WO2009125635A1 - Semiconductor laser and modulation method of semiconductor laser - Google Patents

Semiconductor laser and modulation method of semiconductor laser Download PDF

Info

Publication number
WO2009125635A1
WO2009125635A1 PCT/JP2009/053985 JP2009053985W WO2009125635A1 WO 2009125635 A1 WO2009125635 A1 WO 2009125635A1 JP 2009053985 W JP2009053985 W JP 2009053985W WO 2009125635 A1 WO2009125635 A1 WO 2009125635A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
electrodes
layer
transverse mode
laser
Prior art date
Application number
PCT/JP2009/053985
Other languages
French (fr)
Japanese (ja)
Inventor
尚文 鈴木
正芳 辻
隆由 阿南
健一郎 屋敷
大 畠山
公良 深津
武志 赤川
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2009125635A1 publication Critical patent/WO2009125635A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01708Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells in an optical wavequide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/06Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide
    • G02F2201/066Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide channel; buried
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/102In×P and alloy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06233Controlling other output parameters than intensity or frequency
    • H01S5/0624Controlling other output parameters than intensity or frequency controlling the near- or far field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • H01S5/0655Single transverse or lateral mode emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18302Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] comprising an integrated optical modulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18394Apertures, e.g. defined by the shape of the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • H01S5/187Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL] using Bragg reflection

Definitions

  • the present invention relates to a semiconductor laser used in the field of optical communication and a method for modulating the semiconductor laser.
  • optical communication Since optical communication is capable of long-distance and large-capacity transmission, long-distance communication has been widely used practically from early on.
  • electrical signal transmission has been mainly used for short-distance communication.
  • signal distortion and crosstalk which are problems of electrical signals even at short distances, cannot be ignored. ing.
  • optical transmission is being applied also to near field communication.
  • optical interconnection using optical communication at a shorter distance such as between information processing devices in the same room or in a device, has attracted attention and has been actively studied.
  • the power consumption of the driver is large is that the signal from the IC 501 is attenuated while propagating through the transmission line, so that it is necessary to amplify it. Therefore, if a laser is directly connected to the IC 501 and the laser can be modulated by the output signal of the IC 501, the power consumption of the driver 502 can be reduced. Further, this configuration eliminates the need for the driver 502, and thus has an advantage that the chip cost and the mounting cost can be reduced.
  • an IC is manufactured by a CMOS with low power consumption, but it is difficult to achieve both high speed and large current in a CMOS.
  • the laser is directly modulated as described above, it is necessary to increase the bias current in order to improve the modulation speed.
  • the supply voltage to the CMOS tends to decrease with miniaturization, but the operating voltage of the laser cannot be made smaller than the voltage corresponding to the energy of the oscillation wavelength.
  • the laser (LD) 603 and the IC 601 are AC-coupled via the capacitor 602, and the DC component must be supplied from another line.
  • the capacitor 602 needs to have a certain capacity or more in order to pass the low frequency component, it is not easy to integrate this capacity in the IC 601 or the laser 603. Therefore, a chip capacitor is used. Since the chip capacitor is larger than the semiconductor laser, the distance between the IC 601 and the laser 603 is increased. Further, considering the mounting tolerance, it is necessary to provide a certain distance between the IC 601 and the capacitor 602 and between the capacitor 602 and the laser 603.
  • the supply voltage to the IC 601 is made higher than the driving voltage of the laser 603, the IC 601 and the laser 603 can be directly coupled without using the capacitor 602, that is, DC coupling is possible. Is avoided. However, in this case, there arises a problem that the power consumption of the IC 601 increases.
  • the above problem can be solved if the modulator can operate at a low voltage and a low current.
  • a light source combining a semiconductor laser and an MZ type modulator is widely used, and a light source in which an EA modulator is integrated in a semiconductor laser is also put into practical use.
  • these modulators require an operating voltage of several volts, it is difficult to drive with the output signal of the IC as described above. Moreover, since these are comparatively large, they are not suitable for high-density mounting as described above.
  • the modulator is premised on a combination with an edge emitter type laser, but it is desirable to use a surface emitting laser (VCSEL) excellent in power consumption, cost and high density as a light source for optical interconnection.
  • VCSEL surface emitting laser
  • a complex optical waveguide structure is required for coupling the modulator and the VCSEL, and it is difficult to integrate and increase the density, and it is not practical from the viewpoint of cost.
  • the light whose transverse mode is modulated in accordance with the input signal is converted into light intensity modulation by inputting the light whose optical coupling efficiency varies greatly depending on the transverse mode, for example, a single mode fiber (SMF).
  • SMF single mode fiber
  • a surface emitting laser (see FIG. 1) that includes a light-absorbing layer around a non-absorbing region that is transparent to light ( VCSEL) is disclosed.
  • JP 2006-253484 A JP 2006-253484 A
  • the present invention has been made in order to solve such problems, and an object of the present invention is to provide a semiconductor laser and a method for modulating the semiconductor laser capable of significantly reducing power consumption of a light source for optical interconnection. .
  • a semiconductor laser modulation method is characterized by modulating a transverse mode by inputting different signals from one or a plurality of electrode sets. .
  • the semiconductor laser according to the present invention includes a semiconductor laser and a set of one or a plurality of electrodes provided in the semiconductor laser, and modulates a transverse mode by inputting different signals to the set of electrodes. It is.
  • Electrode 432-434 Pad electrode 100
  • Semiconductor laser 101 n-type semiconductor substrate 102 n-type DBR layer 103, 203 Active layer 104 Current confinement structure 105 p-type DBR layer 106 surface-emitting laser 107, 304 undoped semiconductor layer 108 n-type semiconductor layer 109 absorption layer 110 p-type semiconductor layer 113 modulator 202, 203, 403 modulator 204 optical waveguide 301 substrate 305 first DBR layer 306, 308, 404, 406, 426 Cladding layer 307, 405 Active layer 309 p-AlAs layer 310 p-Al0.9Ga0.1As layer 312 p + -GaAs layer 313 n-GaAs layer 314 Light absorption layer 315 p-GaAs layer 330 Mesa structure 331 Polyimide 332 Pro Implanted region 333 Undoped InGaP layer
  • FIG. 1A is a cross-sectional view showing a semiconductor laser according to a first embodiment of the present invention
  • FIG. 1B is a plan view showing the arrangement of electrodes in the semiconductor laser
  • FIG. 1C is an applied voltage and absorption in an absorption layer of the modulator. It is a figure which shows the relationship of a coefficient.
  • a semiconductor laser 100 includes a semiconductor laser composed of a surface emitting laser 106 on an n-type semiconductor substrate 101, and a modulator 113 formed on the surface emitting laser 106 by being electrically separated.
  • the modulator 113 includes a plurality of electrode sets 111 and 112, and modulates the transverse mode by inputting different signals to the electrode sets.
  • the semiconductor laser is described as a surface emitting laser, but can also be applied to an edge emitting laser as will be described later.
  • the surface emitting laser 106 has an n-type DBR layer 102 as a first reflecting mirror, an active layer 103, a current confinement structure 104, and a p-type DBR layer 105 as a second reflecting mirror on an n-type semiconductor substrate 101. .
  • a modulation section 113 having an n-type semiconductor layer 108, an absorption layer 109 made of a quantum well, and a p-type semiconductor layer 110 is formed.
  • Electrodes are formed on the n-type semiconductor substrate 101 and the p-type DBR layer 105, respectively, through which current is supplied to the surface emitting laser 106 to emit light.
  • electrodes 111 and 112 are formed on the p-type semiconductor layer 110.
  • An opening portion of the current confinement structure 104, that is, a portion where current can pass is circular, and laser light is generated in the vicinity of the active layer 103 in the lower portion of the circular shape.
  • the electrode 111 is formed above the center of the circle, and the electrode 112 is formed above the periphery of the circle.
  • This structure is a back-emitting surface emitting laser that emits laser light from the substrate side.
  • the transverse mode can be changed by inputting a differential voltage signal to the electrodes 111 and 112.
  • the transverse mode is modulated to express “0” in the higher order mode and “1” in the basic mode.
  • the electrode 111 is formed at the center of the position corresponding to the current confinement structure of the surface emitting laser, and the electrode 112 is formed around the current confinement structure so as to surround the electrode 111.
  • the shape is not limited to this.
  • the electrode 111 may be formed in a donut shape.
  • the donut-shaped currents 111 and 112 may be divided into a plurality of parts.
  • FIG. 2A is a sectional view showing a semiconductor laser according to a second embodiment of the present invention
  • FIG. 2B is a plan view showing the arrangement of electrodes in the semiconductor laser.
  • DFB Distributed Feedback
  • FIG. 2A A structure in which DFB (Distributed Feedback) -LD 201 and modulator 202 are integrated as shown in FIG. 2A will be described.
  • the active layer 203 of the DFB-LD and the optical waveguide 204 of the modulator are connected, and laser light generated by the DFB-LD is emitted through the modulator.
  • the band gap of the optical waveguide of the modulator is set slightly larger than the energy of the laser beam so as to have a small absorption coefficient for the laser beam.
  • a reverse bias is applied to the modulator, the band gap is reduced by the confined Stark effect or the Franz-Keldish effect, and the absorption coefficient is increased.
  • the waveguide is set to have a width capable of generating a higher-order mode, and the electrodes are arranged near the center and both ends of the waveguide as shown in FIG. 2B.
  • a plurality of electrodes 205 near the center and electrodes 206 near both ends thereof may be provided.
  • an absorption modulator is integrated in a semiconductor laser.
  • the operating principle of this modulator is to change the absorption coefficient by changing the voltage applied to the modulator as in the above example.
  • a voltage is uniformly applied to the waveguide.
  • the modulator only needs to give an in-plane distribution to the absorption coefficient, and a required amount of light absorption is small. Therefore, modulation can be performed with a low applied voltage, and the length of the modulator can be significantly shortened.
  • FIG. 3A is a sectional view showing a semiconductor laser according to the first embodiment of the present invention
  • FIG. 3B is a plan view thereof.
  • the structure of this embodiment has a surface emitting laser (VCSEL) 302 on an n-type GaAs substrate 301 and a modulator 303 including an absorption layer thereon.
  • the VCSEL 502 and the modulator 303 are electrically separated by an undoped semiconductor layer 304.
  • the VCSEL 302 includes a first DBR layer (n-type semiconductor mirror layer) 305 in which a pair of an n-type GaAs layer and an n-type Al0.9Ga0.1As phase is used as a basic unit, and an n-type Al0.3Ga0.7As cladding layer.
  • an active layer 307 composed of an undoped GaInNAs quantum well and a GaAs barrier layer, a p-Al0.3Ga0.7As cladding layer 308, a p-AlAs layer 309, a p-Al0.9Ga0.1As layer 310, a p-type GaAs layer and a p-type
  • a basic unit is a pair of Al0.9Ga0.1As layers, and a second DBR layer (p-type semiconductor mirror layer) 311 and a p + -GaAs layer 312 are stacked.
  • the modulator is composed of an n-GaAs layer 313, an undoped GaInNAs quantum well, a light absorption layer 314 comprising a GaAs barrier layer, and a p-GaAs layer 315, and two sets of electrodes 316, 317 as shown in FIG. Is formed. Protons are injected into a portion 318 located between the electrodes 316 and 317 in the p-GaAs layer 315, and the lower portions of both electrodes are electrically separated. Furthermore, electrodes 319 and 320 for supplying current to the VCSEL 302 and an n-side electrode 321 for the modulator are provided. Further, the wavelengths of the absorption edges of the active layer 307 of the VCSEL 302 and the light absorption layer 314 of the modulator 303 are set so that the latter is shorter by about 70 nm than the former.
  • FIG. 4A to 4E are views showing the method of manufacturing the semiconductor laser according to the first embodiment of the present invention in the order of steps
  • FIG. 4F is a plan view of the electrode portion.
  • a first DBR layer (n-type semiconductor mirror layer) 305 on the n-type GaAs substrate 301, a first DBR layer (n-type semiconductor mirror layer) 305, an n-type Al0.3Ga0.7As cladding layer 306, an active layer 307 composed of an undoped GaInNAs quantum well and a GaAs barrier layer, p-Al0 .3Ga0.7As cladding layer 308, p-AlAs layer 309, p-Al0.9Ga0.1As layer 310, a pair of p-type GaAs layer and p-type Al0.9Ga0.1As layer as a basic unit, 2 DBR layers (p-type semiconductor mirror layers) 311, p + -GaAs layers 312, undoped InGaP layers 333, und
  • the layer thicknesses of the undoped InGaP layer 333 to the p-GaAs layer 315 are adjusted so that the sum of the optical path lengths is an integral multiple of ⁇ / 2.
  • is the oscillation wavelength.
  • the light absorption layer 314 is disposed near the antinode of the standing wave, that is, near the maximum value.
  • a SiO 2 film is formed by thermal CVD, a circular resist pattern is formed thereon by photolithography, and the SiO 2 film is etched using this resist pattern as a mask (step 2). Thereby, a circular SiO 2 film pattern is formed.
  • etching is performed from the surface to the surface of the first DBR layer (n-type semiconductor mirror layer) 305 using this SiO 2 film pattern as a mask to form a mesa structure 330 (FIG. 4B: step 3).
  • step 4 heating is performed at a temperature of about 400 ° C. for about 10 minutes in a furnace in a steam atmosphere.
  • a resist pattern is formed on the mesa structure 330 formed in Step 3 by photolithography so that the outer periphery is exposed, and then the outer periphery is etched to the p + -GaAs layer 312 by etching (Step 5).
  • the undoped InGaP layer 333 is inserted as an etching stop layer in this step, and is not essential in terms of operation principle.
  • step 6 by repeating the same step as the step 5, another cylindrical step is provided in the mesa structure 330 as shown in FIG. 4C (step 6). As a result, a part of the n-GaAs layer 313 is exposed. Next, an n-side electrode is formed on the first DBR layer 305 exposed in step 3 and the n-GaAs layer 313 exposed in step 6, as follows.
  • step 8 electrodes are formed on the p + -GaAs layer 312 at the outer periphery of the mesa structure 330 exposed at step 5 and the p-GaAs layer 315 at the top of the mesa as follows.
  • Electrodes 319, 316, and 317 are formed (FIG. 6E: Step 9).
  • the electrodes 316 and 317 on the p-GaAs layer 315 are formed at the central portion and the peripheral portion, respectively.
  • five pad electrodes (not shown) and wirings connecting them to the electrodes 320, 321, 319, 316, and 317 are simultaneously formed on the polyimide.
  • step 10 a portion other than between the electrodes 316 and 317 is covered with a photoresist by a photolithography technique, and then proton implantation is performed (FIG. 6F: step 10).
  • the acceleration voltage at the time of injection is adjusted so that protons reach the front of the light absorption layer 314.
  • the resist is removed. Since the proton injection region 332 produced by this step has a high resistance, the p-GaAs under the electrode 316 and the p-GaAs under the electrode 317 can be electrically separated.
  • a back electrode made of AuGe / AuNi / Ti / Au is formed by vapor deposition (step 11). This metal can be used to fuse the element to a heat sink or the like with solder. Thus, the device is completed.
  • a surface emitting laser is used as the semiconductor laser.
  • mode selectivity is high and noise-resistant mode modulation is possible. Since the mode is selected by two sets of electrodes, the mode selection system is strong. In addition, since a single mode component can be removed, a high extinction ratio can be realized. Furthermore, unintended mode changes are unlikely to occur as long as the same noise is applied to both electrodes.
  • FIG. 5A is a cross-sectional view showing a semiconductor laser according to a second embodiment of the present invention
  • FIG. 5B is a view showing the structure of the DFB-LD 402
  • FIG. 5C is a plan view of FIG. 5A.
  • the structure of this embodiment has a DFB-LD 402 on a n-type InP substrate 401 and a modulator 403 including an absorption layer on the side thereof.
  • the DFB-LD 402 includes an n-type InGaAsP cladding layer 404, an active layer 405 composed of an undoped InGaAsP quantum well and an InGaAsP barrier layer, a p-type InGaAsP cladding layer 406, a p-type InP layer 407, and a p + -InGaAs contact layer 408.
  • a grating 411 is formed between the n-type InP substrate 401 and the n-type InGaAsP clad layer 404.
  • the modulator 403 also has a structure similar to that of the DFB-LD 402, but has a light absorption layer 412 including an undoped InGaAsP quantum well and an InGaAsP barrier layer instead of the active layer 405.
  • the wavelengths of the absorption edges of the active layer 405 of the DFB-LD and the light absorption layer 412 of the modulator are set so that the latter is about 70 nm shorter than the former.
  • the DFB-LD 402 has a p-side electrode 413
  • the modulator 403 has two p-side electrodes 414 and 415.
  • the two p-side electrodes 414 and 415 are formed on the light absorption layer 412, but as shown in FIG.
  • the electrode 414 is near the center of the light absorption layer, and the electrode 415 is at the end of the light absorption layer. Placed in the part. Protons are injected into the p-type semiconductor layer located between the electrode 414 and the electrode 415, and the lower part of both electrodes is electrically separated. Further, a common n electrode of the DFB-LD 402 and the modulator 403 is formed on the back of the n-type InP substrate 401.
  • 6A to 6E are views showing a semiconductor laser manufacturing method according to the second embodiment of the present invention in the order of the steps.
  • the grating 411 is formed on the n-type InP substrate 407 by interference exposure (step 1).
  • an active layer 405 including an n-type In0.83Ga0.27As0.36P0.64 cladding layer 404, an undoped In0.8Ga0.2As0.64P0.36 quantum well and an In0.83Ga0.27As0.36P0.64 barrier layer, and a p-type In0.
  • cladding layer 406 and p-type InP layer 421 are sequentially deposited by metal organic chemical vapor deposition (MOCVD) (step 1).
  • MOCVD metal organic chemical vapor deposition
  • a SiO 2 film is deposited on the wafer by thermal CVD, and a SiO 2 stripe mask 422 having a width of 300 ⁇ m and a pitch of 400 ⁇ m is formed by photolithography and etching (step 2).
  • the portion without the mask is etched up to the n-type InP substrate 401 by wet etching (FIG. 6A: step 3).
  • the grating formed in step 1 is also deleted by this etching.
  • the grating of the portion covered with the SiO 2 mask 422 remains, and the upper portion becomes the DFB-LD.
  • a modulator is formed on the portion etched in this step.
  • the n-type InP layer 423, the n-type In0.83Ga0.27As0.36P0.64 cladding layer 424, the undoped In0.86Ga0.14As0.51P0.49 quantum well, and the In0.83Ga0.27As0.36P0.64 are again formed by MOCVD.
  • a light absorption layer 425 made of a barrier layer, a p-type In0.83Ga0.27As0.36P0.64 cladding layer 426, and a p-type InP layer 427 are sequentially stacked by metal organic chemical vapor deposition (MOCVD) (step 4 in FIG. 6B). .
  • MOCVD metal organic chemical vapor deposition
  • the stripe direction of the mask produced in this step is formed in a direction orthogonal to that produced in step 2.
  • the stripe width is, for example, 1.5 ⁇ m in the portion on the DFB-LD and 2 ⁇ m in the portion on the modulator, for example, and the width is linearly changed near the junction.
  • the stripe pitch can be set to 300 ⁇ m, for example.
  • etching reaching the n-type InP substrate 401 is performed (step 6).
  • an Fe-doped semi-insulating InP layer 409 and an n-type InP layer 410 are formed by MOCVD (FIG. 6C: Step 7). These layers are selectively grown on the portion without the mask formed in step 5, and function as a current blocking layer.
  • a p-type InP layer 428 and a p + -InGaAs contact layer 429 are stacked by MOCVD (step 8).
  • two grooves 430 with a pitch of, for example, 30 ⁇ m are formed to reach the n-type InP substrate 401 so as to sandwich the active layer (and light absorption layer) stripe formed in step 6 by photolithography and mesa etching (step 9).
  • three pad electrodes 432 to 434 are formed in portions outside a groove having a pitch of 30 ⁇ m formed in step 7 and connected to the electrodes 413 to 415, respectively. Wirings connecting them are also formed simultaneously in this step.
  • a resist is applied to the entire surface of the wafer, and the resist is removed between the electrodes 414 and 415 by photolithography. Subsequently, protons are injected up to the top of the light absorption layer 425, that is, the p-type InP layer 427 and the p-type In0.83Ga0.27As0.36P0.64 cladding layer 426 (step 10). Thereby, the lower part of both electrodes is electrically separated.
  • AuGe / AuNi / Ti / Au is vapor-deposited to form a back surface n-electrode (not shown) (step 11).
  • the wafer thus formed is cleaved at 400 ⁇ m intervals so as to include the DFB-LD and the modulator, and coating is applied to both end faces to complete the device.
  • an edge emitting laser is used as the semiconductor laser.
  • mode modulation is possible even in an edge-emitting laser. Since the modulator requires a small amount of light absorption, it can be modulated with a low applied voltage, and the length of the modulator can be significantly shortened.
  • the implementation method of this invention is not limited to the above-mentioned various forms, A various deformation
  • transformation is possible in the range which does not deviate from the summary.
  • the wavelength and material of the semiconductor light emitting device those other than those listed in the examples can be selected.
  • the present invention contributes to low power consumption, high speed, and miniaturization of a semiconductor laser and an integrated circuit including the semiconductor laser, and has various applicability in optical communication and related technical fields. is there.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Provided is a semiconductor laser which can reduce power consumption of a light source for optical interconnection sharply. Also provided is a modulation method of a semiconductor laser. A semiconductor laser (100) comprises a surface emission laser (106), and a modulator (113) formed on the surface emission laser (106) while being isolated electrically. The surface emission laser (106) has an n-type DBR layer (102), an active layer (103), a current constriction structure (104), and a p-type DBR layer (105) formed on an n-type semiconductor substrate (101). A modulation portion (113) having an n-type semiconductor layer (108), an absorption layer (109) consisting of a quantum well, and a p-type semiconductor layer (110) is formed on an undoped semiconductor layer (107). The modulator (113) has a set of a plurality of electrodes and the transverse mode of the surface emission laser (106) is modulated by inputting different signals to the set of electrodes.

