WO2009128130A1 - Digital power amplifier - Google Patents

Digital power amplifier Download PDF

Info

Publication number
WO2009128130A1
WO2009128130A1 PCT/JP2008/057270 JP2008057270W WO2009128130A1 WO 2009128130 A1 WO2009128130 A1 WO 2009128130A1 JP 2008057270 W JP2008057270 W JP 2008057270W WO 2009128130 A1 WO2009128130 A1 WO 2009128130A1
Authority
WO
WIPO (PCT)
Prior art keywords
level shift
signal
shift circuit
unit
level
Prior art date
Application number
PCT/JP2008/057270
Other languages
French (fr)
Japanese (ja)
Inventor
健司 横山
啓宏 佐藤
佳郎 三宅
Original Assignee
株式会社フライングモール
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フライングモール filed Critical 株式会社フライングモール
Priority to PCT/JP2008/057270 priority Critical patent/WO2009128130A1/en
Publication of WO2009128130A1 publication Critical patent/WO2009128130A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers

Definitions

  • the present invention relates to a digital power amplifier, and can be applied to, for example, an audio amplifier.
  • the photocoupler is expensive, it is necessary to have the same number as the number of switches of the switch bridge, which hinders the cost reduction of the digital power amplifier and requires a large mounting area to be divided by the photocoupler.
  • the present invention relates to a digital power amplifier having a switching unit and a signal conversion unit.
  • the switching unit (1-1) forms a pair inserted in series between high and low power supply lines of a single power supply.
  • Each of the first to fourth drivers is (3-1) the ground given to the driver from the signal processing unit.
  • the present invention is characterized by having a buffer section for driving on / off the switching target switching element of the driver.
  • FIG. 1 is a block diagram showing an overall configuration of a digital power amplifier 100 according to a first embodiment.
  • FIG. 2 is a block diagram showing a common functional internal configuration of four drivers of FIG. 1 in the first embodiment.
  • FIG. 3 is a circuit diagram illustrating a specific configuration of the driver of FIG. 2.
  • FIG. 4 is a circuit diagram illustrating a configuration example in which the circuit of FIG. 3 is applied to four drivers in FIG. 1. It is a block diagram which shows the common functional internal structure of the four drivers of FIG. 1 in 2nd Embodiment. It is a block diagram which shows the functional internal structure of four drivers of FIG. 1 in 3rd Embodiment.
  • DESCRIPTION OF SYMBOLS 100 Digital power amplifier, 101 ... Signal processing part, 102 ... Switching part, 103 ... Power supply part, 104 ... Load, 111-114 ... Switch (switching element), 121-124, 121B-124B, 200, 200A ... Driver, 201, 201-1 to 201-4, 201P, 201N ... first level shift circuit, 202, 202-1 to 202-4, 202P, 202N ... second level shift circuit, 203, 203-1 to 203- 4 ... Buffer unit, 204, 205 ... Differential buffer.
  • switching element switching element
  • FIG. 1 is a block diagram showing the overall configuration of the digital power amplifier 100 according to the first embodiment.
  • a digital power amplifier 100 includes a signal processing unit 101, a switching unit 102, a power supply unit 103, and a load 104. If the digital power amplifier 100 according to the first embodiment is applied as an audio amplifier, the input analog signal is an audio signal and the load 104 is a speaker.
  • the switching unit 102 corresponds to the main body of the switching amplifier and has a bridge connection portion of four switches 111 to 114 to which switching elements such as MOS-FETs are applied. That is, the series circuit of the switches 111 and 112 and the series circuit of the switches 114 and 113 are connected between the high potential (E [V]) power supply line and the low potential (0 [V]) power supply line of the power supply unit 103. Has been.
  • Each of the switches 111 to 114 is ON / OFF controlled by a corresponding driver 121 to 124 having a detailed configuration described later.
  • connection point of the switches 114 and 113 is grounded. Since the switches 114 and 113 are turned on and off in a substantially complementary manner, when the switch 114 is turned on, the connection point of the switches 114 and 113 becomes the potential of the high potential power supply line (E [V]), and when the switch 113 is turned on, the switch 114 And the connection point of 113 becomes the potential (0 [V]) of the low potential power supply line.
  • connection point of the switches 111 and 112 is not shown, but is connected to the low potential side of the operating power supply of the driver 121 that drives the switch 111 (see FIG. 4 described later).
  • a series circuit of a coil 115 and a capacitor 116 constituting a low-pass filter is connected between the connection point of the switches 111 and 112 and the connection point of the switches 114 and 113.
  • a load 104 is connected to the capacitor 116 in parallel.
  • the switches 111 and 113 are on / off controlled in a similar manner based on a PWM signal described later, and the switches 112 and 114 are controlled on / off in a similar manner based on a PWM signal described later.
  • the on / off control and the latter on / off control are complementary.
  • the capacitor 116 integrates the current flowing in the forward direction or the reverse direction through the series circuit (low-pass filter) of the coil 115 and the capacitor 116, whereby the voltage amplified across the capacitor 116 is obtained. And applied to the load 104.
  • the power supply unit 103 supplies operating power to the switching unit 102. Since the first embodiment is characterized by the configuration of the switching unit 102, for example, a commercial AC power source is converted into a desired DC power source. Any existing configuration may be used as long as it is configured. Note that a battery may be applied as the power supply unit 103.
  • a converter 131 that converts an input AC power supply (AC input) into an AC power supply of another size, a transformer that electrically separates the input AC power supply (AC input) side and the apparatus main body side.
  • the voltage across the capacitor 134 (E [V] ⁇ 0 [V]) is supplied as a single power source for the switching unit 102.
  • the signal processing unit 101 has an analog amplification function of an input analog signal (for example, an audio signal) and a PWM signal forming function for on / off control of the switches 111 to 114 described above. Since the first embodiment has a feature in the configuration of the switching unit 102, the signal processing unit 101 may adopt any existing configuration as long as it can achieve the above-described function.
  • FIG. 1 shows a configuration example of the signal processing unit 101 as follows.
  • the signal processing unit 1 includes an operational amplifier 141 that is a central configuration of a positive-phase analog amplifier and an operational amplifier 142 that is a central configuration of a negative-phase analog amplifier.
  • the input analog signal input to the ground-based input terminal is input to the non-inverting input terminal of the operational amplifier 141 that is grounded via the resistor 143.
  • the inverting input terminal of the operational amplifier 141 is grounded via a resistor 144.
  • a positive phase amplified signal obtained by analog amplification of the input analog signal is obtained at the output terminal of the operational amplifier 141, and input to the comparison target input terminal of the comparator 145 and the inverting input terminal of the operational amplifier 142 through the resistor 146. Is done.
  • the voltage across the coil 115 which is a component of the low-pass filter, is fed back to the inverting input terminal of the operational amplifier 141 via feedback circuits (for example, resistors) 151 and 152, respectively, so that the low-pass filter output is stabilized. Has been made.
  • the non-inverting input terminal of the operational amplifier 142 is grounded, and the output terminal of the operational amplifier 142 is connected to its own inverting input terminal via a resistor 147. Therefore, the operational amplifier 142 functions as an inverting circuit for the positive phase amplified signal input to its inverting input terminal, and outputs an amplified signal having a phase opposite to that of the input analog signal.
  • the amplified signal having the opposite phase is input to the comparison target input terminal of the comparator 148.
  • the triangular wave generation circuit 149 generates a triangular wave signal whose fundamental frequency is sufficiently higher than the band of the input analog signal, and the generated triangular wave signal is input to the reference input terminals of the comparators 145 and 148.
  • Each of the comparators 145 and 148 takes a logic “H” when the amplified signal to the comparison target input terminal is larger than the triangular wave signal to the reference input terminal, and the amplified signal to the comparison target input terminal is the triangular wave to the reference input terminal.
  • a PWM signal having a logic “L” is output from the non-inverting output terminal, and a PWM signal obtained by inverting the PWM signal is output from the inverting output terminal.
  • the PWM signal output from the non-inverting output terminal of the comparator 145 is supplied to the driver 121 for the switch 111, and the PWM signal output from the inverting output terminal of the comparator 145 is supplied to the driver 122 for the switch 112.
  • the PWM signal output from the non-inverted output terminal of the comparator 148 is provided to the driver 123 for the switch 113, and the PWM signal output from the inverted output terminal of the comparator 148 is provided to the driver 124 for the switch 114.
  • the operating voltage differs between the signal processing unit 101 and the switching unit 102, so that the signal processing unit 101 and the switching unit 102 are electrically insulated (isolated). Need to connect.
  • this separation (insulation) function has been realized by a photocoupler, but in the first embodiment, the drivers 121 to 124 have such a separation function.
  • the functions of the photocoupler are not only an electrical separation function but also a level shift function of the PWM signal, but the drivers 121 to 124 naturally have such a level shift function.
  • FIG. 2 is a block diagram illustrating a configuration of the driver 200 (121 to 124) that realizes an electrical separation function between the signal processing unit 101 and the switching unit 102.
  • the driver 200 includes a first level shift circuit 201, a second level shift circuit 202, and a buffer amplifier unit (hereinafter abbreviated as a buffer unit) 203.
  • a buffer unit hereinafter abbreviated as a buffer unit
  • the first level shift circuit 201 shifts the level of the ground (GND) base output signal (PWM signal) from the signal processing unit 101 to a low potential (0 [V]) base signal of the power supply unit 103. is there.
  • the second level shift circuit 202 outputs a low potential (0 [V]) base output signal of the power supply unit 103 from the first level shift circuit 201 to a switch to be driven by the driver 200 (121 to 124).
  • the level shifts to a signal based on the reference voltage Vs for on / off driving of (111 to 114).
  • the switching unit 102 in FIG. 1 there is a driver in which the low potential (0 [V]) to the power source unit 103 is equal to the reference voltage Vs for on / off driving.
  • the buffer unit 203 supplies drivable power to a target switch based on a signal based on the reference voltage Vs for on / off driving from the second level shift circuit 202.
  • the switches (111 to 114) are composed of MOS-FETs, the source potential is the reference voltage Vs.
