrophenylphosphoryl) choline,
O- (3-Carboxy-4-Nitrophenylphosphoryl) choline,
Etc.
 本発明のフェニルホスホリルコリン誘導体の合成方法は、特に限定されず、例えばホスホリルコリンをパラニトロフェノールで脱水縮合によりエステル化して合成する方法(S. Kurioka, Journal of Biochemistry, 63(5), 678(1998)、パラニトロフェノール誘導体と各種リン酸化試薬を用いてフェニルホスホジクロリデートを合成し、それとコリン化合物と縮合する方法(B. Chesebro and H. Metzger, Biochemistry 11,1766(1972)、 S. Kurioka and M. Matsuda, Analytical Biochemistry 75, 281-289(1976)、E. Barbar et.al., Biochemistry 35(9), 2959(1996))等の方法に準じて合成することができる。 The method for synthesizing the phenylphosphorylcholine derivative of the present invention is not particularly limited. For example, phosphorylcholine is synthesized by esterification with paranitrophenol by dehydration condensation (S.uriKurioka, Journal of Biochemistry, 63 (5), (678 (1998) , A method of synthesizing phenylphosphodichloridate using paranitrophenol derivatives and various phosphorylating reagents and condensing it with a choline compound (B. Chesebro and H. Metzger, Biochemistry 11,1766 (1972), S. Kurioka and M. Matsuda, Analytical Biochemistry 75, 281-289 (1976), E. Barbar et.al., Biochemistry 35 (9), 2959 (1996)) and the like.
 以下に、一般式[2]

Figure JPOXMLDOC01-appb-I000012
(式中、R~Rは前記と同じ。)
で示されるパラニトロフェノール誘導体(以下、「本発明に係るパラニトロフェノール誘導体」と略記する場合がある。)とリン酸化試薬を用いてフェニルホスホジクロリデートを合成し、コリン化合物と縮合する方法に準じて本発明のフェニルホスホリルコリン誘導体を合成する例を記載する。
The following is the general formula [2]

