WO2009128224A1 - Process for producing crystalline silicon carbide substrate - Google Patents

Process for producing crystalline silicon carbide substrate Download PDF

Info

Publication number
WO2009128224A1
WO2009128224A1 PCT/JP2009/001646 JP2009001646W WO2009128224A1 WO 2009128224 A1 WO2009128224 A1 WO 2009128224A1 JP 2009001646 W JP2009001646 W JP 2009001646W WO 2009128224 A1 WO2009128224 A1 WO 2009128224A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot isostatic
sic
silicon carbide
isostatic pressing
crystalline
Prior art date
Application number
PCT/JP2009/001646
Other languages
French (fr)
Japanese (ja)
Inventor
村松一生
Original Assignee
株式会社インキュベーション・アライアンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社インキュベーション・アライアンス filed Critical 株式会社インキュベーション・アライアンス
Publication of WO2009128224A1 publication Critical patent/WO2009128224A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth

Definitions

  • the present invention relates to a method for manufacturing a crystalline silicon carbide substrate suitable as a substrate material for power devices, high-frequency devices, LEDs, and the like.
  • Silicon carbide has a short bond distance between Si and C, which are constituent atoms, The semiconductor is characterized by a large band gap, and has a very high chemical stability due to a short interatomic bond distance. Also because of its structure, high thermal conductivity, It has the characteristics of saturated electron drift velocity and high breakdown field strength. It is attractive as a semiconductor device material that handles high power. If an electronic device using SiC is realized, high-power, low-loss, high-speed semiconductor devices can be applied to power systems, industrial equipment, automobiles, and home appliances. A significant energy saving effect can be expected.
  • SiC is similar in crystal structure, Short wavelength optical device based on gallium nitride (GaN) due to its conductivity and high thermal conductivity, It is optimal for high-power, high-frequency devices and occupies an important position as a substrate material for GaN-based semiconductor thin films.
  • GaN gallium nitride
  • SiC exhibits polytypes having a crystallographically identical composition but different laminated structures. There are many types of polytypes, but 3C, 6H, The 4H one has been developed and put into practical use. (The numbers represent the repetition period in the C-axis direction, C is cubic and H is hexagonal). Generally, 3C SiC is known as a low temperature stable polytype, and 6H and 4H are known as high temperature stable polytypes. What has been developed as a substrate material for semiconductor devices is hexagonal SiC such as 6H and 4H.
  • the method currently used for crystal growth of large SiC is a seeded sublimation recrystallization method called an improved Rayleigh method.
  • This method is characterized by controlling the raw material transport process by filling a growth system with a temperature gradient with an inert gas, and controlling the nucleation process of crystal growth by using a seed crystal. Vapor consisting of Si and C sublimated from the raw material is transported by diffusion in the inert gas, and condensed in a supersaturated state on the seed crystal at a temperature lower than that of the raw material. Yu. M. Tailov and V.M. F. Tsvektov, Journal of Cristal Growth, vol. 52 (1981) pp 146-150
  • Dislocation defects existing in crystalline SiC have a bad influence on the device, and thus reduction thereof is required.
  • Dislocations in a crystal are roughly classified according to the extension direction, and are classified into two types: threading dislocations extending in the C-axis direction, which is the crystal growth direction, and basal plane dislocations existing in the basal plane perpendicular to the growth direction.
  • the threading dislocation is considered to cause breakdown voltage degradation of the SiC element, and the basal plane dislocation is considered to cause forward characteristic degradation of the bipolar device.
  • the biggest problem of SiC produced by the improved Rayleigh method is the existence of hollow through defects called micropipes.
  • the micropipe defect which is a hollow defect having a diameter of several ⁇ m that penetrates in the growth direction, is inherited during the growth of the epitaxial thin film and becomes a fatal defect for the device.
  • an object of the present invention is to provide a method for producing a crystalline SiC substrate that can be suitably used for industrially producing power devices, high-frequency devices, and LED elements at low cost.
  • crystal defects such as dislocations inherent in the crystalline SiC material, material distortion, It is reduced by performing a hot isostatic pressing process under a predetermined condition.
  • a cylinder with two congruent plane figures as the bottom It includes a step of subjecting the SiC material formed in a vertical column shape to hot isostatic pressing.
  • a carbonaceous or silicon carbide film is formed on the outer surface of the SiC material in advance of the hot isostatic pressing process in order to reduce the open pores of the crystalline SiC material. More specifically, the carbonaceous film is composed of amorphous carbon including diamond-like carbon.
  • defects and strains in the crystalline SiC material are reduced by isotropic high-temperature and high-pressure treatment with an atmospheric gas such as argon gas, It is possible to provide a large-sized substrate material suitable for manufacturing high-frequency devices and LED elements at low cost.
  • the outer surface of the crystalline SiC ingot material manufactured by various manufacturing methods such as the Rayleigh method, the improved Rayleigh method, the high temperature CVD method, and the solution method is processed into a predetermined symmetrical shape such as a cylinder or a vertical column by grinding.
  • a predetermined symmetrical shape such as a cylinder or a vertical column by grinding.
  • For grinding use a fixed whetstone such as electrodeposited diamond to avoid introducing processing damage to the material surface as much as possible to avoid problems such as material cracking in subsequent manufacturing processes.
  • isotropic pressure as uniformly as possible inside the material, so that the above shape processing is important.