  • FIG. 3 is a circuit diagram showing a specific configuration of the driver 200 (121 to 124) that realizes an electrical separation function between the signal processing unit 101 and the switching unit 102. That is, FIG. 3 shows a specific configuration example of the first level shift circuit 201 and the second level shift circuit 202.
  • the first level shift circuit 201 includes a resistor R1 and a PNP transistor Q1 between the high potential of the sub power supply E0 for the first level shift circuit 201 and the low potential (0 [V]) of the power supply unit 103. Emitter-collector and resistor R2 are connected in this order. A resistor R3 is connected between the high potential of the sub power source E0 for the first level shift circuit 201 and the base of the transistor Q1. An input signal (PWM signal) to the driver 200 is input to the base of the transistor Q1. As the transistor Q1, a high breakdown voltage transistor is used, and the non-saturation characteristic region is used for amplification. By applying a high breakdown voltage transistor, the same insulating property as that of the photocoupler is achieved.
  • the resistor R1 and the PNP transistor Q1 constitute a voltage-controlled constant current source.
  • a constant current is supplied only when the input signal (PWM signal) to the driver 200 is “L”, and this constant current is converted into a voltage by the resistor R2.
  • the input signal to the driver 200 is level-shifted to a low potential (0 [V]) base signal of the power supply unit 103.
  • the inverter INV1 can be viewed as both a component of the first level shift circuit 201 and a component of the second level shift circuit 202.
  • the inverter INV1 inverts the output of the first level shift circuit 201 and inputs it to the second level shift circuit 202.
  • the resistor R4 between the high potential of the sub power source E1 for the buffer unit 203 and the low potential (0 [V]) of the power source unit 103, the resistor R4, the collector-emitter of the NPN transistor Q2, The collector-emitter of the NPN transistor Q3 and the resistor R5 are connected in this order, and a capacitor C1 is connected in parallel to the resistor R5. Further, in the second level shift circuit 202, the high potential of the sub power source E1 for the buffer unit 203 and the low potential (reference voltage for driving on / off of the switch to be driven) Vs of the sub power source E1 for the buffer unit 203. Between the collector-emitter of the NPN transistor Q4 and the resistor R6 are connected in this order.
  • the bases of the transistors Q2 and Q4 are connected to each other, and the base of the transistor Q2 is connected to its own emitter, forming a current mirror circuit.
  • the base of the transistor Q3 is connected to the output terminal of the inverter INV1.
  • the transistor Q3 and the resistor R5 constitute a voltage-controlled constant current source, and a constant current flows only when the output (PWM signal) of the inverter INV1 is “H”. This constant current is collected by the current mirror circuit to the collector of the transistor Q4. By flowing as a current and converted into a voltage by the resistor R7, the output of the inverter INV1 is level-shifted to a signal based on the reference voltage Vs for driving on / off of the drive target switch.
  • the transistor Q3 a high voltage transistor is applied, and the unsaturated characteristic region is used for amplification.
  • the same insulating property as that of the photocoupler is achieved even at this stage.
  • the buffer unit 203 drives the drive target switch based on the signal level-shifted to the reference voltage Vs base signal for on / off drive of the drive target switch.
  • FIG. 4 is a circuit diagram showing a configuration example in which the circuit of FIG. 3 is applied to the four drivers 121 to 124 in FIG.
  • the current mirror circuit in FIG. 3 is indicated by blocks CM-1 to CM-4.
  • the first level shift circuits 201-1 to 201-4 cause the ground (GND) base output signal (PWM signal) from the signal processing unit 101 to be supplied to the low potential (0 [ V]) Level shift to base signal.
  • a voltage higher than the ground (GND) potential by the sub power supply E0 is applied between the emitters and collectors of the transistors Q1-1 to Q1-4 of the first level shift circuits 201-1 to 201-4. Since the ground (GND) potential is E [V] when the switch 114 is turned on, a maximum of E0 + E is applied between the emitters and collectors of the transistors Q1-1 to Q1-4. Therefore, transistors Q1-1 to Q1-4 that can withstand this maximum voltage are selected, thereby achieving electrical isolation.
  • the reference voltage Vs (Vs-1 to Vs-4) for on / off driving for the switches 111 to 114 of the switching unit 101 varies depending on the switches 111 to 114.
  • the reference voltage Vs-1 for the switch 111 is a low potential of the sub power source E1-1 for the buffer unit 203-1, and the second level shift circuit 202-1 is a low potential (0 [V]) of the power source unit 103.
  • Level shift the base signal to the reference voltage Vs-1 base signal Therefore, in the two-stage level shift in the driver 121, the ground (GND) base signal from the signal processing unit 101 is level shifted to the reference voltage Vs-1 base signal.
  • the reference voltages Vs-2 and Vs-3 for the switches 112 and 113 are the low potential (0 [V]) of the power supply unit 103, and the second level shift circuits 202-2 and 202-3 are connected to the power supply unit 103.
  • a low potential (0 [V]) base signal is level-shifted to a low potential (0 [V]) base signal of the power supply unit 103. Therefore, in the two-stage level shift in the drivers 122 and 123, the ground (GND) -based signal from the signal processing unit 101 is level-shifted to the low potential (0 [V])-based signal of the power supply unit 103. .
  • the reference voltage Vs-4 for the switch 114 is a ground (GND) potential
  • the second level shift circuit 202-4 applies a low potential (0 [V]) base signal of the power supply unit 103 to the ground (GND) potential.
  • Level shift to base signal Accordingly, in the two-stage level shift in the driver 124, the ground (GND) -based signal from the signal processing unit 101 is level-shifted to the ground (GND) -based signal.
  • E1 + E is applied between the collectors and emitters of the transistors Q3-1 and Q3-4 in the second level shift circuits 202-1 and 202-4 at the maximum. Therefore, transistors Q3-1 and Q3-4 that can withstand this maximum voltage are selected, thereby achieving electrical isolation.
  • a maximum of E1 is applied between the collector and emitter of the transistors Q3-2 and Q3-3 in the second level shift circuits 202-2 and 202-3. Therefore, transistors Q3-2 and Q3-3 that can withstand this maximum voltage are selected, thereby achieving electrical isolation.
  • a transistor having a withstand voltage equal to or higher than E1 + E may be selected.
  • an electrically separated connection between the signal processing unit and the switching unit can be made in two stages without using a photocoupler. Since the operation is performed by the level shift circuit, high output, high efficiency, and low power consumption can be realized, and further, downsizing, high performance, and low cost can be realized.
  • the overall configuration of the digital power amplifier according to the second embodiment can also be represented in FIG. However, in the second embodiment, the internal configurations of the drivers 121 to 124 are different from those in the first embodiment.
  • FIG. 5 is a block diagram showing a functional internal configuration of the driver 200A (121 to 124) according to the second embodiment, and is the same as or corresponding to that in FIG. 2 according to the first embodiment described above. , The corresponding symbols are attached.
  • the ground level (GND) -based output signal (PWM signal) from the signal processing unit 101 is directly input to the first phase shift circuit 201P for the positive phase, and the first level shift for the positive phase is performed.
  • the circuit 201P level-shifts the signal to a low potential (0 [V]) base signal of the power supply unit 103.
  • a ground (GND) -based output signal (PWM signal) from the signal processing unit 101 is inverted and input to the first phase shift circuit 201N for the reverse phase via the inverter INV2, and the first phase shift circuit 201N for the reverse phase is input.
  • the level shift circuit 201N shifts the level of the inverted signal to a low potential (0 [V]) base signal of the power supply unit 103.
  • Output signals of the first level shift circuits 201P and 201N for the positive phase and the reverse phase are supplied to the differential buffer (amplifier) 204, and are differentially amplified by the differential buffer 204.
  • the low-level (0 [V]) base signal of the power supply unit 103 from the differential buffer 204 is input as it is to the second level shift circuit 202P for the positive phase, and the second level shift circuit for the positive phase.
  • 202P level-shifts the signal into a signal based on the reference voltage Vs for on / off driving of the switches (111 to 114) to be driven.
  • the low level (0 [V]) base signal of the power supply unit 103 from the differential buffer 204 is inverted and input to the second level shift circuit 202N for the reverse phase via the inverter INV3, and the second phase shift circuit 202N for the reverse phase is input.
  • the second level shift circuit 202N shifts the level of the inverted signal to a signal based on the reference voltage Vs for driving on / off of the switches (111 to 114) to be driven.
  • Output signals of the second level shift circuits 202P and 202N for the positive phase and the reverse phase are supplied to a differential buffer (amplifier) 205, and are differentially amplified by the differential buffer 205.
  • the output signal of the differential buffer 204 is given to the buffer unit 203, and the buffer unit 203 drives the driving target switches (111 to 114) on and off.
  • the noise tends to be weaker than when using a photocoupler.
  • the noise is canceled using differential amplification. A driver that is robust against noise can be realized.
  • the overall configuration of the digital power amplifier according to the third embodiment can also be expressed in FIG. However, in the third embodiment, the internal configurations of the drivers 121 to 124 are different from those in the first embodiment.
  • FIG. 6 is a block diagram showing a functional internal configuration of the drivers 121B to 124B according to the third embodiment.
  • the same and corresponding parts as those in FIG. 2 according to the first embodiment described above are denoted by the same reference numerals. Is shown.
  • the reference voltage Vs-1 for the switch 111 is a low potential of the sub power source E1-1 for the buffer unit 203-1, and the reference voltage Vs-2 for the switches 112 and 113 is used.
  • Vs-3 is a low potential (0 [V]) of the power supply unit 103, and a reference voltage Vs-4 with respect to the switch 114 is a ground (GND) potential.
  • the driver 121B for the switch 111 must have a two-stage configuration of the first level shift circuit 201-1 and the second level shift circuit 202-1.
  • the drivers 122B and 123B can omit the second level shift circuits 202-2 and 202-3, and the driver 124B for the switch 114 can be replaced by the first level shift circuit 201-4 and the second level shift circuit 202. -4 can be omitted together (see FIG. 4).
  • the detailed configurations of the first level shift circuit and the second level shift circuit are not limited to those shown in FIG. 3 as long as a desired level shift can be realized.