Figure JPOXMLDOC01-appb-I000012
(Wherein R 1 to R 4 are the same as above)
And a phosphorylating reagent to synthesize phenylphosphodichloridate using a paranitrophenol derivative (hereinafter sometimes abbreviated as “paranitrophenol derivative according to the present invention”) and condensing with a choline compound. An example of synthesizing the phenylphosphorylcholine derivative of the present invention according to is described.
 本発明のフェニルホスホリルコリン誘導体の合成は、(1)コリン化合物の合成、(2)本発明に係るパラニトロフェノール誘導体をホスホジクロリデート化したもの(以下、「本発明に係るフェニルホスホジクロリデート」と略記する場合がある。)の合成、及び(3)本発明に係るフェニルホスホジクロリデートとコリン化合物との縮合から成される。 The synthesis of the phenylphosphorylcholine derivative of the present invention includes (1) synthesis of a choline compound, and (2) phosphodichloridated paranitrophenol derivative according to the present invention (hereinafter referred to as “phenylphosphodichloridate according to the present invention”). And (3) condensation of the phenylphosphodichloridate according to the present invention with a choline compound.
(1)コリン化合物の合成
 ジメチルアミノエタノールに対して、ヨードメタン1.0~2.0倍モルを、溶媒(例えばジエチルエーテル、テトラヒドロフラン、ジオキサン、アニソール、エチレングリコールモノエチルエーテル等のエーテル類、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、エチレングリコール、1,4-ブタンジオール等のアルコール類)中で、-20~100℃(好ましくは0~50℃)で0.1~24時間(好ましくは1~12時間)反応させることにより、コリン化合物が得られる。
(1) Synthesis of choline compound 1.0-2.0 moles of iodomethane with respect to dimethylaminoethanol are mixed with a solvent (for example, ethers such as diethyl ether, tetrahydrofuran, dioxane, anisole, ethylene glycol monoethyl ether, methanol, ethanol, propanol, Reaction in alcohols such as isopropanol, butanol, ethylene glycol, 1,4-butanediol) at -20 to 100 ° C (preferably 0 to 50 ° C) for 0.1 to 24 hours (preferably 1 to 12 hours). Thus, a choline compound is obtained.
(2)本発明に係るフェニルホスホジクロリデートの合成
 本発明に係るパラニトロフェノール誘導体に対して、オキシ塩化リン1.0~1.5倍モルを、溶媒(例えばジエチルエーテル、テトラヒドロフラン、ジオキサン、アニソール、エチレングリコールモノエチルエーテル等のエーテル類)中で、-80~0℃、好ましくは-78~-50℃で0.1~24時間、好ましくは1~16時間反応させることにより、本発明に係るフェニルホスホジクロリデートが得られる。
(2) Synthesis of phenylphosphodichloridate according to the present invention 1.0-1.5 times mol of phosphorus oxychloride is added to a solvent (for example, diethyl ether, tetrahydrofuran, dioxane, anisole, ethylene glycol) with respect to the paranitrophenol derivative according to the present invention. In an ether such as monoethyl ether) at −80 to 0 ° C., preferably −78 to −50 ° C. for 0.1 to 24 hours, preferably 1 to 16 hours. Get a date.
 本発明に係るパラニトロフェノール誘導体は常法により合成してもよいが、市販品があれば、それをそのまま用いればよい。 The paranitrophenol derivative according to the present invention may be synthesized by a conventional method, but if a commercially available product is available, it may be used as it is.
(3)本発明に係るフェニルホスホジクロリデートとコリン化合物との縮合
 上記(2)で得られた本発明に係るフェニルホスホジクロリデートに対して、上記(1)で得られたコリン化合物0.5~5.0モル(好ましくは1.0~2.0モル)を、塩基触媒(例えばピリジン、キノリン、トリエチルアミン、N,N-ジメチルアニリン、ピペリジン、4-ジメチルアミノピリジン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、トリ-n-ブチルアミン等の有機アミン類)の存在下、必要ならば溶媒(例えばアセトニトリル、プロピオニトリル、n-ブチロニトリル等のニトリル類、例えばテトラヒドロフラン、ジオキサン、アニソール、エチレングリコールモノエチルエーテル等のエーテル類、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)、アセトアミド、N-メチルピロリドン等のアミド類)中で-20~100℃(好ましくは0~50℃)で0.1~24時間(好ましくは0.5~12時間、より好ましくは1~8時間)で反応させることにより、目的とする本発明のフェニルホスホリルコリン誘導体が得られる。
(3) Condensation of phenylphosphodichloridate according to the present invention with a choline compound The choline compound 0.5 obtained according to (1) above with respect to the phenylphosphodichloridate according to the present invention obtained in (2) above -5.0 moles (preferably 1.0-2.0 moles) of base catalyst (eg pyridine, quinoline, triethylamine, N, N-dimethylaniline, piperidine, 4-dimethylaminopyridine, 1,5-diazabicyclo [4.3.0] non- In the presence of 5-ene, 1,8-diazabicyclo [5.4.0] undec-7-ene, organic amines such as tri-n-butylamine), if necessary, a solvent (eg acetonitrile, propionitrile, n-butyronitrile) Nitriles such as tetrahydrofuran, dioxane, anisole, ethers such as ethylene glycol monoethyl ether, N, N-dimethylformamide (DMF), N, N-dimethylacetate Amides such as amides (DMA), acetamide, N-methylpyrrolidone, etc.) at -20-100 ° C. (preferably 0-50 ° C.) for 0.1-24 hours (preferably 0.5-12 hours, more preferably 1-8) The target phenylphosphorylcholine derivative of the present invention can be obtained.
 本発明のホスホリパーゼD測定用試薬としては、本発明のフェニルホスホリルコリン誘導体を含むものが挙げられる。 Examples of the reagent for measuring phospholipase D of the present invention include those containing the phenylphosphorylcholine derivative of the present invention.
 本発明のホスホリパーゼD測定用試薬を用いてホスホリパーゼDを測定するには、被検試料と本発明のフェニルホスホリルコリン誘導体とを、リン酸モノエステラーゼや二価金属イオンの存在下に混合し反応を開始させた後、吸光度増加速度を測定し、その結果を、例えば予め作成された、濃度既知のホスホリパーゼDを含有する試料を用いて得られるホスホリパーゼD活性と吸光度増加速度との関係を示す検量線に当てはめることにより、実施すればよい。 To measure phospholipase D using the reagent for measuring phospholipase D of the present invention, a test sample and the phenylphosphorylcholine derivative of the present invention are mixed in the presence of phosphate monoesterase or a divalent metal ion to start the reaction. After that, the absorbance increase rate was measured, and the result was expressed in a calibration curve showing the relationship between the phospholipase D activity and the absorbance increase rate obtained using, for example, a sample containing phospholipase D having a known concentration. It can be done by applying.
 上記方法に於いて用いられるリン酸モノエステラーゼとしては、アルカリホスファターゼ、中性ホスファターゼ又は酸性ホスファターゼが挙げられる。 Examples of the phosphate monoesterase used in the above method include alkaline phosphatase, neutral phosphatase, and acid phosphatase.
 本発明に係るカルシウムイオンの定量方法を実施するには、ホスホリパーゼDの基質として本発明のフェニルホスホリルコリン誘導体を用いる以外は、例えば特開2002-238598号公報、特開平7-170999号公報、特開平4-187098号公報、特開平4-23999号公報、特開昭62-195297号公報等に記載された、ホスホリパーゼDを用いる自体公知のカルシウム測定方法に準じて測定を行い、生成した本発明に係るパラニトロフェノール誘導体の発色(吸光度変化)を測定すればよい。 In order to carry out the method for quantifying calcium ions according to the present invention, for example, JP 2002-238598 A, JP 7-170999 A, and Japanese Patent Application Laid-Open No. H7-170999, except that the phenylphosphorylcholine derivative of the present invention is used as a substrate for phospholipase D. Measured in accordance with a known calcium measuring method using phospholipase D described in Japanese Patent Laid-Open No. 4-187098, Japanese Patent Laid-Open No. 4-23999, Japanese Patent Laid-Open No. 62-195297, etc. The color development (change in absorbance) of the paranitrophenol derivative may be measured.
 すなわち、被検試料と本発明のフェニルホスホリルコリン誘導体とホスホリパーゼDとを、リン酸モノエステラーゼの存在下に混合し、吸光度増加速度を測定し、その結果を、例えば予め作成された、濃度既知のカルシウムイオンを含有する試料を用いて得られたカルシウムイオン濃度と吸光度増加速度との関係を示す検量線に当てはめることにより定量する方法が挙げられる。 That is, the test sample, the phenylphosphorylcholine derivative of the present invention, and phospholipase D are mixed in the presence of phosphate monoesterase, and the rate of increase in absorbance is measured. There is a method of quantification by fitting to a calibration curve showing the relationship between the calcium ion concentration obtained using a sample containing ions and the rate of increase in absorbance.
 例えば、(1)被検試料と、ホスホリパーゼDとリン酸モノエステラーゼを含有する試液とを反応させ、次いで本発明のフェニルホスホリルコリン誘導体を反応させた後、吸光度増加速度を測定する方法、(2)被検試料とホスホリパーゼDを含有する試液を反応させ、次いでリン酸モノエステラーゼと本発明のフェニルホスホリルコリン誘導体を含有する試液を反応させた後、吸光度増加速度を測定する方法、等が挙げられる。 For example, (1) a method in which a test sample is reacted with a test solution containing phospholipase D and phosphate monoesterase and then reacted with the phenylphosphorylcholine derivative of the present invention, and then the rate of increase in absorbance is measured; (2) Examples include a method of reacting a test sample with a test solution containing phospholipase D, then reacting a phosphate monoesterase with a test solution containing the phenylphosphorylcholine derivative of the present invention, and then measuring the rate of increase in absorbance.
 本発明に係るカルシウムイオンの定量方法に用いられる本発明のフェニルホスホリルコリン誘導体及びその好ましい具体例は上記した通りである。 The phenylphosphorylcholine derivative of the present invention used in the calcium ion quantification method according to the present invention and preferred specific examples thereof are as described above.
 中でも好ましいものとして、
O-(2-Fluoro-4-Nitrophenylphosphoryl)choline、
O-(3-Chloro-4-Nitrophenylphosphoryl)choline、 
O-(3-Fluoro-4-Nitrophenylphosphoryl)choline、
O-(4-Nitro-3-Trifluoromethylphenylphosphoryl)choline、
が挙げられる。
Among these, as preferred,
O- (2-Fluoro-4-Nitrophenylphosphoryl) choline,
O- (3-Chloro-4-Nitrophenylphosphoryl) choline,
O- (3-Fluoro-4-Nitrophenylphosphoryl) choline,
O- (4-Nitro-3-Trifluoromethylphenylphosphoryl) choline,
Is mentioned.
 特に好ましいものとしては、
O-(2-Fluoro-4-Nitrophenylphosphoryl)choline、
O-(3-Fluoro-4-Nitrophenylphosphoryl)choline、及び
O-(4-Nitro-3-Trifluoromethylphenylphosphoryl)choline、
が挙げられる。
Particularly preferred are:
O- (2-Fluoro-4-Nitrophenylphosphoryl) choline,
O- (3-Fluoro-4-Nitrophenylphosphoryl) choline, and
O- (4-Nitro-3-Trifluoromethylphenylphosphoryl) choline,
Is mentioned.
 本発明の定量方法に於ける本発明のフェニルホスホリルコリン誘導体の使用濃度は、試液中の濃度としては、通常2~200mM、好ましくは4~40mMであり、最終の反応液中の濃度としては、通常0.5~50mM、好ましくは1~10mMである。 The concentration of the phenylphosphorylcholine derivative of the present invention used in the quantification method of the present invention is usually 2 to 200 mM, preferably 4 to 40 mM as the concentration in the test solution, and the concentration in the final reaction solution is usually 0.5 to 50 mM, preferably 1 to 10 mM.
 本発明に係るカルシウムイオンの定量方法に用いられるホスホリパーゼDとしては、酵素反応にカルシウムイオンを要求するものが挙げられる。例えば、キャベツ、ニンジン、ピーナッツ、ブタ膵臓等の動植物由来のもの、ストレプトマイセスsp(特開000-270857号公報)、ノカルディア属(特開昭60-164483号公報)等の微生物由来のもの等が挙げられる。安定供給、酵素の安定性等を考慮すると、ストレプトマイセス・クロモフスカス(Streptomyces chromofuscus)等の微生物由来の酵素が好ましい。 Examples of the phospholipase D used in the calcium ion quantification method according to the present invention include those requiring calcium ions for enzyme reaction. For example, those derived from plants and animals such as cabbage, carrots, peanuts, and porcine pancreas, those derived from microorganisms such as Streptomyces sp (Japanese Patent Laid-Open No. 000-270857) and Nocardia (Japanese Patent Laid-Open No. 60-164483) Etc. In view of stable supply, enzyme stability, and the like, microorganism-derived enzymes such as Streptomyces chromofuscus are preferred.
