WO2009128120A1 - Ultrasonograph - Google Patents

Ultrasonograph Download PDF

Info

Publication number
WO2009128120A1
WO2009128120A1 PCT/JP2008/001032 JP2008001032W WO2009128120A1 WO 2009128120 A1 WO2009128120 A1 WO 2009128120A1 JP 2008001032 W JP2008001032 W JP 2008001032W WO 2009128120 A1 WO2009128120 A1 WO 2009128120A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
dimensional
ultrasonic
images
display
Prior art date
Application number
PCT/JP2008/001032
Other languages
French (fr)
Japanese (ja)
Inventor
岩崎雅樹
辻井貫也
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2008/001032 priority Critical patent/WO2009128120A1/en
Publication of WO2009128120A1 publication Critical patent/WO2009128120A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8934Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration
    • G01S15/8938Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions
    • G01S15/894Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions by rotation about a single axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus, and more particularly to an ultrasonic diagnostic apparatus capable of generating and displaying a three-dimensional image.
  • an ultrasonic diagnostic apparatus having a function of displaying information inside a subject as a three-dimensional image is known and widely used for fetal growth diagnosis and the like.
  • a plurality of two-dimensional ultrasonic images (tomographic images or Doppler images) 51 having different cross-sectional positions are continuously collected by the ultrasonic probe, and the two Volume data (three-dimensional data) of the imaging target 50 is constructed from the set 52 of the two-dimensional ultrasonic image data (see, for example, Patent Document 1). Thereafter, the three-dimensional data is imaged by a technique such as volume rendering or surface rendering, and a three-dimensional image showing a predetermined region in the subject is displayed on the monitor screen.
  • an automatic three-dimensional scanning method that does not require manual scanning by a user is known.
  • Such an automatic three-dimensional scanning type ultrasonic probe has a transducer array in which ultrasonic transducers are arranged one-dimensionally and a drive mechanism that mechanically drives the transducer array, and performs electronic scanning and mechanical scanning.
  • a so-called mechanical-scanning three-dimensional ultrasonic probe that performs three-dimensional scanning by combining a two-dimensional transducer array in which ultrasonic transducers are arranged in a matrix, and performs three-dimensional scanning only by electronic scanning It is roughly classified into a so-called electronic scanning type three-dimensional ultrasonic probe.
  • the user When imaging using the above-described automatic three-dimensional scanning ultrasonic probe, the user first contacts the probe head with the subject surface and instructs the start of ultrasonic scanning by a predetermined operation. Thereby, two-dimensional ultrasonic images in different cross sections inside the subject are continuously acquired and sequentially displayed on the monitor. The user positions the probe while referring to the two-dimensional ultrasonic image, and then performs a predetermined operation to display the three-dimensional ultrasonic image on the monitor.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an image displayed on a monitor in an ultrasonic diagnostic apparatus having a function of generating a three-dimensional ultrasonic image. It is an object of the present invention to provide an ultrasonic diagnostic apparatus in which a user can easily and accurately position an ultrasonic probe.
  • the ultrasonic diagnostic apparatus performs ultrasonic scanning on a three-dimensional region in a subject, thereby providing a plurality of two different cross-sectional positions.
  • an ultrasonic diagnostic apparatus having a function of generating a three-dimensional ultrasonic image from the plurality of two-dimensional ultrasonic images and generating a three-dimensional ultrasonic image, a) image specifying means for specifying an image corresponding to a predetermined cross-section from the plurality of two-dimensional ultrasonic images; b) display means for displaying the two-dimensional ultrasound image or the three-dimensional ultrasound image; c) instruction means for the user to instruct display of an image corresponding to the predetermined cross section; d) display control means for causing the display means to display an image corresponding to the predetermined cross section in response to an instruction from the instruction means; It is characterized by having.
  • the image corresponding to the predetermined cross section is typically an image of a central slice (that is, an image located in the center of the three-dimensional scanning region), but depending on the purpose, it may be an image of another cross section. Also good.
  • the ultrasonic diagnostic apparatus having the above-described configuration, it is possible to appropriately display an image of a predetermined cross section on the display unit according to a user instruction during execution of the three-dimensional ultrasonic scan. It becomes. Therefore, for example, it is possible to switch between displaying all the two-dimensional ultrasound images acquired by the three-dimensional scanning or displaying only the center slice image, and refer to the image of the center slice. By doing so, the user can easily grasp the position and angle of the ultrasonic probe with respect to the target site.
  • an ultrasonic diagnostic apparatus which has been made to solve the above-described problem, performs ultrasonic scanning on a three-dimensional region in a subject so that a plurality of cross-sectional positions are different.
  • an ultrasonic diagnostic apparatus having a function of generating a two-dimensional ultrasonic image of and generating a three-dimensional ultrasonic image from the plurality of ultrasonic images
  • a) image specifying means for specifying an image corresponding to a predetermined cross-section from the plurality of two-dimensional ultrasonic images
  • display means for sequentially displaying the plurality of two-dimensional ultrasound images
  • a mark providing unit that applies a predetermined mark to an image corresponding to the predetermined cross-section among a plurality of two-dimensional ultrasonic images sequentially displayed on the display unit, and supplies the mark to the display unit; It is characterized by having.
  • an ultrasonic diagnostic apparatus which has been made to solve the above-described problem, performs ultrasonic scanning on a three-dimensional region in a subject so that a plurality of cross-sectional positions are different.
  • an ultrasonic diagnostic apparatus having a function of generating a two-dimensional ultrasonic image of and generating a three-dimensional ultrasonic image from the plurality of ultrasonic images
  • a) image specifying means for specifying an image corresponding to a predetermined cross-section from the plurality of two-dimensional ultrasonic images
  • display means for sequentially displaying the plurality of two-dimensional ultrasound images
  • a pseudo color image generating means for converting an image corresponding to the predetermined cross-section among a plurality of two-dimensional ultrasonic images sequentially displayed on the display means and supplying the pseudo color image to the display means; It is characterized by having.
  • an image corresponding to a predetermined cross-section among a plurality of sequentially displayed two-dimensional ultrasonic images is easily compared with other images. Therefore, the user can easily grasp the position and angle of the ultrasonic probe with respect to the target site by referring to the image of the predetermined cross section (for example, the center slice image). Become.
  • the user can easily and accurately position the ultrasonic probe based on the image displayed on the monitor when performing the three-dimensional ultrasonic scanning. It becomes. As a result, it is possible to reduce the time and labor required for acquiring the three-dimensional ultrasonic image, and improve the diagnostic efficiency.
  • FIG. 1 is a block diagram showing a main configuration of an ultrasonic diagnostic apparatus according to a first embodiment of the present invention.
  • FIG. 1 It is a diagram showing a screen display at the time of center slice image display in the ultrasonic diagnostic apparatus of the embodiment, (a) is an example in which a mark is provided in the vicinity of the image display area, (b) is the periphery of the image display area This is an example with a border.
  • the conceptual diagram which shows the production
  • FIG. 1 is a block diagram showing a main configuration of the ultrasonic diagnostic apparatus according to the first embodiment of the present invention.
  • the ultrasonic diagnostic apparatus according to the present embodiment can collect and image information of an arbitrary three-dimensional region in the body of the subject, and includes an ultrasonic probe 11, a transmission / reception unit 13, and a two-dimensional image generation unit. 14, a three-dimensional image generation unit 15, a display processing unit 16, a monitor 17, a target image memory 18, a mechanical scanning control unit 19, an image specifying unit 20, a central control unit 21, and a console 22.
  • the ultrasonic probe 11 includes a transducer array 11a composed of a large number of ultrasonic transducers arranged in a one-dimensional shape, and a drive mechanism (not shown) for mechanically scanning the transducer array 11a.
  • a so-called mechanical scanning type three-dimensional ultrasonic probe in which a two-dimensional scanning surface 30 is formed by electronic scanning of an ultrasonic transducer, and the scanning surface 30 is mechanically scanned by a driving mechanism.
  • the echo signals relating to an arbitrary three-dimensional region in the body of the subject are collected by sequentially changing the positions.
  • the ultrasonic probe 11 is connected to a transmission / reception unit 13 and a mechanical scanning control unit 19 via a connector 12 provided in the main body of the ultrasonic diagnostic apparatus, and from the transmission pulse from the transmission / reception unit 13 and the mechanical scanning control unit 19. Based on the control signal, three-dimensional ultrasonic scanning as described above is executed.
  • the probe head of the ultrasonic probe 11 is provided with an image switching button 23 for the user to instruct switching of the display image (details will be described later).
  • the transmission / reception unit 13 generates a predetermined drive pulse and transmits it to the ultrasonic probe 11, and also amplifies the echo signal output from each ultrasonic transducer of the ultrasonic probe 11 and performs phasing addition to scan lines. Beam data corresponding to one line is generated.
  • the ultrasonic beam is electronically scanned in the arrangement direction of the ultrasonic transducers by appropriately adjusting the timing of ultrasonic transmission / reception in each ultrasonic transducer.
