WO2009128318A1 - Aromatic polyester resin and method of producing the same - Google Patents

Aromatic polyester resin and method of producing the same Download PDF

Info

Publication number
WO2009128318A1
WO2009128318A1 PCT/JP2009/055152 JP2009055152W WO2009128318A1 WO 2009128318 A1 WO2009128318 A1 WO 2009128318A1 JP 2009055152 W JP2009055152 W JP 2009055152W WO 2009128318 A1 WO2009128318 A1 WO 2009128318A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
aromatic polyester
hydrolase
ester oligomer
molecular weight
Prior art date
Application number
PCT/JP2009/055152
Other languages
French (fr)
Japanese (ja)
Inventor
賢 鈴木
淳治 松村
秀一 松村
Original Assignee
大和製罐株式会社
学校法人 慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大和製罐株式会社, 学校法人 慶應義塾 filed Critical 大和製罐株式会社
Priority to JP2010508157A priority Critical patent/JP5593219B2/en
Publication of WO2009128318A1 publication Critical patent/WO2009128318A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters

Definitions

  • the present invention relates to a high molecular weight aromatic polyester resin having a low content of metal impurities and relatively excellent in thermal properties and mechanical properties, and a method for producing an aromatic polyester resin, which has a lower environmental impact. Related to improvements.
  • Polyesters most widely used industrially in modern society are aromatic polyesters represented by polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), and the like.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • a major factor in which aromatic polyesters are widely used in this way is that they exhibit excellent thermal properties and mechanical properties due to the aromatic dicarboxylic acid skeleton.
  • Conventional aromatic polyester resins are generally produced by adding an aromatic dicarboxylic acid or a derivative thereof and a diol component and reacting with a heavy metal catalyst.
  • a high molecular weight polyester it is necessary to make the ratio of the number of functional groups of carboxylic acid and alcohol present in the reaction system close to 1: 1.
  • the polymerization proceeds while the excess of the diol charged excessively with respect to the dicarboxylic acid component is distilled out of the reaction system at a high temperature of 200 ° C. or higher and high vacuum, and finally the functional
  • the high molecular weight is achieved by bringing the ratio of groups close to 1: 1, which is a feature of the above-mentioned industrial aromatic polyester resin production method.
  • One solution to these problems is to use an immobilized enzyme catalyst instead of a metal catalyst as a polymerization catalyst in the production of a polyester resin.
  • This makes it possible to polymerize under relatively mild conditions, which not only results in an energy-saving manufacturing process, but also enables removal of catalyst residues, thus preventing environmental contamination and resin performance degradation.
  • Can do There have been many reports on a method for producing polyester using an enzyme as a polymerization catalyst, and an example of obtaining a high molecular weight resin that can be used as a structural material has also been reported (for example, see Non-Patent Document 1).
  • most of the reports of polyesters produced using enzyme catalysts are aliphatic polyesters that are generally inferior in heat resistance and mechanical strength as compared with aromatic polyesters.
  • polyalkylene isophthalate which is a kind of aromatic polyester
  • a polyester resin having a relatively high molecular weight has been obtained by enzyme-catalyzed polymerization (see, for example, Non-Patent Document 4).
  • this polyalkylene isophthalate resin is generally inferior in heat resistance as compared with the corresponding polyalkylene terephthalate resin and polyalkylene naphthalate resin.
  • aromatic polyester resins containing terephthalic acid or naphthalenedicarboxylic acid such as polyalkylene terephthalate and polyalkylene naphthalate in the polyester skeleton examples of high molecular weight polymers obtained by enzyme-catalyzed polymerization are still reported. It has not been.
  • the present invention has been made to solve the above-mentioned problems, and its object is to have a high molecular weight aromatic polyester resin having a low content of metal impurities and relatively excellent thermal and mechanical properties. Another object of the present invention is to provide a method for producing a high molecular weight aromatic polyester resin by an environmentally low load process using a hydrolase as a polymerization catalyst.
  • the present inventors have conducted intensive research. High-molecular-weight aromatic polyester with a low content of metal impurities and relatively excellent thermal and mechanical properties by an environmentally low-load synthetic process carried out under relatively mild conditions. It was found that a resin was obtained. More specifically, a hydrolase that exhibits sufficient catalytic activity for aromatic compounds is selected, and the catalytic activity of the hydrolase is selected by appropriately selecting the type of monomer component to be used and its blending ratio.
  • the aromatic polyester resin according to the present invention is obtained by polymerizing a dicarboxylic acid component and a diol component containing terephthalic acid or naphthalenedicarboxylic acid, or a derivative thereof by the catalytic action of a hydrolase,
  • the average molecular weight is 20000 or more.
  • the aromatic polyester resin preferably has a melting point of less than 170 ° C.
  • the hydrolase is preferably a lipase, and particularly preferably an immobilized lipase in which the lipase is immobilized on a carrier.
  • the aromatic polyester resin preferably contains substantially no metal conventionally used as a polymerization catalyst for polyester production, such as antimony, titanium, germanium, aluminum, zinc, tin, zirconium, magnesium and manganese. is there.
  • the method for producing an aromatic polyester resin according to the present invention uses a dicarboxylic acid component containing terephthalic acid or naphthalenedicarboxylic acid, or a derivative thereof, and a diol component, in the presence of a hydrolase, and has a weight average molecular weight.
  • An ester oligomer production process for producing a chain or cyclic ester oligomer mixture of less than 20,000, and an ester oligomer mixture obtained by the above process are further polycondensed in the presence of a hydrolase to give a fragrance having a weight average molecular weight of 20000 or more.
  • a polyester resin polymerization step for producing a group polyester resin for producing a group polyester resin.
  • the ester oligomer production step comprises reacting terephthalic acid or naphthalenedicarboxylic acid, or a dicarboxylic acid component containing a derivative thereof and a diol component in the presence of a hydrolase.
  • the second heating step is preferably performed for heating for ⁇ 6000 minutes.
  • the method for producing an aromatic polyester resin according to the present invention uses a dicarboxylic acid component containing terephthalic acid or naphthalenedicarboxylic acid, or a derivative thereof, and a diol component, in the presence of a hydrolase, and has a weight average molecular weight.
  • An ester oligomer production process for producing a chain or cyclic ester oligomer mixture of less than 20,000, and a cyclic ester oligomer mixture obtained by the above process by separating and purifying cyclic ester oligomers to obtain a high purity cyclic ester oligomer mixture
  • Polyester resin polymerization for producing an aromatic polyester resin having a weight average molecular weight of 20,000 or more by further polycondensation of the ester oligomer purification step and the high purity cyclic ester oligomer mixture obtained in the above step in the presence of a hydrolase Process and equipment And it is characterized in Rukoto.
  • the ester oligomer production step comprises converting a dicarboxylic acid component containing terephthalic acid or naphthalenedicarboxylic acid, or a derivative thereof, and a diol component in the presence of a hydrolase, 30 It is a step of heating at 120 ° C. for 5 to 6000 minutes, and the polyester resin polymerization step is preferably a step of heating at 70 to 180 ° C. for 60 to 6000 minutes in the presence of a hydrolase.
  • a polyester resin can be synthesized in an environment in which the catalytic activity of a hydrolase is not impaired by a dicarboxylic acid component containing terephthalic acid or naphthalenedicarboxylic acid, or a derivative thereof, and a diol component.
  • a dicarboxylic acid component containing terephthalic acid or naphthalenedicarboxylic acid, or a derivative thereof, and a diol component.
  • FIG. 3 shows the results of 1 H NMR spectrum analysis of an aromatic polyester resin (poly (hexamethylene terephthalate)) obtained in Test Example 3-1, (300 MHz, CDCl 3 ). Effect of the ratio of diol (hexamethylene glycol) component and dicarboxylic acid (terephthalic acid) component contained in the mixture on the weight average molecular weight of aromatic polyester obtained by allowing immobilized enzyme to act on ester oligomer mixture FIG.
  • the aromatic polyester resin according to the present invention is obtained by polymerizing a dicarboxylic acid component containing terephthalic acid or naphthalenedicarboxylic acid, or a derivative thereof, and a diol component by the catalytic action of a hydrolase, and has a weight average molecular weight. Is 20,000 or more.
  • the dicarboxylic acid component used in the present invention contains terephthalic acid or naphthalenedicarboxylic acid, or a derivative thereof.
  • the total amount of terephthalic acid or naphthalenedicarboxylic acid or derivatives thereof used in the present invention is preferably 40 mol% or more, more preferably 50 mol% or more, as a ratio to the total amount of the dicarboxylic acid component. When the ratio is 40 mol% or less, it is difficult to expect characteristics as an aromatic polyester resin. Further, the total amount of the dicarboxylic acid component may be terephthalic acid, naphthalenedicarboxylic acid, or a derivative thereof.
  • terephthalic acid or naphthalenedicarboxylic acid derivatives include lower alkyl esters such as dimethyl terephthalate, diethyl terephthalate, dimethyl naphthalenecarboxylate, and diethyl naphthalenecarboxylate.
  • lower alkyl esters such as dimethyl terephthalate, diethyl terephthalate, dimethyl naphthalenecarboxylate, and diethyl naphthalenecarboxylate.
  • the dicarboxylic acid component other than terephthalic acid or naphthalenedicarboxylic acid or derivatives thereof is not particularly limited as long as an esterification reaction or a transesterification reaction can occur by an enzyme catalyst.
  • dicarboxylic acid components include aromatic dicarboxylic acids such as diphenyl dicarboxylic acid and diphenyl ether dicarboxylic acid, oxalic acid, succinic acid, maleic acid, adipic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, and itaconic acid.
  • aromatic dicarboxylic acids such as diphenyl dicarboxylic acid and diphenyl ether dicarboxylic acid, oxalic acid, succinic acid, maleic acid, adipic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, and itaconic acid.
  • aliphatic dicarboxylic acids such as polyvalent carboxylic acids such as pyromellitic acid.
  • the dicarboxylic acid component may be derived from either a dicarboxylic acid or a lower alkyl ester of dicarboxylic acid.
  • dicarboxylic acid component used in the present invention a plurality of dicarboxylic acid components can be appropriately selected from the above-mentioned dicarboxylic acid components according to the desired physical properties and intended use of the resulting polyester resin.
  • the diol component used in the present invention is not particularly limited as long as an esterification reaction or a transesterification reaction can occur by an enzyme catalyst.
  • the diol component include ethylene glycol, diethylene glycol, triethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, heptamethylene glycol, octamethylene glycol, decamethylene glycol, dodecamethylene glycol, polyethylene glycol.
  • aliphatic diols such as cyclohexanediol and cyclohexanedimethanol, and aromatic diols such as naphthalenediol, bisphenol A, and resorcin.
  • diol component used in the present invention an arbitrary number of components and blending ratio can be selected from the above diol components according to the purpose. Moreover, trihydric or more alcohols, such as glycerol and pentaerythritol, can also be used as needed.
  • the hydrolase used as a polymerization catalyst in the present invention is not particularly limited as long as it can promote the esterification reaction and transesterification reaction of the selected monomer or oligomer.
  • it can be selected from a hydrolase derived from a known strain, and among them, carboxylesterase (EC 3.1.1.1: carboxysterase) and lipase (EC 3.1.1.3: triacylglycolase lipase) are preferably used. be able to.
  • the hydrolase is preferably an immobilized hydrolase immobilized on a carrier. is there.
  • the method for immobilizing the hydrolase is not particularly limited, and an immobilized hydrolase by a known immobilization method can be used. More specifically, Novozym 435 (manufactured by Novozyme; immobilized lipase immobilized on a porous acrylic resin), which is an immobilized enzyme in which lipase derived from Candida antarctica and carboxylesterase are immobilized, is particularly suitable hydrolyzate. It is mentioned as a degrading enzyme.
  • the aromatic polyester resin according to the present invention is obtained by allowing a hydrolase to act in the production stage in a state where a monomer used or an oligomer or polymer produced by a polymerization reaction is melted or dissolved. And for this reason, the aromatic polyester resin according to the present invention is adjusted in the type of monomer component used and the blending ratio thereof so that it can be synthesized in an environment where the catalytic activity of the hydrolase is not impaired. It will be necessary. More specifically, it is desirable to adjust the types of monomer components and the blending ratio thereof so that the resulting aromatic polyester resin has a melting point of less than 170 ° C.
  • the combination of such monomer components is not particularly limited.
  • terephthalic acid / hexamethylene glycol terephthalic acid / decamethylene glycol
  • 2,6-naphthalenedicarboxylic acid / decamethylene glycol 2,6 A combination of naphthalenedicarboxylic acid / dodecamethylene glycol and the like.
  • fusing point of the obtained polyester resin is less than 170 degreeC, the other dicarboxylic acid component and diol which were enumerated above may be included appropriately.
  • the melting point can be measured by a known method.
  • the melting point can be measured by using a differential scanning calorimeter (DSC-60: manufactured by Shimadzu Corporation) at a temperature of 10 ° C./min in a nitrogen atmosphere. Can do.
  • the melting point of the aromatic polyester resin according to the present invention is more preferably less than 165 ° C, still more preferably less than 160 ° C.
  • the environment in which the catalytic activity of the hydrolase as described above is not impaired is largely governed by the resistance (heat resistance, chemical resistance, etc.) of the hydrolase used. If a hydrolase having high heat resistance is developed in the future (which does not exist at the time of filing), it is possible to obtain an aromatic polyester resin having a higher melting point by using the method of the present invention. .
  • the aromatic polyester resin according to the present invention has a weight average molecular weight of 20000 or more.
  • a weight average molecular weight can be measured by a well-known method, for example, can be measured using a gel permeation chromatography (GPC). Examples of the weight average molecular weight measurement conditions by GPC include the following.
  • the weight average molecular weight of the aromatic polyester resin according to the present invention is more preferably 25000 or more, and further preferably 30000 or more.
  • the aromatic polyester resin according to the present invention is manufactured using a hydrolase instead of a heavy metal catalyst, for example, antimony, titanium, germanium, aluminum, zinc, tin, zirconium, magnesium, manganese
  • a heavy metal catalyst for example, antimony, titanium, germanium, aluminum, zinc, tin, zirconium, magnesium, manganese
  • the aromatic polyester resin according to the present invention can easily achieve less than 25 ppm in terms of metal elements with respect to the total content of these metal impurities.
  • a polyester resin produced using a conventionally used metal catalyst it is extremely difficult to remove the residue of the used catalyst metal. In this case, there is a risk of causing environmental pollution and resin performance degradation.
  • the metal impurity content can be measured by a known method. For example, it can be measured by using an inductively coupled plasma emission analyzer (ICP emission analyzer P-4010: manufactured by Hitachi, Ltd.). .
  • the total content of each metal impurity in the polyester resin according to the present invention is specifically less than 25 ppm, more preferably less than 20 ppm, and even more preferably less than 15 ppm in terms of metal element.
  • a mixture of a chain or cyclic ester oligomer having a weight average molecular weight of less than 20,000 is preliminarily synthesized by intentionally operating synthesis conditions in the presence of a hydrolase. Then, a hydrolase is allowed to act on this ester oligomer mixture, and further polycondensation is performed to obtain a polyester having a weight average molecular weight of 20000 or more.
  • the amount ratio (molar ratio) of the dicarboxylic acid component and the diol component in the reaction system at the end of the polycondensation reaction can be easily controlled (that is, in the reaction system).
  • the ratio of the number of functional groups of the carboxylic acid and alcohol present tends to approach 1: 1).
  • the aromatic polyester resin can have a higher molecular weight, and the molecular weight can be easily controlled.
  • the ester oligomer production step and the subsequent polyester resin polymerization step can be carried out by changing the synthesis conditions in the same reaction vessel, or the ester oligomer mixture is produced in advance using a hydrolase.
  • a dicarboxylic acid component containing terephthalic acid or naphthalenedicarboxylic acid or a derivative thereof, and a diol component are heated at 30 to 120 ° C. for 5 to 6000 minutes in the presence of a hydrolase immediately after the start of the reaction.
  • the lower limit of the reaction temperature in the first heating step is defined by the production efficiency of the ester oligomer. In other words, if the heating temperature is less than 30 ° C, at least one component of the monomer used cannot be melted or dissolved, or the catalytic efficiency by the hydrolase does not become sufficiently high. Alternatively, the reaction may take a long time.
  • the upper limit of the temperature is defined by the sublimation or vaporization temperature of the dicarboxylic acid component or diol component used and the temperature range in which the catalytic activity of the hydrolase is maintained. That is, when the heating temperature exceeds 120 ° C., sublimation and vaporization of the dicarboxylic acid component and the diol component occur preferentially over the esterification reaction, and the abundance ratio of the dicarboxylic acid component and the diol component in the ester oligomer is efficiently increased. Therefore, it becomes difficult to obtain a high molecular weight polyester resin.
  • the heating temperature in the first heating step is preferably 35 to 115 ° C, more preferably 40 to 110 ° C.
  • the heating time in the first heating step is 5 to 6000 minutes. If the heating time is less than 5 minutes, the reaction time is too short and the ester oligomer cannot be sufficiently formed. Therefore, in the subsequent polycondensation reaction, the amount ratio (molar ratio) of the dicarboxylic acid component and the diol component in the reaction system is set. It cannot be controlled, and as a result, a high molecular weight polyester resin cannot be obtained. On the other hand, heating exceeding 6000 minutes is not preferable from the viewpoint of production efficiency.
  • the heating time in the first heating step is preferably 30 to 5000 minutes, and more preferably 60 to 4000 minutes.
  • the mixture is further heated at 70 to 180 ° C. for 60 to 6000 minutes in the presence of a hydrolase.
  • the heating temperature is in the range of 70 to 180 ° C.
  • the heating temperature exceeds 180 ° C.
  • the catalytic activity of the enzyme is significantly impaired, resulting in a decrease in yield or an increase in molecular weight.
  • it is less than 70 ° C., an aromatic polyester having a relatively high melting point cannot be melted, so that sufficient contact frequency with an enzyme cannot be provided, and a high molecular weight polyester is difficult to obtain.
  • the heating temperature in the second heating step is preferably 75 to 175 ° C., more preferably 80 to 170 ° C.
  • a sufficiently high molecular weight may not be obtained by heating at less than 80 ° C.
  • the heating time in the second heating step is 60 to 6000 minutes. When the heating time is less than 60 minutes, since the esterification reaction does not proceed sufficiently, a high molecular weight polyester resin may not be obtained. Moreover, heating exceeding 6000 minutes is not preferable from the viewpoint of production efficiency.
  • the heating time in the second heating step is preferably 90 to 5000 minutes, more preferably 120 to 4000 minutes.
  • the reaction may be continuously performed at the same heating temperature as long as it is within the specified temperature range. More specifically, when the temperature is in the range of 70 to 120 ° C., both heating steps can be performed continuously at the same heating temperature. In this case, the heating time only needs to be within the range of the sum of the prescribed times, and it is not necessary to clearly distinguish each heating step.
  • the rate of temperature increase is not particularly limited, and the temperature may be gradually increased or rapidly increased. Further, in both the heating steps, the reaction may be carried out by constantly changing the temperature as long as it is within a specified temperature range.
  • the esterification reaction proceeds while sublimation and vaporization of the dicarboxylic acid component and the diol component are suppressed, A chain or cyclic ester oligomer mixture is formed.
  • the dicarboxylic acid component and the diol component are present in an amount ratio (molar ratio) of about 1: 1.
  • the various ester oligomers in these ester oligomer mixtures are hardly damaged from the system by sublimation or vaporization by further heating.
  • the ester oligomer mixture obtained in the ester oligomer production process is used, the polycondensation reaction of the polyester can proceed without the ratio of these amounts greatly deviating from 1: 1.
  • the polycondensation reaction of the polyester can proceed without the ratio of these amounts greatly deviating from 1: 1.
  • the dicarboxylic acid component and the diol component are sublimated or vaporized, and the quantity ratio thereof deviates greatly. You will not be able to get.
  • the said manufacturing method performs a 1st heating process and a 2nd heating process continuously in the same reaction container,
  • An ester oligomer mixture is manufactured previously and it uses for the polymerization reaction of a polyester resin separately. Is also possible.
  • This production method is particularly effective when a monomer that easily sublimes is selected, and a high molecular weight aromatic polyester resin is easily obtained.
  • such a manufacturing method will be described.
  • Manufacturing method example 2 1) A dicarboxylic acid component and a diol component containing terephthalic acid or naphthalenedicarboxylic acid or their derivatives are heated in an organic solvent for a predetermined time at a predetermined temperature in the presence of a hydrolase, and then the hydrolase is filtered off. Thereafter, the solvent is completely distilled off to produce a chain or cyclic ester oligomer mixture having a weight average molecular weight of less than 20,000.
  • heating may be performed in an organic solvent at 30 to 120 ° C. for 5 to 6000 minutes in the presence of a hydrolase. More preferably, heating is performed at 35 to 120 ° C. for 30 to 5000 minutes, more preferably 40 to 115 ° C. for 60 to 4000 minutes.
  • the organic solvent used in the ester oligomer production step can sufficiently dissolve the intermediates produced in the process of obtaining the ester oligomer mixture having each monomer and the target composition, and in the reaction system to be selected. It can be freely selected as long as it does not vaporize remarkably quickly and the catalytic activity of the hydrolase used is not dramatically impaired.
  • the kind of organic solvent which can be used changes also with the kind of monomer to be used, toluene, xylene, anisole, cumene etc. are mentioned, for example.
  • the amount of the organic solvent to be used is not particularly limited as long as it satisfies the above, but it is preferable to add it so that the concentration of the total amount of the dicarboxylic acid component is 1 to 10,000 mM. If it is less than 1 mM, not only the amount of the reaction solvent increases, but also ester oligomerization does not proceed sufficiently, so that sublimation and vaporization of dicarboxylic acid and diol cannot be suppressed in the following polyester resin production process. On the other hand, when the concentration is 10,000 mM or more, it becomes difficult to sufficiently dissolve the monomer and the ester oligomer.
  • the monomer component is heated in an organic solvent for a predetermined time at a predetermined temperature in the presence of a hydrolase, whereby an esterification reaction or a transesterification reaction proceeds, and a target weight average molecular weight of 20000.
  • a target weight average molecular weight of 20000 A mixture of less than a chain or cyclic ester oligomer can be obtained.
  • the weight average molecular weight and composition of the resulting ester oligomer mixture can also be adjusted as appropriate by changing the charging ratio of dicarboxylic acid component and diol component, heating temperature, heating time, substrate concentration, enzyme amount, etc. is there.
  • the ester oligomer mixture obtained in the above step is polycondensed by heating at a predetermined temperature for a predetermined time in the presence of a hydrolase to produce an aromatic polyester resin having a weight average molecular weight of 20000 or more.
  • heating may be performed at 70 to 180 ° C. for 60 to 6000 minutes. More preferably, heating is performed at 75 to 175 ° C. for 90 to 5000 minutes, more preferably 80 to 170 ° C. for 120 to 4000 minutes.
  • the ester oligomer mixture obtained in the ester oligomer production step is a chain or cyclic ester oligomer having a weight average molecular weight of less than 20,000.
  • Production Method Example 2 since each monomer and oligomer to be produced are dissolved in an organic solvent, it is easier to prevent sublimation and vaporization than in Production Method Example 1, and the amount ratio (molar ratio) is about 1 : 1 is easily controlled, and as a result, a higher molecular weight polyester resin is easily obtained. For the same reason, it is suitable when using a monomer that is more easily sublimated or when using a plurality of dicarboxylic acid components or diol components having different sublimation properties.
  • the heating temperature is set to a high temperature of 200 ° C. or higher, or an extreme pressure reduction operation is performed so that the quantitative ratio falls within a specific range in the polymerization reaction of the polyester. There is no need to go.
  • the quantitative ratio (molar ratio) of the dicarboxylic acid component and the diol component is completely 1: 1. Therefore, when a higher molecular weight aromatic polyester resin is desired, it is preferable that a larger amount of cyclic ester oligomer is contained in the ester oligomer mixture used in the polyester resin production process. For this reason, it is also possible to separate and purify the cyclic oligomer from the ester oligomer mixture obtained as described above, and to use the obtained high-purity cyclic oligomer mixture for the polymerization reaction of the polyester resin. . Hereinafter, such a manufacturing method will be described.
  • a linear or cyclic ester oligomer mixture having a weight average molecular weight of less than 20,000 is produced in the presence of hydrolase using a dicarboxylic acid component containing terephthalic acid or naphthalenedicarboxylic acid, or a derivative thereof, and a diol component. .
  • the ester oligomer production process is the same as in Production Method Example 2.
  • the charge ratio (molar) of the dicarboxylic acid component containing terephthalic acid or naphthalenedicarboxylic acid or a derivative thereof and the diol component It is preferable that the ratio is slightly excessive.
  • both ends thereof are (a) hydroxyl group-alkyl ester, (b) hydroxyl group-hydroxyl group, (c) alkyl group.
  • Three types of ester-alkyl ester chain oligomers are included. Therefore, by slightly increasing the amount of the diol component, both ends of (c), which are relatively difficult to separate from the cyclic ester oligomer, suppress the formation of an alkyl ester-alkyl ester chain oligomer. Thereby, it becomes easy to separate and purify a high-purity cyclic oligomer.
  • the amount of the chain (c) in the high purity cyclic ester oligomer mixture obtained after the cyclic oligomer purification step (that is, The amount ratio of the dicarboxylic acid component and the diol component) can be strictly and easily controlled, and as a result, an aromatic polyester resin having an arbitrary average molecular weight can be prepared after the polyester resin production process. Further, when a dicarboxylic acid is used as a monomer of the dicarboxylic acid component instead of the lower alkyl ester, the dicarboxylic acid component can be used in excess relative to the diol component.
  • a cyclic oligomer is separated and purified from the ester oligomer mixture obtained in the above step to obtain a high-purity cyclic oligomer mixture.
  • the cyclic oligomer separation step is not particularly limited, and known methods such as column chromatography and recrystallization can be used, and silica gel column chromatography is preferable. In addition, conventionally well-known things can be used suitably for a column filler, an eluent, etc.
  • by appropriately selecting the charging amount ratio (molar ratio) of the dicarboxylic acid component and the diol component it is easier to separate and purify the cyclic ester oligomer having the target composition, and the high purity.
  • Cyclic ester oligomers can be obtained in a relatively high yield.
  • the purity of the cyclic ester oligomer after separation and purification can be arbitrarily selected according to the molecular weight of the target aromatic polyester resin, and is not particularly limited.
  • the amount of the dicarboxylic acid component and the diol component The ratio (molar ratio) is about 0.95 to 1.05, preferably about 0.99 to 1.01.
  • the cyclic ester oligomer obtained by the above step is further polycondensed in the presence of a hydrolase to produce an aromatic polyester resin having a weight average molecular weight of 20000 or more.
  • the polyester resin polymerization step is the same as in Production Method Example 2.
  • the quantitative ratio (molar ratio) between the dicarboxylic acid component and the diol component is almost completely maintained at 1: 1. Therefore, it is possible to relatively easily obtain a high molecular weight aromatic polyester resin that could never be obtained by the conventional enzyme catalyst method.
  • the heating temperature is set to a high temperature of 200 ° C. or higher so that the amount ratio falls within a specific range in the polyester polymerization reaction, or extreme pressure reduction is performed. There is no need to react underneath. Also, by using this production method, an aromatic polyester resin having an arbitrary average molecular weight can be easily obtained without finely adjusting the conditions such as the amount of raw materials supplied during the polymerization reaction and the heating temperature and heating time. .
  • the target high molecular weight polyester resin cannot be obtained. Since the esterification reaction does not proceed, it is necessary to control these concentrations.
  • a known method can be used without particular limitation as long as the target concentration can be achieved.
  • the aromatic polyester resin of the present invention obtained as described above has a weight average molecular weight of 20000 or more despite the fact that it is produced using a hydrolase, and has excellent thermal properties and mechanical properties. Since it is relatively excellent, it can be particularly suitably used as a structural material. Moreover, since a metal catalyst is not used, it is possible to obtain a resin that does not substantially contain a catalytic metal element that has been conventionally used for polyester production. For this reason, it is possible to prevent environmental pollution due to metal outflow and the like, and further, it is difficult for the performance of the polyester resin to deteriorate due to metal impurities.
  • Test Examples 1-1 to 1-3 various charge ratios of dimethyl terephthalate and hexamethylene glycol were changed, heated at 90 ° C. for 5 hours, then heated to 140 ° C. over 1 hour, Stirring was performed for 42 hours.
  • Test Example 1-4 the same operation was performed without adding the immobilized enzyme.
  • Test Example 1-5 the mixture was heated to 140 ° C. immediately after the start of the reaction and stirred for 48 hours.
  • Test Examples 1-1 to 1 in which dimethyl terephthalate and hexanemethylene glycol were preliminarily heated at 90 ° C. for 5 hours and further heated at 140 ° C. for 42 hours in the presence of a hydrolase.
  • a hydrolase As for -3, it became clear that a high molecular weight aromatic polyester resin having a weight average molecular weight of 33,000 to 52,000 can be obtained in a high yield.
  • Test Example 1-4 in which no hydrolase was added, the polycondensation reaction did not proceed at all, and polyester could not be obtained.
  • Test Example 1-5 which was heated to 140 ° C. immediately after the start of the reaction, no polyester was obtained.
  • the average molecular weight was the highest in Test Example 1-2 in which hexamethylene glycol, which was slightly vaporized slightly compared to dimethyl terephthalate, was used slightly in excess. From these results, it is understood that control of the amount ratio (molar ratio) of the carboxylic acid component and the diol component in the reaction system is extremely important for the production of a high molecular weight aromatic polyester.
  • the present inventors conducted a similar test using a plurality of dicarboxylic acid components (dimethyl terephthalate and dimethyl 2,6-naphthalenedicarboxylate). The results are shown in Table 2 below.
  • Example 1-7 using dimethyl 2,6-naphthalenedicarboxylate as the main dicarboxylic acid component, as in the above test example, a high molecular weight of 29,000 was obtained. Aromatic polyester was obtained in high yield.
  • the present inventors made a hydrolase to act on the dicarboxylic acid component and the diol component in an organic solvent in accordance with Production Example 2 to prepare an ester oligomer mixture in advance, and this was further added in the presence of the hydrolase. Then, production of the corresponding aromatic polyester resin was attempted by heating and polycondensation (Test Examples 2-1 to 2-4). The procedure for producing the ester oligomer mixture is as outlined below.
  • Test Example 2-1 the ester oligomer mixture obtained as described above was diluted in toluene to a concentration of 50 g / L, and heated and stirred at 100 ° C. for 48 hours in the presence of the immobilized enzyme. I did it. Thereafter, the mixture was allowed to cool to room temperature, chloroform was added to dissolve the product, and the immobilized enzyme was filtered off. After concentrating the filtrate, this was added dropwise to toluene at room temperature, and the resulting precipitate was collected by filtration and dried to obtain the desired aromatic polyester resin.
  • Test Examples 2-2 to 2-4 an ester oligomer mixture was prepared by variously changing the diol component, and then heated and stirred at 140 ° C.
  • Test Example 2-1 in which an ester oligomer mixture prepared in advance using a hydrolase was added to toluene and a heating / polycondensation reaction was performed, the weight average molecular weight was 21,000. It was confirmed that the present invention is sufficiently applicable even when a polycondensation reaction is carried out in an organic solvent. Also in Test Examples 2-2 to 2-4 using ester oligomer mixtures in which various diol components are changed, a high molecular weight aromatic polyester resin having a weight average molecular weight of 51,000 to 54,000 has a high yield. It became clear that it was obtained at a rate. In Test Example 2-4, an aromatic random copolyester resin having a composition ratio well matched with the charged amount ratio of the diol component was obtained.
  • the present inventors tried production of a corresponding aromatic polyester resin in the same manner as in the above test using a high-purity cyclic oligomer mixture obtained by purifying only a cyclic oligomer from an ester oligomer mixture according to Production Example 3. (Test Examples 3-1 and 3-2).
  • the high-purity cyclic oligomer used here has a quantity ratio of the dicarboxylic acid component to the diol component of 1.000: 1.000 on 1 H NMR.
  • the procedure for producing the high-purity cyclic oligomer is as outlined below.
  • Test Example 3-1 the high-purity cyclic oligomer mixture was prepared using hexamethylene glycol as the diol component, and the mixture was heated and stirred at 140 ° C. for 48 hours in the presence of the immobilized enzyme to carry out a polycondensation reaction.
  • Test Example 3-2 the above-mentioned high-purity cyclic oligomer mixture was prepared using decamethylene glycol, and heated and stirred at 120 ° C. for 48 hours in the presence of the immobilized enzyme to carry out a polycondensation reaction. The subsequent operation is the same as in Test Examples 2-1 to 2-4.
  • the present inventors have produced high-purity cyclic oligomers by varying the charging amount ratio (molar ratio) of dimethyl terephthalate and hexamethylene glycol. Then, a polyester production process was performed in the same manner as in Test Example 3-1 on the ester oligomer mixture containing the chain oligomers of the both-end alkyl ester-alkyl ester in various ratios. Thus, the influence of the ratio of the dicarboxylic acid component / diol component in the high-purity cyclic ester oligomer used in the polyester production process on the molecular weight of the aromatic polyester obtained after the polyester production process was investigated. A summary of the results is shown in FIG. In the figure, [H] / [T] (mol / mol) represents the quantitative ratio (molar ratio) of the hexamethylene glycol component / terephthalic acid component in the high-purity cyclic oligomer mixture.
  • the amount ratio (molar ratio) of the dicarboxylic acid component / diol component in the high purity cyclic ester oligomer mixture greatly affects the molecular weight of the resulting aromatic polyester resin. It was. For example, it can be seen that the weight average molecular weight of the obtained resin is only about 60,000 even when the above-mentioned ratio is only 1 mol%. From this, it can be said that in order to obtain a high molecular weight aromatic polyester resin, it is necessary to control the dicarboxylic acid component / diol component in the polycondensation reaction to 1: 1 with considerably high accuracy.
  • the preparation amount ratio (molar ratio) of the dicarboxylic acid component and the diol component in the ester oligomer production process arbitrary, for the purpose of the quantitative ratio of the dicarboxylic acid component and the diol component in the obtained cyclic ester oligomer Accordingly, the molecular weight of the aromatic polyester can be strictly controlled without changing other conditions. From these it is understood that the use of a high purity cyclic ester oligomer mixture is extremely useful.
  • thermal properties tests for actual use were performed on the high molecular weight aromatic polyester resin of the present invention obtained as described above.
  • the results are shown in Tables 6 and 7 below.
  • the glass transition point, melting point, and temperature drop crystallization temperature are measured using a differential scanning calorimeter (DSC-60: manufactured by Shimadzu Corporation). (DTG-60H: manufactured by Shimadzu Corporation) was used. The measurement was performed by changing the temperature at 10 ° C./min in a nitrogen atmosphere.
  • the aromatic polyester resin of the present invention produced using a hydrolase has heat comparable to that of high density polyethylene used as a conventional structural material. The characteristics and mechanical properties are shown. From this, it was confirmed that the aromatic polyester resin of the present invention can be sufficiently used as a structural material.
  • the high molecular weight aromatic polyester resin of the present invention obtained as described above was subjected to a quantitative test of the metal ion content.
  • the results are shown in Table 8 below.
  • the metal ion quantitative test was conducted using an inductively coupled plasma optical emission spectrometer (ICP optical emission spectrometer P-4010 manufactured by Hitachi, Ltd.).
  • ICP optical emission spectrometer P-4010 manufactured by Hitachi, Ltd.
  • the obtained solution was diluted with pure water at 20 ° C., and this was used as a sample solution for ICP emission analysis.
  • the heavy metal content contained in the aromatic polyester resin of the present invention produced using a hydrolase was less than the detection limit for all measured metals. From this, it is understood that the aromatic polyester resin obtained by the present invention has very few metal impurities. For this reason, it is considered that environmental pollution due to metal outflow or the like can be prevented, and further, the performance deterioration of the polyester resin due to metal impurities is hardly caused.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

Provided is an aromatic polyester resin which contains only a small amount of metallic impurities, exhibits relatively excellent thermal properties and mechanical properties and has a high molecular weight. Also provided is a method of producing an aromatic polyester resin having a high molecular weight through a process with low environmental burden wherein a hydrolase is employed as a polymerization catalyst. An aromatic polyester resin, which contains a low amount of metallic impurities, exhibits relatively excellent thermal properties and mechanical properties and has a high molecular weight, can be obtained by using a dicarboxylic acid component comprising terephthalic acid, naphthalenedicarboxylic acid or a derivative thereof and a diol component while selecting the kinds of the monomer components employed and the composition ratio thereof so that a polyester resin can be synthesized under such environment as not impairing the catalytic activity of a hydrolase, using as a polymerization catalyst a hydrolase capable of showing a sufficient catalytic activity for these components, and controlling the temperature conditions during the polycondensation or preliminarily preparing an ester oligomer and then using the same in polycondensation.