 ホスホリパーゼDの使用濃度は、通常この分野で用いられる範囲から適宜選択すればよい。試液中の濃度としては、通常0.075~15U/ml、好ましくは3~7.5U/mlであり、最終の反応液中の濃度としては、通常0.05~10U/ml、好ましくは2~5U/mlである。 The concentration of phospholipase D used may be appropriately selected from the range usually used in this field. The concentration in the test solution is usually 0.075 to 15 U / ml, preferably 3 to 7.5 U / ml, and the concentration in the final reaction solution is usually 0.05 to 10 U / ml, preferably 2 ~ 5 U / ml.
 本発明に係るカルシウムイオンの定量方法に用いられるリン酸モノエステラーゼとしては、微生物、動物起源の各種酵素でアルカリホスファターゼ、中性ホスファターゼ又は酸性ホスファターゼが使用できる。酵素の安定性、入手し易さ等を考慮すると、アルカリホスファターゼが好ましく、中でも安定性に優れている大腸菌由来のアルカリホスファターゼが好ましい。 As the phosphate monoesterase used in the calcium ion quantification method according to the present invention, alkaline phosphatase, neutral phosphatase or acid phosphatase can be used as microorganisms and various enzymes of animal origin. In view of the stability and availability of the enzyme, alkaline phosphatase is preferable, and among them, alkaline phosphatase derived from Escherichia coli having excellent stability is preferable.
 リン酸モノエステラーゼの使用濃度は、通常この分野で用いられる範囲から適宜選択すればよい。試液中の濃度としては、通常0.4~80U/ml、好ましくは2~20U/mlであり、最終の反応液中の濃度としては、通常は0.1~20U/ml、好ましくは0.5~5U/mlである。 The concentration of phosphate monoesterase used may be appropriately selected from the range usually used in this field. The concentration in the test solution is usually 0.4 to 80 U / ml, preferably 2 to 20 U / ml, and the concentration in the final reaction solution is usually 0.1 to 20 U / ml, preferably 0.8. 5-5 U / ml.
 尚、ホスホリパーゼDを用いたカルシウムイオンの測定を行う場合、カルシウムイオン以外に作用するキレート剤の共存下で測定を行うと、カルシウムイオンに対する特異性が高まることが知られている(例えば特開平7-170999号公報、特開2002-238598号公報等)。 In addition, when measuring calcium ions using phospholipase D, it is known that the specificity for calcium ions increases when the measurement is performed in the presence of a chelating agent acting in addition to calcium ions (for example, Japanese Patent Laid-Open No. Hei 7). -170999, JP-A-2002-238598, etc.).
 このために用いられるキレート剤としては、カルシウムイオン以外の二価金属イオンの影響を排除し得るものであれば、用いることが出来る。例えば、グリコールエーテルジアミン四酢酸、ジエチレントリアミン五酢酸等や、クエン酸,シュウ酸等のカルボン酸化合物が挙げられる。これらのキレート剤を一種又は二種以上用いるのは、任意であるが、グリコールエーテルジアミン四酢酸とジエチレントリアミン五酢酸を併用するのが好ましい。 As the chelating agent used for this purpose, any agent that can eliminate the influence of divalent metal ions other than calcium ions can be used. For example, glycol ether diamine tetraacetic acid, diethylenetriaminepentaacetic acid and the like, and carboxylic acid compounds such as citric acid and oxalic acid can be mentioned. Although it is optional to use one or more of these chelating agents, it is preferable to use glycol ether diamine tetraacetic acid and diethylenetriaminepentaacetic acid in combination.
 キレート剤の使用濃度は、試液中の濃度としては4μM~1.2mM、好ましくは40~400μMであり、最終の反応液中の濃度としては、1μM~300mM、好ましくは10~100μMである。 The concentration of the chelating agent used is 4 μM to 1.2 mM, preferably 40 to 400 μM as the concentration in the test solution, and 1 μM to 300 mM, preferably 10 to 100 μM, in the final reaction solution.
 また、グリコールエーテルジアミン四酢酸とジエチレントリアミン五酢酸を併用する場合、最終の反応液中の濃度として、グリコールエーテルジアミン四酢酸が5~200μM、好ましくは10~80μM、ジエチレントリアミン五酢酸が1~50μM、好ましくは5~20μMである。 When glycol etherdiaminetetraacetic acid and diethylenetriaminepentaacetic acid are used in combination, the final concentration in the reaction solution is 5 to 200 μM for glycoletherdiaminetetraacetic acid, preferably 10 to 80 μM, and 1 to 50 μM for diethylenetriaminepentaacetic acid, preferably Is 5-20 μM.
 また、本発明の定量方法に用いられるホスホリパーゼDは、キレート剤が存在すると不安定化してしまうので、キレート剤を用いる場合には、安定化剤としてマグネシウムイオンを使用することが望ましい。また、マグネシウムイオンはリン酸モノエステラーゼの活性化剤ともなるので、この点からも、マグネシウムイオンを使用することが望ましい。 Moreover, since phospholipase D used in the quantification method of the present invention is destabilized in the presence of a chelating agent, it is desirable to use magnesium ions as a stabilizer when a chelating agent is used. Moreover, since magnesium ion also becomes an activator of phosphate monoesterase, it is desirable to use magnesium ion also from this point.
 マグネシウムイオンを本発明の測定系に共存させる方法としては、通常これの塩の形で用いる方法が最も簡便であるが、特にこの方法に限定されるものではない。この際に使用する塩の種類は、該溶液中に共存する試薬等の安定性を阻害したりしないものであれば特に限定されないが、例えば硫酸、硝酸等の無機酸との塩、例えば塩素、臭素、ヨウ素等のハロゲン原子との塩(ハロゲン化物)、例えば酢酸、クエン酸、グルコン酸、プロピオン酸、パントテン酸等の有機酸との塩等が挙げられる。 As a method for allowing magnesium ions to coexist in the measurement system of the present invention, the method usually used in the form of a salt thereof is the simplest, but is not particularly limited to this method. The type of the salt used in this case is not particularly limited as long as it does not inhibit the stability of the reagent coexisting in the solution. For example, a salt with an inorganic acid such as sulfuric acid or nitric acid, for example, chlorine, Examples include salts (halides) with halogen atoms such as bromine and iodine, such as salts with organic acids such as acetic acid, citric acid, gluconic acid, propionic acid, and pantothenic acid.
 また、その濃度は、試液中の濃度として1.5~450mM、好ましくは15~150mM、最終の反応液中の濃度として、1~300mM、好ましくは10~100mMである。 The concentration is 1.5 to 450 mM, preferably 15 to 150 mM, as the concentration in the test solution, and 1 to 300 mM, preferably 10 to 100 mM, as the concentration in the final reaction solution.
 本発明に係るカルシウムイオンの定量方法は、使用する酵素の至適pH範囲内で行うことが望ましいため、各試薬類を溶解する溶媒は、緩衝液が好ましい。 Since the calcium ion quantification method according to the present invention is desirably performed within the optimum pH range of the enzyme to be used, the solvent for dissolving each reagent is preferably a buffer solution.
 本発明の定量方法における測定時の好ましいpHは、pH5~9、更に好ましくはpH6~7.5である。pHを上記した如き範囲とするために用いられる緩衝液としては、酵素活性を安定に保ち、試薬類を溶解し、所定のpHが得られるものであれば使用できるが、各種グッド緩衝液、トリス緩衝液、ジメチルグルタル酸緩衝液等が挙げられる。また、その濃度は、試液中の濃度として7.5mM~2M、好ましくは30~400mMであり、最終の反応液中の濃度として5~500mM、好ましくは20~100mMである。 The preferred pH at the time of measurement in the quantification method of the present invention is pH 5 to 9, more preferably pH 6 to 7.5. As the buffer used for adjusting the pH to the above range, any buffer can be used as long as the enzyme activity is kept stable, the reagents are dissolved, and a predetermined pH is obtained. Examples of the buffer include dimethyl glutarate buffer. The concentration in the test solution is 7.5 mM to 2 M, preferably 30 to 400 mM, and the final concentration in the reaction solution is 5 to 500 mM, preferably 20 to 100 mM.
 更に、これらの試薬の他に、界面活性剤、各種防腐剤、安定化剤、賦活剤、共存物質の影響回避剤及び通常臨床検査薬に使用している物質を共存させてもかまわないことは言うまでもない。これら試薬類等の濃度範囲等も、自体公知のホスホリパーゼDを用いるカルシウムイオンの定量方法に於て通常用いられる濃度範囲等を適宜選択して用いることで足りるが、本発明に係るカルシウムイオンの定量方法に於いて用いられる酵素類の至適pH範囲内で、安定性が高く、また酵素反応により生成するパラニトロフェノール誘導体の発色を阻害しないものを選択することが望ましい。 Furthermore, in addition to these reagents, surfactants, various preservatives, stabilizers, activators, coexisting substance avoidance agents, and substances that are commonly used in clinical diagnostics may coexist. Needless to say. The concentration range of these reagents and the like may be selected by appropriately selecting and using a concentration range ordinarily used in a calcium ion quantification method using phospholipase D known per se. However, the calcium ion quantification according to the present invention is sufficient. It is desirable to select an enzyme that is highly stable within the optimum pH range of the enzymes used in the method and that does not inhibit the color development of the paranitrophenol derivative produced by the enzyme reaction.
 吸光度の測定時に使用する分光光度計等は、通常この分野で使用されているものは何れも例外なく使用し得る。 As the spectrophotometer used for measuring the absorbance, any of those usually used in this field can be used without exception.
 また、測定は用手法によって行っても良いことはもちろんであるが、臨床検査室でよく用いられている自動分析機を用いた連続測定にも適応できる。 Of course, the measurement may be performed according to the method used, but it can also be applied to continuous measurement using an automatic analyzer often used in clinical laboratories.
 用手法又は自動分析装置を用いて測定を行う場合の試薬類の組み合わせについては、特に限定はされず、適用する自動分析装置の環境、その他の要因等に合わせて適宜行えば良い。 There are no particular limitations on the combination of reagents used when performing measurement using a method or an automatic analyzer, and it may be performed as appropriate according to the environment of the automatic analyzer to be applied, other factors, and the like.
 吸光度変化は、単波長又は主波長と副波長を使用する2波長測光により求めてもよい。 The change in absorbance may be obtained by single wavelength or two-wavelength photometry using a main wavelength and a sub wavelength.
 吸光度測定のための測定波長は、使用するフェニルホスホリルコリン誘導体の種類によって適宜選択すればよい。単波長で測定する場合は、380~450nmの任意の波長における吸光度の増加速度を測定すればよい。2波長で測定する場合には、主波長405nm付近、副波長660nm付近で測定すればよい。 The measurement wavelength for absorbance measurement may be appropriately selected depending on the type of phenylphosphorylcholine derivative used. When measuring at a single wavelength, the rate of increase in absorbance at an arbitrary wavelength of 380 to 450 nm may be measured. When measuring at two wavelengths, it may be measured near the main wavelength of 405 nm and the sub wavelength of 660 nm.
 本発明の定量方法に適用される被検試料としては、血液、例えば血漿、血清もしくは尿などの生体液等や排水、微生物培養液、動植物培養液、生体材料抽出液等が挙げられる。 The test sample applied to the quantification method of the present invention includes blood, biological fluids such as plasma, serum or urine, etc., drainage, microbial culture fluids, animal and plant culture fluids, biological material extracts and the like.
 本発明の基質を用いた場合のカルシウム測定例を下記に示す。
反応式:
・ホスホリパーゼD、カルシウムイオン+本発明のフェニルホスホリルコリン誘導体+水
  → 本発明に係るパラニトロフェニルリン酸誘導体+コリン
・リン酸モノエステラーゼ、本発明に係るパラニトロフェニルリン酸誘導体+水 
  → 本発明に係るパラニトロフェノール誘導体(黄色)+リン酸
An example of calcium measurement using the substrate of the present invention is shown below.
Reaction formula:
Phospholipase D, calcium ion + phenylphosphorylcholine derivative of the present invention + water → paranitrophenyl phosphate derivative + choline / phosphate monoesterase according to the present invention, paranitrophenyl phosphate derivative + water according to the present invention
→ Paranitrophenol derivative (yellow) according to the present invention + phosphoric acid
