WO2009128156A1 - Collision detector and method for detecting collision in processing machine - Google Patents

Collision detector and method for detecting collision in processing machine Download PDF

Info

Publication number
WO2009128156A1
WO2009128156A1 PCT/JP2008/057496 JP2008057496W WO2009128156A1 WO 2009128156 A1 WO2009128156 A1 WO 2009128156A1 JP 2008057496 W JP2008057496 W JP 2008057496W WO 2009128156 A1 WO2009128156 A1 WO 2009128156A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
motor
collision
current
load current
Prior art date
Application number
PCT/JP2008/057496
Other languages
French (fr)
Japanese (ja)
Inventor
隆 湯澤
広一郎 服部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2008/057496 priority Critical patent/WO2009128156A1/en
Priority to JP2010508069A priority patent/JP5168352B2/en
Publication of WO2009128156A1 publication Critical patent/WO2009128156A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4061Avoiding collision or forbidden zones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4062Monitoring servoloop, e.g. overload of servomotor, loss of feedback or reference
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37624Detect collision, blocking by measuring change of velocity or torque

Definitions

  • the present invention relates to a collision load detection device that achieves both collision safety and machining accuracy maintenance by switching a load detection method in an electric discharge machine.
  • a means for urgently stopping the machine damage is required in order to minimize damage to the machine.
  • a general detection means there is a method of detecting the load amount of the drive motor and detecting a collision at a certain load level or more, but the use state of the machine tool has various states such as during machining and manual feed, Only detection means under certain conditions may cause over-detection, detection delay, etc., depending on the state of use. When over-detection occurs, the cost increases due to a decrease in system operation rate, and when detection delay occurs, mechanical damage at the time of collision increases.
  • the machining process category such as fast feed or machining feed, machining type division such as rough machining or finishing machining, workpiece material classification, tool type, etc. It is possible to easily detect relatively small abnormalities (tool wear, breakage, machining defects) of the tool during constant-speed feed machining with only a small load change. (See Patent Document 3).
  • the high overload detection level is used for low speed movement commands
  • the low load detection level is automatically switched for high speed movement commands.
  • a margin for current fluctuation of the motor current waveform is small, so that the current fluctuation amount increases. May cause false detection of collision.
  • the machine tool or the like controlled by the servo motor is stopped, and the operation rate of an automated system such as a machine tool is reduced.
  • the load current set value needs to be set as high as possible. Even when a collision occurs with the motor torque of the time, impact resistance (rigidity) is required so that the parts constituting the machine tool are not damaged. That is, in the case of a contact processing machine such as a cutting machine, the driving structure assumes a cutting load. On the other hand, in a non-contact processing machine such as an electric discharge machine, as shown in FIG. 11, there are cases where a lighter structure and ceramic parts for electrical insulation are applied, and impact resistance is higher than that of a contact processing machine. Has a low structure. In other words, it is practically difficult to achieve both avoidance of damage at the time of impact and avoidance of false detection with respect to a collision during high-speed movement.
  • the limit value of the motor output level slightly higher than the load detection level for urgently stopping the machine, the delay from when the abnormal load is detected until the machine actually stops.
  • the output level of the motor can only be increased to a level almost equal to the abnormal load detection level.
  • the position control response speed can be improved according to the output level of the motor.
  • the load detection level is switched according to the processing step classification such as manual operation and automatic operation, whether fast feeding or machining feeding, or rough processing or finishing as shown in Patent Document 3.
  • the processing step classification such as manual operation and automatic operation
  • the processing step classification such as machining type, workpiece material classification, tool type, etc.
  • the operating state with a small maximum load non-cutting state
  • a margin for current fluctuation is small when a low load detection level is set, and there is a risk of inducing a collision detection error due to an increase in the current fluctuation amount. That is, it leads to a reduction in the operating rate of an automated system such as a machine tool.
  • the present invention has been made to solve such a problem. Even in a system that uses a lot of electrically insulating parts such as an electric discharge machine and has a limit in improving the impact resistance of the structure, it is not being processed.
  • An object of the present invention is to obtain a collision load detection device that suppresses mechanical damage due to a collision and that can maintain machining accuracy during machining.
  • a collision load detection device detects an error of the drive motor from a drive motor, load current detection means for detecting a load current of the drive motor, a position command and a feedback signal from the drive motor.
  • the control means determines whether the drive motor is being driven or not being processed.
  • a collision is detected when the load current detected by the load current detection means is equal to or greater than a motor load current set value serving as a reference for overload detection of the drive motor, and the load current is The load current detected by the load current detection means is set as the load current when the load is not being processed. When a set motor current limit value or below, and detects the collision by determining the error detected by said error detection means.
  • the collision detection mode can be switched between during machining and during non-machining such as during setup, and practical collision detection that achieves both machining accuracy and safety can be realized.
  • Embodiment 1 It is a block diagram of the collision load detection apparatus which shows Embodiment 1 of this invention. It is a flowchart of the setting value switching means of a collision load detection apparatus.
  • Embodiment 1 it is a figure which shows transition of the servomotor electric current during non-processing and during processing.
  • Embodiment 1 it is a figure which shows the transition method of the servomotor electric current in non-processing, and the setting method of a motor current limiting value.
  • Embodiment 1 it is a figure which shows the transition method of the servomotor electric current during a process, and the setting method of a motor current limiting value.
  • Embodiment 2 of this invention it is a figure which shows the setting method of the load current setting value in process.
  • Embodiment 2 of this invention it is a figure which shows the setting method of the load current setting value at the time of setting mask time.
  • Embodiment 3 of this invention it is a figure which shows transition of the servomotor electric current during non-processing, and the setting method of a motor current limiting value.
  • Embodiment 3 of this invention it is a figure which shows the transition method of the servomotor electric current during non-processing, and the method of setting the allowable error between a movement command-feedback.
  • Diagram explaining the occurrence of false collision detection when the amount of current fluctuation is large
  • Diagram showing a machine tool that uses a low impact resistance member
  • FIG. 1 shows the configuration of a collision load detection apparatus according to Embodiment 1 of the present invention.
  • a collision detection apparatus includes a drive motor 1, a drive control circuit 2, a motor stop circuit 3, a motor current limit circuit 4, a position command-position feedback error detection means 5, and the like.
  • the load current detection circuit 6, the comparators 7 and 8, the control device 10, and the like are included.
  • the control device 10 includes components of a load current set value setting means 11, a motor current limit value setting means 12, a set value switching means 13, and an allowable error setting means 14. In the collision load detection device, the motor 10 A reference level for drive control is set.
  • the “load current set value” indicates a reference current value for stopping the motor before it breaks because the structure is damaged when the load current value flowing to the motor exceeds a certain value due to a collision or the like.
  • the “motor current limit value” is a set value for limiting the motor current below a certain current so that the motor output torque is below a certain value. This definition will be used in the future.