  • the outer surface of the SiC material is carbonaceous, prior to the hot isostatic pressing treatment, Cover with SiC or the like.
  • the material to be coated is determined by the thermal expansion coefficient in the surface orientation of each surface of the crystalline SiC material. Since the thermal expansion coefficients of the surface of each material differ depending on the crystal form of the material to be processed, that is, polytypes such as 3C, 4H, 6H, etc. select. In particular, in the case of hexagonal crystals such as 4H and 6H, the difference in thermal expansion coefficient between the in-plane and c-axis directions is large.
  • a coating material having an appropriate thermal expansion coefficient is selected according to the orientation of the ingot processed into a predetermined shape.
  • the difference in thermal expansion coefficient between the material to be treated and the coating material is large, the coating material is peeled off during the hot isostatic pressing process, and a sufficient effect cannot be obtained.
  • Amorphous carbon films such as diamond-like carbon formed by ionization vapor deposition, plasma CVD, cathodic arc, unbalanced magnetron sputtering, plasma ion implantation, etc. are suitable for use as sealing materials. it can.
  • Amorphous carbon film has isotropic physical properties, and the thermal expansion coefficient can be controlled by the amount of residual hydrogen, etc., so that defects in processed materials can be effectively reduced during subsequent hot isostatic pressing. Can do.
  • FIG. 1 shows an outline of the manufacturing process of the present invention.
  • Example 1 Crystal SiC material manufactured by the modified Rayleigh method with outer diameter of 55mm x 100mm Were inserted into a crucible with an isotropic graphite lid having an inner diameter of 55.5 mm, and lightly tightened and held with upper and lower screw-type lids. Crystalline SiC
  • the graphite crucible in which the material was inserted was loaded into a pressure vessel of a hot isostatic press and a hot isostatic press using argon gas was performed.
  • the processing pattern of the hot isostatic pressurization process is to increase the pressure at a rate of 200 MPa per hour and 20 MPa per hour after depressurization at 300 ° C. to remove moisture and the like, After holding at 2500 ° C.
  • the temperature is lowered at a predetermined rate.
  • the crystal SiC material after hot isostatic pressing is sliced to a thickness of 0.25 mm with a diamond-fixed saw wire, and then the surface is polished by lapping and polishing using diamond abrasive grains. Wafers were manufactured.
  • Crystal SiC material manufactured by the modified Rayleigh method is 55 mm in outer diameter and 0.25 mm in thickness. It was processed into a cylindrical wafer shape of mm, and then inserted into a crucible with an isotropic graphite lid having an inner diameter of 55.5 mm through a graphite spacer, and lightly tightened and held with upper and lower screw-type lids. .
  • a graphite crucible in which a crystalline SiC material was inserted was loaded into a pressure vessel of a hot isostatic press, and hot isostatic press using argon gas was performed. The processing pattern of hot isostatic pressing is 300 ° C.
  • the temperature was increased and the pressure increased at a rate of 200 MPa per hour and 20 MPa per hour at 2500 ° C. and 200 MPa. After holding for 1 hour, the temperature was lowered and the pressure was lowered at a predetermined rate.
  • the surface of the crystalline SiC material after hot isostatic pressing was polished by lapping and polishing using diamond abrasive grains to produce a crystalline SiC wafer having both mirror surfaces.
  • the lifetime map of the manufactured crystalline SiC wafer was measured by the ⁇ -PCD method, the time difference in lifetime from the center to the outer periphery was 30% compared to the comparative material manufactured without hot isostatic pressing. Improved and crystalline SiC Wafer distortion was improved.
  • Crystal SiC material manufactured by the modified Rayleigh method is 55 mm in outer diameter and 0.25 mm in thickness. Then, it was processed into a cylindrical wafer shape of mm, and diamond-like carbon having a thickness of 2 ⁇ m was formed on the entire surface of the wafer using an unbalanced magnetron sputtering apparatus. Next, it was inserted into a crucible with an isotropic graphite lid having an inner diameter of 55.5 mm through a graphite spacer, and lightly tightened and held with upper and lower screw-type lids.
  • a graphite crucible in which a crystalline SiC material was inserted was loaded into a pressure vessel of a hot isostatic press, and hot isostatic press using argon gas was performed.
  • the processing pattern of hot isostatic pressing is After depressurizing at 300 ° C. and removing moisture, etc., the temperature was raised and increased at a rate of 100 MPa per hour and 10 MPa per hour at 2500 ° C. and 200 MPa. After holding for 1 hour, the temperature was lowered and the pressure was lowered at a predetermined rate. Lapping the crystalline SiC material after hot isostatic pressing using diamond abrasives, The surface was polished by polishing to produce a crystalline SiC wafer having both mirror surfaces.
  • the lifetime map of the manufactured crystalline SiC wafer by ⁇ -PCD method was measured, and the time difference in lifetime from the center to the outer periphery was 50% compared to the comparative material manufactured without hot isostatic pressing. Improved and crystalline SiC Wafer distortion has been greatly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Disclosed is a process for producing a large-size crystalline SiC substrate that has no significant crystal defects and strains, and can realize a low production cost. A crystalline SiC substrate, which has no significant crystal defects and strains, can be mass produced, can realize a low production cost, and has a large size, is produced by subjecting an SiC material having a cylindrical or columnar shape to hot isostatic pressing treatment, or by forming a carbonaceous or silicon carbide film on the outer surface of an SiC material before the hot isostatic pressing treatment to reduce open pores of the crystalline SiC material and then subjecting the assembly to the hot isostatic pressing treatment.