 本発明に係るカルシウムイオンの定量方法の一例を示すと、例えば、被検試料と、ホスホリパーゼDとリン酸モノエステラーゼとを含有する試薬溶液と、本発明のフェニルホスホリルコリン誘導体を含む試薬溶液を、要すればキレート剤及びマグネシウムイオンの存在下に順次混合し、通常10~50℃、好ましくは20~40℃で、通常2~10分間、好ましくは5分間程度反応させる。生成される本発明に係るパラニトロフェノール誘導体由来の発色を経時的に測定し、吸光度増加速度を得る。得られた値を、例えば予め濃度既知のカルシウムイオン標準液を試料として用いて同様に測定を行い、作成されたカルシウムイオン濃度と吸光度増加速度との関係を示す検量線に当てはめることにより、被検試料中のカルシウムイオン濃度が求められる。 An example of the calcium ion quantification method according to the present invention includes, for example, a test sample, a reagent solution containing phospholipase D and phosphate monoesterase, and a reagent solution containing the phenylphosphorylcholine derivative of the present invention. In this case, the mixture is sequentially mixed in the presence of a chelating agent and magnesium ions, and is usually reacted at 10 to 50 ° C., preferably 20 to 40 ° C., usually for 2 to 10 minutes, preferably about 5 minutes. The color development derived from the paranitrophenol derivative according to the present invention produced is measured over time to obtain the rate of increase in absorbance. The obtained value is measured in the same manner using, for example, a calcium ion standard solution with a known concentration as a sample, and applied to a calibration curve showing the relationship between the prepared calcium ion concentration and the rate of increase in absorbance. The calcium ion concentration in the sample is determined.
 また、当該定量方法の他の一例を示すと、例えば、被検試料と、ホスホリパーゼDを含有する試薬溶液と、本発明のフェニルホスホリルコリン誘導体とリン酸モノエステラーゼとを含む試薬溶液を、要すればキレート剤及びマグネシウムイオンの存在下に順次混合し、通常10~50℃、好ましくは20~40℃で、通常2~10分間、好ましくは5分間程度反応させる。生成される本発明に係るパラニトロフェノール誘導体由来の発色を経時的に測定し、吸光度増加速度を得る。得られた値を、例えば予め濃度既知のカルシウムイオン標準液を試料として用いて同様に測定を行い、作成されたカルシウムイオン濃度と吸光度増加速度との関係を示す検量線に当てはめることにより、被検試料中のカルシウムイオン濃度が求められる。 As another example of the quantification method, for example, a test sample, a reagent solution containing phospholipase D, and a reagent solution containing the phenylphosphorylcholine derivative of the present invention and phosphate monoesterase are required. The mixture is sequentially mixed in the presence of a chelating agent and magnesium ions, and is usually reacted at 10 to 50 ° C., preferably 20 to 40 ° C., usually 2 to 10 minutes, preferably about 5 minutes. The color development derived from the paranitrophenol derivative according to the present invention produced is measured over time to obtain the rate of increase in absorbance. The obtained value is measured in the same manner using, for example, a calcium ion standard solution with a known concentration as a sample, and applied to a calibration curve showing the relationship between the prepared calcium ion concentration and the rate of increase in absorbance. The calcium ion concentration in the sample is determined.
 本発明のカルシウムイオン測定用試薬は、本発明のフェニルホスホリルコリン誘導体を含んで成るものであり、その好ましい態様、具体例及び使用濃度等は先に述べた通りである。 The calcium ion measurement reagent of the present invention comprises the phenylphosphorylcholine derivative of the present invention, and preferred embodiments, specific examples, use concentrations, etc. are as described above.
 本発明のカルシウムイオン測定用キットは、本発明のフェニルホスホリルコリン誘導体、ホスホリパーゼD、及びリン酸モノエステラーゼ、要すれば更にキレート剤及びマグネシウムイオンを構成成分として含んでなるものであればよい。夫々の構成要素の好ましい態様、具体例及び使用濃度等については先に述べた通りである。 The calcium ion measurement kit of the present invention only needs to comprise the phenylphosphorylcholine derivative of the present invention, phospholipase D, and phosphate monoesterase, and if necessary, a chelating agent and magnesium ions as constituent components. Preferred embodiments, specific examples, use concentrations and the like of each component are as described above.
 本発明のキットの具体的な実施態様としては、例えば以下の如き二液から成る構成が挙げられる。 Specific embodiments of the kit of the present invention include, for example, the following two-component configuration.
 (1)ホスホリパーゼDとリン酸モノエステラーゼを含有する第一試液と、本発明のフェニルホスホリルコリン誘導体を含有する第二試液からなるもの、
 (2)ホスホリパーゼDを含有する第一試液と、本発明のフェニルホスホリルコリン誘導体とリン酸モノエステラーゼを含有する第二試液からなるもの。
(1) a first test solution containing phospholipase D and phosphate monoesterase, and a second test solution containing the phenylphosphorylcholine derivative of the present invention,
(2) What consists of the 1st test solution containing phospholipase D and the 2nd test solution containing the phenylphosphorylcholine derivative of this invention, and a phosphate monoesterase.
 また、要すれば前記したキレート剤及び/又はマグネシウムイオンが、前記第一試液と第二試液の少なくとも一方に含まれていてもよい。 Further, if necessary, the aforementioned chelating agent and / or magnesium ion may be contained in at least one of the first reagent solution and the second reagent solution.
 また、当該キットの各試薬中には、この分野で通常用いられる、例えば緩衝剤、防腐剤、界面活性剤、安定化剤等を通常この分野で使用される範囲含有していてもよい。更に、当該キットには、必要に応じて、カルシウムイオン標準品が組み合わされていてもよい。 In addition, each reagent of the kit may contain, for example, buffers, preservatives, surfactants, stabilizers, and the like that are usually used in this field, in a range normally used in this field. Furthermore, a calcium ion standard product may be combined with the kit as necessary.
 また、当該キットが複数の試液で構成される場合、各試液中には、測定対象成分を測定する為に必要な試薬類も含有させるが、これら試薬類は、各試液を混合した時点で目的の成分測定の反応が開始されるように各試液の何れかに適宜分散させて含有させればよい。これら試液を構成する試薬類の使用濃度は、通常この分野で用いられる範囲から適宜選択すればよい。 In addition, when the kit is composed of a plurality of reagent solutions, each reagent solution also contains reagents necessary for measuring the component to be measured. These reagents are used when the reagents are mixed. In order to start the component measurement reaction, it may be appropriately dispersed in any of the test solutions. The use concentration of the reagents constituting these reagent solutions may be appropriately selected from the range usually used in this field.
 以下に、実施例及び参考例を挙げて本発明を更に詳細に説明するが、本発明はこれらにより何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Reference Examples, but the present invention is not limited thereto.
実験例1.遊離色素の選択
 下記方法により、各種パラニトロフェノール誘導体のpKa及び発色率を測定し、本発明に係るカルシウムイオンの定量方法に使用可能と思われる、パラニトロフェノール誘導体(遊離色素)を選択した。尚、下記説明文中の3a、3b等の記載は、下記表1に記載の化合物名に対応する。
 まず、パラニトロフェノールは、和光純薬工業(株)製を用いた。化合物3aは、2-Chloro phenol(和光純薬工業(株)製)をSynthetic Communication, 1996, 26(20), 3783-3790 に記載の方法に従いニトロ化して合成した。
 パラニトロフェノールと、表1に記載のパラニトロフェノール誘導体5種、すなわち上記で合成した化合物3aと、化合物3b(和光純薬工業(株)製)、化合物6a(和光純薬工業(株)製)、化合物6b(和光純薬工業(株)製)、化合物6c(東京化成工業(株)製)それぞれの水溶液(濃度:1.55mM)を調製した。次いで、水溶液各100μlを、それぞれ下記pH緩衝液3mLに溶解した(各パラニトロフェノール誘導体の終濃度:50μM)。
 緩衝液:50mMグリシン-HCl緩衝液(pH2~5, 30℃)
      50mM MES緩衝液(pH5~8, 30℃)
          50mM CHES緩衝液(pH8~11, 30℃)
 得られた溶解液について、分光光度計(日立U-3000型)で吸収曲線を取り、405nm及びλmaxのOD値とpHをプロットしpKaを求めた。また、405nm及びλmaxでの発色率(pH7緩衝液中におけるパラニトロフェノール誘導体の吸光度/1N NaOH溶液中におけるパラニトロフェノール誘導体の吸光度)も併せて求めた。
 結果を表1に示す。
Experimental Example 1 Selection of Free Dye The pKa and color development rate of various paranitrophenol derivatives were measured by the following method, and a paranitrophenol derivative (free dye) that could be used for the calcium ion quantification method according to the present invention was selected. In addition, description of 3a, 3b etc. in the following description respond | corresponds to the compound name of following Table 1.
First, paranitrophenol was manufactured by Wako Pure Chemical Industries, Ltd. Compound 3a was synthesized by nitration of 2-Chloro phenol (manufactured by Wako Pure Chemical Industries, Ltd.) according to the method described in Synthetic Communication, 1996, 26 (20), 3783-3790.
Paranitrophenol, 5 types of paranitrophenol derivatives listed in Table 1, ie, compound 3a synthesized above, compound 3b (manufactured by Wako Pure Chemical Industries, Ltd.), compound 6a (manufactured by Wako Pure Chemical Industries, Ltd.) ), Compound 6b (manufactured by Wako Pure Chemical Industries, Ltd.), and Compound 6c (manufactured by Tokyo Chemical Industry Co., Ltd.) (concentration: 1.55 mM) were prepared. Next, 100 μl of each aqueous solution was dissolved in 3 mL of the following pH buffer solution (final concentration of each paranitrophenol derivative: 50 μM).
Buffer: 50 mM glycine-HCl buffer (pH 2-5, 30 ° C)
50 mM MES buffer (pH 5-8, 30 ° C)
50 mM CHES buffer (pH 8-11, 30 ° C)
About the obtained solution, an absorption curve was taken with a spectrophotometer (Hitachi U-3000 type), and OD value and pH at 405 nm and λmax were plotted to obtain pKa. Further, the color development rate at 405 nm and λmax (absorbance of paranitrophenol derivative in pH 7 buffer / 1 absorbance of paranitrophenol derivative in NaOH solution) was also determined.
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
参考:既知pKa
4-nitrophenol:7.1、2-fluoro-4-nitrophenol:7.1、3-4-nitrophenol:5.3、
2,3-difluoro-4-nitrophenol:4.7、2,5-difluoro-4-nitrophenol:4.7、
3,5-difluoro-4-nitrophenol:4.4、4-nitro-2,3,6-trifluorophenol:3.5、
4-nitro-2,3,5,6-tetrafluorophenol:2.9、2-chloro-4-nitrophenol:5.5。
Reference: Known pKa
4-nitrophenol: 7.1, 2-fluoro-4-nitrophenol: 7.1, 3-4-nitrophenol: 5.3,
2,3-difluoro-4-nitrophenol: 4.7, 2,5-difluoro-4-nitrophenol: 4.7,
3,5-difluoro-4-nitrophenol: 4.4, 4-nitro-2,3,6-trifluorophenol: 3.5,
4-nitro-2,3,5,6-tetrafluorophenol: 2.9, 2-chloro-4-nitrophenol: 5.5.
 カルシウムイオンの定量に用いるホスホリパーゼDの至適pHは中性付近である。よって通常、ホスホリパーゼDを用いてカルシウムイオンを定量する際には、反応を効率良く進行させるために、反応液のpHを中性付近に設定する。また、従来の測定系の最終生成物であるパラニトロフェノールの測定を自動分析装置で行う場合、用いられる固定波長は405nm付近であることが多い。しかし、上記表1から明らかなように、従来のパラニトロフェノールは、中性付近では405nm付近の発色率が低い。
 更に表1から明らかな如く、本発明に係るパラニトロフェノール誘導体は、従来のパラニトロフェノールよりもpKaが低下しており、中性付近で高発色していること、すなわち、発色率が増加し、発色安定性が向上することが判る。
 以上の結果から、これらのパラニトロフェノール誘導体を遊離するフェニルホスホリルコリン誘導体が、ホスホリパーゼDを用いたカルシウムイオンの定量に、より適していることがわかった。
 そこで、次にこれらのパラニトロフェノール誘導体を遊離するフェニルホスホリルコリン誘導体を、下記の反応スキームに従って、合成した。
The optimum pH of phospholipase D used for the quantification of calcium ions is around neutral. Therefore, usually, when calcium ions are quantified using phospholipase D, the pH of the reaction solution is set near neutral in order to allow the reaction to proceed efficiently. In addition, when measuring paranitrophenol, which is the final product of a conventional measurement system, with an automatic analyzer, the fixed wavelength used is often around 405 nm. However, as apparent from Table 1 above, the conventional paranitrophenol has a low coloration rate near 405 nm near neutrality.
Furthermore, as apparent from Table 1, the p-nitrophenol derivative according to the present invention has a lower pKa than that of the conventional para-nitrophenol, and is highly colored near neutrality, that is, the color development rate is increased. It can be seen that the color stability is improved.
From the above results, it was found that phenylphosphorylcholine derivatives that liberate these paranitrophenol derivatives are more suitable for quantification of calcium ions using phospholipase D.
Therefore, phenylphosphorylcholine derivatives that liberate these paranitrophenol derivatives were synthesized according to the following reaction scheme.
[反応スキームA]
Figure JPOXMLDOC01-appb-I000014
[Reaction Scheme A]
Figure JPOXMLDOC01-appb-I000014
[反応スキームB]
Figure JPOXMLDOC01-appb-I000015
[Reaction Scheme B]
Figure JPOXMLDOC01-appb-I000015
[反応スキームC]
Figure JPOXMLDOC01-appb-I000016
[Reaction Scheme C]
Figure JPOXMLDOC01-appb-I000016
[反応スキームD]
Figure JPOXMLDOC01-appb-I000017