  • the comparator 7 compares the load current detection result of the drive motor 1 from the load current detection circuit 6 with the load current set value preset by the control device 10, and the detection result If exceeds the set value, the stop circuit 3 stops the motor.
  • the error amount obtained by the error detection means 5 between the position command and the position feedback and the feedback amount actually driven with respect to the position command is compared with the allowable error set value set by the control device 10 (comparison). If the detected error amount exceeds the set value, the motor is similarly stopped by the stop circuit 3. Further, the motor is controlled by the drive control circuit 2 so that the motor output torque is always below a certain value, so that the motor current limit circuit 4 always falls below the motor current limit value set by the control device 10. Yes.
  • parameters for drive control in the collision load detection device are set by the load current set value setting means 11, the motor current limit value setting means 12, and the position command-position feedback amount allowable error setting means 14. It is remembered. Specifically, the load current setting value setting means 11, the non-processing mode of operation the load current setting value IK 1 when the load current setting value IK 2 at the time of processing operation mode is set, the motor current limit value setting means 12 the non-machining operation mode the motor current limit value iS 1 during, the motor current limit value iS 2 at the time of processing operation mode is set. The load current set value, motor current limit value, and allowable error set value parameters are arbitrarily changed by the set value switching means 13.
  • FIG. 2 is a flowchart showing the process of the set value switching means 13.
  • the control device analyzes a program such as an NC program to determine the operation mode, and the electric discharge machining device driven by the drive motor takes a predetermined inter-electrode servo between the workpiece and the electrode and performs a pulse. It is determined whether the electric discharge machining is applied with an electric current, or the non-machining such as setup and axis movement is being performed (S1). If it is determined that in a non-working, IK 1> load current setting value IK 1 as the relation of IS 1, defines the motor current limit value IS 1 (S2), subsequently, it monitors the operation mode (S3), the operation Determine the mode status.
  • a program such as an NC program to determine the operation mode
  • the electric discharge machining device driven by the drive motor takes a predetermined inter-electrode servo between the workpiece and the electrode and performs a pulse. It is determined whether the electric discharge machining is applied with an electric current, or the non-machining such
  • the process proceeds to S2, and if it has been changed, the process proceeds to S1.
  • the load current set value IK 2 and the motor current limit value IS 2 that satisfy the relationship IK 2 ⁇ IS 2 are defined (S4), and the operation continues as in S3.
  • the mode is monitored (S5). If the operation mode has not been changed, the process proceeds to S4, and if it has been changed, the process proceeds to S1. Thereafter, the above process is always executed until the machine is powered off.
  • FIG. (1) shows the transition of the motor current value during non-machining.
  • the set value switching means 13 sets the load current set value IK 1 > the motor current limit value IS 1 .
  • the servo motor current of the drive motor 1 increases a current value corresponding to the load inertia at the start, and thereafter, only a motor current value corresponding to the friction load torque is generated in a steady state.
  • the servo motor current as shown in FIG. 3 is detected by the load current detection circuit 6.
  • the drive motor 1 increases the servo motor current value in order to counter the collision load.
  • the motor current limit circuit 4 determines in advance the motor current limit value setting means 12. and does not increase the current value only motor current up to the limit value iS 1. That is, since the motor cannot generate a torque exceeding a certain level due to current limitation, the drive shaft cannot advance any further, and an error occurs between the position command and the position feedback, and the error amount reaches a specified value. Thus, the collision is detected and the motor is stopped. Then, the motor current becomes zero.
  • the set value switching means 13 sets the load current set value IK 2 ⁇ the motor current limit value IS 2 .
  • the drive motor 1 increases the servo motor current value to counter the collision load.
  • the process proceeds to operation to stop the motor.
  • the motor current limiting circuit 4 only does not increase the current value to the motor current limit value IS 2 predetermined load below torque corresponding to the current limit value is suppressed.
  • the position trajectory accuracy needs to be improved as much as possible.
  • the position trajectory accuracy can be improved by increasing the response of drive control, it is essential to improve the motor current value to the extent that mechanical resonance does not occur, taking into account the natural frequency of the structure. is there.
  • the motor current limit value IS 2 for high current, high-precision machining can be realized.
  • the collision detection time has to be determined by the motor current value reaches the load current setting value IK 2. In this method, there is always a delay until the motor stops after detection.
  • the moving speed during actual machining is as low as about 10 mm / min or less, it can be considered almost negligible that the detection delay causes the structure destruction after the collision.
  • the machining accuracy is emphasized by switching to a mode that emphasizes machining accuracy during machining, and to a highly safe mode that suppresses machine damage as much as possible during non-machining such as setup. And a practical collision load detection device that achieves both safety and safety.
  • FIG. 1 In the collision load detection device according to Embodiment 2 of the present invention, in addition to the configuration of FIGS. 1 and 2 described above, the motor is operated during machining within the range of the load current set value IK 2 shown in FIG. It is characterized by defining a reference current value for stopping.
  • FIG. 6 defines a settable range of the load current set value IK 2 during machining that is set in advance in the control device, and the minimum value is a load current that takes into account the machine friction torque and the load inertia at the time of starting the shaft. A value is set, and the maximum value is set as a load current value of + 10% of the load current.
  • the risk of damage to the structure due to the delay until the motor stops after collision detection is minimized, and at the same time, the maximum machine load torque that occurs during non-collision is detected as collision detection and erroneous detection.
  • the machine down during processing can be suppressed.
  • Embodiment 3 In the collision load detection device according to Embodiment 3 of the present invention, in addition to the configuration of FIGS. 1 and 2 described above, setting of motor current limit value IS 1 within the range shown in FIG. A range is provided, and the motor current limit value IS 1 can be set as appropriate. As in the case of non-machining in the first embodiment, the detection operation at the time of collision detects the collision when the servo motor current is limited by the motor current limit value IS 1 and the detection error amount is equal to or larger than the set value, and the motor It is characterized by stopping.
  • FIG. 8 shows the transition of the servo motor current per time.
  • the motor current limit value IS 1 is equal to or greater than the current value due to the maximum friction torque, and the maximum motor when the structure is not damaged at the time of collision. It shows that the current value is set within the range. That is, even when the user sets the motor current limit value IS 1 during non-machining, the settable range is determined, so that a collision failure due to inadvertent setting of the motor current limit value IS 1 is prevented. be able to.
  • FIG. 9 shows the transition of the servo motor current per hour in the same manner.
  • the motor cannot generate a torque exceeding a certain level due to current limitation after the collision, the drive shaft cannot advance any further. .
  • an error occurs between the position command and the position feedback, and when the detected error amount is, for example, 3 mm or more as an allowable error setting value, an operation of recognizing a collision and stopping the motor is shown.
  • the risk of erroneous detection of the collision phenomenon can be suppressed.
  • damage at the time of collision during non-machining is greatly suppressed, and at the same time, there is no possibility of erroneous detection of collision detection, so machine down during non-machining can be suppressed.
  • the collision load detection device is a mode in which machine damage at the time of collision is suppressed as much as possible during setup such as during non-machining, and by switching to a mode that emphasizes machining accuracy during machining, low rigidity and low toughness Even in an automatic machine with a structure, practical collision load detection can be realized.