Description

結晶炭化珪素基板の製造方法Method for manufacturing crystalline silicon carbide substrate
本発明は、パワーデバイス、高周波デバイス、LEDなどの基板材料として
好適な結晶炭化珪素基板の製造方法に関するものである。
The present invention relates to a method for manufacturing a crystalline silicon carbide substrate suitable as a substrate material for power devices, high-frequency devices, LEDs, and the like.
炭化珪素(SiC)は、構成原子であるSi,C間の結合距離が短く、
半導体のバンドギャップが大きいことが特徴であり、また短い原子間結合
距離故に化学的安定性が極めて高い。またその構造故に、高い熱伝導度、
飽和電子ドリフト速度、高い絶縁破壊電界強度という特性を有しており、
大電力を扱う半導体デバイス材料として魅力的なものとなっている。
SiCを用いた電子デバイスが実現されれば、大電力、低損失、高速の
半導体デバイスが、電力システム、産業機器、自動車、家電に適用でき、
著しい省エネルギー効果が期待できる。また、SiCは結晶構造の類似性、
導電性、高い熱伝導率から、窒化ガリウム( GaN)系の短波長光学デバイス、
大電力高周波デバイスに最適とされ、GaN系半導体薄膜の基板材料として
も重要な位置を占めている。
Silicon carbide (SiC) has a short bond distance between Si and C, which are constituent atoms,
The semiconductor is characterized by a large band gap, and has a very high chemical stability due to a short interatomic bond distance. Also because of its structure, high thermal conductivity,
It has the characteristics of saturated electron drift velocity and high breakdown field strength.
It is attractive as a semiconductor device material that handles high power.
If an electronic device using SiC is realized, high-power, low-loss, high-speed semiconductor devices can be applied to power systems, industrial equipment, automobiles, and home appliances.
A significant energy saving effect can be expected. SiC is similar in crystal structure,
Short wavelength optical device based on gallium nitride (GaN) due to its conductivity and high thermal conductivity,
It is optimal for high-power, high-frequency devices and occupies an important position as a substrate material for GaN-based semiconductor thin films.
SiCは、結晶学的に同一の組成であるが積層構造が異なるポリタイプを
呈する。ポリタイプとしては多くの種類が存在するが、3C、 6H、 
4Hのものが実用的に開発、実用化されている。(数字はC軸方向の繰り返
し周期を表し、 Cは立方晶、 Hは六方晶を示す)。一般に3CのSiCは
低温安定ポリタイプ、6H、4Hは高温安定ポリタイプとして知られており、
半導体素子用基板材料として開発されているものは、6H、4H等の六方晶
系のSiCである。
SiC exhibits polytypes having a crystallographically identical composition but different laminated structures. There are many types of polytypes, but 3C, 6H,
The 4H one has been developed and put into practical use. (The numbers represent the repetition period in the C-axis direction, C is cubic and H is hexagonal). Generally, 3C SiC is known as a low temperature stable polytype, and 6H and 4H are known as high temperature stable polytypes.
What has been developed as a substrate material for semiconductor devices is hexagonal SiC such as 6H and 4H.
結晶SiCの製造方法としては以下に示す方法が考案され実用されている。
(Acheson法)
高純度のけい石とコークスを電気炉にて焼成することにより製造される、
いわゆるカーボランダムで、研磨用砥粒として多用されており、緑色の
GC、黒色のCに大別される。工業炉で生成されるSiCの結晶は、4H、
6H、15Rの3種の混合結晶体が主体で生成され、一般的には、GC
には6Hが多く、Cには6Hと4Hの結晶が多く含まれる。
As a method for producing crystalline SiC, the following method has been devised and put into practical use.
(Acheson method)
Manufactured by firing high-purity silica and coke in an electric furnace,
It is a so-called carborundum and is often used as abrasive grains for polishing.
GC and black C SiC crystals produced in industrial furnaces are 4H,
Three types of mixed crystals of 6H and 15R are mainly produced.
Contains a lot of 6H, and C contains a lot of crystals of 6H and 4H.
(レーリー法)
黒鉛坩堝内で原料SiCを2500℃以上の高温で昇華させ低温部に
再結晶化させる方法である。レーリー法では、成長速度が小さいのに加え、
成長初期の核生成過程が制御できない問題点がある。
(Rayleigh method)
In this method, the raw material SiC is sublimated at a high temperature of 2500 ° C. or higher in a graphite crucible and recrystallized in a low temperature part. In the Rayleigh method, the growth rate is low,
There is a problem that the nucleation process in the early stage of growth cannot be controlled.
(改良レーリー法)
現在、大型のSiCの結晶成長に用いられている方法は、改良レーリー法
と呼ばれる種付き昇華再結晶法である。この方法では温度勾配を設けた
成長系内を不活性ガスで満たすことにより原料の輸送過程を制御し、また
種結晶を使うことにより結晶成長の核生成過程を制御することが特徴で
ある。原料から昇華したSiとCとからなる蒸気が、不活性ガス中を拡散
により輸送されて、原料より低温の種結晶上に過飽和状態で凝結する。
Yu.M.Tairov and V.F.Tsvektov,Journai of Cristal Growth,vol.52(1981)pp146-150
(Improved Rayleigh method)
The method currently used for crystal growth of large SiC is a seeded sublimation recrystallization method called an improved Rayleigh method. This method is characterized by controlling the raw material transport process by filling a growth system with a temperature gradient with an inert gas, and controlling the nucleation process of crystal growth by using a seed crystal. Vapor consisting of Si and C sublimated from the raw material is transported by diffusion in the inert gas, and condensed in a supersaturated state on the seed crystal at a temperature lower than that of the raw material.