[Reaction Scheme D]
Figure JPOXMLDOC01-appb-I000017
[反応スキームE]
Figure JPOXMLDOC01-appb-I000018
[Reaction Scheme E]
Figure JPOXMLDOC01-appb-I000018
実験例2.コリン化合物(化合物(2))の合成)
 ジエチルエーテル(500ml)に、ジメチルアミノエタノール(25ml、0.249mmol)とヨードメタン(50g、0.352mmol)を添加し、0℃で終夜撹拌した。反応終了後、析出した塩をジエチルエーテル(300ml)で洗浄し、目的とするコリン化合物(反応スキームAの化合物2)を得た(56.7g、収率99%)。
Experimental Example 2. Choline compound (synthesis of compound (2))
Diethylaminoethanol (25 ml, 0.249 mmol) and iodomethane (50 g, 0.352 mmol) were added to diethyl ether (500 ml) and stirred at 0 ° C. overnight. After completion of the reaction, the precipitated salt was washed with diethyl ether (300 ml) to obtain the desired choline compound (Compound 2 of Reaction Scheme A) (56.7 g, yield 99%).
実験例3.本発明に係るフェニルホスホジクロリデート(化合物4a)の合成 ジエチルエーテル(200ml)に、オキシ塩化リン(10g、65.2mmol)、実験例1で合成した化合物3a(反応スキームBの化合物3において、R=Clの化合物)(11.3g、65.2mmol)及びトリエチルアミン(6.6g、65.2mmol)を添加し、-78℃で終夜撹拌した。反応終了後、析出した塩を濾過し、溶媒を減圧留去して、目的とする本発明に係るフェニルホスホジクロリデート(化合物4a、反応スキームBの化合物4において、R=Clの化合物)を得た(15.0g、収率79%)。 Experimental Example 3. Synthesis of Phenylphosphodichloridate (Compound 4a) According to the Present Invention To diethyl ether (200 ml), phosphorus oxychloride (10 g, 65.2 mmol), compound 3a synthesized in Experimental Example 1 (in compound 3 of reaction scheme B, R = Cl compound) (11.3 g, 65.2 mmol) and triethylamine (6.6 g, 65.2 mmol) were added and stirred at −78 ° C. overnight. After completion of the reaction, the deposited salt is filtered, and the solvent is distilled off under reduced pressure to obtain the target phenylphosphodichloridate according to the present invention (compound 4a, compound 4 of reaction scheme B, R = Cl compound). Obtained (15.0 g, yield 79%).
実施例1.本発明のフェニルホスホリルコリン誘導体(化合物5a)の合成
 実験例3で得られた化合物4a (15g、51.7mmol)をアセトニトリル(100ml)に溶解し、それに実験例2で得られた化合物2(11.9g、51.7mmol)とキノリン(6.7g、51.7mmol)を添加し、0℃で6時間撹拌した。その後、精製水(5ml)とピリジン(23ml)を添加し、室温で1時間撹拌した。反応終了後、反応液を飽和重曹水(400ml)で中和し、Sephadex G-10(溶出液:水)で精製を行い、本発明のフェニルホスホリルコリン誘導体(O-(2-Chloro-4-Nitrophenylphosphoryl)choline、化合物5a、反応スキームBの化合物5において、R=Clの化合物)を得た(5.2g、収率30%)。
 Mass(posi=339)
 NMR (D2O,400MHz) δ:8.38(d, 1H, J=2.8), 8.13-8.16(dd, 1H, J=2.8,9.2), 7.48(d, 1H, J=9.2)、4.42(t, 2H, J=4.4)、3.65(t, 2H, J=4.4)、3.13(s,9H)。
Example 1. Synthesis of phenylphosphorylcholine derivative of the present invention (Compound 5a) Compound 4a (15 g, 51.7 mmol) obtained in Experimental Example 3 was dissolved in acetonitrile (100 ml), and Compound 2 (11.9 g, obtained in Experimental Example 2) was dissolved therein. 51.7 mmol) and quinoline (6.7 g, 51.7 mmol) were added and stirred at 0 ° C. for 6 hours. Thereafter, purified water (5 ml) and pyridine (23 ml) were added, and the mixture was stirred at room temperature for 1 hour. After completion of the reaction, the reaction solution was neutralized with saturated aqueous sodium bicarbonate (400 ml), purified with Sephadex G-10 (eluent: water), and the phenylphosphorylcholine derivative of the present invention (O- (2-Chloro-4-Nitrophenylphosphoryl) ) choline, Compound 5a, Compound 5 of Reaction Scheme B, R = Cl) was obtained (5.2 g, yield 30%).
Mass (posi = 339)
NMR (D 2 O, 400 MHz) δ: 8.38 (d, 1H, J = 2.8), 8.13-8.16 (dd, 1H, J = 2.8,9.2), 7.48 (d, 1H, J = 9.2), 4.42 (t , 2H, J = 4.4), 3.65 (t, 2H, J = 4.4), 3.13 (s, 9H).
実験例4.本発明に係るフェニルホスホジクロリデート(化合物4b)の合成
 ジエチルエーテル(200ml)に、オキシ塩化リン(10g、65.2mmol)、化合物3b(反応スキームBの化合物3において、R=Fの化合物、和光純薬工業(株)製)(10.2g、65.2mmol)及びトリエチルアミン(6.6g、65.2mmol)を添加し、-78℃で終夜撹拌した。反応終了後、析出した塩を濾過し、溶媒を減圧留去して、目的とする本発明に係るフェニルホスホジクロリデート(化合物4b、(反応スキームBの化合物4において、R=Fの化合物)を得た(14.4g、収率81%)。
Experimental Example 4 Synthesis of phenylphosphodichloridate according to the present invention (compound 4b) Diethyl ether (200 ml) was mixed with phosphorus oxychloride (10 g, 65.2 mmol), compound 3b (compound 3 of reaction scheme B, R = F compound, Mitsui Pure Chemical Industries, Ltd. (10.2 g, 65.2 mmol) and triethylamine (6.6 g, 65.2 mmol) were added, and the mixture was stirred at -78 ° C overnight. After completion of the reaction, the precipitated salt is filtered, and the solvent is distilled off under reduced pressure to obtain the desired phenylphosphodichloridate according to the present invention (compound 4b, (compound 4 of reaction scheme B, R = F compound)). (14.4 g, 81% yield) was obtained.
実施例2.本発明のフェニルホスホリルコリン誘導体(化合物5b)の合成
 実験例4で得られた化合物4b (14.4g、52.6mmol)をアセトニトリル(100ml)に溶解し、それに実験例2で得られた化合物2(12.2g、52.6mmol)とキノリン(6.8g、52.6mmol)を添加し、0℃で6時間撹拌した。その後、精製水(5ml)とピリジン(25ml)を添加し、室温で1時間撹拌した。反応終了後、反応液を減圧留去し、シリカゲルカラムクロマトグラフィー(溶出液:メタノール)及び再結晶(溶媒:メタノール、アセトン)で精製を行い、本発明のフェニルホスホリルコリン誘導体(O-(2-Fluoro-4-Nitrophenylphosphoryl)choline、化合物5b、反応スキームBの化合物5において、R=Fの化合物)を得た(6.5g、収率38%)。
 Mass(posi=323)
 NMR(D2O,400MHz)δ:8.02-8.10(m, 2H)、7.41-7.45(dd, 1H, J=8.0,16.8)、4.39(t, 2H, J=4.4)、3.63(t, 2H, J=4.4),3.13(s, 9H)。
Example 2 Synthesis of phenylphosphorylcholine derivative of the present invention (Compound 5b) Compound 4b (14.4 g, 52.6 mmol) obtained in Experimental Example 4 was dissolved in acetonitrile (100 ml), and Compound 2 (12.2 g obtained in Experimental Example 2) was dissolved therein. , 52.6 mmol) and quinoline (6.8 g, 52.6 mmol) were added and stirred at 0 ° C. for 6 hours. Thereafter, purified water (5 ml) and pyridine (25 ml) were added, and the mixture was stirred at room temperature for 1 hour. After completion of the reaction, the reaction solution was distilled off under reduced pressure and purified by silica gel column chromatography (eluent: methanol) and recrystallization (solvent: methanol, acetone) to obtain the phenylphosphorylcholine derivative (O- (2-Fluoro) of the present invention. -4-Nitrophenylphosphoryl) choline, Compound 5b, Compound 5 of Reaction Scheme B, R = F) was obtained (6.5 g, yield 38%).
Mass (posi = 323)
NMR (D 2 O, 400 MHz) δ: 8.02-8.10 (m, 2H), 7.41-7.45 (dd, 1H, J = 8.0, 16.8), 4.39 (t, 2H, J = 4.4), 3.63 (t, 2H , J = 4.4), 3.13 (s, 9H).
実験例5.本発明に係るフェニルホスホジクロリデート(化合物7a)の合成 ジエチルエーテル(200ml)に、オキシ塩化リン(6.8g、44.4mmol)、化合物6a(反応スキームCの化合物6において、R=Clの化合物、和光純薬工業(株)製)(7.7g、44.4mmol)及びトリエチルアミン(4.5g、44.4mmol)を添加し、-78℃で終夜撹拌した。反応終了後、析出した塩を濾過し、溶媒を減圧留去して、目的とする本発明に係るフェニルホスホジクロリデート(化合物7a、反応スキームCの化合物7において、R=Clの化合物)を得た(12.1g、収率95%)。 Experimental Example 5. Synthesis of phenylphosphodichlorolide (compound 7a) according to the present invention Diethyl ether (200 ml) was mixed with phosphorus oxychloride (6.8 g, 44.4 mmol), compound 6a (compound 6 of reaction scheme C, R = Cl compound, Wako Pure Chemical Industries, Ltd. (7.7 g, 44.4 mmol) and triethylamine (4.5 g, 44.4 mmol) were added, and the mixture was stirred at −78 ° C. overnight. After completion of the reaction, the deposited salt is filtered and the solvent is distilled off under reduced pressure to obtain the desired phenylphosphodichloridate according to the present invention (compound 7a, compound 7 in reaction scheme C, R = Cl compound). Obtained (12.1 g, 95% yield).
実施例3.本発明のフェニルホスホリルコリン誘導体(化合物8a)の合成
 実験例5で得られた化合物7a (12.1g、41.7mmol)をアセトニトリル(100ml)に溶解し、実験例2で得られた化合物2(9.6g、41.7mmol)とキノリン(5.4g、41.7mmol)を添加し、0℃で6時間撹拌した。その後、精製水(5ml)とピリジン(25ml)を添加し、室温で1時間撹拌した。反応終了後、反応液を減圧留去し、シリカゲルカラムクロマトグラフィー(溶出液:メタノール)及び再結晶(溶媒:メタノール、アセトン)で精製を行い、本発明のフェニルホスホリルコリン誘導体(O-(3-Chloro-4-Nitrophenylphosphoryl)choline、化合物8a、反応スキームCの化合物8において、R=Clの化合物)を得た(5.1g、収率36%)。
 Mass(posi=339)
 NMR(D2O,400MHz)δ:8.01(dd, 1H, J=0.8,8.8)、7.38(dd, 1H, J=1.2,2.4)、7.19-7.22(m, 1H)、4.35(t, 2H, J=4.4),3.61(t, 2H, J=4.4)、3.12(s, 9H)。
Example 3 Synthesis of phenylphosphorylcholine derivative of the present invention (Compound 8a) Compound 7a (12.1 g, 41.7 mmol) obtained in Experimental Example 5 was dissolved in acetonitrile (100 ml), and Compound 2 (9.6 g, obtained in Experimental Example 2) was dissolved. 41.7 mmol) and quinoline (5.4 g, 41.7 mmol) were added and stirred at 0 ° C. for 6 hours. Thereafter, purified water (5 ml) and pyridine (25 ml) were added, and the mixture was stirred at room temperature for 1 hour. After completion of the reaction, the reaction solution was distilled off under reduced pressure and purified by silica gel column chromatography (eluent: methanol) and recrystallization (solvent: methanol, acetone) to obtain the phenylphosphorylcholine derivative (O- (3-Chloro) of the present invention. -4-Nitrophenylphosphoryl) choline, Compound 8a, and Compound 8 of Reaction Scheme C, R = Cl compound) was obtained (5.1 g, yield 36%).
Mass (posi = 339)
NMR (D 2 O, 400 MHz) δ: 8.01 (dd, 1H, J = 0.8,8.8), 7.38 (dd, 1H, J = 1.2,2.4), 7.19-7.22 (m, 1H), 4.35 (t, 2H , J = 4.4), 3.61 (t, 2H, J = 4.4), 3.12 (s, 9H).
実験例6.本発明に係るフェニルホスホジクロリデート(化合物7b)の合成
 ジエチルエーテル(200ml)に、オキシ塩化リン(10g、65.2mmol)、化合物6b(反応スキームCの化合物6において、R=Fの化合物、和光純薬工業(株)製)(10.2g、65.2mmol)及びトリエチルアミン(6.6g、65.2mmol)を添加し、-78℃で終夜撹拌した。反応終了後、析出した塩を濾過し、溶媒を減圧留去して、目的とする本発明に係るフェニルホスホジクロリデート(化合物7b、反応スキームCの化合物7において、R=Fの化合物)を得た(14.4g、収率81%)。
Experimental Example 6. Synthesis of Phenylphosphodichloridate (Compound 7b) According to the Present Invention Diethyl ether (200 ml) was added to phosphorus oxychloride (10 g, 65.2 mmol), compound 6b (compound 6 of reaction scheme C, R = F compound, Mitsui Pure Chemical Industries, Ltd. (10.2 g, 65.2 mmol) and triethylamine (6.6 g, 65.2 mmol) were added, and the mixture was stirred at -78 ° C overnight. After completion of the reaction, the deposited salt is filtered and the solvent is distilled off under reduced pressure to obtain the target phenylphosphodichloridate according to the present invention (compound 7b, compound 7 in reaction scheme C, R = F compound). Obtained (14.4 g, 81% yield).
実施例4.本発明のフェニルホスホリルコリン誘導体(化合物8b)の合成
 実験例6で得られた化合物7b (14.4g、52.6mmol)をアセトニトリル(100ml)に溶解し、実験例2で得られた化合物2(12.2g、52.6mmol)とキノリン(6.8g、52.6mmol)を添加し、0℃で6時間撹拌した。その後、精製水(5ml)とピリジン(25ml)を添加し、室温で1時間撹拌した。反応終了後、反応液を減圧留去し、シリカゲルカラムクロマトグラフィー(溶出液:メタノール)及び再結晶(溶媒:メタノール、アセトン)で精製を行い、本発明のフェニルホスホリルコリン誘導体(O-(3-Fluoro-4-Nitrophenylphosphoryl)choline、化合物8b、反応スキームCの化合物8において、R=Fの化合物)を得た(6.6g、収率39%)。
 Mass(posi=323)
 NMR(D2O,400MHz)δ:8.11(dd, 1H, J=,8.8,18.0)、7.07-7.15(m, 2H)、4.35(t, 2H, J=4.4)、3.61(t, 2H, J=4.4)、3.12(s,9H)。