Description

芳香族系ポリエステル樹脂及びその製造方法Aromatic polyester resin and method for producing the same 関連出願Related applications
 本出願は、2008年04月17日付け出願の日本国特許出願2008-107743号の優先権を主張しており、ここに折り込まれるものである。 This application claims the priority of Japanese Patent Application No. 2008-107743 filed on Apr. 17, 2008, and is incorporated herein.
 本発明は、金属不純物の含有量が低く、且つ熱的性質や機械的性質に比較的優れる高分子量の芳香族系ポリエステル樹脂、及び芳香族系ポリエステル樹脂の製造方法をより環境低負荷なものとするための改良に関する。 The present invention relates to a high molecular weight aromatic polyester resin having a low content of metal impurities and relatively excellent in thermal properties and mechanical properties, and a method for producing an aromatic polyester resin, which has a lower environmental impact. Related to improvements.
 現代社会において工業的に最も広く利用されているポリエステルは、ポリエチレンテレフタレート(PET)やポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)などに代表される芳香族系ポリエステルである。芳香族系ポリエステルがこのように広く利用されている大きな要因として、芳香族ジカルボン酸骨格に起因した、優れた熱的性質や機械的性質を示すことなどが挙げられる。 Polyesters most widely used industrially in modern society are aromatic polyesters represented by polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), and the like. A major factor in which aromatic polyesters are widely used in this way is that they exhibit excellent thermal properties and mechanical properties due to the aromatic dicarboxylic acid skeleton.
 従来の芳香族系ポリエステル樹脂は、一般に、芳香族系ジカルボン酸あるいはその誘導体とジオール成分とを仕込み、重金属触媒を作用させて製造されている。ここで、高分子量のポリエステルを得るには、反応系内に存在するカルボン酸とアルコールの官能基数の比率を1:1に近づける必要がある。この目的のため、ジカルボン酸成分に対して過剰に仕込んでおいたジオールの過剰分を、200℃以上の高温、高減圧下で反応系外へ留去させながら重合を進行させ、最終的に官能基の比率を1:1に近づけることによって高分子量化を図っているのが、先の工業的芳香族系ポリエステル樹脂の製造方法における特徴である。 Conventional aromatic polyester resins are generally produced by adding an aromatic dicarboxylic acid or a derivative thereof and a diol component and reacting with a heavy metal catalyst. Here, in order to obtain a high molecular weight polyester, it is necessary to make the ratio of the number of functional groups of carboxylic acid and alcohol present in the reaction system close to 1: 1. For this purpose, the polymerization proceeds while the excess of the diol charged excessively with respect to the dicarboxylic acid component is distilled out of the reaction system at a high temperature of 200 ° C. or higher and high vacuum, and finally the functional The high molecular weight is achieved by bringing the ratio of groups close to 1: 1, which is a feature of the above-mentioned industrial aromatic polyester resin production method.
 しかしながら、このような従来の芳香族系ポリエステル樹脂の製造方法については、例えば、(1)エネルギー多消費型である、(2)金属触媒残渣により環境汚染が引き起こされる、(3)混入した金属触媒残渣によりポリエステル樹脂の性能低下が引き起こされる、など多くの問題点が指摘されている。 However, with regard to such a conventional method for producing an aromatic polyester resin, for example, (1) energy-consuming type, (2) environmental pollution caused by metal catalyst residue, (3) mixed metal catalyst Many problems have been pointed out, such as the residue causing a decrease in the performance of the polyester resin.
 これら課題の解決策の一つとして、ポリエステル樹脂製造時の重合触媒を金属触媒に代えて固定化酵素触媒とすることが挙げられる。これによって、比較的温和な条件下での重合が可能になり、省エネルギーな製造プロセスとなるだけでなく、触媒残渣の除去が可能となるため、環境汚染の防止や樹脂の性能低下を防止することができる。酵素を重合触媒とするポリエステルの製造方法に関しては多くの報告があり、構造材料として使用可能な程度の高分子量な樹脂が得られた例も報告されている(例えば、非特許文献1参照)。しかしながら、酵素触媒を用いて製造されるポリエステルの報告の多くは、一般に芳香族系ポリエステルと比較して耐熱性や力学的強度に劣る脂肪族系のポリエステルであった。 One solution to these problems is to use an immobilized enzyme catalyst instead of a metal catalyst as a polymerization catalyst in the production of a polyester resin. This makes it possible to polymerize under relatively mild conditions, which not only results in an energy-saving manufacturing process, but also enables removal of catalyst residues, thus preventing environmental contamination and resin performance degradation. Can do. There have been many reports on a method for producing polyester using an enzyme as a polymerization catalyst, and an example of obtaining a high molecular weight resin that can be used as a structural material has also been reported (for example, see Non-Patent Document 1). However, most of the reports of polyesters produced using enzyme catalysts are aliphatic polyesters that are generally inferior in heat resistance and mechanical strength as compared with aromatic polyesters.
 芳香族系ポリエステルであるポリアルキレンテレフタレートの酵素触媒による製造方法もいくつか報告されている(例えば、非特許文献2,3及び特許文献1参照)ものの、得られた芳香族系ポリエステルの平均分子量はいずれも20,000に満たないものであり、構造材料として使用可能なものではないと推測される。なお、この原因として、ポリエステル重合触媒として通常使用されている加水分解酵素は、元々脂肪酸と脂肪族アルコールからなるエステル結合を分解するものであるため、芳香族系の化合物に対する触媒作用が弱く、このため、高分子量の芳香族系ポリエステル樹脂を得ることは不可能であると考えられていた。 Although several methods for producing polyalkylene terephthalate, which is an aromatic polyester, using an enzyme catalyst have been reported (for example, see Non-Patent Documents 2 and 3 and Patent Document 1), the average molecular weight of the obtained aromatic polyester is All are less than 20,000, and it is estimated that they are not usable as a structural material. As a cause of this, a hydrolase usually used as a polyester polymerization catalyst is one that degrades an ester bond originally composed of a fatty acid and an aliphatic alcohol, and therefore has a weak catalytic action on aromatic compounds. Therefore, it has been considered impossible to obtain a high molecular weight aromatic polyester resin.
 一方で、芳香族系ポリエステルの一種であるポリアルキレンイソフタレートについては、酵素触媒重合によって比較的高分子量のポリエステル樹脂が得られている(例えば、非特許文献4参照)。しかしながら、このポリアルキレンイソフタレート樹脂は、対応するポリアルキレンテレフタレート樹脂やポリアルキレンナフタレート樹脂と比較して、一般に耐熱性に劣るものである。そして、ポリアルキレンテレフタレートやポリアルキレンナフタレートなどのようなテレフタル酸もしくはナフタレンジカルボン酸をそのポリエステル骨格に含有する芳香族系ポリエステル樹脂に関し、酵素触媒重合によって高分子量体が得られた例については未だ報告されていない。 On the other hand, with respect to polyalkylene isophthalate, which is a kind of aromatic polyester, a polyester resin having a relatively high molecular weight has been obtained by enzyme-catalyzed polymerization (see, for example, Non-Patent Document 4). However, this polyalkylene isophthalate resin is generally inferior in heat resistance as compared with the corresponding polyalkylene terephthalate resin and polyalkylene naphthalate resin. In addition, regarding aromatic polyester resins containing terephthalic acid or naphthalenedicarboxylic acid such as polyalkylene terephthalate and polyalkylene naphthalate in the polyester skeleton, examples of high molecular weight polymers obtained by enzyme-catalyzed polymerization are still reported. It has not been.
特許第3690028号Patent No. 3690028
 本発明は、前記課題点を解決するためになされたものであり、その目的は、金属不純物の含有量が低く、且つ比較的熱的性質や機械的性質に優れる高分子量の芳香族系ポリエステル樹脂、及び重合触媒として加水分解酵素を用いる環境低負荷型プロセスにより高分子量の芳香族系ポリエステル樹脂の製造方法を提供することにある。 The present invention has been made to solve the above-mentioned problems, and its object is to have a high molecular weight aromatic polyester resin having a low content of metal impurities and relatively excellent thermal and mechanical properties. Another object of the present invention is to provide a method for producing a high molecular weight aromatic polyester resin by an environmentally low load process using a hydrolase as a polymerization catalyst.
 前記課題を解決するために本発明者らは鋭意研究を重ねた結果、テレフタル酸又はナフタレンジカルボン酸、あるいはそれらの誘導体を含むジカルボン酸成分とジオール成分とを、加水分解酵素の存在下で重縮合させることで、比較的温和な条件下で実施される環境低負荷型合成プロセスによって、金属不純物の含有量が低く、且つ比較的に熱的性質や機械的性質に優れる高分子量の芳香族系ポリエステル樹脂が得られることを見出した。より詳しくは、芳香族系化合物に対しても十分な触媒活性を示す加水分解酵素を選択し、同時に使用するモノマー成分の種類やその配合比等を適当に選択して、加水分解酵素の触媒活性が損なわれないような環境下で合成可能なように得られるポリエステル樹脂の組成を設計した上で、重縮合の際の温度条件を調整する、あるいは予めエステルオリゴマーを調製して重縮合に使用することによって、従来不可能であると考えられていた高分子量の芳香族系ポリエステルを、加水分解酵素を使用して製造することが可能であることを見出し、本発明を完成するに至った。 In order to solve the above-mentioned problems, the present inventors have conducted intensive research. High-molecular-weight aromatic polyester with a low content of metal impurities and relatively excellent thermal and mechanical properties by an environmentally low-load synthetic process carried out under relatively mild conditions. It was found that a resin was obtained. More specifically, a hydrolase that exhibits sufficient catalytic activity for aromatic compounds is selected, and the catalytic activity of the hydrolase is selected by appropriately selecting the type of monomer component to be used and its blending ratio. After designing the composition of the polyester resin that can be synthesized in an environment that does not damage the resin, adjust the temperature conditions during polycondensation, or prepare an ester oligomer in advance and use it for polycondensation Thus, it has been found that a high molecular weight aromatic polyester which has been considered impossible in the past can be produced using a hydrolase, and the present invention has been completed.
 すなわち、本発明にかかる芳香族系ポリエステル樹脂は、テレフタル酸又はナフタレンジカルボン酸、あるいはそれらの誘導体を含むジカルボン酸成分とジオール成分とを、加水分解酵素の触媒作用により重合させることによって得られ、重量平均分子量が20000以上であることを特徴とするものである。 That is, the aromatic polyester resin according to the present invention is obtained by polymerizing a dicarboxylic acid component and a diol component containing terephthalic acid or naphthalenedicarboxylic acid, or a derivative thereof by the catalytic action of a hydrolase, The average molecular weight is 20000 or more.
 また、前記芳香族系ポリエステル樹脂は、その融点が170℃未満であることが好適である。また、前記芳香族系ポリエステル樹脂において、前記加水分解酵素がリパーゼであることが好適であり、特にリパーゼが担体に固定化された固定化リパーゼであることが好適である。また、前記芳香族系ポリエステル樹脂において、アンチモン、チタン、ゲルマニウム、アルミニウム、亜鉛、スズ、ジルコニウム、マグネシウム及びマンガンといった従来ポリエステル製造の重合触媒として用いられている金属を実質的に含まないことが好適である。 In addition, the aromatic polyester resin preferably has a melting point of less than 170 ° C. In the aromatic polyester resin, the hydrolase is preferably a lipase, and particularly preferably an immobilized lipase in which the lipase is immobilized on a carrier. The aromatic polyester resin preferably contains substantially no metal conventionally used as a polymerization catalyst for polyester production, such as antimony, titanium, germanium, aluminum, zinc, tin, zirconium, magnesium and manganese. is there.
 また、本発明にかかる芳香族系ポリエステル樹脂の製造方法は、テレフタル酸又はナフタレンジカルボン酸、あるいはそれらの誘導体を含むジカルボン酸成分とジオール成分とを用いて、加水分解酵素の存在下、重量平均分子量20000未満の鎖状あるいは環状のエステルオリゴマー混合物を製造するエステルオリゴマー製造工程と、前記工程により得られたエステルオリゴマー混合物を、加水分解酵素の存在下、さらに重縮合させ、重量平均分子量20000以上の芳香族系ポリエステル樹脂を製造するポリエステル樹脂重合工程とを備えることを特徴とするものである。 Moreover, the method for producing an aromatic polyester resin according to the present invention uses a dicarboxylic acid component containing terephthalic acid or naphthalenedicarboxylic acid, or a derivative thereof, and a diol component, in the presence of a hydrolase, and has a weight average molecular weight. An ester oligomer production process for producing a chain or cyclic ester oligomer mixture of less than 20,000, and an ester oligomer mixture obtained by the above process are further polycondensed in the presence of a hydrolase to give a fragrance having a weight average molecular weight of 20000 or more. And a polyester resin polymerization step for producing a group polyester resin.
 また、前記芳香族系ポリエステル樹脂の製造方法において、前記エステルオリゴマー製造工程が、テレフタル酸又はナフタレンジカルボン酸、あるいはそれらの誘導体を含むジカルボン酸成分とジオール成分とを、加水分解酵素の存在下、反応開始直後に30~120℃で5~6000分間加熱する第一加熱工程であり、前記ポリエステル樹脂重合工程が、前記第一加熱工程の後、加水分解酵素の存在下、さらに70~180℃で60~6000分間加熱する第二加熱工程であることが好適である。 Further, in the method for producing an aromatic polyester resin, the ester oligomer production step comprises reacting terephthalic acid or naphthalenedicarboxylic acid, or a dicarboxylic acid component containing a derivative thereof and a diol component in the presence of a hydrolase. A first heating step of heating at 30 to 120 ° C. for 5 to 6000 minutes immediately after the start, wherein the polyester resin polymerization step is further performed at 70 to 180 ° C. in the presence of hydrolase after the first heating step. The second heating step is preferably performed for heating for ˜6000 minutes.
 また、本発明にかかる芳香族系ポリエステル樹脂の製造方法は、テレフタル酸又はナフタレンジカルボン酸、あるいはそれらの誘導体を含むジカルボン酸成分とジオール成分とを用いて、加水分解酵素の存在下、重量平均分子量20000未満の鎖状あるいは環状のエステルオリゴマー混合物を製造するエステルオリゴマー製造工程と、前記工程により得られたエステルオリゴマー混合物中から環状のエステルオリゴマーを分離精製して高純度の環状エステルオリゴマー混合物を得る環状エステルオリゴマー精製工程と、前記工程により得られた高純度の環状エステルオリゴマー混合物を、加水分解酵素の存在下、さらに重縮合させ、重量平均分子量20000以上の芳香族系ポリエステル樹脂を製造するポリエステル樹脂重合工程とを備えることを特徴とするものである。 Moreover, the method for producing an aromatic polyester resin according to the present invention uses a dicarboxylic acid component containing terephthalic acid or naphthalenedicarboxylic acid, or a derivative thereof, and a diol component, in the presence of a hydrolase, and has a weight average molecular weight. An ester oligomer production process for producing a chain or cyclic ester oligomer mixture of less than 20,000, and a cyclic ester oligomer mixture obtained by the above process by separating and purifying cyclic ester oligomers to obtain a high purity cyclic ester oligomer mixture Polyester resin polymerization for producing an aromatic polyester resin having a weight average molecular weight of 20,000 or more by further polycondensation of the ester oligomer purification step and the high purity cyclic ester oligomer mixture obtained in the above step in the presence of a hydrolase Process and equipment And it is characterized in Rukoto.
 また、前記芳香族系ポリエステル樹脂の製造方法において、前記エステルオリゴマー製造工程が、テレフタル酸又はナフタレンジカルボン酸、あるいはそれらの誘導体を含むジカルボン酸成分とジオール成分とを、加水分解酵素の存在下、30~120℃で5~6000分間加熱する工程であり、前記ポリエステル樹脂重合工程が、加水分解酵素の存在下、さらに70~180℃で60~6000分間加熱する工程であることが好適である。 Further, in the method for producing an aromatic polyester resin, the ester oligomer production step comprises converting a dicarboxylic acid component containing terephthalic acid or naphthalenedicarboxylic acid, or a derivative thereof, and a diol component in the presence of a hydrolase, 30 It is a step of heating at 120 ° C. for 5 to 6000 minutes, and the polyester resin polymerization step is preferably a step of heating at 70 to 180 ° C. for 60 to 6000 minutes in the presence of a hydrolase.
 本発明によれば、テレフタル酸又はナフタレンジカルボン酸、あるいはそれらの誘導体を含むジカルボン酸成分とジオール成分とを、加水分解酵素の触媒活性が損なわれないような環境下でポリエステル樹脂を合成可能なように、使用するモノマー成分の種類やその配合比を選択し、これらに対して、十分な触媒活性を示す加水分解酵素を重合触媒として用い、重縮合の際の温度条件を調整、あるいは予めエステルオリゴマーを調製して重縮合に使用することによって、金属不純物の含有量が低く、且つ熱的性質や機械的性質に比較的優れる高分子量の芳香族系ポリエステル樹脂が得られる。 According to the present invention, a polyester resin can be synthesized in an environment in which the catalytic activity of a hydrolase is not impaired by a dicarboxylic acid component containing terephthalic acid or naphthalenedicarboxylic acid, or a derivative thereof, and a diol component. Select the type of monomer component to be used and the blending ratio thereof, and use a hydrolase exhibiting sufficient catalytic activity as a polymerization catalyst, adjust the temperature conditions during polycondensation, or pre-ester oligomer Is used for polycondensation to obtain a high molecular weight aromatic polyester resin having a low content of metal impurities and relatively excellent thermal properties and mechanical properties.
試験例3-1により得られた芳香族系ポリエステル樹脂(ポリ(ヘキサメチレンテレフタレート))のH NMRスペクトル分析結果である(300MHz、CDCl)。FIG. 3 shows the results of 1 H NMR spectrum analysis of an aromatic polyester resin (poly (hexamethylene terephthalate)) obtained in Test Example 3-1, (300 MHz, CDCl 3 ). エステルオリゴマー混合物に固定化酵素を作用させて得られる芳香族系ポリエステルの重量平均分子量に対し、その混合物中に含まれるジオール(ヘキサメチレングリコール)成分とジカルボン酸(テレフタル酸)成分の比率が与える影響を示した図である。Effect of the ratio of diol (hexamethylene glycol) component and dicarboxylic acid (terephthalic acid) component contained in the mixture on the weight average molecular weight of aromatic polyester obtained by allowing immobilized enzyme to act on ester oligomer mixture FIG.
 本発明にかかる芳香族系ポリエステル樹脂は、テレフタル酸又はナフタレンジカルボン酸、あるいはそれらの誘導体を含むジカルボン酸成分とジオール成分とを、加水分解酵素の触媒作用により重合させることによって得られ、重量平均分子量が20000以上であることを特徴とするものである。 The aromatic polyester resin according to the present invention is obtained by polymerizing a dicarboxylic acid component containing terephthalic acid or naphthalenedicarboxylic acid, or a derivative thereof, and a diol component by the catalytic action of a hydrolase, and has a weight average molecular weight. Is 20,000 or more.
