WO2009125827A1 - Artificial structural material element and method of manufacturing the same - Google Patents

Artificial structural material element and method of manufacturing the same Download PDF

Info

Publication number
WO2009125827A1
WO2009125827A1 PCT/JP2009/057314 JP2009057314W WO2009125827A1 WO 2009125827 A1 WO2009125827 A1 WO 2009125827A1 JP 2009057314 W JP2009057314 W JP 2009057314W WO 2009125827 A1 WO2009125827 A1 WO 2009125827A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
artificial structure
material element
element according
conductive material
Prior art date
Application number
PCT/JP2009/057314
Other languages
French (fr)
Japanese (ja)
Inventor
由美子 安齋
浩行 峯邑
俊通 新谷
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2010507274A priority Critical patent/JP5366933B2/en
Publication of WO2009125827A1 publication Critical patent/WO2009125827A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer

Definitions

  • the present invention relates to a structure of an artificial structure material element exceeding the structure of the natural world and a manufacturing method thereof.
  • An artificial structure material element is an artificial structure that realizes physical properties that do not exist in nature by combining elements that are sufficiently small with respect to wavelength.
  • the permittivity and permeability of substances existing in nature are attributable to constituent atoms, whereas the permittivity and permeability of metamaterials are attributable to constituent elements. Therefore, the metamaterial has a flexible design, and it can be expected that desired physical properties can be obtained.
  • it is expected to be used as an optical material for artificially controlling the refractive index by creating a magnetic permeability ( ⁇ ) by the periodic structure of a good conductor at the frequency of light.
  • this element can realize a negative refractive index.
  • the phase vector and the pointing vector are opposite to each other, so that it is predicted that a refraction phenomenon different from that of a normal material, propagation of evanescent light, and the like will occur.
  • many studies have been made so far.
  • Non-Patent Document 1 Pendry et al. Described that a negative refractive index can be realized by an artificial structure material element (metamaterial). In a material having a negative refractive index, the phase vector and the pointing vector are reversed, and it is predicted that a perfect lens can be realized.
  • metal metal having a negative refractive index
  • Non-Patent Document 2 shows a split ring resonator. This is a collection of half coils of a size smaller than the wavelength patterned with a metal wire, and it is possible to artificially control the dielectric constant and permeability using LC resonance with respect to the oscillating electromagnetic field of light waves. .
  • This is the first artificial structure material element with a negative refractive index confirmed in the microwave band.
  • the element forming methods described in this document are printing and lithography. Since the object is a microwave band, since one pattern size is as large as about 1 cm, it is not suitable for fine processing.
  • Non-Patent Document 3 uses a wiring pattern and electrical components such as a chip inductor to realize a transmission path in which the phase velocity and the group velocity are reversed. It is shown.
  • Non-Patent Document 4 describes an in-vehicle radar wave deflecting element in which a liquid crystal element is formed on a leaky wave waveguide antenna.
  • Non-Patent Document 5 Purdue University has experimentally shown that a negative refractive index can be obtained near a wavelength of 1.5 ⁇ m by using two gold parallel rods (nano rods).
  • J. B. Pendry “Negative Refraction Makes a Perfect Lens”, Phys. Rev. Lett. 85, 3966 (2000).
  • D. R. Smith et al . “Metamaterials and Negative Refractive Index”, Science 305, 788 (2004).
  • Tsutsumi Makoto “Left-handed microwave circuit technology and its applications”, IEICE Journal C J189-C, 191 (2006).
  • the direct processing method is a method in which elements are formed one by one, and the manufacturing time is longer and the cost is remarkably higher than the method of transferring in a few seconds based on a mother die like injection molding of an optical disk. Further, the direct processing method has a disadvantage that it is difficult to form a large area and the application is limited to a small element.
  • Non-Patent Document 5 The shape of an element formed by lithography as shown in Non-Patent Document 5 has an uneven surface on the element surface.
  • a method of forming a pattern by two-photon absorption has been proposed. This is a phenomenon of irradiating laser light in a non-absorption wavelength region and exciting an absorption band corresponding to the energy of two photons.
  • the dye present in the non-existent part has the characteristic of not absorbing light. Although it reacts only with the focus of the laser beam, it has been proposed as a fine pattern processing method. However, since it is a direct processing method for processing each element, it is not suitable for mass production.
  • Processing with a focused ion beam has also been proposed.
  • a Ga (gallium) ion beam it is possible to process even a complicated structure of micron and nano order.
  • This method is generally performed in a vacuum atmosphere, and the processing range is as narrow as several mm. Since this method is also a direct processing method for processing each element, it is not suitable for mass production. Also, materials that are susceptible to ion damage cannot be processed.
  • a pattern including a crystalline region and an amorphous region is formed on the phase change film formed on the substrate, and the crystalline region or the amorphous region is selectively selected.
  • An object of the present invention is to manufacture an element having excellent performance with high productivity in an artificial structure material element and its manufacturing method.
  • An artificial structure material element is an artificial structure material element that includes a substrate and a conductive material periodically disposed with respect to the substrate, and controls the wavelength dependence of a response to an incident electromagnetic field.
  • the conductive material is arranged in a concave shape directly or via an interface layer on the side and bottom surfaces of the plurality of recesses.
  • the substrate is preferably an optically transparent member.
  • As the conductive material Au, Ag, Cu, Al, Pt, or the like can be used.
  • the substrate material only needs to have a sufficient transmittance for the wavelength used as a target. In order to obtain the effect, for example, a transmittance of 90% or more is preferable.
  • the conductive material may have a multilayer structure in which two or more layers are stacked with an insulating layer interposed.
  • a structure may be formed by stacking a plurality of substrates on which conductive materials are periodically arranged.
  • the recesses may be periodically arranged in a one-dimensional array or may be periodically arranged in a two-dimensional array. It is preferable that the thickness d1 of the conductive material disposed on the side surface of the recess and the thickness d2 of the conductive material disposed on the bottom surface of the recess satisfy the following relationship, 0.5 ⁇ d2 / d1 ⁇ 2. Further, when the refractive index of the substrate is n and the central wavelength at which the wavelength dependence of the response is to be controlled is ⁇ , the period, depth, and width of the plurality of concave portions arranged periodically are ⁇ / n or less, respectively. Preferably there is.
  • the uppermost surface of the thin film containing the highly conductive metal material present in the recess is substantially the same as the height of the back surface of the substrate. This makes it possible to use this element even in cases where it is inconvenient for the element surface to be uneven.
  • the artificial of the present invention has a structure in which a conductive material is formed directly or via an interface layer on the side and bottom surfaces of a plurality of recesses provided periodically on a substrate, and can control the wavelength dependence of the response to an incident electromagnetic field.
  • the structural material element is formed by forming a plurality of recesses periodically arranged on the substrate, forming a conductive material on the substrate, and removing the conductive material protruding from the recesses by chemical mechanical polishing. It can manufacture through the process to do.
  • the element of the present invention has the following advantages.
  • the thin film is formed in a shape reflecting the shape of the concave portion, so that the cross-sectional structure of the thin film can be a U shape.
  • the parameters for designing the artificial structure element increase as compared with the conventional flat plate structure, so that it is easy to cope with a predetermined wavelength.
  • the structure in which the conductive material is formed in the recess can flatten the surface while maintaining a large degree of freedom in design. This is a case where the surface of the element is inconvenient, such as a magnetic recording medium, and the distance between the magnetic head and the magnetic medium is as small as several nanometers and must be controlled accurately. Even the case can be used.
  • an element having excellent performance can be manufactured with high productivity. Moreover, since a complicated structure can be manufactured by a simple manufacturing method, the degree of freedom in designing the structure of the artificial structure material element can be improved.
  • Sectional drawing which shows 2 layer structure (b), 3 layer structure (c), and 4 layer structure (d) as an example of the element by a comparative example (a) and this invention.
  • Sectional drawing which shows an example of the element by this invention.
  • the schematic diagram which shows the structure of an element.
  • the figure which shows the element formation process of this invention The figure which shows the element formation process of this invention.
  • the figure which shows the element formation process of this invention The figure which shows the shape of an element.
  • corrugated pattern transfer method of the element of this invention The figure which shows an example of the uneven
  • FIG. 1A shows an element described in Non-Patent Document 5 as a comparative example
  • FIGS. 1B to 1D show an example of the element of the present invention
  • the device of the comparative example has a structure in which a thin film is laminated on a glass plate 101 in the order of Ti (5 nm) / Au (50 nm) / Ti (5 nm) / SiO 2 (50 nm) / Ti (5 nm) / Au (50 nm).
  • a multilayer film in which flat plates are stacked on a glass plate is formed.
  • the Au film is the good conductive metal layer 102 and the SiO 2 film is the interface layer 103.
  • the thin film of Ti (5 nm) is not shown.
  • the artificial structure material element of the present invention shown in FIG. 1B is an example of an element in which two layers of a highly conductive metal layer 102 are stacked via an electrically insulating interface layer 103.
  • FIG. 1C shows an example in which the highly conductive metal layer 102 has three layers
  • FIG. 1D shows an example in which the highly conductive metal layer 102 has four layers.
  • a protective layer is further formed thereon. Chemical changes such as external impact, dust, and oxidation can be prevented, and the target effect can be enhanced by adjusting the thickness of the protective film as a design parameter.
  • the element of the present invention shown in FIG. 1B has a structure in which Au (50 nm) / SiO 2 (50 nm) / Au (50 nm) / SiO 2 (150 nm) is formed in the concave portion of the substrate 104 having an uneven pattern.
  • Au is the highly conductive metal layer 102 and SiO 2 is the interface layer 103.
  • the major difference between the device of the comparative example and the device of the present invention is whether the surface is convex or flat.
  • the uppermost surface of the conductive metal layer 102 disposed on the side surface of the recess is substantially the same height as the surface of the substrate 104 and the interface layer 103 formed on the substrate.
  • An element having a flat surface can be used even in the case where the distance between the magnetic head and the magnetic medium is as small as several nanometers and must be accurately controlled, such as a magnetic recording medium.
  • the distance between the optical recording medium and the element is larger than that of a magnetic medium and is several tens of nanometers or more, but the step is preferably less than the resolution of the wavelength used, and is 10% of the designed depth. The following steps are desirable.
  • FIG. 2 (a) a structure in which a highly conductive metal material is formed in a single layer, a structure without an upper interface layer as shown in FIG. 2 (b), or a recess and a protrusion A structure with a step can also be formed. What is necessary is just to use properly according to a use.
  • FIGS. 2C, 2D, 2E, and 2F are cross-sectional views of elements having different shapes.
  • FIG. 2C shows a structure in which the corners of the recesses formed in the substrate 104 and the good conductive metal layer 102 formed thereon via the interface layer 103 are rounded, and
  • FIG. 2D shows a U-shaped cross section.
  • FIG. 2 (e) shows a structure in which the cross-sectional shape of the good conductive metal layer 102 is V-shaped
  • FIG. 2 (f) shows a good conductive metal.
  • the layer 102 partially protrudes from the element surface.
  • the good conductive layer is shown as a single layer, but of course two, three, or four layers may be used.
  • FIG. 2G shows a cross-sectional SEM photograph of the element having the structure of FIG.
  • a protective layer is further formed thereon. Chemical changes such as external impact, dust, and oxidation can be prevented, and the target effect can be enhanced by adjusting the thickness of the protective film as a design parameter.
  • an element in which a protective film is not formed can be used to utilize the fact that a part of the highly conductive metal protrudes. Since the highly conductive metal is partially exposed, the electromagnetic wave conducted on the surface can be effectively used.
  • the element of the present invention can artificially control the refractive index by creating magnetic permeability ( ⁇ ) by the periodic structure of a good conductor.
  • magnetic permeability
  • a set of half coils having a size smaller than the wavelength patterned with a metal wire is an LC formed by L (coil) and C (capacitor) with respect to a vibration electromagnetic field of light waves. It is responsible for artificially controlling the permittivity and permeability using resonance.
  • L coil
  • C capacitor
  • the plate-shaped highly conductive metal material 102 is periodically formed, so that the gap between the highly conductive metal materials acts as a capacitor 202 with respect to the incident light 201.
  • the element using the highly conductive metal material 102 having irregularities in addition to the function of the capacitor 202, it also functions as the coil 203 due to the shape effect of the highly conductive metal film.
  • the highly conductive metal material 102 having irregularities has a multi-layer structure, thereby forming a plurality of capacitors 202 and a plurality of coils 203, thereby increasing the resonance action of the LC. can do.
  • the strength of the capacitor varies with the period and height of the highly conductive metal material in the element, and the magnetic permeability ( ⁇ ) varies with the width and height of the coil. It can be designed freely by changing the period, width, and height (depth), and the degree of freedom in structural design according to the target wavelength is extremely wide.
  • FIG. 4A shows a dotted pattern
  • FIG. 4B shows a line pattern cross-sectional view
  • positioning was shown to FIG.4 (c) (d) (e) (f) (g) (h).
  • elements 401 made of a highly conductive metal and an interface layer are scattered in a pattern example as shown in the figure.
  • the design corresponding to the target wavelength can be freely performed by changing the period, width, and height (depth) of the highly conductive metal material.
  • the dotted pattern has a capacitor function even between the left, right, top and bottom elements, a greater effect can be obtained. For this reason, the thickness of the good conductor metal can be reduced, which is advantageous in terms of cost. Since a large number of elements are viewed on average, the margin for loss is widened, which is advantageous in terms of manufacturing. Which merits can be expected.
  • FIG. 5 shows the cross-sectional shape of the highly conductive metal material of the two types of devices produced
  • FIG. 6 shows the results of measuring the wavelength dependence of the transmittance of each device.
  • FIG. 5A shows a cross-sectional structure of an element in which a highly conductive metal material is formed in a flat plate shape, and the period of the highly conductive metal material is 320 nm, the width is 160 nm, and the thickness is 30 nm.
  • FIG. 5A shows a cross-sectional structure of an element in which a highly conductive metal material is formed in a flat plate shape, and the period of the highly conductive metal material is 320 nm, the width is 160 nm, and the thickness is 30 nm.
  • 5B shows a cross-sectional structure of an element in which a highly conductive material is formed on the side surface and the plane of the concave portion of the substrate concave / convex pattern, with a period of 320 nm, a width of 160 nm, a bottom thickness of 30 nm, and extending upward from both sides of the bottom surface.
  • the width of the side surface is 20 nm and the height of the recess is 120 nm.
  • the dimension in the length direction of the recesses was sufficiently large as compared with the wavelength, and a line pattern as shown in FIG. 4B was used, and Au was used as a highly conductive metal material. Around the Au is a SiO 2 film.
  • FIG. 6 ref.
  • FIG. 6A shows the transmittance wavelength dependence of the element having the structure shown in FIG. 5A
  • FIG. 6B shows the transmittance wavelength dependence of the element having the structure shown in FIG. 5B
  • the element having the structure shown in FIG. 5A showed the highest transmittance around the wavelength of 1500 nm
  • the element shown in FIG. 5B showed the highest transmittance around 800 nm, which is a shorter wavelength.
  • the transmittance wavelength dependency is greatly changed compared to the uniform Au film shown by ref.
  • This phenomenon which shows anomalous transmittance depending on the wavelength, by patterning Au and changing its shape, structure, and period to a uniform Au film formed on a glass plate, is due to the interaction between light and elements.
  • the shape of the element was changed, and the wavelength dependency of the transmittance was examined.
  • the period of the recesses in which the highly conductive metal material is formed is 320 nm
  • the width is 160 nm
  • the thickness of the bottom surface is 30 nm
  • the width of the side surface extending upward from both sides of the bottom surface is 20 nm.
  • Devices with different lengths h were fabricated, and the wavelength dependence of transmittance was measured.
  • the height of the concave portion can be easily changed by adjusting the RIE processing time when producing a master serving as a matrix of the concave / convex pattern of the substrate.
  • the peak wavelength at which the transmittance increases as the height of the concave portion increases shifts to the longer wavelength side, and the peak transmittance changes.
  • the change in transmittance was large at the heights of the recesses of 90 nm, 120 nm, and 150 nm, confirming the effect.
  • the peak shape of the transmittance is sharper and more efficient. It was confirmed that a sufficient effect was obtained even when the ratio of the height to the width of the recess was about 1.
  • the ratio of height to width can be reduced to about 2 as the formation process of the concave pattern and the good conductive metal material, the ratio of height to width is considered when considering the stability when transferring the uneven pattern to the substrate. About 1 is preferable. Changing the ratio of height to width can also be changed depending on the film forming conditions during sputtering. This is because, for example, in the case of film formation from an oblique direction, the film formation on the side surface of the recess proceeds more than the film formation on the bottom surface of the recess.
  • an element in which the width d of the side surface is changed while the period 320 nm, the width 160 nm, the thickness 30 nm, and the height 120 nm of the recesses in which the highly conductive metal material is formed is the same is manufactured.
  • the wavelength dependence of was measured.
  • the width of the side surface can be controlled by the film forming conditions of the highly conductive metal material.
  • the device was fabricated so that the side widths were 10 nm, 20 nm, and 60 nm. In all cases, the dimension in the length direction of the concave portion was a linear pattern as shown in FIG. 4B, which was sufficiently larger than the wavelength, and Au was used as a highly conductive metal material.
  • a concave / convex pattern of a master serving as a mother mold is formed (S11).
  • a stamper is produced based on this master (S12), and a plurality of substrates to which the concavo-convex pattern is transferred by an injection molding method or the like are produced (S13).
  • At least a highly conductive metal material is formed on the substrate with an uneven pattern by sputtering or the like (S14).
  • a method for forming a master and a Ni stamper as a mother mold will be described with reference to FIG.
  • a resist 702 is applied onto a 6 mm thick quartz glass plate 701 (FIG. 10A), and a pattern is drawn with an electron beam (EB) 703 (FIG. 10B). Thereafter, development is performed (FIG. 10C), and reactive ion etching (RIE) 704 is performed (FIG. 10D), so that a concavo-convex pattern corresponding to EB drawing is formed on the quartz substrate. (FIG. 10E). Thereafter, Ni vapor deposition and Ni plating were performed on the master, and a Ni stamper 706 to which the concave / convex pattern of the master was transferred was produced (FIG.
  • the master may be made of another material such as a Si substrate, a semiconductor, or a resin instead of the quartz glass plate.
  • a fine processing technique such as photolithography, ion beam lithography (IBL), focused ion beam (FIB) processing, phase change etching, or the like may be applied. It is possible to manufacture a plurality of Ni stampers from the master, and a large amount of pattern transfer substrate can be manufactured from one Ni stamper by injection molding. Therefore, the manufacturing time for one master may be long.
  • FIG. 11 shows an element forming method.
  • a plastic substrate 901 with a concavo-convex pattern was produced by injection molding (FIG. 11A), and SiO 2 was deposited to 10 nm as the interface layer 103 by sputtering, and Mo was deposited to 2 nm as an adhesive layer although not shown.
  • Au was deposited to a thickness of 30 nm as the highly conductive metal film 102 (FIG. 11B).
  • an optical disk substrate injection molding machine was used, and a polycarbonate substrate having an outer diameter of 120 mm and a thickness of 1.1 mm was used.
  • a vapor deposition method or a directional CVD method may be used instead of the sputtering method.
  • CMP chemical mechanical polishing
  • the CMP process is a mass production process that is already widely used in semiconductor processes. Polishing was performed using an apparatus developed for CMP of a plastic substrate using MH814 (manufactured by CABOT) as the slurry 902 in the CMP process and SUPERME RN-H (manufactured by Nitta Haas) as the polishing pad 903.
  • MH814 manufactured by CABOT
  • SUPERME RN-H manufactured by Nitta Haas
  • the plastic substrate is easily scratched and the CMP process needs to be devised due to the influence of the surface waviness of the substrate itself.
  • the size and shape of the polishing head and the weight during polishing are common.
  • the difference with the semiconductor process is large. For example, in the semiconductor process, a load is applied to improve the flatness and the polishing rate.
  • the film thickness is preferably about several tens of nm.
  • the film thickness to be removed is several tens of nm, and the removal of the thin film must be controlled with high accuracy.
  • pressurization was performed in the range of 1.0 g / mm 2 to 3.0 g / mm 2 .
  • the selection of the slurry or polishing pad as the abrasive must be determined by the material to be removed, and this is the same as in the semiconductor process and the like.
  • FIG. 12 shows a two-layer structure forming method
  • FIG. 13 shows a three-layer structure forming method.
  • a second-layer pattern 904 is formed on the one-layer artificial material element 501 produced by the process shown in FIG.
  • the interface layer 103 and the conductive metal film 102 are formed thereon by the same process as in FIG. 11B (FIG. 12A).
  • CMP chemical mechanical polishing
  • the artificial structure material element 905 having a two-layer structure shown in FIG. 13A In forming the three-layer artificial material element, as shown in FIG. 13A, a third-layer pattern 906 is formed on the two-layer artificial material element 905 produced by the process of FIG. Then, the interface layer 103 and the conductive metal film 102 are formed thereon by the same process as in FIG. 11B (FIG. 13A). Next, chemical mechanical polishing (CMP) is performed in the same manner as in FIG. 11C to remove the highly conductive metal film on the convex portions of the concavo-convex pattern (FIG. 13B). Thus, a three-layer artificial structure material element 907 shown in FIG.
  • CMP chemical mechanical polishing
  • an imprint method may be used instead of injection molding.
  • a glass substrate 121 is used as a base material of the element, and an ultraviolet curable resin (DVD-003N, manufactured by Nippon Kayaku Co., Ltd.) 122 is placed between the glass substrate 121 and the Ni stamper 706 in close contact.
  • an ultraviolet curable resin DVD-003N, manufactured by Nippon Kayaku Co., Ltd.
  • FIG. 15 (b) after irradiating ultraviolet rays (500 mJ / cm 2 ) 123 after peeling between the Ni stamper and the ultraviolet curable resin, the substrate 124 onto which the Ni stamper pattern has been transferred is obtained (FIG. 15 ( c)).
  • a concave / convex pattern can be formed on a Si substrate, a quartz substrate, a resin, or the like instead of the Ni stamper as a mother die to make a mother die.
  • the stamper material is limited because injection molding is a high-temperature and high-pressure process, but the imprint method does not reach a high temperature and the pressure is low, so the choice of stamper material is much wider.
  • SOG is used as the UV curable resin, it is more preferable because it has a high hardness and also functions as a CMP stopper, thereby preventing the occurrence of scratches.
  • SOG is a material widely used in the semiconductor industry as an interlayer insulating film. Moreover, it may replace with photocurable materials, such as ultraviolet curable resin and SOG, and other resin, such as a thermosetting resin and anaerobic resin, may be sufficient.
  • FIG. 1 A sheet-like polycarbonate having a thickness of 100 ⁇ m was used as a substrate.
  • a polycarbonate sheet 131 was superposed on the Ni stamper 706. At that time, when the pressure is applied by the roller 132 having a heating function, the polycarbonate sheet is softened by the heating. The softened polycarbonate was filled in the concave / convex pattern of the Ni stamper and peeled after the sheet was cooled, whereby a polycarbonate sheet 133 having the concave / convex pattern transferred to the surface could be produced.
  • the time required for filling can be shortened because the softening is accelerated.
  • the transfer was also good.
  • SiO 2 (10 nm), Cu (30 nm), and SiO 2 (10 nm) were sequentially formed on the uneven pattern of the sheet thus prepared, and CMP treatment was performed.
  • the unevenness of the sheet thickness is as small as ⁇ 1 ⁇ m or less due to the manufacturing process. Therefore, CMP unevenness depending on the flatness is less likely to occur, and the CMP process margin such as pressurization and rotation speed is increased.
  • it follows the shape of the holding table under the sheet it is easily affected by scratches and dust, and a new problem arises that the sheet is twisted if it is pressurized too much.
  • an artificial structure material element When an artificial structure material element is formed using a concavo-convex pattern formed on a sheet, it has the advantage of being thin and flexible, further expanding the application range. This is because it is possible to affix an element formed in advance on a sheet, cut into a desired size, and bonded to a substrate according to the application.
  • the second layer pattern 904 and the third layer pattern 906 can also be formed by an imprint method.
  • An ultraviolet curable resin (DVD-003N, manufactured by Nippon Kayaku Co., Ltd.) is placed in close contact between the artificial structure material element 501 having a single layer structure and the Ni stamper, irradiated with ultraviolet rays (500 mJ / cm 2 ), and then cured with the Ni stamper and ultraviolet rays.
  • the pattern of the Ni stamper is transferred to the second layer pattern 904. Since the Ni stamper does not transmit ultraviolet rays, ultraviolet irradiation is performed from the artificial structure material element side.
  • the highly conductive metal portion of the element is opaque, but the curing ultraviolet rays are not so directional and the light spreads so that it can be cured.
  • SOG is used as the UV curable resin, it is more preferable because it has a high hardness and also functions as a CMP stopper, thereby preventing the occurrence of scratches.
  • thermosetting resin and anaerobic resin may be replaced with photocurable materials, such as ultraviolet curable resin and SOG, and other resin, such as a thermosetting resin and anaerobic resin, may be sufficient. What is necessary is just to select what was suitable from the peelability from a mother mold
  • a sheet-like polycarbonate having a pattern directly transferred to a plastic material may be bonded onto a single-layer element.
  • the film formation and the CMP process may be performed after the patterned sheet is bonded, or may be applied after the film formation and the CMP process are performed on the patterned sheet.
  • the interlayer be 10 times or less the wavelength used.
  • the object of the present invention is to increase the substantial volume of the highly conductive metal material and increase the effect (change) by employing a multilayer structure.
  • the distance is more than 10 times the normal wavelength, it is called a far field.
  • the separated A layer and B layer have only one effect.
  • the wavelength is set to 10 times or less, a further positive effect is produced between the A layer and the B layer, and an effect of 2.1 times or more can be obtained. What is formed at a distance of 10 times or more of the wavelength is merely a large number of single-layer devices described in the present invention.
  • the interlayer When the interlayer was thick, it could be easily formed by using a sheet with good thickness accuracy in advance. When the interlayer was thinned, it was easy to produce up to about 1 ⁇ m (variation ⁇ 0.4 ⁇ m), but it was difficult to produce 0.1 ⁇ m.
  • the same element was formed in each of Ag, Cu, Al, and Pt in addition to Au, and the same effect could be obtained.
  • the CMP rate is higher than that of Au and the processing time is short.
  • CMP treatment was performed using MH814 as a slurry and SUPREME RN-H as a polishing pad. The CMP conditions were the same.
  • Ag, Cu, and Al have a structure sandwiched between interface layers to prevent oxidation of the film surface due to chemical reaction by CMP.