Abstract

A collision detector includes a drive motor (1), a load current detection means (6) to detect the load current of the drive motor (1), an error detection means (5) to detect error in the drive motor (1) from a position command and a feedback signal from the drive motor (1), and control means (2, 3, 4, 7, 8, 10) to control drive of the drive motor (1). The control means determine whether the drive motor is driven during a processing period or a non-processing period. In case the drive motor is driven during a processing period, the control means detect a collision when the load current detected by the load current detection means (6) increases above a motor load current setting value used as a reference for overload detection of the drive motor (7), and limit the load current to reach at least the motor load current setting value but no more than a given motor current limiting value (4). In case the drive motor is driven during a non-processing period, the control means determine error detected by the error detection means when the load current detected by the load current detection means increases above the motor current limiting value which is set up to be below the load current setting value (8), thereby detecting a collision.

Description

[規則37.2に基づきISAが決定した発明の名称] 加工機における衝突検出装置及び衝突検出方法[Name of invention determined by ISA based on Rule 37.2] Collision detection device and collision detection method for processing machines
 この発明は、放電加工機における負荷検出方法を切り替える事により、衝突安全性と、加工精度維持両立の実現を図る衝突負荷検出装置に関するものである。 The present invention relates to a collision load detection device that achieves both collision safety and machining accuracy maintenance by switching a load detection method in an electric discharge machine.
 工作機械などの可動ユニット有する装置において、動作時の衝突などにより異常負荷が作用した時に、機械損傷を最小限に抑制するために、これを緊急停止させる手段が必要となっている。
一般的な検出手段として、駆動モータの負荷量を検出し、一定負荷レベル以上で衝突検出する手法が存在するが、工作機械の使用状態は、加工中、手動送り中など様々な状態があり、一定条件の検出手段だけでは、使用状態により、過検出、検出遅延などが発生する可能性がある。
なお、過検出発生時にはシステムの稼働率低下によるコストアップが伴い、検出遅延発生時には衝突時の機械損傷増大につながる。
In an apparatus having a movable unit such as a machine tool, when an abnormal load is applied due to a collision at the time of operation or the like, a means for urgently stopping the machine damage is required in order to minimize damage to the machine.
As a general detection means, there is a method of detecting the load amount of the drive motor and detecting a collision at a certain load level or more, but the use state of the machine tool has various states such as during machining and manual feed, Only detection means under certain conditions may cause over-detection, detection delay, etc., depending on the state of use.
When over-detection occurs, the cost increases due to a decrease in system operation rate, and when detection delay occurs, mechanical damage at the time of collision increases.
 そのため、高低2種類の過負荷検出レベルを設けて、低速移動指令時には高い過負荷検出レベルを使用し、高速移動指令時には低い負荷検出レベルを自動切換えることにより、特に高速移動時に衝突が発生した場合の損傷を軽減することを実現している(例えば、特許文献1参照)。
ここで、モータの出力レベルの制限値を、機械を緊急に停止させるための負荷検出レベルよりわずかに高く設定させておく事により、異常負荷が検出されてから、機械が実際に停止するまでの遅れ時間中の衝撃力を最小限に抑制することを実現している。
Therefore, when two types of overload detection levels are provided, a high overload detection level is used for low-speed movement commands, and a low load detection level is automatically switched for high-speed movement commands. (See, for example, Patent Document 1).
Here, by setting the limit value of the motor output level slightly higher than the load detection level for urgently stopping the machine, the time until the machine actually stops after the abnormal load is detected. The impact force during the delay time is minimized.
 また、負荷検出レベルの切替を、手動運転と自動運転、早送り時と切削送り時、などの工作機械の動作状態に応じて切替えることにより、非切削状態などの最大負荷が小さな動作状態でも、異常負荷の検出を実現している(例えば、特許文献2参照)。 In addition, by switching the load detection level according to the operation state of the machine tool such as manual operation and automatic operation, fast feed and cutting feed, even if the maximum load such as the non-cutting state is small, abnormal Load detection is realized (see, for example, Patent Document 2).
 また、モータの駆動状態の変化とともに、早送り中か加工送り中か等の加工工程区分、粗加工か仕上げ加工か等の加工形態区分、工作物の材質区分、工具種類等により、駆動電流監視時の異常検出閾値を変更し、小さな負荷変化しか伴わない等速送り加工時の工具の比較的小さな異常(工具磨耗、破損、加工不良)についても容易に発見することを実現している(例えば、特許文献3参照)。 Also, when the drive current is monitored, depending on the change in the motor drive status, the machining process category such as fast feed or machining feed, machining type division such as rough machining or finishing machining, workpiece material classification, tool type, etc. It is possible to easily detect relatively small abnormalities (tool wear, breakage, machining defects) of the tool during constant-speed feed machining with only a small load change. (See Patent Document 3).
特開平10-143216号公報JP-A-10-143216 特開平8-323585号公報JP-A-8-323585 特開平2001-125611号公報Japanese Patent Laid-Open No. 2001-125611
 従来の衝突負荷検出装置において、サーボモータ電流に対し高低2種類の過負荷検出レベルを設けて、低速移動指令時には高い過負荷検出レベルを使用し、高速移動指令時には低い負荷検出レベルを自動切替えて衝突時の損傷を低減する場合、例えば図10に示されるように、高速移動指令時に低い負荷検出レベルが設定されると、モータ電流波形の電流変動に対するマージンが少ないため、電流変動量が増加することによる衝突誤検出を誘発する恐れがある。
そして、検出誤動作を引き起こすことで、サーボモータで制御された工作機械等を停止処理等するため、工作機械等の自動化システムの稼働率低下につながる。
In the conventional collision load detection device, two types of overload detection levels are provided for the servo motor current, the high overload detection level is used for low speed movement commands, and the low load detection level is automatically switched for high speed movement commands. In the case of reducing damage at the time of collision, for example, as shown in FIG. 10, when a low load detection level is set at the time of a high speed movement command, a margin for current fluctuation of the motor current waveform is small, so that the current fluctuation amount increases. May cause false detection of collision.
Then, by causing a detection malfunction, the machine tool or the like controlled by the servo motor is stopped, and the operation rate of an automated system such as a machine tool is reduced.
 また、検出誤動作を防止すべく電流変動成分に対して余裕あるマージンを確保するためには、負荷電流設定値は可能な限り高く設定する必要があるが、そのためには、前記の設定負荷電流発生時のモータトルクにて衝突しても、工作機械を構成する部品が破損しない衝撃耐性(剛性)が必要となる。
すなわち、切削加工機のような接触加工機の場合、切削加工負荷を想定した駆動構造体となっている。
一方、放電加工機のような非接触加工機においては、図11に示される如く、軽量化構造や、電気絶縁のためのセラミック部品を適用する場合があり、接触加工機と比較して衝撃耐性が低い構造となっている。
つまり、高速移動時の衝突に対して、衝撃時の損傷回避と誤検出回避とを両立をさせることが現実的に困難である。
Also, in order to secure a margin with respect to the current fluctuation component to prevent detection malfunction, the load current set value needs to be set as high as possible. Even when a collision occurs with the motor torque of the time, impact resistance (rigidity) is required so that the parts constituting the machine tool are not damaged.
That is, in the case of a contact processing machine such as a cutting machine, the driving structure assumes a cutting load.
On the other hand, in a non-contact processing machine such as an electric discharge machine, as shown in FIG. 11, there are cases where a lighter structure and ceramic parts for electrical insulation are applied, and impact resistance is higher than that of a contact processing machine. Has a low structure.
In other words, it is practically difficult to achieve both avoidance of damage at the time of impact and avoidance of false detection with respect to a collision during high-speed movement.
 また、モータの出力レベルの制限値を、機械を緊急に停止させるための負荷検出レベルよりわずかに高く設定させておく事により、異常負荷が検出されてから、機械が実際に停止するまでの遅れ時間中の衝撃力を最小限に抑制する場合、モータの出力レベルは異常負荷検出レベルとほぼ同等レベルまでしかあげることができない。
一般的に、高精度軌跡制御を要求される工作機械においては、モータの出力レベルに応じて位置制御応答速度を向上させることが可能である。
逆にモータ出力レベルを下げた場合、図12に示される如く、真円形状等の軌跡精度が悪化し、それに伴い加工精度が悪化する結果となる。
In addition, by setting the limit value of the motor output level slightly higher than the load detection level for urgently stopping the machine, the delay from when the abnormal load is detected until the machine actually stops. In order to minimize the impact force during the time, the output level of the motor can only be increased to a level almost equal to the abnormal load detection level.
Generally, in a machine tool that requires high-precision trajectory control, the position control response speed can be improved according to the output level of the motor.
Conversely, when the motor output level is lowered, as shown in FIG. 12, the accuracy of the trajectory of a perfect circle or the like deteriorates, and as a result, the machining accuracy deteriorates.