Example 4 Synthesis of phenylphosphorylcholine derivative of the present invention (Compound 8b) Compound 7b (14.4 g, 52.6 mmol) obtained in Experimental Example 6 was dissolved in acetonitrile (100 ml), and Compound 2 (12.2 g, obtained in Experimental Example 2) was dissolved. 52.6 mmol) and quinoline (6.8 g, 52.6 mmol) were added and stirred at 0 ° C. for 6 hours. Thereafter, purified water (5 ml) and pyridine (25 ml) were added, and the mixture was stirred at room temperature for 1 hour. After completion of the reaction, the reaction solution was distilled off under reduced pressure and purified by silica gel column chromatography (eluent: methanol) and recrystallization (solvent: methanol, acetone) to obtain the phenylphosphorylcholine derivative (O- (3-Fluoro) of the present invention. -4-Nitrophenylphosphoryl) choline, Compound 8b, Compound 8 of Reaction Scheme C, R = F) was obtained (6.6 g, 39% yield).
Mass (posi = 323)
NMR (D 2 O, 400 MHz) δ: 8.11 (dd, 1H, J =, 8.8, 18.0), 7.07-7.15 (m, 2H), 4.35 (t, 2H, J = 4.4), 3.61 (t, 2H, J = 4.4), 3.12 (s, 9H).
実験例7.本発明に係るフェニルホスホジクロリデート(化合物7c)の合成
 ジエチルエーテル(200ml)に、オキシ塩化リン(7.0g、45.6mmol)、化合物(6c)(反応スキームCの化合物6において、R=CF3の化合物、東京化成工業(株)製)(9.5g、45.6mmol)、トリエチルアミン(4.6g、45.6mmol)を添加し、-78℃で終夜撹拌した。反応終了後、析出した塩を濾過し、溶媒を減圧留去して、目的とする本発明に係るフェニルホスホジクロリデート(化合物7c、反応スキームCの化合物7において、R=CF3の化合物)を得た(12.5g、収率85%)。
Experimental Example 7. Synthesis of phenylphosphodichloridate according to the present invention (compound 7c) Diethyl ether (200 ml) was mixed with phosphorus oxychloride (7.0 g, 45.6 mmol), compound (6c) (in compound 6 of reaction scheme C, R = CF 3 (Tokyo Chemical Industry Co., Ltd.) (9.5 g, 45.6 mmol) and triethylamine (4.6 g, 45.6 mmol) were added, and the mixture was stirred at −78 ° C. overnight. After completion of the reaction, the deposited salt is filtered, the solvent is distilled off under reduced pressure, and the target phenylphosphodichloridate according to the present invention (compound 7c, compound 7 in reaction scheme C, R = CF 3 compound) (12.5 g, 85% yield) was obtained.
実施例5.本発明のフェニルホスホリルコリン誘導体(化合物8c)の合成
 実験例7で得られた化合物7c (12.5g、38.6mmol)をアセトニトリル(100ml)に溶解し、実験例2で得られた化合物2(8.9g、38.6mmol)とキノリン(5.0g、38.6mmol)を添加し、0℃で6時間撹拌した。その後、精製水(5ml)とピリジン(25ml)を添加し、室温で1時間撹拌した。反応終了後、反応液を減圧留去し、シリカゲルカラムクロマトグラフィー(溶出液:メタノール)及び再結晶(溶媒:メタノール、アセトン)で精製を行い、本発明のフェニルホスホリルコリン誘導体(O-(4-Nitro-3-Trifluoromethylphenylphosphoryl)choline、化合物8c、反応スキームCの化合物8において、R=CF3の化合物)を得た(3.3g、収率23%)。
 Mass(posi=373)
 NMR(D2O,400MHz)δ:8.05(d, 1H, J=,8.8)、7.63(d, 1H, J=1.6)、7.51(dd, 1H, J=2.0,9.2)、4.36(t, 2H, J=4.4)、3.61(t, 2H, J=4.4)、3.12(s, 9H)。
Example 5 FIG. Synthesis of phenylphosphorylcholine derivative of the present invention (Compound 8c) Compound 7c (12.5 g, 38.6 mmol) obtained in Experimental Example 7 was dissolved in acetonitrile (100 ml), and Compound 2 (8.9 g, obtained in Experimental Example 2) was dissolved. 38.6 mmol) and quinoline (5.0 g, 38.6 mmol) were added and stirred at 0 ° C. for 6 hours. Thereafter, purified water (5 ml) and pyridine (25 ml) were added, and the mixture was stirred at room temperature for 1 hour. After completion of the reaction, the reaction solution was distilled off under reduced pressure and purified by silica gel column chromatography (eluent: methanol) and recrystallization (solvent: methanol, acetone) to obtain the phenylphosphorylcholine derivative (O- (4-Nitro) of the present invention. -3-Trifluoromethylphenylphosphoryl) choline, compound 8c, in the compound 8 reaction scheme C, to give the compound of R = CF 3) (3.3g, 23% yield).
Mass (posi = 373)
NMR (D 2 O, 400 MHz) δ: 8.05 (d, 1H, J =, 8.8), 7.63 (d, 1H, J = 1.6), 7.51 (dd, 1H, J = 2.0, 9.2), 4.36 (t, 2H, J = 4.4), 3.61 (t, 2H, J = 4.4), 3.12 (s, 9H).
実験例8.3、5-ジフルオロ-4-ニトロフェノールの合成
 ジクロロメタン(500ml)に3,5-ジフルオロフェノール(反応スキームDの化合物9、和光純薬工業(株)製)(25.0g、0.19mol)を溶解し、0℃で70%濃硝酸(13.5ml、0.19mol)をゆっくり添加し、3時間撹拌した。反応終了後、反応液を氷水に投入し、抽出(CH2Cl2)、乾燥(MgSO4)を実施し、シリカゲルカラムクロマトグラフィー(溶出液;酢酸エチル:ヘキサン=1:9)で精製して、目的とする3、5-ジフルオロ-4-ニトロフェノール(反応スキームDの化合物10)を得た(12.8g、収率38%)。
Experimental Example 8.3 Synthesis of 5-difluoro-4-nitrophenol 3,5-difluorophenol (Compound 9 of Reaction Scheme D, manufactured by Wako Pure Chemical Industries, Ltd.) (25.0 g, 0.19 mol) in dichloromethane (500 ml) ) Was dissolved, 70% concentrated nitric acid (13.5 ml, 0.19 mol) was slowly added at 0 ° C., and the mixture was stirred for 3 hours. After completion of the reaction, the reaction solution was poured into ice water, extracted (CH 2 Cl 2 ), dried (MgSO 4 ), and purified by silica gel column chromatography (eluent; ethyl acetate: hexane = 1: 9). The desired 3,5-difluoro-4-nitrophenol (Compound 10 of Reaction Scheme D) was obtained (12.8 g, 38% yield).
実験例9.本発明に係るフェニルホスホジクロリデート(化合物10)の成
 ジエチルエーテル(250ml)に、オキシ塩化リン(10.7g、69.7mmol)、実験例8で得られた化合物10(12.2g、69.7mmol)、トリエチルアミン(7.1g、69.7mmol)を添加し、-78℃で終夜撹拌した。反応終了後、析出した塩を濾過し、溶媒を減圧留去して、目的とする本発明に係るフェニルホスホジクロリデート(反応スキームDの化合物11)を得た(14.3g、収率70%)。
Experimental Example 9. Synthesis of phenylphosphodichloridate according to the present invention (Compound 10) In diethyl ether (250 ml), phosphorus oxychloride (10.7 g, 69.7 mmol), compound 10 obtained in Experimental Example 8 (12.2 g, 69.7 mmol), Triethylamine (7.1 g, 69.7 mmol) was added and stirred at −78 ° C. overnight. After completion of the reaction, the precipitated salt was filtered and the solvent was distilled off under reduced pressure to obtain the target phenylphosphodichloridate according to the present invention (Compound 11 of Reaction Scheme D) (14.3 g, yield 70%). ).
実施例6.本発明のフェニルホスホリルコリン誘導体(化合物12)の合成
 実験例9で得られた化合物11 (14.2g、48.6mmol)をアセトニトリル(100ml)に溶解し、実験例2で得られた化合物2(11.2g、48.6mmol)とキノリン(6.3g、48.6mmol)を添加し、0℃で6時間撹拌した。その後、精製水(6ml)とピリジン(21ml)を添加し、室温で1時間撹拌した。反応終了後、反応液を減圧留去し、シリカゲルカラムクロマトグラフィー(溶出液:メタノール)及び再結晶(溶媒:メタノール、アセトン)で精製を行い、本発明のフェニルホスホリルコリン誘導体(反応スキームDの化合物12)を得た(3.2g、収率20%)。
 Mass(posi=339)
 NMR(D2O,400MHz)δ: 6.99 (d, 2H, J=10.8)、4.36 (t, 2H, J=4.0), 3.62 (t, 2H, J=4.0)、3.14 (s,9H)。
Example 6 Synthesis of phenylphosphorylcholine derivative of the present invention (Compound 12) Compound 11 (14.2 g, 48.6 mmol) obtained in Experimental Example 9 was dissolved in acetonitrile (100 ml), and Compound 2 (11.2 g, obtained in Experimental Example 2) was dissolved. 48.6 mmol) and quinoline (6.3 g, 48.6 mmol) were added and stirred at 0 ° C. for 6 hours. Thereafter, purified water (6 ml) and pyridine (21 ml) were added, and the mixture was stirred at room temperature for 1 hour. After completion of the reaction, the reaction solution was distilled off under reduced pressure and purified by silica gel column chromatography (eluent: methanol) and recrystallization (solvent: methanol, acetone) to obtain the phenylphosphorylcholine derivative of the present invention (compound 12 of Reaction Scheme D). (3.2 g, yield 20%).
Mass (posi = 339)
NMR (D 2 O, 400 MHz) δ: 6.99 (d, 2H, J = 10.8), 4.36 (t, 2H, J = 4.0), 3.62 (t, 2H, J = 4.0), 3.14 (s, 9H).
実施例7.基質特異性試験
(1)試液の調製
 下記の組成の各試液を調製した。
 試液1:4U/mlホスホリパーゼD(旭化成株式会社製T-07、Streptomyces chromofuscus由来)、53.3μMグリコールエーテルジアミン四酢酸、13.3μMジエチレントリアミン五酢酸、33.3mM塩化マグネシウム、0.13%トリトンX-100を含有する1.1mM PIPES-NaOH緩衝液(pH7.3)。
 試液2:0~100mMのパラニトロフェニルホスホリルコリン、もしくは上記実施例3及び4で合成した本発明のフェニルホスホリルコリン誘導体(反応スキームCの化合物8a又は化合物8c)、5U/mlアルカリホスファターゼを含有する5mM PIPES-NaOH緩衝液(pH7.2)。
 カルシウムイオン溶液:塩化カルシウム(和光純薬工業(株)製、特級)を精製水で希釈して、カルシウムイオンとして100mg/dLの水溶液を調製し、カルシウムイオン溶液とした。
Example 7 Substrate specificity test (1) Preparation of reagent solution Each reagent solution having the following composition was prepared.
Test solution 1: 4 U / ml phospholipase D (T-07 manufactured by Asahi Kasei Corporation, derived from Streptomyces chromofuscus ), 53.3 μM glycol ether diamine tetraacetic acid, 13.3 μM diethylenetriaminepentaacetic acid, 33.3 mM magnesium chloride, 0.13% Triton X 1.1 mM PIPES-NaOH buffer (pH 7.3) containing -100.
Reagent 2: 0-100 mM paranitrophenylphosphorylcholine, or the phenylphosphorylcholine derivative of the present invention (compound 8a or compound 8c in Reaction Scheme C) synthesized in Examples 3 and 4 above, 5 mM PIPES containing 5 U / ml alkaline phosphatase -NaOH buffer (pH 7.2).
Calcium ion solution: Calcium chloride (manufactured by Wako Pure Chemical Industries, Ltd., special grade) was diluted with purified water to prepare a 100 mg / dL aqueous solution as calcium ions to obtain a calcium ion solution.
(2)反応速度の測定
 日立自動分析機(7170型)を用い、試液1を180μL、試液2を60μL、及びカルシウム溶液4μLを混合し、37℃で反応を行い、主波長405nm、副波長660nmの吸光度を経時的に測定し、反応タイムコースを得た。得られた反応タイムコースから、吸光度増加速度を計算した。
 次いで、用いた各基質(パラニトロフェニルホスホリルコリン又は本発明のフェニルホスホリルコリン誘導体)の濃度に対する吸光度増加速度をプロットし、逆数グラフを得た。
(2) Reaction rate measurement Using Hitachi automatic analyzer (model 7170), sample solution 1 is mixed with 180 μL, sample solution 2 is mixed with 60 μL, and calcium solution is 4 μL, and reacted at 37 ° C., with a main wavelength of 405 nm and a subwavelength of 660 nm. Was measured over time to obtain a reaction time course. From the obtained reaction time course, the absorbance increase rate was calculated.
Subsequently, the rate of increase in absorbance with respect to the concentration of each substrate used (paranitrophenylphosphorylcholine or the phenylphosphorylcholine derivative of the present invention) was plotted to obtain an inverse graph.
(3)結果
 得られた基質濃度(mM)と吸光度増加速度(ΔE/min)との関係を、図1に示す。
 図1において、(a)はホスホリパーゼDの基質として従来のパラニトロフェニルホスホリルコリンを、(b)~(c)はホスホリパーゼDの基質として本発明のフェニルホスホリルコリン誘導体を、すなわち化合物8a又は化合物8cをそれぞれ用いた場合の結果を示す。
 また、図1をもとに得られた各逆数グラフの近似式からKmを求めた。
 結果を表2に示す。
(3) Results FIG. 1 shows the relationship between the obtained substrate concentration (mM) and the rate of increase in absorbance (ΔE / min).
In FIG. 1, (a) shows the conventional paranitrophenylphosphorylcholine as a substrate for phospholipase D, (b) to (c) show the phenylphosphorylcholine derivative of the present invention as a substrate for phospholipase D, that is, compound 8a or compound 8c, respectively. The results when used are shown.
Moreover, Km was calculated | required from the approximate expression of each reciprocal graph obtained based on FIG.
The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表2の結果から明らかな如く、化合物8a,化合物8cは、パラニトロフェニルホスホリルコリンよりもKmが大幅に低下し、ホスホリパーゼDの基質特異性が著しく向上していることがわかった。 As is clear from the results in Table 2, it was found that Compound 8a and Compound 8c had a significantly lower Km than paranitrophenyl phosphorylcholine, and the substrate specificity of phospholipase D was significantly improved.
実施例8.カルシウムイオンの定量
 上記各実施例で合成した本発明のフェニルホスホリルコリン誘導体を用いて、カルシウムイオンの定量を行った。
Example 8 FIG. Quantification of calcium ions Calcium ions were quantified using the phenylphosphorylcholine derivatives of the present invention synthesized in the above examples.
(1)試液の調製
 下記の組成の各試液を調製した。