 本発明において用いられるジカルボン酸成分は、テレフタル酸又はナフタレンジカルボン酸、あるいはそれらの誘導体を含むものである。本発明に用いられるテレフタル酸又はナフタレンジカルボン酸あるいはそれらの誘導体の総量は、ジカルボン酸成分の全量に対する比率として、好ましくは40モル%以上、さらに好ましくは50モル%以上である。前記比率が40モル%以下であると、芳香族系ポリエステル樹脂としての特性を期待しにくい。また、ジカルボン酸成分の全量が、テレフタル酸又はナフタレンジカルボン酸、あるいはそれらの誘導体であってもかまわない。なお、テレフタル酸又はナフタレンジカルボン酸の誘導体としては、例えば、テレフタル酸ジメチル、テレフタル酸ジエチル、ナフタレンカルボン酸ジメチル、ナフタレンカルボン酸ジエチル等の低級アルキルエステルが挙げられる。これらのうち、反応系中での溶解性や溶融性の点から、低級アルキルエステルを使用することが特に好ましい。また、テレフタル酸又はナフタレンジカルボン酸、あるいはそれらの誘導体以外のジカルボン酸成分としては、酵素触媒によりエステル化反応、またはエステル交換反応が起こり得るものである限り、特に限定されるものではない。その他のジカルボン酸成分としては、例えば、ジフェニルジカルボン酸、ジフェニルエーテルジカルボン酸等の芳香族ジカルボン酸、シュウ酸、コハク酸、マレイン酸、アジピン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、イタコン酸等の脂肪族ジカルボン酸、ピロメリット酸等の多価カルボン酸等が挙げられる。なお、ジカルボン酸成分は、ジカルボン酸及びジカルボン酸の低級アルキルエステルのいずれに由来するものであってもよい。また、ジカルボン酸ではなく6-ヒドロキシヘキサン酸誘導体や乳酸誘導体、グリコール酸誘導体等のヒドロキシ酸を使用することも可能である。本発明に用いられるジカルボン酸成分は、得られるポリエステル樹脂の所望物性や使用目的に応じて上述のジカルボン酸成分の中から複数のものを適宜選択して用いることができる。 The dicarboxylic acid component used in the present invention contains terephthalic acid or naphthalenedicarboxylic acid, or a derivative thereof. The total amount of terephthalic acid or naphthalenedicarboxylic acid or derivatives thereof used in the present invention is preferably 40 mol% or more, more preferably 50 mol% or more, as a ratio to the total amount of the dicarboxylic acid component. When the ratio is 40 mol% or less, it is difficult to expect characteristics as an aromatic polyester resin. Further, the total amount of the dicarboxylic acid component may be terephthalic acid, naphthalenedicarboxylic acid, or a derivative thereof. Examples of terephthalic acid or naphthalenedicarboxylic acid derivatives include lower alkyl esters such as dimethyl terephthalate, diethyl terephthalate, dimethyl naphthalenecarboxylate, and diethyl naphthalenecarboxylate. Among these, it is particularly preferable to use a lower alkyl ester from the viewpoint of solubility and meltability in the reaction system. In addition, the dicarboxylic acid component other than terephthalic acid or naphthalenedicarboxylic acid or derivatives thereof is not particularly limited as long as an esterification reaction or a transesterification reaction can occur by an enzyme catalyst. Examples of other dicarboxylic acid components include aromatic dicarboxylic acids such as diphenyl dicarboxylic acid and diphenyl ether dicarboxylic acid, oxalic acid, succinic acid, maleic acid, adipic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, and itaconic acid. And aliphatic dicarboxylic acids such as polyvalent carboxylic acids such as pyromellitic acid. The dicarboxylic acid component may be derived from either a dicarboxylic acid or a lower alkyl ester of dicarboxylic acid. It is also possible to use hydroxy acids such as 6-hydroxyhexanoic acid derivatives, lactic acid derivatives, and glycolic acid derivatives instead of dicarboxylic acids. As the dicarboxylic acid component used in the present invention, a plurality of dicarboxylic acid components can be appropriately selected from the above-mentioned dicarboxylic acid components according to the desired physical properties and intended use of the resulting polyester resin.
 本発明において用いられるジオール成分は、酵素触媒によりエステル化反応、またはエステル交換反応が起こり得るものである限り、特に限定されるものではない。ジオール成分としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、トリメチレングリコール、テトラメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ヘプタメチレングリコール、オクタメチレングリコール、デカメチレングリコール、ドデカメチレングリコール、ポリエチレングリコール等の脂肪族ジオールやシクロヘキサンジオール、シクロヘキサンジメタノールなどの脂環式ジオール、ナフタレンジオールやビスフェノールA、レゾルシン等の芳香族系ジオール等が挙げられる。本発明に用いられるジオール成分としては、上述のジオール成分のうちから、目的に応じた任意の成分数と配合比を選択することができる。また、必要に応じて、グリセリンやペンタエリスリトール等の3価以上のアルコールを使用することもできる。 The diol component used in the present invention is not particularly limited as long as an esterification reaction or a transesterification reaction can occur by an enzyme catalyst. Examples of the diol component include ethylene glycol, diethylene glycol, triethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, heptamethylene glycol, octamethylene glycol, decamethylene glycol, dodecamethylene glycol, polyethylene glycol. And aliphatic diols such as cyclohexanediol and cyclohexanedimethanol, and aromatic diols such as naphthalenediol, bisphenol A, and resorcin. As the diol component used in the present invention, an arbitrary number of components and blending ratio can be selected from the above diol components according to the purpose. Moreover, trihydric or more alcohols, such as glycerol and pentaerythritol, can also be used as needed.
 本発明において重合触媒として用いられる加水分解酵素は、選択されるモノマー、もしくはオリゴマーのエステル化反応、及びエステル交換反応を促進させ得るものである限り、特に限定されるものではない。例えば、公知の菌株由来の加水分解酵素から選択することができ、なかでもカルボキシルエステラーゼ(EC3.1.1.1:carboxylesterase)やリパーゼ(EC3.1.1.3:triacylglycerol lipase)を好適に用いることができる。また、加水分解酵素の耐熱性や得られる芳香族系ポリエステル樹脂との分別のし易さ等の観点から、前記加水分解酵素は担体に固定化された固定化加水分解酵素であることが好適である。加水分解酵素の固定化の手法は特に限定されるものではなく、公知の固定化手法による固定化加水分解酵素を用いることができる。より具体的には、Candida antarctica由来のリパーゼ及びカルボキシルエステラーゼが固定化された固定化酵素であるNovozym 435(ノボザイム社製;多孔質アクリル樹脂に固定化された固定化リパーゼ)が、特に好適な加水分解酵素として挙げられる。 The hydrolase used as a polymerization catalyst in the present invention is not particularly limited as long as it can promote the esterification reaction and transesterification reaction of the selected monomer or oligomer. For example, it can be selected from a hydrolase derived from a known strain, and among them, carboxylesterase (EC 3.1.1.1: carboxysterase) and lipase (EC 3.1.1.3: triacylglycolase lipase) are preferably used. be able to. In addition, from the viewpoint of heat resistance of the hydrolase and ease of separation from the resulting aromatic polyester resin, the hydrolase is preferably an immobilized hydrolase immobilized on a carrier. is there. The method for immobilizing the hydrolase is not particularly limited, and an immobilized hydrolase by a known immobilization method can be used. More specifically, Novozym 435 (manufactured by Novozyme; immobilized lipase immobilized on a porous acrylic resin), which is an immobilized enzyme in which lipase derived from Candida antarctica and carboxylesterase are immobilized, is particularly suitable hydrolyzate. It is mentioned as a degrading enzyme.
 また、本発明にかかる芳香族系ポリエステル樹脂は、その製造段階において、使用するモノマーや重合反応により生成するオリゴマー又はポリマーが溶融あるいは溶解した状態で、加水分解酵素を作用させて得られることを特徴とする。このため、本発明にかかる芳香族系ポリエステル樹脂は、加水分解酵素の触媒活性が損なわれないような環境下で合成可能なように、使用するモノマー成分の種類やその配合比が調整されていることが必要となる。より具体的には、得られる芳香族系ポリエステル樹脂の融点が170℃未満となるようにモノマー成分の種類やその配合比が調整されることが望ましい。このようなモノマー成分の組み合わせとしては、特に限定されるものではないが、例えば、テレフタル酸/ヘキサメチレングリコール、テレフタル酸/デカメチレングリコール、2,6-ナフタレンジカルボン酸/デカメチレングリコール、2,6-ナフタレンジカルボン酸/ドデカメチレングリコール等の組み合わせが挙げられる。また、得られるポリエステル樹脂の融点が170℃未満となる範囲であれば、先に列挙したような他のジカルボン酸成分やジオールを適当量含んでいても構わない。なお、例えば、ポリエチレンテレフタレートやポリブチレンテレフタレート等のより高融点な芳香族系ポリエステル樹脂を選択すると、反応により生成するポリマーが溶融あるいは溶解できるような過酷な反応条件とする必要がある。しかしながら、そうした過酷な条件下では加水分解酵素の触媒活性が顕著に減少するために高分子量体が得られにくい。なお、融点は公知の方法によって測定することが可能であり、例えば、示差走査熱量計(DSC-60:島津製作所社製)を用い、窒素雰囲気下10℃/minで昇温させて測定することができる。本発明にかかる芳香族系ポリエステル樹脂の融点は、より好ましくは165℃未満、さらに好ましくは160℃未満である。なお、以上に説明したような加水分解酵素の触媒活性が損なわれないような環境は、使用される加水分解酵素の耐性(耐熱性、耐薬品性等)によって大きく支配されるものであり、例えば、将来的に(出願時点では存在しない)高耐熱性を有する加水分解酵素が開発されたとすれば、本発明の方法を用いて、より高融点の芳香族系ポリエステル樹脂を得ることも可能である。 In addition, the aromatic polyester resin according to the present invention is obtained by allowing a hydrolase to act in the production stage in a state where a monomer used or an oligomer or polymer produced by a polymerization reaction is melted or dissolved. And For this reason, the aromatic polyester resin according to the present invention is adjusted in the type of monomer component used and the blending ratio thereof so that it can be synthesized in an environment where the catalytic activity of the hydrolase is not impaired. It will be necessary. More specifically, it is desirable to adjust the types of monomer components and the blending ratio thereof so that the resulting aromatic polyester resin has a melting point of less than 170 ° C. The combination of such monomer components is not particularly limited. For example, terephthalic acid / hexamethylene glycol, terephthalic acid / decamethylene glycol, 2,6-naphthalenedicarboxylic acid / decamethylene glycol, 2,6 A combination of naphthalenedicarboxylic acid / dodecamethylene glycol and the like. Moreover, as long as melting | fusing point of the obtained polyester resin is less than 170 degreeC, the other dicarboxylic acid component and diol which were enumerated above may be included appropriately. For example, when an aromatic polyester resin having a higher melting point such as polyethylene terephthalate or polybutylene terephthalate is selected, it is necessary to use severe reaction conditions such that the polymer produced by the reaction can be melted or dissolved. However, under such severe conditions, the catalytic activity of the hydrolase is remarkably reduced, so that it is difficult to obtain a high molecular weight product. The melting point can be measured by a known method. For example, the melting point can be measured by using a differential scanning calorimeter (DSC-60: manufactured by Shimadzu Corporation) at a temperature of 10 ° C./min in a nitrogen atmosphere. Can do. The melting point of the aromatic polyester resin according to the present invention is more preferably less than 165 ° C, still more preferably less than 160 ° C. The environment in which the catalytic activity of the hydrolase as described above is not impaired is largely governed by the resistance (heat resistance, chemical resistance, etc.) of the hydrolase used. If a hydrolase having high heat resistance is developed in the future (which does not exist at the time of filing), it is possible to obtain an aromatic polyester resin having a higher melting point by using the method of the present invention. .
 また、本発明にかかる芳香族系ポリエステル樹脂は、重量平均分子量が20000以上のものである。分子量が20000未満であると、例えば、構造材として使用する場合に要求される耐熱性や力学的特性に劣る。なお、重量平均分子量は公知の方法によって測定することが可能であり、例えば、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定することが可能である。GPCによる重量平均分子量測定条件としては、例えば以下のものが挙げられる。
 カラム:Shodex K-804(昭和電工社製)
 検出器:示差屈折計 RI-980(日本分光社製)
 溶離液:クロロホルム:エタノール=99:1(vol/vol)
 流速:1.0ml/min
 温度:37℃
 標準試料:TSK standard POLYSTYRENE(東ソー社製)
 本発明にかかる芳香族系ポリエステル樹脂の重量平均分子量は、より好ましくは25000以上であり、さらに好ましくは30000以上である。
The aromatic polyester resin according to the present invention has a weight average molecular weight of 20000 or more. When the molecular weight is less than 20000, for example, it is inferior in heat resistance and mechanical properties required when used as a structural material. In addition, a weight average molecular weight can be measured by a well-known method, for example, can be measured using a gel permeation chromatography (GPC). Examples of the weight average molecular weight measurement conditions by GPC include the following.
Column: Shodex K-804 (made by Showa Denko)
Detector: differential refractometer RI-980 (manufactured by JASCO)
Eluent: Chloroform: ethanol = 99: 1 (vol / vol)
Flow rate: 1.0 ml / min
Temperature: 37 ° C
Standard sample: TSK standard POLYSYRENE (manufactured by Tosoh Corporation)
The weight average molecular weight of the aromatic polyester resin according to the present invention is more preferably 25000 or more, and further preferably 30000 or more.
 また、本発明にかかる芳香族系ポリエステル樹脂は、重金属触媒に変えて加水分解酵素を用いて製造するものであるため、例えば、アンチモンやチタン、ゲルマニウムやアルミニウム、亜鉛、スズ、ジルコニウム、マグネシウム、マンガンといった芳香族系ポリエステル樹脂の製造に従来使用されている金属触媒由来の金属不純物を実質的に含んでいない。したがって、本発明にかかる芳香族系ポリエステル樹脂は、これらの金属不純物の総含有量について、金属元素換算で25ppm未満を容易に達成し得るものである。一方で、従来使用されている金属触媒を用いて製造したポリエステル樹脂においては、使用した触媒金属の残渣を除くことが極めて困難であるため、ポリエステル樹脂中には、製造時に仕込んだ触媒金属のほぼ全量が含まれてしまうこととなり、この場合、環境汚染や樹脂の性能低下を招く恐れがある。この残存触媒金属の量は適当な酸処理や再沈殿処理によって軽減することはできるものの、完全に取り除くことは極めて困難であり、経済的な面からも好ましくない。金属不純物含有量は公知の方法によって測定することが可能であるが、例えば、誘起結合プラズマ発光分析装置(ICP発光分析装置P-4010:日立製作所社製)を用いて測定することが可能である。また、本発明にかかるポリエステル樹脂中におけるそれぞれの金属不純物の総含有量は、具体的には、金属元素換算で25ppm未満であり、より好ましくは20ppm未満、さらに好ましくは15ppm未満である。 In addition, since the aromatic polyester resin according to the present invention is manufactured using a hydrolase instead of a heavy metal catalyst, for example, antimony, titanium, germanium, aluminum, zinc, tin, zirconium, magnesium, manganese Thus, it does not substantially contain metal impurities derived from metal catalysts that are conventionally used in the production of aromatic polyester resins. Therefore, the aromatic polyester resin according to the present invention can easily achieve less than 25 ppm in terms of metal elements with respect to the total content of these metal impurities. On the other hand, in a polyester resin produced using a conventionally used metal catalyst, it is extremely difficult to remove the residue of the used catalyst metal. In this case, there is a risk of causing environmental pollution and resin performance degradation. Although the amount of the residual catalyst metal can be reduced by an appropriate acid treatment or reprecipitation treatment, it is extremely difficult to completely remove it, which is not preferable from an economical viewpoint. The metal impurity content can be measured by a known method. For example, it can be measured by using an inductively coupled plasma emission analyzer (ICP emission analyzer P-4010: manufactured by Hitachi, Ltd.). . The total content of each metal impurity in the polyester resin according to the present invention is specifically less than 25 ppm, more preferably less than 20 ppm, and even more preferably less than 15 ppm in terms of metal element.
 本発明にかかる芳香族系ポリエステル樹脂の製造方法においては、加水分解酵素の存在下、意図的に合成条件を操作して、予め重量平均分子量20000未満の鎖状、もしくは環状のエステルオリゴマー混合物を合成し、その後、このエステルオリゴマー混合物に対して加水分解酵素を作用させ、さらに重縮合させることによって、重量平均分子量20000以上のポリエステルを得ることを特徴とする。重量平均分子量20000未満のエステルオリゴマー混合物を予め調製することにより、重縮合反応終了時点における反応系内のジカルボン酸成分とジオール成分の量比(モル比)を制御しやすく(すなわち、反応系内に存在するカルボン酸とアルコールの官能基数の比率を1:1に近づけやすく)なる。これによって、芳香族系ポリエステル樹脂をより高分子量なものとすることができ、さらにその分子量を制御しやすくなる。なお、エステルオリゴマー製造工程と、これに続くポリエステル樹脂重合工程は、同一反応容器内で合成条件を変化させて行なうことも可能であり、あるいは、予め加水分解酵素を用いてエステルオリゴマー混合物を製造しておき、別途、このエステルオリゴマー混合物に加水分解酵素を作用させてポリエステル樹脂を製造することも可能である。
 本発明にかかる芳香族系ポリエステル樹脂の製造方法の具体例として、例えば、以下のような製法を例示できる。
In the method for producing an aromatic polyester resin according to the present invention, a mixture of a chain or cyclic ester oligomer having a weight average molecular weight of less than 20,000 is preliminarily synthesized by intentionally operating synthesis conditions in the presence of a hydrolase. Then, a hydrolase is allowed to act on this ester oligomer mixture, and further polycondensation is performed to obtain a polyester having a weight average molecular weight of 20000 or more. By preparing an ester oligomer mixture having a weight average molecular weight of less than 20,000 in advance, the amount ratio (molar ratio) of the dicarboxylic acid component and the diol component in the reaction system at the end of the polycondensation reaction can be easily controlled (that is, in the reaction system). The ratio of the number of functional groups of the carboxylic acid and alcohol present tends to approach 1: 1). As a result, the aromatic polyester resin can have a higher molecular weight, and the molecular weight can be easily controlled. The ester oligomer production step and the subsequent polyester resin polymerization step can be carried out by changing the synthesis conditions in the same reaction vessel, or the ester oligomer mixture is produced in advance using a hydrolase. Separately, it is also possible to produce a polyester resin by allowing a hydrolase to act on this ester oligomer mixture.
As specific examples of the method for producing an aromatic polyester resin according to the present invention, for example, the following production method can be exemplified.
製法例1
1)テレフタル酸又はナフタレンジカルボン酸、あるいはそれらの誘導体を含むジカルボン酸成分と、ジオール成分とを、加水分解酵素の存在下、反応開始直後に30~120℃で5~6000分間加熱する。
 上記第一加熱工程の反応温度の下限は、エステルオリゴマーの生成効率により規定される。つまり、加熱温度が30℃未満であると、使用するモノマーの少なくとも一成分が溶融あるいは溶解できなかったり、加水分解酵素による触媒効率が十分に高くならなかったりするため、エステル化反応が進行しないか、あるいは反応に長時間を要する場合がある。一方で、温度の上限は、使用するジカルボン酸成分やジオール成分の昇華もしくは気化温度、及び加水分解酵素の触媒活性が維持される温度範囲により規定される。つまり、上記加熱温度が120℃を超えると、ジカルボン酸成分やジオール成分の昇華や気化がエステル化反応よりも優先的に起こり、エステルオリゴマー中のジカルボン酸成分とジオール成分との存在比を効率的に1:1に近づけることが困難となるため、高分子量なポリエステル樹脂が得られ難くなる。なお、上記第一加熱工程の加熱温度は、好ましくは35~115℃であり、さらに好ましくは40~110℃である。
Manufacturing example 1
1) A dicarboxylic acid component containing terephthalic acid or naphthalenedicarboxylic acid or a derivative thereof, and a diol component are heated at 30 to 120 ° C. for 5 to 6000 minutes in the presence of a hydrolase immediately after the start of the reaction.
The lower limit of the reaction temperature in the first heating step is defined by the production efficiency of the ester oligomer. In other words, if the heating temperature is less than 30 ° C, at least one component of the monomer used cannot be melted or dissolved, or the catalytic efficiency by the hydrolase does not become sufficiently high. Alternatively, the reaction may take a long time. On the other hand, the upper limit of the temperature is defined by the sublimation or vaporization temperature of the dicarboxylic acid component or diol component used and the temperature range in which the catalytic activity of the hydrolase is maintained. That is, when the heating temperature exceeds 120 ° C., sublimation and vaporization of the dicarboxylic acid component and the diol component occur preferentially over the esterification reaction, and the abundance ratio of the dicarboxylic acid component and the diol component in the ester oligomer is efficiently increased. Therefore, it becomes difficult to obtain a high molecular weight polyester resin. The heating temperature in the first heating step is preferably 35 to 115 ° C, more preferably 40 to 110 ° C.