  • the mechanical scanning control unit 19 controls the operation of the drive mechanism built in the ultrasonic probe 11, and the ultrasonic beam is moved by moving the transducer array 11a at a predetermined interval by the drive mechanism. It is mechanically scanned in the short axis direction.
  • the two-dimensional image generation unit 14 generates a two-dimensional ultrasonic image by performing predetermined processing such as detection processing, logarithmic compression processing, and digital scan conversion (DSC) processing on the beam data.
  • predetermined processing such as detection processing, logarithmic compression processing, and digital scan conversion (DSC) processing
  • the image specifying unit 20 acquires information (for example, frame numbers and position coordinates) regarding the cross-sectional position of each two-dimensional ultrasound image from the mechanical scanning control unit 19, and based on the information, the two-dimensional image generation unit 14 sequentially An image corresponding to a scanning plane (that is, the central slice 31) located at the center of the three-dimensional scanning region is identified from the generated two-dimensional ultrasonic image, and the two-dimensional image identified as the central slice image is thereby identified.
  • the ultrasonic image is stored in the target image memory 18.
  • the three-dimensional image generation unit 15 has a volume memory (not shown), arranges a plurality of two-dimensional ultrasonic images generated by the two-dimensional image generation unit 14 in a predetermined positional relationship, and interpolates a gap between the images. Then, a three-dimensional data set is constructed by storing in the volume memory. Furthermore, the three-dimensional image generation unit 15 constructs a three-dimensional ultrasonic image of the target site by volume rendering processing or surface rendering processing based on the three-dimensional data set.
  • omitted here the tomographic image in arbitrary cross sections can also be produced
  • the display processing unit 16 controls the output of various image data output from the above-described 2D image generation unit 14, 3D image generation unit 15, and target image memory 18 to the monitor 17.
  • the operation of each unit is controlled by the central control unit 21.
  • the central control unit 21 includes an operation console 22 having a trackball, a keyboard, various operation keys, and the like, or an image switching button 23 provided on the ultrasonic probe 11.
  • the user's instruction is input via
  • the monitor 17 corresponds to the display means in the first aspect of the present invention
  • the image specifying unit 20 is the image specifying means
  • the central control unit 21 is the display control means
  • the image switching button 23 is This corresponds to the instruction means.
  • the user brings the ultrasonic probe 11 into contact with a predetermined position on the subject's body surface and performs a predetermined operation on the console 22 to instruct the central control unit 21 to start ultrasonic scanning.
  • the three-dimensional ultrasonic scanning by the ultrasonic probe 11 is executed, and two-dimensional ultrasonic images relating to different cross-sectional positions are sequentially generated in the two-dimensional image generation unit 14.
  • These two-dimensional ultrasonic images are output to the monitor 17 at a predetermined cycle via the display processing unit 16, and a two-dimensional ultrasonic image of the entire three-dimensional scanning region is displayed on the monitor 17 in real time.
  • the image specifying unit 20 includes the two-dimensional ultrasonic image generated by the two-dimensional image generation unit 14 based on the position information of each two-dimensional ultrasonic image acquired from the mechanical scanning control unit 19.
  • the center slice image is identified from the image, and the image output from the two-dimensional image generation unit 14 is stored in the target image memory 18 in accordance with the timing at which the center slice image is output. That is, the central slice image is sent to the display processing unit 16, output to the target image memory 18, and stored in the memory 18. Since the ultrasonic probe 11 repeatedly performs ultrasonic scanning on a predetermined three-dimensional region, the center slice image is input to the target image memory 18 at a predetermined cycle, and the image in the memory 18 is updated each time.
  • a 3D ultrasound image is generated by the 3D image generator 15 based on the image generated by the 2D image generator 14, and the 3D ultrasound is generated.
  • the image is output to the monitor 17 via the display processing unit 16.
  • the three-dimensional ultrasonic image displayed on the monitor 17 is updated at a predetermined cycle and visually recognized as a moving image.
  • the center slice image generated by the two-dimensional image generation unit 14 is also sequentially stored in the target image memory 18 during the display of such a three-dimensional ultrasound image.
  • the user presses the image switching button 23 on the ultrasound probe 11 to display the center slice image.
  • the central control unit 21 receiving the instruction causes the monitor 17 to output the image in the target image memory 18 via the display processing unit 16.
  • a central slice image is displayed on the screen of the monitor 17 instead of the two-dimensional ultrasonic image or the three-dimensional ultrasonic image of the entire three-dimensional scanning range that has been displayed.
  • the center slice image displayed on the monitor 17 is updated at a predetermined cycle.
  • the user confirms the position and angle of the ultrasonic probe 11 with respect to the target site by referring to the central slice image, and aligns the probe 11 as necessary. Thereafter, when the user presses the image switching button 23 again, the display of the center slice image is canceled, and the two-dimensional ultrasonic image or the three-dimensional ultrasonic image of the entire three-dimensional scanning region is displayed on the monitor 17 again. Become so.
  • the center slice image can be displayed on the monitor 17 only by the user pressing the image switching button 23. Accordingly, the user can appropriately refer to the center slice image as necessary, and can easily and accurately position the ultrasonic probe based on the image.
  • the image switching button is provided on the ultrasonic probe 11, but the button may be provided on the console 22.
  • the instruction means in the first aspect of the present invention may be a software switch implemented in software.
  • the user operates a software switch such as a button displayed on the monitor 17 using a trackball or a keyboard provided on the console 22.
  • the image specifying unit 20 may specify an image corresponding to a predetermined cross section other than the central slice, and display the image of the cross section on the monitor 17 in accordance with a user instruction.
  • a mark 11 b indicating the position of the predetermined cross section 32 is attached to the probe head of the ultrasonic probe 11, and an image corresponding to the cross section 32 is specified by the image specifying unit 20. It is conceivable that the image is stored in the target image memory 18.
  • FIG. 4 is a block diagram showing a main configuration of an ultrasonic diagnostic apparatus according to the second embodiment of the present invention.
  • symbol is attached
  • the ultrasonic diagnostic apparatus displays other images by displaying a pseudo-colored image for the center slice image. It can be easily distinguished from a two-dimensional ultrasonic image.
  • the image specifying unit 20 in the ultrasonic diagnostic apparatus of the present embodiment acquires information on the cross-sectional position of each two-dimensional ultrasonic image from the mechanical scanning control unit 19 as in the first embodiment, and based on the information, The central slice image is specified from the two-dimensional ultrasonic images sequentially transmitted from the image generation unit 14.
  • a two-dimensional ultrasonic image of the entire three-dimensional scanning region when a two-dimensional ultrasonic image of the entire three-dimensional scanning region is displayed in real time, a two-dimensional ultrasonic image sequentially transmitted from the two-dimensional image generation unit 14 to the display processing unit 16 Of these, only the image specified by the image specifying unit 20 as the central slice image is once sent to the pseudo color image generating unit 24 and converted into a pseudo color image in which any color is associated with the luminance of each pixel. It is sent to the display processing unit 16 above.
  • the display processing unit 16 among the two-dimensional ultrasound images of the entire three-dimensional scanning region displayed in real time on the screen of the monitor 17, only the center slice image is displayed as a pseudo color image, and the other images are displayed as normal grayscale images. Is done.
  • the user can easily distinguish another two-dimensional ultrasound image and the center slice image, and the position and angle of the probe 11 with respect to the target site can be accurately grasped by referring to the center slice image. Is possible.
  • Such pseudo color display of the center slice image may be always performed during real-time display of the two-dimensional ultrasonic image, or a button or the like provided on the console 22 or the ultrasonic probe 11 is used. It may be performed only when instructed by the user.
  • the central slice image is displayed in a pseudo color.
  • a device configuration as shown in FIG. May be generated, and the display processing unit 16 may combine the graphic with the central slice image and output it to the monitor 17.
  • the image specifying unit 20 in the figure is sequentially sent from the two-dimensional image generation unit 14 to the display processing unit 16 based on the cross-sectional position information of each two-dimensional ultrasonic image acquired from the mechanical scanning control unit 19.
  • a trigger signal is generated by specifying a center slice image from the two-dimensional ultrasonic image.
  • the display processing unit 16 synthesizes a predetermined graphic representing the center slice image only with a predetermined image corresponding to the generation timing of the trigger signal.
  • the graphic unit 25 and the display processing unit 16 correspond to the mark providing unit in the second aspect of the present invention.
  • the graphic to be added to the central slice image may be any graphic as long as it is easily visible.
  • the graphic addition to the central slice image may be always performed when displaying the two-dimensional ultrasonic image of the entire three-dimensional scanning region, or may be performed according to a user instruction. Good.
  • the image specifying unit 20 specifies an image of a predetermined cross section other than the central slice, displays the image in a pseudo color, and attaches a mark to the image. It can also be configured to display.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

An ultrasonograph including a function of generating a plurality of two-dimensional ultrasonic images in different sections by ultrasonographic scanning on a three-dimensional region in a subject for generating a three-dimensional ultrasonographic image from the plurality of two-dimensional images. It is equipped with an image identifying means (20) for identifying an image corresponding to a center slice among the plurality of two-dimensional ultrasonographic images, a display means (17) for displaying the two-dimensional or three-dimensional ultrasonographic image, an instructing means (23) for a user to instruct to display the image corresponding to the center slice, and a display control means (21) in response to the instruction from the instructing means (23) for displaying the image corresponding to the center slice on the display means (17). Accordingly, the user can appropriately refer to the center slice image during three-dimensional ultrasonic scanning, thus enabling easily to know a position and an angle of an ultrasonic probe (11) for a target region.

Description

超音波診断装置Ultrasonic diagnostic equipment
 本発明は、超音波診断装置に関し、特に、三次元画像の生成・表示が可能な超音波診断装置に関する。 The present invention relates to an ultrasonic diagnostic apparatus, and more particularly to an ultrasonic diagnostic apparatus capable of generating and displaying a three-dimensional image.
 従来より、被検体内部の情報を三次元画像として表示する機能を備えた超音波診断装置が知られており、胎児の発育診断等に広く用いられている。このような超音波診断装置では、超音波プローブによって、図7に示すように、断面位置の異なる複数枚の二次元超音波画像(断層画像又はドプラ画像)51が連続的に収集され、該二次元超音波画像データのセット52から撮像対象50のボリュームデータ(三次元データ)が構築される(例えば、特許文献1を参照)。その後、該三次元データは、ボリュームレンダリングやサーフェスレンダリング等の手法によって画像化され、被検体内の所定の領域を示す三次元画像がモニタの画面上に表示される。 Conventionally, an ultrasonic diagnostic apparatus having a function of displaying information inside a subject as a three-dimensional image is known and widely used for fetal growth diagnosis and the like. In such an ultrasonic diagnostic apparatus, as shown in FIG. 7, a plurality of two-dimensional ultrasonic images (tomographic images or Doppler images) 51 having different cross-sectional positions are continuously collected by the ultrasonic probe, and the two Volume data (three-dimensional data) of the imaging target 50 is constructed from the set 52 of the two-dimensional ultrasonic image data (see, for example, Patent Document 1). Thereafter, the three-dimensional data is imaged by a technique such as volume rendering or surface rendering, and a three-dimensional image showing a predetermined region in the subject is displayed on the monitor screen.
 このような三次元走査に用いられる超音波プローブとして、ユーザによる手動走査が不要な自動三次元走査方式のものが知られている。こうした自動三次元走査方式の超音波プローブは、超音波振動子を1次元状に配列して成る振動子アレイと該振動子アレイを機械的に駆動する駆動機構を有し、電子走査と機械走査の組み合わせによって三次元走査を行ういわゆる機械走査式の三次元超音波プローブと、超音波振動子をマトリクス状に配列して成る二次元振動子アレイを有し、電子走査のみによって三次元走査を行ういわゆる電子走査式の三次元超音波プローブとに大別される。 As an ultrasonic probe used for such three-dimensional scanning, an automatic three-dimensional scanning method that does not require manual scanning by a user is known. Such an automatic three-dimensional scanning type ultrasonic probe has a transducer array in which ultrasonic transducers are arranged one-dimensionally and a drive mechanism that mechanically drives the transducer array, and performs electronic scanning and mechanical scanning. A so-called mechanical-scanning three-dimensional ultrasonic probe that performs three-dimensional scanning by combining a two-dimensional transducer array in which ultrasonic transducers are arranged in a matrix, and performs three-dimensional scanning only by electronic scanning It is roughly classified into a so-called electronic scanning type three-dimensional ultrasonic probe.
特開2003-334192号公報JP 2003-334192 A
 上記のような自動三次元走査方式の超音波プローブを用いた撮像の際には、まず、ユーザが被検体表面にプローブヘッドを当接させ、所定の操作によって超音波走査の開始を指示する。これにより、被検体内部の異なる断面における二次元超音波画像が連続的に取得され、順次モニタに表示される。ユーザは該二次元超音波画像を参照しながらプローブの位置決めを行い、その後、更に所定の操作を行うことにより、モニタ上に三次元超音波画像を表示させる。 When imaging using the above-described automatic three-dimensional scanning ultrasonic probe, the user first contacts the probe head with the subject surface and instructs the start of ultrasonic scanning by a predetermined operation. Thereby, two-dimensional ultrasonic images in different cross sections inside the subject are continuously acquired and sequentially displayed on the monitor. The user positions the probe while referring to the two-dimensional ultrasonic image, and then performs a predetermined operation to display the three-dimensional ultrasonic image on the monitor.
 しかしながら、上記三次元走査時にモニタに表示される二次元超音波画像は、描出される断面が単軸方向に沿って順次変化するため、該画像からプローブの中心が現在どの方向を向いているのかをユーザが正確に把握することは困難であった。 However, in the two-dimensional ultrasonic image displayed on the monitor during the three-dimensional scanning, since the section to be drawn changes sequentially along the uniaxial direction, which direction the center of the probe is currently facing from the image It was difficult for the user to grasp accurately.
 本発明は、上記のような課題に鑑みてなされたものであり、その目的とするところは、三次元超音波画像を生成する機能を備えた超音波診断装置において、モニタに表示される画像に基づいてユーザが容易且つ正確に超音波プローブの位置決めを行うことのできる超音波診断装置を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an image displayed on a monitor in an ultrasonic diagnostic apparatus having a function of generating a three-dimensional ultrasonic image. It is an object of the present invention to provide an ultrasonic diagnostic apparatus in which a user can easily and accurately position an ultrasonic probe.
 上記課題を解決するために成された本発明の第1の態様に係る超音波診断装置は、被検体内の三次元領域に対して超音波走査を行うことにより、断面位置の異なる複数の二次元超音波画像を生成し、該複数の二次元超音波画像から三次元超音波画像を生成する機能を備えた超音波診断装置において、
 a) 前記複数の二次元超音波画像の中から所定の断面に相当する画像を特定する画像特定手段と、
 b) 前記二次元超音波画像又は三次元超音波画像を表示する表示手段と、
 c) ユーザが前記所定の断面に相当する画像の表示を指示するための指示手段と、
 d) 前記指示手段による指示に応じて、前記所定の断面に相当する画像を上記表示手段に表示させる表示制御手段と、
 を有することを特徴としている。
The ultrasonic diagnostic apparatus according to the first aspect of the present invention, which has been made to solve the above-described problem, performs ultrasonic scanning on a three-dimensional region in a subject, thereby providing a plurality of two different cross-sectional positions. In an ultrasonic diagnostic apparatus having a function of generating a three-dimensional ultrasonic image from the plurality of two-dimensional ultrasonic images and generating a three-dimensional ultrasonic image,
a) image specifying means for specifying an image corresponding to a predetermined cross-section from the plurality of two-dimensional ultrasonic images;
b) display means for displaying the two-dimensional ultrasound image or the three-dimensional ultrasound image;
c) instruction means for the user to instruct display of an image corresponding to the predetermined cross section;
d) display control means for causing the display means to display an image corresponding to the predetermined cross section in response to an instruction from the instruction means;
It is characterized by having.
 ここで、上記所定の断面に相当する画像は、典型的には中心スライスの画像(すなわち三次元走査領域の中央に位置する画像)とするが、目的によっては、その他の断面の画像であってもよい。上記構成を有する本発明の第1の態様に係る超音波診断装置によれば、三次元超音波走査の実行中にユーザの指示に応じて適宜表示手段に所定断面の画像を表示させることが可能となる。従って、例えば、上記三次元走査によって取得された全ての二次元超音波画像を表示するか、中心スライス画像のみを表示するかを必要に応じて切り替えることが可能となり、該中心スライスの画像を参照することで目的部位に対する超音波プローブの位置及び角度をユーザが容易に把握することができるようになる。 Here, the image corresponding to the predetermined cross section is typically an image of a central slice (that is, an image located in the center of the three-dimensional scanning region), but depending on the purpose, it may be an image of another cross section. Also good. With the ultrasonic diagnostic apparatus according to the first aspect of the present invention having the above-described configuration, it is possible to appropriately display an image of a predetermined cross section on the display unit according to a user instruction during execution of the three-dimensional ultrasonic scan. It becomes. Therefore, for example, it is possible to switch between displaying all the two-dimensional ultrasound images acquired by the three-dimensional scanning or displaying only the center slice image, and refer to the image of the center slice. By doing so, the user can easily grasp the position and angle of the ultrasonic probe with respect to the target site.
 なお、上記指示手段は、超音波プローブ上に設けることが望ましい。これにより、ユーザが超音波プローブを把持して超音波走査を行いながら、容易に所定断面の画像の表示を指示することが可能となり、優れた操作性を実現することができる。 In addition, it is desirable to provide the instruction means on the ultrasonic probe. Thereby, it becomes possible for the user to easily display an image of a predetermined cross section while performing ultrasonic scanning while holding the ultrasonic probe, and excellent operability can be realized.
 また、上記課題を解決するために成された本発明の第2の態様に係る超音波診断装置は、被検体内の三次元領域に対して超音波走査を行うことにより、断面位置の異なる複数の二次元超音波画像を生成し、該複数の超音波画像から三次元超音波画像を生成する機能を備えた超音波診断装置において、
 a) 前記複数の二次元超音波画像の中から所定の断面に相当する画像を特定する画像特定手段と、
 b) 前記複数の二次元超音波画像を順次表示する表示手段と、
 c) 前記表示手段に順次表示される複数の二次元超音波画像のうち、前記所定の断面に相当する画像に所定の目印を付与して前記表示手段に供給する目印付与手段と、
  を有することを特徴としている。
In addition, an ultrasonic diagnostic apparatus according to the second aspect of the present invention, which has been made to solve the above-described problem, performs ultrasonic scanning on a three-dimensional region in a subject so that a plurality of cross-sectional positions are different. In an ultrasonic diagnostic apparatus having a function of generating a two-dimensional ultrasonic image of and generating a three-dimensional ultrasonic image from the plurality of ultrasonic images,
a) image specifying means for specifying an image corresponding to a predetermined cross-section from the plurality of two-dimensional ultrasonic images;
b) display means for sequentially displaying the plurality of two-dimensional ultrasound images;
c) a mark providing unit that applies a predetermined mark to an image corresponding to the predetermined cross-section among a plurality of two-dimensional ultrasonic images sequentially displayed on the display unit, and supplies the mark to the display unit;
It is characterized by having.
 また、上記課題を解決するために成された本発明の第3の態様に係る超音波診断装置は、被検体内の三次元領域に対して超音波走査を行うことにより、断面位置の異なる複数の二次元超音波画像を生成し、該複数の超音波画像から三次元超音波画像を生成する機能を備えた超音波診断装置において、
 a) 前記複数の二次元超音波画像の中から所定の断面に相当する画像を特定する画像特定手段と、
 b)前記複数の二次元超音波画像を順次表示する表示手段と、
 c)前記表示手段に順次表示される複数の二次元超音波画像のうち、前記所定の断面に相当する画像を疑似カラー画像に変換して前記表示手段に供給する疑似カラー画像生成手段と、
 を有することを特徴としている。
In addition, an ultrasonic diagnostic apparatus according to the third aspect of the present invention, which has been made to solve the above-described problem, performs ultrasonic scanning on a three-dimensional region in a subject so that a plurality of cross-sectional positions are different. In an ultrasonic diagnostic apparatus having a function of generating a two-dimensional ultrasonic image of and generating a three-dimensional ultrasonic image from the plurality of ultrasonic images,
a) image specifying means for specifying an image corresponding to a predetermined cross-section from the plurality of two-dimensional ultrasonic images;
b) display means for sequentially displaying the plurality of two-dimensional ultrasound images;
c) a pseudo color image generating means for converting an image corresponding to the predetermined cross-section among a plurality of two-dimensional ultrasonic images sequentially displayed on the display means and supplying the pseudo color image to the display means;
It is characterized by having.
 上記本発明の第2の態様又は第3の態様に係る超音波診断装置によれば、順次表示される複数の二次元超音波画像のうち、所定の断面に相当する画像を他の画像と容易に区別することが可能となるため、該所定の断面の画像(例えば、中心スライス画像)を参照することで目的部位に対する超音波プローブの位置及び角度をユーザが容易に把握することができるようになる。 According to the ultrasonic diagnostic apparatus according to the second aspect or the third aspect of the present invention, an image corresponding to a predetermined cross-section among a plurality of sequentially displayed two-dimensional ultrasonic images is easily compared with other images. Therefore, the user can easily grasp the position and angle of the ultrasonic probe with respect to the target site by referring to the image of the predetermined cross section (for example, the center slice image). Become.
 以上の通り、本発明に係る超音波診断装置によれば、三次元超音波走査の実行時に、モニタに表示される画像に基づいてユーザが容易且つ正確に超音波プローブの位置決めを行うことが可能となる。その結果、三次元超音波画像の取得に要する時間と手間を軽減することができ、診断効率を向上させることができる。 As described above, according to the ultrasonic diagnostic apparatus of the present invention, the user can easily and accurately position the ultrasonic probe based on the image displayed on the monitor when performing the three-dimensional ultrasonic scanning. It becomes. As a result, it is possible to reduce the time and labor required for acquiring the three-dimensional ultrasonic image, and improve the diagnostic efficiency.
本発明の第1の実施例に係る超音波診断装置の要部構成を示すブロック図。1 is a block diagram showing a main configuration of an ultrasonic diagnostic apparatus according to a first embodiment of the present invention. 同実施例の超音波診断装置における超音波の三次元走査を説明する図。The figure explaining the three-dimensional scanning of the ultrasonic wave in the ultrasonic diagnostic apparatus of the Example. 画像特定部において特定される画像の別の例を説明する図。The figure explaining another example of the image specified in an image specific part. 本発明の第2の実施例に係る超音波診断装置の要部構成を示すブロック図。The block diagram which shows the principal part structure of the ultrasonic diagnosing device which concerns on 2nd Example of this invention. 本発明の他の実施例に係る超音波診断装置の要部構成を示すブロック図。The block diagram which shows the principal part structure of the ultrasonic diagnosing device which concerns on the other Example of this invention. 同実施例の超音波診断装置における中心スライス画像表示時の画面表示を示す図であり、(a)は画像表示エリアの近傍にマークを付与した例であり、(b)は画像表示エリアの周囲に縁取りを付けた例である。It is a diagram showing a screen display at the time of center slice image display in the ultrasonic diagnostic apparatus of the embodiment, (a) is an example in which a mark is provided in the vicinity of the image display area, (b) is the periphery of the image display area This is an example with a border. ボリュームデータの生成方法を示す概念図。The conceptual diagram which shows the production | generation method of volume data.
符号の説明Explanation of symbols
11…超音波プローブ
11a…振動子アレイ
13…送受信部
14…二次元画像生成部
15…三次元画像生成部
16…表示処理部
17…モニタ
18…対象画像メモリ
19…機械走査制御部
20…画像特定部
21…中央制御部
22…操作卓
23…画像切替ボタン
24…疑似カラー画像生成部
25…グラフィック部
30…走査面
31…中心スライス
DESCRIPTION OF SYMBOLS 11 ... Ultrasonic probe 11a ... Transducer array 13 ... Transmission / reception part 14 ... Two-dimensional image generation part 15 ... Three-dimensional image generation part 16 ... Display processing part 17 ... Monitor 18 ... Target image memory 19 ... Mechanical scanning control part 20 ... Image Specific part 21 ... Central control part 22 ... Console 23 ... Image switching button 24 ... Pseudo color image generation part 25 ... Graphic part 30 ... Scanning plane 31 ... Central slice
 以下、本発明を実施するための最良の形態について実施例を用いて説明する。 Hereinafter, the best mode for carrying out the present invention will be described using examples.
 図1は、本発明の第1の実施例に係る超音波診断装置の要部構成を示すブロック図である。本実施例の超音波診断装置は、被検者体内の任意の三次元領域の情報を収集して画像化することのできるものであり、超音波プローブ11、送受信部13、二次元画像生成部14、三次元画像生成部15、表示処理部16、モニタ17、対象画像メモリ18、機械走査制御部19、画像特定部20、中央制御部21、及び操作卓22を備えている。 FIG. 1 is a block diagram showing a main configuration of the ultrasonic diagnostic apparatus according to the first embodiment of the present invention. The ultrasonic diagnostic apparatus according to the present embodiment can collect and image information of an arbitrary three-dimensional region in the body of the subject, and includes an ultrasonic probe 11, a transmission / reception unit 13, and a two-dimensional image generation unit. 14, a three-dimensional image generation unit 15, a display processing unit 16, a monitor 17, a target image memory 18, a mechanical scanning control unit 19, an image specifying unit 20, a central control unit 21, and a console 22.
 超音波プローブ11は、図2に示すように、一次元状に配列された多数の超音波振動子から成る振動子アレイ11aと該振動子アレイ11aを機械的に走査するための駆動機構(図示略)とが内蔵された、いわゆる機械走査型の三次元超音波プローブであり、超音波振動子の電子走査によって二次元的な走査面30を形成し、駆動機構による機械走査によって該走査面30の位置を順次変化させることにより、被検者体内の任意の三次元領域に関するエコー信号を収集するものである。超音波プローブ11は、超音波診断装置の本体に設けられたコネクタ12を介して送受信部13及び機械走査制御部19に接続されており、送受信部13からの送信パルス及び機械走査制御部19からの制御信号に基づいて上記のような三次元的な超音波走査が実行される。なお、超音波プローブ11のプローブヘッドにはユーザが表示画像の切り替えを指示するための画像切替ボタン23が設けられている(詳細は後述する)。 As shown in FIG. 2, the ultrasonic probe 11 includes a transducer array 11a composed of a large number of ultrasonic transducers arranged in a one-dimensional shape, and a drive mechanism (not shown) for mechanically scanning the transducer array 11a. Is a so-called mechanical scanning type three-dimensional ultrasonic probe, in which a two-dimensional scanning surface 30 is formed by electronic scanning of an ultrasonic transducer, and the scanning surface 30 is mechanically scanned by a driving mechanism. The echo signals relating to an arbitrary three-dimensional region in the body of the subject are collected by sequentially changing the positions. The ultrasonic probe 11 is connected to a transmission / reception unit 13 and a mechanical scanning control unit 19 via a connector 12 provided in the main body of the ultrasonic diagnostic apparatus, and from the transmission pulse from the transmission / reception unit 13 and the mechanical scanning control unit 19. Based on the control signal, three-dimensional ultrasonic scanning as described above is executed. The probe head of the ultrasonic probe 11 is provided with an image switching button 23 for the user to instruct switching of the display image (details will be described later).
 送受信部13は、所定の駆動パルスを生成して超音波プローブ11へ送信すると共に、超音波プローブ11の各超音波振動子から出力されるエコー信号を増幅して整相加算することにより走査線1本分に相当するビームデータを生成する。なお、このとき各超音波振動子における超音波送受のタイミングを適宜調整することにより、超音波ビームが超音波振動子の配列方向に電子走査される。一方、機械走査制御部19は、超音波プローブ11に内蔵された駆動機構の動作を制御するものであり、該駆動機構によって振動子アレイ11aを所定の間隔で移動させることにより、超音波ビームが短軸方向に機械走査される。 The transmission / reception unit 13 generates a predetermined drive pulse and transmits it to the ultrasonic probe 11, and also amplifies the echo signal output from each ultrasonic transducer of the ultrasonic probe 11 and performs phasing addition to scan lines. Beam data corresponding to one line is generated. At this time, the ultrasonic beam is electronically scanned in the arrangement direction of the ultrasonic transducers by appropriately adjusting the timing of ultrasonic transmission / reception in each ultrasonic transducer. On the other hand, the mechanical scanning control unit 19 controls the operation of the drive mechanism built in the ultrasonic probe 11, and the ultrasonic beam is moved by moving the transducer array 11a at a predetermined interval by the drive mechanism. It is mechanically scanned in the short axis direction.
 二次元画像生成部14は、前記ビームデータに検波処理や対数圧縮処理、及びデジタルスキャンコンバート(DSC)処理等の所定の処理を施すことにより二次元超音波画像を生成する。 The two-dimensional image generation unit 14 generates a two-dimensional ultrasonic image by performing predetermined processing such as detection processing, logarithmic compression processing, and digital scan conversion (DSC) processing on the beam data.
 画像特定部20は、機械走査制御部19から各二次元超音波画像の断面位置に関する情報(例えばフレーム番号や位置座標)を取得し、該情報に基づいて、上記二次元画像生成部14で順次生成される二次元超音波画像の中から三次元走査領域の中央に位置する走査面(すなわち中心スライス31)に相当する画像を特定するものであり、これにより中心スライス画像として特定された二次元超音波画像は、対象画像メモリ18に格納される。 The image specifying unit 20 acquires information (for example, frame numbers and position coordinates) regarding the cross-sectional position of each two-dimensional ultrasound image from the mechanical scanning control unit 19, and based on the information, the two-dimensional image generation unit 14 sequentially An image corresponding to a scanning plane (that is, the central slice 31) located at the center of the three-dimensional scanning region is identified from the generated two-dimensional ultrasonic image, and the two-dimensional image identified as the central slice image is thereby identified. The ultrasonic image is stored in the target image memory 18.
 三次元画像生成部15は、図示しないボリュームメモリを有しており、二次元画像生成部14で生成された複数の二次元超音波画像を所定の位置関係で並べ、画像間の間隙を補間して該ボリュームメモリに格納することにより三次元データセットを構築する。更に、三次元画像生成部15は、該三次元データセットに基づき、ボリュームレンダリング処理やサーフェスレンダリング処理によって目的部位の三次元超音波画像を構築する。なお、ここでは説明を省略するが、前記三次元データセットに基づいて任意の断面における断層画像を生成することもできる。 The three-dimensional image generation unit 15 has a volume memory (not shown), arranges a plurality of two-dimensional ultrasonic images generated by the two-dimensional image generation unit 14 in a predetermined positional relationship, and interpolates a gap between the images. Then, a three-dimensional data set is constructed by storing in the volume memory. Furthermore, the three-dimensional image generation unit 15 constructs a three-dimensional ultrasonic image of the target site by volume rendering processing or surface rendering processing based on the three-dimensional data set. In addition, although description is abbreviate | omitted here, the tomographic image in arbitrary cross sections can also be produced | generated based on the said three-dimensional data set.
 表示処理部16は、上述の二次元画像生成部14、三次元画像生成部15、及び対象画像メモリ18から出力される各種画像データのモニタ17への出力を制御するものである。 The display processing unit 16 controls the output of various image data output from the above-described 2D image generation unit 14, 3D image generation unit 15, and target image memory 18 to the monitor 17.
 上記各部の動作は中央制御部21によって制御され、中央制御部21にはトラックボール、キーボード、及び各種操作キー等を備えた操作卓22、又は超音波プローブ11上に設けられた画像切替ボタン23を介してユーザの指示が入力される。なお、本実施例では、モニタ17が上記本発明の第1の態様における表示手段に相当し、画像特定部20が画像特定手段に、中央制御部21が表示制御手段に、画像切替ボタン23が指示手段に相当する。 The operation of each unit is controlled by the central control unit 21. The central control unit 21 includes an operation console 22 having a trackball, a keyboard, various operation keys, and the like, or an image switching button 23 provided on the ultrasonic probe 11. The user's instruction is input via In this embodiment, the monitor 17 corresponds to the display means in the first aspect of the present invention, the image specifying unit 20 is the image specifying means, the central control unit 21 is the display control means, and the image switching button 23 is This corresponds to the instruction means.
 以下、本実施例に係る超音波診断装置を用いた撮像手順について説明する。まず、ユーザが超音波プローブ11を被検者体表の所定の位置に当接させ、操作卓22で所定の操作を行うことにより中央制御部21に超音波走査の開始を指示する。これにより、超音波プローブ11による三次元超音波走査が実行され、二次元画像生成部14において異なる断面位置に関する二次元超音波画像が順次生成される。これらの二次元超音波画像は表示処理部16を介して所定の周期でモニタ17に出力され、モニタ17の画面上には三次元走査領域全体の二次元超音波画像がリアルタイムで表示される。 Hereinafter, an imaging procedure using the ultrasonic diagnostic apparatus according to the present embodiment will be described. First, the user brings the ultrasonic probe 11 into contact with a predetermined position on the subject's body surface and performs a predetermined operation on the console 22 to instruct the central control unit 21 to start ultrasonic scanning. Thereby, the three-dimensional ultrasonic scanning by the ultrasonic probe 11 is executed, and two-dimensional ultrasonic images relating to different cross-sectional positions are sequentially generated in the two-dimensional image generation unit 14. These two-dimensional ultrasonic images are output to the monitor 17 at a predetermined cycle via the display processing unit 16, and a two-dimensional ultrasonic image of the entire three-dimensional scanning region is displayed on the monitor 17 in real time.
 なお、このとき、画像特定部20は、機械走査制御部19から取得した、各二次元超音波画像の位置情報に基づいて、二次元画像生成部14で生成される二次元超音波画像の中から中心スライス画像を特定し、該中心スライス画像が出力されるタイミングに合わせて二次元画像生成部14から出力される画像を対象画像メモリ18に格納させる。すなわち、中心スライス画像は、上記表示処理部16に送出されると共に、対象画像メモリ18に出力され、該メモリ18に格納される。超音波プローブ11では所定の三次元領域について繰り返し超音波走査が実行されるため、対象画像メモリ18には所定の周期で中心スライス画像が入力され、その都度、該メモリ18内の画像が更新される。 At this time, the image specifying unit 20 includes the two-dimensional ultrasonic image generated by the two-dimensional image generation unit 14 based on the position information of each two-dimensional ultrasonic image acquired from the mechanical scanning control unit 19. The center slice image is identified from the image, and the image output from the two-dimensional image generation unit 14 is stored in the target image memory 18 in accordance with the timing at which the center slice image is output. That is, the central slice image is sent to the display processing unit 16, output to the target image memory 18, and stored in the memory 18. Since the ultrasonic probe 11 repeatedly performs ultrasonic scanning on a predetermined three-dimensional region, the center slice image is input to the target image memory 18 at a predetermined cycle, and the image in the memory 18 is updated each time. The
 更に、ユーザが操作卓22で所定の操作を行うと、二次元画像生成部14で生成された画像を基に三次元画像生成部15で三次元超音波画像が生成され、該三次元超音波画像が表示処理部16を介してモニタ17に出力される。モニタ17に表示される三次元超音波画像は所定の周期で更新され、動画として視認される。なお、こうした三次元超音波画像の表示中においても上記同様に二次元画像生成部14で生成された中心スライス画像が対象画像メモリ18に順次格納される。 Furthermore, when the user performs a predetermined operation on the console 22, a 3D ultrasound image is generated by the 3D image generator 15 based on the image generated by the 2D image generator 14, and the 3D ultrasound is generated. The image is output to the monitor 17 via the display processing unit 16. The three-dimensional ultrasonic image displayed on the monitor 17 is updated at a predetermined cycle and visually recognized as a moving image. Note that the center slice image generated by the two-dimensional image generation unit 14 is also sequentially stored in the target image memory 18 during the display of such a three-dimensional ultrasound image.
 以上のような、三次元走査領域全体の二次元超音波画像又は三次元超音波画像のリアルタイム表示中に、ユーザが超音波プローブ11上の画像切替ボタン23を押下して中心スライス画像の表示を指示すると、該指示を受けた中央制御部21が対象画像メモリ18内の画像を表示処理部16を介してモニタ17に出力させる。その結果、モニタ17の画面上には、それまで表示されていた三次元走査範囲全体の二次元超音波画像又は三次元超音波画像に代わって、中心スライス画像が表示されるようになる。なお、中心スライス画像の表示中においても超音波プローブ11による三次元走査は継続されるため、モニタ17に表示される中心スライス画像は所定の周期で更新される。 During the real-time display of the two-dimensional ultrasound image or the three-dimensional ultrasound image of the entire three-dimensional scanning region as described above, the user presses the image switching button 23 on the ultrasound probe 11 to display the center slice image. When instructed, the central control unit 21 receiving the instruction causes the monitor 17 to output the image in the target image memory 18 via the display processing unit 16. As a result, a central slice image is displayed on the screen of the monitor 17 instead of the two-dimensional ultrasonic image or the three-dimensional ultrasonic image of the entire three-dimensional scanning range that has been displayed. In addition, since the three-dimensional scanning by the ultrasonic probe 11 is continued even during the display of the center slice image, the center slice image displayed on the monitor 17 is updated at a predetermined cycle.
 ユーザは、該中心スライス画像を参照することで目的部位に対する超音波プローブ11の位置及び角度を確認し、必要に応じてプローブ11の位置合わせを行う。その後、ユーザが再度画像切替ボタン23を押下すると、中心スライス画像の表示が解除され、モニタ17上には、再び三次元走査領域全体の二次元超音波画像、又は三次元超音波画像が表示されるようになる。 The user confirms the position and angle of the ultrasonic probe 11 with respect to the target site by referring to the central slice image, and aligns the probe 11 as necessary. Thereafter, when the user presses the image switching button 23 again, the display of the center slice image is canceled, and the two-dimensional ultrasonic image or the three-dimensional ultrasonic image of the entire three-dimensional scanning region is displayed on the monitor 17 again. Become so.
 以上のように、本実施例に係る超音波診断装置によれば、ユーザが画像切替ボタン23を押下するだけで、モニタ17上に中心スライス画像を表示させることができる。これにより、ユーザが必要に応じて適宜中心スライス画像を参照し、該画像に基づいて容易且つ正確に超音波プローブの位置決めを行うことが可能となる。 As described above, according to the ultrasonic diagnostic apparatus according to the present embodiment, the center slice image can be displayed on the monitor 17 only by the user pressing the image switching button 23. Accordingly, the user can appropriately refer to the center slice image as necessary, and can easily and accurately position the ultrasonic probe based on the image.
 なお、本実施例では画像切替ボタンを超音波プローブ11上に設ける構成としたが、該ボタンは操作卓22上に設ける構成としてもよい。また、上記本発明の第一の態様における指示手段は、こうした機械的スイッチとするほか、ソフトウェアに実装されたソフト的スイッチとすることもできる。この場合、ユーザは操作卓22に設けられたトラックボールやキーボード等を用いてモニタ17上に表示されたボタン等のソフト的スイッチを操作する。 In this embodiment, the image switching button is provided on the ultrasonic probe 11, but the button may be provided on the console 22. In addition to the mechanical switch, the instruction means in the first aspect of the present invention may be a software switch implemented in software. In this case, the user operates a software switch such as a button displayed on the monitor 17 using a trackball or a keyboard provided on the console 22.
 更に、画像特定部20において中心スライス以外の所定の断面に相当する画像を特定し、ユーザの指示に応じて該断面の画像をモニタ17に表示させる構成としてもよい。その場合、例えば、図3に示すように超音波プローブ11のプローブヘッドに所定の断面32の位置を示す目印11bを付けておき、該断面32に相当する画像を画像特定部20で特定して対象画像メモリ18に格納する構成などとすることが考えられる。 Furthermore, the image specifying unit 20 may specify an image corresponding to a predetermined cross section other than the central slice, and display the image of the cross section on the monitor 17 in accordance with a user instruction. In that case, for example, as shown in FIG. 3, a mark 11 b indicating the position of the predetermined cross section 32 is attached to the probe head of the ultrasonic probe 11, and an image corresponding to the cross section 32 is specified by the image specifying unit 20. It is conceivable that the image is stored in the target image memory 18.
 図4は、本発明の第2の実施例に係る超音波診断装置の要部構成を示すブロック図である。なお、図1と同一又は対応する構成については同一符号を付し、適宜説明を省略する。 FIG. 4 is a block diagram showing a main configuration of an ultrasonic diagnostic apparatus according to the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the structure same or corresponding to FIG. 1, and description is abbreviate | omitted suitably.
 本実施例に係る超音波診断装置は、モニタ17の画面上に走査領域全体の二次元超音波画像をリアルタイム表示する際に、中心スライス画像については疑似カラー化した画像を表示することによって他の二次元超音波画像と容易に区別できるようにしたものである。 When the two-dimensional ultrasonic image of the entire scanning region is displayed in real time on the screen of the monitor 17, the ultrasonic diagnostic apparatus according to the present embodiment displays other images by displaying a pseudo-colored image for the center slice image. It can be easily distinguished from a two-dimensional ultrasonic image.
 本実施例の超音波診断装置における画像特定部20は、実施例1と同様に機械走査制御部19から各二次元超音波画像の断面位置に関する情報を取得し、該情報に基づいて、二次元画像生成部14より順次送出される二次元超音波画像の中から中心スライス画像を特定するものである。本実施例の超音波診断装置において、三次元走査領域全体の二次元超音波画像をリアルタイム表示する際には、二次元画像生成部14から表示処理部16へ順次送出される二次元超音波画像のうち、画像特定部20によって中心スライス画像であると特定された画像のみが一旦疑似カラー画像生成部24に送出され、各画素の輝度に任意の色を対応させた疑似カラー画像に変換された上で表示処理部16へ送出される。その結果、モニタ17の画面上にリアルタイム表示される三次元走査領域全体の二次元超音波画像のうち、中心スライス画像のみが疑似カラー画像として表示され、他の画像は通常のグレースケール画像として表示される。これにより、他の二次元超音波画像と中心スライス画像をユーザが容易に区別できるようになり、該中心スライス画像を参照することで、目的部位に対するプローブ11の位置及び角度を正確に把握することが可能となる。 The image specifying unit 20 in the ultrasonic diagnostic apparatus of the present embodiment acquires information on the cross-sectional position of each two-dimensional ultrasonic image from the mechanical scanning control unit 19 as in the first embodiment, and based on the information, The central slice image is specified from the two-dimensional ultrasonic images sequentially transmitted from the image generation unit 14. In the ultrasonic diagnostic apparatus of the present embodiment, when a two-dimensional ultrasonic image of the entire three-dimensional scanning region is displayed in real time, a two-dimensional ultrasonic image sequentially transmitted from the two-dimensional image generation unit 14 to the display processing unit 16 Of these, only the image specified by the image specifying unit 20 as the central slice image is once sent to the pseudo color image generating unit 24 and converted into a pseudo color image in which any color is associated with the luminance of each pixel. It is sent to the display processing unit 16 above. As a result, among the two-dimensional ultrasound images of the entire three-dimensional scanning region displayed in real time on the screen of the monitor 17, only the center slice image is displayed as a pseudo color image, and the other images are displayed as normal grayscale images. Is done. As a result, the user can easily distinguish another two-dimensional ultrasound image and the center slice image, and the position and angle of the probe 11 with respect to the target site can be accurately grasped by referring to the center slice image. Is possible.
 このような中心スライス画像の疑似カラー表示は、二次元超音波画像のリアルタイム表示中に常時行うようにしてもよく、あるいは、操作卓22上又は超音波プローブ11上に設けられたボタン等を用いてユーザが指示した場合にのみ行うようにしてもよい。 Such pseudo color display of the center slice image may be always performed during real-time display of the two-dimensional ultrasonic image, or a button or the like provided on the console 22 or the ultrasonic probe 11 is used. It may be performed only when instructed by the user.
 なお、本実施例では、中心スライス画像を疑似カラー化して表示する例を示したが、この他に、例えば図5に示すような装置構成とし、グラフィック部25において中心スライス画像を表す所定のグラフィックを生成し、表示処理部16において該グラフィックを中心スライス画像と合成してモニタ17に出力するようにしてもよい。このとき、図中の画像特定部20は、機械走査制御部19から取得した、各二次元超音波画像の断面位置情報に基づいて、二次元画像生成部14から表示処理部16へ順次送出される二次元超音波画像の中から中心スライス画像を特定してトリガ信号を発生する。そして、表示処理部16は、該トリガ信号の発生タイミングに対応した所定の画像のみに上記中心スライス画像を表す所定のグラフィックを合成する。なお、この場合、グラフィック部25及び表示処理部16が、上記本発明の第2の態様における目印付与手段に相当する。このような構成により、モニタ17にリアルタイム表示される三次元走査領域全体の二次元超音波画像のうち、中心スライス画像のみに前記グラフィックが重畳表示されるため、中心スライス画像と他の二次元超音波画像をユーザが容易に区別することができるようになる。このとき中心スライス画像に付与するグラフィックは、容易に視認できるものであればいかなるものであってもよく、例えば、図6(a)に示すように中心スライス画像40の画像表示エリア41の近傍に所定のマーク42を付与したり、図6(b)に示すように画像表示エリア41の外周にカラー表示の縁取り43を付けたりすることが考えられる。この場合も、該中心スライス画像へのグラフィックの付与は、三次元走査領域全体の二次元超音波画像を表示する際に常時行うようにしてもよく、ユーザの指示に応じて行うようにしてもよい。 In this embodiment, an example in which the central slice image is displayed in a pseudo color is shown. However, in addition to this, for example, a device configuration as shown in FIG. May be generated, and the display processing unit 16 may combine the graphic with the central slice image and output it to the monitor 17. At this time, the image specifying unit 20 in the figure is sequentially sent from the two-dimensional image generation unit 14 to the display processing unit 16 based on the cross-sectional position information of each two-dimensional ultrasonic image acquired from the mechanical scanning control unit 19. A trigger signal is generated by specifying a center slice image from the two-dimensional ultrasonic image. Then, the display processing unit 16 synthesizes a predetermined graphic representing the center slice image only with a predetermined image corresponding to the generation timing of the trigger signal. In this case, the graphic unit 25 and the display processing unit 16 correspond to the mark providing unit in the second aspect of the present invention. With such a configuration, since the graphic is superimposed and displayed only on the central slice image among the two-dimensional ultrasonic images of the entire three-dimensional scanning region displayed in real time on the monitor 17, the central slice image and other two-dimensional super images are displayed. The user can easily distinguish the sound wave image. At this time, the graphic to be added to the central slice image may be any graphic as long as it is easily visible. For example, as shown in FIG. It is conceivable to give a predetermined mark 42 or attach a color display border 43 to the outer periphery of the image display area 41 as shown in FIG. Also in this case, the graphic addition to the central slice image may be always performed when displaying the two-dimensional ultrasonic image of the entire three-dimensional scanning region, or may be performed according to a user instruction. Good.
 また、図4又は図5に示す構成の装置においても、画像特定部20において中心スライス以外の所定の断面の画像を特定し、該画像を疑似カラー化して表示したり、該画像に目印を付けて表示したりする構成とすることもできる。 Also in the apparatus having the configuration shown in FIG. 4 or FIG. 5, the image specifying unit 20 specifies an image of a predetermined cross section other than the central slice, displays the image in a pseudo color, and attaches a mark to the image. It can also be configured to display.
 以上、実施例を用いて本発明を実施するための最良の形態について説明を行ったが、本発明は上記実施例に限定されるものではなく、本発明の趣旨の範囲で適宜変更が許容される。例えば、上記実施例では超音波プローブとして機械走査型の三次元超音波プローブを使用する例を示したが、二次元振動子アレイを備えたいわゆる電子走査型の三次元超音波プローブを用いる場合にも本発明を同様に適用可能である。 The best mode for carrying out the present invention has been described above using the embodiments. However, the present invention is not limited to the above embodiments, and appropriate modifications are allowed within the scope of the gist of the present invention. The For example, in the above-described embodiment, an example in which a mechanical scanning type three-dimensional ultrasonic probe is used as the ultrasonic probe is shown. However, when a so-called electronic scanning type three-dimensional ultrasonic probe including a two-dimensional transducer array is used. The present invention can be similarly applied.

Claims (6)

  1.  被検体内の三次元領域に対して超音波走査を行うことにより、断面位置の異なる複数の二次元超音波画像を生成し、該複数の二次元超音波画像から三次元超音波画像を生成する機能を備えた超音波診断装置において、
     a) 前記複数の二次元超音波画像の中から所定の断面に相当する画像を特定する画像特定手段と、
     b) 前記二次元超音波画像又は三次元超音波画像を表示する表示手段と、
     c) ユーザが前記所定の断面に相当する画像の表示を指示するための指示手段と、
     d) 前記指示手段による指示に応じて、前記所定の断面に相当する画像を前記表示手段に表示させる表示制御手段と、
     を有することを特徴とする超音波診断装置。
    By performing ultrasonic scanning on a three-dimensional region in the subject, a plurality of two-dimensional ultrasonic images having different cross-sectional positions are generated, and a three-dimensional ultrasonic image is generated from the plurality of two-dimensional ultrasonic images. In the ultrasonic diagnostic equipment with functions,
    a) image specifying means for specifying an image corresponding to a predetermined cross-section from the plurality of two-dimensional ultrasonic images;
    b) display means for displaying the two-dimensional ultrasound image or the three-dimensional ultrasound image;
    c) instruction means for the user to instruct display of an image corresponding to the predetermined cross section;
    d) display control means for causing the display means to display an image corresponding to the predetermined cross section in response to an instruction from the instruction means;
    An ultrasonic diagnostic apparatus comprising:
  2.  上記指示手段を超音波プローブ上に設けたことを特徴とする請求項1に記載の超音波診断装置。 2. The ultrasonic diagnostic apparatus according to claim 1, wherein the instruction means is provided on an ultrasonic probe.
  3.  被検体内の三次元領域に対して超音波走査を行うことにより、断面位置の異なる複数の二次元超音波画像を生成し、該複数の二次元超音波画像から三次元超音波画像を生成する機能を備えた超音波診断装置において、
     a) 前記複数の二次元超音波画像の中から所定の断面に相当する画像を特定する画像特定手段と、
     b) 前記複数の二次元超音波画像を順次表示する表示手段と、
     c) 前記表示手段に順次表示される複数の二次元超音波画像のうち、前記所定の断面に相当する画像に所定の目印を付与して前記表示手段に供給する目印付与手段と、
     を有することを特徴とする超音波診断装置。
    By performing ultrasonic scanning on a three-dimensional region in the subject, a plurality of two-dimensional ultrasonic images having different cross-sectional positions are generated, and a three-dimensional ultrasonic image is generated from the plurality of two-dimensional ultrasonic images. In the ultrasonic diagnostic equipment with functions,
    a) image specifying means for specifying an image corresponding to a predetermined cross-section from the plurality of two-dimensional ultrasonic images;
    b) display means for sequentially displaying the plurality of two-dimensional ultrasound images;
    c) a mark providing unit that applies a predetermined mark to an image corresponding to the predetermined cross-section among a plurality of two-dimensional ultrasonic images sequentially displayed on the display unit, and supplies the mark to the display unit;
    An ultrasonic diagnostic apparatus comprising:
  4.  被検体内の三次元領域に対して超音波走査を行うことにより、断面位置の異なる複数の二次元超音波画像を生成し、該複数の二次元超音波画像から三次元超音波画像を生成する機能を備えた超音波診断装置において、
     a) 前記複数の二次元超音波画像の中から所定の断面に相当する画像を特定する画像特定手段と、
     b)前記複数の二次元超音波画像を順次表示する表示手段と、
     c)前記表示手段に順次表示される複数の二次元超音波画像のうち、前記所定の断面に相当する画像を疑似カラー画像に変換して前記表示手段に供給する疑似カラー画像生成手段と、
     を有することを特徴とする超音波診断装置。
    By performing ultrasonic scanning on a three-dimensional region in the subject, a plurality of two-dimensional ultrasonic images having different cross-sectional positions are generated, and a three-dimensional ultrasonic image is generated from the plurality of two-dimensional ultrasonic images. In the ultrasonic diagnostic equipment with functions,
    a) image specifying means for specifying an image corresponding to a predetermined cross-section from the plurality of two-dimensional ultrasonic images;
    b) display means for sequentially displaying the plurality of two-dimensional ultrasound images;
    c) a pseudo color image generating means for converting an image corresponding to the predetermined cross-section among a plurality of two-dimensional ultrasonic images sequentially displayed on the display means and supplying the pseudo color image to the display means;
    An ultrasonic diagnostic apparatus comprising:
  5.  上記画像特定手段が、前記各二次元超音波画像の断面位置の情報を取得し、該情報に基づいて前記複数の二次元超音波画像の中から所定の断面に相当する画像を特定することを特徴とする請求項1~4のいずれかに記載の超音波診断装置。 The image specifying means acquires information on a cross-sectional position of each of the two-dimensional ultrasonic images, and specifies an image corresponding to a predetermined cross-section from the plurality of two-dimensional ultrasonic images based on the information. The ultrasonic diagnostic apparatus according to any one of claims 1 to 4, characterized in that:
  6.  上記所定の断面に相当する画像が、中心スライスの画像であることを特徴とする請求項1~5のいずれかに記載の超音波診断装置。 6. The ultrasonic diagnostic apparatus according to claim 1, wherein the image corresponding to the predetermined section is an image of a center slice.
PCT/JP2008/001032 2008-04-18 2008-04-18 Ultrasonograph WO2009128120A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/001032 WO2009128120A1 (en) 2008-04-18 2008-04-18 Ultrasonograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/001032 WO2009128120A1 (en) 2008-04-18 2008-04-18 Ultrasonograph

Publications (1)

Publication Number Publication Date
WO2009128120A1 true WO2009128120A1 (en) 2009-10-22

Family

ID=41198832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/001032 WO2009128120A1 (en) 2008-04-18 2008-04-18 Ultrasonograph

Country Status (1)

Country Link
WO (1) WO2009128120A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351844A (en) * 1986-08-22 1988-03-04 株式会社東芝 Ultrasonic diagnostic apparatus
JPH04332544A (en) * 1990-11-22 1992-11-19 Advanced Technol Lab Inc Acoustical hold gram system
JP2007301030A (en) * 2006-05-09 2007-11-22 Toshiba Corp Ultrasonic diagnostic equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351844A (en) * 1986-08-22 1988-03-04 株式会社東芝 Ultrasonic diagnostic apparatus
JPH04332544A (en) * 1990-11-22 1992-11-19 Advanced Technol Lab Inc Acoustical hold gram system
JP2007301030A (en) * 2006-05-09 2007-11-22 Toshiba Corp Ultrasonic diagnostic equipment

Similar Documents

Publication Publication Date Title
JP5435751B2 (en) Ultrasonic diagnostic apparatus, ultrasonic transmission / reception method, and ultrasonic transmission / reception program
JP4969985B2 (en) Ultrasonic diagnostic apparatus and control program for ultrasonic diagnostic apparatus
JP5095304B2 (en) Ultrasonic diagnostic equipment
JP2006255083A (en) Ultrasonic image formation method and ultrasonic diagnostic equipment
JP4652872B2 (en) Ultrasonic diagnostic equipment
US9566044B2 (en) Medical image display apparatus and ultrasonic diagnosis apparatus
JP5800324B2 (en) Ultrasonic diagnostic apparatus, ultrasonic image generation method and program
JP2009061086A (en) Ultrasonic diagnostic system, image processing method, and program
JP5405095B2 (en) Ultrasonic diagnostic equipment
JP2008012150A (en) Ultrasonic diagnostic equipment and control program of ultrasonic diagnostic equipment
JP2006192030A (en) Ultrasonograph
JP5226181B2 (en) Diagnostic imaging equipment
JP2006280520A (en) Ultrasonic imaging apparatus, ultrasonic image processing method, and ultrasonic image processing program
JP5525899B2 (en) Ultrasonic diagnostic equipment
JP5331431B2 (en) Ultrasonic diagnostic equipment
WO2009128120A1 (en) Ultrasonograph
JP4868845B2 (en) Ultrasonic diagnostic apparatus and ultrasonic measurement method
JP2005253852A (en) Ultrasonic diagnosis apparatus
JP4960013B2 (en) Ultrasonic diagnostic apparatus and image processing program thereof
WO2010109514A1 (en) Ultrasonograph
JP2005245936A (en) Ultrasonic diagnostic apparatus
JP4645166B2 (en) Ultrasonic diagnostic equipment
JP2007167351A (en) Ultrasonographic instrument
JP2006218089A (en) Ultrasonic diagnostic apparatus
JP4607538B2 (en) Ultrasonic diagnostic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08751576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08751576

Country of ref document: EP

Kind code of ref document: A1