 試液1:4U/mlホスホリパーゼD(旭化成株式会社製T-07、Streptomyces chromofuscus由来)、53.3μMグリコールエーテルジアミン四酢酸、13.3μMジエチレントリアミン五酢酸、33.3mM塩化マグネシウム、0.13%トリトンX-100を含有する61.1mM PIPES-NaOH緩衝液(pH7.3)。
 試液2:16mMのパラニトロフェニルホスホリルコリン、もしくは上記実施例2,3,4,5で合成した本発明のフェニルホスホリルコリン誘導体(反応スキームBの化合物5b、反応スキームCの化合物8a、化合物8b、化合物8c)、5U/mlアルカリホスファターゼを含有する5mMPIPES-NaOH緩衝液(pH7.2)。
 カルシウムイオン標準液:マルチキャリブレーターA(和光純薬工業(株)製) 10 mg/dL。
 カルシウムイオン溶液:〔和光純薬工業(株)製 塩化カルシウム、特級〕を用いてCa:20 mg/dL溶液を調製し、本品を精製水で希釈して、各濃度の水溶液(1mg/dL、2mg/dL、4mg/dL、10mg/dL、20mg/dL)を調製した。
(1) Preparation of reagent solution Each reagent solution having the following composition was prepared.
Test solution 1: 4 U / ml phospholipase D (T-07 manufactured by Asahi Kasei Corporation, derived from Streptomyces chromofuscus ), 53.3 μM glycol ether diamine tetraacetic acid, 13.3 μM diethylenetriaminepentaacetic acid, 33.3 mM magnesium chloride, 0.13% Triton X 61.1 mM PIPES-NaOH buffer (pH 7.3) containing -100.
Test solution 2: 16 mM paranitrophenylphosphorylcholine, or the phenylphosphorylcholine derivative of the present invention synthesized in Examples 2, 3, 4 and 5 above (compound 5b in reaction scheme B, compound 8a in reaction scheme C, compound 8b, compound 8c) ) 5mMPIPES-NaOH buffer (pH 7.2) containing 5 U / ml alkaline phosphatase.
Calcium ion standard solution: Multicalibrator A (Wako Pure Chemical Industries, Ltd.) 10 mg / dL.
Calcium ion solution: Prepare a Ca: 20 mg / dL solution using [Calcium chloride, special grade, manufactured by Wako Pure Chemical Industries, Ltd.], dilute this product with purified water, and prepare an aqueous solution of each concentration (1 mg / dL 2 mg / dL, 4 mg / dL, 10 mg / dL, 20 mg / dL).
(2)カルシウムイオン濃度の測定
 日立自動分析機(7170型)を用い、試液1を180μL、試液2を60μL、及び各濃度のカルシウムイオン溶液 4μLを混合し、37℃で反応を行い、主波長405nm、副波長660nmの吸光度を、各測光ポイントで経時的に測定し、反応タイムコースを得た。
 結果を図2(a)~(e)に示す。
 図2において、(a)はホスホリパーゼDの基質として従来のパラニトロフェニルホスホリルコリンを、(b)~(e)はホスホリパーゼDの基質として、本発明のフェニルホスホリルコリン誘導体を、すなわち化合物5b、化合物8a、化合物8b、化合物8cをそれぞれ用いた場合の結果を示す。
 尚、各試薬の最終反応液中の濃度は、それぞれ本発明のフェニルホスホリルコリン誘導体は約4mM、ホスホリパーゼDは約3U/mL、アルカリホスファターゼは約1.25U/mLである。
 また、得られた反応タイムコースから吸光度増加速度を計算した。
 別に、カルシウムイオン溶液の代わりに精製水又はカルシウムイオン標準液(10mg/dL)を用いる以外は上記と同様に反応を行い、吸光度を経時的に測定し、得られた反応タイムコースから吸光度増加速度を計算し、カルシウムイオン濃度と吸光度増加速度との関係を示す検量線を作成した。
 次いで、上記で得られた、各濃度のカルシウム溶液毎に測定を行って得られた吸光度増加速度を、検量線に当てはめ、各カルシウム溶液の濃度を求めた。
(2) Measurement of calcium ion concentration Using Hitachi automatic analyzer (model 7170), mix sample solution 1 with 180 μL, sample solution 2 with 60 μL, and calcium ion solution with each concentration of 4 μL, react at 37 ° C., main wavelength Absorbance at 405 nm and subwavelength 660 nm was measured over time at each photometric point to obtain a reaction time course.
The results are shown in FIGS. 2 (a) to (e).
In FIG. 2, (a) is a conventional paranitrophenyl phosphorylcholine as a phospholipase D substrate, (b) to (e) are phospholipase D substrates, and the phenylphosphorylcholine derivative of the present invention, ie, compound 5b, compound 8a, The results when using Compound 8b and Compound 8c are shown.
The concentration of each reagent in the final reaction solution is about 4 mM for the phenylphosphorylcholine derivative of the present invention, about 3 U / mL for phospholipase D, and about 1.25 U / mL for alkaline phosphatase.
Further, the absorbance increase rate was calculated from the obtained reaction time course.
Separately, except that purified water or calcium ion standard solution (10 mg / dL) is used in place of the calcium ion solution, the reaction is carried out in the same manner as described above, the absorbance is measured over time, and the rate of increase in absorbance from the obtained reaction time course. And a calibration curve showing the relationship between the calcium ion concentration and the rate of increase in absorbance was prepared.
Next, the absorbance increase rate obtained by performing measurement for each concentration of calcium solution obtained above was applied to a calibration curve to determine the concentration of each calcium solution.
(3)結果
 各カルシウム溶液のカルシウムイオン濃度(検体Ca量)と、検量線から求めた当該カルシウム溶液のカルシウムイオン濃度(測定値)との関係を図3(a)~(e)に示す。
 図3において、(a)はホスホリパーゼDの基質として従来のパラニトロフェニルホスホリルコリンを、(b)~(e)はホスホリパーゼDの基質として、本発明のフェニルホスホリルコリン誘導体を、すなわち化合物5b、化合物8a、化合物8b、化合物8cをそれぞれ用いた場合の結果を示す。
 図3(b)~(e)から明らかな如く、本発明のフェニルホスホリルコリン誘導体を用いてカルシウムイオンの定量を行った場合、従来のパラニトロフェニルホスホリルコリンを用いた場合(図3(a))と同様に、カルシウムイオン濃度に比例した、良好な検量線が得られ、ホスホリパーゼDを用いたカルシウムイオンの定量に用いることが出来ることが判る。
 また、測定に用いたカルシウム溶液の実際のカルシウム濃度と、検量線より求めた同じカルシウム溶液のカルシウム濃度とは良く相関しており、この測定系により得られた測定値の信頼度が高いことがわかる。
(3) Results FIGS. 3A to 3E show the relationship between the calcium ion concentration (analyte Ca amount) of each calcium solution and the calcium ion concentration (measured value) of the calcium solution obtained from the calibration curve.
In FIG. 3, (a) is a conventional paranitrophenyl phosphorylcholine as a substrate for phospholipase D, (b) to (e) are phenylphosphorylcholine derivatives of the present invention as substrates for phospholipase D, ie, compound 5b, compound 8a, The results when using Compound 8b and Compound 8c are shown.
As is clear from FIGS. 3 (b) to 3 (e), when the calcium ion was quantified using the phenylphosphorylcholine derivative of the present invention, the conventional paranitrophenylphosphorylcholine was used (FIG. 3 (a)). Similarly, a good calibration curve proportional to the calcium ion concentration is obtained, and it can be seen that it can be used for quantification of calcium ions using phospholipase D.
In addition, the actual calcium concentration of the calcium solution used for the measurement and the calcium concentration of the same calcium solution obtained from the calibration curve correlate well, and the reliability of the measurement values obtained by this measurement system is high. Recognize.
 尚、本実施例では、従来の基質であるパラニトロフェニルホスホリルコリンの最適条件で本発明のフェニルホスホリルコリン誘導体を用いたカルシウム濃度の測定を行っている。しかし、本発明のフェニルホスホリルコリン誘導体の最適な測定、組成条件は、パラニトロフェニルホスホリルコリンの最適条件とは異なる。これは、本発明のフェニルホスホリルコリン誘導体は、パラニトロフェニルホスホリルコリンとはKm値が大きく異なる(実施例7)ことからも容易に推察される。化合物8a及び8cにおいて、カルシウムイオンの濃度が高い範囲で、測定値が検量線から少しずれている(図3(c)及び(e))のは、化合物8a及び8cそれぞれの最適な測定・組成条件で測定を行わなかったためと推察される。もし、化合物8A、8cそれぞれの最適な測定・組成条件で測定を行えば、高濃度域のカルシウム濃度でも、測定結果は検量線に乗ってくると推察される。 In this example, the calcium concentration was measured using the phenylphosphorylcholine derivative of the present invention under the optimum conditions of the conventional substrate paranitrophenylphosphorylcholine. However, the optimum measurement and composition conditions of the phenylphosphorylcholine derivative of the present invention are different from those of paranitrophenylphosphorylcholine. This is easily inferred from the fact that the phenylphosphorylcholine derivative of the present invention has a significantly different Km value from that of paranitrophenylphosphorylcholine (Example 7). In the compounds 8a and 8c, the measured values slightly deviate from the calibration curve within the high calcium ion concentration range (FIGS. 3 (c) and (e)). This is probably because the measurement was not performed under the conditions. If the measurement is performed under the optimum measurement / composition conditions for each of the compounds 8A and 8c, the measurement result is presumed to be on the calibration curve even at a high concentration of calcium.
実施例9.基質の経時安定性
(1)試液の調製
 下記の組成の試液1及び試液2を調製した。
 試液1:実施例8と同じ。
 試液2:16mMのパラニトロフェニルホスホリルコリン、もしくは上記実施例4及び実施例5で合成した本発明のフェニルホスホリルコリン誘導体(化合物8b又は化合物8c)、5U/mlアルカリホスファターゼを含有する5mM PIPES-NaOH緩衝液(pH7.2)。
Example 9 Stability of substrate over time (1) Preparation of test solution Test solution 1 and test solution 2 having the following composition were prepared.
Reagent 1: Same as Example 8.
Test solution 2: 16 mM paranitrophenylphosphorylcholine, or the phenylphosphorylcholine derivative of the present invention (compound 8b or compound 8c) synthesized in Examples 4 and 5 above, 5 mM PIPES-NaOH buffer containing 5 U / ml alkaline phosphatase (PH 7.2).
(2)溶解保存時の吸光度の測定
 日立自動分析機(7170型)を用い、試液1を180μL、試液2を60μL、及び生理食塩水を混合し、37℃で反応を行い、405nmの吸光度を測定した。
 その後、試液2を冷蔵(7℃)と過酷(25℃)条件にて保存し、2週間後、4週間後に、生理食塩水を試料として、同様の測定を行った。
(2) Measurement of absorbance during dissolution and storage Using a Hitachi automated analyzer (model 7170), sample solution 1 was mixed with 180 μL, sample solution 2 was mixed with 60 μL, and physiological saline, reacted at 37 ° C., and absorbance at 405 nm was measured. It was measured.
Thereafter, the test solution 2 was stored under refrigerated (7 ° C.) and harsh (25 ° C.) conditions, and the same measurement was performed using physiological saline as a sample after 2 weeks and 4 weeks.
(3)結果
 結果を図4(a)~(c)に示す。
 図4において、(a)は従来のパラニトロフェニルホスホリルコリンを、(b)及び(c)は本発明のニトロフェニルホスホリルコリン誘導体を、すなわち化合物8b又は化合物8cをそれぞれ用いた場合の結果を示す。
 また、図4(a)~(c)において、―□―は冷蔵(7℃)で保存した場合、―■―は過酷(25℃)条件で保存した場合の結果をそれぞれ示す。
 図4(b)~(c)より明らかな如く、本発明に係るフェニルホスホリルコリン誘導体(化合物8b,8c)は、4週間、7℃又は25℃で保存しても絶対吸光度の変化がほとんどなく、従来のパラニトロフェニルホスホリルコリン(図4(a))と同程度の安定性があることが判る。
(3) Results The results are shown in FIGS. 4 (a) to (c).
In FIG. 4, (a) shows the results of using conventional paranitrophenylphosphorylcholine, (b) and (c) show the results of using the nitrophenylphosphorylcholine derivative of the present invention, ie, compound 8b or compound 8c, respectively.
4 (a) to 4 (c),-□-indicates the results when stored under refrigeration (7 ° C), and-■-indicates the results when stored under severe conditions (25 ° C).
As is clear from FIGS. 4 (b) to (c), the phenylphosphorylcholine derivatives according to the present invention (compounds 8b and 8c) hardly change in absolute absorbance even when stored at 7 ° C. or 25 ° C. for 4 weeks. It can be seen that the stability is comparable to that of conventional paranitrophenyl phosphorylcholine (FIG. 4 (a)).
 本発明の、色素骨格に電子吸引基が置換された新規なフェニルホスホリルコリン誘導体は、ホスホリパーゼDの良好な基質となり得ると共に、酵素活性測定や、カルシウムイオンの測定における、発色安定性に優れ、十分な測定感度を有する発色基質となる。 The novel phenylphosphorylcholine derivative in which an electron withdrawing group is substituted on the dye skeleton of the present invention can be a good substrate of phospholipase D, and has excellent coloration stability in enzyme activity measurement and calcium ion measurement. It becomes a chromogenic substrate having measurement sensitivity.
 図4(a)~(c)において、―□―は冷蔵(7℃)で保存した場合、―■―は過酷(25℃)条件で保存した場合の結果をそれぞれ示す。 In FIGS. 4 (a) to (c),-□-indicates the results when stored under refrigeration (7 ° C), and-■-indicates the results when stored under severe conditions (25 ° C).