Yu. M. Tailov and V.M. F. Tsvektov, Journal of Cristal Growth, vol. 52 (1981) pp 146-150
(高温CVD法)
SiH4、炭化水素(C2H4等)を原料として2000℃以上の高温で
CVDにてバルク材料を製造する方法で、Si/C比の制御が可能で、
高純度な結晶が得られるメリットがあるが、結晶成長のパラメータが多く
条件の最適化には至っていない現状である。
PhD.thesis,Diss.No.510,A.Ellison,Linkoping University,Linkoping,Sweden(1999)
(High temperature CVD method)
SiH4, hydrocarbons (C2H4, etc.) as raw materials at a high temperature of 2000 ° C or higher
Si / C ratio can be controlled by manufacturing bulk material by CVD.
Although there is an advantage that a high-purity crystal can be obtained, there are many parameters for crystal growth and the conditions have not been optimized.
PhD. thesis, Diss. No. 510, A.I. Ellison, Linking University, Linking, Sweden (1999)
(溶液成長法)
SiCの状態図からも明らかなように溶液状態から結晶材料を引き上げる
には極めて高温かつ高圧な条件が必要となる。実用可能な操業条件にて
結晶材料を得るために、高温化によるSi融液中へのC元素溶解度向上、
高圧化でのSi蒸発抑制、強制対流による物質輸送強化、金属触媒の利用
などが試みられている。特開2004-323247号公報では、Si
融液面からるつぼ底部へ向かう下向きの縦磁場を印加することにより自然
対流を抑制して多結晶化を防止することが提案され、特開2005-
82435号公報では、Si融液にAl、Ga、In、As、Sb、Au、
Ag、Ptのいずれかを添加することにより成長表面を安定して平坦に
維持することが提案されている。
(Solution growth method)
As is apparent from the SiC phase diagram, extremely high temperature and high pressure conditions are required to pull up the crystal material from the solution state. In order to obtain crystalline materials under practical operating conditions, the solubility of C element in Si melt is improved by increasing the temperature,
Attempts have been made to suppress Si evaporation at high pressures, enhance material transport by forced convection, and use metal catalysts. In Japanese Patent Application Laid-Open No. 2004-323247, Si
By applying a downward longitudinal magnetic field from the melt surface toward the bottom of the crucible, it has been proposed to suppress natural convection to prevent polycrystallization.
In the 82435 gazette, Al, Ga, In, As, Sb, Au,
It has been proposed to keep the growth surface stable and flat by adding either Ag or Pt.
実用可能でなおかつデバイスコストを低減するためのSiCバルク単結晶
製造の課題には、ポリタイプの制御、結晶欠陥の低減、n+/n-積層
構造のためのドーピング、電気特性の制御などがあり、これらの課題との
トレードオフで成長速度の向上を実現していく必要がある。特に結晶性
SiCに存在する転位欠陥はデバイスへの悪影響のため、その低減が必要
とされている。結晶中の転位はその伸展方向によって大別され、結晶成長
方向であるC軸方向に伸びた貫通転位と、成長方向と垂直な基底面内に
存在する基底面転位の2つに分類される。貫通転位は、SiC素子の耐圧
劣化をもたらすとされ、また基底面転位は、バイポーラデバイスの順方向
特性劣化の原因となるとされている。 改良レーリー法で作製したSiCの
最大の問題点は、マイクロパイプと呼ばれる中空貫通欠陥の存在である。
成長方向に貫通する直径数μmの中空状欠陥であるマイクロパイプ欠陥は
エピタキシャル薄膜成長時に引き継がれ、デバイスにとっては致命的な
欠陥となる。
Issues of SiC bulk single crystal manufacturing that are practical and reduce device cost include control of polytype, reduction of crystal defects, doping for n + / n− stacked structure, control of electrical characteristics, etc. It is necessary to improve the growth rate through trade-offs with these issues. In particular, dislocation defects existing in crystalline SiC have a bad influence on the device, and thus reduction thereof is required. Dislocations in a crystal are roughly classified according to the extension direction, and are classified into two types: threading dislocations extending in the C-axis direction, which is the crystal growth direction, and basal plane dislocations existing in the basal plane perpendicular to the growth direction. The threading dislocation is considered to cause breakdown voltage degradation of the SiC element, and the basal plane dislocation is considered to cause forward characteristic degradation of the bipolar device. The biggest problem of SiC produced by the improved Rayleigh method is the existence of hollow through defects called micropipes.
The micropipe defect, which is a hollow defect having a diameter of several μm that penetrates in the growth direction, is inherited during the growth of the epitaxial thin film and becomes a fatal defect for the device.
パワーデバイス、高周波デバイス、LED素子を工業的に安価に製造する
ためには大形状のSiCウエハを製造し素子1個あたりのコストを低減
する必要があるが、従来の製造方法では形状が大きくなると転位などに
よる結晶欠陥が極めて発生しやすくなる傾向が顕著である。また大形状
にて低欠陥密度のSiCを製造するためには、その生成速度が極めて低速
な条件を選択する必要があり、現状では結晶SiC基板の製造コストは極
めて高価なものとなっている。SiCの優れた特性を活用し、インバー
ターなどのパワーデバイスとして適用した場合には現状の消費電力を大幅
に削減し極めて大きな省エネルギー効果が得られることが明らかになっ
ているが、結晶SiC基板の高コストがその普及のための大きな課題と
なっている。