 また、特許文献2に示される如く、手動運転と自動運転、早送り中か加工送り中か等の加工工程区分に応じて負荷検出レベルを切替えたり、特許文献3に示される如く、粗加工か仕上げ加工か等の加工形態区分、工作物の材質区分、工具種類等により、駆動電流監視時の異常検出閾値を工作機械の動作状態に応じて切替えることにより、最大負荷が小さな動作状態(非切削状態)でも、異常負荷の検出を可能とする場合でも、低い負荷検出レベル設定時に、電流変動に対するマージンが少ないため、電流変動量が増加することによる衝突誤検出を誘発する恐れがある。
すなわち、工作機械等の自動化システムの稼働率低下につながる。
In addition, as shown in Patent Document 2, the load detection level is switched according to the processing step classification such as manual operation and automatic operation, whether fast feeding or machining feeding, or rough processing or finishing as shown in Patent Document 3. By switching the abnormality detection threshold when monitoring the drive current according to the machine tool operating state, depending on the processing type classification such as machining type, workpiece material classification, tool type, etc., the operating state with a small maximum load (non-cutting state) However, even when an abnormal load can be detected, a margin for current fluctuation is small when a low load detection level is set, and there is a risk of inducing a collision detection error due to an increase in the current fluctuation amount.
That is, it leads to a reduction in the operating rate of an automated system such as a machine tool.
 この発明は、かかる問題点を解決するためになされたもので、放電加工機の様に電気絶縁性部品を多用し、構造体の対衝撃性向上に限界があるシステムにおいても、非加工中の衝突による機械破損を抑制し、かつ、加工中の加工精度を維持可能とする衝突負荷検出装置を得ることを目的としている。 The present invention has been made to solve such a problem. Even in a system that uses a lot of electrically insulating parts such as an electric discharge machine and has a limit in improving the impact resistance of the structure, it is not being processed. An object of the present invention is to obtain a collision load detection device that suppresses mechanical damage due to a collision and that can maintain machining accuracy during machining.
 本発明に係る衝突負荷検出装置は、駆動モータと、該駆動モータの負荷電流を検出する負荷電流検出手段と、位置指令と前記駆動モータからのフィードバック信号とから、前記駆動モータの誤差検出を行う誤差検出手段と、前記駆動モータの駆動を制御する制御手段と、を備えた衝突検出装置において、制御手段は、前記駆動モータの駆動が、加工中か或いは非加工中であるかを判断し、加工中時には、負荷電流検出手段で検出された負荷電流が、前記駆動モータの過負荷検出の基準となるモータ負荷電流設定値以上となった場合に衝突を検出すると共に、該負荷電流が、前記モータ負荷電流設定値以上であって所定のモータ電流制限値以下となるように制限し、非加工中時には、負荷電流検出手段で検出された負荷電流が、負荷電流設置値以下に設定されたモータ電流制限値以上となった場合に、前記誤差検出手段で検出された誤差を判断することで衝突を検出するものである。 A collision load detection device according to the present invention detects an error of the drive motor from a drive motor, load current detection means for detecting a load current of the drive motor, a position command and a feedback signal from the drive motor. In the collision detection device comprising an error detection means and a control means for controlling the drive of the drive motor, the control means determines whether the drive motor is being driven or not being processed, During machining, a collision is detected when the load current detected by the load current detection means is equal to or greater than a motor load current set value serving as a reference for overload detection of the drive motor, and the load current is The load current detected by the load current detection means is set as the load current when the load is not being processed. When a set motor current limit value or below, and detects the collision by determining the error detected by said error detection means.
 本発明によれば、加工中と、段取り中などの非加工中との間で衝突検出モードに切替えることができ、加工精度と安全性を両立した、実用的な衝突検出を実現できる。 According to the present invention, the collision detection mode can be switched between during machining and during non-machining such as during setup, and practical collision detection that achieves both machining accuracy and safety can be realized.
この発明の実施の形態1を示す衝突負荷検出装置の構成図である。It is a block diagram of the collision load detection apparatus which shows Embodiment 1 of this invention. 衝突負荷検出装置の設定値切替手段のフロー図である。It is a flowchart of the setting value switching means of a collision load detection apparatus. 実施の形態1において、非加工中、および加工中におけるサーボモータ電流の推移を示す図である。In Embodiment 1, it is a figure which shows transition of the servomotor electric current during non-processing and during processing. 実施の形態1において、非加工中におけるサーボモータ電流の推移と、モータ電流制限値の設定方法を示す図である。In Embodiment 1, it is a figure which shows the transition method of the servomotor electric current in non-processing, and the setting method of a motor current limiting value. 実施の形態1において、加工中におけるサーボモータ電流の推移と、モータ電流制限値の設定方法を示す図である。In Embodiment 1, it is a figure which shows the transition method of the servomotor electric current during a process, and the setting method of a motor current limiting value. この発明の実施の形態2において、加工中の負荷電流設定値の設定方法を示す図である。In Embodiment 2 of this invention, it is a figure which shows the setting method of the load current setting value in process. この発明の実施の形態2において、マスク時間を設定した場合の負荷電流設定値の設定方法を示す図である。In Embodiment 2 of this invention, it is a figure which shows the setting method of the load current setting value at the time of setting mask time. この発明の実施の形態3において、非加工中におけるサーボモータ電流の推移と、モータ電流制限値の設定方法を示す図である。In Embodiment 3 of this invention, it is a figure which shows transition of the servomotor electric current during non-processing, and the setting method of a motor current limiting value. この発明の実施の形態3において、非加工中におけるサーボモータ電流の推移と、移動指令-フィードバック間の許容誤差を設定する方法を示す図である。In Embodiment 3 of this invention, it is a figure which shows the transition method of the servomotor electric current during non-processing, and the method of setting the allowable error between a movement command-feedback. 電流変動量が大きい時に衝突誤検出の発生を説明する図Diagram explaining the occurrence of false collision detection when the amount of current fluctuation is large 耐衝撃性の低い部材を使用している工作機械を示す図Diagram showing a machine tool that uses a low impact resistance member モータ電流制限値に応じた真円度軌跡精度を比較した図Diagram comparing roundness trajectory accuracy according to motor current limit value
符号の説明Explanation of symbols
 1 駆動モータ、2 駆動制御回路、3 モータ停止回路、4 モータ電流制限回路、5 位置指令-位置フィードバック間の誤差検出手段、6 比較器、7 比較器、8 非接触センサ、10 制御装置、11 負荷電流設定値の設定手段、12 モータ電流制限値の設定手段、13 設定値切替手段、14 許容誤差設定手段。 1 drive motor, 2 drive control circuit, 3 motor stop circuit, 4 motor current limit circuit, 5 error detection means between position command and position feedback, 6 comparator, 7 comparator, 8 non-contact sensor, 10 control device, 11 Load current set value setting means, 12 motor current limit value setting means, 13 set value switching means, 14 tolerance setting means.
実施の形態1.
 図1は、この発明の実施の形態1に係る衝突負荷検出装置の構成を示すものである。
図1において、衝突検出装置は、制御対象物の各軸を制御する駆動モータ1、駆動制御回路2、モータ停止回路3、モータ電流制限回路4、位置指令-位置フィードバック間の誤差検出手段5、負荷電流検出回路6、比較器7、8、制御装置10、等により構成されている。
さらに制御装置10は、負荷電流設定値の設定手段11、モータ電流制限値の設定手段12、設定値切替手段13、許容誤差設定手段14の構成要素を含んでおり、衝突負荷検出装置において、モータ駆動制御をするための基準レベルを設定している。
Embodiment 1 FIG.
FIG. 1 shows the configuration of a collision load detection apparatus according to Embodiment 1 of the present invention.
In FIG. 1, a collision detection apparatus includes a drive motor 1, a drive control circuit 2, a motor stop circuit 3, a motor current limit circuit 4, a position command-position feedback error detection means 5, and the like. The load current detection circuit 6, the comparators 7 and 8, the control device 10, and the like are included.
Further, the control device 10 includes components of a load current set value setting means 11, a motor current limit value setting means 12, a set value switching means 13, and an allowable error setting means 14. In the collision load detection device, the motor 10 A reference level for drive control is set.
 なお、「負荷電流設定値」とは、衝突等によりモータに流れる負荷電流値が一定以上になると構造体が破損するため、破損する前にモータを停止させるための基準電流値のことを示し、「モータ電流制限値」とは、モータ出力トルクが一定以下となる様に、一定電流以下にモータ電流を制限する場合の設定値のことである。今後、本定義を使用する。 The “load current set value” indicates a reference current value for stopping the motor before it breaks because the structure is damaged when the load current value flowing to the motor exceeds a certain value due to a collision or the like. The “motor current limit value” is a set value for limiting the motor current below a certain current so that the motor output torque is below a certain value. This definition will be used in the future.
 一般的な動作プロセスとしては、比較器7において、負荷電流検出回路6からの駆動モータ1の負荷電流検出結果と、制御装置10で予め設定された負荷電流設定値の比較が行われ、検出結果が設定値を越えていた場合、停止回路3によりモータを停止する。
一方、位置指令-位置フィードバック間の誤差検出手段5により得られた、位置指令に対して実際に駆動したフィードバック量との誤差量は、制御装置10で設定された許容誤差設定値と比較(比較器8)され、検出誤差量が設定値を越えていた場合、同様に停止回路3によりモータを停止する。
さらに、モータ出力トルクが常に一定以下となる様に、モータ電流制限回路4にて、制御装置10で設定されたモータ電流制限値を常に下回るように、モータは駆動制御回路2により駆動制御されている。