Claims (10)

  1. 下記式[1] 
    Figure JPOXMLDOC01-appb-I000001

    [式中、R~Rはそれぞれ独立して水素原子、ハロゲン原子、ハロゲン化アルキル基、若しくはカルボキシル基を表す。但し、R~Rの少なくとも一つはハロゲン原子、ハロゲン化アルキル基、若しくはカルボキシル基を表す。]
    で示されるフェニルホスホリルコリン誘導体。
    Following formula [1]
    Figure JPOXMLDOC01-appb-I000001

    [Wherein R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, a halogenated alkyl group, or a carboxyl group. However, at least one of R 1 to R 4 represents a halogen atom, a halogenated alkyl group, or a carboxyl group. ]
    A phenylphosphorylcholine derivative represented by:
  2. 2がフッ素原子であり、R、R3及びRが水素原子である、請求項1に記載のフェニルホスホリルコリン誘導体。 The phenylphosphorylcholine derivative according to claim 1, wherein R 2 is a fluorine atom, and R 1 , R 3 and R 4 are hydrogen atoms.
  3. がフッ素原子であり、R2、R及びRが水素原子である、請求項1に記載のフェニルホスホリルコリン誘導体。 The phenylphosphorylcholine derivative according to claim 1, wherein R 1 is a fluorine atom, and R 2 , R 3 and R 4 are hydrogen atoms.
  4. 2がトリフルオロメチル基であり、R、R3及びRが水素原子である、請求項1に記載のフェニルホスホリルコリン誘導体。 The phenylphosphorylcholine derivative according to claim 1, wherein R 2 is a trifluoromethyl group, and R 1 , R 3 and R 4 are hydrogen atoms.
  5. 下記式[1] 
    Figure JPOXMLDOC01-appb-I000002

    [式中、R~Rはそれぞれ独立して水素原子、ハロゲン原子、ハロゲン化アルキル基、若しくはカルボキシル基を表す。但し、R~Rの少なくとも一つはハロゲン原子、ハロゲン化アルキル基、若しくはカルボキシル基を表す。]
    で示されるフェニルホスホリルコリン誘導体を含む、ホスホリパーゼD測定用試薬。
    Following formula [1]
    Figure JPOXMLDOC01-appb-I000002

    [Wherein R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, a halogenated alkyl group, or a carboxyl group. However, at least one of R 1 to R 4 represents a halogen atom, a halogenated alkyl group, or a carboxyl group. ]
    A reagent for measuring phospholipase D, comprising a phenylphosphorylcholine derivative represented by the formula:
  6. 被検試料と、下記式[1] 
    Figure JPOXMLDOC01-appb-I000003

    [式中、R~Rはそれぞれ独立して水素原子、ハロゲン原子、ハロゲン化アルキル基、若しくはカルボキシル基を表す。但し、R~Rの少なくとも一つはハロゲン原子、ハロゲン化アルキル基、若しくはカルボキシル基を表す。]
    で示されるフェニルホスホリルコリン誘導体と、ホスホリパーゼDとを、リン酸モノエステラーゼの存在下に混合して反応を開始させた後、吸光度増加速度を測定し、当該吸光度増加速度に基づいて行うことを特徴とする、カルシウムイオンの定量方法。
    Test sample and following formula [1]
    Figure JPOXMLDOC01-appb-I000003

    [Wherein R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, a halogenated alkyl group, or a carboxyl group. However, at least one of R 1 to R 4 represents a halogen atom, a halogenated alkyl group, or a carboxyl group. ]
    And a phospholipase D is mixed with phospholipase D in the presence of phosphate monoesterase to start the reaction, and then the absorbance increase rate is measured, and this is performed based on the absorbance increase rate. A method for quantifying calcium ions.
  7. リン酸モノエステラーゼがアルカリホスファターゼ又は中性ホスファターゼである、請求項6に記載の定量方法。 The quantification method according to claim 6, wherein the phosphate monoesterase is alkaline phosphatase or neutral phosphatase.
  8. 下記式[1] 
    Figure JPOXMLDOC01-appb-I000004

    [式中、R~Rはそれぞれ独立して水素原子、ハロゲン原子、ハロゲン化アルキル基、若しくはカルボキシル基を表す。但し、R~Rの少なくとも一つはハロゲン原子、ハロゲン化アルキル基、若しくはカルボキシル基を表す。]
    で示されるフェニルホスホリルコリン誘導体を含む、カルシウムイオン定量用試薬。
    Following formula [1]
    Figure JPOXMLDOC01-appb-I000004

    [Wherein R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, a halogenated alkyl group, or a carboxyl group. However, at least one of R 1 to R 4 represents a halogen atom, a halogenated alkyl group, or a carboxyl group. ]
    A reagent for quantifying calcium ions, comprising a phenylphosphorylcholine derivative represented by the formula:
  9. 下記式[1] 
    Figure JPOXMLDOC01-appb-I000005

    [式中、R~Rはそれぞれ独立して水素原子、ハロゲン原子、ハロゲン化アルキル基、若しくはカルボキシル基を表す。但し、R~Rの少なくとも一つはハロゲン原子、ハロゲン化アルキル基、若しくはカルボキシル基を表す。]
    で示されるフェニルホスホリルコリン誘導体、ホスホリパーゼD及びリン酸モノエステラーゼを構成成分として含む、カルシウムイオン定量用キット。
    Following formula [1]
    Figure JPOXMLDOC01-appb-I000005

    [Wherein R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, a halogenated alkyl group, or a carboxyl group. However, at least one of R 1 to R 4 represents a halogen atom, a halogenated alkyl group, or a carboxyl group. ]
    A kit for quantifying calcium ions, comprising a phenylphosphorylcholine derivative represented by the formula: phospholipase D and phosphate monoesterase as constituent components.
  10. リン酸モノエステラーゼがアルカリホスファターゼ又は中性ホスファターゼである、請求項9に記載のキット。 The kit according to claim 9, wherein the phosphate monoesterase is alkaline phosphatase or neutral phosphatase.
PCT/JP2009/056874 2008-04-14 2009-04-02 Phenylphosphorylcholine derivatives WO2009128348A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010508169A JP5614281B2 (en) 2008-04-14 2009-04-02 Phenyl phosphorylcholine derivative

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-104763 2008-04-14
JP2008104763 2008-04-14

Publications (1)

Publication Number Publication Date
WO2009128348A1 true WO2009128348A1 (en) 2009-10-22

Family

ID=41199046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056874 WO2009128348A1 (en) 2008-04-14 2009-04-02 Phenylphosphorylcholine derivatives

Country Status (2)

Country Link
JP (1) JP5614281B2 (en)
WO (1) WO2009128348A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242277A (en) * 2011-05-20 2012-12-10 Rohm Co Ltd Microchip and measurement system and measurement method using the same
WO2016060096A1 (en) * 2014-10-15 2016-04-21 日油株式会社 Phosphorylcholine group-containing compound and phosphorylcholine complex

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58501357A (en) * 1981-08-28 1983-08-18 バクスター インターナショナル インコーポレーテッド Enzyme analysis method for biological fluids
JPH0284199A (en) * 1988-09-20 1990-03-26 Wako Pure Chem Ind Ltd Reagent solution for determination of acidic phosphatase activity
JP2002238598A (en) * 2001-02-15 2002-08-27 Asahi Kasei Corp Composition for calcium ion assay and assaying method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58501357A (en) * 1981-08-28 1983-08-18 バクスター インターナショナル インコーポレーテッド Enzyme analysis method for biological fluids
JPH0284199A (en) * 1988-09-20 1990-03-26 Wako Pure Chem Ind Ltd Reagent solution for determination of acidic phosphatase activity
JP2002238598A (en) * 2001-02-15 2002-08-27 Asahi Kasei Corp Composition for calcium ion assay and assaying method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAZUHITO TANIMOTO: "Kosoho ni yoru Shinki Calcium Sokutei Shiyaku no Kaihatsu", RINSHO KAGAKU, vol. 37, no. 1, 29 August 2008 (2008-08-29), pages 173 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242277A (en) * 2011-05-20 2012-12-10 Rohm Co Ltd Microchip and measurement system and measurement method using the same
WO2016060096A1 (en) * 2014-10-15 2016-04-21 日油株式会社 Phosphorylcholine group-containing compound and phosphorylcholine complex
US9850266B2 (en) 2014-10-15 2017-12-26 Nof Corporation Phosphorylcholine group-containing compound and phosphorylcholine complex

Also Published As

Publication number Publication date
JP5614281B2 (en) 2014-10-29
JPWO2009128348A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JPS5886083A (en) Stabilizing agent for glycerol-3-phosphoric acid oxidase
CZ2002969A3 (en) Analog of 8-(anilino)-1-naphthalenesulfonate, compound, reaction product, preparation, and method
WO2001049247A2 (en) Assays for analytes and enzymes practiced in the presence of nad and nadp analogues, and related assay kits
JPH0466864B2 (en)
JPH0764986B2 (en) New coloring reagent
JP5614281B2 (en) Phenyl phosphorylcholine derivative
JPH0432835B2 (en)
KR101495970B1 (en) Method for measurement of calcium ions
JPS60180600A (en) Determination of reduced-type nicotinamide adenine dinucleotide
JP4639287B2 (en) Stabilization method for enzymatic measurement reagents
JPH0571239B2 (en)
JP3283348B2 (en) Substance measurement method
JPH0559083A (en) New n-acetyl-beta-d-glucosamine derivative and determination of n-acetyl-beta-d-glucosaminidase activity using the derivative as substrate
JPH0737475B2 (en) Novel galactopyranoside, method for producing the same, β-galactosidase substrate comprising the compound and method for quantifying β-galactosidase activity and reagent therefor
JP2000189196A (en) Measurement of urea nitrogen and reagent for measuring urea nitrogen
JP3070726B2 (en) Method for stabilizing sarcosine oxidase in solution
JP3357667B2 (en) Substance measurement method
JP3057183B2 (en) Stabilization of fluorescent substrate solution
CA1303610C (en) Substrates for beta-galactosidase
US5792619A (en) Assay using oxidative chromogenic reagent
JP3470099B2 (en) Stabilized coenzyme solution for measuring dehydrogenase or its substrate and use thereof
JP4180243B2 (en) Oxidizing coloring reagent
JPS5880556A (en) Chromogen for colorimetry of peroxide
JP2001352999A (en) Oxidative chromogenic agent
JPH02180892A (en) Novel phosphoric acid derivative and method for measuring activity of acidic phosphatase using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09731678

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010508169

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09731678

Country of ref document: EP

Kind code of ref document: A1