Description

半導体レーザ及び半導体レーザの変調方法Semiconductor laser and semiconductor laser modulation method
 本発明は、光通信の分野で用いられる半導体レーザ及び半導体レーザの変調方法に関する。 The present invention relates to a semiconductor laser used in the field of optical communication and a method for modulating the semiconductor laser.
 光通信は長距離、大容量伝送が可能であることから、特に長距離通信では早くから広く実用に供されてきた。一方、近距離の通信には主に電気信号伝送が用いられてきたが、データ伝送の高速化に伴い、近距離においても電気信号の問題点である信号歪やクロストークが無視できないレベルになっている。このため、近距離通信にも光伝送が適用されつつある。特に近年、同じ室内にある情報処理機器間、あるいは機器内といった、より近距離にも光通信を用いる光インターコネクションが注目され、盛んに研究されている。 Since optical communication is capable of long-distance and large-capacity transmission, long-distance communication has been widely used practically from early on. On the other hand, electrical signal transmission has been mainly used for short-distance communication. However, with the increase in data transmission speed, signal distortion and crosstalk, which are problems of electrical signals even at short distances, cannot be ignored. ing. For this reason, optical transmission is being applied also to near field communication. In particular, in recent years, optical interconnection using optical communication at a shorter distance, such as between information processing devices in the same room or in a device, has attracted attention and has been actively studied.
 この光インターコネクションの実用化への課題として、消費電力の低減が挙げられる。従来、比較的近距離の光通信には直接変調方式が用いられてきた。これは光源である半導体レーザへ入力される電流量を増減(変調)し、これによりレーザから放射される光の強度を変調するものである。実際の回路構成としては、図7に示すように、シリアライザやスイッチング素子などのIC501から出た信号が伝送路を通じてレーザ駆動回路(ドライバ)502に入力される。次にドライバ502でレーザを変調する電流信号が生成され、レーザ(LD)503に供給される。このような直接変調では、一般にレーザよりも、電流を変調するレーザ駆動回路の消費電力が大きい。したがってドライバの消費電力を低減することが重要となる。 The challenge for the practical application of this optical interconnection is the reduction of power consumption. Conventionally, direct modulation has been used for relatively short-distance optical communications. This increases or decreases (modulates) the amount of current input to the semiconductor laser as the light source, thereby modulating the intensity of light emitted from the laser. As an actual circuit configuration, as shown in FIG. 7, a signal output from an IC 501 such as a serializer or a switching element is input to a laser driving circuit (driver) 502 through a transmission path. Next, a current signal for modulating the laser is generated by the driver 502 and supplied to a laser (LD) 503. In such direct modulation, the power consumption of a laser driving circuit for modulating current is generally larger than that of a laser. Therefore, it is important to reduce the power consumption of the driver.
 ドライバの消費電力が大きい主な理由は、IC501からの信号が伝送路を伝搬する間に減衰するため、これを増幅する必要があるためである。したがってIC501にレーザを直接接続し、IC501の出力信号でレーザを変調できれば、ドライバ502の消費電力分を低減することが可能となる。さらに本構成ではドライバ502が不要となるため、そのチップコスト及び実装コストを低減できるという利点もある。 The main reason why the power consumption of the driver is large is that the signal from the IC 501 is attenuated while propagating through the transmission line, so that it is necessary to amplify it. Therefore, if a laser is directly connected to the IC 501 and the laser can be modulated by the output signal of the IC 501, the power consumption of the driver 502 can be reduced. Further, this configuration eliminates the need for the driver 502, and thus has an advantage that the chip cost and the mounting cost can be reduced.
 しかし、以下のような理由により、変調速度の向上に伴い、上記の構成で消費電力を低減することは困難になる。光インターコネクションのような近距離通信ではファイバなどの光伝送路での減衰が小さいため、光源からの光出力を小さく抑えることができる。しかし、直接変調レーザの変調応答速度はバイアス電流に依存するため、高速動作時には、光出力の点から要求される電流以上のバイアス電流が必要となる。このため消費電力が増加する。この問題はレーザを小型化し、活性層の面積を小さくすることにより緩和されるが、これは耐静電破壊性能や作製容易性に悪影響を及ぼす。また、IC側の制約からも上記構成での高速化と低消費電力化の両立は困難となる。 However, for the following reasons, it is difficult to reduce power consumption with the above configuration as the modulation speed increases. In short-distance communication such as optical interconnection, since the attenuation in an optical transmission line such as a fiber is small, the light output from the light source can be kept small. However, since the modulation response speed of the direct modulation laser depends on the bias current, a bias current greater than that required from the point of light output is required during high-speed operation. For this reason, power consumption increases. This problem is alleviated by downsizing the laser and reducing the area of the active layer, which adversely affects electrostatic breakdown resistance and ease of fabrication. In addition, it is difficult to achieve both high speed and low power consumption in the above configuration due to restrictions on the IC side.
 一般にICは消費電力の小さいCMOSで作製されるが、CMOSでは高速と大きな電流を両立するのが困難である。一方、先述のようにレーザを直接変調する場合、変調速度を向上するにはバイアス電流が大きくする必要がある。この場合、十分な消光比を実現するには、ICからの変調信号もバイアス電流に合わせて大きくする必要がある。これは上記のようにCMOSでは困難となる。また、CMOSへの供給電圧は微細化に伴って低減する傾向にあるが、レーザの動作電圧は発振波長のエネルギーに対応する電圧よりも小さくすることはできない。 Generally, an IC is manufactured by a CMOS with low power consumption, but it is difficult to achieve both high speed and large current in a CMOS. On the other hand, when the laser is directly modulated as described above, it is necessary to increase the bias current in order to improve the modulation speed. In this case, in order to realize a sufficient extinction ratio, it is necessary to increase the modulation signal from the IC in accordance with the bias current. This is difficult with CMOS as described above. In addition, the supply voltage to the CMOS tends to decrease with miniaturization, but the operating voltage of the laser cannot be made smaller than the voltage corresponding to the energy of the oscillation wavelength.
 したがって図8のようにコンデンサ602を介してレーザ(LD)603とIC601をAC結合し、直流成分は別のラインから供給することが必要となる。この場合、低周波成分を通すためにコンデンサ602には一定以上の容量が必要となるため、IC601やレーザ603にこの容量を集積することは容易ではない。したがってチップコンデンサを用いることになるが、チップコンデンサは半導体レーザよりも大きいため、IC601とレーザ603の距離が遠くなる。さらに実装のトレランスを考えると、IC601とコンデンサ602間、コンデンサ602とレーザ603間にはそれぞれある程度の距離をとる必要が生じる。このためIC601からの信号がレーザ603に届くまでの間に減衰、波形劣化が生じる。また、スイッチング素子からの多数の出力を光に変換して出力する場合などは多数のレーザ603を実装することが必要となるが、コンデンサ602の占める面積が相対的に大きいため、このような場合に必要な高密度実装が困難となる。 Therefore, as shown in FIG. 8, the laser (LD) 603 and the IC 601 are AC-coupled via the capacitor 602, and the DC component must be supplied from another line. In this case, since the capacitor 602 needs to have a certain capacity or more in order to pass the low frequency component, it is not easy to integrate this capacity in the IC 601 or the laser 603. Therefore, a chip capacitor is used. Since the chip capacitor is larger than the semiconductor laser, the distance between the IC 601 and the laser 603 is increased. Further, considering the mounting tolerance, it is necessary to provide a certain distance between the IC 601 and the capacitor 602 and between the capacitor 602 and the laser 603. For this reason, attenuation and waveform deterioration occur until the signal from the IC 601 reaches the laser 603. In addition, when a large number of outputs from the switching element are converted into light and output, it is necessary to mount a large number of lasers 603, but in this case, the area occupied by the capacitor 602 is relatively large. High-density mounting required for this becomes difficult.
 一方、IC601への供給電圧をレーザ603の駆動電圧よりも高くすれば、コンデンサ602を介することなく、IC601とレーザ603を直接結合すること、すなわちDC結合が可能となるため、上記のような問題は回避される。しかしこの場合、IC601の消費電力が増加するという問題が生じる。 On the other hand, if the supply voltage to the IC 601 is made higher than the driving voltage of the laser 603, the IC 601 and the laser 603 can be directly coupled without using the capacitor 602, that is, DC coupling is possible. Is avoided. However, in this case, there arises a problem that the power consumption of the IC 601 increases.
 直接変調ではなく、発光部に変調器を集積した光源を用いる場合、この変調器が低電圧かつ低電流で動作可能であれば、上記の問題の解消が可能である。長距離通信では半導体レーザとMZ型変調器を組み合わせた光源が広く用いられており、また半導体レーザにEA変調器を集積した光源も実用化されている。しかしこれらの変調器は数ボルトの動作電圧を必要とするため、上記のようなICの出力信号での駆動は困難である。またこれらは比較的大きいため、前述したような高密度実装には適さない。さらに上記変調器はエッジエミッタ型のレーザとの組み合わせが前提となるが、光インターコネクション用光源としては消費電力、コスト、高密度に優れる面発光型レーザ(VCSEL)を用いることが望ましい。しかし上記変調器とVCSELの結合には複雑な光導波構造が必要となり、集積化、高密度化は困難であり、またコストの面からも現実的ではない。 In the case of using a light source in which a modulator is integrated in a light emitting unit instead of direct modulation, the above problem can be solved if the modulator can operate at a low voltage and a low current. In long-distance communication, a light source combining a semiconductor laser and an MZ type modulator is widely used, and a light source in which an EA modulator is integrated in a semiconductor laser is also put into practical use. However, since these modulators require an operating voltage of several volts, it is difficult to drive with the output signal of the IC as described above. Moreover, since these are comparatively large, they are not suitable for high-density mounting as described above. Further, the modulator is premised on a combination with an edge emitter type laser, but it is desirable to use a surface emitting laser (VCSEL) excellent in power consumption, cost and high density as a light source for optical interconnection. However, a complex optical waveguide structure is required for coupling the modulator and the VCSEL, and it is difficult to integrate and increase the density, and it is not practical from the viewpoint of cost.
 したがって、ICの出力による低電圧、低電流での駆動が可能であり、さらに小型かつVCSELにも集積可能な変調機構が望まれるが、この条件を満たす変調方式としては電圧信号により横モードを変化させるものが考えられる。このように入力信号に応じて横モードが変調された光を、光結合効率が横モードによって大きく変わるもの、例えばシングルモードファイバ(SMF)に入力することにより、光の強度変調に変換される。 Therefore, it is desirable to have a modulation mechanism that can be driven with low voltage and low current by the output of the IC, and that can be integrated into a VCSEL that is small in size. What can be considered. In this way, the light whose transverse mode is modulated in accordance with the input signal is converted into light intensity modulation by inputting the light whose optical coupling efficiency varies greatly depending on the transverse mode, for example, a single mode fiber (SMF).
 目的は大きく異なるが、上記のように横モードを変調するための構造として、特許文献1において光に対して透明な非吸収領域を囲んで周辺に、光吸収層を設けた面発光型レーザ(VCSEL)が開示されている。
特開2006-253484号公報