Abstract

A digital power amplifier which, without application of a photocoupler, can be driven by a single power supply and an output thereof can be grounded. The invention relates to a digital power amplifier which can be driven by a single power supply and an output thereof can be grounded. It is necessary to provide electrical insulation between a signal conversion section converting an input signal into a pulse signal and a switching section obtaining an amplified signal through ON/OFF driving of each of switching elements. A driver which drives each of the switching elements comprises a first level shift circuit which level-shifts a ground-based signal outputted from a signal processing section into a low potential-based signal of the single power supply, a second level shift circuit which level-shifts the low potential-based signal of the single power supply into a reference voltage-based signal for use in ON/OFF driving of the switching elements subject to be driven, and a buffer section for ON/OFF driving the switching elements subject to be driven based on the reference voltage-based signal.

Description

デジタル電力増幅器Digital power amplifier
 本発明はデジタル電力増幅器に関し、例えば、例えば、オーディオアンプに適用し得るものである。 The present invention relates to a digital power amplifier, and can be applied to, for example, an audio amplifier.
 単一電源で駆動でき出力を接地できるデジタル電力増幅器(いわゆるスイッチングアンプ)として、特許文献1に記載されたものがあり、このデジタル電力増幅器によれば、高出力、高効率、低消費電力を実現することができる。このデジタル電力増幅器のおいては、出力を接地するための実現手段として、入力部と出力部とをフォトカプラにより電気的に分離していた。
特開2003-8366号公報
As a digital power amplifier (so-called switching amplifier) that can be driven by a single power source and whose output can be grounded, there is one described in Patent Document 1. This digital power amplifier achieves high output, high efficiency, and low power consumption. can do. In this digital power amplifier, the input unit and the output unit are electrically separated by a photocoupler as an implementation means for grounding the output.
JP 2003-8366 A
 しかしながら、一般に、フォトカプラは動作速度が遅いため、デジタル電力増幅器の歪み性能を悪化させる恐れがあった。 However, in general, since the operation speed of the photocoupler is slow, there is a risk of deteriorating the distortion performance of the digital power amplifier.
 また、フォトカプラは高価であるが、スイッチブリッジのスイッチ数と同様な数だけ必要であり、デジタル電力増幅器の低廉化を阻害すると共に、フォトカプラに割かれる実装面積も多く必要となっていた。 Moreover, although the photocoupler is expensive, it is necessary to have the same number as the number of switches of the switch bridge, which hinders the cost reduction of the digital power amplifier and requires a large mounting area to be divided by the photocoupler.
 そのため、フォトカプラを適用することなく、単一電源で駆動でき出力を接地できるデジタル電力増幅器が望まれている。 Therefore, there is a demand for a digital power amplifier that can be driven by a single power source and can ground the output without using a photocoupler.
 本発明は、スイッチング部と信号変換部とを有するデジタル電力増幅器において、(1)上記スイッチング部は、(1-1)単一電源の高低の電源ライン間に直列に介挿された対をなす第1及び第2のスイッチング素子と、(1-2)上記単一電源の高低の電源ライン間に直列に介挿された対をなす第4及び第3のスイッチング素子と、(1-3)これら第4及び第3のスイッチング素子間の接続点になされた接地と、(1-4)上記第1及び第2のスイッチング素子間の接続点と接地間に設けられたローパスフィルタと、(1-5)上記第1~第4のスイッチング素子のうち、自己に対応するものをオンオフ駆動する第1~第4のドライバとを有し、(2)上記信号変換部は、入力信号を、上記第1~第4のスイッチング素子のオンオフ制御のタイミングを規定する、接地ベースのパルス信号に変換するものであり、(3)上記第1~第4のドライバがそれぞれ、(3-1)上記信号処理部から当該ドライバに与えられた接地ベースのパルス信号を、上記単一電源の低電位ベースのパルス信号にレベルシフトする第1のレベルシフト回路と、(3-2)この第1のレベルシフト回路から出力されたパルス信号を、当該ドライバの駆動対象スイッチング素子のオンオフ駆動用の基準電圧ベースのパルス信号にレベルシフトする第2のレベルシフト回路と、(3-3)この第2のレベルシフト回路から出力されたパルス信号に基づいて、当該ドライバの駆動対象スイッチング素子をオンオフ駆動するバッファ部を有することを特徴とする。 The present invention relates to a digital power amplifier having a switching unit and a signal conversion unit. (1) The switching unit (1-1) forms a pair inserted in series between high and low power supply lines of a single power supply. A first and a second switching element; and (1-2) a fourth and a third switching element paired in series between the high and low power lines of the single power source, and (1-3) (1-4) a low-pass filter provided between the connection point between the first and second switching elements and the ground, and (1) -5) including first to fourth drivers for driving on and off corresponding ones of the first to fourth switching elements, and (2) the signal conversion unit receives the input signal as described above ON / OFF of first to fourth switching elements (3) Each of the first to fourth drivers is (3-1) the ground given to the driver from the signal processing unit. A first level shift circuit for level-shifting the base pulse signal to the low potential base pulse signal of the single power source; and (3-2) the pulse signal output from the first level shift circuit A second level shift circuit for level-shifting to a reference voltage-based pulse signal for on-off driving of a driver-driven switching element; and (3-3) based on the pulse signal output from the second level shift circuit Further, the present invention is characterized by having a buffer section for driving on / off the switching target switching element of the driver.
 本発明によれば、フォトカプラを適用することなく、単一電源で駆動でき出力を接地できるデジタル電力増幅器を実現できる。 According to the present invention, it is possible to realize a digital power amplifier that can be driven by a single power source and can ground the output without using a photocoupler.
第1の実施形態に係るデジタル電力増幅器100の全体構成を示すブロック図である。1 is a block diagram showing an overall configuration of a digital power amplifier 100 according to a first embodiment. 第1の実施形態における、図1の4個のドライバの共通的な機能的内部構成を示すブロック図である。FIG. 2 is a block diagram showing a common functional internal configuration of four drivers of FIG. 1 in the first embodiment. 図2のドライバの具体的な構成を示す回路図である。FIG. 3 is a circuit diagram illustrating a specific configuration of the driver of FIG. 2. 図1における4個のドライバに図3の回路を適用した構成例を示す回路図である。FIG. 4 is a circuit diagram illustrating a configuration example in which the circuit of FIG. 3 is applied to four drivers in FIG. 1. 第2の実施形態における、図1の4個のドライバの共通的な機能的内部構成を示すブロック図である。It is a block diagram which shows the common functional internal structure of the four drivers of FIG. 1 in 2nd Embodiment. 第3の実施形態における、図1の4個のドライバの機能的な内部構成を示すブロック図である。It is a block diagram which shows the functional internal structure of four drivers of FIG. 1 in 3rd Embodiment.
符号の説明Explanation of symbols
 100…デジタル電力増幅器、101…信号処理部、102…スイッチング部、103…電源部、104…負荷、111~114…スイッチ(スイッチング素子)、121~124、121B~124B、200、200A…ドライバ、201、201-1~201-4、201P、201N…第1のレベルシフト回路、202、202-1~202-4、202P、202N…第2のレベルシフト回路、203、203-1~203-4…バッファ部、204、205…差動バッファ。 DESCRIPTION OF SYMBOLS 100 ... Digital power amplifier, 101 ... Signal processing part, 102 ... Switching part, 103 ... Power supply part, 104 ... Load, 111-114 ... Switch (switching element), 121-124, 121B-124B, 200, 200A ... Driver, 201, 201-1 to 201-4, 201P, 201N ... first level shift circuit, 202, 202-1 to 202-4, 202P, 202N ... second level shift circuit, 203, 203-1 to 203- 4 ... Buffer unit, 204, 205 ... Differential buffer.
(A)第1の実施形態
 以下、本発明によるデジタル電力増幅器の第1の実施形態を、図面を参照しながら詳述する。
(A) First Embodiment A digital power amplifier according to a first embodiment of the present invention will be described in detail below with reference to the drawings.
 図1は、第1の実施形態に係るデジタル電力増幅器100の全体構成を示すブロック図である。 FIG. 1 is a block diagram showing the overall configuration of the digital power amplifier 100 according to the first embodiment.
 図1において、第1の実施形態に係るデジタル電力増幅器100は、信号処理部101、スイッチング部102、電源部103及び負荷104を有する。第1の実施形態に係るデジタル電力増幅器100がオーディオアンプとして適用されている場合であれば、入力アナログ信号が音声信号であって負荷104がスピーカである。 1, a digital power amplifier 100 according to the first embodiment includes a signal processing unit 101, a switching unit 102, a power supply unit 103, and a load 104. If the digital power amplifier 100 according to the first embodiment is applied as an audio amplifier, the input analog signal is an audio signal and the load 104 is a speaker.
 スイッチング部102は、スイッチングアンプの本体に該当するものであり、MOS-FET等のスイッチング素子を適用した4つのスイッチ111~114のブリッジ接続部分を有している。すなわち、電源部103の高電位(E[V])電源ライン及び低電位(0[V])電源ライン間には、スイッチ111及び112の直列回路と、スイッチ114及び113の直列回路とが接続されている。各スイッチ111~114はそれぞれ、後述する詳細構成を有する、対応するドライバ121~124によってオンオフ制御されるものである。 The switching unit 102 corresponds to the main body of the switching amplifier and has a bridge connection portion of four switches 111 to 114 to which switching elements such as MOS-FETs are applied. That is, the series circuit of the switches 111 and 112 and the series circuit of the switches 114 and 113 are connected between the high potential (E [V]) power supply line and the low potential (0 [V]) power supply line of the power supply unit 103. Has been. Each of the switches 111 to 114 is ON / OFF controlled by a corresponding driver 121 to 124 having a detailed configuration described later.
 ここで、スイッチ114及び113の接続点が接地されている。スイッチ114及び113は概ね相補的にオンオフ動作するので、スイッチ114のオン時には、スイッチ114及び113の接続点は高電位電源ラインの電位(E[V])となり、スイッチ113のオン時には、スイッチ114及び113の接続点は低電位電源ラインの電位(0[V])となる。 Here, the connection point of the switches 114 and 113 is grounded. Since the switches 114 and 113 are turned on and off in a substantially complementary manner, when the switch 114 is turned on, the connection point of the switches 114 and 113 becomes the potential of the high potential power supply line (E [V]), and when the switch 113 is turned on, the switch 114 And the connection point of 113 becomes the potential (0 [V]) of the low potential power supply line.
 また、スイッチ111及び112の接続点は、図示は省略しているが、スイッチ111を駆動するドライバ121の動作電源の低電位側に接続されている(後述する図4参照)。 The connection point of the switches 111 and 112 is not shown, but is connected to the low potential side of the operating power supply of the driver 121 that drives the switch 111 (see FIG. 4 described later).