In order to manufacture power devices, high-frequency devices, and LED elements at low cost industrially, it is necessary to manufacture a large-sized SiC wafer and reduce the cost per element. There is a significant tendency for crystal defects due to dislocations and the like to occur very easily. In addition, in order to manufacture SiC having a large shape and low defect density, it is necessary to select conditions under which the generation speed is extremely low. At present, the manufacturing cost of the crystalline SiC substrate is extremely expensive. It has been clarified that, when the excellent characteristics of SiC are utilized and applied as a power device such as an inverter, the current power consumption can be greatly reduced and an extremely large energy saving effect can be obtained. Cost has become a major issue for its spread.
そこで本発明ではパワーデバイス、高周波デバイス、LED素子を工業的に
安価で製造するために好適に使用できる結晶SiC基板の製造方法を提供
することを目的とする。
Accordingly, an object of the present invention is to provide a method for producing a crystalline SiC substrate that can be suitably used for industrially producing power devices, high-frequency devices, and LED elements at low cost.
本発明では結晶SiC材料に内在する転位等の結晶欠陥、材料ひずみを、
所定の条件にて熱間静水圧加圧処理することにより低減させることを
特徴とする。具体的には合同な二つの平面図形を底面として持つ円柱、
立柱形状に形成したSiC材料を熱間静水圧加圧処理する工程を含む
ことを特徴とする。さらに結晶SiC材料の開気孔を低減することを
目的として熱間静水圧加圧処理工程の事前にSiC材料の外表面に
炭素質、炭化ケイ素の被膜を形成することを特徴とする。詳細には
炭素質の被膜がダイアモンドライクカーボンを含むアモルファスカー
ボンから構成されることを特徴とする。
In the present invention, crystal defects such as dislocations inherent in the crystalline SiC material, material distortion,
It is reduced by performing a hot isostatic pressing process under a predetermined condition. Specifically, a cylinder with two congruent plane figures as the bottom,
It includes a step of subjecting the SiC material formed in a vertical column shape to hot isostatic pressing. Furthermore, a carbonaceous or silicon carbide film is formed on the outer surface of the SiC material in advance of the hot isostatic pressing process in order to reduce the open pores of the crystalline SiC material. More specifically, the carbonaceous film is composed of amorphous carbon including diamond-like carbon.
本発明によればアルゴンガスなどの雰囲気ガスによる等方的な高温高圧
の処理により結晶SiC材料中の欠陥、ひずみが低減し、パワーデバイス、
高周波デバイス、LED素子を安価に製造するために好適な大形状の基板
材料を提供することが可能である。
According to the present invention, defects and strains in the crystalline SiC material are reduced by isotropic high-temperature and high-pressure treatment with an atmospheric gas such as argon gas,
It is possible to provide a large-sized substrate material suitable for manufacturing high-frequency devices and LED elements at low cost.
レーリー法、改良レーリー法、高温CVD法、溶液法等の各種の製造方法
にて製造した結晶SiCのインゴット材料の外表面を研削加工により
円柱、立柱などの所定の対称形状に加工する。研削加工には電着
ダイヤモンドなどの固定砥石を使用して材料表面への加工ダメージの導入
を極力避けるように留意し引き続く製造工程での材料割れなどの不具合を
回避する。材料中の欠陥等によるひずみを除去するためには材料内部に
できるだけ均等に等方的な圧力を導入する必要があるため上記の形状加工は
重要である。
The outer surface of the crystalline SiC ingot material manufactured by various manufacturing methods such as the Rayleigh method, the improved Rayleigh method, the high temperature CVD method, and the solution method is processed into a predetermined symmetrical shape such as a cylinder or a vertical column by grinding. For grinding, use a fixed whetstone such as electrodeposited diamond to avoid introducing processing damage to the material surface as much as possible to avoid problems such as material cracking in subsequent manufacturing processes. In order to remove strain due to defects in the material, it is necessary to introduce isotropic pressure as uniformly as possible inside the material, so that the above shape processing is important.
所定の形状に加工した結晶性材料を黒鉛製の蓋付き坩堝に挿入し、熱間
静水圧加圧処理装置の圧力容器内にセットし、アルゴンガスなどの雰囲気
ガスを使用して高温、高圧で等方的な加圧処理をおこなう。熱間静水圧
加圧処理時には1500℃以上、100MPa以上の高温高圧処理が望
ましく、処理プロセスには昇温・昇圧、保持、降温・降圧のプロセスが
ありそれぞれのプロセスにおいて適切な処理速度を設定する。
Insert the crystalline material processed into the specified shape into a crucible with a lid made of graphite, set it in the pressure vessel of a hot isostatic press, and use atmospheric gas such as argon gas at high temperature and high pressure. Isotropic pressure treatment is performed. During hot isostatic pressing, high-temperature and high-pressure processing of 1500 ° C. or higher and 100 MPa or higher is desirable, and there are temperature rising / pressurizing, holding, and temperature lowering / lowering processes, and an appropriate processing speed is set for each process. .
結晶SiC材料の中に存在する開気孔を効果的に低減させるための封孔処理
として、熱間静水圧加圧処理の事前に、SiC材料の外表面を炭素質、
SiCなどで被覆する。被覆する材質は、結晶性SiC材料のそれぞれ
の表面の面方位における熱膨張係数により決定する。被処理材料の結晶
形態、すなわち3C、4H、6Hなどのポリタイプによりそれぞれの
材料表面の熱膨張係数が異なるために、その熱膨張係数差が僅少になる
ように被覆する材質、成膜プロセスを選択する。とくに4H、6Hなどの
六方晶の場合は面内とc軸方向の熱膨張係数差が大きいため、所定の形状
に加工したインゴットの方位により適切な熱膨張係数を有する被覆材質を
選択する。被処理材と被覆材質の熱膨張係数差が大きい場合には熱間静水圧
加圧処理時に被覆材質が剥離してしまい十分な効果が得られない。