Although the purpose is greatly different, as a structure for modulating the transverse mode as described above, a surface emitting laser (see FIG. 1) that includes a light-absorbing layer around a non-absorbing region that is transparent to light ( VCSEL) is disclosed.
JP 2006-253484 A
 しかしながら、特許文献1に記載の技術においては、周辺部の吸収の有無によってのみ反射率の面内分布変化を実現しているため、モード切り替えに比較的大きな電圧が必要となる。また変調部にノイズが乗ることにより意図しないモードの変化が生じ易い。さらには本構造では、電界が印加されていない場合には高次モードが励振されることを前提としているが、実際にはこの場合も高次モード("0")のみでなく、基本モード("1")の成分がある程度存在することになる。したがって信号のオフレベルが高くなり、高い消光比を実現することが困難である。 However, in the technique described in Patent Document 1, since a change in the in-plane distribution of reflectance is realized only by the presence or absence of absorption in the peripheral portion, a relatively large voltage is required for mode switching. In addition, unintended mode changes are likely to occur due to noise on the modulator. Furthermore, in this structure, it is assumed that a higher-order mode is excited when an electric field is not applied, but actually, in this case as well, not only the higher-order mode ("0") but also the fundamental mode ( The component “1”) exists to some extent. Therefore, the off level of the signal becomes high and it is difficult to realize a high extinction ratio.
 本発明は、このような問題点を解決するためになされたものであり、光インターコネクション用光源の大幅な消費電力低減が可能な半導体レーザ及び半導体レーザの変調方法を提供することを目的とする。 The present invention has been made in order to solve such problems, and an object of the present invention is to provide a semiconductor laser and a method for modulating the semiconductor laser capable of significantly reducing power consumption of a light source for optical interconnection. .
 上記のような課題を解決するため、本発明にかかる半導体レーザの変調方法は、1又は複数の電極の組からそれぞれ異なる信号を入力することにより横モードを変調することを特徴とするものである。 In order to solve the above-described problems, a semiconductor laser modulation method according to the present invention is characterized by modulating a transverse mode by inputting different signals from one or a plurality of electrode sets. .
 本発明にかかる半導体レーザは、半導体レーザと、前記半導体レーザに設けられた1又は複数の電極の組とを有し、当該電極の組に異なる信号を入力することで、横モードを変調するものである。 The semiconductor laser according to the present invention includes a semiconductor laser and a set of one or a plurality of electrodes provided in the semiconductor laser, and modulates a transverse mode by inputting different signals to the set of electrodes. It is.
 本発明においては、光インターコネクション用光源の大幅な消費電力低減が可能な半導体レーザ及び半導体レーザの変調方法を提供することができる。 In the present invention, it is possible to provide a semiconductor laser and a semiconductor laser modulation method capable of significantly reducing power consumption of a light source for optical interconnection.
本発明の第1の実施の形態にかかる半導体レーザを示す断面図である。It is sectional drawing which shows the semiconductor laser concerning the 1st Embodiment of this invention. 半導体レーザにおける電極の配置を示す平面図である。It is a top view which shows arrangement | positioning of the electrode in a semiconductor laser. 変調器の吸収層における印加電圧と吸収係数の関係を示す図である。It is a figure which shows the relationship between the applied voltage and absorption coefficient in the absorption layer of a modulator. 本発明の第2の実施の形態にかかる半導体レーザを示す断面図である。It is sectional drawing which shows the semiconductor laser concerning the 2nd Embodiment of this invention. 半導体レーザにおける電極の配置を示す平面図である。It is a top view which shows arrangement | positioning of the electrode in a semiconductor laser. 本発明の第1の実施例にかかる半導体レーザを示す断面図である。1 is a cross-sectional view showing a semiconductor laser according to a first embodiment of the present invention. 図3Aの平面図である。It is a top view of FIG. 3A. 本発明の第1の実施例にかかる半導体レーザの製造方法の工程の一部を示す図である。It is a figure which shows a part of process of the manufacturing method of the semiconductor laser concerning the 1st Example of this invention. 本発明の第1の実施例にかかる半導体レーザの製造方法の工程の一部を示す図である。It is a figure which shows a part of process of the manufacturing method of the semiconductor laser concerning the 1st Example of this invention. 本発明の第1の実施例にかかる半導体レーザの製造方法の工程の一部を示す図である。It is a figure which shows a part of process of the manufacturing method of the semiconductor laser concerning the 1st Example of this invention. 本発明の第1の実施例にかかる半導体レーザの製造方法の工程の一部を示す図である。It is a figure which shows a part of process of the manufacturing method of the semiconductor laser concerning the 1st Example of this invention. 本発明の第1の実施例にかかる半導体レーザの製造方法の工程の一部を示す図である。It is a figure which shows a part of process of the manufacturing method of the semiconductor laser concerning the 1st Example of this invention. 電拒部分の平面図である。It is a top view of a denial part. 本発明の第2の実施例にかかる半導体レーザを示す断面図である。It is sectional drawing which shows the semiconductor laser concerning the 2nd Example of this invention. 図5A中のDFB-LD402の構造を示す図である。It is a figure which shows the structure of DFB-LD402 in FIG. 5A. 図5Aの平面図である。It is a top view of Drawing 5A. 本発明の第2の実施例にかかる半導体レーザの製造方法の工程の一部を示す図である。It is a figure which shows a part of process of the manufacturing method of the semiconductor laser concerning the 2nd Example of this invention. 本発明の第2の実施例にかかる半導体レーザの製造方法の工程の一部を示す図である。It is a figure which shows a part of process of the manufacturing method of the semiconductor laser concerning the 2nd Example of this invention. 本発明の第2の実施例にかかる半導体レーザの製造方法の工程の一部を示す図である。It is a figure which shows a part of process of the manufacturing method of the semiconductor laser concerning the 2nd Example of this invention. 本発明の第2の実施例にかかる半導体レーザの製造方法の工程の一部を示す図である。It is a figure which shows a part of process of the manufacturing method of the semiconductor laser concerning the 2nd Example of this invention. 本発明の第2の実施例にかかる半導体レーザの製造方法の工程の一部を示す図である。It is a figure which shows a part of process of the manufacturing method of the semiconductor laser concerning the 2nd Example of this invention. 従来のレーザ直接変調における回路構成を示す図である。It is a figure which shows the circuit structure in the conventional laser direct modulation. ICとレーザのAC結合の構成を示す図である。It is a figure which shows the structure of AC coupling | bonding of IC and a laser.
符号の説明Explanation of symbols
110-112、205、206、316、317、319、320、321、413-415 電極
432-434 パッド電極
100 半導体レーザ
101 n型半導体基板
102 n型DBR層
103、203 活性層
104 電流狭窄構造
105 p型DBR層
106 面発光レーザ
107、304 アンドープ半導体層
108 n型半導体層
109 吸収層
110 p型半導体層
113 変調部
202、203,403 変調器
204 光導波路
301 基板
305 第1のDBR層
306、308、404、406、426 クラッド層
307、405 活性層
309 p-AlAs層
310 p-Al0.9Ga0.1As層
312 p+-GaAs層
313 n-GaAs層
314 光吸収層
315 p-GaAs層
330 メサ構造
331 ポリイミド
332 プロトン注入領域
333 アンドープInGaP層
401 基板
407 p型InP層
408、429 コンタクト層
409 Feドープ半絶縁性InP層
410、423 n型InP層
411 グレーティング
412、425 光吸収層
421、427、428 p型InP層
422 マスク
430 溝
309 p-AlAs層
110-112, 205, 206, 316, 317, 319, 320, 321, 413-415 Electrode 432-434 Pad electrode 100 Semiconductor laser 101 n-type semiconductor substrate 102 n- type DBR layer 103, 203 Active layer 104 Current confinement structure 105 p-type DBR layer 106 surface-emitting laser 107, 304 undoped semiconductor layer 108 n-type semiconductor layer 109 absorption layer 110 p-type semiconductor layer 113 modulator 202, 203, 403 modulator 204 optical waveguide 301 substrate 305 first DBR layer 306, 308, 404, 406, 426 Cladding layer 307, 405 Active layer 309 p-AlAs layer 310 p-Al0.9Ga0.1As layer 312 p + -GaAs layer 313 n-GaAs layer 314 Light absorption layer 315 p-GaAs layer 330 Mesa structure 331 Polyimide 332 Pro Implanted region 333 Undoped InGaP layer 401 substrate 407 p- type InP layer 408, 429 contact layer 409 Fe-doped semi-insulating InP layer 410, 423 n-type InP layer 411 gratings 412, 425 light absorbing layers 421, 427, 428 p-type InP Layer 422 Mask 430 Groove 309 p-AlAs layer
 [第1の実施の形態]
 次に、本発明の実施の形態について図面を参照して詳細に説明する。ここでは面発光レーザに本発明を適用した場合について説明する。図1Aは、本発明の第1の実施の形態にかかる半導体レーザを示す断面図、図1Bは、半導体レーザにおける電極の配置を示す平面図、図1Cは変調器の吸収層における印加電圧と吸収係数の関係を示す図である。
[First embodiment]
Next, embodiments of the present invention will be described in detail with reference to the drawings. Here, a case where the present invention is applied to a surface emitting laser will be described. 1A is a cross-sectional view showing a semiconductor laser according to a first embodiment of the present invention, FIG. 1B is a plan view showing the arrangement of electrodes in the semiconductor laser, and FIG. 1C is an applied voltage and absorption in an absorption layer of the modulator. It is a figure which shows the relationship of a coefficient.
 図1Aに示すように、半導体レーザ100は、n型半導体基板101上に、面発光レーザ106からなる半導体レーザと、面発光レーザ106上に電気的に分離して形成された変調器113とを有する。変調器113は、複数の電極の組111、112を有し、当該電極の組に異なる信号を入力することで、横モードを変調するものである。なお、本実施の形態においては、半導体レーザは面発光レーザとして説明するが、後述するように端面発光レーザにも適用可能である。 As shown in FIG. 1A, a semiconductor laser 100 includes a semiconductor laser composed of a surface emitting laser 106 on an n-type semiconductor substrate 101, and a modulator 113 formed on the surface emitting laser 106 by being electrically separated. Have. The modulator 113 includes a plurality of electrode sets 111 and 112, and modulates the transverse mode by inputting different signals to the electrode sets. In the present embodiment, the semiconductor laser is described as a surface emitting laser, but can also be applied to an edge emitting laser as will be described later.
 面発光レーザ106は、n型半導体基板101上に、第1の反射鏡としてのn型DBR層102、活性層103、電流狭窄構造104、第2の反射鏡としてのp型DBR層105を有する。そして、その上のアンドープ半導体層107上に、n型半導体層108、量子井戸からなる吸収層109、及びp型半導体層110を有する変調部113が形成されている。 The surface emitting laser 106 has an n-type DBR layer 102 as a first reflecting mirror, an active layer 103, a current confinement structure 104, and a p-type DBR layer 105 as a second reflecting mirror on an n-type semiconductor substrate 101. . On the undoped semiconductor layer 107 thereabove, a modulation section 113 having an n-type semiconductor layer 108, an absorption layer 109 made of a quantum well, and a p-type semiconductor layer 110 is formed.
 n型半導体基板101及びp型DBR層105の上にはそれぞれ電極が形成されており、これらを介して面発光レーザ106に電流を供給して発光させる。またp型半導体層110上には図1Bに示すような電極111、112が形成されている。電流狭窄構造104の開口部、すなわち電流が通過できる箇所は円形になっており、レーザ光はこの円形の下部分の活性層103近傍で発生する。電極111はその円の中心部の上方、電極112は円の周辺部の上方に形成されている。また本構造は基板側からレーザ光を出射する裏面出射型面発光レーザとなっている。 Electrodes are formed on the n-type semiconductor substrate 101 and the p-type DBR layer 105, respectively, through which current is supplied to the surface emitting laser 106 to emit light. On the p-type semiconductor layer 110, electrodes 111 and 112 as shown in FIG. 1B are formed. An opening portion of the current confinement structure 104, that is, a portion where current can pass is circular, and laser light is generated in the vicinity of the active layer 103 in the lower portion of the circular shape. The electrode 111 is formed above the center of the circle, and the electrode 112 is formed above the periphery of the circle. This structure is a back-emitting surface emitting laser that emits laser light from the substrate side.