 また、上記第一加熱工程の加熱時間は、5~6000分間である。加熱時間が5分間未満であると反応時間が短すぎ、エステルオリゴマーが十分に生成することができないため、つづく重縮合反応において反応系内のジカルボン酸成分とジオール成分の量比(モル比)を制御することができず、結果として高分子量のポリエステル樹脂を得ることが出来ない。一方で、6000分間を超える加熱は生産効率の観点から好ましくない。なお、上記第一加熱工程の加熱時間は、好ましくは30~5000分間であり、さらに好ましくは60~4000分間である。 The heating time in the first heating step is 5 to 6000 minutes. If the heating time is less than 5 minutes, the reaction time is too short and the ester oligomer cannot be sufficiently formed. Therefore, in the subsequent polycondensation reaction, the amount ratio (molar ratio) of the dicarboxylic acid component and the diol component in the reaction system is set. It cannot be controlled, and as a result, a high molecular weight polyester resin cannot be obtained. On the other hand, heating exceeding 6000 minutes is not preferable from the viewpoint of production efficiency. The heating time in the first heating step is preferably 30 to 5000 minutes, and more preferably 60 to 4000 minutes.
2)前記加熱工程の後、加水分解酵素の存在下、さらに70~180℃で60~6000分間加熱する。
 上記第二加熱工程において、加熱温度は70~180℃の範囲である。加熱温度が180℃を超えると、酵素の触媒活性が著しく損なわれることで収率の低下を招いたり分子量の増大が妨げられたりする。また省エネルギー・排出CO量の削減等といった環境負荷低減の観点からも好ましくない。一方で、70℃未満では、比較的高い融点をもつ芳香族系ポリエステルを溶融させることができないことから、酵素との十分な接触頻度を与えることができず、高分子量のポリエステルは得られにくい。なお、第二加熱工程の加熱温度は、好ましくは75~175℃であり、さらに好ましくは80~170℃である。ここで、例えば、融点140~170℃程度の芳香族系ポリエステル樹脂を得ようとする際、80℃未満の加熱では、十分に高分子量なものが得られない場合がある。
 また、第二加熱工程の加熱時間は、60~6000分間である。加熱時間が60分間未満であると、エステル化反応が十分に進まないため高分子量のポリエステル樹脂が得られない場合がある。また、6000分間を超える加熱は生産効率の観点から好ましくない。なお、第二加熱工程の加熱時間は、好ましくは90~5000分間であり、さらに好ましくは120~4000分間である。
2) After the heating step, the mixture is further heated at 70 to 180 ° C. for 60 to 6000 minutes in the presence of a hydrolase.
In the second heating step, the heating temperature is in the range of 70 to 180 ° C. When the heating temperature exceeds 180 ° C., the catalytic activity of the enzyme is significantly impaired, resulting in a decrease in yield or an increase in molecular weight. Also not preferable from the viewpoint of environmental burden, such as reduction or the like of the energy-saving and emission amount of CO 2. On the other hand, if it is less than 70 ° C., an aromatic polyester having a relatively high melting point cannot be melted, so that sufficient contact frequency with an enzyme cannot be provided, and a high molecular weight polyester is difficult to obtain. The heating temperature in the second heating step is preferably 75 to 175 ° C., more preferably 80 to 170 ° C. Here, for example, when an aromatic polyester resin having a melting point of about 140 to 170 ° C. is to be obtained, a sufficiently high molecular weight may not be obtained by heating at less than 80 ° C.
The heating time in the second heating step is 60 to 6000 minutes. When the heating time is less than 60 minutes, since the esterification reaction does not proceed sufficiently, a high molecular weight polyester resin may not be obtained. Moreover, heating exceeding 6000 minutes is not preferable from the viewpoint of production efficiency. The heating time in the second heating step is preferably 90 to 5000 minutes, more preferably 120 to 4000 minutes.
 なお、上記第一加熱工程と、第二加熱工程とでは、それぞれ規定される温度範囲内であれば、同一の加熱温度として連続して反応を行なってもよい。より具体的には、70~120℃の範囲であれば、両加熱工程を同一の加熱温度で連続して行なうことができる。この場合において、加熱時間はそれぞれ規定される時間の和の範囲内であればよく、それぞれの加熱工程が明確に区別されている必要はない。他方、上記第一及び第二加熱工程間において温度を変化させる場合、その昇温速度は特に限定される訳ではなく、徐々に昇温しても、あるいは急速に昇温しても構わない。さらに、両加熱工程においては、それぞれ規定の温度範囲内であれば、絶えず温度を変化させて反応を行なっても構わない。 In the first heating step and the second heating step, the reaction may be continuously performed at the same heating temperature as long as it is within the specified temperature range. More specifically, when the temperature is in the range of 70 to 120 ° C., both heating steps can be performed continuously at the same heating temperature. In this case, the heating time only needs to be within the range of the sum of the prescribed times, and it is not necessary to clearly distinguish each heating step. On the other hand, when the temperature is changed between the first and second heating steps, the rate of temperature increase is not particularly limited, and the temperature may be gradually increased or rapidly increased. Further, in both the heating steps, the reaction may be carried out by constantly changing the temperature as long as it is within a specified temperature range.
 ここで、上記第一の加熱工程においては、30~120℃という比較的低い温度範囲で予め加熱を行なうため、ジカルボン酸成分やジオール成分の昇華や気化が抑制されながらエステル化反応が進行し、鎖状あるいは環状のエステルオリゴマー混合物が形成される。そして、このエステルオリゴマー混合物においては、ジカルボン酸成分とジオール成分とが約1:1の量比(モル比)で存在する。また、これらのエステルオリゴマー混合物中の種々のエステルオリゴマーはさらなる加熱によって昇華や気化により系から損なわれることもほとんどない。このため、エステルオリゴマー製造工程で得られたエステルオリゴマー混合物を用いた際には、これらの量比が1:1から大幅に逸脱することなく、ポリエステルの重縮合反応を進行させることができる。そしてこの結果、従来の酵素触媒重合法では得ることのできなかった高分子量な芳香族系ポリエステル樹脂を得ることが可能となる。これに対して、例えば、反応開始直後に120℃以上に加熱した場合には、ジカルボン酸成分やジオール成分が昇華もしくは気化してしまい、それらの量比が大きく逸脱するため、高分子量のポリエステル樹脂を得ることはできなくなる。
 また、昇華性の高いモノマーなどを使用する際には、上記製法だけで完全に昇華を抑制することは難しい。そこで、このような場合には、加圧系での製造や、昇華しやすいモノマーを予め過剰に仕込んで製造することも可能である。
Here, in the first heating step, since heating is performed in a relatively low temperature range of 30 to 120 ° C., the esterification reaction proceeds while sublimation and vaporization of the dicarboxylic acid component and the diol component are suppressed, A chain or cyclic ester oligomer mixture is formed. In this ester oligomer mixture, the dicarboxylic acid component and the diol component are present in an amount ratio (molar ratio) of about 1: 1. Moreover, the various ester oligomers in these ester oligomer mixtures are hardly damaged from the system by sublimation or vaporization by further heating. For this reason, when the ester oligomer mixture obtained in the ester oligomer production process is used, the polycondensation reaction of the polyester can proceed without the ratio of these amounts greatly deviating from 1: 1. As a result, it is possible to obtain a high molecular weight aromatic polyester resin that could not be obtained by the conventional enzyme-catalyzed polymerization method. On the other hand, for example, when heated to 120 ° C. or more immediately after the start of the reaction, the dicarboxylic acid component and the diol component are sublimated or vaporized, and the quantity ratio thereof deviates greatly. You will not be able to get.
Further, when using a highly sublimable monomer or the like, it is difficult to completely suppress sublimation only by the above production method. Therefore, in such a case, it is also possible to manufacture in a pressurized system or to prepare an excessively charged monomer that is easily sublimated.
 また、上記製法は同一反応容器内で第一加熱工程と第二加熱工程を連続して行なうものであるが、予めエステルオリゴマー混合物を製造しておいて、別途、ポリエステル樹脂の重合反応に用いることも可能である。この製法は昇華しやすいモノマーを選択した場合に特に有効であり、さらに高分子量の芳香族系ポリエステル樹脂が得られやすくなる。以下、このような製法について説明する。 Moreover, the said manufacturing method performs a 1st heating process and a 2nd heating process continuously in the same reaction container, However, An ester oligomer mixture is manufactured previously and it uses for the polymerization reaction of a polyester resin separately. Is also possible. This production method is particularly effective when a monomer that easily sublimes is selected, and a high molecular weight aromatic polyester resin is easily obtained. Hereinafter, such a manufacturing method will be described.
製法例2
1)テレフタル酸又はナフタレンジカルボン酸、あるいはそれらの誘導体を含むジカルボン酸成分とジオール成分を、加水分解酵素の存在下、有機溶媒中で所定時間、所定温度で加熱し、その後加水分解酵素をろ別した後、溶媒を完全に留去して、重量平均分子量20000未満の鎖状あるいは環状のエステルオリゴマー混合物を製造する。
 上記エステルオリゴマー製造工程においては、加水分解酵素の存在下、有機溶媒中で30~120℃で5~6000分間加熱を行なえばよい。より好ましくは35~120℃で30~5000分間、さらに好ましくは40~115℃で60~4000分間加熱を行なう。
Manufacturing method example 2
1) A dicarboxylic acid component and a diol component containing terephthalic acid or naphthalenedicarboxylic acid or their derivatives are heated in an organic solvent for a predetermined time at a predetermined temperature in the presence of a hydrolase, and then the hydrolase is filtered off. Thereafter, the solvent is completely distilled off to produce a chain or cyclic ester oligomer mixture having a weight average molecular weight of less than 20,000.
In the ester oligomer production step, heating may be performed in an organic solvent at 30 to 120 ° C. for 5 to 6000 minutes in the presence of a hydrolase. More preferably, heating is performed at 35 to 120 ° C. for 30 to 5000 minutes, more preferably 40 to 115 ° C. for 60 to 4000 minutes.
 なお、上記エステルオリゴマー製造工程において使用する有機溶媒は、各モノマーや目的とする組成をもったエステルオリゴマー混合物を得る過程で生成する中間体を十分に溶解させ得るものであり、選択する反応系において著しく速く気化するものでなく、且つ使用する加水分解酵素の触媒活性が劇的に損なわれるものでなければ自由に選択することができる。使用可能な有機溶媒の種類は、使用するモノマーの種類によっても異なるが、例えば、トルエン、キシレン、アニソール、クメン等が挙げられる。また、使用する有機溶媒の添加量は、上記を満たすものであれば特に制限されるものでないが、ジカルボン酸成分総量の濃度が1~10000mMとなるように添加するのが好ましい。1mM未満であると反応溶媒の量が多くなるだけでなく、エステルオリゴマー化が十分に進行しないことから、下記のポリエステル樹脂製造工程においてジカルボン酸やジオールの昇華や気化を抑制することができない。また、10000mM以上とするとモノマーやエステルオリゴマーを十分に溶解させにくくなる。 In addition, the organic solvent used in the ester oligomer production step can sufficiently dissolve the intermediates produced in the process of obtaining the ester oligomer mixture having each monomer and the target composition, and in the reaction system to be selected. It can be freely selected as long as it does not vaporize remarkably quickly and the catalytic activity of the hydrolase used is not dramatically impaired. Although the kind of organic solvent which can be used changes also with the kind of monomer to be used, toluene, xylene, anisole, cumene etc. are mentioned, for example. Further, the amount of the organic solvent to be used is not particularly limited as long as it satisfies the above, but it is preferable to add it so that the concentration of the total amount of the dicarboxylic acid component is 1 to 10,000 mM. If it is less than 1 mM, not only the amount of the reaction solvent increases, but also ester oligomerization does not proceed sufficiently, so that sublimation and vaporization of dicarboxylic acid and diol cannot be suppressed in the following polyester resin production process. On the other hand, when the concentration is 10,000 mM or more, it becomes difficult to sufficiently dissolve the monomer and the ester oligomer.
 上記エステルオリゴマー製造工程において、加水分解酵素の存在下、モノマー成分を有機溶媒中で所定時間、所定温度で加熱することによって、エステル化反応、もしくはエステル交換反応が進み、目的とする重量平均分子量20000未満の鎖状あるいは環状のエステルオリゴマーの混合物を得ることができる。なお、生成するエステルオリゴマー混合物の重量平均分子量や組成は、ジカルボン酸成分とジオール成分の仕込み比や加熱温度、加熱時間、基質濃度、酵素量などを変化させることによっても適宜調整することが可能である。 In the ester oligomer production step, the monomer component is heated in an organic solvent for a predetermined time at a predetermined temperature in the presence of a hydrolase, whereby an esterification reaction or a transesterification reaction proceeds, and a target weight average molecular weight of 20000. A mixture of less than a chain or cyclic ester oligomer can be obtained. The weight average molecular weight and composition of the resulting ester oligomer mixture can also be adjusted as appropriate by changing the charging ratio of dicarboxylic acid component and diol component, heating temperature, heating time, substrate concentration, enzyme amount, etc. is there.
2)前記工程により得られたエステルオリゴマー混合物を、加水分解酵素の存在下、さらに所定時間、所定温度で加熱して重縮合させ、重量平均分子量20000以上の芳香族系ポリエステル樹脂を製造する。
 上記ポリエステル樹脂重合工程は製法例1の第二加熱工程と同様に、具体的には、70~180℃で60~6000分間加熱を行えばよい。より好ましくは75~175℃で90~5000分間、さらに好ましくは80~170℃で120~4000分間加熱を行なう。
2) The ester oligomer mixture obtained in the above step is polycondensed by heating at a predetermined temperature for a predetermined time in the presence of a hydrolase to produce an aromatic polyester resin having a weight average molecular weight of 20000 or more.
In the polyester resin polymerization step, similarly to the second heating step in Production Example 1, specifically, heating may be performed at 70 to 180 ° C. for 60 to 6000 minutes. More preferably, heating is performed at 75 to 175 ° C. for 90 to 5000 minutes, more preferably 80 to 170 ° C. for 120 to 4000 minutes.
 ここで、上記エステルオリゴマー製造工程において得られるエステルオリゴマー混合物は、重量平均分子量20000未満の鎖状あるいは環状のエステルオリゴマーである。この製法例2では、各モノマーや生成するオリゴマーが有機溶媒に溶解していることから、製法例1のものと比較して、より昇華や気化を防ぎやすく、量比(モル比)を約1:1に制御しやすくなり、結果として、さらに高分子量なポリエステル樹脂が得られやすくなる。また、同様の理由から、より昇華しやすいモノマーを使用する際や昇華性が異なる複数のジカルボン酸成分やジオール成分を使用する際に適している。また、予めエステルオリゴマーを調製しておく本製法によれば、重合反応開始時から終了時までジカルボン酸成分とジオール成分との量比(モル比)が約1:1で保持されるため、従来の金属触媒を用いた製法のように、ポリエステルの重合反応の際に上記量比が特定の範囲に収まるように、例えば、加熱温度を200℃以上の高温としたり、あるいは極度の減圧操作などを行ったりする必要がない。 Here, the ester oligomer mixture obtained in the ester oligomer production step is a chain or cyclic ester oligomer having a weight average molecular weight of less than 20,000. In Production Method Example 2, since each monomer and oligomer to be produced are dissolved in an organic solvent, it is easier to prevent sublimation and vaporization than in Production Method Example 1, and the amount ratio (molar ratio) is about 1 : 1 is easily controlled, and as a result, a higher molecular weight polyester resin is easily obtained. For the same reason, it is suitable when using a monomer that is more easily sublimated or when using a plurality of dicarboxylic acid components or diol components having different sublimation properties. In addition, according to this production method in which an ester oligomer is prepared in advance, since the quantitative ratio (molar ratio) between the dicarboxylic acid component and the diol component is maintained at about 1: 1 from the start to the end of the polymerization reaction, As in the production method using a metal catalyst, for example, the heating temperature is set to a high temperature of 200 ° C. or higher, or an extreme pressure reduction operation is performed so that the quantitative ratio falls within a specific range in the polymerization reaction of the polyester. There is no need to go.
 また、環状のエステルオリゴマーにおいては、ジカルボン酸成分とジオール成分との量比(モル比)は完全に1:1である。したがって、さらに高分子量の芳香族系ポリエステル樹脂を望む際には、上記ポリエステル樹脂製造工程に使用するエステルオリゴマー混合物中に環状のエステルオリゴマーがより多く含まれていることが好ましい。
 このため、以上のようにして得られたエステルオリゴマー混合物に対して、環状オリゴマーを分離精製し、得られた高純度の環状オリゴマー混合物を用いて、ポリエステル樹脂の重合反応に用いることも可能である。以下、このような製法について説明する。
Further, in the cyclic ester oligomer, the quantitative ratio (molar ratio) of the dicarboxylic acid component and the diol component is completely 1: 1. Therefore, when a higher molecular weight aromatic polyester resin is desired, it is preferable that a larger amount of cyclic ester oligomer is contained in the ester oligomer mixture used in the polyester resin production process.
For this reason, it is also possible to separate and purify the cyclic oligomer from the ester oligomer mixture obtained as described above, and to use the obtained high-purity cyclic oligomer mixture for the polymerization reaction of the polyester resin. . Hereinafter, such a manufacturing method will be described.
製法例3
1)テレフタル酸又はナフタレンジカルボン酸、あるいはそれらの誘導体を含むジカルボン酸成分とジオール成分とを用いて、加水分解酵素の存在下、重量平均分子量20000未満の鎖状あるいは環状のエステルオリゴマー混合物を製造する。
 上記エステルオリゴマー製造工程については、製法例2の場合と同様である。
Manufacturing method example 3
1) A linear or cyclic ester oligomer mixture having a weight average molecular weight of less than 20,000 is produced in the presence of hydrolase using a dicarboxylic acid component containing terephthalic acid or naphthalenedicarboxylic acid, or a derivative thereof, and a diol component. .
The ester oligomer production process is the same as in Production Method Example 2.