Abstract

Disclosed is a method for manufacturing an artificial structural material element having excellent performance with excellent mass-productivity. The element has such a structure that one or more layers of a good conductive metal material (102) are formed on the side surface and the bottom surface of a recessed part of a substrate (104) having a periodical concave and convex pattern. The element can be freely designed and controlled for the corresponding wavelengths by changing the film thickness ratio, shape and period of the good conductive metal material formed in the concave part.

Description

人工構造物質素子及びその製造方法Artificial structure material element and manufacturing method thereof
 本発明は、自然界の構造を超える人工構造物質素子の構造とその製造方法に関する。 The present invention relates to a structure of an artificial structure material element exceeding the structure of the natural world and a manufacturing method thereof.
 人工構造物質素子(メタマテリアル)とは、波長に対して十分小さい要素を組み合わせて、自然界には無い物性を実現した人工構造物である。自然界に存在する物質の誘電率や透磁率は構成原子に起因するが、メタマテリアルの誘電率や透磁率は構成要素に起因する。そのため、メタマテリアルには柔軟なデザイン性があり、望みの物性が得られることが期待できる。例えば、光の周波数において良導電体の周期構造によって透磁率(μ)を作り出すことで、人工的に屈折率を制御する光学材料として利用することが期待される。利用する対象の波長よりも小さいサイズで良導電材料の構造を周期的に配置した場合、分解能以下であるためその一つ一つは個体判別されず、全体としてある効果(変化)を発生するのである。 An artificial structure material element (metamaterial) is an artificial structure that realizes physical properties that do not exist in nature by combining elements that are sufficiently small with respect to wavelength. The permittivity and permeability of substances existing in nature are attributable to constituent atoms, whereas the permittivity and permeability of metamaterials are attributable to constituent elements. Therefore, the metamaterial has a flexible design, and it can be expected that desired physical properties can be obtained. For example, it is expected to be used as an optical material for artificially controlling the refractive index by creating a magnetic permeability (μ) by the periodic structure of a good conductor at the frequency of light. When the structure of a highly conductive material is periodically arranged in a size smaller than the wavelength of the target to be used, since it is less than the resolution, each one is not individually identified, and an effect (change) occurs as a whole. is there.
 この素子においては、負の屈折率を実現できることが理論的、実験的に提唱されている。負の屈折率を持つ物質中では、位相ベクトルとポインティングベクトルが逆向きとなるため、通常物質とは異なる屈折現象、エバネッセント光の伝播などが生じることが予見されている。この人工構造物質素子実現のために、以下のように多くの検討がこれまでになされてきた。 It has been proposed theoretically and experimentally that this element can realize a negative refractive index. In a material having a negative refractive index, the phase vector and the pointing vector are opposite to each other, so that it is predicted that a refraction phenomenon different from that of a normal material, propagation of evanescent light, and the like will occur. In order to realize this artificial structure material element, many studies have been made so far.
 非特許文献1においてPendryらは、人工構造物質素子(メタマテリアル)によって負の屈折率を実現し得ることを述べた。負の屈折率をもつ物質中では、位相ベクトルとポインティングベクトルが逆向きとなり、パーフェクトレンズの実現が可能であると予見されている。 In Non-Patent Document 1, Pendry et al. Described that a negative refractive index can be realized by an artificial structure material element (metamaterial). In a material having a negative refractive index, the phase vector and the pointing vector are reversed, and it is predicted that a perfect lens can be realized.
 実現された一例としては、マイクロ波から可視光の波長域に対応するものである。その代表的な構成として、非特許文献2にスプリット・リング共振器が示されている。これは金属線でパターンニングされた、波長よりも小さなサイズのハーフ・コイルの集合であり、光波の振動電磁界に対するLC共振を利用して人工的に誘電率と透磁率を制御することができる。人工構造物質素子としてマイクロ波帯で初めて負の屈折率が確認されたものである。この文献に記載されている素子の形成方法は、プリント印刷及びリソグラフィーである。対象がマイクロ波帯のため、一つのパターンサイズが1cm程度と大きいものであるため、微細な加工には向かない。 An example realized is that corresponding to the wavelength range from microwave to visible light. As a typical configuration, Non-Patent Document 2 shows a split ring resonator. This is a collection of half coils of a size smaller than the wavelength patterned with a metal wire, and it is possible to artificially control the dielectric constant and permeability using LC resonance with respect to the oscillating electromagnetic field of light waves. . This is the first artificial structure material element with a negative refractive index confirmed in the microwave band. The element forming methods described in this document are printing and lithography. Since the object is a microwave band, since one pattern size is as large as about 1 cm, it is not suitable for fine processing.
 一方、ミリ波以上の波長の電磁波に対しては、非特許文献3に配線パターンとチップインダクター等の電気部品を用いて、位相速度と群速度を逆向きにした伝送路を実現することが示されている。また、非特許文献4には、車載向けレーダ波の偏向素子として、漏れ波導波路型アンテナ上に液晶素子を形成したものが記載されている。 On the other hand, for electromagnetic waves having a wavelength of millimeter wave or more, Non-Patent Document 3 uses a wiring pattern and electrical components such as a chip inductor to realize a transmission path in which the phase velocity and the group velocity are reversed. It is shown. Non-Patent Document 4 describes an in-vehicle radar wave deflecting element in which a liquid crystal element is formed on a leaky wave waveguide antenna.
 非特許文献5において、Purdue大学では金製の2本の並行ロッド(ナノ・ロッド)を用いることによって、波長1.5μm付近にて負の屈折率が得られることを実験的に示した。ナノロッドの形成方法として、ガラス基板を用いたEB描画によるリソグラフィーが記載されている。
J. B. Pendry: "Negative Refraction Makes a Perfect Lens", Phys. Rev. Lett. 85, 3966 (2000). D. R. Smith et al.: "Metamaterials and Negative Refractive Index", Science 305, 788 (2004). 堤誠:"左手系マイクロ波回路技術とその応用",電子情報通信学会誌 C J189-C, 191 (2006). 佐藤和夫:"メタマテリアルの研究動向",R&D Review of Toyota CRDL 40, 24 (2006). V. M. Shalaev, et al.: "Negative index of refraction in optical matamaterials", Opt. Lett. 30, 3356 (2005).
In Non-Patent Document 5, Purdue University has experimentally shown that a negative refractive index can be obtained near a wavelength of 1.5 μm by using two gold parallel rods (nano rods). As a method for forming a nanorod, lithography by EB drawing using a glass substrate is described.
J. B. Pendry: "Negative Refraction Makes a Perfect Lens", Phys. Rev. Lett. 85, 3966 (2000). D. R. Smith et al .: "Metamaterials and Negative Refractive Index", Science 305, 788 (2004). Tsutsumi Makoto: "Left-handed microwave circuit technology and its applications", IEICE Journal C J189-C, 191 (2006). Kazuo Sato: "Metamaterial Research Trends", R & D Review of Toyota CRDL 40, 24 (2006). V. M. Shalaev, et al .: "Negative index of refraction in optical matamaterials", Opt. Lett. 30, 3356 (2005).
 現在微細な素子の形成には、電子線(EB)描画装置や集束イオンビーム(FIB)加工装置を用いた直接加工法が用いられているが、これらの手法は量産性に乏しい。直接加工法は素子を一つ一つ形成していく方法であり、光ディスクの射出成型のように母型を元に数秒で転写する方法に比べて製造時間は長くコストが格段に高い。また直接加工法では、大面積の形成が難しく、応用が小さな素子に限定されるという欠点を有していた。 Currently, a direct processing method using an electron beam (EB) drawing device or a focused ion beam (FIB) processing device is used to form a fine element, but these methods are poor in mass productivity. The direct processing method is a method in which elements are formed one by one, and the manufacturing time is longer and the cost is remarkably higher than the method of transferring in a few seconds based on a mother die like injection molding of an optical disk. Further, the direct processing method has a disadvantage that it is difficult to form a large area and the application is limited to a small element.
 非特許文献5に示すようなリソグラフィーで形成する素子の形状は、素子表面が凹凸形状となる。 The shape of an element formed by lithography as shown in Non-Patent Document 5 has an uneven surface on the element surface.
 また、平板状の素子構造では、所定の波長に対応させるための設計パラメータが少ないため設計マージンが狭く、所定波長への対応が難しくなるケースがあった。 Also, in the flat element structure, there are cases in which it is difficult to cope with the predetermined wavelength because the design margin is narrow because there are few design parameters for accommodating the predetermined wavelength.
 他の形成方法としては、二光子吸収でパターンを形成する方法が提案されている。これは吸収のない波長領域のレーザ光を照射し、二光子分のエネルギーに相当する吸収帯を励起する現象で、レンズによりレーザ光を絞った焦点のみが励起され、光が通っても焦点にない部分に存在する色素は光を吸収しない特徴を持っている。レーザ光の焦点のみで反応するため微細なパターンの加工方法として提案されているが、素子一つ一つを加工する直接加工法であるため量産には向かない。 As another forming method, a method of forming a pattern by two-photon absorption has been proposed. This is a phenomenon of irradiating laser light in a non-absorption wavelength region and exciting an absorption band corresponding to the energy of two photons. The dye present in the non-existent part has the characteristic of not absorbing light. Although it reacts only with the focus of the laser beam, it has been proposed as a fine pattern processing method. However, since it is a direct processing method for processing each element, it is not suitable for mass production.
 集束イオンビームによる加工も提案されている。Ga(ガリウム)イオンビームを使用して、ミクロン、ナノオーダーの複雑な構造でも加工することができる。この方法は真空雰囲気中で行うことが一般的であり、加工範囲は数mmと狭い。この方法も、素子一つ一つを加工する直接加工法であるため、量産には向かない。また、イオンのダメージを受けやすい材料の加工はできない。 Processing with a focused ion beam has also been proposed. Using a Ga (gallium) ion beam, it is possible to process even a complicated structure of micron and nano order. This method is generally performed in a vacuum atmosphere, and the processing range is as narrow as several mm. Since this method is also a direct processing method for processing each element, it is not suitable for mass production. Also, materials that are susceptible to ion damage cannot be processed.
 目的の材料を部分的に配置する手法としては、基板上に成膜した相変化膜に結晶質の領域と非晶質の領域によるパターンを形成し、結晶質領域あるいは非晶質領域を選択的にエッチングして前記パターンに対応する凹凸パターンを形成する方法がある。この方法は、例えば光ディスクの記録用市販ドライブでも非晶質のパターンニング=マーク形成ができる方法であり、安価な装置を複数使用することで低コストにすることは可能であるが、全ての材料に対して万能なプロセスとはいえない。例えばAu、Agなどへの選択性エッチングは難しい。 As a method of partially arranging the target material, a pattern including a crystalline region and an amorphous region is formed on the phase change film formed on the substrate, and the crystalline region or the amorphous region is selectively selected. There is a method of forming an uneven pattern corresponding to the pattern by etching. This method is, for example, a method capable of forming amorphous patterning = marks even with a commercially available drive for recording optical disks. It is possible to reduce the cost by using a plurality of inexpensive devices, but all materials It is not a versatile process. For example, selective etching to Au, Ag, etc. is difficult.
 本発明は、人工構造物質素子及びその製造方法において、性能に優れた素子を量産性良く製造することを目的とする。 An object of the present invention is to manufacture an element having excellent performance with high productivity in an artificial structure material element and its manufacturing method.
 本発明による人工構造物質素子は、基板と、基板に対して周期的に配置された導電性材料を有し、入射電磁場に対する応答の波長依存性を制御する人工構造物質素子であり、基板は周期的に設けられた複数の凹部を有し、導電性材料は複数の凹部の側面及び底面に直接あるいは界面層を介して凹形状に配置されていることを特徴とする。基板は、光学的に透明な部材であることが好ましい。導電性材料としては、Au,Ag,Cu,Al,Ptなどを用いることができる。基板の材質は、対象として使用する波長に対して十分な透過率があればよい。効果を得るためには例えば90%以上の透過率があれば好ましい。 An artificial structure material element according to the present invention is an artificial structure material element that includes a substrate and a conductive material periodically disposed with respect to the substrate, and controls the wavelength dependence of a response to an incident electromagnetic field. The conductive material is arranged in a concave shape directly or via an interface layer on the side and bottom surfaces of the plurality of recesses. The substrate is preferably an optically transparent member. As the conductive material, Au, Ag, Cu, Al, Pt, or the like can be used. The substrate material only needs to have a sufficient transmittance for the wavelength used as a target. In order to obtain the effect, for example, a transmittance of 90% or more is preferable.
 導電性材料は絶縁層を介して2層以上に積層された多層構造としてもよい。また、導電性材料が周期的に配置された基板を複数積層して構造としてもよい。多層構造とすることで良導電性金属材料の実質的なボリュームが増し、効果(変化)が増大する。 The conductive material may have a multilayer structure in which two or more layers are stacked with an insulating layer interposed. Alternatively, a structure may be formed by stacking a plurality of substrates on which conductive materials are periodically arranged. By setting it as a multilayer structure, the substantial volume of a highly electroconductive metal material increases, and an effect (change) increases.
 凹部は一次元アレイ状に周期的に配置してもよいし、二次元アレイ状に周期的に配置してもよい。凹部の側面に配置された導電性材料の厚さd1と、凹部の底面に配置された導電性材料の厚さd2が次の関係、0.5≦d2/d1≦2を満たすことが好ましい。また、基板の屈折率がn、応答の波長依存性を制御すべき中心波長がλであるとき、周期的に配置された複数の凹部の周期、深さ、幅は、それぞれλ/n以下であることが好ましい。λ/n以下にすることで、周期的に配置された材料の異なる領域は分解能以下となり、その一つ一つは個体判別されずに全体としてある効果(変化)を発生するのである。上記、膜厚比、形状、周期を変えることによって、対応する波長に対し自由に設計及び制御を行うことができる。 The recesses may be periodically arranged in a one-dimensional array or may be periodically arranged in a two-dimensional array. It is preferable that the thickness d1 of the conductive material disposed on the side surface of the recess and the thickness d2 of the conductive material disposed on the bottom surface of the recess satisfy the following relationship, 0.5 ≦ d2 / d1 ≦ 2. Further, when the refractive index of the substrate is n and the central wavelength at which the wavelength dependence of the response is to be controlled is λ, the period, depth, and width of the plurality of concave portions arranged periodically are λ / n or less, respectively. Preferably there is. By setting it to λ / n or less, different regions of the periodically arranged material become below the resolution, and each one of them produces an effect (change) as a whole without being individually identified. By changing the film thickness ratio, shape, and period, the corresponding wavelength can be freely designed and controlled.
 上記人工構造物質素子において、凹部に存在する良導電性金属材料を含む薄膜の最上面が、基板裏面の高さとほぼ同じであることが好ましい。これによって、素子表面に凹凸があることが不都合になるようなケースにおいても、この素子を使用することが可能になる。 In the above artificial structure element, it is preferable that the uppermost surface of the thin film containing the highly conductive metal material present in the recess is substantially the same as the height of the back surface of the substrate. This makes it possible to use this element even in cases where it is inconvenient for the element surface to be uneven.
 基板に周期的に設けられた複数の凹部の側面及び底面に直接あるいは界面層を介して導電性材料が形成された構造を有し、入射電磁場に対する応答の波長依存性を制御できる本発明の人工構造物質素子は、基板に周期的に配置された複数の凹部を形成する工程と、基板上に導電性材料を製膜する工程と、凹部からはみ出た導電性材料を化学的機械的研磨によって除去する工程を経て製造することができる。 The artificial of the present invention has a structure in which a conductive material is formed directly or via an interface layer on the side and bottom surfaces of a plurality of recesses provided periodically on a substrate, and can control the wavelength dependence of the response to an incident electromagnetic field. The structural material element is formed by forming a plurality of recesses periodically arranged on the substrate, forming a conductive material on the substrate, and removing the conductive material protruding from the recesses by chemical mechanical polishing. It can manufacture through the process to do.
 本発明の素子は、以下の利点を有する。 The element of the present invention has the following advantages.
(1)人工構造物質素子において、所定の波長の電磁波において負の屈折率を実現するためには、所定のサイズの凹凸パターンを所定の周期で形成する必要がある。例えばプラスチック基板にあらかじめパターン形成する構成は、そのパターンに対応した型(スタンパ)から、以下に述べる安価な方法によって量産が可能になるため、安価な素子の提供が可能になる。また、スタンパを用いることによって、たとえばロールを用いた転写法などによって大面積のプラスチックフィルムへの転写が可能になり、応用範囲を大きく広げることが可能になる。 (1) In order to realize a negative refractive index in an electromagnetic wave having a predetermined wavelength in an artificial structure material element, it is necessary to form a concavo-convex pattern having a predetermined size at a predetermined period. For example, a configuration in which a pattern is formed in advance on a plastic substrate can be mass-produced by a low-cost method described below from a mold (stamper) corresponding to the pattern, so that an inexpensive element can be provided. Further, by using a stamper, for example, transfer to a large-area plastic film can be performed by a transfer method using a roll, and the application range can be greatly expanded.
(2)凹部に導電性材料を形成する構成は、凹部の形状を反映した形で薄膜が形成されるため、薄膜の断面構造をコの字型などにすることができる。これによって、人工構造物素子を設計する上でのパラメータが従来の平板状構造に比べて増えるため、所定波長への対応が容易になる。 (2) In the configuration in which the conductive material is formed in the concave portion, the thin film is formed in a shape reflecting the shape of the concave portion, so that the cross-sectional structure of the thin film can be a U shape. As a result, the parameters for designing the artificial structure element increase as compared with the conventional flat plate structure, so that it is easy to cope with a predetermined wavelength.
(3)凹部に導電性材料を形成する構成は、設計の自由度を大きく保ったまま、その表面を平坦にすることができる。これは、素子表面に凹凸があることが不都合になるようなケース、たとえば磁気記録媒体のように、磁気ヘッドと磁気媒体との距離が数nm程度ときわめて小さく、かつ正確に制御しなければならないケースでも、使用が可能になる。 (3) The structure in which the conductive material is formed in the recess can flatten the surface while maintaining a large degree of freedom in design. This is a case where the surface of the element is inconvenient, such as a magnetic recording medium, and the distance between the magnetic head and the magnetic medium is as small as several nanometers and must be controlled accurately. Even the case can be used.
 本発明によると、人工構造物質素子及びその製造方法において、性能に優れた素子を量産性良く製造することができる。また、簡便な製造方法で複雑な構造を製造することができるため、人工構造物質素子の構造を設計する上での自由度を向上させることができる。 According to the present invention, in the artificial structure material element and the manufacturing method thereof, an element having excellent performance can be manufactured with high productivity. Moreover, since a complicated structure can be manufactured by a simple manufacturing method, the degree of freedom in designing the structure of the artificial structure material element can be improved.
比較例(a)と、本発明による素子の一例として2層構造(b)、3層構造(c)、4層構造(d)を示す断面図。Sectional drawing which shows 2 layer structure (b), 3 layer structure (c), and 4 layer structure (d) as an example of the element by a comparative example (a) and this invention. 本発明による素子の一例を示す断面図。Sectional drawing which shows an example of the element by this invention. 本発明による素子のメカニズムを説明する図。The figure explaining the mechanism of the element by this invention. 本発明の素子のパターン配置の一例を示す図。The figure which shows an example of the pattern arrangement | positioning of the element of this invention. 素子の構造を示す模式図。The schematic diagram which shows the structure of an element. 素子の透過率波長依存性を示す図。The figure which shows the transmittance | permeability wavelength dependence of an element. 本発明の素子の透過率波長依存性を示す図。The figure which shows the transmittance | permeability wavelength dependence of the element of this invention. 本発明の素子の透過率波長依存性を示す図。The figure which shows the transmittance | permeability wavelength dependence of the element of this invention. 本発明の素子形成フローを示す図。The figure which shows the element formation flow of this invention. 原盤及びスタンパの形成プロセスを示す図。The figure which shows the formation process of a master and a stamper. 本発明の素子形成プロセスを示す図。The figure which shows the element formation process of this invention. 本発明の素子形成プロセスを示す図。The figure which shows the element formation process of this invention. 本発明の素子形成プロセスを示す図。The figure which shows the element formation process of this invention. 素子の形状を示す図。The figure which shows the shape of an element. 本発明の素子の凹凸パターン転写方法の一例を示す図。The figure which shows an example of the uneven | corrugated pattern transfer method of the element of this invention. 本発明の素子の凹凸パターン転写方法の一例を示す図。The figure which shows an example of the uneven | corrugated pattern transfer method of the element of this invention.
101 ガラス板
102 良導電性金属層
103 界面層
104 凹凸パターンを持つ基板
131 ポリカーボネートシート
132 ローラー
133 凹凸パターンが表面に転写されたポリカーボネートシート
202 コンデンサ
203 コイル
501 素子
502 入射光
503 偏光
701 石英ガラス板
702 レジスト
703 電子線
704 反応性イオンエッチング
705 原盤
706 Niスタンパ
901 凹凸パターン付プラスチック基板
902 スラリー
903 研磨パッド
904 2層目のパターン
905 2層素子
906 3層目のパターン
907 3層素子
DESCRIPTION OF SYMBOLS 101 Glass plate 102 Good electroconductive metal layer 103 Interfacial layer 104 Substrate 131 with a concavo-convex pattern Polycarbonate sheet 132 Roller 133 Polycarbonate sheet 202 with the concavo-convex pattern transferred to the surface Capacitor 203 Coil 501 Element 502 Incident light 503 Polarization 701 Quartz glass plate 702 Resist 703 Electron beam 704 Reactive ion etching 705 Master 706 Ni stamper 901 Plastic substrate with uneven pattern 902 Slurry 903 Polishing pad 904 Second layer pattern 905 Second layer element 906 Third layer pattern 907 Three layer element
 以下、図面を参照して本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 一例として作製した人工構造物質素子の断面構造の一部を図1に示す。図1(a)に非特許文献5に記載されている素子を比較例として示し、図1(b)から図1(d)に本発明の素子の一例を示す。比較例の素子は、ガラス板101の上に薄膜をTi(5nm)/Au(50nm)/Ti(5nm)/SiO2(50nm)/Ti(5nm)/Au(50nm)の順に積層した構造となっており、ガラス板上に平板を重ね合わせたような多層膜が形成されている。Au膜が良導電性金属層102でありSiO2膜が界面層103である。図中、薄膜であるTi(5nm)は図示を省略した。 A part of a cross-sectional structure of an artificial structure material element manufactured as an example is shown in FIG. FIG. 1A shows an element described in Non-Patent Document 5 as a comparative example, and FIGS. 1B to 1D show an example of the element of the present invention. The device of the comparative example has a structure in which a thin film is laminated on a glass plate 101 in the order of Ti (5 nm) / Au (50 nm) / Ti (5 nm) / SiO 2 (50 nm) / Ti (5 nm) / Au (50 nm). Thus, a multilayer film in which flat plates are stacked on a glass plate is formed. The Au film is the good conductive metal layer 102 and the SiO 2 film is the interface layer 103. In the figure, the thin film of Ti (5 nm) is not shown.
 図1(b)に示した本発明の人工構造物質素子は、良導電性金属層102を電気絶縁性の界面層103を介して2層積層した素子の一例である。また、図1(c)は良導電性金属層102を3層とした例を示し、図1(d)は良導電性金属層102を4層とした例を示す。図示してはいないが、この上にさらに保護層を形成するとなおよい。外部からの衝撃やゴミ、酸化などの化学変化を防ぐことができるし、設計パラメータとして保護膜の膜厚を調整することで目的の効果を高めることができる。 The artificial structure material element of the present invention shown in FIG. 1B is an example of an element in which two layers of a highly conductive metal layer 102 are stacked via an electrically insulating interface layer 103. FIG. 1C shows an example in which the highly conductive metal layer 102 has three layers, and FIG. 1D shows an example in which the highly conductive metal layer 102 has four layers. Although not shown, it is more preferable that a protective layer is further formed thereon. Chemical changes such as external impact, dust, and oxidation can be prevented, and the target effect can be enhanced by adjusting the thickness of the protective film as a design parameter.
 図1(b)の本発明の素子は、凹凸パターンを持つ基板104の凹部にAu(50nm)/SiO2(50nm)/Au(50nm)/SiO2(150nm)を形成した構造である。図1(a)の素子同様、Auが良導電性金属層102であり、SiO2が界面層103である。比較例の素子と本発明の素子の大きな違いは、表面が凸状になっているか、平坦になっているかである。図示した素子の場合、凹部の側面に配置された導電性金属層102の最上面は、基板104の表面及び基板上に形成された界面層103とほぼ同じ高さである。平坦な面を持つ素子は、たとえば磁気記録媒体のように、磁気ヘッドと磁気媒体との距離が数nm程度ときわめて小さく、かつ正確に制御しなければならないケースでも、使用が可能である。光記録媒体に用いる場合、光記録媒体と素子との距離は磁気媒体のそれと比べ大きく数10nm以上ではあるが、その段差は用いる波長の分解能以下であることが望ましく、設計した深さの10%以下の段差であることが望ましい。 The element of the present invention shown in FIG. 1B has a structure in which Au (50 nm) / SiO 2 (50 nm) / Au (50 nm) / SiO 2 (150 nm) is formed in the concave portion of the substrate 104 having an uneven pattern. As in the device of FIG. 1A, Au is the highly conductive metal layer 102 and SiO 2 is the interface layer 103. The major difference between the device of the comparative example and the device of the present invention is whether the surface is convex or flat. In the case of the illustrated element, the uppermost surface of the conductive metal layer 102 disposed on the side surface of the recess is substantially the same height as the surface of the substrate 104 and the interface layer 103 formed on the substrate. An element having a flat surface can be used even in the case where the distance between the magnetic head and the magnetic medium is as small as several nanometers and must be accurately controlled, such as a magnetic recording medium. When used in an optical recording medium, the distance between the optical recording medium and the element is larger than that of a magnetic medium and is several tens of nanometers or more, but the step is preferably less than the resolution of the wavelength used, and is 10% of the designed depth. The following steps are desirable.
 その他、図2(a)に示すように良導電性金属材料が単層に形成されている構造や、図2(b)に示すように上部の界面層の無い構造、あるいは凹部と凸部に段差がある構造も形成できる。用途に応じて使い分ければよい。他の一例として、図2(c)(d)(e)(f)に形状の違う素子の断面図を示す。図2(c)は基板104に形成した凹部及びその上に界面層103を介して形成した良導電性金属層102の角が丸みを帯びている構造、図2(d)は断面U字状の良導電性金属層102の底部の膜厚が均一ではない構造、図2(e)は良導電性金属層102の断面形状がV字形である構造、図2(f)は良導電性金属層102が素子表面から一部突出している構造である。図2の各例では良導電層を1層の図としたが、もちろん2層、3層、4層でも構わない。図2(a)構造の素子の断面SEM写真を図2(g)に示す。図示してはいないが、この上にさらに保護層を形成するとなおよい。外部からの衝撃やゴミ、酸化などの化学変化を防ぐことができるし、設計パラメータとして保護膜の膜厚を調整することで目的の効果を高めることができる。また、図2(f)の構造の場合、良導電性金属が一部突出していることを利用するために保護膜を形成しない素子とすることができる。部分的に良導電性金属が露出していることで、その表面を伝導する電磁波を効果的に利用することができる。 In addition, as shown in FIG. 2 (a), a structure in which a highly conductive metal material is formed in a single layer, a structure without an upper interface layer as shown in FIG. 2 (b), or a recess and a protrusion A structure with a step can also be formed. What is necessary is just to use properly according to a use. As another example, FIGS. 2C, 2D, 2E, and 2F are cross-sectional views of elements having different shapes. FIG. 2C shows a structure in which the corners of the recesses formed in the substrate 104 and the good conductive metal layer 102 formed thereon via the interface layer 103 are rounded, and FIG. 2D shows a U-shaped cross section. FIG. 2 (e) shows a structure in which the cross-sectional shape of the good conductive metal layer 102 is V-shaped, and FIG. 2 (f) shows a good conductive metal. In this structure, the layer 102 partially protrudes from the element surface. In each example of FIG. 2, the good conductive layer is shown as a single layer, but of course two, three, or four layers may be used. FIG. 2G shows a cross-sectional SEM photograph of the element having the structure of FIG. Although not shown, it is more preferable that a protective layer is further formed thereon. Chemical changes such as external impact, dust, and oxidation can be prevented, and the target effect can be enhanced by adjusting the thickness of the protective film as a design parameter. In the case of the structure shown in FIG. 2F, an element in which a protective film is not formed can be used to utilize the fact that a part of the highly conductive metal protrudes. Since the highly conductive metal is partially exposed, the electromagnetic wave conducted on the surface can be effectively used.
 図3を用いて、屈折率制御のメカニズムを詳細に説明する。前述したとおり、本発明の素子は良導電体の周期構造によって透磁率(μ)を作り出すことで、人工的に屈折率を制御することができる。例えば非特許文献2のスプリット・リング共振器では、金属線でパターンニングされた波長よりも小さなサイズのハーフ・コイルの集合が、光波の振動電磁界に対するL(コイル)とC(コンデンサ)によるLC共振を利用して人工的に誘電率と透磁率を制御する働きを担っている。図3(a)の比較例の素子の場合、平板状の良導電性金属材料102が周期的に形成されていることで、入射光201に対し、良導電性金属材料間がコンデンサ202として作用する。一方、図3(b)に示すように凹凸を有する良導電性金属材料102を用いる素子では、良導電性金属膜の形状効果により、コンデンサ202の作用に加え、コイル203としても作用することになる。さらに図3(c)に示すように凹凸を有する良導電性金属材料102を多層構造とすることで、複数のコンデンサ202、複数のコイル203を作ることによって、LCの共振作用を増大させる構造にすることができる。コンデンサの強度は素子中の良導電性金属材料の周期と高さで変化し、透磁率(μ)はコイルの幅と高さで変化することから、素子の共振周波数は良導電性金属材料の周期、幅、高さ(深さ)を変えることで自由に設計でき、対象とする波長に応じた構造設計の自由度は極めて広い。 The mechanism of refractive index control will be described in detail with reference to FIG. As described above, the element of the present invention can artificially control the refractive index by creating magnetic permeability (μ) by the periodic structure of a good conductor. For example, in the split ring resonator disclosed in Non-Patent Document 2, a set of half coils having a size smaller than the wavelength patterned with a metal wire is an LC formed by L (coil) and C (capacitor) with respect to a vibration electromagnetic field of light waves. It is responsible for artificially controlling the permittivity and permeability using resonance. In the case of the element of the comparative example of FIG. 3A, the plate-shaped highly conductive metal material 102 is periodically formed, so that the gap between the highly conductive metal materials acts as a capacitor 202 with respect to the incident light 201. To do. On the other hand, in the element using the highly conductive metal material 102 having irregularities as shown in FIG. 3B, in addition to the function of the capacitor 202, it also functions as the coil 203 due to the shape effect of the highly conductive metal film. Become. Further, as shown in FIG. 3 (c), the highly conductive metal material 102 having irregularities has a multi-layer structure, thereby forming a plurality of capacitors 202 and a plurality of coils 203, thereby increasing the resonance action of the LC. can do. The strength of the capacitor varies with the period and height of the highly conductive metal material in the element, and the magnetic permeability (μ) varies with the width and height of the coil. It can be designed freely by changing the period, width, and height (depth), and the degree of freedom in structural design according to the target wavelength is extremely wide.
 また、凹凸パターンの周期的な配列例として、図4(a)に点在型のパターンを、図4(b)にライン型のパターン断面図を示す。また他の点在型配置例の平面図を、図4(c)(d)(e)(f)(g)(h)に示した。基板104上に、良導電性金属と界面層からなる素子401を図に示すようなパターン例で点在させた。どのパターンにおいても、良導電性金属材料の周期、幅、高さ(深さ)を変えることで対象とする波長に応じた設計が自由にできる。点在型パターンは、左右上下の素子間でもコンデンサ作用が働くので、より大きな効果が得られる。そのため、良導電体金属の膜厚を薄くでき、コスト面で有利である、多数の素子を平均的にみるため欠落に対するマージンが広くなり、製造面で有利である、効率が高くなることで小型化が可能などのメリットが期待できる。 Also, as an example of periodic arrangement of the uneven pattern, FIG. 4A shows a dotted pattern, and FIG. 4B shows a line pattern cross-sectional view. Moreover, the top view of the other example of a dotted type arrangement | positioning was shown to FIG.4 (c) (d) (e) (f) (g) (h). On the substrate 104, elements 401 made of a highly conductive metal and an interface layer are scattered in a pattern example as shown in the figure. In any pattern, the design corresponding to the target wavelength can be freely performed by changing the period, width, and height (depth) of the highly conductive metal material. Since the dotted pattern has a capacitor function even between the left, right, top and bottom elements, a greater effect can be obtained. For this reason, the thickness of the good conductor metal can be reduced, which is advantageous in terms of cost. Since a large number of elements are viewed on average, the margin for loss is widened, which is advantageous in terms of manufacturing. Which merits can be expected.
 図5に作製した2種類の素子の主に良導電性金属材料の断面形状を示し、図6にそれぞれの素子の透過率の波長依存性を測定した結果について示す。図5(a)は良導電性金属材料を平板状に形成した素子の断面構造を示し、良導電性金属材料の周期320nm、幅160nm、厚さ30nmである。図5(b)は基板凹凸パターンの凹部の側面と平面に良導電性材料を形成した素子の断面構造を示し、周期320nm、幅160nm、底面の厚さ30nm、底面の両脇から上方に延びる側面の幅20nm、凹部の高さ120nmである。ともに凹部の長さ方向の寸法は波長に比べて十分に大きい図4(b)に示すようなライン状のパターンとし、良導電性金属材料としてAuを用いた。Auの周りはSiO2膜である。図6中、ref.はガラス板上にAu膜を30nm製膜した試料の透過率波長依存性である。測定には偏光子(Glan Taylorプリズム、MGTYB20、ランバート製)を設置した日立製分光光度計(U4100)を用いた。素子501に対し垂直となる入射光502を、偏光503の向きが素子の表面と平行かつ、良導電性金属材料の長さ方向と垂直になるように照射した。 FIG. 5 shows the cross-sectional shape of the highly conductive metal material of the two types of devices produced, and FIG. 6 shows the results of measuring the wavelength dependence of the transmittance of each device. FIG. 5A shows a cross-sectional structure of an element in which a highly conductive metal material is formed in a flat plate shape, and the period of the highly conductive metal material is 320 nm, the width is 160 nm, and the thickness is 30 nm. FIG. 5B shows a cross-sectional structure of an element in which a highly conductive material is formed on the side surface and the plane of the concave portion of the substrate concave / convex pattern, with a period of 320 nm, a width of 160 nm, a bottom thickness of 30 nm, and extending upward from both sides of the bottom surface. The width of the side surface is 20 nm and the height of the recess is 120 nm. In both cases, the dimension in the length direction of the recesses was sufficiently large as compared with the wavelength, and a line pattern as shown in FIG. 4B was used, and Au was used as a highly conductive metal material. Around the Au is a SiO 2 film. In FIG. 6, ref. Is the transmittance wavelength dependency of a sample obtained by forming a 30 nm Au film on a glass plate. For the measurement, a Hitachi spectrophotometer (U4100) equipped with a polarizer (Glan Taylor prism, MGTYB20, manufactured by Lambert) was used. Incident light 502 perpendicular to the element 501 was irradiated so that the direction of the polarized light 503 was parallel to the surface of the element and perpendicular to the length direction of the highly conductive metal material.
 図6中、(a)は図5(a)に示す構造の素子の透過率波長依存性を示し、(b)は図5(b)に示す構造の素子の透過率波長依存性を示す。図5(a)に示す構造の素子は波長1500nm付近で最も高い透過率を示し、図5(b)に示す構造の素子ではそれよりも短波長である800nm付近で最も高い透過率を示した。それぞれの素子において、透過率波長依存性はref.で示した一様なAu膜に比べ大きく変化している。ガラス板に製膜した一様なAu膜に対し、Auをパターン化し、その形状、構造、周期を変えたことにより、波長によって異常透過率を示したこの現象は、光と素子の相互作用により人工的にLC共振が発生したことを表しており、屈折率が大きく変化している証拠である。つまり、本発明により小さなサイズのコイルが形成可能となり、屈折率を人工的に制御することで様々な素子への応用が実現できることを示している。 6A shows the transmittance wavelength dependence of the element having the structure shown in FIG. 5A, and FIG. 6B shows the transmittance wavelength dependence of the element having the structure shown in FIG. 5B. The element having the structure shown in FIG. 5A showed the highest transmittance around the wavelength of 1500 nm, and the element shown in FIG. 5B showed the highest transmittance around 800 nm, which is a shorter wavelength. . In each element, the transmittance wavelength dependency is greatly changed compared to the uniform Au film shown by ref. This phenomenon, which shows anomalous transmittance depending on the wavelength, by patterning Au and changing its shape, structure, and period to a uniform Au film formed on a glass plate, is due to the interaction between light and elements. This indicates that LC resonance was artificially generated, which is evidence that the refractive index has changed greatly. That is, it is shown that a small-sized coil can be formed by the present invention, and application to various elements can be realized by artificially controlling the refractive index.
 次に、素子の形状を変えて、透過率の波長依存性を調べた。図7に示すように、良導電性金属材料が形成される凹部の周期320nm、幅160nm、底面の厚さ30nm、底面の両脇から上方に延びる側面の幅20nmを同じにして、凹部の高さhを変えた素子を作製し、透過率の波長依存性を測定した。後述するが、凹部の高さは、基板の凹凸パターンの母型となる原盤を作製する際のRIE処理時間を調整することで簡単に変えることができる。凹部の高さは60nm、90nm、120nm、150nmの4種類のものを作製した。いずれも凹部の長さ方向の寸法は、波長に比べて十分に大きい図4(b)に示すようなライン状のパターンとし、良導電性金属材料としてAuを用いた。Auの周りはSiO2膜である。図中、ref.はガラス板上にAu膜を30nm製膜した試料の透過率波長依存性である。幅に対する高さの比は順に、0.37、0.56、0.75、0.93となる。 Next, the shape of the element was changed, and the wavelength dependency of the transmittance was examined. As shown in FIG. 7, the period of the recesses in which the highly conductive metal material is formed is 320 nm, the width is 160 nm, the thickness of the bottom surface is 30 nm, and the width of the side surface extending upward from both sides of the bottom surface is 20 nm. Devices with different lengths h were fabricated, and the wavelength dependence of transmittance was measured. As will be described later, the height of the concave portion can be easily changed by adjusting the RIE processing time when producing a master serving as a matrix of the concave / convex pattern of the substrate. Four types of recesses having a height of 60 nm, 90 nm, 120 nm, and 150 nm were prepared. In all cases, the dimension in the length direction of the concave portion was a linear pattern as shown in FIG. 4B, which was sufficiently larger than the wavelength, and Au was used as a highly conductive metal material. Around the Au is a SiO 2 film. In the figure, ref. Is the transmittance wavelength dependency of a sample obtained by forming a 30 nm Au film on a glass plate. The ratio of height to width is 0.37, 0.56, 0.75, and 0.93 in this order.
 図7から、凹部の高さが大きくなるに従い透過率が高くなるピークの波長が長波長側にシフトし、ピークの透過率が変化している。凹部の高さ90nm、120nm、150nmで透過率の変化が大きく、効果を確認できた。凹部の高さ120nm、150nmでは透過率のピーク形状がよりシャープで効率が良い。凹部の幅に対する高さの比が1程度でも十分に効果が得られることが確認できた。凹パターン及び良導電体金属材料の形成プロセスとしては幅に対する高さの比を2程度にすることも可能だが、凹凸パターンを基板に転写する際の安定性を考えると幅に対する高さの比は1程度が好ましい。幅に対する高さの比を変えることはスパッタ時の製膜条件によっても変更可能である。例えば、斜め方向からの製膜では凹部底面への製膜よりも凹部側面への製膜がより進むためである。 From FIG. 7, the peak wavelength at which the transmittance increases as the height of the concave portion increases, shifts to the longer wavelength side, and the peak transmittance changes. The change in transmittance was large at the heights of the recesses of 90 nm, 120 nm, and 150 nm, confirming the effect. When the height of the recess is 120 nm or 150 nm, the peak shape of the transmittance is sharper and more efficient. It was confirmed that a sufficient effect was obtained even when the ratio of the height to the width of the recess was about 1. Although the ratio of height to width can be reduced to about 2 as the formation process of the concave pattern and the good conductive metal material, the ratio of height to width is considered when considering the stability when transferring the uneven pattern to the substrate. About 1 is preferable. Changing the ratio of height to width can also be changed depending on the film forming conditions during sputtering. This is because, for example, in the case of film formation from an oblique direction, the film formation on the side surface of the recess proceeds more than the film formation on the bottom surface of the recess.
 図8に示すように、良導電性金属材料が形成される凹部の周期320nm、幅160nm、厚さ30nm、高さ120nmを同じにして、側面の幅dを変えた素子を作製し、透過率の波長依存性を測定した。前述したように良導電性金属材料の製膜条件によって側面の幅を制御することができる。側面の幅が10nm、20nm、60nmとなるように素子を作製した。いずれも凹部の長さ方向の寸法は、波長に比べて十分に大きい図4(b)に示すようなライン状のパターンとし、良導電性金属材料としてAuを用いた。Auの周りはSiO2膜である。図中、ref.はガラス板上にAu膜を30nm製膜した試料の透過率波長依存性である。凹部底面の厚さに対する側面の幅の比はそれぞれ0.33,0.66,2.00となる。図8からわかるように、全ての条件において透過率変化が大きく良好な効果を確認できた。 As shown in FIG. 8, an element in which the width d of the side surface is changed while the period 320 nm, the width 160 nm, the thickness 30 nm, and the height 120 nm of the recesses in which the highly conductive metal material is formed is the same is manufactured. The wavelength dependence of was measured. As described above, the width of the side surface can be controlled by the film forming conditions of the highly conductive metal material. The device was fabricated so that the side widths were 10 nm, 20 nm, and 60 nm. In all cases, the dimension in the length direction of the concave portion was a linear pattern as shown in FIG. 4B, which was sufficiently larger than the wavelength, and Au was used as a highly conductive metal material. Around the Au is a SiO 2 film. In the figure, ref. Is the transmittance wavelength dependency of a sample obtained by forming a 30 nm Au film on a glass plate. The ratio of the width of the side surface to the thickness of the bottom surface of the recess is 0.33, 0.66, and 2.00, respectively. As can be seen from FIG. 8, the transmittance change was large under all conditions, and a good effect could be confirmed.
 次に、素子の形成フローを図9に示す。まず母型となる原盤の凹凸パターンを形成する(S11)。次に、この原盤をもとにスタンパを作製し(S12)、射出成型法などにより凹凸パターンを転写した基板を複数枚作製する(S13)。凹凸パターン付基板に、スパッタなどにより少なくとも良導電性金属材料を製膜する(S14)。その後、凹凸パターンのうち凸部分(平坦部)の膜を除去するための加工を行う(S15)ことで、所望の形状を持つ人工構造物質素子が得られる。 Next, an element formation flow is shown in FIG. First, a concave / convex pattern of a master serving as a mother mold is formed (S11). Next, a stamper is produced based on this master (S12), and a plurality of substrates to which the concavo-convex pattern is transferred by an injection molding method or the like are produced (S13). At least a highly conductive metal material is formed on the substrate with an uneven pattern by sputtering or the like (S14). After that, by performing a process for removing the film of the convex part (flat part) in the concavo-convex pattern (S15), an artificial structure material element having a desired shape is obtained.
 母型となる原盤及びNiスタンパの形成方法について、図10を用いて説明する。6mm厚の石英ガラス板701上にレジスト702を塗布し(図10(a))、電子線(EB)703によりパターンを描画する(図10(b))。その後、現像し(図10(c))、反応性イオンエッチング(RIE)704を行うことにより(図10(d))、EB描画に対応した凹凸パターンが石英基板上に形成され、これが原盤705となる(図10(e))。その後、原盤にNi蒸着及びNiメッキを施し、原盤の凹凸パターンを転写したNiスタンパ706を作製した(図10(f))。原盤は石英ガラス板に代えて、Si基板、半導体、樹脂など他の材料により作製しても構わない。また、EBに代えて、光リソグラフィー、イオンビームリソグラフィー(IBL)、集束イオンビーム(FIB)加工、相変化エッチングなどの微細加工技術を応用したものでも構わない。原盤から複数枚のNiスタンパを作製することも可能であるし、Niスタンパ1枚から射出成型により大量のパターン転写基板を作製できることから、原盤1枚にかかる作製時間は長くても構わない。 A method for forming a master and a Ni stamper as a mother mold will be described with reference to FIG. A resist 702 is applied onto a 6 mm thick quartz glass plate 701 (FIG. 10A), and a pattern is drawn with an electron beam (EB) 703 (FIG. 10B). Thereafter, development is performed (FIG. 10C), and reactive ion etching (RIE) 704 is performed (FIG. 10D), so that a concavo-convex pattern corresponding to EB drawing is formed on the quartz substrate. (FIG. 10E). Thereafter, Ni vapor deposition and Ni plating were performed on the master, and a Ni stamper 706 to which the concave / convex pattern of the master was transferred was produced (FIG. 10 (f)). The master may be made of another material such as a Si substrate, a semiconductor, or a resin instead of the quartz glass plate. Further, instead of EB, a fine processing technique such as photolithography, ion beam lithography (IBL), focused ion beam (FIB) processing, phase change etching, or the like may be applied. It is possible to manufacture a plurality of Ni stampers from the master, and a large amount of pattern transfer substrate can be manufactured from one Ni stamper by injection molding. Therefore, the manufacturing time for one master may be long.
 図11に、素子形成方法を示す。射出成型により凹凸パターン付プラスチック基板901を作製し(図11(a))、スパッタリング法により界面層103としてSiO2を10nm、図示は省略したが接着層としてMoを2nm製膜し、その上に良導電性金属膜102としてAuを30nm製膜した(図11(b))。本実施例では光ディスク基板用の射出成型機を流用し、外径φ120mm、厚さ1.1mmのポリカーボネート基板を用いた。製膜方法としては、スパッタリング法に代えて、蒸着法、指向性CVD法でも構わない。プラスチック材料としては、ポリカーボネートの代わりにポリオレフィンなど他の材料でも構わない。その後、図11(c)に示すように化学的機械的研磨(CMP)を行い、凹凸パターンの凸部にある良導電性金属膜を除去すると、図11(d)に示す構造の人工構造物質素子501ができた。 FIG. 11 shows an element forming method. A plastic substrate 901 with a concavo-convex pattern was produced by injection molding (FIG. 11A), and SiO 2 was deposited to 10 nm as the interface layer 103 by sputtering, and Mo was deposited to 2 nm as an adhesive layer although not shown. Au was deposited to a thickness of 30 nm as the highly conductive metal film 102 (FIG. 11B). In this example, an optical disk substrate injection molding machine was used, and a polycarbonate substrate having an outer diameter of 120 mm and a thickness of 1.1 mm was used. As a film forming method, a vapor deposition method or a directional CVD method may be used instead of the sputtering method. As the plastic material, other materials such as polyolefin may be used instead of polycarbonate. Thereafter, chemical mechanical polishing (CMP) is performed as shown in FIG. 11C to remove the highly conductive metal film on the convex portion of the concavo-convex pattern, whereby the artificial structure material having the structure shown in FIG. An element 501 was completed.
 CMP処理は、半導体プロセスにおいて既に広く使用されている量産プロセスである。CMP処理の際のスラリー902にはMH814(CABOT製)を、研磨パッド903にはSUPLEME RN-H(ニッタハース社製)を用い、プラスチック基板のCMP用に開発した装置を用いて研磨を行った。プラスチック基板は傷が付きやすい上、基板自体がもつ表面のうねりなどの影響からCMPプロセスには工夫が必要であり、特に、研磨ヘッドの大きさ、形状、研磨時の加重については、一般的な半導体プロセスとの違いが大きい。例えば半導体プロセスでは、平坦性や研磨レートを向上させるために荷重をかけるが、柔らかいプラスチック基板の場合に同様に荷重をかけると多数の傷が生じた。また、研磨パッドは、面積を大きくすると基板のうねりに対応できないため不適であり、研磨パッドは研摩基材よりも小さくすることが好ましかった。研磨時間を短くするために研磨ヘッドを複数設置した。また、予め形成した凹凸パターンへの製膜は、膜を厚くすると図14(a)から14(c)に示すようにパターン形状が変化してしまうため、膜厚は数十nm程度が望ましく、当然除去する膜厚も数十nmとなり、薄膜除去を精度良くコントロールしなければならない。研磨時に荷重をかけすぎると傷の発生に加え、研磨マージンが狭くコントロールし難いため、加圧は1.0g/mm2~3.0g/mm2の範囲で行った。研磨剤であるスラリーや研磨パッドの選択は除去する材料によって決める必要があり、この点は半導体プロセス等と同様である。 The CMP process is a mass production process that is already widely used in semiconductor processes. Polishing was performed using an apparatus developed for CMP of a plastic substrate using MH814 (manufactured by CABOT) as the slurry 902 in the CMP process and SUPERME RN-H (manufactured by Nitta Haas) as the polishing pad 903. The plastic substrate is easily scratched and the CMP process needs to be devised due to the influence of the surface waviness of the substrate itself. In particular, the size and shape of the polishing head and the weight during polishing are common. The difference with the semiconductor process is large. For example, in the semiconductor process, a load is applied to improve the flatness and the polishing rate. However, in the case of a soft plastic substrate, when the load is applied in the same manner, many scratches are generated. Further, the polishing pad is unsuitable because it cannot cope with the waviness of the substrate if the area is increased, and it was preferable to make the polishing pad smaller than the polishing base material. A plurality of polishing heads were installed to shorten the polishing time. In addition, when the film is formed on the concavo-convex pattern formed in advance, since the pattern shape changes as shown in FIGS. 14A to 14C when the film is thickened, the film thickness is preferably about several tens of nm. Naturally, the film thickness to be removed is several tens of nm, and the removal of the thin film must be controlled with high accuracy. If a load is excessively applied during polishing, scratches are generated and the polishing margin is narrow and difficult to control, so pressurization was performed in the range of 1.0 g / mm 2 to 3.0 g / mm 2 . The selection of the slurry or polishing pad as the abrasive must be determined by the material to be removed, and this is the same as in the semiconductor process and the like.
 多層構造を作製する方法の一例として、図12に2層構造の形成方法を、図13に3層構造の形成方法を示す。2層構造の人工構造物質素子の形成にあたっては、図12(a)に示すように、図11に示す工程によって作製された1層構造の人工構造物質素子501の上に2層目のパターン904を形成し、その上に図11(b)と同様の工程で界面層103と導電性金属膜102を製膜する(図12(a))。次に、図11(c)と同様に化学的機械的研磨(CMP)を行い、凹凸パターンの凸部にある良導電性金属膜を除去する(図12(b))。こうして、図12(c)に示す2層構造の人工構造物質素子905ができた。3層構造の人工構造物質素子の形成にあたっては、図13(a)に示すように、図12の工程によって作製された2層構造の人工構造物質素子905の上に3層目のパターン906を形成し、その上に図11(b)と同様の工程で界面層103と導電性金属膜102を製膜する(図13(a))。次に、図11(c)と同様に化学的機械的研磨(CMP)を行い、凹凸パターンの凸部にある良導電性金属膜を除去する(図13(b))。こうして、図13(c)に示す3層構造の人工構造物質素子907ができた。 As an example of a method for producing a multilayer structure, FIG. 12 shows a two-layer structure forming method, and FIG. 13 shows a three-layer structure forming method. In forming a two-layer artificial material element, as shown in FIG. 12A, a second-layer pattern 904 is formed on the one-layer artificial material element 501 produced by the process shown in FIG. Then, the interface layer 103 and the conductive metal film 102 are formed thereon by the same process as in FIG. 11B (FIG. 12A). Next, chemical mechanical polishing (CMP) is performed in the same manner as in FIG. 11C to remove the highly conductive metal film on the convex portions of the concavo-convex pattern (FIG. 12B). In this way, the artificial structure material element 905 having a two-layer structure shown in FIG. In forming the three-layer artificial material element, as shown in FIG. 13A, a third-layer pattern 906 is formed on the two-layer artificial material element 905 produced by the process of FIG. Then, the interface layer 103 and the conductive metal film 102 are formed thereon by the same process as in FIG. 11B (FIG. 13A). Next, chemical mechanical polishing (CMP) is performed in the same manner as in FIG. 11C to remove the highly conductive metal film on the convex portions of the concavo-convex pattern (FIG. 13B). Thus, a three-layer artificial structure material element 907 shown in FIG.
 凹凸パターンを転写する方法として、射出成型に代えてインプリント法でも構わない。図15(a)に示すように、素子の基材としてガラス基板121を用い、ガラス基板121とNiスタンパ706の間に紫外線硬化樹脂(DVD-003N、日本化薬製)122を密着させて挟み、図15(b)に示すように紫外線(500mJ/cm2)123を照射した後にNiスタンパと紫外線硬化樹脂の間で剥離すると、Niスタンパのパターンが転写された基板124となる(図15(c))。Niスタンパは紫外線を透過しないため、紫外線照射はガラス基板121及び紫外線硬化樹脂122側から行う。インプリント法の場合は、母型としてNiスタンパの代わりにSi基板や石英基板、樹脂などに凹凸パターンを形成し、母型にすることが可能である。 As a method for transferring the concavo-convex pattern, an imprint method may be used instead of injection molding. As shown in FIG. 15A, a glass substrate 121 is used as a base material of the element, and an ultraviolet curable resin (DVD-003N, manufactured by Nippon Kayaku Co., Ltd.) 122 is placed between the glass substrate 121 and the Ni stamper 706 in close contact. As shown in FIG. 15 (b), after irradiating ultraviolet rays (500 mJ / cm 2 ) 123 after peeling between the Ni stamper and the ultraviolet curable resin, the substrate 124 onto which the Ni stamper pattern has been transferred is obtained (FIG. 15 ( c)). Since the Ni stamper does not transmit ultraviolet rays, ultraviolet irradiation is performed from the glass substrate 121 and the ultraviolet curable resin 122 side. In the case of the imprint method, a concave / convex pattern can be formed on a Si substrate, a quartz substrate, a resin, or the like instead of the Ni stamper as a mother die to make a mother die.
 射出成型は高温、高圧力のプロセスであるためスタンパ材が限られるが、インプリント法は高温にはならず、圧力も低いため、スタンパ材の選択肢は格段に広い。紫外線硬化樹脂としていわゆるSOGを用いると、硬度が高くCMPのストッパーとしての機能も持ち合わせ、傷の発生を防ぐことからなおよい。SOGは層間絶縁膜として半導体産業において広く使用されている材料である。また、紫外線硬化樹脂やSOGなどの光硬化性の材料に代えて、熱硬化性樹脂、嫌気性樹脂など他の樹脂でも構わない。母型との剥離性、素子基材との接着性から適したものを選択すればよく、パターンの転写性に優れたものを選べばよい。素子基材としてガラス基板を用いると平坦性に優れているためより好ましいが、コスト面からプラスチック基板を用いても同様に作製できる。プラスチック基板を用いる場合は、キャスト法で形成した基板とする方が平坦性の上から好ましい。 The stamper material is limited because injection molding is a high-temperature and high-pressure process, but the imprint method does not reach a high temperature and the pressure is low, so the choice of stamper material is much wider. If so-called SOG is used as the UV curable resin, it is more preferable because it has a high hardness and also functions as a CMP stopper, thereby preventing the occurrence of scratches. SOG is a material widely used in the semiconductor industry as an interlayer insulating film. Moreover, it may replace with photocurable materials, such as ultraviolet curable resin and SOG, and other resin, such as a thermosetting resin and anaerobic resin, may be sufficient. What is necessary is just to select what was suitable from the peelability from a mother mold | type, and adhesiveness with an element base material, and what was excellent in the pattern transferability should just be selected. When a glass substrate is used as the element substrate, it is more preferable because it is excellent in flatness, but it can be similarly manufactured by using a plastic substrate from the viewpoint of cost. In the case of using a plastic substrate, it is preferable from the viewpoint of flatness to use a substrate formed by a casting method.
 また、プラスチック材への直接転写でも構わない。図16に一例を示す。100μm厚のシート状ポリカーボネートを基材として用いた。ポリカーボネートシート131をNiスタンパ706と重ね合わせた。その際に加熱機能を持つローラー132で加圧すると、加熱によりポリカーボネートシートが軟化する。軟化したポリカーボネートはNiスタンパの凹凸パターンに充填し、シートが冷めた後に剥離することで凹凸パターンが表面に転写されたポリカーボネートシート133が作製できた。金属母型であるNiスタンパを予め加熱しておくと、軟化が早くなるため、充填にかかる時間を短くすることができた。転写についても良好であった。このように作製したシートの凹凸パターンにSiO2(10nm)、Cu(30nm)、SiO2(10nm)を順次製膜し、CMP処理を行った。シート状基板の場合、その作製プロセス上、シート厚のムラは±1μm以下と小さい。そのため平坦性に依存するCMPの研磨ムラが生じにくく、加圧、回転数などのCMPのプロセスマージンが広がる効果があった。但し、シート下の保持台の形状に沿うため、傷やゴミなどの影響を受けやすい上、加圧し過ぎるとシートが捩れるという新たな問題も生じた。 Alternatively, direct transfer to a plastic material may be used. An example is shown in FIG. A sheet-like polycarbonate having a thickness of 100 μm was used as a substrate. A polycarbonate sheet 131 was superposed on the Ni stamper 706. At that time, when the pressure is applied by the roller 132 having a heating function, the polycarbonate sheet is softened by the heating. The softened polycarbonate was filled in the concave / convex pattern of the Ni stamper and peeled after the sheet was cooled, whereby a polycarbonate sheet 133 having the concave / convex pattern transferred to the surface could be produced. When the Ni stamper, which is a metal matrix, is heated in advance, the time required for filling can be shortened because the softening is accelerated. The transfer was also good. SiO 2 (10 nm), Cu (30 nm), and SiO 2 (10 nm) were sequentially formed on the uneven pattern of the sheet thus prepared, and CMP treatment was performed. In the case of a sheet-like substrate, the unevenness of the sheet thickness is as small as ± 1 μm or less due to the manufacturing process. Therefore, CMP unevenness depending on the flatness is less likely to occur, and the CMP process margin such as pressurization and rotation speed is increased. However, since it follows the shape of the holding table under the sheet, it is easily affected by scratches and dust, and a new problem arises that the sheet is twisted if it is pressurized too much.
 シートに形成した凹凸パターンを用いて人工構造物質素子を形成すると、薄く柔軟であることが利点となって、応用範囲がさらに広がる。予めシートに素子を形成しておき、所望の大きさに切断して用途に応じた基材に貼り合せる、貼り付けることが可能となるからである。 When an artificial structure material element is formed using a concavo-convex pattern formed on a sheet, it has the advantage of being thin and flexible, further expanding the application range. This is because it is possible to affix an element formed in advance on a sheet, cut into a desired size, and bonded to a substrate according to the application.
 また、2層目のパターン904および3層目のパターン906の形成もインプリント法で形成できる。1層構造の人工構造物質素子501とNiスタンパの間に紫外線硬化樹脂(DVD-003N、日本化薬製)を密着させて挟み、紫外線(500mJ/cm2)を照射した後にNiスタンパと紫外線硬化樹脂の間で剥離すると、Niスタンパのパターンが転写された2層目のパターン904となる。Niスタンパは紫外線を透過しないため、紫外線照射は人工構造物質素子側から行う。素子の良導電性金属部分は不透明であるが硬化用の紫外線はそれほど指向性が高くなく光が広がるため硬化させることはできる。しかしながらNiスタンパの変わりに透明な石英基板、樹脂などに凹凸パターンを形成し、母型(スタンパ)とした方がスタンパ側からの紫外線照射が可能となりより望ましい。紫外線硬化樹脂としていわゆるSOGを用いると、硬度が高くCMPのストッパーとしての機能も持ち合わせ、傷の発生を防ぐことからなおよい。また、紫外線硬化樹脂やSOGなどの光硬化性の材料に代えて、熱硬化性樹脂、嫌気性樹脂など他の樹脂でも構わない。母型との剥離性、素子表面との接着性から適したものを選択すればよく、パターンの転写性に優れたものを選べばよい。 The second layer pattern 904 and the third layer pattern 906 can also be formed by an imprint method. An ultraviolet curable resin (DVD-003N, manufactured by Nippon Kayaku Co., Ltd.) is placed in close contact between the artificial structure material element 501 having a single layer structure and the Ni stamper, irradiated with ultraviolet rays (500 mJ / cm 2 ), and then cured with the Ni stamper and ultraviolet rays. When peeling between the resins, the pattern of the Ni stamper is transferred to the second layer pattern 904. Since the Ni stamper does not transmit ultraviolet rays, ultraviolet irradiation is performed from the artificial structure material element side. The highly conductive metal portion of the element is opaque, but the curing ultraviolet rays are not so directional and the light spreads so that it can be cured. However, it is more preferable to form a concave / convex pattern on a transparent quartz substrate, resin, etc. instead of the Ni stamper, and use it as a mother die (stamper) because ultraviolet irradiation from the stamper side is possible. If so-called SOG is used as the UV curable resin, it is more preferable because it has a high hardness and also functions as a CMP stopper, thereby preventing the occurrence of scratches. Moreover, it may replace with photocurable materials, such as ultraviolet curable resin and SOG, and other resin, such as a thermosetting resin and anaerobic resin, may be sufficient. What is necessary is just to select what was suitable from the peelability from a mother mold | type, and adhesiveness with the element surface, and what was excellent in the pattern transferability should just be chosen.
 また、プラスチック材へパターンを直接転写したシート状ポリカーボネートを1層構造の素子上に貼り合せても良い。この場合はパターン付シートを貼り合せた後に製膜およびCMP加工をしても良いし、パターン付シートに製膜およびCMP加工を施した後に貼りつけても良い。 Also, a sheet-like polycarbonate having a pattern directly transferred to a plastic material may be bonded onto a single-layer element. In this case, the film formation and the CMP process may be performed after the patterned sheet is bonded, or may be applied after the film formation and the CMP process are performed on the patterned sheet.
 多層構造の場合にはその層間は使用する波長の10倍以下であることが望ましい。本発明は多層構造にすることにより、良導電性金属材料の実質的なボリュームが増し、効果(変化)が増大することを目的としている。通常波長の10倍以上離れているとファーフィールドと呼ばれ、例えば離れたA層とB層のものはそれぞれが1倍の効果しか生じない。波長の10倍以下とすることでA層とB層の間でさらにプラスの効果が生まれ、2.1倍以上の効果を得られる。波長の10倍以上離して形成したものは、本発明に記載した単層の素子を多数並べただけにすぎない。 In the case of a multilayer structure, it is desirable that the interlayer be 10 times or less the wavelength used. The object of the present invention is to increase the substantial volume of the highly conductive metal material and increase the effect (change) by employing a multilayer structure. When the distance is more than 10 times the normal wavelength, it is called a far field. For example, the separated A layer and B layer have only one effect. By setting the wavelength to 10 times or less, a further positive effect is produced between the A layer and the B layer, and an effect of 2.1 times or more can be obtained. What is formed at a distance of 10 times or more of the wavelength is merely a large number of single-layer devices described in the present invention.
 層間が厚い場合、あらかじめ厚み精度の良いシートを利用することで容易に形成することができた。層間を薄くした場合、1μm(バラツキ±0.4μm)程度まで作製することは容易であったが、0.1μmを作製することは難しかった。 When the interlayer was thick, it could be easily formed by using a sheet with good thickness accuracy in advance. When the interlayer was thinned, it was easy to produce up to about 1 μm (variation ± 0.4 μm), but it was difficult to produce 0.1 μm.
 良導電性金属膜としてはAuの他に、Ag,Cu,Al,Ptのそれぞれにおいても同様の素子を形成し、同様の効果を得ることができた。 As a good conductive metal film, the same element was formed in each of Ag, Cu, Al, and Pt in addition to Au, and the same effect could be obtained.
 良導電性金属材料としてAg,Alを用いた場合、CMPレートがAuに比べ高く、処理時間が短時間ですんだ。Auを用いた場合と同様に、スラリーとしてMH814を、研磨パッドにSUPREME RN-Hを用いてCMP処理を行った。CMP条件なども同様にした。 When Ag or Al is used as a good conductive metal material, the CMP rate is higher than that of Au and the processing time is short. As in the case of using Au, CMP treatment was performed using MH814 as a slurry and SUPREME RN-H as a polishing pad. The CMP conditions were the same.
 良導電性金属材料としてCuを用いた場合、CMPレートがAgに比べ高く処理時間がさらに短時間であった。Au,Cuを用いた場合と同様にスラリーとしてMH814を、研磨パッドにSUPREME RN-Hを用いてCMP処理を行った。CMP条件なども同様にした。Cuの場合、MH814スラリーに代え、ST-S(日産化学製)やHS8005(日立化成製)のスラリーでも同様に素子を形成できた。 When Cu was used as the good conductive metal material, the CMP rate was higher than that of Ag, and the processing time was even shorter. As in the case of using Au and Cu, CMP treatment was performed using MH814 as a slurry and SUPREME RN-H as a polishing pad. The CMP conditions were the same. In the case of Cu, instead of MH814 slurry, an element could be similarly formed using ST-S (Nissan Chemical) or HS8005 (Hitachi Chemical) slurry.
 Ag,Cu,Alについては、CMPによる化学反応による膜表面の酸化を防ぐために界面層で挟む構造とした。 Ag, Cu, and Al have a structure sandwiched between interface layers to prevent oxidation of the film surface due to chemical reaction by CMP.

Claims (13)

  1.  基板と、前記基板に対して周期的に配置された導電性材料を有し、入射電磁場に対する応答の波長依存性を制御する人工構造物質素子において、
     前記基板は周期的に設けられた複数の凹部を有し、前記導電性材料は前記複数の凹部の側面及び底面に直接あるいは界面層を介して凹形状に配置されていることを特徴とする人工構造物質素子。
    In an artificial structure material element having a substrate and a conductive material periodically arranged with respect to the substrate and controlling the wavelength dependence of the response to an incident electromagnetic field,
    The substrate has a plurality of concave portions provided periodically, and the conductive material is disposed in a concave shape directly or via an interface layer on a side surface and a bottom surface of the plurality of concave portions. Structural material element.
  2.  請求項1記載の人工構造物質素子において、前記導電性材料は絶縁層を介して2層以上に積層された多層構造を有することを特徴とする人工構造物質素子。 2. The artificial structure material element according to claim 1, wherein the conductive material has a multilayer structure in which two or more layers are laminated via an insulating layer.
  3.  請求項1記載の人工構造物質素子において、前記導電性材料が周期的に配置された前記基板が複数積層された構造を有することを特徴とする人工構造物質素子。 2. The artificial structure material element according to claim 1, wherein the artificial structure material element has a structure in which a plurality of the substrates on which the conductive material is periodically arranged are stacked.
  4.  請求項1記載の人工構造物質素子において、前記凹部は一次元アレイ状に周期的に配置されていることを特徴とする人工構造物質素子。 2. The artificial structure material element according to claim 1, wherein the recesses are periodically arranged in a one-dimensional array.
  5.  請求項1記載の人工構造物質素子において、前記凹部は二次元アレイ状に周期的に配置されていることを特徴とする人工構造物質素子。 2. The artificial structure material element according to claim 1, wherein the recesses are periodically arranged in a two-dimensional array.
  6.  請求項1記載の人工構造物質素子において、前記凹部の側面に配置された前記導電性材料の厚さd1と、前記凹部の底面に配置された前記導電性材料の厚さd2が次の関係
       0.5≦d2/d1≦2
    を満たすことを特徴とする人工構造物質素子。
    The artificial structure substance element according to claim 1, wherein the thickness d1 of the conductive material disposed on the side surface of the recess and the thickness d2 of the conductive material disposed on the bottom surface of the recess have the following relationship: .5 ≦ d2 / d1 ≦ 2
    An artificial structure material element characterized by satisfying
  7.  請求項1記載の人工構造物質素子において、前記基板の屈折率がn、前記応答の波長依存性を制御すべき中心波長がλであるとき、前記周期的に配置された複数の凹部の周期、深さ、幅は、それぞれλ/n以下であることを特徴とする人工構造物質素子。 The artificial structure material element according to claim 1, wherein when the refractive index of the substrate is n and the central wavelength at which the wavelength dependence of the response is to be controlled is λ, the period of the plurality of concave portions arranged periodically, An artificial structure material element characterized in that the depth and width are each λ / n or less.
  8.  請求項1記載の人工構造物質素子において、前記凹部の側面に配置された導電性材料の最上面は、前記基板表面あるいは前記基板上に形成された界面層とほぼ同じ高さであることを特徴とする人工構造物質素子。 2. The artificial structure element according to claim 1, wherein an uppermost surface of the conductive material disposed on a side surface of the recess is substantially the same height as the substrate surface or an interface layer formed on the substrate. An artificial structure material element.
  9.  請求項1記載の人工構造物質素子において、前記導電性材料は、Au,Ag,Cu,Al,Ptの少なくとも一つを含むことを特徴とする人工構造物質素子。 2. The artificial structure material element according to claim 1, wherein the conductive material includes at least one of Au, Ag, Cu, Al, and Pt.
  10.  請求項1記載の人工構造物質素子において、前記基板は光学的に透明であることを特徴とする人工構造物質素子。 2. The artificial structure material element according to claim 1, wherein the substrate is optically transparent.
  11.  基板に周期的に設けられた複数の凹部の側面及び底面に直接あるいは界面層を介して導電性材料が形成された構造を有し、入射電磁場に対する応答の波長依存性を制御できる人工構造物質素子の製造方法であって、
     基板に周期的に配置された複数の凹部を形成する工程と、
     前記基板上に導電性材料を製膜する工程と、
     前記凹部からはみ出た前記導電性材料を化学的機械的研磨によって除去する工程と
    を有することを特徴とする人工構造物質素子の製造方法。
    Artificial structure element that has a structure in which a conductive material is formed directly or via an interface layer on the side and bottom surfaces of a plurality of recesses provided periodically on a substrate and can control the wavelength dependence of the response to an incident electromagnetic field A manufacturing method of
    Forming a plurality of recesses periodically disposed on the substrate;
    Forming a conductive material on the substrate;
    And a step of removing the conductive material protruding from the recess by chemical mechanical polishing.
  12.  請求項11記載の人工構造物質素子の製造方法において、前記基板の母型となる原盤の凹凸パターンを電子線露光で形成することを特徴とする人工構造物質素子の製造方法。 12. The method for manufacturing an artificial structure material element according to claim 11, wherein the concave / convex pattern of the master serving as a matrix of the substrate is formed by electron beam exposure.
  13.  請求項11記載の人工構造物質素子の製造方法において、前記基板に周期的に配置された複数の凹部を形成する工程は、凹凸パターンを光転写性樹脂又は熱転写性樹脂で転写して、あるいは射出成型で転写形成することを特徴とする人工構造物質素子の製造方法。 12. The method of manufacturing an artificial structure material element according to claim 11, wherein the step of forming the plurality of recesses periodically arranged on the substrate is performed by transferring the concavo-convex pattern with a light transfer resin or a heat transfer resin, or by injection. A method for producing an artificial structure material element, wherein transfer forming is performed by molding.
PCT/JP2009/057314 2008-04-11 2009-04-10 Artificial structural material element and method of manufacturing the same WO2009125827A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010507274A JP5366933B2 (en) 2008-04-11 2009-04-10 Artificial structure material element and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008103098 2008-04-11
JP2008-103098 2008-04-11

Publications (1)

Publication Number Publication Date
WO2009125827A1 true WO2009125827A1 (en) 2009-10-15

Family

ID=41161958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057314 WO2009125827A1 (en) 2008-04-11 2009-04-10 Artificial structural material element and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JP5366933B2 (en)
WO (1) WO2009125827A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013134350A (en) * 2011-12-26 2013-07-08 Asahi Glass Co Ltd Manufacturing method of meta-material and meta-material
JPWO2012008551A1 (en) * 2010-07-15 2013-09-09 旭硝子株式会社 Metamaterial manufacturing method and metamaterial
US8891168B2 (en) 2009-10-07 2014-11-18 Hitachi, Ltd. Optical element and optical apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006055798A1 (en) * 2004-11-19 2006-05-26 Hewlett-Packard Development Company, L.P. Composite material with controllable resonant cells
JP2006210866A (en) * 2005-01-28 2006-08-10 Samsung Electro Mech Co Ltd Method of manufacturing printed circuit board

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050327A (en) * 2001-05-31 2003-02-21 Hoya Corp Optical waveguide device and method for manufacturing the same
US7783140B2 (en) * 2005-06-09 2010-08-24 Hewlett-Packard Development Company, L.P. Optically coupled integrated circuit layers
JP4920996B2 (en) * 2006-03-06 2012-04-18 株式会社リコー Light control element, display device and stress measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006055798A1 (en) * 2004-11-19 2006-05-26 Hewlett-Packard Development Company, L.P. Composite material with controllable resonant cells
JP2006210866A (en) * 2005-01-28 2006-08-10 Samsung Electro Mech Co Ltd Method of manufacturing printed circuit board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8891168B2 (en) 2009-10-07 2014-11-18 Hitachi, Ltd. Optical element and optical apparatus
JPWO2012008551A1 (en) * 2010-07-15 2013-09-09 旭硝子株式会社 Metamaterial manufacturing method and metamaterial
US9130250B2 (en) 2010-07-15 2015-09-08 Asahi Glass Company, Limited Process for producing metamaterial
JP5803916B2 (en) * 2010-07-15 2015-11-04 旭硝子株式会社 Metamaterial manufacturing method and metamaterial
JP2013134350A (en) * 2011-12-26 2013-07-08 Asahi Glass Co Ltd Manufacturing method of meta-material and meta-material

Also Published As

Publication number Publication date
JP5366933B2 (en) 2013-12-11
JPWO2009125827A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP5803916B2 (en) Metamaterial manufacturing method and metamaterial
KR101409248B1 (en) Imprinting method
JP5026759B2 (en) Wire grid polarizing plate and manufacturing method thereof
US20060056024A1 (en) Wire grid polarizer and manufacturing method thereof
Chen et al. Terahertz metamaterial absorbers
CN115461651B (en) Reflective optical super surface film
JP2008107720A (en) Polarizer and its manufacturing method
JP2012103468A (en) Optical element and projection type liquid crystal display device
JP2003302532A (en) Polarizing plate and method for manufacturing the same
JP5366933B2 (en) Artificial structure material element and manufacturing method thereof
CN114829986A (en) Optical super-surface film
Golod et al. Large‐Area 3D‐Printed Chiral Metasurface Composed of Metal Helices
US20060274415A1 (en) Inexpensive polarizer having high polarization characteristic
JPWO2005096037A1 (en) Optical member and manufacturing method thereof
JP2014519047A (en) IR reflector for solar management
US7463814B2 (en) Method for fabricating three-dimensional photonic crystal
JP2010049017A (en) Method for producing absorptive wire grid polarizer
CN109116687B (en) Super-resolution photoetching light generating device
JP5525289B2 (en) Method for manufacturing wire grid polarizer and liquid crystal display device
JP3488919B2 (en) How to make a photonic crystal
JP4569185B2 (en) Method for forming film structure and film structure
JP2007101866A (en) Optical component and method for manufacturing optical component
JP2018155795A (en) Optical retardation member, polarization conversion element, template, and manufacturing method of optical retardation member
JP2016191805A (en) Polarizer, manufacturing method of the polarizer, and liquid crystal display device
US20240085589A1 (en) Optical elements including a metastructure having cone-shaped or truncated cone-shaped meta-atoms and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09729618

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010507274

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09729618

Country of ref document: EP

Kind code of ref document: A1