 図1Cに示すように、電極111、112に電圧がかけられていない場合には吸収層109はある程度の吸収を有するように面発光レーザの発振波長及び吸収層109の吸収波長が設定されている。本構造において電極111及び112に差動電圧信号を入力することによって横モードを変化させることができる。本実施の形態においては、横モードを変調し、高次モードで"0"、基本モードで"1"を表現するものである。 As shown in FIG. 1C, when no voltage is applied to the electrodes 111 and 112, the oscillation wavelength of the surface emitting laser and the absorption wavelength of the absorption layer 109 are set so that the absorption layer 109 has some absorption. . In this structure, the transverse mode can be changed by inputting a differential voltage signal to the electrodes 111 and 112. In this embodiment, the transverse mode is modulated to express “0” in the higher order mode and “1” in the basic mode.
 電極111に逆バイアス、電極112に順バイアスをかけた場合には電極111の下側の吸収体の吸収係数は大きくなり、電極112の下側の吸収体の吸収係数が小さくなる。すなわち中心部の吸収が大きく、周辺部の吸収が小さくなる。したがって中央部付近に強い電界分布を有する基本モードが強く抑制され、周辺部に強い電界分布を有する高次モードが励起される。電極111及び112に与える電圧の符号を逆にすれば、吸収分布が逆になるため、高次モードが抑制され、基本モードが励起される。このように両電極に差動電圧信号を加えることにより、モードの選択性が高く、ノイズに強いモード変調が可能となる。 When a reverse bias is applied to the electrode 111 and a forward bias is applied to the electrode 112, the absorption coefficient of the absorber below the electrode 111 increases, and the absorption coefficient of the absorber below the electrode 112 decreases. That is, the absorption at the center is large and the absorption at the periphery is small. Therefore, a fundamental mode having a strong electric field distribution near the center is strongly suppressed, and a higher-order mode having a strong electric field distribution is excited in the peripheral part. If the sign of the voltage applied to the electrodes 111 and 112 is reversed, the absorption distribution is reversed, so that the higher-order mode is suppressed and the fundamental mode is excited. By applying a differential voltage signal to both electrodes in this way, mode modulation with high mode selectivity and noise resistance becomes possible.
 ここで、電極111は、面発光レーザの電流狭窄構造に対応する位置の中心位置に形成されており、電極112は、この電極111を取り囲んで電流狭窄構造の周囲に形成されているが、電極の形状はこれに限定されない。例えば、電極111をドーナツ状に形成してもよい。この場合、ドーナツ状の電流111、112を複数に分割して形成してもよい。 Here, the electrode 111 is formed at the center of the position corresponding to the current confinement structure of the surface emitting laser, and the electrode 112 is formed around the current confinement structure so as to surround the electrode 111. The shape is not limited to this. For example, the electrode 111 may be formed in a donut shape. In this case, the donut-shaped currents 111 and 112 may be divided into a plurality of parts.
 本実施の形態においては、2箇所の吸収係数の変化の両者がモードに影響を与えるため、比較的小さな電圧でモードを切り替えることが可能である。またノイズは2箇所の電極への信号線に同程度に乗る場合が多いが、この場合での2箇所の電圧の差は一定であるため、吸収量の大小関係は変化しない。このため意図しないモードの変化が生じにくい。さらにオフ状態にした場合には、基本モードを十分抑制することができるため、先述の特許文献1の構造や、従来の直接変調に比べて、極めて高い消光比を実現できる。 In the present embodiment, since both changes in the absorption coefficient at two locations affect the mode, it is possible to switch the mode with a relatively small voltage. In many cases, noise is applied to the signal lines to the two electrodes at the same level, but the difference between the two voltages in this case is constant, so the magnitude relationship between the amounts of absorption does not change. For this reason, unintended mode changes are unlikely to occur. Furthermore, since the fundamental mode can be sufficiently suppressed in the off state, an extremely high extinction ratio can be realized as compared with the structure of the aforementioned Patent Document 1 and the conventional direct modulation.
 [第2の実施の形態]
 本実施の形態は、上述の半導体レーザとして端面発光レーザを使用するものである。図2Aは、本発明の第2の実施の形態にかかる半導体レーザを示す断面図、図2Bは、半導体レーザにおける電極の配置を示す平面図である。図2Aに示すようなDFB(Distributed Feedback)-LD201と変調器202を集積した構造について説明する。DFB-LDの活性層203と変調器の光導波路204が接続されており、DFB-LDで発生したレーザ光は変調器を通って出射する。
[Second Embodiment]
In the present embodiment, an edge emitting laser is used as the semiconductor laser. FIG. 2A is a sectional view showing a semiconductor laser according to a second embodiment of the present invention, and FIG. 2B is a plan view showing the arrangement of electrodes in the semiconductor laser. A structure in which DFB (Distributed Feedback) -LD 201 and modulator 202 are integrated as shown in FIG. 2A will be described. The active layer 203 of the DFB-LD and the optical waveguide 204 of the modulator are connected, and laser light generated by the DFB-LD is emitted through the modulator.
 変調器の光導波路のバンドギャップはレーザ光に対して小さな吸収係数を有するように、レーザ光のエネルギーよりも僅かに大きく設定されている。変調器に逆バイアスをかけると、閉じ込めシュタルク効果、又はフランツ・ケルディッシュ効果によりバンドギャップが減少し、吸収係数が大きくなる。また、順バイアスをかけるとビルトインポテンシャルを打ち消す方向に働くため、吸収端が短波長化し、吸収係数が小さくなる。ここで導波路は高次モードが生じ得る幅に設定されており、また電極は図2Bに示すように導波路の中央と両端付近に配置されている。ここで、電極は中央付近の電極205、その両端付近の電極206は、複数設けられていてもよい。 The band gap of the optical waveguide of the modulator is set slightly larger than the energy of the laser beam so as to have a small absorption coefficient for the laser beam. When a reverse bias is applied to the modulator, the band gap is reduced by the confined Stark effect or the Franz-Keldish effect, and the absorption coefficient is increased. In addition, when a forward bias is applied, the built-in potential is canceled and the absorption edge is shortened and the absorption coefficient is reduced. Here, the waveguide is set to have a width capable of generating a higher-order mode, and the electrodes are arranged near the center and both ends of the waveguide as shown in FIG. 2B. Here, a plurality of electrodes 205 near the center and electrodes 206 near both ends thereof may be provided.
 中央付近の電極205に順バイアス、端の電極206に逆バイアスがかかると、中央付近の吸収係数が小さくなり、端付近の吸収係数が大きくなる。したがって中央付近に強い電界強度を有する基本モードが励起される。一方、電極205に逆バイアス、電極206に順バイアスをかけると中央付近の吸収係数が大きくなり、端付近の吸収係数が小さくなるため、端の方に強い電界強度を有する高次モードが励起される。このように両電極に差動電圧信号を加えることにより、端面発光型レーザにおいてもモード変調が可能となる。 When a forward bias is applied to the electrode 205 near the center and a reverse bias is applied to the end electrode 206, the absorption coefficient near the center decreases and the absorption coefficient near the end increases. Therefore, a fundamental mode having a strong electric field strength near the center is excited. On the other hand, when reverse bias is applied to the electrode 205 and forward bias is applied to the electrode 206, the absorption coefficient near the center increases and the absorption coefficient near the edge decreases, so that a higher-order mode having a strong electric field strength toward the edge is excited. The Thus, by applying a differential voltage signal to both electrodes, mode modulation is possible even in an edge-emitting laser.
 従来用いられている変調器集積レーザでは、半導体レーザに吸収型変調器が集積されている。この変調器の動作原理は上記の例と同様に変調器への印加電圧を変えることにより吸収係数を変化させるものである。ただし、この吸収型変調器では導波路に一様に電圧を印加する。この構成では信号をオフとするために変調部でレーザ光をほぼ完全に吸収する必要があるので、高い印加電圧と比較的長い変調器長が必要となる。これに対し、本実施の形態においては、変調器は吸収係数に面内分布を与えれば良く、必要となる光の吸収量は僅かである。したがって低い印加電圧で変調が可能であり、また変調器の長さも大幅に短くすることが可能である。 In the conventionally used modulator integrated laser, an absorption modulator is integrated in a semiconductor laser. The operating principle of this modulator is to change the absorption coefficient by changing the voltage applied to the modulator as in the above example. However, in this absorption type modulator, a voltage is uniformly applied to the waveguide. In this configuration, in order to turn off the signal, it is necessary to absorb the laser beam almost completely by the modulation section, so that a high applied voltage and a relatively long modulator length are required. On the other hand, in the present embodiment, the modulator only needs to give an in-plane distribution to the absorption coefficient, and a required amount of light absorption is small. Therefore, modulation can be performed with a low applied voltage, and the length of the modulator can be significantly shortened.
 第1の実施例.
 次に、具体的な実施例を用いて、第1の実施の形態の構造及び製造方法を説明する。本第1の実施例ではGaAs基板上に形成した発振波長1.3μmの酸化狭窄型面発光レーザに本発明を適用した例を挙げる。図3A本発明の第1の実施例にかかる半導体レーザを示す断面図、図3Bは、その平面図である。
First embodiment.
Next, the structure and manufacturing method of the first embodiment will be described using specific examples. In the first embodiment, an example in which the present invention is applied to an oxidized confined surface emitting laser having an oscillation wavelength of 1.3 μm formed on a GaAs substrate will be described. FIG. 3A is a sectional view showing a semiconductor laser according to the first embodiment of the present invention, and FIG. 3B is a plan view thereof.
 本実施例の構造は図3Aに示すように、n型GaAs基板301上に面発光レーザ(VCSEL)302、さらにその上に吸収層を含む変調器303を有している。またVCSEL502と変調器303はアンドープ半導体層304によって電気的に分離されている。VCSEL302はn型GaAs層とn型Al0.9Ga0.1As相の一対を基本単位として、これを複数積層した第1のDBR層(n型半導体ミラー層)305、n型Al0.3Ga0.7Asクラッド層306、アンドープGaInNAs量子井戸とGaAs障壁層からなる活性層307、p-Al0.3Ga0.7Asクラッド層308、p-AlAs層309、p-Al0.9Ga0.1As層310、p型GaAs層とp型Al0.9Ga0.1As層の一対を基本単位として、これを複数積層した第2のDBR層(p型半導体ミラー層)311、p+-GaAs層312が積層された構造を有している。 As shown in FIG. 3A, the structure of this embodiment has a surface emitting laser (VCSEL) 302 on an n-type GaAs substrate 301 and a modulator 303 including an absorption layer thereon. The VCSEL 502 and the modulator 303 are electrically separated by an undoped semiconductor layer 304. The VCSEL 302 includes a first DBR layer (n-type semiconductor mirror layer) 305 in which a pair of an n-type GaAs layer and an n-type Al0.9Ga0.1As phase is used as a basic unit, and an n-type Al0.3Ga0.7As cladding layer. 306, an active layer 307 composed of an undoped GaInNAs quantum well and a GaAs barrier layer, a p-Al0.3Ga0.7As cladding layer 308, a p-AlAs layer 309, a p-Al0.9Ga0.1As layer 310, a p-type GaAs layer and a p-type A basic unit is a pair of Al0.9Ga0.1As layers, and a second DBR layer (p-type semiconductor mirror layer) 311 and a p + -GaAs layer 312 are stacked.
