WO2009125741A1 - Electrode catalyst for a fuel cell and method for manufacturing an electrode catalyst - Google Patents
Electrode catalyst for a fuel cell and method for manufacturing an electrode catalyst Download PDFInfo
- Publication number
- WO2009125741A1 WO2009125741A1 PCT/JP2009/057055 JP2009057055W WO2009125741A1 WO 2009125741 A1 WO2009125741 A1 WO 2009125741A1 JP 2009057055 W JP2009057055 W JP 2009057055W WO 2009125741 A1 WO2009125741 A1 WO 2009125741A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- ruthenium
- fuel cell
- platinum
- electrode catalyst
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/921—Alloys or mixtures with metallic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to an electrode catalyst for a fuel cell, particularly a direct methanol fuel cell, and a method for producing the same.
- DMFC can be used as it is without reforming liquid fuel to hydrogen, etc., it has advantages such as being able to be made compact, and is currently being intensively studied for practical application.
- high methanol permeability of the electrolyte membrane and low methanol oxidation activity of the anode catalyst are problems for practical use.
- durability is also required.
- a PtRu-based catalyst is mainly used as the anode catalyst, but since the methanol oxidation activity is low, the amount of the PtRu catalyst used is large, and generally about 3 to 10 mg / cm 2 is used.
- the amount of the PtRu catalyst is increased, the thickness of the catalyst layer is considerably increased, and in order to improve the diffusibility of methanol as a fuel, a PtRu black catalyst such as HiSPEC6000 manufactured by Johnson Matthey is generally used.
- the particle size of the PtRu black catalyst is 5 nm or more, the methanol oxidation activity per catalyst mass is low, and the proportion of PtRu that does not contribute to the catalytic reaction is high.
- a catalyst in which small PtRu particles are supported on a conductive carbon support with good dispersibility. Furthermore, in order to make the layer thickness of the catalyst as thin as possible, it is desirable to increase the amount of PtRu particles supported on carbon as much as possible.
- a catalyst such as a highly supported and highly dispersed PtRu supported catalyst
- an average particle diameter of 4 nm or less is obtained by forming a metal nucleus such as Pt on the carrier carbon and then growing PtRu or the like on the metal nucleus. It has been reported that it is possible to obtain a catalyst in which particles such as PtRu particles are supported on carbon even at a loading rate of 50% by mass or more (Patent Document 1: Japanese Patent Application Laid-Open No. 2007-134295). However, further improvement in methanol oxidation activity is desired for practical use.
- Non-patent Document 1 For durability, see, for example, Piotr Piela et al. , Journal of Electrochemical Society, 151 (12), A2053-A2059, 2004 (Non-patent Document 1), during DMFC operation, Ru of the PtRu catalyst elutes and Ru crosses over to the cathode side. There is a problem that the Pt catalyst on the cathode side is poisoned and the oxygen reduction characteristics of the cathode deteriorate. Ru elution occurs due to potential fluctuations, and it is said that the alloying degree, crystallinity, and presence of Ru oxide species of PtRu affect the stability, but it is not known clearly. For example, Inaba et al., Fuel Cell, 6, 17-21, 2007 (Non-patent Document 2)).
- the present invention has been made in view of the above circumstances, and provides a fuel cell electrode catalyst that has high methanol oxidation activity and is stable against potential fluctuations, and that is particularly effective for direct methanol fuel cells, and a method for producing the same. With the goal.
- the inventor of the present invention has evaluated platinum in the atmosphere as an electrode catalyst for a fuel cell obtained by growing a catalytic metal containing platinum and ruthenium using metal fine particles as a nucleus.
- the average coordination number of the first adjacent platinum atom around the ruthenium atom is 3.5 or more, the change in the active surface area per mass of the metal fine particle with respect to the potential fluctuation is small, and the change in the methanol oxidation activity was found to be smaller.
- Such an electrode catalyst for a fuel cell is a method (2) in which a metal nucleus (single metal or alloy nucleus) is formed on the carrier carbon, and then a metal (metal simple substance or alloy) is further grown on the metal nucleus.
- a metal nucleus single metal or alloy nucleus
- a metal metal simple substance or alloy
- the stage loading method after forming a metal nucleus on the support carbon, when growing a catalytic metal containing platinum and ruthenium such as PtRu, as a Ru raw material to be used, the following formula (A) M 2 RuX 6 (A) (Wherein M is one or more selected from H, Li, Na, K and NH 4 , and X is one or more selected from Cl, Br, I and NO 3 ) It is realized by reducing and growing a ruthenium compound in which the valence of Ru is tetravalent, particularly H 2 RuCl 6 , and a conventional two-stage loading method using a trivalent Ru raw material.
- the present invention provides the following fuel cell electrode catalyst and method for producing the same.
- a fuel cell electrode catalyst obtained by growing a catalyst metal containing platinum and ruthenium using metal fine particles as a nucleus, and the first adjacent platinum around the ruthenium atom in the catalyst metal containing platinum and ruthenium in the atmosphere
- a fuel cell electrode catalyst obtained by growing a catalyst metal containing platinum and ruthenium with metal fine particles as nuclei on a conductive carbon support, and ruthenium in the catalyst metal containing platinum and ruthenium in the atmosphere.
- An electrode catalyst for a fuel cell wherein an average coordination number of first adjacent platinum atoms around the atom is 3.5 or more.
- a first supporting step for generating metal fine particles having a particle diameter of 0.1 to 2.0 nm with controlled particle spacing on a conductive carbon support, and a catalytic metal containing platinum and ruthenium with the metal fine particles as a nucleus A method for producing an electrode catalyst for a fuel cell, comprising a second supporting step of growing a metal compound containing a platinum compound and a ruthenium compound by reducing with a reducing agent, In the second supporting step, as the ruthenium compound, the following formula (A) M 2 RuX 6 (A) (Wherein M is one or more selected from H, Li, Na, K and NH 4 , and X is one or more selected from Cl, Br, I and NO 3 ) The method for producing a fuel cell electrode catalyst according to [2], wherein a ruthenium compound represented by the formula (2) is used. [4] The method for producing
- the electrode catalyst for a fuel cell of the present invention has an improved methanol oxidation activity per mass of the catalyst as compared to a commercially available PtRu black catalyst or a conventional PtRu-supported carbon catalyst prepared using a trivalent Ru raw material, and is due to potential fluctuations. It is a stable fuel cell electrode catalyst with small fluctuations in active surface area and methanol oxidation activity. By using this as an anode catalyst of a fuel cell, a high-performance fuel cell can be provided.
- the fuel cell electrode catalyst of the present invention is obtained by growing a catalytic metal containing platinum and ruthenium using metal fine particles as nuclei.
- the average coordination number of the first adjacent platinum atoms around the ruthenium atom in the catalyst metal containing platinum and ruthenium in the atmosphere of the electrode catalyst is 3.5 or more, preferably 3.7 or more.
- the average coordination number of the first adjacent platinum atoms around the ruthenium atom can be calculated by measuring EXAFS (Extended X-ray Absorption Fine Structure) at the Ru K absorption edge and analyzing it.
- EXAFS Extended X-ray Absorption Fine Structure
- EXAFS is a vibration structure that appears on the high energy side of the X-ray absorption spectrum, and this vibration structure is backscattered by the emitted waves of photoelectrons emitted from the X-ray absorption atoms and the atoms present around the absorption atoms. This is due to the interference effect with the incident wave of electrons.
- the amplitude is proportional to the number of atoms present around the absorbing atom, that is, the coordination number. Therefore, by analyzing the EXAFS spectrum of the Ru K absorption edge, it is possible to evaluate what kind of element is coordinated around the Ru atom.
- the coordination of the first adjacent platinum atom around the ruthenium atom is in the range where the bond distance is the shortest from the absorbing Ru atom, and there are usually a plurality of coordination.
- the number of coordination that is, the number of first adjacent platinum atoms
- the average coordination number of the first adjacent platinum atoms around the ruthenium atom is the average coordination number of the first adjacent platinum atoms of a large number of ruthenium atoms present at various positions in the catalyst metal.
- the fuel cell electrode catalyst of the present invention is particularly preferably one obtained by growing a catalytic metal containing platinum and ruthenium on a conductive carbon support with metal fine particles as a nucleus.
- Such an electrode catalyst for a fuel cell of the present invention is a method in which a metal nucleus (single metal or alloy nucleus) is formed on a carrier carbon, and then a metal (metal simple substance or alloy) is further grown on the metal nucleus ( It can be produced by a two-stage loading method).
- the two-stage loading method which is a method for producing this fuel cell electrode catalyst, i.
- a method comprising a second supporting step of growing a catalytic metal containing platinum and ruthenium by reducing the metal compound containing platinum compound and ruthenium compound with a reducing agent using the metal fine particle as a nucleus can be applied.
- the conductive carbon carrier used in the first supporting step acetylene black, furnace black, channel black, activated carbon, graphite, carbon nanotube, carbon nanofiber, carbon nanocoil, mesoporous carbon and the like can be used.
- the average primary particle size of the conductive carbon support is preferably 10 to 200 nm, particularly 10 to 50 nm. If the average particle size is smaller than the above range, it may be difficult to uniformly disperse carbon and carry metal fine particles having an average particle size of 1.5 nm or less.
- the average primary particle size is larger than the above range, the unit Since the amount of metal per volume is reduced, in order to place a predetermined amount of catalyst at the time of fuel cell production, the catalyst layer becomes thick and it may be difficult to supply fuel.
- the particle size such as the average primary particle size can be measured, for example, by observing a 2 million times image with a transmission electron micrograph, and the average value is, for example, about 300 particle sizes. Can be obtained as an average value when measured.
- metal supported on the carbon carrier Pt, Au, Ag, Ir, Os, Pd, Rh, Ru, Cu, Ni, Co, Fe, Mn, Cr, V, Ti, Mo, W, Ta, Bi, Sn, etc. are mentioned.
- Pt or Ru is preferable because of the high active surface area when the same mass is supported.
- These metals are produced and supported as fine particles having an average particle size of 0.1 to 2.0 nm with controlled particle spacing on the carbon support.
- controlling the particle spacing means that the fine particles are uniformly dispersed on the carbon surface without agglomerating, and the method for controlling the particle spacing is 30% by mass.
- the metal raw material is reduced at a loading rate of less than 30% by weight, preferably at a loading rate of 15% by mass or less, and the metal raw material is reduced in the presence of carbon in the liquid phase.
- a method such as impregnation with carbon and reduction in the gas phase, or loading a metal colloid on carbon with a loading rate of less than 30% by mass, preferably a loading rate of 15% by mass or less can be employed.
- the nucleation by the metal fine particles in the first supporting step is set to a particle size of 2.0 nm or less, preferably 1.5 mm or less.
- the particle diameter of the finally obtained catalyst particles is large and easily aggregated, so that a highly dispersed catalyst cannot be obtained.
- carrier is strong and it is easy to disperse
- the carbon carrier is 0.01 to 2% by mass, particularly 0.1 to In an aqueous dispersion dispersed in water at a ratio of 1% by mass, chloroplatinate, platinum (II) chloride, platinum (IV) chloride, dinitrodiamine platinum (II), bisacetylacetonatoplatinum, dichlorotetramineplatinum, A platinum compound such as tetramine platinum sulfate, platinum (II) ammonium chloride, platinum (IV) ammonium chloride, dichlorodiamine platinum and a reducing agent such as ethylene glycol, ethanol, methanol, 1-propanol, 2-propanol, and butanol are added.
- chloroplatinate platinum (II) chloride, platinum (IV) chloride, dinitrodiamine platinum (II), bisacetylacetonatoplatinum, dichlorotetramineplatinum
- a platinum compound such as tetramine platinum sulfate, platinum (II
- the amount of the platinum compound is preferably 0.1 to 30% by mass, particularly 1 to 15% by mass with respect to the carbon support as platinum metal. If the amount of the platinum compound is too small, the number of growth nuclei on the carbon surface decreases, and if the amount of the platinum compound is too large, coarse particles are generated, and a catalyst with high loading and good dispersibility may not be obtained.
- the amount of the reducing agent such as ethylene glycol used is preferably 1 to 80% by mass, particularly 5 to 50% by mass in the aqueous dispersion.
- the pH of the aqueous dispersion is preferably 4 to 12, particularly 5 to 10.
- sodium hydroxide, aqueous ammonia, tetrahydroxymethylammonium or the like is used as a pH adjuster, and the pH is within the above range. It is preferable to adjust.
- generated was illustrated here, when producing
- the mixed solution thus obtained is preferably stirred at 40 to 120 ° C., particularly 50 to 100 ° C., preferably for 1 to 10 hours, particularly 2 to 6 hours, and after filtration and washing, preferably 40 Carbon carrying metal fine particles can be obtained by drying at 150 to 150 ° C., particularly 60 to 120 ° C., preferably 3 to 24 hours, particularly 8 to 16 hours.
- the loading ratio of the metal fine particles after reduction is preferably 1 to 30% by mass, particularly 5 to 15% by mass. If the loading rate is too low, the number of growth nuclei on the carbon surface is not sufficient, and if the loading rate is too high, the size of the metal fine particles increases, and a catalyst with high loading rate and good dispersibility cannot be obtained.
- the same or other metal is grown using the metal fine particles as nuclei.
- the catalyst metal is a catalyst metal containing Pt and Ru, and as an alloy containing PtRu, in addition to the binary system of PtRu, PtRuSn, PtRuRh, PtRuPd, PtRuIr, PtRuAu, PtRuMo, PtRuW, PtRuCo, PtRuCo, PtRuCo
- PtRu is preferable in terms of high methanol oxidation activity.
- the average particle diameter of the catalyst metal such as PtRu is 4 nm or less, preferably 3 nm or less, more preferably 2.5 nm or less.
- a minimum is not limited, Usually, it is 0.1 nm or more. If it is larger than 4 nm, the particle size becomes the same level as or larger than that of a commercially available PtRu black catalyst, and the methanol oxidation activity per metal mass may decrease.
- the supporting rate of all metal particles after the second supporting step is 50% by mass or more, preferably 60% by mass or more.
- the loading ratio is lower than 50% by mass, the dispersion of the fine catalyst metal particles is easy, but the catalyst layer at the time of manufacturing the membrane electrode assembly (MEA) becomes thicker than when a catalyst with a high loading ratio is used. For this reason, the supply of methanol fuel becomes rate limiting, and the output may be smaller than when a catalyst with a high loading rate is used.
- the upper limit of the loading rate is not particularly limited, but is usually 90% by mass or less, particularly preferably 75% by mass or less.
- the supporting rate here is calculated
- Loading ratio (mass%) [(A + B) / (A + B + C)] ⁇ 100 (2)
- a method for growing a metal catalyst on the metal fine particle nucleus for example, when growing PtRu, chloroplatinic acid, platinum (II) chloride, platinum (IV) chloride, dinitrodiamine platinum ( II), platinum compounds such as bisacetylacetonatoplatinum, dichlorotetramineplatinum, platinum tetraminesulfate, platinum (II) ammonium chloride, platinum (IV) ammonium chloride, dichlorodiamineplatinum and the like can be used alone or in combination.
- platinum compounds such as bisacetylacetonatoplatinum, dichlorotetramineplatinum, platinum tetraminesulfate, platinum (II) ammonium chloride, platinum (IV) ammonium chloride, dichlorodiamineplatinum and the like can be used alone or in combination.
- ruthenium raw material in the present invention, the following formula (A) M 2 RuX 6 (A) (Wherein M is one or more selected from H, Li, Na, K and NH 4 , and X is one or more selected from Cl, Br, I and NO 3 ) It is preferable to use a ruthenium compound in which the valence of ruthenium represented by is tetravalent.
- the ruthenium compound include ruthenium chloride having a valence of 4 ruthenium chloride (H 2 RuCl 6 ), lithium ruthenate (Li 2 RuCl 6 ), sodium ruthenate (Na 2 RuCl 6 ), Ruthenium compounds such as ruthenium chlorate such as potassium ruthenate (K 2 RuCl 6 ) and ammonium ruthenate ((NH 4 ) 2 RuCl 6 ) or salts thereof may be used alone or in combination.
- H 2 RuCl 6 is preferably used because of the high methanol oxidation activity of the finally obtained catalyst.
- platinum and ruthenium compounds are dissolved in a solution containing a reducing agent such as ethanol, methanol, 1-propanol, 2-propanol, butanol, ethylene glycol, and then a carbon carrier carrying metal fine particle nuclei is charged.
- a reducing agent such as ethanol, methanol, 1-propanol, 2-propanol, butanol, ethylene glycol
- PtRu is produced and grown on the metal fine particle nuclei by reacting at 1 ° C., particularly 50 to 100 ° C. for 1 to 10 hours, particularly 2 to 8 hours.
- the concentration of platinum and ruthenium compounds in the solution is preferably 0.01 to 10% by mass, particularly 0.1 to 5% by mass in terms of catalyst metal.
- the concentration of the reducing agent is preferably 1 to 80% by mass, particularly 5 to 60% by mass.
- the platinum compound and ruthenium compound are preferably used in a molar ratio of 2: 8 to 9: 1, particularly 5: 5 to 8: 2, as platinum metal: ruthenium metal. If the amount of the platinum compound is too small, the CH dissociation reaction of methanol does not proceed, so that the methanol oxidation current value becomes small. If it is too large, the oxidation reaction of methanol, which is a reaction intermediate product of methanol, hardly occurs, and the potential is low. Methanol oxidation activity at a potential of 0.4 V (vs RHE) or less is reduced.
- the amount of the ruthenium compound is too small, the methanol oxidation activity at a low potential is low as in the case where the amount of platinum is large, and if it is too large, the methanol oxidation current value is small as in the case where the amount of platinum is small.
- the amount of the carbon support carrying the metal fine particle nuclei is preferably 0.01 to 2% by mass, particularly 0.1 to 1% by mass dispersed in the solution. If the amount is too small, the amount of the resulting catalyst will be small, and if it is too large, the dispersibility of carbon will be poor, and metal particles will agglomerate and coarse particles will be produced.
- PtRu was grown was illustrated here, when producing
- the fuel cell electrode catalyst thus obtained is particularly preferably used as an anode electrode catalyst of a direct methanol fuel cell.
- Example 1 Chloroplatinic acid containing 0.1 g of platinum is added to 500 ml of an aqueous dispersion containing 1 g of carbon support (Ketjen Black EC300J (manufactured by Lion Corporation)), and 500 g of ethylene glycol and 50 mmol of NaOH are added. did.
- This mixed solution was heated and stirred at 80 ° C. for 16 hours. After filtration and washing, it was dried at 80 ° C. for 16 hours to obtain carbon carrying Pt nuclei.
- As a result of TEM observation of the obtained carbon carrying Pt nuclei it was confirmed that fine particles having a particle diameter of about 0.5 nm were uniformly dispersed on the carrier.
- the active surface area was evaluated by the CO stripping method.
- the catalyst was ultrasonically dispersed in water and then dropped on a glassy carbon electrode. After drying, a 5% Nafion solution (manufactured by DuPont) was dropped to prepare an electrode for evaluation.
- the electrode was attached to a potentiostat (HZ5000 manufactured by Hokuto Denko) and immersed in an electrolytic cell containing 0.5 mol / L H 2 SO 4 . After replacing the atmosphere of the electrolysis cell with Ar, the catalyst was held at ⁇ 0.18 V (vs RHE), and CO adsorption was performed by bubbling CO gas for 20 min. While maintaining the same potential, bubbling was performed with Ar gas for 20 min, and excess CO gas was discharged.
- HZ5000 manufactured by Hokuto Denko
- the potential was scanned at a sweep range of -0.18 to 0.5 V (vs RHE), a sweep speed of 10 mV / s, the CO stripping voltamgram was measured, and the potential was scanned again after CO was desorbed.
- the active surface area of PtRu was calculated on the assumption that the difference was the CO oxidation current and the Coulomb charge of CO oxidation was 4.2 C / m 2 .
- Methanol oxidation activity was evaluated by setting the electrolyte to 0.5 mol / L H 2 SO 4 +1 mol / L CH 3 OH, the oxidation range at a sweep range of ⁇ 0.18 to 0.5 V (vs RHE), and a sweep rate of 1 mV / s. Evaluated. The active area evaluation and methanol oxidation activity were all performed at 25 ° C.
- Non-patent Document 3 Evaluation of stability against potential fluctuation is performed according to Yoshioka et al., NEDO Symposium “Prospects for high durability of polymer electrolyte fuel cells”, 30-36, 2007 (Non-patent Document 3). Performed according to the method. After evaluating the methanol oxidation activity, the electrolyte was changed to 0.5 mol / L H 2 SO 4 and a load fluctuation simulation test of 2400 cycles was performed at 0.05 to 0.4 V (vs RHE) and a sweep rate of 100 mV / s. After the potential cycle, the active surface area and methanol oxidation activity were evaluated in the same procedure as described above. Stability was confirmed from changes in the active surface area and methanol oxidation activity before and after this load fluctuation cycle.
- the average coordination number of the first adjacent platinum atom around the ruthenium atom was calculated by measuring EXAFS (Extended X-ray Absorption Fine Structure) at the Ru K absorption edge and analyzing it.
- Non-Patent Document 5 For analysis of the measured X-ray absorption spectrum, an IFEFFIT program package (for example, M. Newville, Journal of Synchrotron Radiation, 8, 314-316, 2001 (Non-Patent Document 4), JJ Rehr et al., Review) of Modern Physics, 72, 621-654, 2000 (see Non-Patent Document 5)).
- Example 2 0.5 g of carbon carrying Pt nuclei prepared in the same procedure as in Example 1, 1.1 g of dinitrodiamine platinum (II), 0.7 g of potassium ruthenate (K 2 RuCl 6 ), and 100 g of 2-propanol The solution was charged into 600 g of the solution and refluxed at 80 ° C. for 8 hours to obtain 1.4 g of a catalyst having a PtRu loading rate of 68 mass%. As a result of TEM observation, the average particle diameter was 2.4 nm, and it was uniformly dispersed on the carbon. In the same manner as in Example 1, after evaluating the active surface area and methanol oxidation activity, a load fluctuation cycle was performed to evaluate the active surface area and methanol oxidation activity.
- Table 1 shows the evaluation results of active surface area and 0.4 V, 0.5 V (vs RHE) methanol oxidation activity before and after the load fluctuation cycle for the catalysts of Examples 1 and 2 and Comparative Examples 1 and 2.
- Table 2 shows the element types and the average coordination number of the Ru atom first adjacent element calculated by analyzing the EXAFS spectrum of the Ru K absorption edge.
- a catalyst prepared using a tetravalent Ru compound as a raw material has high methanol oxidation activity and stability against potential fluctuation is also improved compared to a catalyst prepared using a trivalent Ru compound and HiSPEC6000.
- a catalyst using H 2 RuCl 6 as a raw material has improved methanol oxidation activity and potential stability.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Disclosed is an electrode catalyst for a fuel cell, said catalyst obtained by growing a catalytic metal that includes platinum and ruthenium on a core of metallic microparticles, wherein the mean coordination number of a first neighboring platinum atom surrounding a ruthenium atom within a catalytic metal in the atmosphere that includes platinum and ruthenium is 3.5 or above. Compared to a commercial PtRu black catalyst, and a conventional PtRu-supported carbon catalyst created by using a trivalent Ru raw material, the fuel cell electrode catalyst has improved methanol oxidation activity per unit mass of the catalyst, and is stable, where the change in active surface area and methanol-oxidizing activity caused by a change in potential is small. By using the fuel cell electrode catalyst as the anode catalyst for fuel cells, a high-performance fuel cell can be provided.
Description
本発明は、燃料電池、特にダイレクトメタノール型燃料電池用の電極触媒及びその製造方法に関する。
The present invention relates to an electrode catalyst for a fuel cell, particularly a direct methanol fuel cell, and a method for producing the same.
携帯電話では、電池の高容量化が望まれているが、二次電池の高容量化は困難である。そのためメタノール燃料を用いたダイレクトメタノール型燃料電池(DMFC)が注目されている。
In mobile phones, it is desired to increase the capacity of batteries, but it is difficult to increase the capacity of secondary batteries. For this reason, direct methanol fuel cells (DMFC) using methanol fuel have attracted attention.
DMFCは液体燃料を水素等に改質することなくそのまま利用できるため、コンパクト化が可能等の長所があり、現在実用化に向けて鋭意研究されている。しかし、電解質膜のメタノール透過性が大きいこと、及びアノード触媒のメタノール酸化活性が低いことが実用化に向けて課題となっている。更に、長時間安定に使用することを考慮した場合には、耐久性も必要とされる。
Since DMFC can be used as it is without reforming liquid fuel to hydrogen, etc., it has advantages such as being able to be made compact, and is currently being intensively studied for practical application. However, high methanol permeability of the electrolyte membrane and low methanol oxidation activity of the anode catalyst are problems for practical use. Furthermore, when considering stable use for a long time, durability is also required.
アノード触媒には主にPtRu系触媒が使用されているが、メタノール酸化活性が低いことから、使用されるPtRu触媒の量は多く、一般に3~10mg/cm2程度用いられている。PtRu触媒の量が多くなると、触媒の層の厚さがかなり厚くなり、燃料であるメタノールの拡散性をよくするため、一般にはジョンソン・マッセイ製HiSPEC6000などのPtRu black触媒が用いられている。しかし、PtRu black触媒は、粒子サイズが5nm以上あるため、触媒質量あたりのメタノール酸化活性は低く、触媒反応に寄与しないPtRuの割合が高い。そのため、小さいPtRu粒子を分散性よく導電性カーボン担体に担持した触媒を用いることが好ましい。更に、触媒の層厚をできるだけ薄くするために、カーボン上に担持するPtRu粒子の量をできるだけ多くすることが望まれる。
A PtRu-based catalyst is mainly used as the anode catalyst, but since the methanol oxidation activity is low, the amount of the PtRu catalyst used is large, and generally about 3 to 10 mg / cm 2 is used. When the amount of the PtRu catalyst is increased, the thickness of the catalyst layer is considerably increased, and in order to improve the diffusibility of methanol as a fuel, a PtRu black catalyst such as HiSPEC6000 manufactured by Johnson Matthey is generally used. However, since the particle size of the PtRu black catalyst is 5 nm or more, the methanol oxidation activity per catalyst mass is low, and the proportion of PtRu that does not contribute to the catalytic reaction is high. Therefore, it is preferable to use a catalyst in which small PtRu particles are supported on a conductive carbon support with good dispersibility. Furthermore, in order to make the layer thickness of the catalyst as thin as possible, it is desirable to increase the amount of PtRu particles supported on carbon as much as possible.
例えば、高担持・高分散のPtRu担持触媒等の触媒を得る手段として、担体カーボン上にPt等の金属核を形成後、該金属核上にPtRu等を成長させる方法により、平均粒径4nm以下のPtRu粒子等の粒子を、カーボン上に50質量%以上の担持率でも分散性よく担持した触媒を得ることができることが報告されている(特許文献1:特開2007-134295号公報)。しかし、実用化に対しては、更なるメタノール酸化活性の向上が望まれる。
For example, as a means for obtaining a catalyst such as a highly supported and highly dispersed PtRu supported catalyst, an average particle diameter of 4 nm or less is obtained by forming a metal nucleus such as Pt on the carrier carbon and then growing PtRu or the like on the metal nucleus. It has been reported that it is possible to obtain a catalyst in which particles such as PtRu particles are supported on carbon even at a loading rate of 50% by mass or more (Patent Document 1: Japanese Patent Application Laid-Open No. 2007-134295). However, further improvement in methanol oxidation activity is desired for practical use.
耐久性に関しては、例えばPiotr Piela et al.,Journal of Electrochemical Society,151(12),A2053-A2059,2004(非特許文献1)に示されるように、DMFC運転中、PtRu触媒のRuが溶出し、カソード側にRuがクロスオーバーして、カソード側のPt触媒を被毒し、カソードの酸素還元特性が劣化する問題がある。Ruの溶出は電位変動により生じ、その原因としてPtRuの合金化度、結晶性、Ru酸化物種の存在が安定性に影響を及ぼすことが言われているが、はっきりとしたことはわかっていない(例えば、稲葉他、燃料電池,6,17-21,2007(非特許文献2))。
For durability, see, for example, Piotr Piela et al. , Journal of Electrochemical Society, 151 (12), A2053-A2059, 2004 (Non-patent Document 1), during DMFC operation, Ru of the PtRu catalyst elutes and Ru crosses over to the cathode side. There is a problem that the Pt catalyst on the cathode side is poisoned and the oxygen reduction characteristics of the cathode deteriorate. Ru elution occurs due to potential fluctuations, and it is said that the alloying degree, crystallinity, and presence of Ru oxide species of PtRu affect the stability, but it is not known clearly. For example, Inaba et al., Fuel Cell, 6, 17-21, 2007 (Non-patent Document 2)).
本発明は、上記事情に鑑みなされたもので、メタノール酸化活性が高く、かつ電位変動に対し安定な、特にダイレクトメタノール型燃料電池用として有効な燃料電池用電極触媒及びその製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a fuel cell electrode catalyst that has high methanol oxidation activity and is stable against potential fluctuations, and that is particularly effective for direct methanol fuel cells, and a method for producing the same. With the goal.
本発明者は、上記目的を達成するため鋭意検討を行った結果、金属微粒子を核として、白金及びルテニウムを含む触媒金属を成長させてなる燃料電池用電極触媒として、大気中で評価した白金及びルテニウムを含む触媒金属中のルテニウム原子周囲の第一近接白金原子の平均配位数が3.5以上のものが、電位変動に対する金属微粒子質量あたりの活性表面積変化が小さく、かつメタノール酸化活性の変化が小さくなることを見出した。
As a result of intensive studies to achieve the above object, the inventor of the present invention has evaluated platinum in the atmosphere as an electrode catalyst for a fuel cell obtained by growing a catalytic metal containing platinum and ruthenium using metal fine particles as a nucleus. In the catalyst metal containing ruthenium, the average coordination number of the first adjacent platinum atom around the ruthenium atom is 3.5 or more, the change in the active surface area per mass of the metal fine particle with respect to the potential fluctuation is small, and the change in the methanol oxidation activity Was found to be smaller.
そして、このような燃料電池用電極触媒は、担体カーボン上に金属核(金属単体又は合金からなる核)を形成後、この金属核上に更に金属(金属単体又は合金)を成長させる方法(2段担持法)において、担体カーボン上に金属核を形成後、PtRu等の白金及びルテニウムを含む触媒金属を成長させる際、使用するRu原料として、下記式(A)
M2RuX6 …(A)
(式中、MはH,Li,Na,K及びNH4から選ばれる1種又は2種以上、XはCl,Br,I及びNO3から選ばれる1種又は2種以上である。)
で示されるRuの価数が4価であるルテニウム化合物、特に、H2RuCl6を用い、これを還元して成長させることにより実現され、従来の3価のRu原料を用いて2段担持法で作製したものや市販のPtRu black触媒に比べ、電位変動に対する安定性が向上すると共に、触媒金属質量あたりのメタノール酸化活性が、特に0.4~0.6V vs RHEの電位において向上することを見出し、本発明をなすに至ったものである。 Such an electrode catalyst for a fuel cell is a method (2) in which a metal nucleus (single metal or alloy nucleus) is formed on the carrier carbon, and then a metal (metal simple substance or alloy) is further grown on the metal nucleus. In the stage loading method), after forming a metal nucleus on the support carbon, when growing a catalytic metal containing platinum and ruthenium such as PtRu, as a Ru raw material to be used, the following formula (A)
M 2 RuX 6 (A)
(Wherein M is one or more selected from H, Li, Na, K and NH 4 , and X is one or more selected from Cl, Br, I and NO 3 )
It is realized by reducing and growing a ruthenium compound in which the valence of Ru is tetravalent, particularly H 2 RuCl 6 , and a conventional two-stage loading method using a trivalent Ru raw material. Compared to those prepared in the above and commercially available PtRu black catalysts, the stability against potential fluctuation is improved, and the methanol oxidation activity per catalyst metal mass is improved especially at a potential of 0.4 to 0.6 V vs. RHE. The headline and the present invention have been made.
M2RuX6 …(A)
(式中、MはH,Li,Na,K及びNH4から選ばれる1種又は2種以上、XはCl,Br,I及びNO3から選ばれる1種又は2種以上である。)
で示されるRuの価数が4価であるルテニウム化合物、特に、H2RuCl6を用い、これを還元して成長させることにより実現され、従来の3価のRu原料を用いて2段担持法で作製したものや市販のPtRu black触媒に比べ、電位変動に対する安定性が向上すると共に、触媒金属質量あたりのメタノール酸化活性が、特に0.4~0.6V vs RHEの電位において向上することを見出し、本発明をなすに至ったものである。 Such an electrode catalyst for a fuel cell is a method (2) in which a metal nucleus (single metal or alloy nucleus) is formed on the carrier carbon, and then a metal (metal simple substance or alloy) is further grown on the metal nucleus. In the stage loading method), after forming a metal nucleus on the support carbon, when growing a catalytic metal containing platinum and ruthenium such as PtRu, as a Ru raw material to be used, the following formula (A)
M 2 RuX 6 (A)
(Wherein M is one or more selected from H, Li, Na, K and NH 4 , and X is one or more selected from Cl, Br, I and NO 3 )
It is realized by reducing and growing a ruthenium compound in which the valence of Ru is tetravalent, particularly H 2 RuCl 6 , and a conventional two-stage loading method using a trivalent Ru raw material. Compared to those prepared in the above and commercially available PtRu black catalysts, the stability against potential fluctuation is improved, and the methanol oxidation activity per catalyst metal mass is improved especially at a potential of 0.4 to 0.6 V vs. RHE. The headline and the present invention have been made.
従って、本発明は、下記の燃料電池用電極触媒及びその製造方法を提供する。
[1]金属微粒子を核として、白金及びルテニウムを含む触媒金属を成長させてなる燃料電池用電極触媒であり、大気中における上記白金及びルテニウムを含む触媒金属中のルテニウム原子周囲の第一近接白金原子の平均配位数が3.5以上であることを特徴とする燃料電池用電極触媒。
[2]導電性カーボン担体上に、金属微粒子を核として、白金及びルテニウムを含む触媒金属を成長させてなる燃料電池用電極触媒であり、大気中における上記白金及びルテニウムを含む触媒金属中のルテニウム原子周囲の第一近接白金原子の平均配位数が3.5以上であることを特徴とする燃料電池用電極触媒。
[3]導電性カーボン担体に粒子間隔を制御した粒径0.1~2.0nmの金属微粒子を生成させる第一担持工程と、該金属微粒子を核として、白金及びルテニウムを含む触媒金属を、白金化合物及びルテニウム化合物を含む金属化合物を還元剤により還元して成長させる第二担持工程を含む燃料電池用電極触媒の製造方法であって、
上記第二担持工程において、ルテニウム化合物として、下記式(A)
M2RuX6 …(A)
(式中、MはH,Li,Na,K及びNH4から選ばれる1種又は2種以上、XはCl,Br,I及びNO3から選ばれる1種又は2種以上である。)
で示されるルテニウム化合物を用いることを特徴とする[2]記載の燃料電池用電極触媒の製造方法。
[4]上記ルテニウム化合物が、H2RuCl6であることを特徴とする[3]記載の燃料電池用電極触媒の製造方法。 Accordingly, the present invention provides the following fuel cell electrode catalyst and method for producing the same.
[1] A fuel cell electrode catalyst obtained by growing a catalyst metal containing platinum and ruthenium using metal fine particles as a nucleus, and the first adjacent platinum around the ruthenium atom in the catalyst metal containing platinum and ruthenium in the atmosphere An electrode catalyst for fuel cells, wherein the average coordination number of atoms is 3.5 or more.
[2] A fuel cell electrode catalyst obtained by growing a catalyst metal containing platinum and ruthenium with metal fine particles as nuclei on a conductive carbon support, and ruthenium in the catalyst metal containing platinum and ruthenium in the atmosphere. An electrode catalyst for a fuel cell, wherein an average coordination number of first adjacent platinum atoms around the atom is 3.5 or more.
[3] A first supporting step for generating metal fine particles having a particle diameter of 0.1 to 2.0 nm with controlled particle spacing on a conductive carbon support, and a catalytic metal containing platinum and ruthenium with the metal fine particles as a nucleus, A method for producing an electrode catalyst for a fuel cell, comprising a second supporting step of growing a metal compound containing a platinum compound and a ruthenium compound by reducing with a reducing agent,
In the second supporting step, as the ruthenium compound, the following formula (A)
M 2 RuX 6 (A)
(Wherein M is one or more selected from H, Li, Na, K and NH 4 , and X is one or more selected from Cl, Br, I and NO 3 )
The method for producing a fuel cell electrode catalyst according to [2], wherein a ruthenium compound represented by the formula (2) is used.
[4] The method for producing an electrode catalyst for a fuel cell according to [3], wherein the ruthenium compound is H 2 RuCl 6 .
[1]金属微粒子を核として、白金及びルテニウムを含む触媒金属を成長させてなる燃料電池用電極触媒であり、大気中における上記白金及びルテニウムを含む触媒金属中のルテニウム原子周囲の第一近接白金原子の平均配位数が3.5以上であることを特徴とする燃料電池用電極触媒。
[2]導電性カーボン担体上に、金属微粒子を核として、白金及びルテニウムを含む触媒金属を成長させてなる燃料電池用電極触媒であり、大気中における上記白金及びルテニウムを含む触媒金属中のルテニウム原子周囲の第一近接白金原子の平均配位数が3.5以上であることを特徴とする燃料電池用電極触媒。
[3]導電性カーボン担体に粒子間隔を制御した粒径0.1~2.0nmの金属微粒子を生成させる第一担持工程と、該金属微粒子を核として、白金及びルテニウムを含む触媒金属を、白金化合物及びルテニウム化合物を含む金属化合物を還元剤により還元して成長させる第二担持工程を含む燃料電池用電極触媒の製造方法であって、
上記第二担持工程において、ルテニウム化合物として、下記式(A)
M2RuX6 …(A)
(式中、MはH,Li,Na,K及びNH4から選ばれる1種又は2種以上、XはCl,Br,I及びNO3から選ばれる1種又は2種以上である。)
で示されるルテニウム化合物を用いることを特徴とする[2]記載の燃料電池用電極触媒の製造方法。
[4]上記ルテニウム化合物が、H2RuCl6であることを特徴とする[3]記載の燃料電池用電極触媒の製造方法。 Accordingly, the present invention provides the following fuel cell electrode catalyst and method for producing the same.
[1] A fuel cell electrode catalyst obtained by growing a catalyst metal containing platinum and ruthenium using metal fine particles as a nucleus, and the first adjacent platinum around the ruthenium atom in the catalyst metal containing platinum and ruthenium in the atmosphere An electrode catalyst for fuel cells, wherein the average coordination number of atoms is 3.5 or more.
[2] A fuel cell electrode catalyst obtained by growing a catalyst metal containing platinum and ruthenium with metal fine particles as nuclei on a conductive carbon support, and ruthenium in the catalyst metal containing platinum and ruthenium in the atmosphere. An electrode catalyst for a fuel cell, wherein an average coordination number of first adjacent platinum atoms around the atom is 3.5 or more.
[3] A first supporting step for generating metal fine particles having a particle diameter of 0.1 to 2.0 nm with controlled particle spacing on a conductive carbon support, and a catalytic metal containing platinum and ruthenium with the metal fine particles as a nucleus, A method for producing an electrode catalyst for a fuel cell, comprising a second supporting step of growing a metal compound containing a platinum compound and a ruthenium compound by reducing with a reducing agent,
In the second supporting step, as the ruthenium compound, the following formula (A)
M 2 RuX 6 (A)
(Wherein M is one or more selected from H, Li, Na, K and NH 4 , and X is one or more selected from Cl, Br, I and NO 3 )
The method for producing a fuel cell electrode catalyst according to [2], wherein a ruthenium compound represented by the formula (2) is used.
[4] The method for producing an electrode catalyst for a fuel cell according to [3], wherein the ruthenium compound is H 2 RuCl 6 .
本発明の燃料電池用電極触媒は、市販のPtRu black触媒や、従来の3価のRu原料を用いて作製したPtRu担持カーボン触媒に比べ、触媒質量あたりのメタノール酸化活性が向上し、電位変動による活性表面積及びメタノール酸化活性の変動の小さい安定な燃料電池用電極触媒であり、これを燃料電池のアノード触媒として用いることにより、高性能の燃料電池を提供することができる。
The electrode catalyst for a fuel cell of the present invention has an improved methanol oxidation activity per mass of the catalyst as compared to a commercially available PtRu black catalyst or a conventional PtRu-supported carbon catalyst prepared using a trivalent Ru raw material, and is due to potential fluctuations. It is a stable fuel cell electrode catalyst with small fluctuations in active surface area and methanol oxidation activity. By using this as an anode catalyst of a fuel cell, a high-performance fuel cell can be provided.
本発明の燃料電池用電極触媒は、金属微粒子を核として、白金及びルテニウムを含む触媒金属を成長させてなるものである。そして、この電極触媒の、大気中における白金及びルテニウムを含む触媒金属中のルテニウム原子周囲の第一近接白金原子の平均配位数は3.5以上、好ましくは3.7以上である。
The fuel cell electrode catalyst of the present invention is obtained by growing a catalytic metal containing platinum and ruthenium using metal fine particles as nuclei. The average coordination number of the first adjacent platinum atoms around the ruthenium atom in the catalyst metal containing platinum and ruthenium in the atmosphere of the electrode catalyst is 3.5 or more, preferably 3.7 or more.
ルテニウム原子周囲の第一近接白金原子の平均配位数は、Ru K吸収端におけるEXAFS(Extended X-ray Absorption Fine Structure)を測定し、それを解析することによって算出することができる。EXAFSは、X線吸収スペクトルの高エネルギー側に現れる振動構造であり、この振動構造は、X線の吸収原子から放出される光電子の出射波と、吸収原子の周囲に存在する原子により後方散乱された電子の入射波との干渉効果によるものである。そして、その振幅は吸収原子の周囲に存在する原子の数、即ち、配位数に比例する。従って、Ru K吸収端のEXAFSスペクトルを解析することによって、Ru原子の周りに、どういう元素がどれだけ配位しているかを評価することができる。
The average coordination number of the first adjacent platinum atoms around the ruthenium atom can be calculated by measuring EXAFS (Extended X-ray Absorption Fine Structure) at the Ru K absorption edge and analyzing it. EXAFS is a vibration structure that appears on the high energy side of the X-ray absorption spectrum, and this vibration structure is backscattered by the emitted waves of photoelectrons emitted from the X-ray absorption atoms and the atoms present around the absorption atoms. This is due to the interference effect with the incident wave of electrons. The amplitude is proportional to the number of atoms present around the absorbing atom, that is, the coordination number. Therefore, by analyzing the EXAFS spectrum of the Ru K absorption edge, it is possible to evaluate what kind of element is coordinated around the Ru atom.
ルテニウム原子周囲の第一近接白金原子の配位は、吸収Ru原子から最も結合距離が小さい範囲の配位であり、通常、複数個存在する。そして、PtRu微粒子中で、例えば吸収Ru原子が微粒子内部に存在する場合と微粒子表面に存在する場合とでは、それぞれの配位数(即ち、第一近接白金原子の数)が異なる。本発明において、ルテニウム原子周囲の第一近接白金原子の平均配位数は、触媒金属中、様々な位置に存在する多数のルテニウム原子の第一近接白金原子の平均配位数である。
The coordination of the first adjacent platinum atom around the ruthenium atom is in the range where the bond distance is the shortest from the absorbing Ru atom, and there are usually a plurality of coordination. In the PtRu fine particles, for example, the number of coordination (that is, the number of first adjacent platinum atoms) differs between the case where the absorbed Ru atoms are present inside the fine particles and the case where they are present on the surface of the fine particles. In the present invention, the average coordination number of the first adjacent platinum atoms around the ruthenium atom is the average coordination number of the first adjacent platinum atoms of a large number of ruthenium atoms present at various positions in the catalyst metal.
白金及びルテニウムを含む触媒金属中のルテニウム原子周囲の第一近接白金原子の平均配位数が上記範囲のものは、電極触媒の電位変動に対する金属微粒子質量あたりの活性表面積変化が小さく、かつメタノール酸化活性の変化が小さい。そのため、このような電極触媒を、燃料電池の電極触媒(アノード触媒)として用いることにより、高性能の燃料電池を得ることができる。
When the average coordination number of the first adjacent platinum atoms around the ruthenium atom in the catalyst metal containing platinum and ruthenium is in the above range, the change in the active surface area per mass of fine metal particles with respect to the potential fluctuation of the electrode catalyst is small, and methanol oxidation Small change in activity. Therefore, a high-performance fuel cell can be obtained by using such an electrode catalyst as an electrode catalyst (anode catalyst) for a fuel cell.
本発明の燃料電池用電極触媒としては、特に、導電性カーボン担体上に、金属微粒子を核として、白金及びルテニウムを含む触媒金属を成長させてなるものが好ましい。このような本発明の燃料電池用電極触媒は、担体カーボン上に金属核(金属単体又は合金からなる核)を形成後、この金属核上に更に金属(金属単体又は合金)を成長させる方法(2段担持法)によって製造することができる。
The fuel cell electrode catalyst of the present invention is particularly preferably one obtained by growing a catalytic metal containing platinum and ruthenium on a conductive carbon support with metal fine particles as a nucleus. Such an electrode catalyst for a fuel cell of the present invention is a method in which a metal nucleus (single metal or alloy nucleus) is formed on a carrier carbon, and then a metal (metal simple substance or alloy) is further grown on the metal nucleus ( It can be produced by a two-stage loading method).
この燃料電池用電極触媒の製造方法である2段担持法は、
i.導電性カーボン担体に粒子間隔を制御した粒径0.1~2.0nmの金属微粒子を生成させる第一担持工程と、
ii.該金属微粒子を核として、白金及びルテニウムを含む触媒金属を、白金化合物及びルテニウム化合物を含む金属化合物を還元剤により還元して成長させる第二担持工程と
を備えた方法を適用することができる。 The two-stage loading method, which is a method for producing this fuel cell electrode catalyst,
i. A first supporting step of generating fine metal particles having a particle size of 0.1 to 2.0 nm with a controlled particle spacing on a conductive carbon carrier;
ii. A method comprising a second supporting step of growing a catalytic metal containing platinum and ruthenium by reducing the metal compound containing platinum compound and ruthenium compound with a reducing agent using the metal fine particle as a nucleus can be applied.
i.導電性カーボン担体に粒子間隔を制御した粒径0.1~2.0nmの金属微粒子を生成させる第一担持工程と、
ii.該金属微粒子を核として、白金及びルテニウムを含む触媒金属を、白金化合物及びルテニウム化合物を含む金属化合物を還元剤により還元して成長させる第二担持工程と
を備えた方法を適用することができる。 The two-stage loading method, which is a method for producing this fuel cell electrode catalyst,
i. A first supporting step of generating fine metal particles having a particle size of 0.1 to 2.0 nm with a controlled particle spacing on a conductive carbon carrier;
ii. A method comprising a second supporting step of growing a catalytic metal containing platinum and ruthenium by reducing the metal compound containing platinum compound and ruthenium compound with a reducing agent using the metal fine particle as a nucleus can be applied.
ここで、第一担持工程で用いられる導電性カーボン担体としては、アセチレンブラック、ファーネスブラック、チャネルブラック、活性炭、黒鉛、カーボンナノチューブ、カーボンナノファイバー、カーボンナノコイル、メソポーラスカーボン等が使用できる。この場合、この導電性カーボン担体の平均一次粒径は10~200nm、特に10~50nmが好ましい。平均粒径が上記範囲より小さいと、カーボンを均一に分散させて平均粒径1.5nm以下の金属微粒子を担持することが困難な場合が生じ、平均一次粒径が上記範囲より大きいと、単位体積あたりの金属量が減少するため、燃料電池作製時、所定の触媒量を載せるためには、触媒層が厚くなり、燃料が供給されにくくなるおそれがある。なお、本発明において、この平均一次粒径等の粒径は、例えば、透過電子顕微鏡写真で200万倍の像を観察して測定することができ、平均値は、例えば約300個の粒径を測定した場合の平均値として求めることができる。
Here, as the conductive carbon carrier used in the first supporting step, acetylene black, furnace black, channel black, activated carbon, graphite, carbon nanotube, carbon nanofiber, carbon nanocoil, mesoporous carbon and the like can be used. In this case, the average primary particle size of the conductive carbon support is preferably 10 to 200 nm, particularly 10 to 50 nm. If the average particle size is smaller than the above range, it may be difficult to uniformly disperse carbon and carry metal fine particles having an average particle size of 1.5 nm or less. If the average primary particle size is larger than the above range, the unit Since the amount of metal per volume is reduced, in order to place a predetermined amount of catalyst at the time of fuel cell production, the catalyst layer becomes thick and it may be difficult to supply fuel. In the present invention, the particle size such as the average primary particle size can be measured, for example, by observing a 2 million times image with a transmission electron micrograph, and the average value is, for example, about 300 particle sizes. Can be obtained as an average value when measured.
また、上記カーボン担体に担持させる金属としては、Pt、Au、Ag、Ir、Os、Pd、Rh、Ru、Cu、Ni、Co、Fe、Mn、Cr、V、Ti、Mo、W、Ta、Bi、Sn等が挙げられる。特に同じ質量を担持したときの活性表面積の高さから、Pt又はRuが好ましい。これら金属を上記カーボン担体上に粒子間隔を制御した平均粒径0.1~2.0nmの微粒子として生成、担持させる。ここで、「粒子間隔を制御する」とは、微粒子を凝集することなくカーボン表面上に均一に分散させるということを意味し、また、このように粒子間隔を制御する方法としては、30質量%未満の担持率、好ましくは15質量%以下の担持率で、液相中カーボン存在下で金属原料を還元する、30質量%未満の担持率、好ましくは15質量%以下の担持率で金属原料をカーボンに含浸させ気相中で還元する、又は30質量%未満の担持率、好ましくは15質量%以下の担持率で金属コロイドをカーボン上に担持する等の方法が採用し得る。
Further, as the metal supported on the carbon carrier, Pt, Au, Ag, Ir, Os, Pd, Rh, Ru, Cu, Ni, Co, Fe, Mn, Cr, V, Ti, Mo, W, Ta, Bi, Sn, etc. are mentioned. In particular, Pt or Ru is preferable because of the high active surface area when the same mass is supported. These metals are produced and supported as fine particles having an average particle size of 0.1 to 2.0 nm with controlled particle spacing on the carbon support. Here, “controlling the particle spacing” means that the fine particles are uniformly dispersed on the carbon surface without agglomerating, and the method for controlling the particle spacing is 30% by mass. The metal raw material is reduced at a loading rate of less than 30% by weight, preferably at a loading rate of 15% by mass or less, and the metal raw material is reduced in the presence of carbon in the liquid phase. A method such as impregnation with carbon and reduction in the gas phase, or loading a metal colloid on carbon with a loading rate of less than 30% by mass, preferably a loading rate of 15% by mass or less can be employed.
また、上述したように、第一担持工程における金属微粒子による核形成は、粒径2.0nm以下、好ましくは1.5mm以下とする。2.0nmより大きくなると、最終的に得られる触媒粒子の粒径が大きく、かつ凝集し易くなり、高分散な触媒は得られない。また、2.0nm以下に形成すると、担体との結合が強く、カーボン上に均一に分散し易い。
Further, as described above, the nucleation by the metal fine particles in the first supporting step is set to a particle size of 2.0 nm or less, preferably 1.5 mm or less. When it is larger than 2.0 nm, the particle diameter of the finally obtained catalyst particles is large and easily aggregated, so that a highly dispersed catalyst cannot be obtained. Moreover, when it forms in 2.0 nm or less, the coupling | bonding with a support | carrier is strong and it is easy to disperse | distribute uniformly on carbon.
この第一担持工程における金属微粒子の生成、担持方法としては、特に白金微粒子を液相中カーボン存在下で生成、担持させる場合は、カーボン担体を0.01~2質量%、特に0.1~1質量%の割合で水に分散させた水分散液に、塩化白金酸塩、塩化白金(II)、塩化白金(IV)、ジニトロジアミン白金(II)、ビスアセチルアセトナト白金、ジクロロテトラミン白金、テトラミン硫酸白金、塩化白金(II)アンモニウム、塩化白金(IV)アンモニウム、ジクロロジアミン白金等の白金化合物とエチレングリコール、エタノール、メタノール、1-プロパノール、2-プロパノール、ブタノール等の還元剤を添加する。この場合、白金化合物量は、白金金属としてカーボン担体に対して0.1~30質量%、特に1~15質量%であることが好ましい。白金化合物量が少なすぎると、カーボン表面上の成長核が少なくなり、白金化合物量が多すぎると、粗大粒子が発生し、高担持率で分散性のよい触媒が得られないおそれが生じる。また、エチレングリコール等の還元剤の使用量は、水分散液中1~80質量%、特に5~50質量%が好ましい。また、上記水分散液のpHは4~12、特に5~10であることが好ましく、このためpH調整剤として水酸化ナトリウム、アンモニア水、テトラヒドロキシメチルアンモニウム等を使用し、上記pH範囲内に調整することが好ましい。なお、ここでは白金微粒子を生成させる場合を例示したが、白金以外の上述した金属を生成させる場合は、金属化合物、還元剤を適宜変更して生成させることができる。
As the method for generating and supporting the metal fine particles in the first supporting step, particularly when the fine platinum particles are generated and supported in the presence of carbon in the liquid phase, the carbon carrier is 0.01 to 2% by mass, particularly 0.1 to In an aqueous dispersion dispersed in water at a ratio of 1% by mass, chloroplatinate, platinum (II) chloride, platinum (IV) chloride, dinitrodiamine platinum (II), bisacetylacetonatoplatinum, dichlorotetramineplatinum, A platinum compound such as tetramine platinum sulfate, platinum (II) ammonium chloride, platinum (IV) ammonium chloride, dichlorodiamine platinum and a reducing agent such as ethylene glycol, ethanol, methanol, 1-propanol, 2-propanol, and butanol are added. In this case, the amount of the platinum compound is preferably 0.1 to 30% by mass, particularly 1 to 15% by mass with respect to the carbon support as platinum metal. If the amount of the platinum compound is too small, the number of growth nuclei on the carbon surface decreases, and if the amount of the platinum compound is too large, coarse particles are generated, and a catalyst with high loading and good dispersibility may not be obtained. The amount of the reducing agent such as ethylene glycol used is preferably 1 to 80% by mass, particularly 5 to 50% by mass in the aqueous dispersion. The pH of the aqueous dispersion is preferably 4 to 12, particularly 5 to 10. For this reason, sodium hydroxide, aqueous ammonia, tetrahydroxymethylammonium or the like is used as a pH adjuster, and the pH is within the above range. It is preferable to adjust. In addition, although the case where platinum fine particles were produced | generated was illustrated here, when producing | generating the metals mentioned above other than platinum, it can produce by changing a metal compound and a reducing agent suitably.
次いで、このようにして得られた混合液を好ましくは40~120℃、特に50~100℃で好ましくは1~10時間、特に2~6時間撹拌処理した後、濾過、洗浄後、好ましくは40~150℃、特に60~120℃で好ましくは3~24時間、特に8~16時間乾燥することにより金属微粒子を担持したカーボンを得ることができる。
Subsequently, the mixed solution thus obtained is preferably stirred at 40 to 120 ° C., particularly 50 to 100 ° C., preferably for 1 to 10 hours, particularly 2 to 6 hours, and after filtration and washing, preferably 40 Carbon carrying metal fine particles can be obtained by drying at 150 to 150 ° C., particularly 60 to 120 ° C., preferably 3 to 24 hours, particularly 8 to 16 hours.
ここで、還元後の金属微粒子の担持率は1~30質量%、特に5~15質量%であることが好ましい。担持率が低すぎると、カーボン表面上の成長核の数が十分でなく、担持率が高すぎると、金属微粒子のサイズが大きくなり、高担持率で分散性のよい触媒が得られない。なお、ここで担持率は、下記式(1)から求めた値である。
担持率(質量%)=[A/(A+C)]×100 …(1)
A:金属微粒子質量
C:カーボン担体質量 Here, the loading ratio of the metal fine particles after reduction is preferably 1 to 30% by mass, particularly 5 to 15% by mass. If the loading rate is too low, the number of growth nuclei on the carbon surface is not sufficient, and if the loading rate is too high, the size of the metal fine particles increases, and a catalyst with high loading rate and good dispersibility cannot be obtained. Here, the carrying rate is a value obtained from the following formula (1).
Loading ratio (mass%) = [A / (A + C)] × 100 (1)
A: Metal fine particle mass C: Carbon carrier mass
担持率(質量%)=[A/(A+C)]×100 …(1)
A:金属微粒子質量
C:カーボン担体質量 Here, the loading ratio of the metal fine particles after reduction is preferably 1 to 30% by mass, particularly 5 to 15% by mass. If the loading rate is too low, the number of growth nuclei on the carbon surface is not sufficient, and if the loading rate is too high, the size of the metal fine particles increases, and a catalyst with high loading rate and good dispersibility cannot be obtained. Here, the carrying rate is a value obtained from the following formula (1).
Loading ratio (mass%) = [A / (A + C)] × 100 (1)
A: Metal fine particle mass C: Carbon carrier mass
次に、上記のようにして金属微粒子をカーボン担体に担持させた後、この金属微粒子を核として同一又は他の金属(触媒金属)を成長させる。この場合、触媒金属は、Pt及びRuを含む触媒金属であり、PtRuを含む合金としては、PtRuの二元系の他、PtRuSn、PtRuRh、PtRuPd、PtRuIr、PtRuAu、PtRuMo、PtRuW、PtRuCo、PtRuNi、PtRuFe、PtRuCr等の三元系が挙げられるが、メタノール酸化活性の高さの点でPtRuが好ましい。
Next, after the metal fine particles are supported on the carbon support as described above, the same or other metal (catalyst metal) is grown using the metal fine particles as nuclei. In this case, the catalyst metal is a catalyst metal containing Pt and Ru, and as an alloy containing PtRu, in addition to the binary system of PtRu, PtRuSn, PtRuRh, PtRuPd, PtRuIr, PtRuAu, PtRuMo, PtRuW, PtRuCo, PtRuCo, PtRuCo Although ternary systems such as PtRuFe and PtRuCr are listed, PtRu is preferable in terms of high methanol oxidation activity.
1段目で生成したPt等の金属微粒子核上に、PtRu等の触媒金属を担持又は成長させることで、高担持で高分散の触媒を得ることが可能であるが、最終的に形成されるPtRu等の触媒金属の平均粒径は4nm以下、好ましくは3nm以下、より好ましくは2.5nm以下である。なお、下限は限定されないが、通常0.1nm以上である。4nmより大きいと、市販のPtRu black触媒と同レベルかそれより粒径が大きくなり、金属質量あたりのメタノール酸化活性が低下する場合が生じる。
It is possible to obtain a highly supported and highly dispersed catalyst by supporting or growing a catalyst metal such as PtRu on the metal fine particle nucleus such as Pt produced in the first stage, but it is finally formed. The average particle diameter of the catalyst metal such as PtRu is 4 nm or less, preferably 3 nm or less, more preferably 2.5 nm or less. In addition, although a minimum is not limited, Usually, it is 0.1 nm or more. If it is larger than 4 nm, the particle size becomes the same level as or larger than that of a commercially available PtRu black catalyst, and the methanol oxidation activity per metal mass may decrease.
第二担持工程後の全金属粒子の担持率は50質量%以上、好ましくは60質量%以上が望ましい。担持率が50質量%より低いと、微小な触媒金属粒子の分散は容易であるが、膜電極接合体(MEA)作製時の触媒層が担持率の高い触媒を用いたときより厚くなる。そのためメタノール燃料の供給が律速となり、担持率の高い触媒を使用したときに比べて出力は小さくなる場合が生じる。なお、担持率の上限は特に限定されるものではないが通常90質量%以下、特に75質量%以下が好ましい。なお、ここでの担持率は、下記式(2)から求められる。
担持率(質量%)=[(A+B)/(A+B+C)]×100 …(2)
A:金属核質量
B:触媒金属(例えばPtRu)質量
C:カーボン担体質量 The supporting rate of all metal particles after the second supporting step is 50% by mass or more, preferably 60% by mass or more. When the loading ratio is lower than 50% by mass, the dispersion of the fine catalyst metal particles is easy, but the catalyst layer at the time of manufacturing the membrane electrode assembly (MEA) becomes thicker than when a catalyst with a high loading ratio is used. For this reason, the supply of methanol fuel becomes rate limiting, and the output may be smaller than when a catalyst with a high loading rate is used. The upper limit of the loading rate is not particularly limited, but is usually 90% by mass or less, particularly preferably 75% by mass or less. In addition, the supporting rate here is calculated | required from following formula (2).
Loading ratio (mass%) = [(A + B) / (A + B + C)] × 100 (2)
A: Mass of metal core B: Mass of catalyst metal (for example, PtRu) C: Mass of carbon support
担持率(質量%)=[(A+B)/(A+B+C)]×100 …(2)
A:金属核質量
B:触媒金属(例えばPtRu)質量
C:カーボン担体質量 The supporting rate of all metal particles after the second supporting step is 50% by mass or more, preferably 60% by mass or more. When the loading ratio is lower than 50% by mass, the dispersion of the fine catalyst metal particles is easy, but the catalyst layer at the time of manufacturing the membrane electrode assembly (MEA) becomes thicker than when a catalyst with a high loading ratio is used. For this reason, the supply of methanol fuel becomes rate limiting, and the output may be smaller than when a catalyst with a high loading rate is used. The upper limit of the loading rate is not particularly limited, but is usually 90% by mass or less, particularly preferably 75% by mass or less. In addition, the supporting rate here is calculated | required from following formula (2).
Loading ratio (mass%) = [(A + B) / (A + B + C)] × 100 (2)
A: Mass of metal core B: Mass of catalyst metal (for example, PtRu) C: Mass of carbon support
ここで、上記金属微粒子核に金属触媒を成長させる方法としては、例えばPtRuを成長させる場合であれば、白金原料として塩化白金酸、塩化白金(II)、塩化白金(IV)、ジニトロジアミン白金(II)、ビスアセチルアセトナト白金、ジクロロテトラミン白金、テトラミン硫酸白金、塩化白金(II)アンモニウム、塩化白金(IV)アンモニウム、ジクロロジアミン白金等の白金化合物を単独で又は複数種使用することができる。
Here, as a method for growing a metal catalyst on the metal fine particle nucleus, for example, when growing PtRu, chloroplatinic acid, platinum (II) chloride, platinum (IV) chloride, dinitrodiamine platinum ( II), platinum compounds such as bisacetylacetonatoplatinum, dichlorotetramineplatinum, platinum tetraminesulfate, platinum (II) ammonium chloride, platinum (IV) ammonium chloride, dichlorodiamineplatinum and the like can be used alone or in combination.
一方、ルテニウム原料として、本発明では、下記式(A)
M2RuX6 …(A)
(式中、MはH,Li,Na,K及びNH4から選ばれる1種又は2種以上、XはCl,Br,I及びNO3から選ばれる1種又は2種以上である。)
で示されるルテニウムの価数が4価であるルテニウム化合物を使用することが好ましい。 On the other hand, as a ruthenium raw material, in the present invention, the following formula (A)
M 2 RuX 6 (A)
(Wherein M is one or more selected from H, Li, Na, K and NH 4 , and X is one or more selected from Cl, Br, I and NO 3 )
It is preferable to use a ruthenium compound in which the valence of ruthenium represented by is tetravalent.
M2RuX6 …(A)
(式中、MはH,Li,Na,K及びNH4から選ばれる1種又は2種以上、XはCl,Br,I及びNO3から選ばれる1種又は2種以上である。)
で示されるルテニウムの価数が4価であるルテニウム化合物を使用することが好ましい。 On the other hand, as a ruthenium raw material, in the present invention, the following formula (A)
M 2 RuX 6 (A)
(Wherein M is one or more selected from H, Li, Na, K and NH 4 , and X is one or more selected from Cl, Br, I and NO 3 )
It is preferable to use a ruthenium compound in which the valence of ruthenium represented by is tetravalent.
このルテニウム化合物として具体的には、ルテニウムの価数が4価である塩化ルテニウム酸(H2RuCl6)、塩化ルテニウム酸リチウム(Li2RuCl6)、塩化ルテニウム酸ナトリウム(Na2RuCl6)、塩化ルテニウム酸カリウム(K2RuCl6)、塩化ルテニウム酸アンモニウム((NH4)2RuCl6)等の塩化ルテニウム酸又はその塩などのルテニウム化合物を単独で又は複数種使用することができる。最終的に得られる触媒のメタノール酸化活性の高さからは、H2RuCl6を用いることが好ましい。
Specific examples of the ruthenium compound include ruthenium chloride having a valence of 4 ruthenium chloride (H 2 RuCl 6 ), lithium ruthenate (Li 2 RuCl 6 ), sodium ruthenate (Na 2 RuCl 6 ), Ruthenium compounds such as ruthenium chlorate such as potassium ruthenate (K 2 RuCl 6 ) and ammonium ruthenate ((NH 4 ) 2 RuCl 6 ) or salts thereof may be used alone or in combination. H 2 RuCl 6 is preferably used because of the high methanol oxidation activity of the finally obtained catalyst.
これらの白金及びルテニウム化合物をエタノール、メタノール、1-プロパノール、2-プロパノール、ブタノール、エチレングリコール等の還元剤を含む溶液に溶解し、次いで金属微粒子核を担持したカーボン担体を投入し、40~120℃、特に50~100℃で、1~10時間、特に2~8時間反応を行い、上記金属微粒子核上にPtRuを生成、成長させる方法が採用される。一方、溶液中の白金及びルテニウム化合物の濃度は、触媒金属換算で0.01~10質量%、特に0.1~5質量%とすることが好ましい。また、還元剤の濃度は、1~80質量%、特に5~60質量%とすることが好ましい。
These platinum and ruthenium compounds are dissolved in a solution containing a reducing agent such as ethanol, methanol, 1-propanol, 2-propanol, butanol, ethylene glycol, and then a carbon carrier carrying metal fine particle nuclei is charged. A method is employed in which PtRu is produced and grown on the metal fine particle nuclei by reacting at 1 ° C., particularly 50 to 100 ° C. for 1 to 10 hours, particularly 2 to 8 hours. On the other hand, the concentration of platinum and ruthenium compounds in the solution is preferably 0.01 to 10% by mass, particularly 0.1 to 5% by mass in terms of catalyst metal. The concentration of the reducing agent is preferably 1 to 80% by mass, particularly 5 to 60% by mass.
また、上記白金化合物及びルテニウム化合物の使用量は、白金金属:ルテニウム金属としてそのモル比が2:8~9:1、特に5:5~8:2であることが好ましい。白金化合物量が少なすぎると、メタノールのC-H解離反応が進まないため、メタノール酸化電流値が小さくなり、多すぎると、メタノールの反応中間生成物であるCOの酸化反応が起こりにくく、低電位(0.4V(vs RHE)以下の電位)におけるメタノール酸化活性が小さくなる。ルテニウム化合物量が少なすぎると、白金が多い場合と同様、低電位におけるメタノール酸化活性が低く、多すぎると、白金が少ない場合と同様、メタノール酸化電流値が小さくなる。
The platinum compound and ruthenium compound are preferably used in a molar ratio of 2: 8 to 9: 1, particularly 5: 5 to 8: 2, as platinum metal: ruthenium metal. If the amount of the platinum compound is too small, the CH dissociation reaction of methanol does not proceed, so that the methanol oxidation current value becomes small. If it is too large, the oxidation reaction of methanol, which is a reaction intermediate product of methanol, hardly occurs, and the potential is low. Methanol oxidation activity at a potential of 0.4 V (vs RHE) or less is reduced. If the amount of the ruthenium compound is too small, the methanol oxidation activity at a low potential is low as in the case where the amount of platinum is large, and if it is too large, the methanol oxidation current value is small as in the case where the amount of platinum is small.
また、上記金属微粒子核を担持したカーボン担体の量は、溶液中に0.01~2質量%、特に0.1~1質量%で分散させて用いることが好ましい。その量が少なすぎると、得られる触媒の量が少なくなり、多すぎると、カーボンの分散性が悪くなり、金属粒子の凝集や粗大粒子の生成等が生じる。なお、ここではPtRuを成長させる場合を例示したが、PtRu以外の上述した金属を生成させる場合は、金属化合物を適宜変更して生成させることができる。
The amount of the carbon support carrying the metal fine particle nuclei is preferably 0.01 to 2% by mass, particularly 0.1 to 1% by mass dispersed in the solution. If the amount is too small, the amount of the resulting catalyst will be small, and if it is too large, the dispersibility of carbon will be poor, and metal particles will agglomerate and coarse particles will be produced. In addition, although the case where PtRu was grown was illustrated here, when producing | generating the metals mentioned above other than PtRu, it can produce | generate by changing a metal compound suitably.
このようにして得られた燃料電池用電極触媒は、特にダイレクトメタノール型燃料電池のアノード電極触媒として好適に用いられる。
The fuel cell electrode catalyst thus obtained is particularly preferably used as an anode electrode catalyst of a direct methanol fuel cell.
以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
[実施例1]
カーボン担体(ケッチェンブラックEC300J(ライオン(株)製))1gを含有する500mlの水分散液に、0.1gの白金を含む塩化白金酸を添加し、更にエチレングリコールを500g及びNaOHを50mmol添加した。この混合液を80℃で16時間加熱撹拌処理した。濾過、洗浄後、80℃で16時間乾燥し、Pt核を担持したカーボンを得た。得られたPt核を担持したカーボンをTEM観察した結果、粒径約0.5nmの微粒子が担体上に均一に分散している様子を確認できた。 [Example 1]
Chloroplatinic acid containing 0.1 g of platinum is added to 500 ml of an aqueous dispersion containing 1 g of carbon support (Ketjen Black EC300J (manufactured by Lion Corporation)), and 500 g of ethylene glycol and 50 mmol of NaOH are added. did. This mixed solution was heated and stirred at 80 ° C. for 16 hours. After filtration and washing, it was dried at 80 ° C. for 16 hours to obtain carbon carrying Pt nuclei. As a result of TEM observation of the obtained carbon carrying Pt nuclei, it was confirmed that fine particles having a particle diameter of about 0.5 nm were uniformly dispersed on the carrier.
カーボン担体(ケッチェンブラックEC300J(ライオン(株)製))1gを含有する500mlの水分散液に、0.1gの白金を含む塩化白金酸を添加し、更にエチレングリコールを500g及びNaOHを50mmol添加した。この混合液を80℃で16時間加熱撹拌処理した。濾過、洗浄後、80℃で16時間乾燥し、Pt核を担持したカーボンを得た。得られたPt核を担持したカーボンをTEM観察した結果、粒径約0.5nmの微粒子が担体上に均一に分散している様子を確認できた。 [Example 1]
Chloroplatinic acid containing 0.1 g of platinum is added to 500 ml of an aqueous dispersion containing 1 g of carbon support (Ketjen Black EC300J (manufactured by Lion Corporation)), and 500 g of ethylene glycol and 50 mmol of NaOH are added. did. This mixed solution was heated and stirred at 80 ° C. for 16 hours. After filtration and washing, it was dried at 80 ° C. for 16 hours to obtain carbon carrying Pt nuclei. As a result of TEM observation of the obtained carbon carrying Pt nuclei, it was confirmed that fine particles having a particle diameter of about 0.5 nm were uniformly dispersed on the carrier.
上記Pt核を担持したカーボン0.5gを、更にジニトロジアミン白金(II)1.1g、塩化ルテニウム酸(H2RuCl6)0.5g、2-プロパノール100gを含有する溶液600g中に投入し、60℃で8時間還流し、PtRuの担持率68質量%の触媒1.4gを得た。TEM観察した結果、平均粒径は2.4nmであり、カーボン上に均一に分散していた。
0.5 g of carbon carrying the Pt nucleus was added to 600 g of a solution containing 1.1 g of dinitrodiamineplatinum (II), 0.5 g of ruthenic acid chloride (H 2 RuCl 6 ) and 100 g of 2-propanol, The mixture was refluxed at 60 ° C. for 8 hours to obtain 1.4 g of a catalyst having a PtRu loading rate of 68% by mass. As a result of TEM observation, the average particle diameter was 2.4 nm, and it was uniformly dispersed on the carbon.
活性表面積の評価は、COストリッピング法により行った。触媒を水に超音波分散した後、グラッシーカーボン電極上に滴下し、乾燥後、5%Nafion溶液(DuPont製)を滴下して評価用の電極を作製した。電極をポテンショスタット(北斗電工製HZ5000)に取り付け、0.5mol/L H2SO4の入った電解セルに浸漬した。電解セルの雰囲気をArで置換後、触媒を-0.18V(vs RHE)に保持し、COガスを20minバブリングさせることでCO吸着を行った。同電位に保持した状態で、Arガスで20minバブリングさせ、余剰のCOガスを排出した。その後、スイープレンジ-0.18~0.5V(vs RHE)、スイープ速度10mV/sで電位走査し、COストリッピングボルタムグラムを測定し、COが脱離した後に再度電位走査し、その面積差をCO酸化電流とし、CO酸化のクーロン電荷を4.2C/m2と仮定して、PtRuの活性表面積を算出した。
The active surface area was evaluated by the CO stripping method. The catalyst was ultrasonically dispersed in water and then dropped on a glassy carbon electrode. After drying, a 5% Nafion solution (manufactured by DuPont) was dropped to prepare an electrode for evaluation. The electrode was attached to a potentiostat (HZ5000 manufactured by Hokuto Denko) and immersed in an electrolytic cell containing 0.5 mol / L H 2 SO 4 . After replacing the atmosphere of the electrolysis cell with Ar, the catalyst was held at −0.18 V (vs RHE), and CO adsorption was performed by bubbling CO gas for 20 min. While maintaining the same potential, bubbling was performed with Ar gas for 20 min, and excess CO gas was discharged. After that, the potential was scanned at a sweep range of -0.18 to 0.5 V (vs RHE), a sweep speed of 10 mV / s, the CO stripping voltamgram was measured, and the potential was scanned again after CO was desorbed. The active surface area of PtRu was calculated on the assumption that the difference was the CO oxidation current and the Coulomb charge of CO oxidation was 4.2 C / m 2 .
メタノール酸化活性の評価は、電解液を0.5mol/L H2SO4+1mol/L CH3OHとし、スイープレンジ-0.18~0.5V(vs RHE)、スイープ速度1mV/sで酸化電流を評価した。活性面積評価及びメタノール酸化活性は全て25℃で行った。
Methanol oxidation activity was evaluated by setting the electrolyte to 0.5 mol / L H 2 SO 4 +1 mol / L CH 3 OH, the oxidation range at a sweep range of −0.18 to 0.5 V (vs RHE), and a sweep rate of 1 mV / s. Evaluated. The active area evaluation and methanol oxidation activity were all performed at 25 ° C.
電位変動に対する安定性評価は、吉岡他,NEDOシンポジウム「固体高分子形燃料電池の高耐久化への展望」,30-36,2007(非特許文献3)記載のアノード触媒に対する電極触媒耐久性評価方法に準拠して行った。メタノール酸化活性評価後、電解液を0.5mol/L H2SO4に変更し、0.05~0.4V(vs RHE)、スイープ速度100mV/sで2400サイクルの負荷変動模擬試験を行い、電位サイクル後に上述と同様の手順で活性表面積評価、メタノール酸化活性評価を行った。この負荷変動サイクル前後における活性表面積及びメタノール酸化活性の変化から安定性を確認した。
Evaluation of stability against potential fluctuation is performed according to Yoshioka et al., NEDO Symposium “Prospects for high durability of polymer electrolyte fuel cells”, 30-36, 2007 (Non-patent Document 3). Performed according to the method. After evaluating the methanol oxidation activity, the electrolyte was changed to 0.5 mol / L H 2 SO 4 and a load fluctuation simulation test of 2400 cycles was performed at 0.05 to 0.4 V (vs RHE) and a sweep rate of 100 mV / s. After the potential cycle, the active surface area and methanol oxidation activity were evaluated in the same procedure as described above. Stability was confirmed from changes in the active surface area and methanol oxidation activity before and after this load fluctuation cycle.
ルテニウム原子周囲の第一近接白金原子の平均配位数はRu K吸収端におけるEXAFS(Extended X-ray Absorption Fine Structure)を測定し、それを解析することによって算出した。
The average coordination number of the first adjacent platinum atom around the ruthenium atom was calculated by measuring EXAFS (Extended X-ray Absorption Fine Structure) at the Ru K absorption edge and analyzing it.
EXAFSの測定は、財団法人高輝度光科学研究センター、大型放射光施設Spring-8 BL14B2で行った。分光結晶にはSi(111)を用い、RuのK吸収端22117eVに対し、-200eV~+1500eVの範囲で吸収スペクトルを測定した。試料はバインダーにBN粉末を用い、ペレット状に成形後ビーム中に配置させ、透過法によって行った。測定雰囲気は大気であり、温度は室温である。
EXAFS measurements were performed at the Research Center for High-Intensity Photoscience and the Large Synchrotron Radiation Facility Spring-8 BL14B2. Si (111) was used as the spectral crystal, and the absorption spectrum was measured in the range of −200 eV to +1500 eV with respect to the K absorption edge 22117 eV of Ru. A sample was formed by using a BN powder as a binder, and after forming into a pellet form, placing it in a beam and performing a transmission method. The measurement atmosphere is air and the temperature is room temperature.
測定したX線吸収スペクトルの解析には、IFEFFITプログラムパッケージ(例えば、M.Newville,Journal of Synchrotron Radiation,8,314-316,2001(非特許文献4)、J.J.Rehr et al.,Review of Modern Physics,72,621-654,2000(非特許文献5)参照)を用いた。
For analysis of the measured X-ray absorption spectrum, an IFEFFIT program package (for example, M. Newville, Journal of Synchrotron Radiation, 8, 314-316, 2001 (Non-Patent Document 4), JJ Rehr et al., Review) of Modern Physics, 72, 621-654, 2000 (see Non-Patent Document 5)).
[実施例2]
実施例1と同様の手順で作製したPt核を担持したカーボン0.5gを、ジニトロジアミン白金(II)1.1g、塩化ルテニウム酸カリウム(K2RuCl6)0.7g、2-プロパノール100gを含有する溶液600g中に投入し、80℃で8時間還流し、PtRuの担持率68質量%の触媒1.4gを得た。TEM観察した結果、平均粒径は2.4nmであり、カーボン上に均一に分散していた。評価は実施例1と同様に、活性表面積及びメタノール酸化活性評価後、負荷変動サイクルを行い、活性表面積及びメタノール酸化活性の評価を行った。 [Example 2]
0.5 g of carbon carrying Pt nuclei prepared in the same procedure as in Example 1, 1.1 g of dinitrodiamine platinum (II), 0.7 g of potassium ruthenate (K 2 RuCl 6 ), and 100 g of 2-propanol The solution was charged into 600 g of the solution and refluxed at 80 ° C. for 8 hours to obtain 1.4 g of a catalyst having a PtRu loading rate of 68 mass%. As a result of TEM observation, the average particle diameter was 2.4 nm, and it was uniformly dispersed on the carbon. In the same manner as in Example 1, after evaluating the active surface area and methanol oxidation activity, a load fluctuation cycle was performed to evaluate the active surface area and methanol oxidation activity.
実施例1と同様の手順で作製したPt核を担持したカーボン0.5gを、ジニトロジアミン白金(II)1.1g、塩化ルテニウム酸カリウム(K2RuCl6)0.7g、2-プロパノール100gを含有する溶液600g中に投入し、80℃で8時間還流し、PtRuの担持率68質量%の触媒1.4gを得た。TEM観察した結果、平均粒径は2.4nmであり、カーボン上に均一に分散していた。評価は実施例1と同様に、活性表面積及びメタノール酸化活性評価後、負荷変動サイクルを行い、活性表面積及びメタノール酸化活性の評価を行った。 [Example 2]
0.5 g of carbon carrying Pt nuclei prepared in the same procedure as in Example 1, 1.1 g of dinitrodiamine platinum (II), 0.7 g of potassium ruthenate (K 2 RuCl 6 ), and 100 g of 2-propanol The solution was charged into 600 g of the solution and refluxed at 80 ° C. for 8 hours to obtain 1.4 g of a catalyst having a PtRu loading rate of 68 mass%. As a result of TEM observation, the average particle diameter was 2.4 nm, and it was uniformly dispersed on the carbon. In the same manner as in Example 1, after evaluating the active surface area and methanol oxidation activity, a load fluctuation cycle was performed to evaluate the active surface area and methanol oxidation activity.
[比較例1]
実施例1と同様の手順で作製したPt核を担持したカーボン0.5gを、ジニトロジアミン白金(II)1.1g、ルテニウム原料として3価の価数をもつ塩化ルテニウム(RuCl3)0.5g、2-プロパノール100gを含有する溶液600g中に投入し、80℃で8時間還流し、PtRuの担持率68質量%の触媒1.4gを得た。TEM観察した結果、平均粒径は2.2nmであり、カーボン上に均一に分散していた。評価は実施例1と同様に、活性表面積及びメタノール酸化活性評価後、負荷変動サイクルを行い、活性表面積及びメタノール酸化活性の評価を行った。 [Comparative Example 1]
0.5 g of carbon carrying Pt nuclei prepared in the same procedure as in Example 1, 1.1 g of dinitrodiamine platinum (II), and 0.5 g of ruthenium chloride (RuCl 3 ) having a trivalent valence as a ruthenium raw material The solution was put into 600 g of a solution containing 100 g of 2-propanol and refluxed at 80 ° C. for 8 hours to obtain 1.4 g of a catalyst having a PtRu loading rate of 68 mass%. As a result of TEM observation, the average particle diameter was 2.2 nm, and it was uniformly dispersed on the carbon. In the same manner as in Example 1, after evaluating the active surface area and methanol oxidation activity, a load fluctuation cycle was performed to evaluate the active surface area and methanol oxidation activity.
実施例1と同様の手順で作製したPt核を担持したカーボン0.5gを、ジニトロジアミン白金(II)1.1g、ルテニウム原料として3価の価数をもつ塩化ルテニウム(RuCl3)0.5g、2-プロパノール100gを含有する溶液600g中に投入し、80℃で8時間還流し、PtRuの担持率68質量%の触媒1.4gを得た。TEM観察した結果、平均粒径は2.2nmであり、カーボン上に均一に分散していた。評価は実施例1と同様に、活性表面積及びメタノール酸化活性評価後、負荷変動サイクルを行い、活性表面積及びメタノール酸化活性の評価を行った。 [Comparative Example 1]
0.5 g of carbon carrying Pt nuclei prepared in the same procedure as in Example 1, 1.1 g of dinitrodiamine platinum (II), and 0.5 g of ruthenium chloride (RuCl 3 ) having a trivalent valence as a ruthenium raw material The solution was put into 600 g of a solution containing 100 g of 2-propanol and refluxed at 80 ° C. for 8 hours to obtain 1.4 g of a catalyst having a PtRu loading rate of 68 mass%. As a result of TEM observation, the average particle diameter was 2.2 nm, and it was uniformly dispersed on the carbon. In the same manner as in Example 1, after evaluating the active surface area and methanol oxidation activity, a load fluctuation cycle was performed to evaluate the active surface area and methanol oxidation activity.
[比較例2]
市販触媒であるPtRu black HiSPEC6000(ジョンソン・マッセイ製)について、実施例1と同様、負荷変動サイクル前後において、活性表面積及びメタノール酸化活性の評価を行った。 [Comparative Example 2]
About the commercial catalyst PtRu black HiSPEC6000 (manufactured by Johnson Matthey), the active surface area and methanol oxidation activity were evaluated before and after the load fluctuation cycle in the same manner as in Example 1.
市販触媒であるPtRu black HiSPEC6000(ジョンソン・マッセイ製)について、実施例1と同様、負荷変動サイクル前後において、活性表面積及びメタノール酸化活性の評価を行った。 [Comparative Example 2]
About the commercial catalyst PtRu black HiSPEC6000 (manufactured by Johnson Matthey), the active surface area and methanol oxidation activity were evaluated before and after the load fluctuation cycle in the same manner as in Example 1.
実施例1,2及び比較例1,2の触媒について、負荷変動サイクル前後における活性表面積及び0.4V,0.5V(vs RHE)メタノール酸化活性の評価結果を表1に示す。
Table 1 shows the evaluation results of active surface area and 0.4 V, 0.5 V (vs RHE) methanol oxidation activity before and after the load fluctuation cycle for the catalysts of Examples 1 and 2 and Comparative Examples 1 and 2.
また、Ru K吸収端のEXAFSスペクトルを解析することによって算出した、Ru原子第一近接元素の元素種及びその平均配位数を表2に示す。
In addition, Table 2 shows the element types and the average coordination number of the Ru atom first adjacent element calculated by analyzing the EXAFS spectrum of the Ru K absorption edge.
表1において、実施例1,2及び比較例1,2の負荷変動サイクル前のメタノール酸化活性を比較すると、実施例1,2で得た触媒は高いメタノール酸化活性を有していることがわかる。安定性に関して、負荷変動サイクル前後の活性表面積を比較すると、比較例で示した触媒は、サイクル後の活性面積減少率が高くなっているのに対し、実施例で示した触媒は、その減少率は低くなっている。負荷変動前後におけるメタノール酸化活性を比較すると、実施例で示した触媒はほとんど変わらないのに対し、比較例1で示す触媒は著しくメタノール酸化活性が低下することがわかる。以上より、4価のRu化合物を原料に用いて作製した触媒は、メタノール酸化活性が高く、かつ電位変動に対する安定性も、3価のRu化合物を用いて作製した触媒や、HiSPEC6000に比べ向上していることがわかる。特にH2RuCl6を原料に用いた触媒で、メタノール酸化活性及び電位変動に対する安定性が向上している。
In Table 1, when comparing the methanol oxidation activity before the load fluctuation cycle of Examples 1 and 2 and Comparative Examples 1 and 2, it can be seen that the catalysts obtained in Examples 1 and 2 have high methanol oxidation activity. . Regarding the stability, when comparing the active surface area before and after the load fluctuation cycle, the catalyst shown in the comparative example has a high reduction rate of the active area after the cycle, whereas the catalyst shown in the example shows the reduction rate. Is low. When comparing the methanol oxidation activity before and after the load fluctuation, it can be seen that the catalyst shown in the example hardly changes, whereas the catalyst shown in Comparative Example 1 has a markedly reduced methanol oxidation activity. From the above, a catalyst prepared using a tetravalent Ru compound as a raw material has high methanol oxidation activity and stability against potential fluctuation is also improved compared to a catalyst prepared using a trivalent Ru compound and HiSPEC6000. You can see that In particular, a catalyst using H 2 RuCl 6 as a raw material has improved methanol oxidation activity and potential stability.
表2において、Ruに配位する元素種及びその配位数を比較すると、実施例1,2及び比較例2において酸素及びRuの配位数に違いは見られない。Ruに配位しているPt原子の配位数を比較すると、実施例1,2の触媒は、比較例1,2の触媒に比べ高くなっていることがわかる。表1で示した負荷変動サイクル後の活性面積減少率とRuの第一近接Pt配位数とはよく対応しており、配位数が3.5以上においてHiSPEC6000を超える安定性を有していることがわかる。以上より、Ruの第一近接Pt配位数が3.5以上のものにおいて、3価のRu塩を用いて作製した触媒や、HiSPEC6000を超えるメタノール酸化活性及び電位変動に対する安定性が得られることがわかる。
In Table 2, when the element species coordinated to Ru and the coordination number thereof are compared, there is no difference in the coordination numbers of oxygen and Ru in Examples 1, 2 and Comparative Example 2. Comparing the coordination number of Pt atoms coordinated to Ru, it can be seen that the catalysts of Examples 1 and 2 are higher than the catalysts of Comparative Examples 1 and 2. The active area reduction rate after the load fluctuation cycle shown in Table 1 and the first neighboring Pt coordination number of Ru correspond well, and have a stability exceeding HiSPEC 6000 when the coordination number is 3.5 or more. I understand that. From the above, in the case of Ru having a first adjacent Pt coordination number of 3.5 or more, a catalyst prepared using a trivalent Ru salt, methanol oxidation activity exceeding HiSPEC 6000, and stability against potential fluctuation can be obtained. I understand.
Claims (4)
- 金属微粒子を核として、白金及びルテニウムを含む触媒金属を成長させてなる燃料電池用電極触媒であり、大気中における上記白金及びルテニウムを含む触媒金属中のルテニウム原子周囲の第一近接白金原子の平均配位数が3.5以上であることを特徴とする燃料電池用電極触媒。 An electrode catalyst for a fuel cell formed by growing a catalyst metal containing platinum and ruthenium using metal fine particles as a nucleus, and the average of the first adjacent platinum atoms around the ruthenium atom in the catalyst metal containing platinum and ruthenium in the atmosphere A fuel cell electrode catalyst having a coordination number of 3.5 or more.
- 導電性カーボン担体上に、金属微粒子を核として、白金及びルテニウムを含む触媒金属を成長させてなる燃料電池用電極触媒であり、大気中における上記白金及びルテニウムを含む触媒金属中のルテニウム原子周囲の第一近接白金原子の平均配位数が3.5以上であることを特徴とする燃料電池用電極触媒。 An electrode catalyst for a fuel cell in which a catalyst metal containing platinum and ruthenium is grown on a conductive carbon support using metal fine particles as a nucleus, and around the ruthenium atoms in the catalyst metal containing platinum and ruthenium in the atmosphere. An electrode catalyst for a fuel cell, wherein the average coordination number of first adjacent platinum atoms is 3.5 or more.
- 導電性カーボン担体に粒子間隔を制御した粒径0.1~2.0nmの金属微粒子を生成させる第一担持工程と、該金属微粒子を核として、白金及びルテニウムを含む触媒金属を、白金化合物及びルテニウム化合物を含む金属化合物を還元剤により還元して成長させる第二担持工程を含む燃料電池用電極触媒の製造方法であって、
上記第二担持工程において、ルテニウム化合物として、下記式(A)
M2RuX6 …(A)
(式中、MはH,Li,Na,K及びNH4から選ばれる1種又は2種以上、XはCl,Br,I及びNO3から選ばれる1種又は2種以上である。)
で示されるルテニウム化合物を用いることを特徴とする請求項2記載の燃料電池用電極触媒の製造方法。 A first supporting step for generating metal fine particles having a particle size of 0.1 to 2.0 nm with a controlled particle interval on a conductive carbon support; and a catalyst metal containing platinum and ruthenium using the metal fine particles as a nucleus, a platinum compound and A method for producing a fuel cell electrode catalyst comprising a second supporting step of growing a metal compound containing a ruthenium compound by reducing with a reducing agent,
In the second supporting step, as the ruthenium compound, the following formula (A)
M 2 RuX 6 (A)
(Wherein M is one or more selected from H, Li, Na, K and NH 4 , and X is one or more selected from Cl, Br, I and NO 3 )
A method for producing a fuel cell electrode catalyst according to claim 2, wherein the ruthenium compound represented by the formula (1) is used. - 上記ルテニウム化合物が、H2RuCl6であることを特徴とする請求項3記載の燃料電池用電極触媒の製造方法。 The ruthenium compound, H 2 RuCl 6 a process according to claim 3, wherein the fuel cell electrode catalyst, characterized in that.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-099191 | 2008-04-07 | ||
JP2008099191A JP2009252542A (en) | 2008-04-07 | 2008-04-07 | Electrode catalyst for fuel cell, and method for manufacturing the electrode catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009125741A1 true WO2009125741A1 (en) | 2009-10-15 |
Family
ID=41161874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/057055 WO2009125741A1 (en) | 2008-04-07 | 2009-04-06 | Electrode catalyst for a fuel cell and method for manufacturing an electrode catalyst |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2009252542A (en) |
WO (1) | WO2009125741A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009252543A (en) * | 2008-04-07 | 2009-10-29 | Shin Etsu Chem Co Ltd | Manufacturing method of electrode catalyst for fuel cell |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003109611A (en) * | 2001-09-27 | 2003-04-11 | Matsushita Electric Ind Co Ltd | Method of manufacturing gas diffusion electrode for high molecular electrolyte fuel cell |
WO2005088748A1 (en) * | 2004-03-12 | 2005-09-22 | National Institute Of Advanced Industrial Science And Technology | Anode catalyst for solid polymer fuel cell |
WO2007055229A1 (en) * | 2005-11-09 | 2007-05-18 | Shin-Etsu Chemical Co., Ltd. | Electrode catalyst for fuel cell and method for producing same |
JP2009093864A (en) * | 2007-10-05 | 2009-04-30 | Shin Etsu Chem Co Ltd | Manufacturing method of electrode catalyst for fuel cell |
-
2008
- 2008-04-07 JP JP2008099191A patent/JP2009252542A/en active Pending
-
2009
- 2009-04-06 WO PCT/JP2009/057055 patent/WO2009125741A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003109611A (en) * | 2001-09-27 | 2003-04-11 | Matsushita Electric Ind Co Ltd | Method of manufacturing gas diffusion electrode for high molecular electrolyte fuel cell |
WO2005088748A1 (en) * | 2004-03-12 | 2005-09-22 | National Institute Of Advanced Industrial Science And Technology | Anode catalyst for solid polymer fuel cell |
WO2007055229A1 (en) * | 2005-11-09 | 2007-05-18 | Shin-Etsu Chemical Co., Ltd. | Electrode catalyst for fuel cell and method for producing same |
JP2009093864A (en) * | 2007-10-05 | 2009-04-30 | Shin Etsu Chem Co Ltd | Manufacturing method of electrode catalyst for fuel cell |
Non-Patent Citations (1)
Title |
---|
"Heisei 16 Nendo kara Heisei 17 Nendo Seika Hokokusho Kotai Kobunshi Nenryo Denchi Yoso Gijutsu Kaihatsu To Jigyo ni Okeru Sendoteki Kiso Gijutsu Kenkyu Kaihatsu 'Direct Methanol- gata Nenryo Denchi Denkyoku-yo no Kokassei Sanka Shokubai no Kenkyu Kaihatsu'", NEW ENERGY AND INDUSTRIAL TECHNOLOGY DEVELOPMENT ORGANIZATION, March 2006 (2006-03-01), pages 1 - 14 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009252543A (en) * | 2008-04-07 | 2009-10-29 | Shin Etsu Chem Co Ltd | Manufacturing method of electrode catalyst for fuel cell |
Also Published As
Publication number | Publication date |
---|---|
JP2009252542A (en) | 2009-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zou et al. | Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol-tolerant oxygen reduction reactions | |
Hyun et al. | The effect of platinum based bimetallic electrocatalysts on oxygen reduction reaction of proton exchange membrane fuel cells | |
Qin et al. | Ultrathin IrRu nanowire networks with high performance and durability for the hydrogen oxidation reaction in alkaline anion exchange membrane fuel cells | |
JP4401059B2 (en) | Process for preparing anode catalyst for fuel cell and anode catalyst prepared using the process | |
Chu et al. | Facile synthesis of hollow spherical sandwich PtPd/C catalyst by electrostatic self-assembly in polyol solution for methanol electrooxidation | |
Félix-Navarro et al. | Bimetallic Pt–Au nanoparticles supported on multi-wall carbon nanotubes as electrocatalysts for oxygen reduction | |
KR100868756B1 (en) | Pt/Ru alloy supported catalyst, manufacturing method thereof, and fuel cell using the same | |
US8748334B2 (en) | Process for producing electrode catalyst for fuel cell | |
Chen et al. | Monodisperse ordered indium–palladium nanoparticles: synthesis and role of indium for boosting superior electrocatalytic activity for ethanol oxidation reaction | |
KR101624641B1 (en) | Electrode catalyst for fuel cell, manufacturing method thereof, membrane electrode assembly and fuel cell including the same | |
EP1825543A1 (en) | Electrode catalyst for fuel cell and fuel cell | |
JP2008041253A (en) | Electrocatalyst and power generation system using the same | |
JP5158334B2 (en) | Method for producing electrode catalyst for fuel cell | |
Meng et al. | An electrochemically reconstructed WC/WO 2–WO 3 heterostructure as a highly efficient hydrogen oxidation electrocatalyst | |
JP5489740B2 (en) | Method for producing ternary electrode catalyst for fuel cell, and polymer electrolyte fuel cell using the same | |
CN112002915B (en) | Oxygen electrode bifunctional catalyst, preparation method and application | |
da Silva et al. | PdSn/C electrocatalysts with different atomic ratios for ethanol electro-oxidation in alkaline media | |
Gao et al. | One-step synthesis of reduced graphene oxide-supported PtCo nanoalloys with enhanced electrocatalytic activity for methanol oxidation | |
Sharma et al. | Graphene-manganite-Pd hybrids as highly active and stable electrocatalysts for methanol oxidation and oxygen reduction | |
Wu et al. | Engineering Fe-N4 electronic structure with adjacent Co-N2C2 and Co nanoclusters on carbon nanotubes for efficient oxygen electrocatalysis | |
CN115704097A (en) | M 1 M 2 Preparation method and application of diatomic catalyst with support structure | |
Xu | A comparative study on electrocatalytic performance of PtAu/C and PtRu/C nanoparticles for methanol oxidation reaction | |
Sun et al. | Pd–Ru/C as the electrocatalyst for hydrogen peroxide reduction | |
Ma et al. | Novel methanol-tolerant Ir–S/C chalcogenide electrocatalysts for oxygen reduction in DMFC fuel cell | |
JP2008171659A (en) | Catalyst for solid-polymer fuel cell electrodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09730499 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09730499 Country of ref document: EP Kind code of ref document: A1 |