 スイッチ111及び112の接続点と、スイッチ114及び113の接続点との間には、ローパスフィルタを構成するコイル115及びコンデンサ116の直列回路が接続されている。コンデンサ116には、負荷104が並列に接続されている。スイッチ111及び113が、後述するPWM信号に基づいて、概ね同様にオンオフ制御されると共に、スイッチ112及び114が、後述するPWM信号に基づいて、概ね同様にオンオフ制御されるものであり、前者のオンオフ制御と後者のオンオフ制御とは相補的なものである。スイッチ111~114のオンオフ制御により、コイル115及びコンデンサ116の直列回路(ローパスフィルタ)に順方向又は逆方向に流れる電流を、コンデンサ116が積分することにより、コンデンサ116の両端に増幅された電圧を得て負荷104に印加するようになされている。 A series circuit of a coil 115 and a capacitor 116 constituting a low-pass filter is connected between the connection point of the switches 111 and 112 and the connection point of the switches 114 and 113. A load 104 is connected to the capacitor 116 in parallel. The switches 111 and 113 are on / off controlled in a similar manner based on a PWM signal described later, and the switches 112 and 114 are controlled on / off in a similar manner based on a PWM signal described later. The on / off control and the latter on / off control are complementary. By the on / off control of the switches 111 to 114, the capacitor 116 integrates the current flowing in the forward direction or the reverse direction through the series circuit (low-pass filter) of the coil 115 and the capacitor 116, whereby the voltage amplified across the capacitor 116 is obtained. And applied to the load 104.
 電源部103は、スイッチング部102への動作電源を供給するものであり、この第1の実施形態は、スイッチング部102の構成に特徴を有するので、例えば、商用交流電源を所望の直流電源に変換する構成であれば既存のどのような構成のものであっても良い。なお、電源部103として電池を適用するようにしても良い。図1では、電源部103として、入力交流電源(AC入力)を他の大きさの交流電源に変換するコンバータ131、入力交流電源(AC入力)側と装置本体側とを電気的に分離するトランス132、トランス132の2次側に誘起された交流電源を整流する整流素子(ダイオード)133、整流出力を平滑化するコンデンサ134でなるものを示している。コンデンサ134の両端電圧(E[V]-0[V])が、スイッチング部102に対する単一電源として供給されるようになされている。 The power supply unit 103 supplies operating power to the switching unit 102. Since the first embodiment is characterized by the configuration of the switching unit 102, for example, a commercial AC power source is converted into a desired DC power source. Any existing configuration may be used as long as it is configured. Note that a battery may be applied as the power supply unit 103. In FIG. 1, as the power supply unit 103, a converter 131 that converts an input AC power supply (AC input) into an AC power supply of another size, a transformer that electrically separates the input AC power supply (AC input) side and the apparatus main body side. 132, a rectifying element (diode) 133 that rectifies the AC power source induced on the secondary side of the transformer 132, and a capacitor 134 that smoothes the rectified output. The voltage across the capacitor 134 (E [V] −0 [V]) is supplied as a single power source for the switching unit 102.
 信号処理部101は、入力アナログ信号(例えば、音声信号)のアナログ増幅機能と、上述したスイッチ111~114をオンオフ制御するためのPWM信号の形成機能とを担っている。第1の実施形態は、スイッチング部102の構成に特徴を有するので、信号処理部101は、上述した機能を達成できる構成であれば、既存のいかなる構成を適用しても良い。図1は、以下のような信号処理部101の構成例を示している。 The signal processing unit 101 has an analog amplification function of an input analog signal (for example, an audio signal) and a PWM signal forming function for on / off control of the switches 111 to 114 described above. Since the first embodiment has a feature in the configuration of the switching unit 102, the signal processing unit 101 may adopt any existing configuration as long as it can achieve the above-described function. FIG. 1 shows a configuration example of the signal processing unit 101 as follows.
 信号処理部1は、正相のアナログアンプの中心的構成であるオペアンプ141、及び、逆相のアナログアンプの中心的構成であるオペアンプ142を有している。 The signal processing unit 1 includes an operational amplifier 141 that is a central configuration of a positive-phase analog amplifier and an operational amplifier 142 that is a central configuration of a negative-phase analog amplifier.
 接地ベースの入力端子に入力された入力アナログ信号は、抵抗143を介して接地されているオペアンプ141の非反転入力端子に入力される。オペアンプ141の反転入力端子は、抵抗144を介して接地されている。これにより、オペアンプ141の出力端子に、入力アナログ信号をアナログ増幅した正相の増幅信号が得られ、コンパレータ145の比較対象入力端子と、抵抗146を介して、オペアンプ142の反転入力端子とに入力される。なお、ローパスフィルタの構成要素であるコイル115の両端電圧はそれぞれ、フィードバック回路(例えば、抵抗)151、152を介して、オペアンプ141の反転入力端子にフィードバックされ、ローパスフィルタ出力を安定化させるようになされている。 The input analog signal input to the ground-based input terminal is input to the non-inverting input terminal of the operational amplifier 141 that is grounded via the resistor 143. The inverting input terminal of the operational amplifier 141 is grounded via a resistor 144. As a result, a positive phase amplified signal obtained by analog amplification of the input analog signal is obtained at the output terminal of the operational amplifier 141, and input to the comparison target input terminal of the comparator 145 and the inverting input terminal of the operational amplifier 142 through the resistor 146. Is done. The voltage across the coil 115, which is a component of the low-pass filter, is fed back to the inverting input terminal of the operational amplifier 141 via feedback circuits (for example, resistors) 151 and 152, respectively, so that the low-pass filter output is stabilized. Has been made.
 また、オペアンプ142の非反転入力端子は接地されており、オペアンプ142の出力端子は抵抗147を介して自己の反転入力端子に接続されている。従って、オペアンプ142は、自己の反転入力端子に入力される正相の増幅信号の反転回路として機能し、入力アナログ信号から見て逆相の増幅信号を出力する。この逆相の増幅信号は、コンパレータ148の比較対象入力端子に入力される。 The non-inverting input terminal of the operational amplifier 142 is grounded, and the output terminal of the operational amplifier 142 is connected to its own inverting input terminal via a resistor 147. Therefore, the operational amplifier 142 functions as an inverting circuit for the positive phase amplified signal input to its inverting input terminal, and outputs an amplified signal having a phase opposite to that of the input analog signal. The amplified signal having the opposite phase is input to the comparison target input terminal of the comparator 148.
 三角波発生回路149は、基本周波数が入力アナログ信号の帯域より十分に高い三角波信号を発生するものであり、発生された三角波信号は、コンパレータ145及び148の基準入力端子に入力される。各コンパレータ145、148はそれぞれ、比較対象入力端子への増幅信号が基準入力端子への三角波信号より大きいときに論理「H」をとり、比較対象入力端子への増幅信号が基準入力端子への三角波信号以下のときに論理「L」をとるPWM信号を非反転出力端子から出力すると共に、そのPWM信号を反転したPWM信号を反転出力端子から出力する。コンパレータ145の非反転出力端子から出力されたPWM信号はスイッチ111用のドライバ121に与えられ、コンパレータ145の反転出力端子から出力されたPWM信号はスイッチ112用のドライバ122に与えられる。また、コンパレータ148の非反転出力端子から出力されたPWM信号はスイッチ113用のドライバ123に与えられ、コンパレータ148の反転出力端子から出力されたPWM信号はスイッチ114用のドライバ124に与えられる。 The triangular wave generation circuit 149 generates a triangular wave signal whose fundamental frequency is sufficiently higher than the band of the input analog signal, and the generated triangular wave signal is input to the reference input terminals of the comparators 145 and 148. Each of the comparators 145 and 148 takes a logic “H” when the amplified signal to the comparison target input terminal is larger than the triangular wave signal to the reference input terminal, and the amplified signal to the comparison target input terminal is the triangular wave to the reference input terminal. When the signal is equal to or lower than the signal, a PWM signal having a logic “L” is output from the non-inverting output terminal, and a PWM signal obtained by inverting the PWM signal is output from the inverting output terminal. The PWM signal output from the non-inverting output terminal of the comparator 145 is supplied to the driver 121 for the switch 111, and the PWM signal output from the inverting output terminal of the comparator 145 is supplied to the driver 122 for the switch 112. The PWM signal output from the non-inverted output terminal of the comparator 148 is provided to the driver 123 for the switch 113, and the PWM signal output from the inverted output terminal of the comparator 148 is provided to the driver 124 for the switch 114.
 スイッチ113及び114の接続点を接地していると、信号処理部101とスイッチング部102とで動作電圧が異なるので、信号処理部101とスイッチング部102とを電気的に絶縁(アイソレーション)しながら接続する必要がある。従来では、この分離(絶縁)機能をフォトカプラによって実現していたが、この第1の実施形態では、ドライバ121~124がかかる分離機能を担っている。なお、フォトカプラが担っていた機能は、電気的な分離機能だけでなく、PWM信号のレベルシフト機能もあるが、ドライバ121~124は、このようなレベルシフト機能も当然に担う。 If the connection point of the switches 113 and 114 is grounded, the operating voltage differs between the signal processing unit 101 and the switching unit 102, so that the signal processing unit 101 and the switching unit 102 are electrically insulated (isolated). Need to connect. Conventionally, this separation (insulation) function has been realized by a photocoupler, but in the first embodiment, the drivers 121 to 124 have such a separation function. The functions of the photocoupler are not only an electrical separation function but also a level shift function of the PWM signal, but the drivers 121 to 124 naturally have such a level shift function.
 図2は、信号処理部101とスイッチング部102との電気的な分離機能を実現するドライバ200(121~124)の構成を示すブロック図である。 FIG. 2 is a block diagram illustrating a configuration of the driver 200 (121 to 124) that realizes an electrical separation function between the signal processing unit 101 and the switching unit 102.
 図2において、ドライバ200は、第1のレベルシフト回路201と、第2のレベルシフト回路202と、バッファアンプ部(以下、バッファ部と略する)203とを有する。 2, the driver 200 includes a first level shift circuit 201, a second level shift circuit 202, and a buffer amplifier unit (hereinafter abbreviated as a buffer unit) 203.