As a sealing treatment for effectively reducing the open pores present in the crystalline SiC material, the outer surface of the SiC material is carbonaceous, prior to the hot isostatic pressing treatment,
Cover with SiC or the like. The material to be coated is determined by the thermal expansion coefficient in the surface orientation of each surface of the crystalline SiC material. Since the thermal expansion coefficients of the surface of each material differ depending on the crystal form of the material to be processed, that is, polytypes such as 3C, 4H, 6H, etc. select. In particular, in the case of hexagonal crystals such as 4H and 6H, the difference in thermal expansion coefficient between the in-plane and c-axis directions is large. Therefore, a coating material having an appropriate thermal expansion coefficient is selected according to the orientation of the ingot processed into a predetermined shape. When the difference in thermal expansion coefficient between the material to be treated and the coating material is large, the coating material is peeled off during the hot isostatic pressing process, and a sufficient effect cannot be obtained.
イオン化蒸着法、プラズマCVD法、陰極アーク法、アンバランスドマグ
ネトロンスパッタリング法、プラズマイオン注入法などの方法により成膜
されるダイアモンドライクカーボンなどのアモルファス系カーボン膜は
封孔処理の材質として好適に使用できる。アモルファスカーボン膜は
等方的な物理特性を有すること、水素残留量などにより熱膨張係数の
コントロールが可能なため、引き続く熱間静水圧加圧処理時に効果的に
被処理材の欠陥を低減することができる。
Amorphous carbon films such as diamond-like carbon formed by ionization vapor deposition, plasma CVD, cathodic arc, unbalanced magnetron sputtering, plasma ion implantation, etc. are suitable for use as sealing materials. it can. Amorphous carbon film has isotropic physical properties, and the thermal expansion coefficient can be controlled by the amount of residual hydrogen, etc., so that defects in processed materials can be effectively reduced during subsequent hot isostatic pressing. Can do.
熱間静水圧加圧処理後の材料の外周をダイヤモンド固定砥石にて所定の
外径に研削加工し、次いでダイヤモンド固定砥石をコーティングした
ソーワイヤを使用し、マルチワイヤーソにて所定の薄さのウエハ形状に
スライス加工する。スライス加工処理後のウエハの外周をダイヤモンド
電着砥石により研削し所定の端面形状に加工する。形状加工が終了した
SiCウエハをダイヤモンド砥粒を使用した特殊定盤によりラッピング
加工し、次いでダイヤモンド砥粒と特殊クロスを使用したポリッシング
加工、CMP加工によりエピタキシャル膜成膜に適した鏡面を形成する。
図1に本発明の製造プロセスの概略を示した。
The outer periphery of the material after hot isostatic pressing is ground to a predetermined outer diameter with a diamond fixed grindstone, then a saw wire coated with a diamond fixed grindstone is used, and a wafer with a predetermined thinness using a multi-wire saw Slice into shape. The outer periphery of the wafer after the slicing process is ground with a diamond electrodeposition grindstone to be processed into a predetermined end face shape. The SiC wafer that has undergone the shape processing is lapped with a special surface plate using diamond abrasive grains, and then a mirror surface suitable for epitaxial film formation is formed by polishing and CMP processes using diamond abrasive grains and a special cloth.
FIG. 1 shows an outline of the manufacturing process of the present invention.
(実施例1)
改良レーリー法にて製造した結晶SiC材料を外径55mm×100mm
の円柱状に研削加工し、内径55.5mmの等方性黒鉛製の蓋付き坩堝
に挿入し、上、下のネジ式の蓋で軽く締め付けて保持した。結晶性SiC
材料を挿入した黒鉛坩堝を熱間静水圧加圧装置の圧力容器内に装填し
アルゴンガスを使用した熱間静水圧加圧処理をおこなった。熱間静水圧
加圧処理の処理パターンは、300℃にて減圧し水分等を除去した後で
時間あたり200℃、時間あたり20MPaの速度にて昇温、昇圧し、
2500℃、200MPaにて1時間保持した後で所定の速度にて降温、
降圧した。熱間静水圧加圧処理後の結晶SiC材料をダイヤモンド固定式
のソーワイヤで0.25mmの板厚にスライス加工し、次いで
ダイヤモンド砥粒を使用したラッピング、ポリッシングにより表面を研磨
し両面が鏡面の結晶性ウエハを製造した。
Example 1
Crystal SiC material manufactured by the modified Rayleigh method with outer diameter of 55mm x 100mm
Were inserted into a crucible with an isotropic graphite lid having an inner diameter of 55.5 mm, and lightly tightened and held with upper and lower screw-type lids. Crystalline SiC
The graphite crucible in which the material was inserted was loaded into a pressure vessel of a hot isostatic press and a hot isostatic press using argon gas was performed. The processing pattern of the hot isostatic pressurization process is to increase the pressure at a rate of 200 MPa per hour and 20 MPa per hour after depressurization at 300 ° C. to remove moisture and the like,
After holding at 2500 ° C. and 200 MPa for 1 hour, the temperature is lowered at a predetermined rate.
The pressure dropped. The crystal SiC material after hot isostatic pressing is sliced to a thickness of 0.25 mm with a diamond-fixed saw wire, and then the surface is polished by lapping and polishing using diamond abrasive grains. Wafers were manufactured.
製造した結晶SiCウエハのμ―PCD法によるライフタイムマップを
測定したところ、熱間静水圧加圧処理せずに製造した比較材料に比べて、
中心から外周方向でのライフタイムの時間差が30%改善し、結晶SiC
ウエハのひずみが改善された。