As a general operation process, the comparator 7 compares the load current detection result of the drive motor 1 from the load current detection circuit 6 with the load current set value preset by the control device 10, and the detection result If exceeds the set value, the stop circuit 3 stops the motor.
On the other hand, the error amount obtained by the error detection means 5 between the position command and the position feedback and the feedback amount actually driven with respect to the position command is compared with the allowable error set value set by the control device 10 (comparison). If the detected error amount exceeds the set value, the motor is similarly stopped by the stop circuit 3.
Further, the motor is controlled by the drive control circuit 2 so that the motor output torque is always below a certain value, so that the motor current limit circuit 4 always falls below the motor current limit value set by the control device 10. Yes.
 なお、制御装置10においては、負荷電流設定値の設定手段11、モータ電流制限値の設定手段12、位置指令-位置フィードバック量許容誤差設定手段14により、衝突負荷検出装置における駆動制御用のパラメータが記憶されている。
具体的には、負荷電流設定値設定手段11には、非加工動作モード時の負荷電流設定値IK、加工動作モード時の負荷電流設定値IKが設定され、モータ電流制限値設定手段12には、非加工動作モード時のモータ電流制限値IS、加工動作モード時のモータ電流制限値ISが設定されている。
また、負荷電流設定値、モータ電流制限値、許容誤差設定値の各パラメータは、設定値切替手段13により、任意に変更されるシステムとなっている。
In the control device 10, parameters for drive control in the collision load detection device are set by the load current set value setting means 11, the motor current limit value setting means 12, and the position command-position feedback amount allowable error setting means 14. It is remembered.
Specifically, the load current setting value setting means 11, the non-processing mode of operation the load current setting value IK 1 when the load current setting value IK 2 at the time of processing operation mode is set, the motor current limit value setting means 12 the non-machining operation mode the motor current limit value iS 1 during, the motor current limit value iS 2 at the time of processing operation mode is set.
The load current set value, motor current limit value, and allowable error set value parameters are arbitrarily changed by the set value switching means 13.
 図2は、設定値切替手段13のプロセスをフローチャートで示したものである。
まず、制御装置は、NCプログラム等のプログラムを解析することで、動作モードの判断を行い、駆動モータが駆動する放電加工装置が被加工物と電極との間で所定の極間サーボを取りパルス電流を印加した放電加工中であるか、単に段取り、軸移動等の非加工中であるかを決定する(S1)。
非加工中と判断した場合、IK>ISの関係となる負荷電流設定値IK、モータ電流制限値ISを定義(S2)し、引き続き、動作モードの監視を行い(S3)、動作モードの状態を判断する。そして、動作モードが変更されていなければS2へ移行し、変更されていればS1へ移行する。
一方、S1にて加工中と決定した場合は、IK<ISの関係となる負荷電流設定値IK、モータ電流制限値IS値を定義(S4)し、S3と同様に引き続き、動作モードの監視を行い(S5)、動作モードが変更されていなければS4へ、変更されていればS1へ移行する。
以後、機械が動力遮断されるまで、上記プロセスを常に実行する。
FIG. 2 is a flowchart showing the process of the set value switching means 13.
First, the control device analyzes a program such as an NC program to determine the operation mode, and the electric discharge machining device driven by the drive motor takes a predetermined inter-electrode servo between the workpiece and the electrode and performs a pulse. It is determined whether the electric discharge machining is applied with an electric current, or the non-machining such as setup and axis movement is being performed (S1).
If it is determined that in a non-working, IK 1> load current setting value IK 1 as the relation of IS 1, defines the motor current limit value IS 1 (S2), subsequently, it monitors the operation mode (S3), the operation Determine the mode status. If the operation mode has not been changed, the process proceeds to S2, and if it has been changed, the process proceeds to S1.
On the other hand, if it is determined in S1 that machining is in progress, the load current set value IK 2 and the motor current limit value IS 2 that satisfy the relationship IK 2 <IS 2 are defined (S4), and the operation continues as in S3. The mode is monitored (S5). If the operation mode has not been changed, the process proceeds to S4, and if it has been changed, the process proceeds to S1.
Thereafter, the above process is always executed until the machine is powered off.
 次に、本システムにて、サーボモータ電流値が時間毎にどのように制御されるのかを図3を使用して説明する。
 (1)は非加工中のモータ電流値の推移を示したものである。
非加工中では、負荷電流設定値IK1>モータ電流制限値ISとなるように設定値切替手段13により設定されている。
駆動制御回路2に基づく軸移動直後、駆動モータ1のサーボモータ電流は、始動時の負荷イナーシャ相当の電流値が増加し、その後、定常状態では摩擦負荷トルクに相当するモータ電流値のみが発生することで、図3に示されるようなサーボモータ電流が負荷電流検出回路6によって検出される。
次に、何らかの事情で衝突が発生した場合、駆動モータ1は衝突負荷に対抗するためにサーボモータ電流値が増加するが、モータ電流制限回路4により、あらかじめモータ電流制限値設定手段12により定められたモータ電流制限値ISまでしか電流値は増加しない。
すなわち、電流制限によりモータが一定以上のトルクを発生させることができないため、駆動軸はこれ以上進むことができず、位置指令と位置フィードバック間に誤差が発生し、該誤差量が規定値に達することにより衝突を検出し、モータの停止制御を行う。
そして、モータ電流はゼロとなる。
Next, how the servo motor current value is controlled every time in this system will be described with reference to FIG.
(1) shows the transition of the motor current value during non-machining.
During non-machining, the set value switching means 13 sets the load current set value IK 1 > the motor current limit value IS 1 .
Immediately after the shaft movement based on the drive control circuit 2, the servo motor current of the drive motor 1 increases a current value corresponding to the load inertia at the start, and thereafter, only a motor current value corresponding to the friction load torque is generated in a steady state. Thus, the servo motor current as shown in FIG. 3 is detected by the load current detection circuit 6.
Next, when a collision occurs for some reason, the drive motor 1 increases the servo motor current value in order to counter the collision load. However, the motor current limit circuit 4 determines in advance the motor current limit value setting means 12. and does not increase the current value only motor current up to the limit value iS 1.
That is, since the motor cannot generate a torque exceeding a certain level due to current limitation, the drive shaft cannot advance any further, and an error occurs between the position command and the position feedback, and the error amount reaches a specified value. Thus, the collision is detected and the motor is stopped.
Then, the motor current becomes zero.
 (2)は加工中のモータ電流値の推移を示したものである。
加工中では、負荷電流設定値IK<モータ電流制限値ISとなるように設定値切替手段13により設定されている。
上述の如く、軸移動後の定常状態では、摩擦負荷トルクに相当するモータ電流値のみが発生する。
次に、衝突が発生した場合、駆動モータ1は衝突負荷に対抗するためにサーボモータ電流値が増加する。
そして、構造体破損防止のために設定された負荷電流設定値IKに達することにより衝突を検出し、モータを停止させる動作に移行する。
ただし、検出後に速やかにモータを停止させることは困難であり、通信遅れやフィルタ遅れなどにより停止するまでに若干の遅れが生じる。そのため、衝突後に上記遅れ時間だけ軸が駆動することとなる。
但し、検出遅れ中でも、モータ電流制限回路4により、あらかじめ定められたモータ電流制限値ISまでしか電流値は増加せず、電流制限値に相当するトルク以下に負荷は抑制される。
(2) shows the transition of the motor current value during machining.
During machining, the set value switching means 13 sets the load current set value IK 2 <the motor current limit value IS 2 .
As described above, only the motor current value corresponding to the friction load torque is generated in the steady state after the shaft movement.
Next, when a collision occurs, the drive motor 1 increases the servo motor current value to counter the collision load.
Then, to detect the collision by reaching the load current setting value IK 2 that is set for the structure to prevent damage, the process proceeds to operation to stop the motor.
However, it is difficult to stop the motor promptly after detection, and a slight delay occurs until the motor is stopped due to communication delay, filter delay, or the like. Therefore, the shaft is driven for the delay time after the collision.
However, even during the detection delay, the motor current limiting circuit 4, only does not increase the current value to the motor current limit value IS 2 predetermined load below torque corresponding to the current limit value is suppressed.
 次に、本動作の効果について説明する。
非加工中の動作(1)においては、仮に衝突が発生してもモータ電流制限値IS以上のサーボモータ電流が流れることがなく、一定以上のトルクを発生させることができないため、衝突によるダメージを抑制することができる。
 また、図4に示す様に、モータ電流制値ISを衝突物が確実に破損しないレベル(例えば、予め設定された駆動モータの非加工中における速度、トルク、軸始動時の負荷イナーシャ等を考慮し、定常状態での摩擦負荷トルクに相当するモータ電流値近傍)まで低下させることにより、機械損傷の防止をさらに確実に抑制可能である。但し、モータ電流値を下げることは、駆動時の応答性を低下させるため、NCプログラムに基づく位置軌跡制御の性能を低下させることとなるが、本モードは非加工時のみに有効であるため、位置軌跡精度の悪化は実使用上問題とならない。
Next, the effect of this operation will be described.
In the non-machining operation (1), even if a collision occurs, a servo motor current exceeding the motor current limit value IS 1 does not flow, and a torque exceeding a certain level cannot be generated. Can be suppressed.