 第1のレベルシフト回路201は、信号処理部101からの接地(GND)ベースの出力信号(PWM信号)を、電源部103の低電位(0[V])ベースの信号にレベルシフトするものである。第2のレベルシフト回路202は、第1のレベルシフト回路201からの、電源部103の低電位(0[V])ベースの出力信号を、当該ドライバ200(121~124)の駆動対象のスイッチ(111~114)のオンオフ駆動用の基準電圧Vsベースの信号にレベルシフトするものである。なお、図1のスイッチング部102では、電源部103への低電位(0[V])とオンオフ駆動用の基準電圧Vsとが等しいドライバなども存在する。バッファ部203は、第2のレベルシフト回路202からのオンオフ駆動用の基準電圧Vsベースの信号に基づき、対象とするスイッチに駆動可能な電力を供給するものである。スイッチ(111~114)が、MOS-FETで構成されている場合、ソース電位が基準電圧Vsとなる。 The first level shift circuit 201 shifts the level of the ground (GND) base output signal (PWM signal) from the signal processing unit 101 to a low potential (0 [V]) base signal of the power supply unit 103. is there. The second level shift circuit 202 outputs a low potential (0 [V]) base output signal of the power supply unit 103 from the first level shift circuit 201 to a switch to be driven by the driver 200 (121 to 124). The level shifts to a signal based on the reference voltage Vs for on / off driving of (111 to 114). In the switching unit 102 in FIG. 1, there is a driver in which the low potential (0 [V]) to the power source unit 103 is equal to the reference voltage Vs for on / off driving. The buffer unit 203 supplies drivable power to a target switch based on a signal based on the reference voltage Vs for on / off driving from the second level shift circuit 202. When the switches (111 to 114) are composed of MOS-FETs, the source potential is the reference voltage Vs.
 図3は、信号処理部101とスイッチング部102との電気的な分離機能を実現するドライバ200(121~124)の具体的な構成を示す回路図である。すなわち、図3は、第1のレベルシフト回路201及び第2のレベルシフト回路202の具体的な構成例を示している。 FIG. 3 is a circuit diagram showing a specific configuration of the driver 200 (121 to 124) that realizes an electrical separation function between the signal processing unit 101 and the switching unit 102. That is, FIG. 3 shows a specific configuration example of the first level shift circuit 201 and the second level shift circuit 202.
 第1のレベルシフト回路201は、この第1のレベルシフト回路201用のサブ電源E0の高電位と、電源部103の低電位(0[V])との間に、抵抗R1、PNPトランジスタQ1のエミッタ-コレクタ、抵抗R2がこの順に接続されている。また、第1のレベルシフト回路201用のサブ電源E0の高電位と、トランジスタQ1のベースとの間には、抵抗R3が接続されている。トランジスタQ1のベースには、当該ドライバ200への入力信号(PWM信号)が入力される。トランジスタQ1としては、高耐圧のトランジスタを適用し、その非飽和特性領域を増幅に利用している。高耐圧のトランジスタを適用することにより、フォトカプラと同様な絶縁性を達成するようになされている。抵抗R1及びPNPトランジスタQ1は電圧制御定電流源を構成しており、当該ドライバ200への入力信号(PWM信号)が「L」のときのみ定電流を流し、この定電流を抵抗R2が電圧に変換することにより、当該ドライバ200への入力信号を、電源部103の低電位(0[V])ベースの信号にレベルシフトしている。 The first level shift circuit 201 includes a resistor R1 and a PNP transistor Q1 between the high potential of the sub power supply E0 for the first level shift circuit 201 and the low potential (0 [V]) of the power supply unit 103. Emitter-collector and resistor R2 are connected in this order. A resistor R3 is connected between the high potential of the sub power source E0 for the first level shift circuit 201 and the base of the transistor Q1. An input signal (PWM signal) to the driver 200 is input to the base of the transistor Q1. As the transistor Q1, a high breakdown voltage transistor is used, and the non-saturation characteristic region is used for amplification. By applying a high breakdown voltage transistor, the same insulating property as that of the photocoupler is achieved. The resistor R1 and the PNP transistor Q1 constitute a voltage-controlled constant current source. A constant current is supplied only when the input signal (PWM signal) to the driver 200 is “L”, and this constant current is converted into a voltage by the resistor R2. By converting, the input signal to the driver 200 is level-shifted to a low potential (0 [V]) base signal of the power supply unit 103.
 インバータINV1は、第1のレベルシフト回路201の構成要素とも、第2のレベルシフト回路202の構成要素とも見ることができる。インバータINV1は、第1のレベルシフト回路201の出力を反転させて第2のレベルシフト回路202に入力するものである。 The inverter INV1 can be viewed as both a component of the first level shift circuit 201 and a component of the second level shift circuit 202. The inverter INV1 inverts the output of the first level shift circuit 201 and inputs it to the second level shift circuit 202.
 第2のレベルシフト回路202において、バッファ部203用のサブ電源E1の高電位と、電源部103の低電位(0[V])との間に、抵抗R4、NPNトランジスタQ2のコレクタ-エミッタ、NPNトランジスタQ3のコレクタ-エミッタ、抵抗R5がこの順に接続されていると共に、抵抗R5には並列にコンデンサC1が接続されている。また、第2のレベルシフト回路202において、バッファ部203用のサブ電源E1の高電位と、バッファ部203用のサブ電源E1の低電位(駆動対象スイッチのオンオフ駆動用の基準電圧)Vsとの間に、NPNトランジスタQ4のコレクタ-エミッタ、抵抗R6がこの順に接続されている。トランジスタQ2及びQ4のベースは相互に接続されていると共に、トランジスタQ2のベースが自己のエミッタに接続されており、カレントミラー回路を構成している。トランジスタQ3のベースがインバータINV1の出力端子に接続されている。トランジスタQ3及び抵抗R5は電圧制御定電流源を構成しており、インバータINV1の出力(PWM信号)が「H」のときのみ定電流を流し、この定電流がカレントミラー回路によって、トランジスタQ4のコレクタ電流として流れ、抵抗R7によって電圧に変換されることにより、インバータINV1の出力が、駆動対象スイッチのオンオフ駆動用の基準電圧Vsベースの信号にレベルシフトされている。 In the second level shift circuit 202, between the high potential of the sub power source E1 for the buffer unit 203 and the low potential (0 [V]) of the power source unit 103, the resistor R4, the collector-emitter of the NPN transistor Q2, The collector-emitter of the NPN transistor Q3 and the resistor R5 are connected in this order, and a capacitor C1 is connected in parallel to the resistor R5. Further, in the second level shift circuit 202, the high potential of the sub power source E1 for the buffer unit 203 and the low potential (reference voltage for driving on / off of the switch to be driven) Vs of the sub power source E1 for the buffer unit 203. Between the collector-emitter of the NPN transistor Q4 and the resistor R6 are connected in this order. The bases of the transistors Q2 and Q4 are connected to each other, and the base of the transistor Q2 is connected to its own emitter, forming a current mirror circuit. The base of the transistor Q3 is connected to the output terminal of the inverter INV1. The transistor Q3 and the resistor R5 constitute a voltage-controlled constant current source, and a constant current flows only when the output (PWM signal) of the inverter INV1 is “H”. This constant current is collected by the current mirror circuit to the collector of the transistor Q4. By flowing as a current and converted into a voltage by the resistor R7, the output of the inverter INV1 is level-shifted to a signal based on the reference voltage Vs for driving on / off of the drive target switch.
 ここでも、トランジスタQ3としては、高耐圧のトランジスタを適用し、その非飽和特性領域を増幅に利用している。高耐圧のトランジスタを適用することにより、この段でも、フォトカプラと同様な絶縁性を達成するようになされている。 Also here, as the transistor Q3, a high voltage transistor is applied, and the unsaturated characteristic region is used for amplification. By applying a high withstand voltage transistor, the same insulating property as that of the photocoupler is achieved even at this stage.
 駆動対象スイッチのオンオフ駆動用の基準電圧Vsベースの信号にレベルシフトされた信号に基づいて、バッファ部203が駆動対象スイッチを駆動する。 The buffer unit 203 drives the drive target switch based on the signal level-shifted to the reference voltage Vs base signal for on / off drive of the drive target switch.
 図4は、図1における4個のドライバ121~124に図3の回路を適用した構成例を示す回路図である。なお、図4においては、図示の簡単化のために、図3におけるカレントミラー回路をブロックCM-1~CM-4で示している。 FIG. 4 is a circuit diagram showing a configuration example in which the circuit of FIG. 3 is applied to the four drivers 121 to 124 in FIG. In FIG. 4, for simplification of illustration, the current mirror circuit in FIG. 3 is indicated by blocks CM-1 to CM-4.
 ドライバ121~124共に、第1のレベルシフト回路201-1~201-4によって、信号処理部101からの接地(GND)ベースの出力信号(PWM信号)を、電源部103の低電位(0[V])ベースの信号にレベルシフトしている。 In each of the drivers 121 to 124, the first level shift circuits 201-1 to 201-4 cause the ground (GND) base output signal (PWM signal) from the signal processing unit 101 to be supplied to the low potential (0 [ V]) Level shift to base signal.
 第1のレベルシフト回路201-1~201-4のトランジスタQ1-1~Q1-4のエミッタ-コレクタ間には、接地(GND)電位からサブ電源E0だけ高い電圧がかかる。接地(GND)電位は、スイッチ114のオン時にはE[V]であるので、トランジスタQ1-1~Q1-4のエミッタ-コレクタ間には、最大で、E0+Eがかかる。従って、この最大電圧を耐えるトランジスタQ1-1~Q1-4を選定し、これにより、電気的な絶縁を達成する。 A voltage higher than the ground (GND) potential by the sub power supply E0 is applied between the emitters and collectors of the transistors Q1-1 to Q1-4 of the first level shift circuits 201-1 to 201-4. Since the ground (GND) potential is E [V] when the switch 114 is turned on, a maximum of E0 + E is applied between the emitters and collectors of the transistors Q1-1 to Q1-4. Therefore, transistors Q1-1 to Q1-4 that can withstand this maximum voltage are selected, thereby achieving electrical isolation.
 スイッチング部101のスイッチ111~114に対するオンオフ駆動用の基準電圧Vs(Vs-1~Vs-4)は、スイッチ111~114によって異なる。 The reference voltage Vs (Vs-1 to Vs-4) for on / off driving for the switches 111 to 114 of the switching unit 101 varies depending on the switches 111 to 114.
 スイッチ111に対する基準電圧Vs-1は、バッファ部203-1用のサブ電源E1-1の低電位であり、第2のレベルシフト回路202-1は、電源部103の低電位(0[V])ベースの信号を、基準電圧Vs-1ベースの信号にレベルシフトする。従って、ドライバ121における2段のレベルシフトでは、信号処理部101からの接地(GND)ベースの信号を、基準電圧Vs-1ベースの信号にレベルシフトしている。 The reference voltage Vs-1 for the switch 111 is a low potential of the sub power source E1-1 for the buffer unit 203-1, and the second level shift circuit 202-1 is a low potential (0 [V]) of the power source unit 103. ) Level shift the base signal to the reference voltage Vs-1 base signal. Therefore, in the two-stage level shift in the driver 121, the ground (GND) base signal from the signal processing unit 101 is level shifted to the reference voltage Vs-1 base signal.
 スイッチ112及び113に対する基準電圧Vs-2及びVs-3は、電源部103の低電位(0[V])であり、第2のレベルシフト回路202-2及び202-3は、電源部103の低電位(0[V])ベースの信号を、電源部103の低電位(0[V])ベースの信号にレベルシフトする。従って、ドライバ122及び123における2段のレベルシフトでは、信号処理部101からの接地(GND)ベースの信号を、電源部103の低電位(0[V])ベースの信号にレベルシフトしている。 The reference voltages Vs-2 and Vs-3 for the switches 112 and 113 are the low potential (0 [V]) of the power supply unit 103, and the second level shift circuits 202-2 and 202-3 are connected to the power supply unit 103. A low potential (0 [V]) base signal is level-shifted to a low potential (0 [V]) base signal of the power supply unit 103. Therefore, in the two-stage level shift in the drivers 122 and 123, the ground (GND) -based signal from the signal processing unit 101 is level-shifted to the low potential (0 [V])-based signal of the power supply unit 103. .