When measuring the lifetime map of the manufactured crystalline SiC wafer by μ-PCD method, compared with the comparative material manufactured without hot isostatic pressing,
The time difference in lifetime from the center to the outer circumference is improved by 30%, and crystalline SiC
Wafer distortion was improved.
(実施例2)
改良レーリー法にて製造した結晶SiC材料を外径55mm、板厚0.25
mmの円柱ウエハ形状に加工し、次いで内径55.5mmの等方性黒鉛製
の蓋付き坩堝に、黒鉛製のスペーサを介して挿入し、上、下のネジ式の蓋
で軽く締め付けて保持した。結晶SiC材料を挿入した黒鉛坩堝を熱間
静水圧加圧装置の圧力容器内に装填しアルゴンガスを使用した熱間静水圧
加圧処理をおこなった。熱間静水圧加圧処理の処理パターンは、300℃
にて減圧し水分等を除去した後で時間あたり200℃、時間あたり
20MPaの速度にて昇温、昇圧し、2500℃、200MPaにて
1時間保持した後で所定の速度にて降温、降圧した。熱間静水圧加圧処理後
の結晶SiC材料をダイヤモンド砥粒を使用したラッピング、ポリッシング
により表面を研磨し両面が鏡面の結晶SiCウエハを製造した。
(Example 2)
Crystal SiC material manufactured by the modified Rayleigh method is 55 mm in outer diameter and 0.25 mm in thickness.
It was processed into a cylindrical wafer shape of mm, and then inserted into a crucible with an isotropic graphite lid having an inner diameter of 55.5 mm through a graphite spacer, and lightly tightened and held with upper and lower screw-type lids. . A graphite crucible in which a crystalline SiC material was inserted was loaded into a pressure vessel of a hot isostatic press, and hot isostatic press using argon gas was performed. The processing pattern of hot isostatic pressing is 300 ° C.
After depressurizing and removing moisture, etc., the temperature was increased and the pressure increased at a rate of 200 MPa per hour and 20 MPa per hour at 2500 ° C. and 200 MPa.
After holding for 1 hour, the temperature was lowered and the pressure was lowered at a predetermined rate. The surface of the crystalline SiC material after hot isostatic pressing was polished by lapping and polishing using diamond abrasive grains to produce a crystalline SiC wafer having both mirror surfaces.
製造した結晶SiCウエハのμ-PCD法によるライフタイムマップを測定
したところ、熱間静水圧加圧処理をせずに製造した比較材料に比べて中心
から外周方向でのライフタイムの時間差が30%改善し、結晶SiC
ウエハのひずみが改善された。
When the lifetime map of the manufactured crystalline SiC wafer was measured by the μ-PCD method, the time difference in lifetime from the center to the outer periphery was 30% compared to the comparative material manufactured without hot isostatic pressing. Improved and crystalline SiC
Wafer distortion was improved.
(実施例3)
改良レーリー法にて製造した結晶SiC材料を外径55mm、板厚0.25
mmの円柱ウエハ形状に加工し、次いでアンバランスドマグネトロン
スパッタリング装置を使用してウエハの全表面に厚さ2μmのダイヤモン
ドライクカーボンを成膜した。次いで内径55.5mmの等方性黒鉛製
の蓋付き坩堝に、黒鉛製のスペーサを介して挿入し、上、下のネジ式の
蓋で軽く締め付けて保持した。結晶SiC材料を挿入した黒鉛坩堝を
熱間静水圧加圧装置の圧力容器内に装填しアルゴンガスを使用した
熱間静水圧加圧処理をおこなった。熱間静水圧加圧処理の処理パターンは、
300℃にて減圧し水分等を除去した後で時間あたり100℃、時間
あたり10MPaの速度にて昇温、昇圧し、2500℃、200MPaにて
1時間保持した後で所定の速度にて降温、降圧した。熱間静水圧加圧
処理後の結晶SiC材料をダイヤモンド砥粒を使用したラッピング、
ポリッシングにより表面を研磨し両面が鏡面の結晶性SiCウエハを
製造した。
(Example 3)
Crystal SiC material manufactured by the modified Rayleigh method is 55 mm in outer diameter and 0.25 mm in thickness.
Then, it was processed into a cylindrical wafer shape of mm, and diamond-like carbon having a thickness of 2 μm was formed on the entire surface of the wafer using an unbalanced magnetron sputtering apparatus. Next, it was inserted into a crucible with an isotropic graphite lid having an inner diameter of 55.5 mm through a graphite spacer, and lightly tightened and held with upper and lower screw-type lids. A graphite crucible in which a crystalline SiC material was inserted was loaded into a pressure vessel of a hot isostatic press, and hot isostatic press using argon gas was performed. The processing pattern of hot isostatic pressing is
After depressurizing at 300 ° C. and removing moisture, etc., the temperature was raised and increased at a rate of 100 MPa per hour and 10 MPa per hour at 2500 ° C. and 200 MPa.
After holding for 1 hour, the temperature was lowered and the pressure was lowered at a predetermined rate. Lapping the crystalline SiC material after hot isostatic pressing using diamond abrasives,
The surface was polished by polishing to produce a crystalline SiC wafer having both mirror surfaces.
製造した結晶SiCウエハのμ-PCD法によるライフタイムマップを測定
したところ、熱間静水圧加圧処理をせずに製造した比較材料に比べて中心
から外周方向でのライフタイムの時間差が50%改善し、結晶SiC
ウエハのひずみが大幅に改善された。
The lifetime map of the manufactured crystalline SiC wafer by μ-PCD method was measured, and the time difference in lifetime from the center to the outer periphery was 50% compared to the comparative material manufactured without hot isostatic pressing. Improved and crystalline SiC
Wafer distortion has been greatly improved.
本発明の実施形態の一例を示す工程図Process drawing which shows an example of embodiment of this invention