Further, as shown in FIG. 4, the level of the collision object motor current-value IS 1 does not reliably broken (e.g., speed during non-processing of the driving motor which is set in advance, the torque, the load inertia or the like during the axial starting In view of this, by reducing the motor current value to a value near the friction load torque in a steady state, it is possible to further reliably prevent the machine damage. However, lowering the motor current value decreases the responsiveness at the time of driving, and hence the performance of the position trajectory control based on the NC program is reduced. However, since this mode is effective only during non-machining, Deterioration of position trajectory accuracy does not cause a problem in actual use.
 加工中の動作(2)においては、加工中であることから、位置軌跡精度は可能な限り向上させる必要がある。
一般的に、位置軌跡精度は駆動制御の高応答化により向上可能であるため、構造体の固有振動数を考慮に入れて、機械共振が発生しない程度までモータ電流値を向上させることが不可欠である。
例えば、図5に示す様に、モータ電流制限値ISを高電流に設定することで、高精度加工が実現可能となる。その際の衝突検出は、モータ電流値が負荷電流設定値IKに達することにより判断する必要がある。
 この方法では、検出後のモータ停止までの遅れが必ず生じることとなる。しかし、一般的な放電加工機において、実加工中の移動速度は10mm/min程度以下と低速であるため、検出遅れによって衝突後の構造体破壊につながることはほとんど無視して考えてよい。
In the operation (2) during processing, since the processing is in progress, the position trajectory accuracy needs to be improved as much as possible.
In general, since the position trajectory accuracy can be improved by increasing the response of drive control, it is essential to improve the motor current value to the extent that mechanical resonance does not occur, taking into account the natural frequency of the structure. is there.
For example, as shown in FIG. 5, by setting the motor current limit value IS 2 for high current, high-precision machining can be realized. The collision detection time has to be determined by the motor current value reaches the load current setting value IK 2.
In this method, there is always a delay until the motor stops after detection. However, in a general electric discharge machine, since the moving speed during actual machining is as low as about 10 mm / min or less, it can be considered almost negligible that the detection delay causes the structure destruction after the collision.
 すなわち、本実施の形態によれば、加工中には加工精度を重視したモードに、段取り中などの非加工中には、機械損傷を極力抑制した安全性の高いモードに切替えることにより、加工精度と安全性を両立した、実用的な衝突負荷検出装置を実現できる。 In other words, according to the present embodiment, the machining accuracy is emphasized by switching to a mode that emphasizes machining accuracy during machining, and to a highly safe mode that suppresses machine damage as much as possible during non-machining such as setup. And a practical collision load detection device that achieves both safety and safety.
実施の形態2.
 この発明の実施の形態2に係る衝突負荷検出装置においては、先に説明した図1、図2の構成に加えて、図6に示す負荷電流設定値IKの範囲で、加工中にモータを停止させるための基準電流値を定義することを特徴としている。
Embodiment 2. FIG.
In the collision load detection device according to Embodiment 2 of the present invention, in addition to the configuration of FIGS. 1 and 2 described above, the motor is operated during machining within the range of the load current set value IK 2 shown in FIG. It is characterized by defining a reference current value for stopping.
 図6は、予め制御装置に設定された加工中の負荷電流設定値IKの設定可能範囲を定義しており、最低値は機械摩擦トルク及び軸始動時の負荷イナーシャを考慮に入れた負荷電流値を設定し、最大値は前記負荷電流の+10%の値を負荷電流値として設定している。 FIG. 6 defines a settable range of the load current set value IK 2 during machining that is set in advance in the control device, and the minimum value is a load current that takes into account the machine friction torque and the load inertia at the time of starting the shaft. A value is set, and the maximum value is set as a load current value of + 10% of the load current.
 また、図7に示す様に、軸始動開始直後のみ一定のマスク時間を設け、検出無視する時間をさらに設ければ、軸始動時の負荷イナーシャに基づくサーボモータ電流の増加を、衝突として判断しないよう制御することができることから、負荷電流設定値IKの下限値を機械摩擦トルク考慮に入れた負荷電流値まで低下させることが可能である。
その結果、衝突検出を迅速に行えるようになるので、検出後のモータ停止までの遅れにともなう構造体破損の危険性をさらに低減可能である。
In addition, as shown in FIG. 7, if a fixed mask time is provided only immediately after the start of the axis start and a time to ignore the detection is further provided, an increase in the servo motor current based on the load inertia at the start of the axis is not determined as a collision. because it can be controlled so, it is possible to reduce to a load current value which takes into mechanical friction torque considering the lower limit of the load current setting value IK 2.
As a result, collision detection can be performed quickly, so that it is possible to further reduce the risk of damage to the structure due to a delay until the motor stops after detection.
 本実施の形態によれば、衝突検出後のモータ停止までの遅れにともなう、構造体破損の危険性を最小限に抑制すると同時に、非衝突時に発生する機械最大負荷トルクを、衝突検出と誤検出する恐れがなくなり、加工中のマシンダウンを抑制することができる。 According to this embodiment, the risk of damage to the structure due to the delay until the motor stops after collision detection is minimized, and at the same time, the maximum machine load torque that occurs during non-collision is detected as collision detection and erroneous detection. The machine down during processing can be suppressed.
実施の形態3.
 この発明の実施の形態3に係る衝突負荷検出装置においては、先に説明した図1、図2の構成に加えて、非加工中に図8に示す範囲内のモータ電流制限値ISの設定範囲を設け、適宜モータ電流制限値ISを設定可能としたものである。
なお、衝突時の検出動作は、実施の形態1の非加工中と同様に、サーボモータ電流がモータ電流制限値ISで制限され、検出誤差量が設定値以上の時に衝突を検出し、モータを停止させることを特徴としている。
Embodiment 3 FIG.
In the collision load detection device according to Embodiment 3 of the present invention, in addition to the configuration of FIGS. 1 and 2 described above, setting of motor current limit value IS 1 within the range shown in FIG. A range is provided, and the motor current limit value IS 1 can be set as appropriate.
As in the case of non-machining in the first embodiment, the detection operation at the time of collision detects the collision when the servo motor current is limited by the motor current limit value IS 1 and the detection error amount is equal to or larger than the set value, and the motor It is characterized by stopping.
 図8は、時間当たりのサーボモータ電流の推移を示したものであるが、モータ電流制限値ISは、最大摩擦トルクによる電流値以上で、かつ、衝突時に構造体が破損しない場合の最大モータ電流値以下の範囲内に設定されることを示している。
すなわち、ユーザが非加工中のモータ電流制限値ISを設定する際にも、その設定可能な範囲が決まっていることから、不用意なモータ電流制限値IS設定による衝突不具合等を防止することができる。
FIG. 8 shows the transition of the servo motor current per time. The motor current limit value IS 1 is equal to or greater than the current value due to the maximum friction torque, and the maximum motor when the structure is not damaged at the time of collision. It shows that the current value is set within the range.
That is, even when the user sets the motor current limit value IS 1 during non-machining, the settable range is determined, so that a collision failure due to inadvertent setting of the motor current limit value IS 1 is prevented. be able to.
 図9は、同様に時間当たりのサーボモータ電流の推移を示したものであるが、衝突後に電流制限によりモータが一定以上のトルクを発生させる事ができないため、駆動軸はこれ以上進むことができない。
そのため、位置指令と位置フィードバック間に誤差が発生し、検出誤差量が許容誤差設定値として例えば3mm以上となった場合に、衝突と認識し、モータを停止させる動作を示している。
これにより、位置指令と位置フィードバック間とに誤差量の変動があったとしても、衝突現象の誤検出する危険性を抑制できる。
 以上の構成により、非加工時の衝突時の破損を大幅に抑制すると同時に、衝突検出の誤検出の恐れが無くなるため、非加工中のマシンダウンを抑制することができる。
FIG. 9 shows the transition of the servo motor current per hour in the same manner. However, since the motor cannot generate a torque exceeding a certain level due to current limitation after the collision, the drive shaft cannot advance any further. .
For this reason, an error occurs between the position command and the position feedback, and when the detected error amount is, for example, 3 mm or more as an allowable error setting value, an operation of recognizing a collision and stopping the motor is shown.
Thereby, even if there is a variation in the amount of error between the position command and the position feedback, the risk of erroneous detection of the collision phenomenon can be suppressed.
With the above configuration, damage at the time of collision during non-machining is greatly suppressed, and at the same time, there is no possibility of erroneous detection of collision detection, so machine down during non-machining can be suppressed.
 この発明に係る衝突負荷検出装置は、非加工中などの段取り時には、衝突時の機械損傷を極力抑制するモードとなり、加工中には加工精度を重視したモードに切替えることにより、低剛性・低靭性構造の自動機械においても、実用的な衝突負荷検出を実現できる。 The collision load detection device according to the present invention is a mode in which machine damage at the time of collision is suppressed as much as possible during setup such as during non-machining, and by switching to a mode that emphasizes machining accuracy during machining, low rigidity and low toughness Even in an automatic machine with a structure, practical collision load detection can be realized.

Claims (19)

  1.  駆動モータと、
     該駆動モータの負荷電流を検出する負荷電流検出手段と、
     位置指令と前記駆動モータからのフィードバック信号とから、前記駆動モータの誤差検出を行う誤差検出手段と、
     前記駆動モータの駆動を制御する制御手段と、
    を備えた衝突検出装置において、
     制御手段は、前記駆動モータの駆動が、加工中か或いは非加工中であるかを判断し、
    加工中時には、負荷電流検出手段で検出された負荷電流が、前記駆動モータの過負荷検出の基準となるモータ負荷電流設定値以上となった場合に衝突を検出すると共に、該負荷電流が、前記モータ負荷電流設定値以上であって所定のモータ電流制限値以下となるように制限し、
    非加工中時には、負荷電流検出手段で検出された負荷電流が、負荷電流設置値以下に設定されたモータ電流制限値以上となった場合に、前記誤差検出手段で検出された誤差を判断することで衝突を検出する、ことを特徴とする衝突検出装置。
    A drive motor;
    Load current detection means for detecting the load current of the drive motor;
    Error detection means for detecting an error of the drive motor from a position command and a feedback signal from the drive motor;
    Control means for controlling the drive of the drive motor;
    In a collision detection device comprising:
    The control means determines whether the drive of the drive motor is being processed or not being processed,
    During machining, a collision is detected when the load current detected by the load current detection means is equal to or greater than a motor load current set value serving as a reference for overload detection of the drive motor, and the load current is Limit the motor load current to a value that is greater than or equal to the preset motor current limit value,
    During non-machining, when the load current detected by the load current detection means becomes equal to or greater than the motor current limit value set below the load current installation value, the error detected by the error detection means is determined. A collision detection device characterized by detecting a collision with
  2.  負荷電流設定値は、駆動モータが設けられた構造体と加工対象物との衝突有無を判断するための基準電流値を示し、モータ電流制限値は、モータ出力トルクが一定以下となる様に、一定電流以下にモータ電流を制限する設定値であることと特徴とする請求項1に記載の衝突検出装置。 The load current set value indicates a reference current value for determining whether or not the structure provided with the drive motor collides with the workpiece, and the motor current limit value is set so that the motor output torque is less than a certain value. The collision detection device according to claim 1, wherein the collision detection device is a set value for limiting the motor current to a predetermined current or less.
  3.  加工中のモータ電流制限値は、駆動モータが位置軌跡制御するためのトルク以上となる高電流値のパラメータとして設定され、非加工中のモータ電流制限値は、駆動モータが駆動させる機械の最大摩擦負荷トルク以上であって衝突時の影響を抑えた低電流値として設定されていることを特徴とする請求項1に記載の衝突検出装置。 The motor current limit value during machining is set as a parameter of a high current value that is equal to or greater than the torque for controlling the position trajectory of the drive motor, and the motor current limit value during non-machining is the maximum friction of the machine driven by the drive motor. The collision detection device according to claim 1, wherein the collision detection device is set as a low current value that is equal to or greater than the load torque and suppresses the influence at the time of the collision.
  4.  加工中の負荷電流設定値は、駆動モータが駆動させる機械の最大摩擦負荷トルク及び軸始動時の負荷イナーシャを考慮した負荷電流値以上、かつ該負荷電流値+10%以下の値として設定可能な範囲が記憶されていることを特徴とする請求項1に記載の衝突検出装置。 The load current setting value during machining can be set as a value that is greater than or equal to the load current value taking into account the maximum frictional load torque of the machine driven by the drive motor and the load inertia at the start of the shaft, and less than or equal to the load current value + 10% Is stored, the collision detection device according to claim 1.
  5.  負荷電流設定値に基づく衝突判断は、駆動モータの軸移動開始時から、負荷イナーシャ発生時の間は検出を無効とすることと特徴とする請求項4に記載の衝突検出装置。 5. The collision detection device according to claim 4, wherein the collision determination based on the load current set value is invalidated during a period from the start of the shaft movement of the drive motor to the occurrence of load inertia.
  6.  非加工中のモータ電流制限値を、駆動モータが駆動させる機械の最大摩擦負荷トルクに相当する負荷電流値以上、衝突時に構造体が破壊しない最大負荷電流値以下の値として設定可能な範囲が記憶されていることを特徴とする請求項1に記載の衝突検出装置。 Stores the range that can be set as the motor current limit value during non-machining as a value equal to or greater than the load current value corresponding to the maximum frictional load torque of the machine driven by the drive motor and less than the maximum load current value at which the structure does not break in the event of a collision The collision detection device according to claim 1, wherein the device is a collision detection device.
  7.  誤差検出手段には、移動指令とフィードバック信号の誤差設定値を3mm以上として設定され、該誤差設定値以上となった場合に衝突として判断されることを特徴とする請求項6に記載の衝突検出装置。 7. The collision detection according to claim 6, wherein the error detection means sets the error setting value of the movement command and the feedback signal as 3 mm or more, and is judged as a collision when the error setting value becomes more than the error setting value. apparatus.
  8.  NCプログラムに基づき動作する放電加工装置において、電極及び被加工物との間隙に所定のパルス電流を供給しつつ駆動モータを駆動する場合を加工時とし、所定のパルス電流を供給せず、駆動モータを位置決め動作させる非加工時と判断することを特徴とする請求項1乃至7何れかに記載の衝突検出装置。 In an electric discharge machining apparatus that operates based on an NC program, a case where a drive motor is driven while supplying a predetermined pulse current to a gap between an electrode and a workpiece is a machining motor, and the drive motor is not supplied with a predetermined pulse current. The collision detection device according to claim 1, wherein the collision detection device is determined to be in a non-machining state in which the positioning operation is performed.
  9.  加工中の駆動モータによる駆動速度は、10mm/min程度以下の低速にて放電加工を行う放電加工装置において用いられることを特徴とする請求項8に記載の衝突検出装置。 9. The collision detection apparatus according to claim 8, wherein the collision detection apparatus is used in an electric discharge machining apparatus that performs electric discharge machining at a low speed of about 10 mm / min or less.
  10.  駆動モータが駆動させる機械の衝突を検出する衝突検出方法において、
    加工中時には、負荷電流検出手段で検出された負荷電流が、前記駆動モータの過負荷検出の基準となるモータ負荷電流設定値以上となった場合に衝突を検出すると共に、該負荷電流が、前記モータ負荷電流設定値以上であって所定のモータ電流制限値以下となるように制限し、
    非加工中時には、負荷電流検出手段で検出された負荷電流が、負荷電流設置値以下に設定されたモータ電流制限値以上となった場合に、位置指令と前記駆動モータからのフィードバック信号とから前記駆動モータの誤差を判断することで衝突を検出することを特徴とする衝突検出方法。
    In a collision detection method for detecting a collision of a machine driven by a drive motor,
    During machining, a collision is detected when the load current detected by the load current detection means is equal to or greater than a motor load current set value serving as a reference for overload detection of the drive motor, and the load current is Limit the motor load current to a value that is greater than or equal to the preset motor current limit value,
    During non-machining, when the load current detected by the load current detection means becomes equal to or greater than the motor current limit value set below the load current installation value, the position command and the feedback signal from the drive motor A collision detection method for detecting a collision by judging an error of a drive motor.
  11.  前記駆動モータの駆動が、加工中か或いは非加工中であるかを判断し、加工中時或いは非加工中時の衝突検出を切替えることを特徴とする請求項10に記載の衝突検出方法。 11. The collision detection method according to claim 10, wherein whether the drive motor is driven or not is determined, and the collision detection during the processing or during the non-processing is switched.
  12.  負荷電流設定値は、駆動モータが設けられた構造体と加工対象物との衝突有無を判断するための基準電流値を示し、モータ電流制限値は、モータ出力トルクが一定以下となる様に、一定電流以下にモータ電流を制限する設定値であることと特徴とする請求項10に記載の衝突検出方法。 The load current set value indicates a reference current value for determining whether or not the structure provided with the drive motor collides with the workpiece, and the motor current limit value is set so that the motor output torque is less than a certain value. 11. The collision detection method according to claim 10, wherein the collision detection method is a set value for limiting the motor current to a certain current or less.
  13.  加工中のモータ電流制限値は、駆動モータが位置軌跡制御するためのトルク以上となる高電流値のパラメータとして設定し、非加工中のモータ電流制限値は、駆動モータが駆動させる機械の最大摩擦負荷トルク以上であって衝突時の影響を抑えた低電流値として設定された値を用いて衝突検出を行うことを特徴とする請求項10に記載の衝突検出方法。 The motor current limit value during machining is set as a parameter of a high current value that is equal to or greater than the torque for controlling the position trajectory of the drive motor, and the motor current limit value during non-machining is the maximum friction of the machine driven by the drive motor. The collision detection method according to claim 10, wherein the collision detection is performed using a value set as a low current value that is equal to or greater than the load torque and suppresses the influence at the time of the collision.
  14.  駆動モータが駆動させる機械の最大摩擦負荷トルク及び軸始動時の負荷イナーシャを考慮した負荷電流値以上、かつ該負荷電流値+10%以下の値として設定可能な範囲から、負荷電流設定値を決定し、加工中の衝突検出を行うことを特徴とする請求項10に記載の衝突検出方法。 The load current setting value is determined from a range that can be set as a value that is greater than or equal to the load current value taking into account the maximum frictional load torque of the machine driven by the drive motor and the load inertia at the start of the shaft, and less than the load current value + 10%. The collision detection method according to claim 10, wherein collision detection during machining is performed.
  15.  負荷電流設定値に基づく衝突判断は、駆動モータの軸移動開始時から、負荷イナーシャ発生時の間は検出を無効とすることと特徴とする請求項14に記載の衝突検出方法。 15. The collision detection method according to claim 14, wherein the collision determination based on the load current set value is invalidated from the time when the drive motor starts moving to the time when load inertia occurs.
  16.  駆動モータが駆動させる機械の最大摩擦負荷トルクに相当する負荷電流値以上、衝突時に構造体が破壊しない最大負荷電流値以下の値として設定可能な範囲から、非加工中のモータ電流制限値を設定し、該非モータ電流制限値を用いて非加工中の衝突検出を行うことを特徴とする請求項10に記載の衝突検出装置。 Set the motor current limit value during non-machining from a range that can be set as a value that is equal to or greater than the load current value corresponding to the maximum friction load torque of the machine driven by the drive motor and less than the maximum load current value at which the structure does not break in the event of a collision. The collision detection apparatus according to claim 10, wherein collision detection during non-machining is performed using the non-motor current limit value.
  17.  誤差検出手段には、移動指令とフィードバック信号の誤差設定値を3mm以上として設定され、該誤差設定値以上となった場合に衝突として判断されることを特徴とする請求項16に記載の衝突検出方法。 17. The collision detection according to claim 16, wherein the error detection means sets the error setting value of the movement command and the feedback signal as 3 mm or more, and is judged as a collision when the error setting value becomes more than the error setting value. Method.
  18.  NCプログラムに基づき動作する放電加工装置において、電極及び被加工物との間隙に所定のパルス電流を供給しつつ駆動モータを駆動する場合を加工時とし、所定のパルス電流を供給せず、駆動モータを位置決め動作させる非加工時と判断することを特徴とする請求項10乃至17何れかに記載の衝突検出方法。 In an electric discharge machining apparatus that operates based on an NC program, a case where a drive motor is driven while supplying a predetermined pulse current to a gap between an electrode and a workpiece is a machining motor, and the drive motor is not supplied with a predetermined pulse current. The collision detection method according to any one of claims 10 to 17, wherein it is determined that the non-machining operation is performed for positioning.
  19.  加工中の駆動モータによる駆動速度は、10mm/min程度以下の低速にて放電加工を行う放電加工において用いられることを特徴とする請求項18に記載の衝突検出方法。 The collision detection method according to claim 18, wherein the collision detection method is used in electric discharge machining in which electric discharge machining is performed at a low speed of about 10 mm / min or less.
PCT/JP2008/057496 2008-04-17 2008-04-17 Collision detector and method for detecting collision in processing machine WO2009128156A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2008/057496 WO2009128156A1 (en) 2008-04-17 2008-04-17 Collision detector and method for detecting collision in processing machine
JP2010508069A JP5168352B2 (en) 2008-04-17 2008-04-17 Collision detection device and collision detection method in processing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/057496 WO2009128156A1 (en) 2008-04-17 2008-04-17 Collision detector and method for detecting collision in processing machine

Publications (1)

Publication Number Publication Date
WO2009128156A1 true WO2009128156A1 (en) 2009-10-22

Family

ID=41198868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/057496 WO2009128156A1 (en) 2008-04-17 2008-04-17 Collision detector and method for detecting collision in processing machine

Country Status (2)

Country Link
JP (1) JP5168352B2 (en)
WO (1) WO2009128156A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101134938B1 (en) 2011-08-17 2012-04-17 (재)대구기계부품연구원 Monitoring and controlling method for condition of machining system with current value of spindle motor
KR101170323B1 (en) 2011-08-17 2012-08-02 (재)대구기계부품연구원 Monitoring method for condition of machining system with current value of spindle motor
CN104932420A (en) * 2014-03-19 2015-09-23 发那科株式会社 Motor Control Apparatus Capable Of Protecting Process Face At The Time Of Occurrence Of Abnormal Load
US9459610B2 (en) 2011-04-11 2016-10-04 Mitsubishi Electric Corporation Electric discharge machine with contact detector and position detector
CN113977351A (en) * 2020-12-11 2022-01-28 株式会社Mazin Current measuring system and method for machine tool
US20220176596A1 (en) * 2020-12-07 2022-06-09 Yushin Precision Equipment Co., Ltd. Control system for apparatus for taking out molded product
JP7120476B1 (en) * 2021-05-13 2022-08-17 住友電気工業株式会社 Machining condition management system, machining control device, machining system, and machining program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6708676B2 (en) * 2018-02-27 2020-06-10 ファナック株式会社 Abnormality factor identification device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08323585A (en) * 1995-05-31 1996-12-10 Fanuc Ltd Abnormal load detecting system
JPH10143216A (en) * 1996-11-11 1998-05-29 Nakamura Tome Precision Ind Co Ltd Collision detector for movable unit
JP2001125611A (en) * 1999-10-29 2001-05-11 Toyoda Mach Works Ltd Numerical controller
JP2002175104A (en) * 2000-12-05 2002-06-21 Murata Mach Ltd Machine tool having abnormal load monitoring function
JP2006116650A (en) * 2004-10-21 2006-05-11 Matsushita Electric Ind Co Ltd Collision detecting method of robot
JP2007072879A (en) * 2005-09-08 2007-03-22 Fanuc Ltd Machine provided with movable part drive controlled by servo motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129646A (en) * 1990-09-19 1992-04-30 Mitsubishi Electric Corp Control unit for positioning shaft of machine tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08323585A (en) * 1995-05-31 1996-12-10 Fanuc Ltd Abnormal load detecting system
JPH10143216A (en) * 1996-11-11 1998-05-29 Nakamura Tome Precision Ind Co Ltd Collision detector for movable unit
JP2001125611A (en) * 1999-10-29 2001-05-11 Toyoda Mach Works Ltd Numerical controller
JP2002175104A (en) * 2000-12-05 2002-06-21 Murata Mach Ltd Machine tool having abnormal load monitoring function
JP2006116650A (en) * 2004-10-21 2006-05-11 Matsushita Electric Ind Co Ltd Collision detecting method of robot
JP2007072879A (en) * 2005-09-08 2007-03-22 Fanuc Ltd Machine provided with movable part drive controlled by servo motor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9459610B2 (en) 2011-04-11 2016-10-04 Mitsubishi Electric Corporation Electric discharge machine with contact detector and position detector
DE112011105025B4 (en) * 2011-04-11 2019-01-31 Mitsubishi Electric Corp. Electric discharge machine
KR101134938B1 (en) 2011-08-17 2012-04-17 (재)대구기계부품연구원 Monitoring and controlling method for condition of machining system with current value of spindle motor
KR101170323B1 (en) 2011-08-17 2012-08-02 (재)대구기계부품연구원 Monitoring method for condition of machining system with current value of spindle motor
CN104932420A (en) * 2014-03-19 2015-09-23 发那科株式会社 Motor Control Apparatus Capable Of Protecting Process Face At The Time Of Occurrence Of Abnormal Load
JP2015179435A (en) * 2014-03-19 2015-10-08 ファナック株式会社 Motor control device for protecting processed surface during abnormal load occurrence
US10095212B2 (en) 2014-03-19 2018-10-09 Fanuc Corporation Motor control apparatus capable of protecting process face at the time of occurrence of abnormal load
DE102015103636B4 (en) * 2014-03-19 2020-10-15 Fanuc Corporation Motor control device that enables protection of a machining surface when an abnormal load occurs
US20220176596A1 (en) * 2020-12-07 2022-06-09 Yushin Precision Equipment Co., Ltd. Control system for apparatus for taking out molded product
CN113977351A (en) * 2020-12-11 2022-01-28 株式会社Mazin Current measuring system and method for machine tool
JP7120476B1 (en) * 2021-05-13 2022-08-17 住友電気工業株式会社 Machining condition management system, machining control device, machining system, and machining program

Also Published As

Publication number Publication date
JPWO2009128156A1 (en) 2011-08-04
JP5168352B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5168352B2 (en) Collision detection device and collision detection method in processing machine
JP5520979B2 (en) Machine tool with collision monitoring device
US20110234141A1 (en) Control device for machine tool
US20160363924A1 (en) Servo motor stop controller to control and stop servo motor during emergency stop
US8884571B2 (en) Motor control apparatus which limits torque command according to input current or power
US10376975B2 (en) Wire electric discharge machine with tension monitoring function
CN111266876B (en) Controller of machine tool
EP1622250A2 (en) Control device of electric motor
JP6237736B2 (en) Processing method and processing apparatus
US20210154798A1 (en) Machine Tool And Method Of Operating A Machine Tool
US20160116900A1 (en) Numerical control device and method
EP3611585B1 (en) Machine tool
JP2007105809A (en) Method of detecting slip of main spindle driving belt of machine tool
US20230405697A1 (en) Wire electric discharge machine, and control method for wire electric discharge machine
KR20130110061A (en) Sewing machine
JP2022096154A (en) Discharge circuit and discharge method of power supply circuit for motor driving, and robot controller
US20230390844A1 (en) Wire electrical discharge machining apparatus and control method for wire electrical discharge machining apparatus
US10924039B2 (en) Motor control device and control method for motor control device
TW201336623A (en) Inner hole grinder and the current-mode anti-damage detection method
JPH05305554A (en) Nc machine tool and tool breakage preventing method for nc machine tool
JPH034309B2 (en)
WO2014016923A1 (en) Electrical discharge machining device
JP6747352B2 (en) Numerical control device and control method
JP2023045130A (en) Machine tool, abnormality detection system, and abnormality detection method
CN113857935A (en) Method and device for self-adaptive machining of motor base and monitoring vibration of vertical feed shaft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08740566

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010508069

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08740566

Country of ref document: EP

Kind code of ref document: A1