 スイッチ114に対する基準電圧Vs-4は接地(GND)電位であり、第2のレベルシフト回路202-4は、電源部103の低電位(0[V])ベースの信号を、接地(GND)電位ベースの信号にレベルシフトする。従って、ドライバ124における2段のレベルシフトでは、信号処理部101からの接地(GND)ベースの信号を、接地(GND)ベースの信号にレベルシフトしている。 The reference voltage Vs-4 for the switch 114 is a ground (GND) potential, and the second level shift circuit 202-4 applies a low potential (0 [V]) base signal of the power supply unit 103 to the ground (GND) potential. Level shift to base signal. Accordingly, in the two-stage level shift in the driver 124, the ground (GND) -based signal from the signal processing unit 101 is level-shifted to the ground (GND) -based signal.
 第2のレベルシフト回路202-1及び202-4内のトランジスタQ3-1及びQ3-4のコレクターエミッタ間には、最大で、E1+Eがかかる。従って、この最大電圧を耐えるトランジスタQ3-1及びQ3-4を選定し、これにより、電気的な絶縁を達成する。第2のレベルシフト回路202-2及び202-3内のトランジスタQ3-2及びQ3-3のコレクターエミッタ間には、最大で、E1がかかる。従って、この最大電圧を耐えるトランジスタQ3-2及びQ3-3を選定し、これにより、電気的な絶縁を達成する。4個のトランジスタQ3-1~Q3-4として同一仕様のものを適用する場合には、E1+E以上の耐圧のトランジスタを選定すれば良い。 E1 + E is applied between the collectors and emitters of the transistors Q3-1 and Q3-4 in the second level shift circuits 202-1 and 202-4 at the maximum. Therefore, transistors Q3-1 and Q3-4 that can withstand this maximum voltage are selected, thereby achieving electrical isolation. A maximum of E1 is applied between the collector and emitter of the transistors Q3-2 and Q3-3 in the second level shift circuits 202-2 and 202-3. Therefore, transistors Q3-2 and Q3-3 that can withstand this maximum voltage are selected, thereby achieving electrical isolation. When applying the same specification as the four transistors Q3-1 to Q3-4, a transistor having a withstand voltage equal to or higher than E1 + E may be selected.
 第1の実施形態によれば、単一電源で駆動でき出力を接地できるデジタル電力増幅器における、信号処理部とスイッチング部との電気的に分離した接続を、フォトカプラを用いることなく、2段のレベルシフト回路によって行うようにしたので、高出力、高効率、低消費電力を実現でき、さらに、小型化、高性能化及び低コスト化を実現することができる。 According to the first embodiment, in the digital power amplifier that can be driven by a single power source and whose output can be grounded, an electrically separated connection between the signal processing unit and the switching unit can be made in two stages without using a photocoupler. Since the operation is performed by the level shift circuit, high output, high efficiency, and low power consumption can be realized, and further, downsizing, high performance, and low cost can be realized.
(B)第2の実施形態
 次に、本発明によるデジタル電力増幅器の第2の実施形態を、図面を参照しながら詳述する。
(B) Second Embodiment Next, a digital power amplifier according to a second embodiment of the present invention will be described in detail with reference to the drawings.
 第2の実施形態に係るデジタル電力増幅器の全体構成も、上述した図1で表すことができる。しかし、第2の実施形態では、ドライバ121~124の内部構成が、第1の実施形態のものと異なっている。 The overall configuration of the digital power amplifier according to the second embodiment can also be represented in FIG. However, in the second embodiment, the internal configurations of the drivers 121 to 124 are different from those in the first embodiment.
 図5は、第2の実施形態のドライバ200A(121~124)の機能的な内部構成を示すブロック図であり、上述した第1の実施形態に係る図2との同一、対応部分には同一、対応符号を付して示している。 FIG. 5 is a block diagram showing a functional internal configuration of the driver 200A (121 to 124) according to the second embodiment, and is the same as or corresponding to that in FIG. 2 according to the first embodiment described above. , The corresponding symbols are attached.
 図5において、正相用の第1のレベルシフト回路201Pには、信号処理部101からの接地(GND)ベースの出力信号(PWM信号)がそのまま入力され、正相用の第1のレベルシフト回路201Pは、その信号を電源部103の低電位(0[V])ベースの信号にレベルシフトする。逆相用の第1のレベルシフト回路201Nには、信号処理部101からの接地(GND)ベースの出力信号(PWM信号)がインバータINV2を介して反転されて入力され、逆相用の第1のレベルシフト回路201Nは、その反転信号を電源部103の低電位(0[V])ベースの信号にレベルシフトする。正相用及び逆相用の第1のレベルシフト回路201P及び201Nの出力信号は、差動バッファ(アンプ)204に与えられ、この差動バッファ204によって差動増幅される。 In FIG. 5, the ground level (GND) -based output signal (PWM signal) from the signal processing unit 101 is directly input to the first phase shift circuit 201P for the positive phase, and the first level shift for the positive phase is performed. The circuit 201P level-shifts the signal to a low potential (0 [V]) base signal of the power supply unit 103. A ground (GND) -based output signal (PWM signal) from the signal processing unit 101 is inverted and input to the first phase shift circuit 201N for the reverse phase via the inverter INV2, and the first phase shift circuit 201N for the reverse phase is input. The level shift circuit 201N shifts the level of the inverted signal to a low potential (0 [V]) base signal of the power supply unit 103. Output signals of the first level shift circuits 201P and 201N for the positive phase and the reverse phase are supplied to the differential buffer (amplifier) 204, and are differentially amplified by the differential buffer 204.
 正相用の第2のレベルシフト回路202Pには、差動バッファ204からの電源部103の低電位(0[V])ベースの信号がそのまま入力され、正相用の第2のレベルシフト回路202Pは、その信号を、駆動対象のスイッチ(111~114)のオンオフ駆動用の基準電圧Vsベースの信号にレベルシフトする。逆相用の第2のレベルシフト回路202Nには、差動バッファ204からの電源部103の低電位(0[V])ベースの信号がインバータINV3を介して反転されて入力され、逆相用の第2のレベルシフト回路202Nは、その反転信号を、駆動対象のスイッチ(111~114)のオンオフ駆動用の基準電圧Vsベースの信号にレベルシフトする。正相用及び逆相用の第2のレベルシフト回路202P及び202Nの出力信号は、差動バッファ(アンプ)205に与えられ、この差動バッファ205によって差動増幅される。 The low-level (0 [V]) base signal of the power supply unit 103 from the differential buffer 204 is input as it is to the second level shift circuit 202P for the positive phase, and the second level shift circuit for the positive phase. 202P level-shifts the signal into a signal based on the reference voltage Vs for on / off driving of the switches (111 to 114) to be driven. The low level (0 [V]) base signal of the power supply unit 103 from the differential buffer 204 is inverted and input to the second level shift circuit 202N for the reverse phase via the inverter INV3, and the second phase shift circuit 202N for the reverse phase is input. The second level shift circuit 202N shifts the level of the inverted signal to a signal based on the reference voltage Vs for driving on / off of the switches (111 to 114) to be driven. Output signals of the second level shift circuits 202P and 202N for the positive phase and the reverse phase are supplied to a differential buffer (amplifier) 205, and are differentially amplified by the differential buffer 205.
 差動バッファ204の出力信号がバッファ部203に与えられ、バッファ部203が駆動対象のスイッチ(111~114)をオンオフ駆動する。 The output signal of the differential buffer 204 is given to the buffer unit 203, and the buffer unit 203 drives the driving target switches (111 to 114) on and off.
 第2の実施形態によっても、第1の実施形態と同様な効果を奏することができ、さらに、以下のような効果を奏することができる。 Also according to the second embodiment, the same effects as those of the first embodiment can be obtained, and further, the following effects can be obtained.
 フォトカプラを用いないことで、フォトカプラを用いた場合に比べてノイズに対して弱くなる傾向があるが、第2の実施形態では、差動増幅を利用してノイズをキャンセルするようにしたので、ノイズに対して頑健なドライバを実現することができる。 By not using a photocoupler, the noise tends to be weaker than when using a photocoupler. However, in the second embodiment, the noise is canceled using differential amplification. A driver that is robust against noise can be realized.
(C)第3の実施形態
 次に、本発明によるデジタル電力増幅器の第3の実施形態を、図面を参照しながら詳述する。
(C) Third Embodiment Next, a third embodiment of the digital power amplifier according to the present invention will be described in detail with reference to the drawings.
 第3の実施形態に係るデジタル電力増幅器の全体構成も、上述した図1で表すことができる。しかし、第3の実施形態では、ドライバ121~124の内部構成が、第1の実施形態のものと異なっている。 The overall configuration of the digital power amplifier according to the third embodiment can also be expressed in FIG. However, in the third embodiment, the internal configurations of the drivers 121 to 124 are different from those in the first embodiment.
 図6は、第3の実施形態のドライバ121B~124Bの機能的な内部構成を示すブロック図であり、上述した第1の実施形態に係る図2との同一、対応部分には同一、対応符号を付して示している。 FIG. 6 is a block diagram showing a functional internal configuration of the drivers 121B to 124B according to the third embodiment. The same and corresponding parts as those in FIG. 2 according to the first embodiment described above are denoted by the same reference numerals. Is shown.
 第1の実施形態の説明で述べたように、スイッチ111に対する基準電圧Vs-1はバッファ部203-1用のサブ電源E1-1の低電位であり、スイッチ112及び113に対する基準電圧Vs-2及びVs-3は、電源部103の低電位(0[V])であり、スイッチ114に対する基準電圧Vs-4は接地(GND)電位である。 As described in the description of the first embodiment, the reference voltage Vs-1 for the switch 111 is a low potential of the sub power source E1-1 for the buffer unit 203-1, and the reference voltage Vs-2 for the switches 112 and 113 is used. And Vs-3 is a low potential (0 [V]) of the power supply unit 103, and a reference voltage Vs-4 with respect to the switch 114 is a ground (GND) potential.
 従って、図6に示すように、スイッチ111に対するドライバ121Bは、第1のレベルシフト回路201-1及び第2のレベルシフト回路202-1の2段構成としなければならないが、スイッチ112及び113に対するドライバ122B及び123Bは、第2のレベルシフト回路202-2、202-3を省略することができ、スイッチ114に対するドライバ124Bは、第1のレベルシフト回路201-4及び第2のレベルシフト回路202-4を共に省略することができる(図4参照)。 Therefore, as shown in FIG. 6, the driver 121B for the switch 111 must have a two-stage configuration of the first level shift circuit 201-1 and the second level shift circuit 202-1. The drivers 122B and 123B can omit the second level shift circuits 202-2 and 202-3, and the driver 124B for the switch 114 can be replaced by the first level shift circuit 201-4 and the second level shift circuit 202. -4 can be omitted together (see FIG. 4).
 第3の実施形態によっても、第1の実施形態とほぼ同様な効果を奏することができ、さらに、構成を一段と簡略化できるという効果をも奏する。 According to the third embodiment, substantially the same effect as that of the first embodiment can be obtained, and further, the structure can be further simplified.
(D)他の実施形態
 本発明のデジタル電力増幅器の用途は限定されるものではない。すなわち、オーディオアンプ以外への適用も可能である。
(D) Other Embodiments Applications of the digital power amplifier of the present invention are not limited. In other words, it can be applied to other than the audio amplifier.
 第1のレベルシフト回路や第2のレベルシフト回路の詳細構成は、所望のレベルシフトを実現できる構成であれば、図3に示したもので限定されない。 The detailed configurations of the first level shift circuit and the second level shift circuit are not limited to those shown in FIG. 3 as long as a desired level shift can be realized.