 ただし、上記エステルオリゴマー製造工程において、高純度の環状エステルオリゴマーをより簡便に得るために、テレフタル酸又はナフタレンジカルボン酸、あるいはそれらの誘導体を含むジカルボン酸成分と、ジオール成分との仕込み量比(モル比)は、いずれかを若干過剰とすることが好ましい。例えば、ジカルボン酸成分としてその低級アルキルエステルを使用する際には、ジオール成分を過剰にすることが好ましく、その仕込み量比(モル比)は、ジカルボン酸:ジオール=1:1.01~1:1.70、より好ましくは1:1.05~1:1.60の範囲にすることが好ましい。低級アルキルエステルをモノマーとした場合、上記エステルオリゴマー混合物中には、目的とする環状エステルオリゴマーの他に、その両末端が(a)水酸基-アルキルエステル、(b)水酸基-水酸基、(c)アルキルエステル-アルキルエステルの3種類の鎖状オリゴマーが含まれている。そこで、若干ジオール成分の仕込み量を多くすることによって、環状のエステルオリゴマーとの分離が比較的困難な(c)の両末端がアルキルエステル-アルキルエステルの鎖状オリゴマーの生成を抑制する。これにより高純度の環状オリゴマーを分離精製することが容易となる。この際選択するジカルボン酸成分とジオール成分の仕込み量比(モル比)を調整することで、環状オリゴマー精製工程後に得られる高純度環状エステルオリゴマー混合物中の(c)の鎖状体の量(つまりジカルボン酸成分とジオール成分の量比)を、厳密に、しかも容易に制御することができ、結果としてポリエステル樹脂製造工程後に任意の平均分子量をもった芳香族系ポリエステル樹脂を調製することもできる。また、ジカルボン酸成分のモノマーとして低級アルキルエステルでなく、ジカルボン酸を使用する際には、ジオール成分に対してジカルボン酸成分を過剰に使用することも可能である。 However, in the above ester oligomer production process, in order to more easily obtain a high-purity cyclic ester oligomer, the charge ratio (molar) of the dicarboxylic acid component containing terephthalic acid or naphthalenedicarboxylic acid or a derivative thereof and the diol component It is preferable that the ratio is slightly excessive. For example, when the lower alkyl ester is used as the dicarboxylic acid component, the diol component is preferably excessive, and the charging ratio (molar ratio) is dicarboxylic acid: diol = 1: 1.01 to 1: The range is preferably 1.70, more preferably 1: 1.05 to 1: 1.60. When a lower alkyl ester is used as a monomer, in the above ester oligomer mixture, in addition to the target cyclic ester oligomer, both ends thereof are (a) hydroxyl group-alkyl ester, (b) hydroxyl group-hydroxyl group, (c) alkyl group. Three types of ester-alkyl ester chain oligomers are included. Therefore, by slightly increasing the amount of the diol component, both ends of (c), which are relatively difficult to separate from the cyclic ester oligomer, suppress the formation of an alkyl ester-alkyl ester chain oligomer. Thereby, it becomes easy to separate and purify a high-purity cyclic oligomer. By adjusting the charged amount ratio (molar ratio) of the dicarboxylic acid component and diol component selected at this time, the amount of the chain (c) in the high purity cyclic ester oligomer mixture obtained after the cyclic oligomer purification step (that is, The amount ratio of the dicarboxylic acid component and the diol component) can be strictly and easily controlled, and as a result, an aromatic polyester resin having an arbitrary average molecular weight can be prepared after the polyester resin production process. Further, when a dicarboxylic acid is used as a monomer of the dicarboxylic acid component instead of the lower alkyl ester, the dicarboxylic acid component can be used in excess relative to the diol component.
2)前記工程により得られたエステルオリゴマー混合物中から環状オリゴマーを分離精製して高純度の環状オリゴマー混合物を得る。
 上記環状オリゴマー分離工程は、特に限定されるものではなく、カラムクロマトグラフィー、再結晶など公知の手法を用いることができるが、シリカゲルカラムクロマトグラフィーが好適なものとして挙げられる。なお、カラム充填剤や溶離液等は従来公知のものを適宜使用することができる。また、前述のように、ジカルボン酸成分とジオール成分との仕込み量比(モル比)を適宜選択することによって、目的の組成をもった環状エステルオリゴマーの分離精製がより容易になり、高純度の環状エステルオリゴマーを比較的高収率で得ることができる。なお、分離精製後の環状エステルオリゴマーの純度は、前述のように、目的とする芳香族系ポリエステル樹脂の分子量に応じて任意に選択でき、特に限定されないが、通常ジカルボン酸成分とジオール成分の量比(モル比)にして0.95~1.05程度であり、好ましくは0.99~1.01程度である。
2) A cyclic oligomer is separated and purified from the ester oligomer mixture obtained in the above step to obtain a high-purity cyclic oligomer mixture.
The cyclic oligomer separation step is not particularly limited, and known methods such as column chromatography and recrystallization can be used, and silica gel column chromatography is preferable. In addition, conventionally well-known things can be used suitably for a column filler, an eluent, etc. In addition, as described above, by appropriately selecting the charging amount ratio (molar ratio) of the dicarboxylic acid component and the diol component, it is easier to separate and purify the cyclic ester oligomer having the target composition, and the high purity. Cyclic ester oligomers can be obtained in a relatively high yield. As described above, the purity of the cyclic ester oligomer after separation and purification can be arbitrarily selected according to the molecular weight of the target aromatic polyester resin, and is not particularly limited. Usually, the amount of the dicarboxylic acid component and the diol component The ratio (molar ratio) is about 0.95 to 1.05, preferably about 0.99 to 1.01.
3)前記工程により得られた環状エステルオリゴマーを、加水分解酵素の存在下、さらに重縮合させて、重量平均分子量20000以上の芳香族系ポリエステル樹脂を製造する。
 上記ポリエステル樹脂重合工程については、製法例2の場合と同様である。
3) The cyclic ester oligomer obtained by the above step is further polycondensed in the presence of a hydrolase to produce an aromatic polyester resin having a weight average molecular weight of 20000 or more.
The polyester resin polymerization step is the same as in Production Method Example 2.
 ここで、上記環状エステルオリゴマー分離工程によって得られる高純度な環状エステルオリゴマー混合物を用いた本製法においては、ジカルボン酸成分とジオール成分との量比(モル比)がほぼ完全に1:1で保持されるため、従来の酵素触媒法では決して得ることのできなかった高分子量な芳香族系ポリエステル樹脂を比較的容易に得ることが可能となる。また、従来の金属触媒を用いた製法のように、ポリエステルの重合反応の際に上記量比が特定の範囲に収まるように、例えば、加熱温度を200℃以上の高温としたり、あるいは極度の減圧下で反応させたりする必要がない。また、この製法を用いることで、重合反応時の原料の供給量や加熱温度・加熱時間等の条件を細かく調整することなく、容易に任意の平均分子量をもった芳香族系ポリエステル樹脂が得られる。 Here, in this manufacturing method using the high-purity cyclic ester oligomer mixture obtained by the cyclic ester oligomer separation step, the quantitative ratio (molar ratio) between the dicarboxylic acid component and the diol component is almost completely maintained at 1: 1. Therefore, it is possible to relatively easily obtain a high molecular weight aromatic polyester resin that could never be obtained by the conventional enzyme catalyst method. Further, as in the conventional method using a metal catalyst, for example, the heating temperature is set to a high temperature of 200 ° C. or higher so that the amount ratio falls within a specific range in the polyester polymerization reaction, or extreme pressure reduction is performed. There is no need to react underneath. Also, by using this production method, an aromatic polyester resin having an arbitrary average molecular weight can be easily obtained without finely adjusting the conditions such as the amount of raw materials supplied during the polymerization reaction and the heating temperature and heating time. .
 なお、以上に説明した芳香族系ポリエステル樹脂の製造工程においては、いずれも溶媒を用いない系で行なうことが、より容易に高分子量体を得やすいことから好ましい。しかしながら、得られるポリエステル樹脂に期待する物性などに応じて、任意で溶媒を用いた反応系を選択することもできる。溶媒を使用する場合は、各モノマーやオリゴマー、さらには生成するポリマーを十分に溶解させ得るものであり、選択する反応系において著しく速く気化するものでなく、かつ使用する酵素の触媒活性が劇的に損なわれるもの等でなければ自由に選択できる。このような溶媒としては、トルエン、キシレン、アニソール、クメンなどが例示できる。 In the process for producing the aromatic polyester resin described above, it is preferable to carry out the process without using any solvent because it is easier to obtain a high molecular weight product. However, a reaction system using a solvent can be arbitrarily selected according to physical properties expected of the obtained polyester resin. When a solvent is used, each monomer and oligomer, as well as the resulting polymer, can be sufficiently dissolved, it does not vaporize remarkably in the selected reaction system, and the catalytic activity of the enzyme used is dramatic. If it is not damaged, you can choose freely. Examples of such solvents include toluene, xylene, anisole, cumene and the like.
 また、水やアルコールといったカルボニル基と反応し得る化学種が反応系中に多く存在すると、目的とする高分子量のポリエステル樹脂が得られないものの、反応系内にこれらがまったく存在しないと酵素触媒によるエステル化反応が進行しないため、これら濃度の制御が必要となる。この制御においては、目的とする濃度が達成されうる限り特に制限なく公知の手法を用いることができる。例えば、用いる原料や酵素、溶媒、反応容器等に対して物理的もしくは化学的手法を用いた乾燥操作を行なうことが可能であり、具体的には、加熱下で減圧する、不活性ガスを流す、合成ゼオライトなどの分子ふるい効果を有する被吸着物質を反応系に対して接触、もしくは非接触で作用させる等の手法が例示できる。さらに目的に応じて、水などを添加して制御することも可能である。 In addition, if there are many chemical species that can react with carbonyl groups such as water and alcohol in the reaction system, the target high molecular weight polyester resin cannot be obtained. Since the esterification reaction does not proceed, it is necessary to control these concentrations. In this control, a known method can be used without particular limitation as long as the target concentration can be achieved. For example, it is possible to perform a drying operation using a physical or chemical method on the raw material, enzyme, solvent, reaction vessel, etc. to be used, and specifically, an inert gas that is depressurized under heating and flowing. Examples thereof include a method of allowing an adsorbed substance having a molecular sieving effect such as synthetic zeolite to act on the reaction system in a contact or non-contact manner. Further, it is possible to control by adding water or the like according to the purpose.
 以上のようにして得られる本発明の芳香族系ポリエステル樹脂は、加水分解酵素を用いて製造したものであるにもかかわらず、重量平均分子量が20000以上であり、熱的性質や機械的性質に比較的優れているため、構造材料として特に好適に使用することができる。また、金属触媒を用いていないため、得られる樹脂中に従来ポリエステル製造のために用いられているような触媒金属元素を実質的に含まないものとして得ることが可能である。このため、金属の流出などによる環境汚染を防止することができ、さらには金属不純物に起因するポリエステル樹脂の性能低下も生じにくい。 The aromatic polyester resin of the present invention obtained as described above has a weight average molecular weight of 20000 or more despite the fact that it is produced using a hydrolase, and has excellent thermal properties and mechanical properties. Since it is relatively excellent, it can be particularly suitably used as a structural material. Moreover, since a metal catalyst is not used, it is possible to obtain a resin that does not substantially contain a catalytic metal element that has been conventionally used for polyester production. For this reason, it is possible to prevent environmental pollution due to metal outflow and the like, and further, it is difficult for the performance of the polyester resin to deteriorate due to metal impurities.
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
 まず本発明者らは、テレフタル酸ジメチル(ジカルボン酸成分)とヘキサメチレングリコール(ジオール成分)とを用い、さらに重合触媒として加水分解酵素(固定化加水分解酵素;Novozym 435)を用いて対応する芳香族系ポリエステル樹脂の製造を製法例1に従って行なった(試験例1-1~1-5)。なお、芳香族系ポリエステル樹脂の製造の手順は、概略以下に示すとおりである。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by these Examples.
First, the present inventors use dimethyl terephthalate (dicarboxylic acid component) and hexamethylene glycol (diol component), and further use a hydrolase (immobilized hydrolase; Novozym 435) as a polymerization catalyst to produce a corresponding fragrance. The production of the aliphatic polyester resin was carried out according to Production Example 1 (Test Examples 1-1 to 1-5). The procedure for producing the aromatic polyester resin is as outlined below.
[芳香族系ポリエステルの合成]
 所定の合成原料(ジカルボン酸成分及びジオール成分)を所定の比率で仕込み、あらかじめ乾燥処理した固定化リパーゼ(Novozym 435,Candida属由来リパーゼ及びカルボキシルエステラーゼ:ノボザイム社製)を合成原料に対して100質量%添加した。この反応容器の上部に乾燥済みのモレキュラーシーブスを入れた容器を装着し、直ちに密閉後、所定の温度に加熱し、所定の時間撹拌を行った。その後、室温まで放冷し、クロロホルムを加えて生成物を溶解させ固定化酵素をろ別した。ろ液を濃縮したのちこれを室温にてトルエンへ滴下して、得られた沈殿をろ過にて回収後、乾燥させ目的とする芳香族系ポリエステル樹脂を得た。
[Synthesis of aromatic polyester]
100 masses of immobilized lipase (Novozym 435, Candida-derived lipase and carboxylesterase: Novozyme) charged with a predetermined synthetic raw material (dicarboxylic acid component and diol component) at a predetermined ratio and previously dried. % Was added. A vessel containing dried molecular sieves was attached to the upper part of the reaction vessel, immediately sealed, heated to a predetermined temperature, and stirred for a predetermined time. Thereafter, the mixture was allowed to cool to room temperature, chloroform was added to dissolve the product, and the immobilized enzyme was filtered off. After concentrating the filtrate, this was added dropwise to toluene at room temperature, and the resulting precipitate was collected by filtration and dried to obtain the desired aromatic polyester resin.
 試験例1-1~1-3においては、テレフタル酸ジメチルとヘキサメチレングリコールの仕込み量比を各種変更し、90℃で5時間加熱した後、1時間かけて140℃へと昇温し、さらに42時間撹拌を行なった。また、試験例1-4においては、固定化酵素を添加せずに同様の操作を行なった。また、試験例1-5においては、反応開始直後から140℃に加熱し、48時間撹拌を行なった。
上記試験例により得られた生成物については、H NMR(VARIAN NMR300:VARIAN社製)を用いて構造を確認し、重量平均分子量及び分子量分布はGPC(カラム:Shodex K-804(昭和電工社製)、検出器:示差屈折計 RI-980(日本分光社製)、溶離液:クロロホルム:エタノール=99:1(vol/vol)、流速:1.0ml/min、温度:37℃、標準試料:TSK standard POLYSTYRENE(東ソー社製))により評価した。結果を下記表1に示す。
In Test Examples 1-1 to 1-3, various charge ratios of dimethyl terephthalate and hexamethylene glycol were changed, heated at 90 ° C. for 5 hours, then heated to 140 ° C. over 1 hour, Stirring was performed for 42 hours. In Test Example 1-4, the same operation was performed without adding the immobilized enzyme. In Test Example 1-5, the mixture was heated to 140 ° C. immediately after the start of the reaction and stirred for 48 hours.
The product obtained by the above test examples, 1 H NMR (VARIAN NMR300: VARIAN Inc.) was used to confirm the structure, weight average molecular weight and molecular weight distribution of GPC (column: Shodex K-804 (manufactured by SHOWA DENKO Manufactured), detector: differential refractometer RI-980 (manufactured by JASCO), eluent: chloroform: ethanol = 99: 1 (vol / vol), flow rate: 1.0 ml / min, temperature: 37 ° C., standard sample : TSK standard POLYSYRENE (manufactured by Tosoh Corporation)). The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1に示されるように、テレフタル酸ジメチルとヘキサンメチレングリコールとを、加水分解酵素の存在下、予め90℃で5時間加熱し、さらに140℃で42時間加熱した試験例1-1~1-3においては、重量平均分子量が33,000~52,000といった高分子量の芳香族系ポリエステル樹脂が高い収率で得られることが明らかとなった。
 これに対して、加水分解酵素を添加しなかった試験例1-4では、重縮合反応がまったく進行せず、ポリエステルを得ることはできなかった。さらに、反応開始直後に140℃に加温した試験例1-5においても、ポリエステルは得られなかった。
As shown in Table 1 above, Test Examples 1-1 to 1 in which dimethyl terephthalate and hexanemethylene glycol were preliminarily heated at 90 ° C. for 5 hours and further heated at 140 ° C. for 42 hours in the presence of a hydrolase. As for -3, it became clear that a high molecular weight aromatic polyester resin having a weight average molecular weight of 33,000 to 52,000 can be obtained in a high yield.
In contrast, in Test Example 1-4 in which no hydrolase was added, the polycondensation reaction did not proceed at all, and polyester could not be obtained. Furthermore, in Test Example 1-5, which was heated to 140 ° C. immediately after the start of the reaction, no polyester was obtained.
 試験例1-1と試験例1-4との比較から、本発明の芳香族系ポリエステルの生成は加水分解酵素の触媒作用によるものであることが理解される。また、試験例1-5ではポリエステルが全く得られなかったが、これはテレフタル酸ジメチル及びヘキサメチレングリコールが昇華もしくは気化してしまい、ジカルボン酸成分とジオール成分、及び触媒である加水分解酵素が反応系内で互いにうまく接触できなかったためであると考えられる。これに対し、90℃程度の比較的低温で加熱したのち、140℃程度の比較的高温に加熱した試験例1-1~1-3では、高分子量の芳香族系ポリエステル樹脂が得られ、その平均分子量は、テレフタル酸ジメチルと比較して若干気化しやすいヘキサメチレングリコールをわずかに過剰に用いた試験例1-2が最も高いものとなった。これらの結果から、高分子量の芳香族系ポリエステルの製造には、反応系内でのカルボン酸成分とジオール成分の量比(モル比)の制御が極めて重要であることが理解される。すなわち、試験例1-1~1-3においては、第一の加熱工程によりエステルオリゴマー化が十分に進行し、これによって第二の加熱工程においても十分に昇華が抑制でき、また、エステルオリゴマー混合物中のジカルボン酸成分とジオール成分との量比(モル比)が約1:1に保持されていたことから、重縮合反応がスムーズに進行し、この結果、高分子量の芳香族系ポリエステルが高収率で得られているものと考えられる。 From the comparison between Test Example 1-1 and Test Example 1-4, it is understood that the production of the aromatic polyester of the present invention is due to the catalytic action of hydrolase. In Test Example 1-5, no polyester was obtained, but this was caused by the sublimation or vaporization of dimethyl terephthalate and hexamethylene glycol, and the reaction between the dicarboxylic acid component, the diol component, and the hydrolase as the catalyst. This is thought to be because they were unable to contact each other well in the system. On the other hand, in Test Examples 1-1 to 1-3, which were heated at a relatively low temperature of about 90 ° C. and then heated to a relatively high temperature of about 140 ° C., a high molecular weight aromatic polyester resin was obtained. The average molecular weight was the highest in Test Example 1-2 in which hexamethylene glycol, which was slightly vaporized slightly compared to dimethyl terephthalate, was used slightly in excess. From these results, it is understood that control of the amount ratio (molar ratio) of the carboxylic acid component and the diol component in the reaction system is extremely important for the production of a high molecular weight aromatic polyester. That is, in Test Examples 1-1 to 1-3, ester oligomerization sufficiently progressed in the first heating step, whereby sublimation could be sufficiently suppressed in the second heating step, and the ester oligomer mixture Since the amount ratio (molar ratio) between the dicarboxylic acid component and the diol component in the mixture was maintained at about 1: 1, the polycondensation reaction proceeded smoothly. As a result, a high molecular weight aromatic polyester was obtained. It is thought that it is obtained in a yield.
 さらに本発明者らは、複数のジカルボン酸成分(テレフタル酸ジメチル及び2,6-ナフタレンジカルボン酸ジメチル)を用いて同様の試験を行なった。結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
Furthermore, the present inventors conducted a similar test using a plurality of dicarboxylic acid components (dimethyl terephthalate and dimethyl 2,6-naphthalenedicarboxylate). The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
 上記表2に示されるように、テレフタル酸ジメチルと2,6-ナフタレンジカルボン酸ジメチルとをジカルボン酸成分として用いた試験例1-6においても、上記試験例と同様に、重量平均分子量が35,000である高分子量の芳香族系ポリエステル樹脂が高い収率で得られた。 As shown in Table 2, also in Test Example 1-6 using dimethyl terephthalate and dimethyl 2,6-naphthalenedicarboxylate as the dicarboxylic acid component, the weight average molecular weight was 35, A high molecular weight aromatic polyester resin having a molecular weight of 000 was obtained in a high yield.
 さらに本発明者らは、ジカルボン酸成分として2,6-ナフタレンジカルボン酸を主たるジカルボン酸成分とする芳香族系ポリエステルの合成を同様に試みた。結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000003
Furthermore, the present inventors similarly attempted the synthesis of an aromatic polyester having 2,6-naphthalenedicarboxylic acid as a main dicarboxylic acid component as a dicarboxylic acid component. The results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
 上記表3に示されるように、2,6-ナフタレンジカルボン酸ジメチルを主たるジカルボン酸成分として用いた実施例1-7においても、上記試験例と同様に、重量平均分子量29,000の高分子量の芳香族系ポリエステルが高収率で得られた。 As shown in Table 3, in Example 1-7 using dimethyl 2,6-naphthalenedicarboxylate as the main dicarboxylic acid component, as in the above test example, a high molecular weight of 29,000 was obtained. Aromatic polyester was obtained in high yield.
 つづいて本発明者らは、製法例2に従って、ジカルボン酸成分とジオール成分に対して有機溶媒中で加水分解酵素を作用させ、予めエステルオリゴマー混合物を調製し、これをさらに加水分解酵素の存在下、加熱・重縮合させることによって、対応する芳香族系ポリエステル樹脂の製造を試みた(試験例2-1~2-4)。なお、エステルオリゴマー混合物の製造の手順は、概略以下に示すとおりである。 Subsequently, the present inventors made a hydrolase to act on the dicarboxylic acid component and the diol component in an organic solvent in accordance with Production Example 2 to prepare an ester oligomer mixture in advance, and this was further added in the presence of the hydrolase. Then, production of the corresponding aromatic polyester resin was attempted by heating and polycondensation (Test Examples 2-1 to 2-4). The procedure for producing the ester oligomer mixture is as outlined below.
[エステルオリゴマー混合物の合成]
 等モルのテレフタル酸ジメチルエステルと各種のアルキレングリコールを仕込み、あらかじめ乾燥処理を施した固定化リパーゼ(Novozym 435,Candida属由来リパーゼ:ノボザイム社製)をモノマーの総量に対して100質量%添加した。さらにここへトルエンをテレフタル酸ジメチルの濃度が25mMとなる量添加した後、この反応容器の上部に乾燥済みのモレキュラーシーブスを入れたガラス管を装着し、直ちに密閉後、90℃にて48時間撹拌を行った。反応終了後、この溶液を室温まで放冷した後、固定化酵素をろ別し、得られたろ液を乾燥させ目的とするエステルオリゴマー混合物を得た。
[Synthesis of ester oligomer mixture]
An immobilized lipase (Novozym 435, Candida-derived lipase: manufactured by Novozyme) charged with equimolar dimethyl terephthalate and various alkylene glycols and previously dried was added in an amount of 100% by mass based on the total amount of monomers. Further, toluene was added in an amount such that the concentration of dimethyl terephthalate was 25 mM, and a glass tube containing dried molecular sieves was attached to the top of the reaction vessel, immediately sealed, and stirred at 90 ° C. for 48 hours. Went. After completion of the reaction, the solution was allowed to cool to room temperature, the immobilized enzyme was filtered off, and the obtained filtrate was dried to obtain the target ester oligomer mixture.
 試験例2-1においては、以上のようにして得られたエステルオリゴマー混合物を、濃度50g/Lとなるようにトルエン中に希釈し、固定化酵素の存在下、100℃で48時間加熱撹拌を行なった。その後、室温まで放冷し、クロロホルムを加えて生成物を溶解させ固定化酵素をろ別した。ろ液を濃縮したのちこれを室温にてトルエンへ滴下して、得られた沈殿をろ過にて回収後、乾燥させ目的とする芳香族系ポリエステル樹脂を得た。試験例2-2~2-4においては、ジオール成分を各種変化させてエステルオリゴマー混合物の調製を行い、次いで固定化酵素の存在下、140℃で48時間加熱撹拌し、重縮合反応を行なった。その後の操作は試験例2-1と同様である。
 また、上記試験例により得られた生成物については、H NMR(VARIAN NMR300:VARIAN社製)、及びMALDI-TOF MASS(Ultraflex:BRUKER社製)を用いて構造を確認し、重量平均分子量及び分子量分布はGPC(カラム:Shodex K-804(昭和電工社製)、検出器:示差屈折計 RI-980(日本分光社製)、溶離液:クロロホルム:エタノール=99:1(vol/vol)、流速:1.0ml/min、温度:37℃、標準試料:TSK standard POLYSTYRENE(東ソー社製))により評価した。結果を下記表4に示す。
In Test Example 2-1, the ester oligomer mixture obtained as described above was diluted in toluene to a concentration of 50 g / L, and heated and stirred at 100 ° C. for 48 hours in the presence of the immobilized enzyme. I did it. Thereafter, the mixture was allowed to cool to room temperature, chloroform was added to dissolve the product, and the immobilized enzyme was filtered off. After concentrating the filtrate, this was added dropwise to toluene at room temperature, and the resulting precipitate was collected by filtration and dried to obtain the desired aromatic polyester resin. In Test Examples 2-2 to 2-4, an ester oligomer mixture was prepared by variously changing the diol component, and then heated and stirred at 140 ° C. for 48 hours in the presence of the immobilized enzyme to carry out a polycondensation reaction. . The subsequent operation is the same as in Test Example 2-1.
For the products obtained by the above test examples, the structure was confirmed using 1 H NMR (VARIAN NMR300: manufactured by VARIAN) and MALDI-TOF MASS (Ultraflex: manufactured by BRUKER), and the weight average molecular weight and The molecular weight distribution is GPC (column: Shodex K-804 (manufactured by Showa Denko KK), detector: differential refractometer RI-980 (manufactured by JASCO), eluent: chloroform: ethanol = 99: 1 (vol / vol), Flow rate: 1.0 ml / min, temperature: 37 ° C., standard sample: TSK standard POLYSTYRENE (manufactured by Tosoh Corporation)). The results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記表4に示されるように、予め加水分解酵素を用いて製造したエステルオリゴマー混合物をトルエン中に添加し、加熱・重縮合反応を行った試験例2-1においては、重量平均分子量21,000の高分子量の芳香族系ポリエステル樹脂が得られ、有機溶媒中で重縮合反応を行なう場合であっても本発明は十分に適用可能であることを確認した。また、ジオール成分を各種変化させたエステルオリゴマー混合物を用いた試験例2-2~2-4においても、重量平均分子量51,000~54,000といった高分子量な芳香族系ポリエステル樹脂が、高い収率で得られることが明らかとなった。また、試験例2-4においては、ジオール成分の仕込み量比と良く一致した組成比を有する芳香族系ランダムコポリエステル樹脂が得られた。 As shown in Table 4 above, in Test Example 2-1, in which an ester oligomer mixture prepared in advance using a hydrolase was added to toluene and a heating / polycondensation reaction was performed, the weight average molecular weight was 21,000. It was confirmed that the present invention is sufficiently applicable even when a polycondensation reaction is carried out in an organic solvent. Also in Test Examples 2-2 to 2-4 using ester oligomer mixtures in which various diol components are changed, a high molecular weight aromatic polyester resin having a weight average molecular weight of 51,000 to 54,000 has a high yield. It became clear that it was obtained at a rate. In Test Example 2-4, an aromatic random copolyester resin having a composition ratio well matched with the charged amount ratio of the diol component was obtained.
 さらに本発明者らは、製法例3に従い、エステルオリゴマー混合物中から環状オリゴマーのみを精製した高純度環状オリゴマー混合物を用いて、上記試験と同様にして、対応する芳香族系ポリエステル樹脂の製造を試みた(試験例3-1,3-2)。ここで用いた高純度環状オリゴマーは、ジカルボン酸成分とジオール成分との量比がH NMR上で1.000:1.000である。なお、高純度環状オリゴマーの製造の手順は、概略以下に示すとおりである。 Furthermore, the present inventors tried production of a corresponding aromatic polyester resin in the same manner as in the above test using a high-purity cyclic oligomer mixture obtained by purifying only a cyclic oligomer from an ester oligomer mixture according to Production Example 3. (Test Examples 3-1 and 3-2). The high-purity cyclic oligomer used here has a quantity ratio of the dicarboxylic acid component to the diol component of 1.000: 1.000 on 1 H NMR. The procedure for producing the high-purity cyclic oligomer is as outlined below.
[高純度環状オリゴマー混合物の合成]
 テレフタル酸ジメチルとこれに対して1.30モル等量のアルキレングリコールを加え、反応温度を105℃にした以外は上記エステルオリゴマー混合物の合成と同様にしてエステルオリゴマー混合物を得た。つづいて、この混合物に対し、シリカゲルカラムクロマトグラフィーを行い、該当分画を回収後、濃縮、乾燥操作を施し目的とする高純度環状オリゴマー混合物を得た。
[Synthesis of high purity cyclic oligomer mixture]
An ester oligomer mixture was obtained in the same manner as in the synthesis of the ester oligomer mixture except that dimethyl terephthalate and 1.30 mole equivalent of alkylene glycol were added thereto and the reaction temperature was 105 ° C. Subsequently, this mixture was subjected to silica gel column chromatography, and the relevant fractions were collected and then concentrated and dried to obtain the intended high purity cyclic oligomer mixture.
 試験例3-1においては、ジオール成分としてヘキサメチレングリコールを用いて上記高純度環状オリゴマー混合物を調製し、固定化酵素の存在下、140℃で48時間加熱撹拌し、重縮合反応を行なった。また、試験例3-2においては、デカメチレングリコールを用いて上記高純度環状オリゴマー混合物を調製し、固定化酵素の存在下、120℃で48時間加熱撹拌し、重縮合反応を行なった。その後の操作は、試験例2-1~2-4と同様である。
 また、上記試験例により得られた生成物については、H NMR(VARIAN NMR300:VARIAN社製)、及びMALDI-TOF MASS(Urtraflex:BRUKER社製)を用いて構造を確認し、重量平均分子量及び分子量分布はGPC(カラム:Shodex K-804(昭和電工社製)、検出器:示差屈折計 RI-980(日本分光社製)、溶離液:クロロホルム:エタノール=99:1(vol/vol)、流速:1.0ml/min、温度:37℃、標準試料:TSK standard POLYSTYRENE(東ソー社製))を用いて測定した。結果を下記表5に示す。また、試験例3-1で得られた芳香族系ポリエステル樹脂であるポリ(ヘキサメチレンテレフタレート)のH NMR測定結果を図1に示す。
In Test Example 3-1, the high-purity cyclic oligomer mixture was prepared using hexamethylene glycol as the diol component, and the mixture was heated and stirred at 140 ° C. for 48 hours in the presence of the immobilized enzyme to carry out a polycondensation reaction. In Test Example 3-2, the above-mentioned high-purity cyclic oligomer mixture was prepared using decamethylene glycol, and heated and stirred at 120 ° C. for 48 hours in the presence of the immobilized enzyme to carry out a polycondensation reaction. The subsequent operation is the same as in Test Examples 2-1 to 2-4.
For the products obtained by the above test examples, the structure was confirmed using 1 H NMR (VARIAN NMR300: manufactured by VARIAN) and MALDI-TOF MASS (Ultraflex: manufactured by BRUKER), and the weight average molecular weight and The molecular weight distribution is GPC (column: Shodex K-804 (manufactured by Showa Denko KK), detector: differential refractometer RI-980 (manufactured by JASCO), eluent: chloroform: ethanol = 99: 1 (vol / vol), Flow rate: 1.0 ml / min, temperature: 37 ° C., standard sample: TSK standard POLYSTYRENE (manufactured by Tosoh Corporation)). The results are shown in Table 5 below. Further, FIG. 1 shows the 1 H NMR measurement result of poly (hexamethylene terephthalate), which is an aromatic polyester resin obtained in Test Example 3-1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記表5に示されるように、高純度に調製した環状オリゴマー混合物を用いて重縮合反応を行った試験例3-1及び3-2においては、重量平均分子量130,000~140,000という非常に高分子量の芳香族系ポリエステル樹脂が得られることが明らかとなった。これは、ここで用いた環状オリゴマーにおいては、ジカルボン酸成分とジオール成分の量比(モル比)がほぼ完全に1:1であり、重縮合反応中においてもこの比率が維持されているためと考えられる。 As shown in Table 5 above, in Test Examples 3-1 and 3-2 in which a polycondensation reaction was performed using a cyclic oligomer mixture prepared with high purity, the weight average molecular weight was 130,000 to 140,000. It was revealed that an aromatic polyester resin having a high molecular weight was obtained. This is because in the cyclic oligomer used here, the amount ratio (molar ratio) of the dicarboxylic acid component and the diol component is almost completely 1: 1, and this ratio is maintained even during the polycondensation reaction. Conceivable.
 また本発明者らは、テレフタル酸ジメチルとヘキサメチレングリコールとの仕込み量比(モル比)を様々にして、高純度環状オリゴマーの製造を実施した。そして、得られた両末端アルキルエステル―アルキルエステルの鎖状オリゴマーを様々な比率で含有するエステルオリゴマー混合物に対し、ポリエステル製造工程を試験例3-1と同様に行った。これにより、ポリエステル製造工程に用いる高純度環状エステルオリゴマー中のジカルボン酸成分/ジオール成分の比率が、ポリエステル製造工程後に得られる芳香族系ポリエステルの分子量に与える影響について調査した。結果をまとめたものを図2に示す。なお、図中[H]/[T](mol/mol)は、高純度環状オリゴマー混合物中のヘキサメチレングリコール成分/テレフタル酸成分の量比(モル比)を表す。 In addition, the present inventors have produced high-purity cyclic oligomers by varying the charging amount ratio (molar ratio) of dimethyl terephthalate and hexamethylene glycol. Then, a polyester production process was performed in the same manner as in Test Example 3-1 on the ester oligomer mixture containing the chain oligomers of the both-end alkyl ester-alkyl ester in various ratios. Thus, the influence of the ratio of the dicarboxylic acid component / diol component in the high-purity cyclic ester oligomer used in the polyester production process on the molecular weight of the aromatic polyester obtained after the polyester production process was investigated. A summary of the results is shown in FIG. In the figure, [H] / [T] (mol / mol) represents the quantitative ratio (molar ratio) of the hexamethylene glycol component / terephthalic acid component in the high-purity cyclic oligomer mixture.
 図2に示されるように、高純度環状エステルオリゴマー混合物中のジカルボン酸成分/ジオール成分の量比(モル比)が、得られる芳香族系ポリエステル樹脂の分子量に大きく影響していることが確認された。例えば、上記量比がわずか1モル%外れただけであっても、得られる樹脂の重量平均分子量は60,000程度にとどまっていることがわかる。このことから、高分子量の芳香族系ポリエステル樹脂を得るためには、重縮合反応中のジカルボン酸成分/ジオール成分を、かなり高い精度で1:1に制御する必要があると言える。また、エステルオリゴマー製造工程におけるジカルボン酸成分とジオール成分の仕込み量比(モル比)を任意のものとすることで、得られる環状エステルオリゴマー中のジカルボン酸成分とジオール成分との量比を目的に応じて厳密に制御することができ、結果として他の諸条件を変えることなく芳香族系ポリエステルの分子量を厳密に制御できる。これらから、高純度環状エステルオリゴマー混合物の使用が極めて有用であることが理解される。 As shown in FIG. 2, it was confirmed that the amount ratio (molar ratio) of the dicarboxylic acid component / diol component in the high purity cyclic ester oligomer mixture greatly affects the molecular weight of the resulting aromatic polyester resin. It was. For example, it can be seen that the weight average molecular weight of the obtained resin is only about 60,000 even when the above-mentioned ratio is only 1 mol%. From this, it can be said that in order to obtain a high molecular weight aromatic polyester resin, it is necessary to control the dicarboxylic acid component / diol component in the polycondensation reaction to 1: 1 with considerably high accuracy. Moreover, by making the preparation amount ratio (molar ratio) of the dicarboxylic acid component and the diol component in the ester oligomer production process arbitrary, for the purpose of the quantitative ratio of the dicarboxylic acid component and the diol component in the obtained cyclic ester oligomer Accordingly, the molecular weight of the aromatic polyester can be strictly controlled without changing other conditions. From these it is understood that the use of a high purity cyclic ester oligomer mixture is extremely useful.
 つづいて、以上のようにして得られた本発明の高分子量芳香族系ポリエステル樹脂について、実使用のための物性試験(熱特性及び機械特性)を行なった。結果を下記表6及び7に示す。
 熱特性の評価のうち、ガラス転移点、融点、降温結晶化温度は示差走査熱量計(DSC-60:島津製作所社製)を用い、5%熱重量減少温度は示差熱・熱重量同時測定装置(DTG-60H:島津製作所社製)を用いた。測定は、いずれも窒素雰囲気下10℃/minで温度を変化させて行った。機械特性の評価(引っ張り試験)は、各樹脂をホットプレスして作成した約100μm厚のシートについて、試験部幅を5.0mmとし、長さを30.0mmとするダンベル状に打ち抜いたものを試験片とし、精密万能試験機(オートグラフAGS-J:島津製作所社製)を用いて行った。なお、つかみ具間距離を10mmとし、試験温度は25℃、試験速度は10mm/minとした。
Subsequently, physical properties tests (thermal properties and mechanical properties) for actual use were performed on the high molecular weight aromatic polyester resin of the present invention obtained as described above. The results are shown in Tables 6 and 7 below.
Among the evaluation of thermal characteristics, the glass transition point, melting point, and temperature drop crystallization temperature are measured using a differential scanning calorimeter (DSC-60: manufactured by Shimadzu Corporation). (DTG-60H: manufactured by Shimadzu Corporation) was used. The measurement was performed by changing the temperature at 10 ° C./min in a nitrogen atmosphere. Evaluation of mechanical properties (tensile test) was performed by punching a dumbbell with a width of the test part of 5.0 mm and a length of 30.0 mm for a sheet of about 100 μm thickness prepared by hot pressing each resin. A test piece was used and a precision universal testing machine (Autograph AGS-J: manufactured by Shimadzu Corporation) was used. The distance between the grips was 10 mm, the test temperature was 25 ° C., and the test speed was 10 mm / min.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 上記表6及び表7に示されるように、加水分解酵素を用いて製造した本発明の芳香族系ポリエステル樹脂においては、従来構造材として使用される高密度ポリエチレンと比較しても遜色の無い熱特性や力学的特性を示した。このことより、本発明の芳香族系ポリエステル樹脂が、構造材としても十分に使用可能であることが確認された。 As shown in Tables 6 and 7 above, the aromatic polyester resin of the present invention produced using a hydrolase has heat comparable to that of high density polyethylene used as a conventional structural material. The characteristics and mechanical properties are shown. From this, it was confirmed that the aromatic polyester resin of the present invention can be sufficiently used as a structural material.
 また、以上のようにして得られた本発明の高分子量芳香族系ポリエステル樹脂について、金属イオン含有量の定量試験を行なった。結果を下記表8に示す。
 金属イオン定量試験は、誘起結合プラズマ発光分析装置(ICP発光分析装置P-4010:日立製作所社製)を用いて行なった。濃硫酸へ浸した樹脂サンプル(試験例3-1;ポリヘキサメチレンテレフタレート)に対して、約320℃で還流させながら濃硝酸を作用させるという操作を溶液が透明になるまで繰り返した後、過剰の濃硝酸を加熱留去した。得られた溶液を20℃で純水にてメスアップし、これをサンプル溶液として、ICP発光分析を行なった。
The high molecular weight aromatic polyester resin of the present invention obtained as described above was subjected to a quantitative test of the metal ion content. The results are shown in Table 8 below.
The metal ion quantitative test was conducted using an inductively coupled plasma optical emission spectrometer (ICP optical emission spectrometer P-4010 manufactured by Hitachi, Ltd.). For a resin sample immersed in concentrated sulfuric acid (Test Example 3-1; polyhexamethylene terephthalate), an operation of allowing concentrated nitric acid to act while refluxing at about 320 ° C. was repeated until the solution became transparent. Concentrated nitric acid was distilled off by heating. The obtained solution was diluted with pure water at 20 ° C., and this was used as a sample solution for ICP emission analysis.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 上記表8に示されるように、加水分解酵素を用いて製造した本発明の芳香族系ポリエステル樹脂に含まれる重金属含有量は、測定した全ての金属において検出限界未満となった。このことから、本発明により得られる芳香族系ポリエステル樹脂には金属不純物が極めて少ないことが理解される。このため、金属の流出等による環境汚染を防止することができ、さらには金属不純物に起因するポリエステル樹脂の性能低下も生じにくいものと考えられる。 As shown in Table 8 above, the heavy metal content contained in the aromatic polyester resin of the present invention produced using a hydrolase was less than the detection limit for all measured metals. From this, it is understood that the aromatic polyester resin obtained by the present invention has very few metal impurities. For this reason, it is considered that environmental pollution due to metal outflow or the like can be prevented, and further, the performance deterioration of the polyester resin due to metal impurities is hardly caused.

Claims (9)

  1.  テレフタル酸又はナフタレンジカルボン酸、あるいはそれらの誘導体を含むジカルボン酸成分とジオール成分とを、加水分解酵素の触媒作用により重合させることによって得られ、重量平均分子量が20000以上であることを特徴とする芳香族系ポリエステル樹脂。 A fragrance obtained by polymerizing a dicarboxylic acid component containing terephthalic acid or naphthalenedicarboxylic acid, or a derivative thereof, and a diol component by the catalytic action of a hydrolase, and having a weight average molecular weight of 20000 or more Family polyester resin.
  2.  請求項1に記載の芳香族系ポリエステル樹脂において、融点が170℃未満であることを特徴とする芳香族系ポリエステル樹脂。 The aromatic polyester resin according to claim 1, wherein the aromatic polyester resin has a melting point of less than 170 ° C.
  3.  請求項1又は2に記載の芳香族系ポリエステル樹脂において、前記加水分解酵素がリパーゼであることを特徴とする芳香族系ポリエステル樹脂。 3. The aromatic polyester resin according to claim 1, wherein the hydrolase is a lipase.
  4.  請求項3に記載の芳香族系ポリエステル樹脂において、前記リパーゼが担体に固定化された固定化リパーゼであることを特徴とする芳香族系ポリエステル樹脂。 4. The aromatic polyester resin according to claim 3, wherein the lipase is an immobilized lipase immobilized on a carrier.
  5.  請求項1から4のいずれかに記載の芳香族系ポリエステル樹脂において、アンチモン、チタン、ゲルマニウム、アルミニウム、亜鉛、スズ、ジルコニウム、マグネシウム及びマンガンを実質的に含まないことを特徴とする芳香族系ポリエステル樹脂。 The aromatic polyester resin according to any one of claims 1 to 4, which is substantially free of antimony, titanium, germanium, aluminum, zinc, tin, zirconium, magnesium and manganese. resin.
  6.  テレフタル酸又はナフタレンジカルボン酸、あるいはそれらの誘導体を含むジカルボン酸成分とジオール成分とを用いて、加水分解酵素の存在下、重量平均分子量20000未満の鎖状あるいは環状のエステルオリゴマー混合物を製造するエステルオリゴマー製造工程と、
     前記工程により得られたエステルオリゴマー混合物を、加水分解酵素の存在下、さらに重縮合させて、重量平均分子量20000以上の芳香族系ポリエステル樹脂を製造するポリエステル樹脂重合工程とを備えることを特徴とする芳香族系ポリエステル樹脂の製造方法。
    Ester oligomer for producing a chain or cyclic ester oligomer mixture having a weight average molecular weight of less than 20,000 in the presence of hydrolase, using a dicarboxylic acid component containing terephthalic acid or naphthalenedicarboxylic acid, or a derivative thereof, and a diol component Manufacturing process,
    A polyester resin polymerization step of producing an aromatic polyester resin having a weight average molecular weight of 20000 or more by further polycondensing the ester oligomer mixture obtained in the above step in the presence of a hydrolase. A method for producing an aromatic polyester resin.
  7.  請求項6に記載の芳香族系ポリエステル樹脂の製造方法において、前記エステルオリゴマー製造工程が、テレフタル酸又はナフタレンジカルボン酸、あるいはそれらの誘導体を含むジカルボン酸成分とジオール成分とを、加水分解酵素の存在下、反応開始直後に30~120℃で5~6000分間加熱する第一加熱工程であり、前記ポリエステル樹脂重合工程が、前記第一加熱工程の後、加水分解酵素の存在下、さらに70~180℃で60~6000分間加熱する第二加熱工程であることを特徴とする芳香族系ポリエステル樹脂の製造方法。 7. The method for producing an aromatic polyester resin according to claim 6, wherein the ester oligomer production step comprises diteric acid component containing terephthalic acid or naphthalenedicarboxylic acid, or a derivative thereof, and a diol component in the presence of hydrolase. The first heating step is to heat at 30 to 120 ° C. for 5 to 6000 minutes immediately after the start of the reaction, and the polyester resin polymerization step is further performed in the presence of a hydrolase after the first heating step. A method for producing an aromatic polyester resin, which is a second heating step of heating at 60 ° C. for 60 to 6000 minutes.
  8.  テレフタル酸又はナフタレンジカルボン酸、あるいはそれらの誘導体を含むジカルボン酸成分とジオール成分とを用いて、加水分解酵素の存在下、重量平均分子量20000未満の鎖状あるいは環状のエステルオリゴマー混合物を製造するエステルオリゴマー製造工程と、
     前記工程により得られたエステルオリゴマー混合物中から環状のエステルオリゴマーを分離精製して高純度の環状エステルオリゴマー混合物を得る環状エステルオリゴマー精製工程と、
     前記工程により得られた高純度の環状エステルオリゴマー混合物を、加水分解酵素の存在下、さらに重縮合させて、重量平均分子量20000以上の芳香族系ポリエステル樹脂を製造するポリエステル樹脂重合工程とを備えることを特徴とする芳香族系ポリエステル樹脂の製造方法。
    Ester oligomer for producing a chain or cyclic ester oligomer mixture having a weight average molecular weight of less than 20,000 in the presence of hydrolase, using a dicarboxylic acid component containing terephthalic acid or naphthalenedicarboxylic acid, or a derivative thereof, and a diol component Manufacturing process,
    A cyclic ester oligomer purification step for separating and purifying a cyclic ester oligomer from the ester oligomer mixture obtained by the above step to obtain a high purity cyclic ester oligomer mixture;
    A polyester resin polymerization step of producing an aromatic polyester resin having a weight average molecular weight of 20000 or more by further polycondensing the high-purity cyclic ester oligomer mixture obtained in the above step in the presence of a hydrolase. A process for producing an aromatic polyester resin characterized by
  9.  請求項8に記載の芳香族系ポリエステル樹脂の製造方法において、前記エステルオリゴマー製造工程が、テレフタル酸又はナフタレンジカルボン酸、あるいはそれらの誘導体を含むジカルボン酸成分とジオール成分とを、加水分解酵素の存在下、30~120℃で5~6000分間加熱する工程であり、前記ポリエステル樹脂重合工程が、加水分解酵素の存在下、さらに70~180℃で60~6000分間加熱する工程であることを特徴とする芳香族系ポリエステル樹脂の製造方法。 9. The method for producing an aromatic polyester resin according to claim 8, wherein the ester oligomer production step comprises a dicarboxylic acid component containing terephthalic acid or naphthalenedicarboxylic acid, or a derivative thereof, and a diol component in the presence of a hydrolase. The polyester resin polymerization step is a step of heating at 70 to 180 ° C. for 60 to 6000 minutes in the presence of a hydrolase, and a step of heating at 30 to 120 ° C. for 5 to 6000 minutes. A method for producing an aromatic polyester resin.
PCT/JP2009/055152 2008-04-17 2009-03-17 Aromatic polyester resin and method of producing the same WO2009128318A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010508157A JP5593219B2 (en) 2008-04-17 2009-03-17 Method for producing aromatic polyester resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008107743 2008-04-17
JP2008-107743 2008-04-17

Publications (1)

Publication Number Publication Date
WO2009128318A1 true WO2009128318A1 (en) 2009-10-22

Family

ID=41199018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055152 WO2009128318A1 (en) 2008-04-17 2009-03-17 Aromatic polyester resin and method of producing the same

Country Status (2)

Country Link
JP (1) JP5593219B2 (en)
WO (1) WO2009128318A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019523323A (en) * 2016-07-27 2019-08-22 ヴェルサリス ソシエタ ペル アチオニ Regioselective synthesis of polyesters from asymmetric diols

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195185A (en) * 1997-01-13 1998-07-28 Toyo Ink Mfg Co Ltd Production of polyester
JP2003292598A (en) * 2002-04-08 2003-10-15 Teijin Ltd Polyester
WO2005100440A1 (en) * 2004-04-12 2005-10-27 Toyo Boseki Kabushiki Kaisha Polyester resin, molded articles thereof, and process for production of the articles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195185A (en) * 1997-01-13 1998-07-28 Toyo Ink Mfg Co Ltd Production of polyester
JP2003292598A (en) * 2002-04-08 2003-10-15 Teijin Ltd Polyester
WO2005100440A1 (en) * 2004-04-12 2005-10-27 Toyo Boseki Kabushiki Kaisha Polyester resin, molded articles thereof, and process for production of the articles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ARNAUD LAVALETTE ET AL.: "Lipase-Catalyzed Synthesis of a Pure Macrocyclic Polyester from Dimethyl Terephthalate and Diethylene Glycol", BIOMACROMOLECULES, vol. 3, no. 2, 2002, pages 225 - 228 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019523323A (en) * 2016-07-27 2019-08-22 ヴェルサリス ソシエタ ペル アチオニ Regioselective synthesis of polyesters from asymmetric diols
JP7083807B2 (en) 2016-07-27 2022-06-13 ヴェルサリス ソシエタ ペル アチオニ Regioselective synthesis of polyester from asymmetric diols

Also Published As

Publication number Publication date
JP5593219B2 (en) 2014-09-17
JPWO2009128318A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
EP0699701B1 (en) Process for preparing macrocyclic polyester oligomers
JP4965051B2 (en) Block copolyester
KR100517853B1 (en) Improved Process for Preparing High Molecular Weight Polyesters
Mandal et al. PET chemistry
AU2016226485B2 (en) Bio-based copolyester or copolyethylene terephthalate
JP2004224858A (en) Catalyst for polyester production and polyester produced therewith
JP5593219B2 (en) Method for producing aromatic polyester resin
EP0834524B1 (en) Polyester resin and process for the production thereof
CA2209994A1 (en) Process for producing polyethylene naphthalate
KR20010080303A (en) Preparation of a copolyether ester
JP2004131687A (en) Method for producing poly(cyclohexane-1, 4-dicarboxylate) from cyclohexane-1, 4-dicarboxylic acid, and composition
US5395692A (en) Photodegradable polyesters
JP4817648B2 (en) Polyester composition and molded article comprising the same
US11555115B2 (en) Bioderived monomers as replacements in petroleum based polymers and copolymers
JP2003292598A (en) Polyester
JP3374544B2 (en) Method for producing polyester copolymer
JP2006335839A (en) Method for producing polyethylene terephthalate
US3457239A (en) Process of preparing polyethylene terephthalate using lead fluoride as transesterification catalyst and as condensation catalyst
JP2008115243A (en) Titanium compound catalyst and method for producing polyester using the same
JP2008174582A (en) Highly active and floating titanium compound catalyst and method for producing polyester having good hue using the same
JP2010057449A (en) Method for producing polyester polymer
JP2022049307A (en) Polyalkylene glycol copolyester
CN117964883A (en) Aliphatic-aromatic copolyester and preparation method and application thereof
CN116199874A (en) Liquid polyester polyol and preparation method thereof
CN118027376A (en) Novel biodegradable polyester polycarbonate copolymer dihydric alcohol and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09733093

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010508157

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09733093

Country of ref document: EP

Kind code of ref document: A1