 変調器はn-GaAs層313とアンドープGaInNAs量子井戸とGaAs障壁層からなる光吸収層314、p-GaAs層315からなり、変調器の上部には図3Bのような2組の電極316、317が形成されている。p-GaAs層315のうち、電極316、317の間に位置する部分318にはプロトンが注入されており、両電極の下部分を電気的に分離している。さらにVCSEL302への電流供給用の電極319、320及び変調器用のn側電極321を有している。また、VCSEL302の活性層307と変調器303の光吸収層314の吸収端の波長は、後者が前者よりも70nm程度短くなるように設定されている。 The modulator is composed of an n-GaAs layer 313, an undoped GaInNAs quantum well, a light absorption layer 314 comprising a GaAs barrier layer, and a p-GaAs layer 315, and two sets of electrodes 316, 317 as shown in FIG. Is formed. Protons are injected into a portion 318 located between the electrodes 316 and 317 in the p-GaAs layer 315, and the lower portions of both electrodes are electrically separated. Furthermore, electrodes 319 and 320 for supplying current to the VCSEL 302 and an n-side electrode 321 for the modulator are provided. Further, the wavelengths of the absorption edges of the active layer 307 of the VCSEL 302 and the light absorption layer 314 of the modulator 303 are set so that the latter is shorter by about 70 nm than the former.
 次に上記構造を製造する方法を説明する。図4A乃至図4Eは、本発明の第1の実施例にかかる半導体レーザの製造方法をその工程順に示す図、図4Fは電極部分の平面図である。まずn型GaAs基板301上に第1のDBR層(n型半導体ミラー層)305、n型Al0.3Ga0.7Asクラッド層306、アンドープGaInNAs量子井戸とGaAs障壁層からなる活性層307、p-Al0.3Ga0.7Asクラッド層308、p-AlAs層309、p-Al0.9Ga0.1As層310、p型GaAs層とp型Al0.9Ga0.1As層の一対を基本単位として、これを複数積層した第2のDBR層(p型半導体ミラー層)311、p+-GaAs層312、アンドープInGaP層333、アンドープGaAs層304、n-GaAs層313、アンドープGaInNAs量子井戸とGaAs障壁層からなる光吸収層314、p-GaAs層305を有機金属気相成長(MOCVD)法にて順次積層する(図4A:工程1)。 Next, a method for manufacturing the above structure will be described. 4A to 4E are views showing the method of manufacturing the semiconductor laser according to the first embodiment of the present invention in the order of steps, and FIG. 4F is a plan view of the electrode portion. First, on the n-type GaAs substrate 301, a first DBR layer (n-type semiconductor mirror layer) 305, an n-type Al0.3Ga0.7As cladding layer 306, an active layer 307 composed of an undoped GaInNAs quantum well and a GaAs barrier layer, p-Al0 .3Ga0.7As cladding layer 308, p-AlAs layer 309, p-Al0.9Ga0.1As layer 310, a pair of p-type GaAs layer and p-type Al0.9Ga0.1As layer as a basic unit, 2 DBR layers (p-type semiconductor mirror layers) 311, p + -GaAs layers 312, undoped InGaP layers 333, undoped GaAs layers 304, n-GaAs layers 313, light-absorbing layers 314 comprising undoped GaInNAs quantum wells and GaAs barrier layers, P-GaAs layer 305 is sequentially deposited by metal organic chemical vapor deposition (MOCVD) method Layer (FIG. 4A: Step 1).
 なお、上記層構造において、アンドープInGaP層333からp-GaAs層315の層厚は、光路長の和がλ/2の整数倍になるように調整している。ここでλは発振波長である。また光吸収層314は定在波の腹、すなわち極大値の付近に配置している。 In the above layer structure, the layer thicknesses of the undoped InGaP layer 333 to the p-GaAs layer 315 are adjusted so that the sum of the optical path lengths is an integral multiple of λ / 2. Here, λ is the oscillation wavelength. The light absorption layer 314 is disposed near the antinode of the standing wave, that is, near the maximum value.
 次に熱CVD法によりSiO膜を形成し、その上にフォトリソグラフィ技術により円形のレジストパターンを形成した後、このレジストパターンをマスクに用いて前記SiO膜をエッチングする(工程2)。これにより円形のSiO膜のパターンが形成される。 Next, a SiO 2 film is formed by thermal CVD, a circular resist pattern is formed thereon by photolithography, and the SiO 2 film is etched using this resist pattern as a mask (step 2). Thereby, a circular SiO 2 film pattern is formed.
 次に、このSiO膜パターンをマスクに用いて表面から第1のDBR層(n型半導体ミラー層)305の表面までエッチングを行い、メサ構造330を形成する(図4B:工程3)。 Next, etching is performed from the surface to the surface of the first DBR layer (n-type semiconductor mirror layer) 305 using this SiO 2 film pattern as a mask to form a mesa structure 330 (FIG. 4B: step 3).
 次に、水蒸気雰囲気中の炉内において温度約400℃で約10分間加熱を行う。これにより、工程3で側面が露出したp-AlAs層309のみが選択的に同時に酸化される(工程4)。さらにフォトリソグラフィ技術により工程3で形成したメサ構造330上に外周部が露出するようにレジストパターンを形成した後、エッチングにより上記外周部をp+-GaAs層312までエッチングする(工程5)。なお、アンドープInGaP層333はこの工程の際のエッチングストップ層として挿入しているもので、動作原理上は必須のものではない。 Next, heating is performed at a temperature of about 400 ° C. for about 10 minutes in a furnace in a steam atmosphere. As a result, only the p-AlAs layer 309 whose side surface is exposed in step 3 is selectively oxidized simultaneously (step 4). Further, a resist pattern is formed on the mesa structure 330 formed in Step 3 by photolithography so that the outer periphery is exposed, and then the outer periphery is etched to the p + -GaAs layer 312 by etching (Step 5). Note that the undoped InGaP layer 333 is inserted as an etching stop layer in this step, and is not essential in terms of operation principle.
 次に、工程5と同様の工程を繰り返すことにより、図4Cに示すようにメサ構造330にさらにもう1段の円筒状の段差を設ける(工程6)。これによりn-GaAs層313の一部が露出される。次に、工程3で露出した第1のDBR層305上及び工程6で露出したn-GaAs層313の上に、次のようにしてn側電極を形成する。 Next, by repeating the same step as the step 5, another cylindrical step is provided in the mesa structure 330 as shown in FIG. 4C (step 6). As a result, a part of the n-GaAs layer 313 is exposed. Next, an n-side electrode is formed on the first DBR layer 305 exposed in step 3 and the n-GaAs layer 313 exposed in step 6, as follows.
 先ず、ウエハ上全面にフォトレジストを塗布した後、リソグラフィにより電極を形成する部分のみフォトレジストを除去する。AuGe/AuNi/Ti/Pt/Auを蒸着した後、上記フォトレジストを除去してフォトレジスト上の金属をリフトオフすることにより第1のDBR層305上の電極320及びn-GaAs層313上の電極321が形成される(図6D:工程7)。 First, after applying a photoresist on the entire surface of the wafer, only the photoresist is removed by lithography. After depositing AuGe / AuNi / Ti / Pt / Au, the photoresist is removed and the metal on the photoresist is lifted off to lift off the electrode 320 on the first DBR layer 305 and the electrode on the n-GaAs layer 313. 321 is formed (FIG. 6D: Step 7).
 次にポリイミド331によりメサ構造を埋め込んだ後、リソグラフィによりメサ構造330及び工程7で形成した電極320上のポリイミドを除去する(工程8)。次に工程5で露出したメサ構造330の外周部のp+-GaAs層312及びメサ最上部のp-GaAs層315上に以下のように電極を形成する。 Next, after the mesa structure is embedded with the polyimide 331, the polyimide on the mesa structure 330 and the electrode 320 formed in step 7 is removed by lithography (step 8). Next, electrodes are formed on the p + -GaAs layer 312 at the outer periphery of the mesa structure 330 exposed at step 5 and the p-GaAs layer 315 at the top of the mesa as follows.
 先ず、フォトレジストをウエハ上に塗布し、マスク露光によりパターニングした後、Ti/Pt/Auを蒸着し、上記フォトレジストを除去してフォトレジスト上のTi/Pt/Auをリフトオフすることによりp側電極319、316、317が、形成される(図6E:工程9)。この際、p-GaAs層315上の電極316、317は図6Fに示すように、それぞれ中央部と周辺部に形成されている。さらにこの際、ポリイミド上に5つのパッド電極(図示せず)及びそれらと電極320、321、319、316、317をつなぐ配線も同時に形成する。 First, after applying a photoresist on the wafer and patterning by mask exposure, Ti / Pt / Au is deposited, the photoresist is removed, and Ti / Pt / Au on the photoresist is lifted off to p- side Electrodes 319, 316, and 317 are formed (FIG. 6E: Step 9). At this time, as shown in FIG. 6F, the electrodes 316 and 317 on the p-GaAs layer 315 are formed at the central portion and the peripheral portion, respectively. Further, at this time, five pad electrodes (not shown) and wirings connecting them to the electrodes 320, 321, 319, 316, and 317 are simultaneously formed on the polyimide.
 次に、フォトリソグラフィ技術により電極316と317間以外の箇所をフォトレジストで覆った後、プロトン注入を行う(図6F:工程10)。この際、プロトンが光吸収層314の手前まで達するように注入時の加速電圧を調整する。その後、レジストを除去する。本工程により作製されたプロトン注入領域332は高抵抗化するため、電極316の下と電極317の下のp-GaAs間を電気的に分離することができる。 Next, a portion other than between the electrodes 316 and 317 is covered with a photoresist by a photolithography technique, and then proton implantation is performed (FIG. 6F: step 10). At this time, the acceleration voltage at the time of injection is adjusted so that protons reach the front of the light absorption layer 314. Thereafter, the resist is removed. Since the proton injection region 332 produced by this step has a high resistance, the p-GaAs under the electrode 316 and the p-GaAs under the electrode 317 can be electrically separated.
 最後に、n型GaAs基板301の裏面を厚さ150μmまで研磨した後、AuGe/AuNi/Ti/Auからなる裏面電極を蒸着により形成する(工程11)。この金属は素子を半田によりヒートシンクなどに融着するために使用できる。以上により素子が完成する。 Finally, after the back surface of the n-type GaAs substrate 301 is polished to a thickness of 150 μm, a back electrode made of AuGe / AuNi / Ti / Au is formed by vapor deposition (step 11). This metal can be used to fuse the element to a heat sink or the like with solder. Thus, the device is completed.
 本実施の形態においては、半導体レーザとして面発光レーザを使用する。両電極に差動電圧信号を加えることにより、モードの選択性が高く、ノイズに強いモード変調が可能となる。2組の電極によりモードを選択するのでモード選択制が強い。また、シングルモード成分を除去することができるため、高い消光比を実現することができる。さらに、両電極に同じノイズがかかる限り意図しないモード変化は生じ難い。 In the present embodiment, a surface emitting laser is used as the semiconductor laser. By applying a differential voltage signal to both electrodes, mode selectivity is high and noise-resistant mode modulation is possible. Since the mode is selected by two sets of electrodes, the mode selection system is strong. In addition, since a single mode component can be removed, a high extinction ratio can be realized. Furthermore, unintended mode changes are unlikely to occur as long as the same noise is applied to both electrodes.
 第2の実施例.
 次に第2の実施の形態の構造及び製造方法を第2の実施例として具体的に説明する。ここではInP基板上に形成した発振波長1.3μmの端面発光レーザに本発明を適用した例を挙げる。図5Aは、本発明の第2の実施例にかかる半導体レーザを示す断面図、図5Bは、DFB-LD402の構造を示す図、図5Cは、図5Aの平面図である。
Second embodiment.
Next, the structure and manufacturing method of the second embodiment will be specifically described as a second example. Here, an example in which the present invention is applied to an edge emitting laser having an oscillation wavelength of 1.3 μm formed on an InP substrate will be described. 5A is a cross-sectional view showing a semiconductor laser according to a second embodiment of the present invention, FIG. 5B is a view showing the structure of the DFB-LD 402, and FIG. 5C is a plan view of FIG. 5A.
 本実施例の構造は図5Aに示すように、n型InP基板401上にDFB-LD402とその横に吸収層を含む変調器403を有している。DFB-LD402は図5Bに示すようにn型InGaAsPクラッド層404、アンドープInGaAsP量子井戸とInGaAsP障壁層からなる活性層405、p型InGaAsPクラッド層406、p型InP層407、p+-InGaAsコンタクト層408が積層されたレーザ部と、Feドープ半絶縁性InP層409、n型InP層410からなる電流ブロック構造を有している。また、n型InP基板401とn型InGaAsPクラッド層404の間にはグレーティング411が形成されている。 As shown in FIG. 5A, the structure of this embodiment has a DFB-LD 402 on a n-type InP substrate 401 and a modulator 403 including an absorption layer on the side thereof. As shown in FIG. 5B, the DFB-LD 402 includes an n-type InGaAsP cladding layer 404, an active layer 405 composed of an undoped InGaAsP quantum well and an InGaAsP barrier layer, a p-type InGaAsP cladding layer 406, a p-type InP layer 407, and a p + -InGaAs contact layer 408. Are stacked, a Fe-doped semi-insulating InP layer 409, and an n-type InP layer 410. A grating 411 is formed between the n-type InP substrate 401 and the n-type InGaAsP clad layer 404.