Claims (4)

  1.  スイッチング部と信号変換部とを有するデジタル電力増幅器において、
     上記スイッチング部は、
      単一電源の高低の電源ライン間に直列に介挿された対をなす第1及び第2のスイッチング素子と、
      上記単一電源の高低の電源ライン間に直列に介挿された対をなす第4及び第3のスイッチング素子と、
      これら第4及び第3のスイッチング素子間の接続点になされた接地と、
      上記第1及び第2のスイッチング素子間の接続点と接地間に設けられたローパスフィルタと、
      上記第1~第4のスイッチング素子のうち、自己に対応するものをオンオフ駆動する第1~第4のドライバとを有し、
     上記信号変換部は、入力信号を、上記第1~第4のスイッチング素子のオンオフ制御のタイミングを規定する、接地ベースのパルス信号に変換するものであり、
     上記第1~第4のドライバがそれぞれ、
      上記信号処理部から当該ドライバに与えられた接地ベースのパルス信号を、上記単一電源の低電位ベースのパルス信号にレベルシフトする第1のレベルシフト回路と、
      この第1のレベルシフト回路から出力されたパルス信号を、当該ドライバの駆動対象スイッチング素子のオンオフ駆動用の基準電圧ベースのパルス信号にレベルシフトする第2のレベルシフト回路と、
      この第2のレベルシフト回路から出力されたパルス信号に基づいて、当該ドライバの駆動対象スイッチング素子をオンオフ駆動するバッファ部を有する
     ことを特徴とするデジタル電力増幅器。
    In a digital power amplifier having a switching unit and a signal conversion unit,
    The switching unit is
    A pair of first and second switching elements interposed in series between high and low power supply lines of a single power supply;
    A pair of fourth and third switching elements inserted in series between the high and low power lines of the single power source;
    Grounding at the connection point between the fourth and third switching elements;
    A low pass filter provided between a connection point between the first and second switching elements and the ground;
    A first to a fourth driver for driving on and off one of the first to fourth switching elements corresponding to the switching element;
    The signal converter converts an input signal into a ground-based pulse signal that defines the timing of on / off control of the first to fourth switching elements.
    The first to fourth drivers are respectively
    A first level shift circuit for level-shifting a ground-based pulse signal given to the driver from the signal processing unit to a low-potential-based pulse signal of the single power source;
    A second level shift circuit for level-shifting the pulse signal output from the first level shift circuit to a reference voltage-based pulse signal for on / off driving of the driving target switching element of the driver;
    A digital power amplifier characterized by having a buffer unit for driving on and off a switching element to be driven by the driver based on a pulse signal output from the second level shift circuit.
  2.  上記第2及び第3のドライバが、上記第2のレベルシフト回路を省略し、上記第1のレベルシフト回路の出力パルス信号を上記バッファ部に直接入力するものであることを特徴とする請求項1に記載のデジタル電力増幅器。 The second and third drivers omit the second level shift circuit and directly input an output pulse signal of the first level shift circuit to the buffer unit. The digital power amplifier according to 1.
  3.  上記第4のドライバが、上記第1のレベルシフト回路及び上記第2のレベルシフト回路を省略し、上記信号処理部の出力パルス信号を上記バッファ部に直接入力するものであることを特徴とする請求項1又は2に記載のデジタル電力増幅器。 The fourth driver omits the first level shift circuit and the second level shift circuit and directly inputs the output pulse signal of the signal processing unit to the buffer unit. The digital power amplifier according to claim 1 or 2.
  4.  上記第1のレベルシフト回路及び上記第2のレベルシフト回路の少なくとも一方が、
      当該回路への入力パルス信号をレベルシフトする正相レベルシフト部と、
      当該回路への入力パルス信号の反転信号をレベルシフトする逆相レベルシフト部と、
      上記正相レベルシフト部及び上記逆相レベルシフト部の出力パルス信号を差動増幅する差動増幅部とでなる
     ことを特徴とする請求項1~3のいずれかに記載のデジタル電力増幅器。
    At least one of the first level shift circuit and the second level shift circuit is
    A positive phase level shift unit for level shifting the input pulse signal to the circuit;
    A reverse phase level shift unit for level shifting an inverted signal of the input pulse signal to the circuit;
    The digital power amplifier according to any one of claims 1 to 3, comprising: a differential amplification unit that differentially amplifies output pulse signals of the normal phase level shift unit and the negative phase level shift unit.
PCT/JP2008/057270 2008-04-14 2008-04-14 Digital power amplifier WO2009128130A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/057270 WO2009128130A1 (en) 2008-04-14 2008-04-14 Digital power amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/057270 WO2009128130A1 (en) 2008-04-14 2008-04-14 Digital power amplifier