Claims (3)

  1. 合同な二つの平面図形を底面として持つ円柱、立柱形状に形成した
    炭化珪素材料を熱間静水圧加圧処理する工程を含むことを特徴とする
    結晶炭化珪素基板の製造方法。
    A method for producing a crystalline silicon carbide substrate, comprising a step of subjecting a silicon carbide material formed in a cylindrical or vertical column shape having two congruent plane figures as bottom surfaces to hot isostatic pressing.
  2. 熱間静水圧加圧処理工程の事前に炭化珪素材料の外表面に炭素質及び又は
    炭化珪素の被膜を形成することを特徴とする請求項1記載の結晶炭化珪素
    基板の製造方法。
    2. The method for producing a crystalline silicon carbide substrate according to claim 1, wherein a carbonaceous and / or silicon carbide film is formed on the outer surface of the silicon carbide material in advance of the hot isostatic pressing process.
  3. 炭素質の被膜がダイアモンドライクカーボンを含むアモルファスカーボン
    から構成されることを特徴とする請求項2に記載の結晶炭化珪素基板
    の製造方法。
     
     
    The method for producing a crystalline silicon carbide substrate according to claim 2, wherein the carbonaceous film is made of amorphous carbon containing diamond-like carbon.

PCT/JP2009/001646 2008-04-14 2009-04-08 Process for producing crystalline silicon carbide substrate WO2009128224A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008127677A JP2009256159A (en) 2008-04-14 2008-04-14 Manufacturing method of crystalline silicon carbide substrate
JP2008-127677 2008-04-14

Publications (1)

Publication Number Publication Date
WO2009128224A1 true WO2009128224A1 (en) 2009-10-22

Family

ID=41198931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001646 WO2009128224A1 (en) 2008-04-14 2009-04-08 Process for producing crystalline silicon carbide substrate

Country Status (2)

Country Link
JP (1) JP2009256159A (en)
WO (1) WO2009128224A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9947782B2 (en) * 2010-03-23 2018-04-17 Sumitomo Electric Industries, Ltd. Semiconductor device and method for manufacturing same
JP2011199132A (en) 2010-03-23 2011-10-06 Sumitomo Electric Ind Ltd Semiconductor device and method of manufacturing the same
CN110578172B (en) * 2013-09-06 2022-10-28 Gtat公司 Method and apparatus for producing bulk silicon carbide using silicon carbide seeds
WO2017073333A1 (en) * 2015-10-27 2017-05-04 住友電気工業株式会社 Silicon carbide base plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179498A (en) * 2000-12-12 2002-06-26 Denso Corp Method for producing silicon carbide single crystal
JP2007015918A (en) * 2002-06-27 2007-01-25 General Electric Co <Ge> Method for reducing defect concentration in crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179498A (en) * 2000-12-12 2002-06-26 Denso Corp Method for producing silicon carbide single crystal
JP2007015918A (en) * 2002-06-27 2007-01-25 General Electric Co <Ge> Method for reducing defect concentration in crystal

Also Published As

Publication number Publication date
JP2009256159A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
KR101797428B1 (en) Single-crystal diamond growth base material and method for manufacturing single-crystal diamond substrate
KR101341471B1 (en) One hundred millimeter high purity semi-insulating single crystal silicon carbide wafer
JP5377212B2 (en) Method for producing single crystal diamond substrate
JP5304713B2 (en) Silicon carbide single crystal substrate, silicon carbide epitaxial wafer, and thin film epitaxial wafer
EP3351660B1 (en) Manufacturing method of sic composite substrate
KR101893278B1 (en) METHOD FOR REMOVING WORK-AFFECTED LAYER ON SiC SEED CRYSTAL, SiC SEED CRYSTAL, AND SiC SUBSTRATE MANUFACTURING METHOD
JP4585359B2 (en) Method for producing silicon carbide single crystal
KR102284879B1 (en) SiC WAFER, PREPARATION METHOD OF SiC WAFER
JP2011079683A (en) Base material for growing single crystal diamond and method for producing single crystal diamond substrate
JP2008290898A (en) Low-resistivity silicon carbide single crystal substrate
JP2010095397A (en) Silicon carbide single crystal and silicon carbide single crystal wafer
CN110592672B (en) Low basal plane dislocation density silicon carbide crystal growth method
JP2021138597A (en) Wafer, epitaxial wafer and method for manufacturing the same
JP2015182948A (en) Production method of silicon carbide single crystal
JP2008110907A (en) Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
WO2009128224A1 (en) Process for producing crystalline silicon carbide substrate
JP5614387B2 (en) Silicon carbide single crystal manufacturing method and silicon carbide single crystal ingot
KR102192518B1 (en) Wafer and manufacturing method of wafer
WO2009107188A1 (en) METHOD FOR GROWING SINGLE CRYSTAL SiC
KR102195325B1 (en) Silicon carbide ingot, wafer and manufacturing method of the same
JP2023533326A (en) High-quality silicon carbide seed crystals, silicon carbide crystals, silicon carbide substrates and methods of making the same
JP5135545B2 (en) Seed crystal for growing silicon carbide single crystal ingot and method for producing the same
KR20140019726A (en) Method of manufacturing diamond and dc plasma cvd apparatus
JP4982506B2 (en) Method for producing single crystal diamond
JP2005093519A (en) Silicon carbide substrate and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09732261

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09732261

Country of ref document: EP

Kind code of ref document: A1