 一方、変調器403もDFB-LD402同様の構造からなるが、活性層405の代わりに、アンドープInGaAsP量子井戸とInGaAsP障壁層からなる光吸収層412を有している。また、DFB-LDの活性層405と変調器の光吸収層412の吸収端の波長は、後者が前者よりも70nm程度短くなるように設定されている。DFB-LD402はp側電極413を有しており、変調器403は2つのp側電極414、415を有している。この2つのp側電極414、415は光吸収層412の上部に形成されているが、図5Cに示すように、電極414は光吸収層の中央部付近、電極415は光吸収層の端の部分に配置されている。電極414と電極415の間に位置するp型半導体層にはプロトンが注入されており、両電極の下部分を電気的に分離している。またn型InP基板401の裏にはDFB-LD402と変調器403の共通n電極が形成されている。 On the other hand, the modulator 403 also has a structure similar to that of the DFB-LD 402, but has a light absorption layer 412 including an undoped InGaAsP quantum well and an InGaAsP barrier layer instead of the active layer 405. The wavelengths of the absorption edges of the active layer 405 of the DFB-LD and the light absorption layer 412 of the modulator are set so that the latter is about 70 nm shorter than the former. The DFB-LD 402 has a p-side electrode 413, and the modulator 403 has two p- side electrodes 414 and 415. The two p- side electrodes 414 and 415 are formed on the light absorption layer 412, but as shown in FIG. 5C, the electrode 414 is near the center of the light absorption layer, and the electrode 415 is at the end of the light absorption layer. Placed in the part. Protons are injected into the p-type semiconductor layer located between the electrode 414 and the electrode 415, and the lower part of both electrodes is electrically separated. Further, a common n electrode of the DFB-LD 402 and the modulator 403 is formed on the back of the n-type InP substrate 401.
 次に上記構造を製造する方法を説明する。図6A乃至図6Eは、本発明の第2の実施例にかかる半導体レーザの製造方法をその工程順に示す図である。まずn型InP基板407上に干渉露光法によりグレーティング411を形成する(工程1)。次にn型In0.83Ga0.27As0.36P0.64クラッド層404、アンドープIn0.8Ga0.2As0.64P0.36量子井戸とIn0.83Ga0.27As0.36P0.64障壁層からなる活性層405、p型In0.83Ga0.27As0.36P0.64クラッド層406、p型InP層421を有機金属気相成長(MOCVD)法にて順次積層する(工程1)。次に熱CVDによりウエハ上にSiO膜を堆積し、フォトリソグラフィとエッチングにより幅300μm、ピッチ400μmのSiOストライプマスク422を形成する(工程2)。次にウエットエッチングによりマスクが無い部分をn型InP基板401までエッチングする(図6A:工程3)。このエッチングにより工程1で形成されたグレーティングも削除される。勿論、SiOマスク422で覆われた部分のグレーティングは残り、この上の部分がDFB-LDとなる。 Next, a method for manufacturing the above structure will be described. 6A to 6E are views showing a semiconductor laser manufacturing method according to the second embodiment of the present invention in the order of the steps. First, the grating 411 is formed on the n-type InP substrate 407 by interference exposure (step 1). Next, an active layer 405 including an n-type In0.83Ga0.27As0.36P0.64 cladding layer 404, an undoped In0.8Ga0.2As0.64P0.36 quantum well and an In0.83Ga0.27As0.36P0.64 barrier layer, and a p-type In0. .83Ga0.27As0.36P0.64 cladding layer 406 and p-type InP layer 421 are sequentially deposited by metal organic chemical vapor deposition (MOCVD) (step 1). Next, a SiO 2 film is deposited on the wafer by thermal CVD, and a SiO 2 stripe mask 422 having a width of 300 μm and a pitch of 400 μm is formed by photolithography and etching (step 2). Next, the portion without the mask is etched up to the n-type InP substrate 401 by wet etching (FIG. 6A: step 3). The grating formed in step 1 is also deleted by this etching. Of course, the grating of the portion covered with the SiO 2 mask 422 remains, and the upper portion becomes the DFB-LD.
 一方、本工程でエッチングされた部分の上に変調器が形成されることになる。続いて再度MOCVD法により、n型InP層423、n型In0.83Ga0.27As0.36P0.64クラッド層424、アンドープIn0.86Ga0.14As0.51P0.49量子井戸とIn0.83Ga0.27As0.36P0.64障壁層からなる光吸収層425、p型In0.83Ga0.27As0.36P0.64クラッド層426、p型InP層427を有機金属気相成長(MOCVD)法にて順次積層する(図6B工程4)。これらの層は工程3で形成したマスクがない部分に選択的に成長される。次にSiOマスク422を除去し、熱CVDにより新たにSiO膜を堆積し、フォトリソグラフィとエッチングによりストライプ状のSiOマスクを形成する(工程5)。本工程で作製されるマスクのストライプ方向は工程2で作製されたものとは直交する方向に形成される。ストライプ幅はDFB-LD上の部分では例えば1.5μm、変調器上の部分では例えば2μmであり、その接合部付近で直線的に幅を変化させている。またストライプのピッチは例えば300μmとすることができる。 On the other hand, a modulator is formed on the portion etched in this step. Subsequently, the n-type InP layer 423, the n-type In0.83Ga0.27As0.36P0.64 cladding layer 424, the undoped In0.86Ga0.14As0.51P0.49 quantum well, and the In0.83Ga0.27As0.36P0.64 are again formed by MOCVD. A light absorption layer 425 made of a barrier layer, a p-type In0.83Ga0.27As0.36P0.64 cladding layer 426, and a p-type InP layer 427 are sequentially stacked by metal organic chemical vapor deposition (MOCVD) (step 4 in FIG. 6B). . These layers are selectively grown on the portion without the mask formed in step 3. Next, the SiO 2 mask 422 is removed, a new SiO 2 film is deposited by thermal CVD, and a striped SiO 2 mask is formed by photolithography and etching (step 5). The stripe direction of the mask produced in this step is formed in a direction orthogonal to that produced in step 2. The stripe width is, for example, 1.5 μm in the portion on the DFB-LD and 2 μm in the portion on the modulator, for example, and the width is linearly changed near the junction. The stripe pitch can be set to 300 μm, for example.
 本ストライプマスクを用いて、n型InP基板401まで達するエッチングを行う(工程6)。次にMOCVD法を用いてFeドープ半絶縁性InP層409、n型InP層410を形成する(図6C:工程7)。これらの層は工程5で形成したマスクがない部分に選択的に成長され、電流ブロック層として機能する。次にSiOマスクを除去した後、p型InP層428、p+-InGaAsコンタクト層429をMOCVD法により積層する(工程8)。次にフォトリソグラフィとメサエッチングにより工程6で形成した活性層(及び光吸収層)ストライプを挟むように、n型InP基板401まで達する例えばピッチ30μmの2つの溝430を形成する(工程9)。 Using this stripe mask, etching reaching the n-type InP substrate 401 is performed (step 6). Next, an Fe-doped semi-insulating InP layer 409 and an n-type InP layer 410 are formed by MOCVD (FIG. 6C: Step 7). These layers are selectively grown on the portion without the mask formed in step 5, and function as a current blocking layer. Next, after removing the SiO 2 mask, a p-type InP layer 428 and a p + -InGaAs contact layer 429 are stacked by MOCVD (step 8). Next, two grooves 430 with a pitch of, for example, 30 μm are formed to reach the n-type InP substrate 401 so as to sandwich the active layer (and light absorption layer) stripe formed in step 6 by photolithography and mesa etching (step 9).
 次に、本ウエハにSiO膜を形成した後、フォトリソグラフィとエッチングにより、活性層(及び光吸収層)ストライプ上のSiO膜を除去する(図6D:工程10)。次に、以下の手順でSiOを除去した部分に電極を形成する。まずレジストを塗布した後、フォトリソグラフィにより工程8でSiOを除去した部分の上のレジストを除去する。次にTi/Pt/Auを蒸着した後、リフトオフにより、レジスト上の金属を除去する(工程11)。これによりp側電極が形成される。このとき、図6Eに示すように、DFB-LD上には1つの電極413が形成されるのみだが、変調器の上には2つの電極414、415が形成される。またこの際、工程7で形成した例えばピッチ30μmの溝よりも外の部分に3つのパッド電極432~434が形成され、それぞれ電極413~415と接続される。これらを結ぶ配線も本工程で同時に形成される。 Then, after forming a SiO 2 film on the wafer by photolithography and etching, the active layer (and the light-absorbing layer) to remove the SiO 2 film on the stripe (Figure 6D: Step 10). Next, an electrode is formed in the part where SiO 2 is removed by the following procedure. First, after applying a resist, the resist on the part where SiO 2 is removed in step 8 is removed by photolithography. Next, after depositing Ti / Pt / Au, the metal on the resist is removed by lift-off (step 11). Thereby, a p-side electrode is formed. At this time, as shown in FIG. 6E, only one electrode 413 is formed on the DFB-LD, but two electrodes 414 and 415 are formed on the modulator. At this time, for example, three pad electrodes 432 to 434 are formed in portions outside a groove having a pitch of 30 μm formed in step 7 and connected to the electrodes 413 to 415, respectively. Wirings connecting them are also formed simultaneously in this step.
 次にウエハ全面にレジストを塗布し、フォトリソグラフィにより電極414と電極415の間レジストを除去する。続いて、光吸収層425の上まで、すなわちp型InP層427、p型In0.83Ga0.27As0.36P0.64クラッド層426にプロトンを注入する(工程10)。これにより両電極の下部分を電気的に分離する。次にn型InP基板401の裏面を厚さ150μmまで研磨した後、AuGe/AuNi/Ti/Auを蒸着し、裏面n電極(図示せず)を形成する(工程11)。このように形成したウエハをDFB-LDと変調器を含むように400μm間隔で劈開し、両端面にコーティングを施して素子が完成する。 Next, a resist is applied to the entire surface of the wafer, and the resist is removed between the electrodes 414 and 415 by photolithography. Subsequently, protons are injected up to the top of the light absorption layer 425, that is, the p-type InP layer 427 and the p-type In0.83Ga0.27As0.36P0.64 cladding layer 426 (step 10). Thereby, the lower part of both electrodes is electrically separated. Next, after the back surface of the n-type InP substrate 401 is polished to a thickness of 150 μm, AuGe / AuNi / Ti / Au is vapor-deposited to form a back surface n-electrode (not shown) (step 11). The wafer thus formed is cleaved at 400 μm intervals so as to include the DFB-LD and the modulator, and coating is applied to both end faces to complete the device.
 本実施例においては、半導体レーザとして端面発光レーザを使用する。両電極に差動電圧信号を加えることにより、端面発光型レーザにおいてもモード変調が可能となる。変調器は必要となる光の吸収量は僅かであるため、低い印加電圧で変調が可能であり、また変調器の長さも大幅に短くすることが可能である。 In this embodiment, an edge emitting laser is used as the semiconductor laser. By applying a differential voltage signal to both electrodes, mode modulation is possible even in an edge-emitting laser. Since the modulator requires a small amount of light absorption, it can be modulated with a low applied voltage, and the length of the modulator can be significantly shortened.
 以上、本発明の実施例について説明したが、本発明の実施方法は上記した各種形態に限定されるものではなく、その要旨を逸脱しない範囲で各種の変形が可能である。半導体発光素子の波長、材料についても実施例に挙げたもの以外を選ぶことが可能である。 As mentioned above, although the Example of this invention was described, the implementation method of this invention is not limited to the above-mentioned various forms, A various deformation | transformation is possible in the range which does not deviate from the summary. Regarding the wavelength and material of the semiconductor light emitting device, those other than those listed in the examples can be selected.
 また、この出願は、2008年4月8日に出願された日本出願特願2008-100019を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2008-100019 filed on Apr. 8, 2008, the entire disclosure of which is incorporated herein.
 本発明は、半導体レーザ及びこれを含む集積回路の低消費電力化、高速化、小型化に貢献するものであり、光通信及びこれに関連する技術分野において、様々な利用可能性を有するものである。 The present invention contributes to low power consumption, high speed, and miniaturization of a semiconductor laser and an integrated circuit including the semiconductor laser, and has various applicability in optical communication and related technical fields. is there.

Claims (17)

  1.  1又は複数の電極の組からそれぞれ異なる信号を入力することにより横モードを変調することを特徴とする半導体レーザの変調方法。 A modulation method of a semiconductor laser, wherein a transverse mode is modulated by inputting different signals from one or a plurality of electrode sets.
  2.  面発光レーザの電流狭窄構造に対応する位置に形成された1又は複数の電極の組からそれぞれ異なる信号を入力することにより横モードを変調する
     ことを特徴とする請求項1に記載の半導体レーザの変調方法。
    2. The semiconductor laser according to claim 1, wherein the transverse mode is modulated by inputting different signals from a set of one or a plurality of electrodes formed at a position corresponding to the current confinement structure of the surface emitting laser. Modulation method.
  3.  端面発光レーザの光導波路上に形成された1又は複数の電極の組からそれぞれ異なる信号を入力することにより横モードを変調する
     ことを特徴とする請求項1に記載の半導体レーザの変調方法。
    2. The method of modulating a semiconductor laser according to claim 1, wherein the transverse mode is modulated by inputting different signals from a set of one or a plurality of electrodes formed on the optical waveguide of the edge-emitting laser. 3.
  4.  前記面発光レーザ又は端面発光レーザ上に形成された変調器が有する1組の電極に対し差動信号を入力する
     ことを特徴とする請求項2又は3のいずれか1項記載の半導体レーザの変調方法。
    4. The modulation of a semiconductor laser according to claim 2, wherein a differential signal is input to a pair of electrodes of a modulator formed on the surface-emitting laser or the edge-emitting laser. 5. Method.
  5.  前記電極に印加された電圧により一部の層の屈折率又は吸収係数を変化させることにより横モードを変調する
     ことを特徴とする請求項1乃至4のいずれか1項記載の半導体レーザの変調方法。
    5. The method of modulating a semiconductor laser according to claim 1, wherein the transverse mode is modulated by changing a refractive index or an absorption coefficient of a part of the layers according to a voltage applied to the electrode. .
  6.  前記半導体レーザからの出射光を、横モードによって光結合効率又は透過率が異なる光ファイバ又は光学素子に入射することにより、横モードの変調を光強度変調に変換する
     ことを特徴とする請求項1乃至5のいずれか1項記載の半導体レーザの変調方法。
    The light emitted from the semiconductor laser is incident on an optical fiber or an optical element having different optical coupling efficiency or transmittance depending on the transverse mode, thereby converting the modulation of the transverse mode into the light intensity modulation. The method for modulating a semiconductor laser according to any one of claims 1 to 5.
  7.  前記電流狭窄構造の中心部及びその外周部にそれぞれ設けられた1組の電極に差動信号を入力することにより横モードを変調する
     ことを特徴とする請求項2記載の半導体レーザの変調方法。
    The method of modulating a semiconductor laser according to claim 2, wherein the transverse mode is modulated by inputting a differential signal to a pair of electrodes respectively provided at a central portion and an outer peripheral portion of the current confinement structure.
  8.  前記光導波路上の中心位置に光出射方向に沿って形成された第1電極と当該中心位置に対して右側、左側又は左右対象に設けられた第2電極とに差動信号を入力することにより横モードを変調する
     ことを特徴とする請求項3記載の半導体レーザの変調方法。
    By inputting a differential signal to the first electrode formed at the center position on the optical waveguide along the light emitting direction and the second electrode provided on the right side, the left side or the left and right sides with respect to the center position. 4. The method for modulating a semiconductor laser according to claim 3, wherein the transverse mode is modulated.
  9.  半導体レーザと、
     前記半導体レーザに設けられた1又は複数の電極の組とを有し、
     当該電極の組に異なる信号を入力することで、横モードを変調する半導体レーザ。
    A semiconductor laser;
    A set of one or more electrodes provided in the semiconductor laser;
    A semiconductor laser that modulates the transverse mode by inputting different signals to the set of electrodes.
  10.  面発光レーザと、
     前記面発光レーザ上に、当該面発光レーザとは電気的に分離して形成された変調器とを有し、
     前記変調器は、前記面発光レーザの電流狭窄構造に対応する位置に、1又は複数の電極の組を有し、当該電極の組に異なる信号を入力することで、横モードを変調する
     ことを特徴とする請求項9記載の半導体レーザ。
    A surface emitting laser;
    A modulator formed on the surface-emitting laser and electrically separated from the surface-emitting laser;
    The modulator has a set of one or a plurality of electrodes at a position corresponding to the current confinement structure of the surface emitting laser, and modulates a transverse mode by inputting different signals to the set of electrodes. The semiconductor laser according to claim 9.
  11.  端面発光レーザと、
     前記端面発光レーザ上に、当該面発光レーザとは電気的に分離して形成された変調器とを有し、
     前記変調器は、前記端面発光レーザの光導波路上に形成される1又は複数の電極の組を有し、当該電極の組に異なる信号を入力することで、横モードを変調する
     ことを特徴とする請求項9記載の半導体レーザ。
    An edge emitting laser;
    A modulator formed on the edge-emitting laser and electrically separated from the surface-emitting laser;
    The modulator has a set of one or a plurality of electrodes formed on the optical waveguide of the edge-emitting laser, and modulates a transverse mode by inputting different signals to the set of electrodes. The semiconductor laser according to claim 9.
  12.  前記変調部は1組の電極を有し、前記1組の電極に差動信号を入力して横モードを変調する
     ことを特徴とする請求項9乃至11のいずれか1項記載の半導体レーザ。
    The semiconductor laser according to any one of claims 9 to 11, wherein the modulation section includes a pair of electrodes, and a differential signal is input to the pair of electrodes to modulate a transverse mode.
  13.  前記変調部は、電圧によって屈折率又は吸収係数が変化する層を有する
     ことを特徴とする請求項9乃至12のいずれか1項記載の半導体レーザ。
    The semiconductor laser according to any one of claims 9 to 12, wherein the modulation section includes a layer whose refractive index or absorption coefficient changes according to voltage.
  14.  前記電極の組は、励振される横モードに対してレーザ光の強度が異なる位置に配置される
     ことを特徴とする請求項9乃至13のいずれか1項記載の半導体レーザ。
    The semiconductor laser according to claim 9, wherein the set of electrodes is arranged at a position where the intensity of the laser beam is different from that of the excited transverse mode.
  15.  1つの電極は、基本モードの光強度のピーク近傍に設置される
     ことを特徴とする請求項9乃至14のいずれか1項記載の半導体レーザ。
    The semiconductor laser according to claim 9, wherein one electrode is disposed in the vicinity of the peak of the light intensity of the fundamental mode.
  16.  前記半導体レーザは、第1の反射鏡と、前記第1の反射鏡上に形成された活性層及び前記電流狭窄構造と、前記電流狭窄構造上に形成された第2の反射鏡とを有する面発光レーザである
     ことを特徴とする請求項10記載の半導体レーザ。
    The semiconductor laser includes a first reflecting mirror, an active layer formed on the first reflecting mirror, the current confinement structure, and a second reflecting mirror formed on the current confinement structure. The semiconductor laser according to claim 10, wherein the semiconductor laser is a light emitting laser.
  17.  半導体基板側が出射面である
     ことを特徴とする請求項16記載の半導体レーザ。
    The semiconductor laser according to claim 16, wherein the semiconductor substrate side is an emission surface.
PCT/JP2009/053985 2008-04-08 2009-03-03 Semiconductor laser and modulation method of semiconductor laser WO2009125635A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-100019 2008-04-08
JP2008100019 2008-04-08

Publications (1)

Publication Number Publication Date
WO2009125635A1 true WO2009125635A1 (en) 2009-10-15

Family

ID=41161770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053985 WO2009125635A1 (en) 2008-04-08 2009-03-03 Semiconductor laser and modulation method of semiconductor laser

Country Status (1)

Country Link
WO (1) WO2009125635A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017084937A (en) * 2015-10-27 2017-05-18 セイコーエプソン株式会社 Atomic oscillator
CN115021080A (en) * 2022-06-21 2022-09-06 北京大学 Preparation method of GaN-based laser non-absorption cavity surface structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62242379A (en) * 1986-04-14 1987-10-22 Omron Tateisi Electronics Co Modulating method for optical output of semiconductor laser
JPH01152785A (en) * 1987-12-10 1989-06-15 Sony Corp Electrode structure of semiconductor laser
JPH09260763A (en) * 1996-03-18 1997-10-03 Olympus Optical Co Ltd Semiconductor laser device
JPH10223970A (en) * 1997-02-04 1998-08-21 Oki Electric Ind Co Ltd Semiconductor laser
JP2006253484A (en) * 2005-03-11 2006-09-21 Ricoh Co Ltd Vertical resonator surface luminous semiconductor laser device, optical switching method, optical transmitting module and optical transmission device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62242379A (en) * 1986-04-14 1987-10-22 Omron Tateisi Electronics Co Modulating method for optical output of semiconductor laser
JPH01152785A (en) * 1987-12-10 1989-06-15 Sony Corp Electrode structure of semiconductor laser
JPH09260763A (en) * 1996-03-18 1997-10-03 Olympus Optical Co Ltd Semiconductor laser device
JPH10223970A (en) * 1997-02-04 1998-08-21 Oki Electric Ind Co Ltd Semiconductor laser
JP2006253484A (en) * 2005-03-11 2006-09-21 Ricoh Co Ltd Vertical resonator surface luminous semiconductor laser device, optical switching method, optical transmitting module and optical transmission device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017084937A (en) * 2015-10-27 2017-05-18 セイコーエプソン株式会社 Atomic oscillator
CN115021080A (en) * 2022-06-21 2022-09-06 北京大学 Preparation method of GaN-based laser non-absorption cavity surface structure
CN115021080B (en) * 2022-06-21 2023-02-21 北京大学 Preparation method of GaN-based laser non-absorption cavity surface structure

Similar Documents

Publication Publication Date Title
JP5387671B2 (en) Semiconductor laser and integrated device
US6339607B1 (en) Method and apparatus for modulated integrated optically pumped vertical cavity surface emitting lasers
US7760782B2 (en) Distributed bragg reflector type directly modulated laser and distributed feed back type directly modulated laser
US6556610B1 (en) Semiconductor lasers
US6347108B2 (en) Method and apparatus for modulated integrated optically pumped vertical cavity surface emitting lasers
CN110741517B (en) Wavelength-variable laser device and method for manufacturing wavelength-variable laser device
JP2001281473A (en) Photonics crystal and method for manufacturing the same, optical module as well as optical system
US7466736B2 (en) Semiconductor laser diode, semiconductor optical amplifier, and optical communication device
US8896911B2 (en) Laser system
JP6717733B2 (en) Semiconductor optical integrated circuit
JP2018060974A (en) Semiconductor optical integrated element
US20090268770A1 (en) Gain Clamped Optical Device For Emitting LED Mode Light
WO2009125635A1 (en) Semiconductor laser and modulation method of semiconductor laser
US7095769B2 (en) Semiconductor laser diode with higher-order mode absorption layers
JP2003142773A (en) Semiconductor light emitting device
CN112003125B (en) Direct modulation semiconductor laser adopting surface high-order grating
JP2950302B2 (en) Semiconductor laser
JP3576764B2 (en) Grating-coupled surface emitting device
JP4411938B2 (en) Modulator integrated semiconductor laser, optical modulation system, and optical modulation method
JP2001274511A (en) Waveguide type optical element
JP2020004752A (en) Semiconductor laser
US20180233882A1 (en) Optoelectronic device with resonant suppression of high order optical modes and method of making same
WO2006011370A1 (en) Polarization modulating laser device
JP3505509B2 (en) Semiconductor light emitting device, semiconductor light emitting device, and method for modulating semiconductor light emitting device
JP4157736B2 (en) Optical transmitter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09729502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09729502

Country of ref document: EP

Kind code of ref document: A1