Publications (1)

Publication Number Publication Date
WO2009128130A1 true WO2009128130A1 (en) 2009-10-22

Family

ID=41198842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/057270 WO2009128130A1 (en) 2008-04-14 2008-04-14 Digital power amplifier

Country Status (1)

Country Link
WO (1) WO2009128130A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08335863A (en) * 1995-05-04 1996-12-17 Internatl Rectifier Corp Method and circuit for driving power transistor and intecrated circuit including the circuit
JP2003008366A (en) * 2001-06-19 2003-01-10 Flying Mole Corp Digital power amplifier
JP2004072276A (en) * 2002-08-02 2004-03-04 Yamaha Corp D-class amplifier
JP2005210280A (en) * 2004-01-21 2005-08-04 Matsushita Electric Ind Co Ltd Power amplifier
JP2006033499A (en) * 2004-07-16 2006-02-02 Sony Corp Class d amplifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08335863A (en) * 1995-05-04 1996-12-17 Internatl Rectifier Corp Method and circuit for driving power transistor and intecrated circuit including the circuit
JP2003008366A (en) * 2001-06-19 2003-01-10 Flying Mole Corp Digital power amplifier
JP2004072276A (en) * 2002-08-02 2004-03-04 Yamaha Corp D-class amplifier
JP2005210280A (en) * 2004-01-21 2005-08-04 Matsushita Electric Ind Co Ltd Power amplifier
JP2006033499A (en) * 2004-07-16 2006-02-02 Sony Corp Class d amplifier

Similar Documents

Publication Publication Date Title
US7332962B2 (en) Filterless class D power amplifier
US7339425B2 (en) Class-D audio amplifier with half-swing pulse-width-modulation
US7944297B2 (en) Class D amplifier
US7295063B2 (en) Class D amplifier
JP4710298B2 (en) Class D amplifier
US9930452B2 (en) Direct current mode digital-to-analog converter to class D amplifier
KR101118867B1 (en) Power amplifying circuit, dc-dc converter, peak holding circuit, and output voltage control circuit including the peak holding circuit
US7705672B1 (en) Buck converters as power amplifier
US20070109049A1 (en) Filterless class d power amplifier
JP2011019285A (en) Class-d amplifier
EP1530286B1 (en) Class D amplifier
US6917242B2 (en) Power amplifier
US20130300500A1 (en) Method and apparatus for filter-less class d audio amplifier emi reduction
CN112953406A (en) Low noise circuit
US6734725B2 (en) Power amplifier
CN108649959B (en) Digital-analog converter and digital power amplifier subsystem
JP4146418B2 (en) Gate driver that does not require power supply with level shift between static wells
JP3499235B1 (en) Switching circuit and digital power amplifier
KR100972155B1 (en) Class-d amplifier providing dual feedback loop
US20060071697A1 (en) Pwm generator
US11936349B2 (en) Audio circuit, electronic device and vehicle audio system with the audio circuit
WO2009128130A1 (en) Digital power amplifier
US11205999B2 (en) Amplifier with signal dependent mode operation
WO2012036066A1 (en) Self-oscillating circuit and class d amplifier
WO2021132375A1 (en) Class-d amplifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08740358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08740358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP