WO2009125537A1 - 署名及び検証方法、署名生成装置並びに署名検証装置 - Google Patents
署名及び検証方法、署名生成装置並びに署名検証装置 Download PDFInfo
- Publication number
- WO2009125537A1 WO2009125537A1 PCT/JP2009/000923 JP2009000923W WO2009125537A1 WO 2009125537 A1 WO2009125537 A1 WO 2009125537A1 JP 2009000923 W JP2009000923 W JP 2009000923W WO 2009125537 A1 WO2009125537 A1 WO 2009125537A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vector
- signature
- data
- secret
- size
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/30—Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy
- H04L9/3093—Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy involving Lattices or polynomial equations, e.g. NTRU scheme
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3247—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures
Definitions
- the present invention relates to a cryptographic technique as an information security technique, and more particularly to a digital signature and its verification.
- a digital signature method which is a kind of public key cryptography, is used to identify a sender and to detect or prevent falsification of data.
- the digital signature method means that the transmission device creates signature data for the data to be transmitted using the private key (secret key) of the transmission device, transmits the signature data together with the data to be transmitted to the reception device,
- the receiving device is a method for verifying signature data using the public key of the transmitting device and determining whether or not the data has been tampered with.
- refer nonpatent literature 1 since it is difficult to calculate the value of the private key from the public key, it is impossible for an unauthorized person to impersonate a transmission device and create forged signature data.
- a public key cryptosystem that allows a key that is comparable to the key length of the key cryptosystem to be selected from a large set of vectors almost randomly and with an appropriate security level.
- NTRU registered trademark of NTR Cryptosystems Incorporated
- This NTRU cipher is encrypted and decrypted using a polynomial operation capable of high-speed operation, compared to an RSA cipher that performs exponentiation and a elliptic multiplication that performs scalar multiplication of points on an elliptic curve under a certain method. Therefore, processing can be performed at a speed higher than that of conventional public key cryptography, and processing can be performed in a practical time by software processing. Therefore, the cryptographic communication system using the NTRU cipher for the public key cryptography has an advantage that the processing of the transmitting device and the receiving device can be performed at a higher speed than the conventional cryptographic communication system using the public key cryptography.
- the NTRU cipher is not only capable of high-speed processing, but also has a computationally difficult problem that is the basis of its security, which differs from the RSA cipher and the elliptic curve cipher.
- the RSA cipher uses the prime factorization problem as a base for security
- the elliptic curve cipher uses the discrete logarithm problem on the elliptic curve as a base for security.
- the NTRU encryption is based on the minimum vector problem or the nearest neighbor problem for a set of vectors called a lattice.
- the NTRUSign signature scheme is a digital signature scheme that performs signature generation and signature verification through polynomial operations. Parameter N determines the degree of the polynomial handled in the NTRUSign signature scheme.
- the polynomial handled in the NTRUSign signature scheme is an integer coefficient polynomial of order N-1 or less with respect to the parameter N.
- N 5
- X ⁇ a means X to the power of a.
- the public key h and the signature s used in the NTRUSign signature scheme are both expressed as polynomials of the (N ⁇ 1) th order or lower.
- the secret key is four (N ⁇ 1) th order polynomial pairs (f, g, F, G). That is, f, g, F, and G are all polynomials of order N ⁇ 1 or less.
- the quadruple (f, g, F, G) is regarded as a further pair of two pairs (f, g), (F, G), and ⁇ (f, g), (F, G ) ⁇ .
- N 5
- the product of the polynomial X ⁇ 4 + X ⁇ 2 + 1 and the polynomial X ⁇ 3 + X is “ ⁇ ” for the product of the polynomial and the polynomial, and “ ⁇ ” for the product of the integer and the polynomial (or the product of the integer and the integer).
- an N ⁇ 1 order polynomial a a — 0 + a — 1 ⁇ X + a — 2 ⁇ X ⁇ 2 +... + A_ (N ⁇ 1) ⁇ X ⁇ (N ⁇ 1) (N-1)).
- a — 0, a — 1, a — 2,..., A — (N ⁇ 1) are coefficients of the polynomial a and are integers.
- the polynomial f is selected such that, among the N coefficients, df coefficients each have the value “1” and the other coefficients each have the value “0”. That is, the polynomial f is a polynomial of N ⁇ 1 order or less, and has N coefficients from the 0th order (constant term) to the N ⁇ 1 order. Of these N coefficients, df coefficients are selected to have a value “1”, and (N ⁇ df) coefficients are selected to have a value “0”.
- the polynomial g is a polynomial of order N-1 or less, and for the polynomial g, among the N coefficients, dg coefficients are each value “1”, and the other coefficients are values respectively. It is chosen to be “0”.
- a signature is created for the hash value of message data.
- the hash value of the message data is an N-order polynomial pair and is expressed as a 2 ⁇ N-dimensional vector.
- a hash function for obtaining a hash value from message data is described in detail in Non-Patent Document 1.
- the NTRUSign signature scheme uses vector distance for signature verification. The definition is shown below.
- of the pair (a, b) of the polynomials a and b is defined as follows.
- ⁇ (f, g), (F, G) ⁇ is a secret key
- h is a public key.
- the secret key is a key for generating a signature and is also called a signature generation key.
- the public key is a key for verifying the signature, and is also called a signature verification key.
- Signature generation of NTRUSign signature scheme a hash value vector of message data to be transmitted is calculated, and its nearest lattice point is used as a signature vector. By rounding the coefficient in the Lsec coordinate system to an integer, the nearest lattice point can be easily obtained.
- the signature s of the message data m to be signed is calculated as follows.
- a 2 ⁇ N-dimensional vector (m1, m2) (m1 and m2 are N-th order polynomials), which is a hash value for the message data m, is calculated.
- the coefficients of A and a are remainders when divided by the modulus q so as to be within the range of ⁇ q / 2> +1 to ⁇ q / 2>. That is, when the remainder when divided by the modulus q is q ⁇ 1 from ⁇ q / 2>, q is subtracted and adjusted so as to be within the above range.
- s and t are calculated from the following formula, and s is output as a signature.
- a 2.N-dimensional vector (m1, m2) that is a hash value for the message data m is calculated.
- the distance between the 2 ⁇ N-dimensional vector (s, t) and the 2 ⁇ N-dimensional vector (m1, m2) is obtained, and it is checked whether the distance is less than Normbound. If it is less than Normbound, it is determined that the signature s is correct and the signature s is accepted. If it is equal to or higher than Normbound, the signature s is determined to be invalid and the signature s is rejected.
- the signature vector is sufficiently close to the hash value vector, it is determined as a correct signature.
- the NTRUSign signature scheme is based on the grid problem for security. This will be described below.
- FIG. 20A shows an Lsec coordinate system when the entire 2 ⁇ N-dimensional vector is regarded as a lattice (lattice Lsec).
- a distance between a 2 ⁇ N-dimensional vector (s, t) 822 that is a signature vector and a 2 ⁇ N-dimensional vector (m1, m2) 821 that is a hash value vector obtained from message data is obtained, and Normbound Check whether it is less than.
- a 2 ⁇ N-dimensional vector (m1, m2) 821 exists in a hypersphere 823 having a radius Normbound centered on a 2 ⁇ N-dimensional vector (s, t) 822. Check whether you are doing. If it exists in the hypersphere 823, it is determined that the signature verification is successful. If it does not exist in the hypersphere 823, it is determined that signature verification has failed.
- the lattice Lsec and the lattice Lpub indicate the same entire vector.
- the norm of the basis vector (referred to as a secret key basis vector) for constructing the lattice Lsec is much smaller than the norm of the basis vector (referred to as a public key basis vector) for constructing the lattice Lpub.
- a basis vector having the smallest norm from a basis vector having a large norm (referred to as a minimum basis vector problem). Therefore, it is also difficult to obtain a secret key basis vector from a public key basis vector, and this is the basis of security for the key. With such a base, it is considered difficult to obtain a public key from a secret key.
- the vector 800 (s, t) is used.
- a vector having the closest distance by projecting to the base is calculated, thereby obtaining the vector of the closest lattice point. ing.
- the signature vector (s, t) is a vector of lattice points closest to the hash value vector (m1, m2) of the message data.
- the problem of calculating the lattice vector with the closest distance is called a lattice nearest neighbor problem
- the security for the signature of the NTRUSign signature scheme is based on the nearest neighbor problem of this lattice.
- the GGH signature scheme is known as a signature scheme based on the minimum basis vector problem of a lattice for a key and the nearest neighbor problem of a lattice for a signature, such as the NTRUSign signature scheme.
- NTRUSign signature scheme See Non-Patent Document 6).
- NRUSign Digital Signatures Using the NTRU Lattice
- CT-RSA'03 LNCS, Vol. 2612, pp. 122-140, Springer-Verlag
- EESS # 1 Implementation Aspects of NTRU Encryption and NTRU Sign”, Ver2.0, June 20th, 2003 O. Goldreich, S.M. Goldwasher and S.M. Halevi “Public-key cryptography from lattice reduction programs,” In Proc. CRYPTO '97, LNCS, Vol. 1294, pp. 112-131, Springer-Verlag, 1997
- the transcription attack is an attack for obtaining a secret key from a plurality of signature sentences (a pair of message data and signature).
- the transcription attack will be briefly described below (for details, see Non-Patent Document 4).
- the average of the second moments of m1-s is almost equal to k1 ⁇ f ⁇ + k2 ⁇ F ⁇ . Furthermore, even with the average of the fourth-order moments, information related to f and F can be obtained in the same manner, and f can be obtained from both information.
- Non-Patent Document 4 the number of signature sentences necessary to obtain information on the secret key from the average of the second moment and the fourth moment is 10 ⁇ 4 and 10 ⁇ 8, respectively. Therefore, it is considered that 10 ⁇ 8 or more signature sentences are necessary for a successful NTRUSign signature transcription attack. It should be noted that the transcription attack can occur in the same manner even in other signature schemes (for example, GGH signature scheme) based on the lattice problem.
- the present invention provides a signature and verification method, a signature generation device, a signature verification device, a signature generation method, and a computer program for signature generation that can counter the above-described transcription attack.
- a recording medium for recording is provided.
- the method divides data into a plurality of dimensions and expresses them as multidimensional vectors, and uses the minimum vector problem or the approximate minimum vector problem as the basis of security, and the target data.
- the signature vector is restored using the vector and the signature data, and the vector based on the target data is restored.
- an output step of outputting is
- the signature data is stored in the target data using a secret disturbance vector smaller than the first size. Since it is generated with respect to a conversion vector generated by converting data, a person who performs a transcription attack has an excellent effect that it is difficult to calculate the secret key used for the signature in terms of calculation amount. . Further, in the verification of the signature data, it is verified whether the distance between the vector based on the target data and the signature vector is equal to or smaller than a second size larger than the first size. Can be verified, so the signature data can be verified.
- This signature and verification method can prevent transcription attacks and has great value.
- FIG. 1 is a block diagram showing a configuration of a digital signature system 10 as one embodiment according to the present invention. It is a figure which shows an example of uniform distribution. The data structure of the distribution table 410 is shown. It is a figure which shows an example of non-uniform distribution. The data structure of the distribution table 450 is shown. It is a figure which shows the signature production
- FIG. 3 is a block diagram illustrating a configuration of a signature generation unit 104.
- FIG. 2 is a block diagram showing a configuration of a signature verification apparatus 200.
- FIG. The data recorded in the CA public key storage unit 202, the signature data set storage unit 203, and the system parameter storage unit 205 of the signature verification apparatus 200 are shown.
- 3 is a block diagram illustrating a configuration of a signature verification unit 204.
- FIG. 3 is a block diagram showing a configuration of a key generation device 300.
- FIG. The data recorded in the certificate generation key storage unit 304 and the system parameter storage unit 306 included in the key generation device 300 are shown.
- 4 is a flowchart showing the operation of the digital signature system 10.
- 4 is a flowchart showing the operation of the signature generation apparatus 100.
- FIG. 4 is a flowchart showing an operation of signature verification in the signature verification apparatus 200.
- 12 is a flowchart showing the operation of the key generation device 1300. It is a figure which shows the conventional NTRUSign signature system.
- A illustrates an Lsec coordinate system when the entire 2 ⁇ N-dimensional vector is regarded as a lattice (lattice Lsec).
- B illustrates an Lpub coordinate system when the entire 2 ⁇ N-dimensional vector is regarded as a lattice (lattice Lpub).
- the data structure of the distribution table 610 is shown.
- the data structure of the distribution table 650 is shown.
- a signature point for the transformation vector is generated by obtaining a lattice point closest to the transformation vector, a signature step using a part of the signature vector as signature data, a public key vector, and the signature data, Using the restoration of the signature vector, the vector based on the target data and the restored signature vector
- the signature generation apparatus divides the data into a plurality of data and expresses the data as a multidimensional vector, and uses the minimum vector problem or the approximate minimum vector problem as a basis of security to sign data for the target data.
- a signature generation device that generates target data using an acquisition unit that acquires target data, a secret storage unit that secretly stores a secret key vector, and a secret disturbance vector that is smaller than the first size.
- Data conversion means for converting data and generating a conversion vector; and a grid determined based on a secret key vector as a basis, and generating a signature vector for the conversion vector by obtaining a lattice point closest to the conversion vector, and the signature vector Generating means for using a part of the signature data as a signature data, and outputting means for outputting the target data and the generated signature data Characterized in that it comprises and.
- the signature data is stored using the secret disturbance vector smaller than the first size. Since it is generated with respect to a conversion vector generated by converting data, a person who performs a transcription attack has an excellent effect that it is difficult to calculate the secret key used for the signature in terms of calculation amount. .
- the signature generation apparatus wherein the secret storage unit further stores a distribution indicating a range to which a plurality of candidate vectors smaller than the first size belong, and the data conversion unit Is characterized in that one candidate vector is selected from the candidate vectors belonging to the range indicated by the distribution as the disturbance vector.
- each time a signature is generated one candidate vector is selected from a plurality of candidate vectors to be a disturbance vector, so that the range of disturbance vectors that can be used is widened, and a secret is protected against an attacker. Finding the key can be made more difficult.
- the signature generation apparatus wherein the secret storage means has tamper resistance, and the secret key and the distribution are secretly protected so as not to be known from the outside. It is characterized by being.
- This configuration makes it difficult to obtain a secret key because the selected disturbance vector is kept secret.
- a plurality of candidate vectors are selected so that the probability of being selected is not uniform.
- the data conversion means selects one candidate data as the disturbance vector according to the probability.
- the range of possible disturbance vectors can be expanded, and it can be made more difficult for an attacker to obtain a secret key.
- the range indicated by the distribution has a plurality of regions, and the selection probability of the region is predetermined for each region, and the plurality of regions A plurality of candidate vectors are arranged, and the data conversion unit selects one region based on the selection probability, and selects one candidate vector from the selected region as the disturbance vector. It is characterized by.
- the signature generation apparatus selects one candidate vector from the candidate vectors belonging to the range indicated by the distribution, and sets the vector as the disturbance vector. It includes a generation unit and an addition unit that generates the conversion vector by adding the disturbance vector to a vector based on the target data.
- the signature generation device wherein the vector generation unit generates the disturbance vector by randomly selecting from a plurality of candidate vectors selected in advance based on the distribution. It is characterized by.
- the distribution is included in a hypersphere having a radius of the first size.
- the signature generation apparatus further includes a public storage unit storing a second size larger than the first size, and the data conversion unit further includes the target data.
- the distance between the vector and the conversion vector is calculated and the calculated distance is not less than or equal to the second size, the obtained target data is converted using another secret disturbance vector smaller than the first size, It is characterized by generating another transformation vector.
- the secret key vector includes a ring R that is a set of N-dimensional arrays in which a norm indicating an original size is defined as addition, subtraction, and multiplication.
- a norm indicating an original size is defined as addition, subtraction, and multiplication.
- the public key vector is obtained from the element h that is congruent with the product of the positive integer q and the element g and the element Fq and mod q. It is characterized by.
- the signature verification apparatus divides the data into a plurality of data and represents the data as a multidimensional vector, and the signature generation apparatus uses the minimum vector problem or the approximate minimum vector problem as a basis of security, A part of a signature vector which is a lattice point closest to the conversion vector in a lattice in which the conversion vector is generated from the target data by conversion using a secret disturbance vector smaller than the first size and the secret key vector is determined as a base.
- a signature verification apparatus for verifying the signature data generated as follows: an acquisition means for acquiring the target data and signature data; a storage means for storing a public key vector; a public key vector and the signature data; The signature vector is restored using the vector of the target data and the restored signature vector. Verification means for verifying whether the separation is equal to or smaller than the second size larger than the first size, and output means for outputting success information indicating that the verification is successful when the separation is equal to or smaller than the second size. It is characterized by that.
- the signature data in the verification of the signature data, it is verified whether the distance between the vector based on the target data and the signature vector is equal to or smaller than the second size larger than the first size, and is equal to or smaller than the second size. Since the verification is considered successful, the signature data can be verified.
- the data is divided into a plurality of data and expressed as a multidimensional vector
- the signature data for the target data is based on the minimum vector problem or the approximate minimum vector problem as the basis of security.
- the signature generation method used in the signature generation apparatus for generating the target data includes: an acquisition step of acquiring the target data; and converting the acquired target data using a secret disturbance vector smaller than the first size, A data conversion step to be generated; and in a lattice determined by using a secret key vector as a basis, a signature vector for the conversion vector is generated by obtaining a lattice point closest to the conversion vector, and a signature having a part of the signature vector as signature data Generating step, and outputting step for outputting the target data and the generated signature data Characterized in that it comprises a.
- the recording medium divides the data into a plurality of data and expresses the data as a multidimensional vector, and uses the minimum vector problem or the approximate minimum vector problem as a basis of security
- a computer-readable recording medium recording a computer program for signature generation used in a computer for generation, wherein the computer has an acquisition step of acquiring target data, and a secret disturbance vector smaller than a first size.
- a data conversion step of converting the acquired target data and generating a conversion vector; and a lattice determined closest to the conversion vector in a lattice determined based on the secret key vector, and obtaining a signature vector for the conversion vector Generate a portion of the signature vector
- the system divides the data into a plurality of data and expresses the data as a multidimensional vector, and uses the minimum vector problem or the approximate minimum vector problem as the basis of security and the signature generation apparatus and the verification
- the signature generation apparatus includes: an acquisition unit that acquires target data; a secret storage unit that secretly stores a secret key vector; and a secret smaller than a first size.
- a data conversion unit that converts the acquired target data using a disturbance vector to generate a conversion vector, and a lattice point determined based on the secret key vector as a basis, finds a lattice point closest to the conversion vector, and Signature generation means for generating a signature vector and using a part of the signature vector as signature data, and generation of the target data Output means for outputting the signature data
- the signature verification device includes an acquisition means for acquiring the target data and signature data, a storage means for storing a public key vector, a public key vector, and the signature.
- Verification means for restoring the signature vector using data and verifying whether a distance between the vector of the target data and the restored signature vector is equal to or smaller than a second size larger than the first size
- output means for outputting success information indicating that the verification is successful when the size is equal to or smaller than the second size.
- the digital signature system 10 includes a message generation device 30, a signature generation device 100, a signature verification device 200, a key generation device 300, and a message reception device 40, and the signature generation device 100 and the signature verification device 200.
- a communication path 20 typified by the Internet
- the signature generation apparatus 100 and the key generation apparatus 300 are connected by a communication path that guarantees safety, or has other safety. Information is communicated to each other by guaranteed means.
- the message generation device 30 In the digital signature system 10, the message generation device 30 generates message data m to be transmitted (also referred to as signature target data), and outputs the generated message data m to the signature generation device 100.
- the key generation device 300 uses the improved NTRUSign signature method improved from the NTRUSign signature method, the key generation device 300 generates a key, and the signature generation device 100 generates the signature data SD for the message data m, via the communication path 20.
- the signature data set SS including the message data m and the signature data SD is transmitted to the signature verification apparatus 200, and the signature verification apparatus 200 receives the signature data set SS, verifies the received signature data set SS,
- the message data m is output to the message receiving device 40.
- the message receiving device 40 receives the verification result and the message data m, and determines whether to accept the received message data m based on the received verification result.
- the improved NTRUSign signature scheme is based on the minimum vector problem or the approximate minimum vector problem for security.
- the shortest vector problem is a problem of obtaining the “minimum vector” included in the lattice from one basis vector.
- Approximate Shortest Vector Problem is a problem for obtaining an approximate minimum vector (not a minimum vector but a vector having a size close to that).
- the improved NTRUSign signature scheme is a digital signature scheme that performs signature generation and signature verification through polynomial operations.
- the order of the polynomial handled in the improved NTRUSign signature scheme is determined by the parameter N.
- the polynomial handled in the improved NTRUSign signature scheme is an integer coefficient polynomial of order N ⁇ 1 or less with respect to the parameter N.
- N 5
- both the public key h and the signature s are expressed as polynomials of order N-1 or lower.
- the secret key is four (N ⁇ 1) th order polynomial pairs (f, g, F, G). That is, f, g, F, and G are all polynomials of order N ⁇ 1 or less.
- the quadruple (f, g, F, G) is regarded as a further pair of two pairs (f, g), (F, G), and ⁇ (f, g), (F, G ) ⁇ .
- the vector that is the secret key is the element f of the ring R with respect to the ring R and the positive integer q, which is a set of N-dimensional arrays in which the norm indicating the original size is defined.
- a vector that is a public key is obtained from an element h that is congruent with the product of the positive integer q and the element g and the element Fq and mod q.
- an N ⁇ 1 order polynomial a a — 0 + a — 1 ⁇ X + a — 2 ⁇ X ⁇ 2 +... + A_ (N ⁇ 1) ⁇ X ⁇ (N ⁇ 1) a_ (N-1)).
- a_0, a_1, a_2,..., a_ (N ⁇ 1) are coefficients of the respective terms of the polynomial a, and are integers.
- the improved NTRUSign signature scheme uses a parameter q that is an integer greater than or equal to two. Each coefficient of the polynomial appearing in the improved NTRUSign signature scheme is calculated so as to take a remainder modulo q.
- the polynomial f is selected so that df coefficients among the N coefficients are “1” and the other coefficients are “0”. That is, the polynomial f is a polynomial of order N ⁇ 1 or less, and there is one coefficient for each of the N terms from the 0th order (constant term) to the N ⁇ 1th order, and a total of N pieces of coefficients. Among these N coefficients, df coefficients are “1” and (N ⁇ df) coefficients are selected to be “0”.
- the polynomial g is selected such that dg coefficients are “1” and the other coefficients are “0”.
- Parameter L (distance) Parameter L (also referred to as first size) is the radius of the hypersphere in the 2 ⁇ N-dimensional vector space.
- a random vector also referred to as a disturbance vector
- a hash value vector 2 ⁇ N-dimensional vector that is a hash value of message data for conversion.
- the distribution ⁇ is set so as to be included in a hypersphere of radius L, and a random vector is randomly selected from a plurality of vectors (also referred to as candidate vectors) existing in the distribution ⁇ with equal probability. Therefore, the norm of the selected vector is L or less.
- FIG. 2 schematically represents a 2 ⁇ N-dimensional vector space on a two-dimensional paper surface, and represents a hypersphere 401 having a center 406 and a radius L (distance 402).
- a distribution 400 exists inside the hypersphere 401.
- Distribution 400 is completely contained within hypersphere 401.
- a vector 403 is randomly selected from a plurality of vectors present in the distribution 400.
- the vector 404 may be selected, and the vector 405 may be selected.
- the data structure of the distribution 400 is shown in the distribution table 410 of FIG.
- the distribution table 410 defines a spatial structure occupied by the distribution 400 in the 2 ⁇ N-dimensional vector space, and includes 2 ⁇ N limit value pairs.
- the 2 ⁇ N limit value pairs correspond to 2 ⁇ N elements of the 2 ⁇ N-dimensional vector, respectively.
- 2 ⁇ N limit value pairs are composed of a first group and a second group, the first group includes N limit value pairs, and the second group includes the remaining N limit value pairs. .
- Each limit value pair includes a lower limit value and an upper limit value.
- each limit value pair In the 2 ⁇ N-dimensional vector space, the space above and below the lower limit value and below the upper limit value included in each limit value pair is the space occupied by the distribution 400 corresponding to 2 ⁇ N elements of the 2 ⁇ N-dimensional vector. . Each limit value pair is set so that this space is included in the supersphere 401.
- the lower limit value V1_0_min 411 and the upper limit value V1_0_max 412 in the 0th limit value pair included in the first group of the distribution table 410 are “3” and “8”, respectively, and are included in the first group.
- the lower limit value V1_ (N-1) _min 413 and the upper limit value V1_ (N-1) _max 414 in the N-1th limit value pair are “2” and “5”, respectively.
- the lower limit value V2_0_min 415 and the upper limit value V2_0_max 416 in the 0th limit value pair included in the second group of the distribution table 410 are “1” and “6”, respectively, as an example, and are included in the second group.
- the lower limit value V2_ (N-1) _min 417 and the upper limit value V2_ (N-1) _max 418 in the (N-1) th limit value pair are, for example, “4” and “7”, respectively.
- a value that is greater than or equal to the lower limit value and less than or equal to the upper limit value included in each limit value pair is selected at random in a random manner, that is, uniformly.
- 2 ⁇ N random values V1_0, V1_1, V1_2, ..., V1_ (N-1), V2_0, V2_1, V2_2, ..., V2_ (N-1) are selected and selected.
- a set of 2 ⁇ N random values is defined as the above-mentioned randomly selected vector V (V1, V2).
- FIG. 2 shows that a vector from the origin to any point in the distribution range is selected.
- the distribution range is uniform (equal probability) and randomly. Select a vector.
- Parameter L is released as a system parameter.
- FIG. 4 is a schematic representation of a 2 ⁇ N-dimensional vector space on a two-dimensional paper surface as in FIG. 2, and has a center 441 and a hypersphere 431 having a radius L (distance 442). Is expressed.
- a distribution 432 exists inside the hypersphere 431. Distribution 432 is completely contained within hypersphere 431.
- the range of the distribution 432 is divided into three, and is composed of a partial area A (433), a partial area B (434), and a partial area C (435).
- the probability of selecting the partial area is determined.
- the probability of selecting the partial area A (433) is 1/6
- the probability of selecting the partial area B (434) is 1/2
- the probability of selecting the partial area C (435) is 1 / 3.
- the plurality of candidate vectors are arranged so that the probability of being selected is not uniform.
- the data structure of the distribution 432 is shown in the distribution table 450 of FIG.
- the distribution table 450 defines a spatial structure occupied by the distribution 432 in the 2 ⁇ N-dimensional vector space, and includes a plurality of sets of partial tables and occurrence probabilities. Specifically, distribution table 450 includes a set of partial table 451 and occurrence probability 454, a set of partial table 452 and occurrence probability 455, and a set of partial table 453 and occurrence probability 456.
- the three partial tables 451, 452, and 453 correspond to the partial area A (433), the partial area B (434), and the partial area C (435) in FIG. 4, respectively.
- the occurrence probability corresponding to each partial table is the probability of selecting a partial region of the distribution 432 shown in FIG.
- Each partial table section has a structure similar to that of the distribution table 410 shown in FIG. 3, and each of the partial table sections includes 2 ⁇ N limit value pairs.
- one partial table is selected, and a vector is selected at random within the range indicated by the selected partial table.
- (V) Parameter L ′ (distance) In the improved NTRUSign signature method, as will be described later, the distance between a 2 ⁇ N-dimensional vector (called a signature vector) created from the signature s and a hash value vector is calculated, and whether or not the signature is correct is determined based on this distance. To do.
- the parameter L ′ (second size) is a threshold value used in this determination. That is, if the calculated distance is equal to or less than L ′, it is accepted as a correct signature, and if it is greater than L ′, it is rejected as an incorrect signature.
- the same example parameter may be used in the improved NTRUSign signature scheme.
- the improved NTRUSign signature scheme when a vector in a hypersphere of distance L is selected, the distance between the hash value vector and the correctly generated signature vector is adjusted to be almost L ′.
- Normbound is 300 to 310, and in this case, the distance between the hash value vector and the correctly generated signature vector is approximately within Normbound.
- the distance between the converted hash value vector and the signature vector is approximately within Normbound. Since the difference between the converted hash value vector and the hash value vector is a random vector and the distance is within L, L ′ may be set to about Normbound + L. Therefore, if L is 200, L ′ may be set to 500 to 510. Thus, L ′ is made larger than L.
- L ′ is made larger than L.
- N 251.
- of the pair (a, b) of the polynomials a and b is defined as follows.
- x y (mod q) is the i-th order coefficient (0 ⁇ i ⁇ N ⁇ 1) of the polynomial y, and the remainder falls within the range of 0 to q ⁇ 1.
- the remainder when divided by the modulo q is the i-th coefficient of the polynomial x. That is, a polynomial obtained by performing a mod q calculation so that each coefficient of y falls within the range of 0 to (q ⁇ 1) is a polynomial x.
- the distribution ⁇ is arbitrarily set so that the distribution ⁇ is included in the hypersphere of the distance L.
- Information to be set includes a distribution range and a selection probability in the distribution range. For example, a distribution as shown in FIGS. 2 and 4 is set.
- the secret key is ⁇ (f, g), (F, G) ⁇ and the distribution ⁇ , and the public key is h.
- the secret key is a key for generating a signature and is also called a signature generation key.
- the public key is a key for verifying the signature, and is also called a signature verification key.
- the distribution ⁇ is included in the secret key, it is natural that it is kept secret. Although all of the distribution ⁇ may be kept secret, for example, the range of the distribution 400 shown in FIG. 2 is kept secret, but based on the distribution 400, it is disclosed that a vector is uniformly selected at random. May be. Further, in the distribution 432 shown in FIG. 4, both the range of the distribution 432 and the probability of selecting each partial region may be kept secret, or the range of the distribution 432 is disclosed and the probability of selecting each partial region is kept secret. It is good also as. (4) Signature Generation with Improved NTRUSign Signature Scheme Signature generation with the improved NTRUSign signature scheme will be described with reference to FIGS. 6 and 17.
- FIG. 6 is a diagram illustrating a signature generation process, and illustrates an Lsec coordinate system when the entire 2 ⁇ N-dimensional vector is regarded as a lattice (lattice Lsec).
- FIG. 17 is a flowchart illustrating a procedure of signature generation processing.
- a 2 ⁇ N-dimensional vector H (m1, m2) (m1 and m2 are Nth order polynomials), which is a hash value for the message data m, is calculated (step SG1).
- H is referred to as a hash value vector.
- the hash value vector H is indicated by reference numeral 501.
- the converted hash value vector H ′ is indicated by reference numeral 502.
- the vector S (s, t) of the lattice point closest to the transformed hash value vector H ′ is calculated by the same method as the conventional NTRUSign signature method (step SG3).
- the vector S is indicated by reference numeral 503.
- the coefficients of A and a are obtained by taking the remainder when dividing by the modulus q so that it falls within the range of ⁇ q / 2> +1 to ⁇ q / 2>. That is, when the remainder when divided by the modulus q is q ⁇ 1 from ⁇ q / 2>, q is subtracted and adjusted so as to be within the above range.
- step SG4 f ⁇ B + F ⁇ b (mod q)
- t g ⁇ B + G ⁇ b (mod q)
- FIG. 7 is a diagram illustrating a signature verification process, and illustrates an Lpub coordinate system when the entire 2 ⁇ N-dimensional vector is regarded as a lattice (lattice Lpub).
- FIG. 18 is a flowchart illustrating a procedure of signature generation processing.
- a 2 ⁇ N-dimensional vector H (m1, m2) that is a hash value for the message data m is calculated (step SV1).
- the vector H is indicated by reference numeral 531.
- the signature vector S is indicated by reference numeral 532.
- the signature generation device 100 generates a signature data set SS for message data m to be transmitted to the other party. As shown in FIG. 8, the signature generation apparatus 100 includes a transmission unit 101, a private key storage unit 102, a public key certificate storage unit 103, a signature generation unit 104, a signature data set generation unit 105, and a system parameter storage unit 106. .
- the secret key storage unit 102 has tamper resistance, and stores a secret key ⁇ (f, g), (F, G) ⁇ and a distribution ⁇ that is a secret key in advance as shown in FIG. .
- the secret key and distribution are secretly protected so as not to be known from the outside.
- the system parameter storage unit 106 stores a parameter N, a parameter q, and a parameter L ′ (distance) as system parameters in advance.
- the public key certificate storage unit 103 stores a certificate CP of the public key h in advance.
- the certificate CP includes a public key h and signature data SP for the public key h by the key generation device 300.
- the signature data SP is also generated using the improved NTRUSign signature scheme. Further, it is assumed that the certificate CP is given in advance.
- the certificate CP may include, for example, data such as a user identifier and a certificate expiration date in addition to the public key h and the signature data SP.
- the signature generation unit 104 uses the secret key ⁇ (f, g), (F, G) ⁇ and the distribution ⁇ stored in the secret key storage unit 102 based on the improved NTRUSign signature scheme.
- the signature data SD for the message data m is generated.
- the signature data set generation unit 105 receives the certificate CP from the public key certificate storage unit 103, receives the signature data SD from the signature generation unit 104, and includes message data m, certificate CP, and signature data SD.
- a signature data set SS is generated.
- the transmission unit 101 transmits the generated signature data set SS to the signature verification apparatus 200 via the communication path 20.
- the signature generation unit 104 includes a hash value calculation unit 111, a vector generation unit 112, a hash value conversion unit 113, a signature generation unit 114, a signature confirmation unit 115, and a vector group selection storage unit 116. Yes.
- the hash value calculation unit 111 performs the process of step SG1 in the signature generation process of the improved NTRUSign signature method, and calculates the hash value vector H for the message data m.
- the vector generation unit 112 generates the vector V used in step SG2 in the signature generation process of the improved NTRUSign signature method.
- the signature verification device 200 includes a reception unit 201, a CA public key storage unit 202, a signature data set storage unit 203, a signature verification unit 204, and a system parameter storage unit 205. Is provided.
- the system parameter storage unit 205 stores a parameter N, a parameter q, and a parameter L ′ (distance) as system parameters in advance.
- the CA public key storage unit 202 stores the public key KCP of the key generation apparatus 300 for verifying the certificate CP in advance as shown in FIG.
- the receiving unit 201 receives the signature data set SS transmitted from the signature generation apparatus 100 via the communication path 20 and writes the received signature data set SS in the signature data set storage unit 203.
- the signature data set storage unit 203 stores the received signature data set SS as shown in FIG.
- the signature data set SS includes message data m, signature data SD, and certificate CP.
- the certificate CP includes a public key H and signature data SP.
- the signature verification unit 204 verifies the signature data SD included in the signature data set SS and verifies the signature data SP included in the certificate CP. (Configuration of signature verification unit 204) As shown in FIG. 13, the signature verification unit 204 includes a hash value calculation unit 211, a signature vector generation unit 212, and a distance determination unit 213.
- the signature verification unit 204 verifies the signature data SD and verifies the signature data SP included in the certificate CP.
- signature verification for the signature data SD will be described. Since the signature data SP can be verified in the same manner by replacing the message data m with the public key h and the signature data SD with the SP, detailed description thereof is omitted.
- the hash value calculation unit 211 performs the process of step SV1 in the signature verification process of the improved NTRUSign signature method, and calculates a hash value vector H for the message data m.
- the signature vector generation unit 212 performs the process of step SV2 in the signature verification process of the improved NTRUSign signature method, and generates the signature vector S from the signature data SD.
- the distance determination unit 213 performs the process of step SV3 in the signature verification process of the improved NTRUSign signature method, and calculates the distance between the hash value vector H and the signature vector S. If the distance is within L ′, it is determined that the signature data is correct. If it is larger than L ′, it is determined that the signature data is invalid.
- the key generation device 300 includes a distribution generation unit 301, a key generation unit 302, a certificate generation unit 303, a certificate generation key storage unit 304, and a key setting unit 305. And a system parameter storage unit 306.
- the system parameter storage unit 306 stores a parameter N, a parameter q and a parameter L ′ (distance), a parameter L (distance), and parameters df and dg in advance as system parameters.
- the certificate generation key storage unit 304 stores a certificate generation key KCS that is a secret key of the key generation device 300 in advance.
- the distribution generation unit 301 generates, for example, the distribution table 410 illustrated in FIG. 3 or the distribution table 450 illustrated in FIG. 5 to generate the distribution ⁇ in the key generation processing of the improved NTRUSign signature, and generates the generated distribution ⁇ as a key.
- the unit 302. generates, for example, the distribution table 410 illustrated in FIG. 3 or the distribution table 450 illustrated in FIG. 5 to generate the distribution ⁇ in the key generation processing of the improved NTRUSign signature, and generates the generated distribution ⁇ as a key.
- the distribution generation unit 301 generates the distribution table 410 as follows.
- the distribution generation unit 301 reads the parameter N and the parameter L from the system parameter storage unit 306, and generates a distribution table including an area for storing 2 ⁇ N limit value pairs. Next, for each limit value pair, a random number is generated to randomly determine the lower limit value included in the limit value pair. Next, random numbers are generated to randomly determine an upper limit value that is greater than the lower limit value. The lower limit value and the upper limit value are determined for all limit value pairs. The determined lower limit value and upper limit value are stored in the distribution table. In this way, the distribution table 410 is generated. Each lower limit value and each upper limit value are determined so that the norm of the vector in the distribution is L or less.
- the distribution generation unit 301 generates the distribution table 450 as follows.
- the distribution generation unit 301 reads the parameter N and the parameter L from the system parameter storage unit 306, generates random numbers, and determines the number of partial tables included in the distribution table 450. As an example, assume that “3” is generated as a random number. In this case, three partial tables are generated so that each partial table has an area for storing 2 ⁇ N limit value pairs. Next, three occurrence probabilities (each occurrence probability is larger than “0” and smaller than “1”) are randomly determined. Here, the total of the three occurrence probabilities is set to “1”.
- each partial table similarly to the distribution table 410 described above, the lower limit value and the upper limit value included in each limit value pair are determined and stored in each partial table.
- the key generation unit 302 reads the parameter N, the parameter q, the parameter df, dg, and the parameter L from the system parameter storage unit 306 and, as described above, uses the improved NTRUSign signature method key generation processing method to generate the secret key ⁇ (f , G), (F, G) ⁇ and a public key h. In addition, the key generation unit 302 receives the distribution ⁇ from the distribution generation unit 301. Next, the key generation unit 302 outputs the secret key ⁇ (f, g), (F, G) ⁇ , the public key h, and the distribution ⁇ to the key setting unit 305. Also, the public key h is output to the certificate generation unit 303.
- the certificate generation unit 303 reads the certificate generation key KCS from the certificate generation key storage unit 304, receives the public key h from the key generation unit 302, and uses the read certificate generation key KCS to certify the public key h
- a document CP is generated.
- the certificate CP includes a public key h and signature data SP using the certificate generation key KCS of the public key h.
- the signature data SP is generated using the same signature generation method as the signature generation method by the signature generation unit 104 of the signature generation apparatus 100.
- the key setting unit 305 writes the secret key ⁇ (f, g), (F, G) ⁇ and the distribution ⁇ that is the secret key into the secret key storage unit 102 of the signature generation device 100. Also, the certificate CP is written into the public key certificate storage unit 103 of the signature generation apparatus 100. 3. Operation of Digital Signature System 10 (1) Outline Operation of Digital Signature System 10 The outline operation of the digital signature system 10 will be described with reference to the flowchart shown in FIG.
- the signature generation apparatus 100 generates signature data (step S101), generates a signature data set SS (step S102), and transmits the generated signature data set SS to the signature verification apparatus 200 via the communication path 20 (step S102). Step S103).
- the receiving unit 201 of the signature verification apparatus 200 receives the signature data set SS transmitted from the signature generation apparatus 100 via the communication path 20, and stores the received signature data set SS in the signature data set storage unit 203 ( Step S201).
- the signature verification unit 204 determines whether the signature data SP is the correct signature of the public key h with respect to the public key h and the signature data SP included in the certificate CP in the signature data set SS. Verification is performed using the public key KCP of the key generation apparatus 300 stored in 202 (step S202). If the signature data SP is not correct (step S203), NG is output (step S107) and the process ends.
- the signature verification unit 204 determines whether the signature data SD is the correct signature of the message data m with respect to the message data m and the signature data SD in the signature data set SS. Verification is performed using the public key h (step S204). If the signature data SD is not correct (step S205), NG is output (step S207) and the process ends. If the signature data SD is correct (step S205), OK is output (step S206) and the process ends.
- the hash value calculation unit 111 calculates a hash value vector H for the message data m (step SG1).
- (3) Operation of Signature Verification Unit 204 of Signature Verification Device 200 The operation of signature verification by the signature verification unit 204 of the signature verification device 200 will be described with reference to the flowchart shown in FIG.
- step SV5 If it is larger than L ′ (No in step SV3), it is determined that the signature s is invalid, the signature s is rejected, and NG is output (step SV5).
- the key generation device 300 sets the secret key ⁇ (f, g), (F, G) ⁇ , the distribution ⁇ , and the certificate CP in the signature generation device 100. The operation will be described below using the flowchart shown in FIG.
- the key generation unit 302 of the key generation device 300 generates a secret key ⁇ (f, g), (F, G) ⁇ and a public key h (step S401), and the distribution generation unit 301 generates a distribution ⁇ (
- the certificate generation unit 303 generates a certificate CP for the public key h using the certificate generation key KCS stored in the certificate generation key storage unit 304 (step S403), and the key setting unit 305 stores the private key ⁇ (f, g), (F, G) ⁇ , the distribution ⁇ , and the certificate CP in the private key storage unit 102 and the public key certificate storage unit 103 of the signature generation apparatus 100 ( Step S404). 4).
- the converted hash value vector H ′ having the signature vector S as the nearest lattice vector is concealed. Not sent to. Therefore, if an attacker intercepts the communication path when sending to the verifier, or if the verifier itself is an attacker, even if the attacker tries to perform a transcription attack, the vector and its nearest neighbor Since it is impossible to know the distribution of the difference from the vector of the lattice, the transcription attack becomes difficult.
- the transcription attack utilizes the fact that the difference between each signature vector and the hash value is a uniform distribution excluding the relevance of the secret key. After that, collect multiple signature data and use the information on the distribution of the difference (distribution range and occurrence probability) to extract only the part of the secret key by statistically removing the part of the uniform distribution. is doing. Even when this transcription attack is developed and an attack using the distribution of the difference between the signature vector and the hash value vector is performed, the distribution range is secret and the condition that the distribution range is known cannot be satisfied. For this reason, an attack whose distribution is predicted cannot be performed, and such an attack becomes difficult. In the following, this will be described in a little more detail.
- the signature vector is a vector of lattice points nearest to the converted hash value vector obtained by converting the hash value vector using the distribution ⁇ .
- the distribution range of the distribution ⁇ is secret, the attacker does not know the distribution range of the difference between the signature vector and the hash value vector. Therefore, the above attack becomes difficult.
- the present invention provides a digital signature system based on the NTRUSign signature scheme, which can prevent the above-described transcription attack and is based on the security of the lattice problem. Objective.
- One aspect of the present invention is a signature generation apparatus that generates signature data for message data using a signature scheme, wherein the signature scheme uses a lattice nearest neighbor problem that is a set of vectors as a security base.
- a secret key including information for constructing a secret key basis vector which is a basis vector of a secret lattice, and a public key basis vector which is a public basis vector expressing the same lattice as the secret key basis vector
- a key generation step of generating a public key including information for performing, a signature generation step of generating the signature data consisting of one or more elements of the lattice for the message data using the secret key, and the public key Verifying the signature data using a signature verification step, wherein the signature generation device is used before generating the signature data.
- a secret key storage unit that stores a secret key; and a signature generation unit that generates the signature data that is an element of the lattice for the message data, using the secret key stored in the secret key storage unit,
- the secret key includes a predetermined vector distribution, and the signature generation unit generates vector data based on the distribution, and generates converted message data by converting the message data based on the vector.
- a message conversion unit; and a signature generation unit configured to generate the signature data by using the converted message data as the message data.
- the distribution may not be uniform.
- the range of the distribution may be secret.
- the range of the distribution is divided into a plurality of regions, the selection probability of each region is determined in advance, and the vector generation unit selects the region based on the selection probability, and based on the selected region A vector may be generated.
- the vector generation unit generates a vector selected at random based on the distribution
- the message conversion unit may generate the converted message data by adding the vector to the message data. Good.
- the vector generation means may generate a vector by randomly selecting from a plurality of vectors selected in advance based on the distribution.
- the distribution may be included in a hypersphere having a predetermined distance L.
- the public key includes a distance L ′ related to the distance L
- the signature generation unit stores the converted message data when the distance between the message data and the signature data is not within L ′. It may be recalculated.
- the public key may include the distance L ′.
- the distance L ′ may be a system parameter of the signature scheme.
- the secret key basis vector is obtained by adding an element f of the ring R to a ring R and a positive integer q, which are sets of N-dimensional arrays in which norms indicating addition, subtraction, multiplication, and the original magnitude are defined.
- the public key basis vector may be obtained from an element h that is congruent with the product of the positive integer q and the element g and the element Fq and mod q.
- the secret key storage unit may take measures against a tamper attack.
- a signature verification apparatus that verifies signature data for message data by using a signature scheme, and the signature scheme secures a nearest neighbor problem of a lattice that is a set of vectors.
- a secret key including information for constructing a secret key basis vector, which is a basis vector of a secret lattice, and a public key that is a public basis vector expressing the same lattice as the secret key basis vector
- a public key storage unit that stores the public key to be used, and a signature verification unit that verifies the signature data that is an element of the lattice for the message data, using the public key stored in the public key storage unit;
- the secret key includes a distribution of a pre
- an authentication data generation device that generates authentication data that is response data to challenge data using a signature method, wherein the signature method uses a lattice nearest neighbor problem that is a set of vectors as a security base.
- a secret key including information for constructing a secret key basis vector which is a basis vector of a secret lattice, and a public key basis vector which is a public basis vector expressing the same lattice as the secret key basis vector
- a key generation step of generating a public key including information for performing, a signature generation step of generating the signature data consisting of one or more elements of the lattice for the message data using the secret key, and the public key And verifying the signature data using the authentication data generating device, wherein the authentication data generating device generates the authentication data.
- a secret key storage unit that stores the secret key used for the authentication, and an authentication data generation unit that generates the authentication data for the challenge data using the secret key stored in the secret key storage unit.
- the secret key includes a distribution of a predetermined vector, and the authentication data generation unit generates vector data based on the distribution, and message data that generates the message data that is a hash value for the challenge data.
- Generating means message converting means for converting the message data based on the vector to generate conversion challenge data, and generating the signature data as the authentication data when the converted message data is used as the message data Authentication data generation means.
- Another aspect of the present invention is a signature generation method for generating signature data for message data using a signature scheme based on a security nearest neighbor problem of a lattice that is a set of vectors,
- a secret key including information for constructing a secret key basis vector that is a basis vector of a secret lattice, and a public key basis vector that is a public basis vector expressing the same lattice as the secret key basis vector
- a key generation step of generating a public key including the information of the signature a signature generation step of generating the signature data consisting of one or more elements of the lattice for the message data using the secret key, and using the public key
- the distribution may not be uniform.
- the range of the distribution may be secret.
- the distribution range is divided into a plurality of regions, and the selection probability of each region is determined in advance, and the signature generation step selects the region based on the selection probability, and based on the selected region
- the generated vector may be used.
- the converted message data may be generated by adding a vector randomly selected based on the distribution to the message data.
- the distribution may be included in a hypersphere having a predetermined distance L.
- a program that is executed by a signature generation device that generates signature data for message data, using a signature scheme based on the nearest neighbor problem of a lattice that is a set of vectors.
- a secret key including information for constructing a secret key basis vector which is a basis vector of a secret lattice, and a public key basis vector which is a public basis vector expressing the same lattice as the secret key basis vector
- a signature verification step of verifying the signature data using a public key, and executing the signature generation apparatus, and the secret key is a predetermined vector
- the signature generation step includes converting the message data, which is obtained by converting the message data using a vector based on the distribution, to the signature data that is an element of the lattice using the secret key basis vector.
- the program may be recorded on a recording medium.
- Another aspect of the present invention is an integrated circuit of a signature generation apparatus that generates signature data for message data using a signature scheme, and the signature scheme is the nearest neighbor of a lattice that is a set of vectors.
- the problem is based on security, a secret key including information for constructing a secret key basis vector that is a basis vector of a secret lattice, and a public basis vector expressing the same lattice as the secret key basis vector.
- a key generation step of generating a public key including information for constructing a certain public key basis vector, and a signature for generating the signature data composed of one or more elements of the lattice for the message data using the secret key A signature verification step of verifying the signature data using the public key, wherein the signature generation device generates the signature data A signature that generates the signature data that is the source of the grid for the message data, using the secret key storage unit that stores the secret key used for the purpose and the secret key stored in the secret key storage unit A generation unit, wherein the secret key includes a distribution of a predetermined vector, the signature generation unit converts the message data based on the vector, vector generation means for generating a vector based on the distribution Message conversion means for generating conversion message data; and signature generation means for generating the signature data using the conversion message data as the message data.
- a digital signature system including a signature generation apparatus that generates signature data for message data and a signature verification apparatus that verifies the signature data using a signature scheme
- the method uses the nearest neighbor problem of a lattice that is a set of vectors as a security base, and includes a secret key including information for constructing a secret key basis vector that is a basis vector of a secret lattice, and the secret key basis vector Generating a public key including information for constructing a public key basis vector, which is a public basis vector representing the same lattice as, and one or more of the message data for the message data using the secret key
- a signature generation step for generating the signature data comprising a lattice element, and a signature verification step for verifying the signature data using the public key.
- the signature generation apparatus uses the secret key stored in the secret key storage unit to store the secret key used to generate the signature data, and the secret key stored in the secret key storage unit.
- a signature generation unit that generates the signature data that is an element of the lattice for message data, and the signature verification device includes a public key storage unit that stores the public key used to verify the signature data;
- the signature generation unit includes vector generation means for generating a vector based on the distribution, and converts the message data based on the vector to convert the converted message data.
- a message conversion unit configured to generate the signature data using the converted message data as the message data, and the signature verification unit determines a distance between the message data and the signature data. It is characterized by that. 6).
- the embodiment described above is an example of the implementation of the present invention, and the present invention is not limited to this embodiment, and can be implemented in various modes without departing from the scope of the present invention. Is.
- the present invention includes the following cases. (1) In the digital signature system 10 according to the first embodiment, a random vector is selected based on a distribution. However, a vector based on a distribution is obtained in advance and stored, and the stored vector is used. Also good.
- a plurality of vectors based on a plurality of distributions may be obtained and stored in advance, and one vector may be selected from the plurality of stored vectors.
- the vector V is added to generate the converted hash value vector, but the present invention is not limited to this.
- the converted hash value vector may be generated by adding the vectors V multiplied by n (n is an integer other than 0).
- the vector V may be subtracted to generate a converted hash value.
- L and L ′ are about the same as the normbound of the conventional NTRUSign signature scheme, but it may be smaller than the normbound.
- L ′ may be any value as long as the distance between most hash value vectors and correctly generated signature vectors falls within that value.
- the distance L is disclosed as a system parameter, but it may be different for each user who generates a signature. In that case, L ′ may be included in the public key to notify the user who verifies the signature. The distance L may be kept secret.
- distributions 400 and 432 shown in FIG. 2 and FIG. 4 are used as the distribution ⁇ , but the present invention is not limited to this.
- an element of a certain dimension may be limited to a predetermined range (for example, 2 to 5).
- (f, g) and (F, G) in the secret key are obtained from the lattice basis vector (secret key basis vector), h in the public key and q as the system parameter (1, h), (0, q) are lattice basis vectors (public key basis vectors), the lattice points obtained from the respective basis vectors are the same. It is called a signature scheme based on it.
- the improved NTRUSign signature scheme also has similar secret key basis vectors and public key basis vectors.
- the improved NTRUSign signature scheme based on the NTRUSign signature scheme is used as the signature scheme, but the present invention is not limited to this.
- the transcription attack can also be applied to a signature scheme based on other lattice problems, for example, a GGH signature scheme.
- a signature method a signature method based on a lattice problem to which a transcription attack can be applied, for example, a GGH signature method may be used.
- the GGH signature method is described in detail in Non-Patent Document 6. It may be based on a signature scheme in which the nearest neighbor problem of another lattice is based on the security of the signature. (7) Another example of the distribution table having the data structure of the distribution ⁇ will be described.
- distribution information i includes a lower limit value C_i_min, an upper limit value C_i_max, a polynomial Base1_i, and a polynomial Base2_i.
- C_3 that is equal to or higher than the lower limit C_3_min and equal to or lower than the upper limit C_3_max is uniformly selected.
- V1_max c_1_max ⁇ Base1_1 + c_2_min ⁇ Base1_2 + c_3_max ⁇ Base1_3
- V2_max c_1_max ⁇ Base2_1 + c_2_min ⁇ Base2_2 + c_3_max ⁇ Base2_3
- its norm is 194.9 ⁇ 200.
- the number may be two or four or more.
- the number of polynomials is three for each of Base1_i and Base2_i. It may be more than one.
- Still another example of the distribution table having the data structure of the distribution ⁇ will be described.
- the distribution information i includes first sub-distribution information and second sub-distribution information.
- the distribution information includes a lower limit value C_1_i_min, an upper limit value C_1_i_max, and a polynomial Base1_i.
- the second sub-distribution information includes a lower limit value C_2_i_min, an upper limit value C_2_i_max, and a polynomial Base2_i.
- C_1_1 that is not less than the lower limit C_1_1_min and not more than the upper limit C_1_1_max is uniformly selected
- C_2_1 that is not less than the lower limit C_2_1_min and not more than the upper limit C_2_1_max is uniformly selected
- C_1_2 that is not less than the lower limit C_1_2_min and not more than the upper limit C_1_2_max is randomly selected, and C_2_2 that is not less than the lower limit C_2_2_min and not more than the upper limit C_2_2_max is uniformly selected To do.
- C_1_3 that is not less than the lower limit C_1_3_min and not more than the upper limit C_1_3_max is uniformly selected
- C_2_3 that is not less than the lower limit C_2_3_min and is not more than the upper limit C_2_3_max is uniformly selected To do.
- V1 C_1_1 * Base1_1 + C_1_2 * Base1_2 + C_1_1 * 3 * Base1_3 is calculated
- V1_max c_1_1_max ⁇ Base1_1 + c_1_2_max ⁇ Base1_2 + c_1_3_max ⁇ Base1_3
- V2_max c_2_1_max ⁇ Base2_1 + c_2_2_min ⁇ Base2_2 + c_2_3_min ⁇ Base2_3
- its norm is 199.1 ⁇ 200.
- c_1_i and c_2_i are selected (generated) uniformly and randomly between min and max, but this is not restrictive. For example, it may be selected randomly according to a Gaussian distribution. In that case, an average value and a variance are determined in advance and are generated according to a Gaussian distribution.
- Authentication is verification that message data has been sent by a person who is self-proclaimed and that the message data has not been tampered with. Further, the embodiment and the modification are applied in the identification. The proof of identity is, for example, a proof that the user has an access right to data, an access right to a facility (room entry right), or a proof that he is as claimed. Furthermore, the embodiment and the modification are applied in non-repudiation prevention. Non-repudiation refers to, for example, combating a person who claims that he has agreed to something but has not agreed. (11) Each of the above devices is specifically a computer system including a microprocessor, ROM, RAM, a hard disk unit, a display unit, a keyboard, a mouse, and the like.
- a computer program is stored in the RAM or hard disk unit. Each device achieves its functions by the microprocessor operating according to the computer program.
- the computer program is configured by combining a plurality of instruction codes indicating instructions for the computer in order to achieve a predetermined function.
- the system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on a single chip, and specifically, a computer system including a microprocessor, ROM, RAM, and the like. .
- a computer program is stored in the RAM.
- the system LSI achieves its functions by the microprocessor operating according to the computer program.
- each of the above devices may be constituted by an IC card that can be attached to and detached from each device or a single module.
- the IC card or the module is a computer system including a microprocessor, a ROM, a RAM, and the like.
- the IC card or the module may include the super multifunctional LSI described above.
- the IC card or the module achieves its function by the microprocessor operating according to the computer program. This IC card or this module may have tamper resistance.
- the present invention may be the method described above. Further, the present invention may be a computer program that realizes these methods by a computer, or may be a digital signal composed of the computer program.
- the present invention also provides a computer-readable recording medium such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD (Blu-ray Disc). ), Recorded in a semiconductor memory or the like.
- the digital signal may be recorded on these recording media.
- the computer program or the digital signal may be transmitted via an electric communication line, a wireless or wired communication line, a network represented by the Internet, a data broadcast, or the like.
- the present invention may be a computer system including a microprocessor and a memory, the memory storing the computer program, and the microprocessor operating according to the computer program.
- the program or the digital signal is recorded on the recording medium and transferred, or the program or the digital signal is transferred via the network or the like, and executed by another independent computer system. It is good. (12) The above embodiment and the above modifications may be combined.
- Each device that constitutes the present invention is used in various industrial fields that require processing such as authentication, identification, and prevention of repudiation when performing processing such as authentication, identification, and prevention of repudiation.
- it can be used and manufactured continuously and repeatedly.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Physics (AREA)
- Physics & Mathematics (AREA)
- Mathematical Optimization (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Analysis (AREA)
- General Physics & Mathematics (AREA)
- Algebra (AREA)
- Storage Device Security (AREA)
Abstract
Description
<NTRUSign署名方式>
(1)NTRUSign署名方式のシステムパラメタ
NTRUSign署名方式では、非負整数のパラメタであるN,q,df,dg,Normboundが存在する。以下に、これらのパラメタの意味を説明する。
NTRUSign署名方式は、多項式の演算により署名生成及び署名検証を行うデジタル署名方式である。パラメタNは、NTRUSign署名方式で扱う多項式の次数を決める。
(X^4+X^2+1)×(X^3+X)
=X^7+2・X^5+2・X^3+X
=X^2・1+2・1+2・X^3+X
=2・X^3+X^2+X+2
のように、常にN-1次以下の多項式になるように演算される。
NTRUSign署名方式では、値「2」以上の整数であるパラメタqを用いる。NTRUSign署名方式で出現する多項式の係数については、qを法とした剰余を取るように演算する。
NTRUSign署名方式で扱う秘密鍵の一部である多項式f及び多項式gの選び方は、それぞれパラメタdf,dgにより決まる。ここで、多項式gは、公開鍵である多項式hを生成するときに、多項式fと共に用いられる。
NTRUSign署名方式では、後述するが、「署名sから作られる2・N次元のベクトル」と「メッセージデータに対するハッシュ値である2・N次元のベクトル」との距離を計算し、計算された距離により、正しい署名であるかを判定する。Normboundは、この判定の際に使用されるしきい値である。すなわち、計算された距離がNormbound未満(距離<Normbound)であれば、正しい署名として受理する。一方、計算された距離がNormbound以上(距離≧Normbound)であれば、正しくない署名とし拒否する。
(2)メッセージデータのハッシュ値、ノルム及びベクトル間の距離
NTRUSign署名方式では、メッセージデータのハッシュ値に対する署名を作成する。メッセージデータのハッシュ値は、N次の多項式の対であり、2・N次元のベクトルとして表現される。メッセージデータからハッシュ値を求めるハッシュ関数については、非特許文献1に詳しく説明されている。
μ=(1/N)・(a_0+a_1+a_2+…+a_(N-1))
ここで、sqrt(x)はxの平方根を示す。
多項式a,bの対(a,b)とc,dの対(c,d)との距離は、||(c-a,d-b)||で定義される。
(3)NTRUSign署名方式の鍵生成
NTRUSign署名方式では、上述したように、パラメタdf,dgを用いてランダムに多項式f,多項式gを生成する。そして非特許文献4に記載の通り、Fq×f=1(mod q)となる多項式Fqを用いて、
h=Fq×g(mod q)
により、多項式hを生成する。さらに、以下の式を満たすようなノルムが小さい多項式F,Gを求める。
ここで、{(f,g),(F,G)}は、秘密鍵であり、hは、公開鍵である。秘密鍵は、署名を生成するための鍵であり、署名生成鍵とも呼ばれる。また、公開鍵は、署名を検証するための鍵であり、署名検証鍵とも呼ばれる。
(4)NTRUSign署名方式の署名生成
NTRUSign署名方式の署名生成においては、送信すべきメッセージデータのハッシュ値ベクトルを算出し、その最近傍格子点を署名ベクトルとする。Lsec座標系での係数を整数に丸めることにより、容易に最近傍格子点が得られる。
-g×m1+f×m2=a+q×b
ここで、A,aの係数は、〈-q/2〉+1から〈q/2〉の範囲に収まるように法qで割ったときの剰余である。すなわち、法qで割ったときの剰余が〈q/2〉からq-1である場合は、qだけ減算して、上記範囲に収まるよう調整する。ここで、〈x〉は、x以下の数の中で最も大きい数を示す。例えば、〈-1/2〉=-1である。
t=g×B+G×b (mod q)
(5)NTRUSign署名方式の署名検証
NTRUSign署名方式の署名検証では、以下に示すようにして、署名sが署名対象であるメッセージデータmに対して正しいかどうかを検証する。
さらに、2・N次元ベクトル(s,t)と2・N次元ベクトル(m1,m2)との距離を求め、Normbound未満であるかをチェックする。Normbound未満であれば、署名sは正しいと判定して署名sを受理する。Normbound以上であれば、署名sは不正と判定して署名sを拒否する。
<安全性のベースとしての格子の問題>
NTRUSign署名方式は、格子の問題を安全性のベースとしている。以下では、それについて説明する。
(f×α,g×α)+(F×β,G×β)
の2・N次元ベクトル全体を格子(格子Lsec)として捉える。ここで、α,βは任意の多項式である。そのとき、秘密鍵における(f,g),(F,G)を格子の基底(ベクトル)と呼ぶ。図20(a)には、この2・N次元ベクトル全体を格子(格子Lsec)として捉える場合におけるLsec座標系を図示している。
(1×α’,h×α’)+(0,q×β’)
の2・N次元ベクトル全体も格子(格子Lpub)として捉える。ここで、α’,β’は任意の多項式である。図20(b)には、この2・N次元ベクトル全体を格子(格子Lpub)として捉える場合におけるLpub座標系を図示している。
m1-s=e1×f+e2×F
(ここで、e1,e2は、それぞれ、その係数が-1/2から1/2の範囲に入る多項式である)
となることを利用しており、差分m1-sの2次モーメント及び4次モーメントの平均値を算出することにより、秘密鍵の一部であるf,Fを求める。
a=a_0+a_1・X+a_2・X^2+…+a_(N-2)・X^(N-2)+a_(N-1)・X^(N-1)と
aの相反a*=a_0+a_(N-1)・X+a_(N-2)・X^2+…+a_2・X^(N-2)+a_1・X^(N-1)と
の積a~2=a×a*である。
署名文の個数が増大すると、m1-sの2次モーメントの平均に含まれるe1~,e2~はある一定値k1,k2に収束し、上記の式のe1×f×e2*×F*とe2×F×e1*×f*は0に近づく。したがって、署名文の個数が大きい場合、m1-sの2次モーメントの平均は、k1×f~+k2×F~にほぼ等しくなる。さらに4次モーメントの平均でも、同様にf及びFに関連する情報を得られ、両方の情報からfを求めることが可能になる。
20 通信路
100 署名生成装置
200 署名検証装置
300 鍵生成装置
101 送信部
102 秘密鍵格納部
103 公開鍵証明書格納部
104 署名生成部
105 署名データセット生成部
106 システムパラメタ格納部
111 ハッシュ値計算部
112 ベクトル生成部
113 ハッシュ値変換部
114 署名生成部
115 署名確認部
116 ベクトル群選択格納部
201 受信部
202 CA公開鍵格納部
203 署名データセット格納部
204 署名検証部
205 システムパラメタ格納部
211 ハッシュ値計算部
212 署名ベクトル生成部
213 距離判定部
301 分布生成部
302 鍵生成部
303 証明書生成部
304 証明書生成鍵格納部
305 鍵設定部
306 システムパラメタ格納部
〔実施の形態1〕
本発明に係る1の実施の形態としてのデジタル署名システム10について説明する。
1.改良NTRUSign署名方式
改良NTRUSign署名方式は、最小ベクトル問題又は近似最小ベクトル問題を安全性の根拠としている。最小ベクトル問題(Shortest Vector Problem)は、1の基底ベクトルからその格子に含まれる「最小のベクトル」を求める問題である。近似最小ベクトル問題(Approximate Shortest Vector Problem)は、近似的に最小のベクトル(最小ベクトルではないが、それに近い大きさのベクトル)を求める問題である。
(1)改良NTRUSign署名方式のシステムパラメタ
改良NTRUSign署名方式においては、従来のNTRUSign署名方式と同じ非負整数のパラメタN,q,df,dgの他に距離L及びL’が存在する。従来のNTRUSign署名方式では、検証時にNormboundを使用する。これに対して、改良NTRUSign署名方式では、後で説明するように、検証時には、Normboundの代わりに、距離L’を使用する。
改良NTRUSign署名方式は、多項式の演算により署名生成及び署名検証を行うデジタル署名方式である。改良NTRUSign署名方式で扱う多項式の次数は、パラメタNにより決まる。
改良NTRUSign署名方式では、2以上の整数であるパラメタqを用いる。改良NTRUSign署名方式で出現する多項式の各係数は、qを法とした剰余を取るように演算する。
改良NTRUSign署名方式で扱う秘密鍵の一部である多項式f及び多項式gの選び方は、それぞれパラメタdf,dgにより決まる。多項式gは、公開鍵である多項式hを生成するときに、多項式fと共に用いられる。
パラメタL(第1サイズとも呼ぶ。)は、2・N次元ベクトル空間における超球の半径である。以下において、改良NTRUSign署名方式において加算されるランダムなベクトルの選択と、超球及び分布ηとの関係について説明する。
V2=(V2_0、V2_1、V2_2、・・・、V2_(N-1))
このように、図2は、原点から分布の範囲のいずれかの点に向かうベクトルを選択することを示しており、この分布の例では、分布の範囲で一様で(等確率で)ランダムにベクトルを選択する。
このように、分布432では、複数の候補ベクトルは、選択される確率が一様でないように、配置されている。
改良NTRUSign署名方式では、後述するように、署名sから作られる2・N次元のベクトル(署名ベクトルと呼ぶ)と、ハッシュ値ベクトルとの距離を計算し、この距離により正しい署名であるかを判定する。パラメタL’(第2サイズ)は、この判定の際に使用するしきい値である。すなわち、計算された上記距離がL’以下であれば、正しい署名として受理し、L’より大きければ、正しくない署名として拒否する。
(2)メッセージデータのハッシュ値、ノルム及びベクトル間の距離
改良NTRUSign署名方式においても、メッセージデータのハッシュ値に対する署名を作成する。メッセージデータのハッシュ値は、N次の多項式の対であり、2・N次元のベクトルと同一視される。ハッシュ関数については、非特許文献1に詳しく説明されている。
(N-1)-μ)^2)
μ=(1/N)・(a_0+a_1+a_2+…+a_(N-1))
ここで、sqrt(x)はxの平方根を示す。
多項式a,bの対(a,b)とc,dの対(c,d)との距離は、||(c-a,d-b)||で定義される。
(3)改良NTRUSign署名方式の鍵生成
改良NTRUSign署名方式では、上述したように、パラメタdf,dgを用いてランダムに多項式f,多項式gを生成する。そして非特許文献4に記載の通り、Fq×f=1(mod q)となる多項式Fqを用いて、
h=Fq×g(mod q)
により、多項式hを生成する。さらに、以下の式を満たすようなノルムが小さい多項式F,Gを求める。
ここで、x=y(mod q)は、多項式yの第i次(0≦i≦N-1)の係数について、当該第i次の係数を、剰余が0からq-1の範囲に収まるように法qで割ったときの剰余を、多項式xの第i次の係数とする演算である。すなわち、yの各係数を、0から(q-1)の範囲に収まるようにmod q演算して得られる多項式を、多項式xとする演算である。
(4)改良NTRUSign署名方式の署名生成
改良NTRUSign署名方式の署名生成について、図6及び図17を用いて、説明する。
-g×m1’+f×m2’=a+q×b
ここで、A,aの係数は、〈-q/2〉+1から〈q/2〉の範囲に収まるように法qで割ったときの剰余を取ったものとする。すなわち、法qで割ったときの剰余が〈q/2〉からq-1である場合は、qだけ減算して、上記範囲に収まるよう調整する。ここで、〈x〉は、x以下の数の中で最も大きい数を示す。例えば、〈-1/2〉=-1である。
t=g×B+G×b (mod q)
次に、ハッシュ値ベクトルHとSの距離を算出し、HとSの距離がL’以内であるかを判定する(ステップSG4)。L’以内であれば(ステップSG4でYes)、sを署名とする(ステップSG5)。L’以内でなければ(ステップSG4でNo)、ステップSG2からやり直す。
(5)改良NTRUSign署名方式の署名検証
改良NTRUSign署名方式の署名検証について、図7及び図18を用いて、説明する。
HとSの距離を求め、求めた距離がL’以下であるかをチェックする(ステップSV3)。L’以下であれば(ステップSV3でYes)、署名sが正しいと判定して署名sを受理し、OKを出力する(ステップSV4)。L’より大きければ(ステップSV3でNo)、署名sが不正と判定して署名sを拒否し、NGを出力する(ステップSV5)。
2.各装置の構成
(1)署名生成装置100の構成
署名生成装置100は、相手に送信すべきメッセージデータmに対する署名データセットSSを生成する。署名生成装置100は、図8に示すように、送信部101、秘密鍵格納部102、公開鍵証明書格納部103、署名生成部104、署名データセット生成部105及びシステムパラメタ格納部106を備える。
(署名生成部104の構成)
署名生成部104は、図10に示すように、ハッシュ値計算部111、ベクトル生成部112、ハッシュ値変換部113、署名生成部114、署名確認部115及びベクトル群選択格納部116から構成されている。
(2)署名検証装置200の構成
署名検証装置200は、図11に示すように、受信部201、CA公開鍵格納部202、署名データセット格納部203、署名検証部204及びシステムパラメタ格納部205を備える。
(署名検証部204の構成)
署名検証部204は、図13に示すように、ハッシュ値計算部211、署名ベクトル生成部212及び距離判定部213から構成されている。
(3)鍵生成装置300の構成
鍵生成装置300は、図14に示すように、分布生成部301、鍵生成部302、証明書生成部303、証明書生成鍵格納部304、鍵設定部305及びシステムパラメタ格納部306を備えている。
う。分布生成部301は、システムパラメタ格納部306からパラメタN及びパラメタLを読み出し、2・N個の限界値ペアを格納するため領域を備える分布テーブルを生成する。次に、各限界値ペアについて、乱数を発生させて当該限界値ペアに含まれる下限値をランダムに決定する。次に、乱数を発生させて当該下限値より大きい上限値をランダムに決定する。下限値の決定と上限値の決定を全ての限界値ペアについて行う。決定した下限値及び上限値を前記の分布テーブルに格納する。こうして分布テーブル410が生成される。なお、各下限値及び各上限値は、分布内のベクトルのノルムがL以下となるように決定する。
3.デジタル署名システム10の動作
(1)デジタル署名システム10の概要の動作
デジタル署名システム10の概要の動作について、図16に示すフローチャートを用いて説明する。
(2)署名生成装置100の動作
署名生成装置100の動作について、図17に示すフローチャートを用いて説明する。
(3)署名検証装置200の署名検証部204の動作
署名検証装置200の署名検証部204による署名検証の動作について、図18に示すフローチャートを用いて説明する。
(4)鍵生成装置300の動作
鍵生成装置300は、秘密鍵{(f,g),(F,G)}、分布ηと証明書CPを署名生成装置100に設定する。以下で、図19に示すフローチャートを用いて、その動作について説明する。
4.実施の形態1の効果
実施の形態1におけるデジタル署名システム10では、図7に示すように、署名ベクトルSを最近傍の格子のベクトルとする変換ハッシュ値ベクトルH’を隠蔽しており、検証者に送信していない。そのため、検証者に送信する際の通信路での攻撃者の傍受が発生した場合や、検証者自身が攻撃者である場合に、攻撃者が転写攻撃を試みようとしても、ベクトルとその最近傍の格子のベクトルとの差分の分布を知ることができないため、転写攻撃が困難になる。
5.以上説明したように、本発明は、上述した転写攻撃を防ぐことができ、格子の問題を安全性のベースとする署名方式、特に、NTRUSign署名方式をベースにしたデジタル署名システムを提供することを目的とする。
6.変形例
上記に説明した実施の形態は、本発明の実施の一例であり、本発明はこの実施の形態に何ら限定されるものではなく、その旨を逸脱しない範囲において種々なる態様で実施し得るものである。例えば、以下のような場合も本発明に含まれる。
(1)実施の形態1におけるデジタル署名システム10では、ランダムなベクトルを分布に基づいて選択していたが、予め分布に基づくベクトルを求めて記憶しておき、記憶しているそのベクトルを用いるとしてもよい。また、予め複数の分布に基づくベクトルを複数個求めて記憶しておき、記憶している複数のベクトルから1個のベクトルを選択するとしてもよい。
(2)デジタル署名システム10では、ベクトルVを加算して変換ハッシュ値ベクトルを生成していたが、これに限らない。例えば、ベクトルVをn倍(nは0以外の整数)したものを加算して変換ハッシュ値ベクトルを生成するとしてもよい。また、ベクトルVを減算して変換ハッシュ値を生成するとしてもよい。
(3)改良NTRUSign署名方式におけるLとL‘は、(L,L’)=(200,500)としていたが、他の値でもよい。例えば、(L,L’)=(50,350)であってもよい。また、LとL’の差は、従来のNTRUSign署名方式のNormboundと程度としていたが、Normboundより小さくてもよい。L’は、ほとんどのハッシュ値ベクトルと正しく生成した署名ベクトルの距離がその値以下に納まる値であれば何でもよい。
(4)改良NTRUSign署名方式において、距離Lをシステムパラメタとして公開していたが、署名を生成するユーザごとに異なる値としてもよい。その場合は、L’を公開鍵に含めて署名を検証するユーザに知らせるとしてもよい。また、距離Lを秘密にするとしてもよい。
(5)改良NTRUSign署名方式において、分布ηとして図2や図4に示す分布400、432を使用するとしているが、これに限らない。例えば、ある次元(例えばi番目、すなわち、i-1次の項)の要素を所定の範囲(例えば、2以上5以下)に制限するとしてもよい。
(6)NTRUSign署名方式では、秘密鍵における(f,g),(F,G)を格子の基底ベクトル(秘密鍵基底ベクトル)、公開鍵におけるhとシステムパラメタであるqから得られる(1,h),(0,q)を格子の基底ベクトル(公開鍵基底ベクトル)としたとき、それぞれの基底ベクトルから得られる格子点が同一であることから、格子の問題(格子の最近傍問題)をベースにした署名方式と呼ばれる。改良NTRUSign署名方式も同様の秘密鍵基底ベクトルと公開鍵基底ベクトルを持つ。
(7)分布ηのデータ構造である分布テーブルの他の一例について説明する。
V1_max=c_1_max×Base1_1+c_2_min×Base1_2+c_3_max×Base1_3
V2_max=c_1_max×Base2_1+c_2_min×Base2_2+c_3_max×Base2_3
であり、そのノルムは 194.9 < 200である。
また、分布テーブル610において、Base1_i及びBase2_iのそれぞれについて、多項式の数は3個であるが、2個でもよいし、4個以上でもよい。
(8)分布ηのデータ構造である分布テーブルのさらに他の一例について説明する。
第2サブ分布情報は、下限値C_2_i_min、上限値C_2_i_max及び多項式Base2_iを含む。
V1_max=c_1_1_max×Base1_1+c_1_2_max×Base1_2+c_1_3_max×Base1_3
V2_max=c_2_1_max×Base2_1+c_2_2_min×Base2_2+c_2_3_min×Base2_3
であり、そのノルムは 199.1 < 200である。
D.E. Knuth, “THE ART OF COMPUTER PROGRAMMING, 2nd ed.,
vol.2:Seminumerical Algorithms”, ADDISON-WESLEY, 1981, pp. 129-130
(9)上記の実施の形態では、署名検証時に、「L以内」で正しいと判定するとしているが、これには限定されず、「L未満」で正しいと判定するとしてもよい。その場合は、「Lより大きい」ときに不正と判定するのではなく、「L以上」のときに不正と判定する。
(10)上記の実施の形態及び変形例は、認証において適用される。認証とは、メッセージデータが自称どおりの人物によって送られたこと、またメッセージデータが改竄されなかったということの検証である。また、実施の形態及び変形例は、身分の証明において適用される。身分の証明とは、例えば、データへのアクセス権、又は施設へのアクセス権(入室権)を持つことの証明、又は自分が主張どおりの人物であることの証明である。さらに、実施の形態及び変形例は、否認防止において適用される。否認防止とは、例えば、実は何かに同意したのに、同意していないと主張する者に対抗することをいう。
(11)上記の各装置は、具体的には、マイクロプロセッサ、ROM、RAM、ハードディスクユニット、ディスプレイユニット、キーボード、マウスなどから構成されるコンピュータシステムである。前記RAMまたはハードディスクユニットには、コンピュータプログラムが記憶されている。前記マイクロプロセッサが、前記コンピュータプログラムにしたがって動作することにより、各装置は、その機能を達成する。ここでコンピュータプログラムは、所定の機能を達成するために、コンピュータに対する指令を示す命令コードが複数個組み合わされて構成されたものである。
(12)上記実施の形態及び上記変形例をそれぞれ組み合わせるとしてもよい。
Claims (15)
- データを複数に分割して多次元のベクトルとして表わし、最小ベクトル問題又は近似最小ベクトル問題を安全性の根拠として、対象データに署名し、検証する方法であって、
対象データを取得する取得ステップと、
第1サイズより小さい秘密の攪乱ベクトルを用いて、取得した対象データを変換して、変換ベクトルを生成する変換ステップと、
秘密鍵ベクトルを基底ベクトルとして定まる格子において、前記変換ベクトルに最近接する格子点を求めて前記変換ベクトルに対する署名ベクトルを生成し、前記署名ベクトルの一部を署名データとする署名ステップと、
公開鍵ベクトルと前記署名データとを用いて、前記署名ベクトルを復元し、前記対象データによるベクトルと復元された前記署名ベクトルとの距離が、前記第1サイズより大きい第2サイズ以下であるか否かを検証する検証ステップと、
第2サイズ以下であるとき、検証が成功したことを示す成功情報を出力する出力ステップと
を含むことを特徴とする方法。 - データを複数に分割して多次元のベクトルとして表わし、最小ベクトル問題又は近似最小ベクトル問題を安全性の根拠として、対象データに対する署名データを生成する署名生成装置であって、
対象データを取得する取得手段と、
秘密鍵ベクトルを秘密に記憶している秘密記憶手段と、
第1サイズより小さい秘密の攪乱ベクトルを用いて、取得した対象データを変換して、変換ベクトルを生成するデータ変換手段と、
秘密鍵ベクトルを基底として定まる格子において、前記変換ベクトルに最近接する格子点を求めて前記変換ベクトルに対する署名ベクトルを生成し、前記署名ベクトルの一部を署名データとする署名生成手段と、
前記対象データと生成した署名データとを出力する出力手段と
を備えることを特徴とする署名生成装置。 - 前記秘密記憶手段は、さらに、前記第1サイズより小さい複数の候補ベクトルが属する範囲を示す分布を記憶しており、
前記データ変換手段は、前記分布により示される範囲に属する前記候補ベクトルから、1の候補ベクトルを選択して前記攪乱ベクトルとする
ことを特徴とする請求項2に記載の署名生成装置。 - 前記秘密記憶手段は、耐タンパ性を有し、前記秘密鍵及び前記分布は、外部から知られないように、秘密に保護されている
ことを特徴とする請求項3記載の署名生成装置。 - 前記秘密記憶手段に記憶されている前記分布により示される範囲において、複数の候補ベクトルは、選択される確率が一様でないように、配置されており、
前記データ変換手段は、前記確率に従って、1の前記候補データを選択して前記攪乱ベクトルとする
を特徴とする請求項4記載の署名生成装置。 - 前記分布により示される範囲は、複数の領域を有し、各領域に対して当該領域の選択確率が予め定められ、前記複数の領域のそれぞれにおいて、複数の候補ベクトルが配置され、
前記データ変換手段は、前記選択確率に基づいて1の領域を選択し、選択した前記領域から1の前記候補ベクトルを選択して前記攪乱ベクトルとする
を特徴とする請求項4記載の署名生成装置。 - 前記データ変換手段は、
前記分布により示される範囲に属する前記候補ベクトルから、1の候補ベクトルを選択して、前記攪乱ベクトルとするベクトル生成部と、
前記対象データに基づくベクトルに、前記攪乱ベクトルを加えることにより、前記変換ベクトルを生成する加算部と
を含むことを特徴とする請求項4に記載の署名生成装置。 - 前記ベクトル生成部は、前記分布に基づいて予め選択した複数の候補ベクトルから、ランダムに選択することにより、前記攪乱ベクトルを生成する
ことを特徴とする請求項7に記載の署名生成装置。 - 前記分布は、前記第1サイズを半径とする超球内に含まれる
ことを特徴とする請求項4に記載の署名生成装置。 - 前記署名生成装置は、さらに、前記第1サイズより大きい第2サイズを記憶している公開記憶手段を含み、
前記データ変換手段は、さらに、前記対象データによるベクトルと、前記変換ベクトルとの距離を算出し、算出した距離が前記第2サイズ以下でない場合に、第1サイズより小さい秘密の別の攪乱ベクトルを用いて、取得した対象データを変換して、別の変換ベクトルを生成する
を特徴とする請求項4記載の署名生成装置。 - 前記秘密鍵ベクトルは、加算、減算、乗算と、元のサイズを示すノルムが定義されたN次元配列の集合である環Rと正整数qに対し、前記環Rの元f,gおよび、f(mod q)の逆数である元Fqと、f×G-g×F=qを満たす(F,G)とに基づく、前記元の4つ組(f,g,F,G)から得られ、
前記公開鍵ベクトルは、前記正整数qと前記元gおよび前記元Fqの積とmod qで合同である元hから得られる
ことを特徴とする請求項4に記載の署名生成装置。 - データを複数に分割して多次元のベクトルとして表わし、最小ベクトル問題又は近似最小ベクトル問題を安全性の根拠として、署名生成装置により、第1サイズより小さい秘密の攪乱ベクトルを用いて、対象データから変換により前記変換ベクトルが生成され、秘密鍵ベクトルを基底として定まる格子において、前記変換ベクトルに最近接する格子点である署名ベクトルの一部として生成された署名データを検証する署名検証装置であって、
前記対象データ及び署名データを取得する取得手段と、
公開鍵ベクトルを記憶している記憶手段と、
公開鍵ベクトルと前記署名データとを用いて、前記署名ベクトルを復元し、前記対象データによるベクトルと復元された前記署名ベクトルとの距離が、前記第1サイズより大きい第2サイズ以下であるか否かを検証する検証手段と、
第2サイズ以下であるとき、検証が成功したことを示す成功情報を出力する出力手段と
を備えることを特徴とする署名検証装置。 - データを複数に分割して多次元のベクトルとして表わし、最小ベクトル問題又は近似最小ベクトル問題を安全性の根拠として、対象データに対する署名データを生成する署名生成装置において用いられる署名生成方法であって、
対象データを取得する取得ステップと、
第1サイズより小さい秘密の攪乱ベクトルを用いて、取得した対象データを変換して、変換ベクトルを生成するデータ変換ステップと、
秘密鍵ベクトルを基底として定まる格子において、前記変換ベクトルに最近接する格子点を求めて前記変換ベクトルに対する署名ベクトルを生成し、前記署名ベクトルの一部を署名データとする署名生成ステップと、
前記対象データと生成した署名データとを出力する出力ステップと
を含むことを特徴とする署名生成方法。 - データを複数に分割して多次元のベクトルとして表わし、最小ベクトル問題又は近似最小ベクトル問題を安全性の根拠として、対象データに対する署名データを生成するコンピュータにおいて用いられる署名生成用のコンピュータプログラムを記録しているコンピュータ読み取り可能な記録媒体であって、
前記コンピュータに、
対象データを取得する取得ステップと、
第1サイズより小さい秘密の攪乱ベクトルを用いて、取得した対象データを変換して、変換ベクトルを生成するデータ変換ステップと、
秘密鍵ベクトルを基底として定まる格子において、前記変換ベクトルに最近接する格子点を求めて前記変換ベクトルに対する署名ベクトルを生成し、前記署名ベクトルの一部を署名データとする署名生成ステップと、
前記対象データと生成した署名データとを出力する出力ステップと
を実行させる前記コンピュータプログラムを記録している記録媒体。 - データを複数に分割して多次元のベクトルとして表わし、最小ベクトル問題又は近似最小ベクトル問題を安全性の根拠として、署名する署名生成装置及び検証する署名検証装置から構成されるシステムであって、
前記署名生成装置は、
対象データを取得する取得手段と、
秘密鍵ベクトルを秘密に記憶している秘密記憶手段と、
第1サイズより小さい秘密の攪乱ベクトルを用いて、取得した対象データを変換して、変換ベクトルを生成するデータ変換手段と、
秘密鍵ベクトルを基底として定まる格子において、前記変換ベクトルに最近接する格子点を求めて前記変換ベクトルに対する署名ベクトルを生成し、前記署名ベクトルの一部を署名データとする署名生成手段と、
前記対象データと生成した署名データとを出力する出力手段とを備え、
前記署名検証装置は、
前記対象データ及び署名データを取得する取得手段と、
公開鍵ベクトルを記憶している記憶手段と、
公開鍵ベクトルと前記署名データとを用いて、前記署名ベクトルを復元し、前記対象データによるベクトルと復元された前記署名ベクトルとの距離が、前記第1サイズより大きい第2サイズ以下であるか否かを検証する検証手段と、
第2サイズ以下であるとき、検証が成功したことを示す成功情報を出力する出力手段と
を備えることを特徴とするシステム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09730374A EP2264941A1 (en) | 2008-04-09 | 2009-03-02 | Signature and verification method, signature generation device, and signature verification device |
US12/921,507 US8452975B2 (en) | 2008-04-09 | 2009-03-02 | Signature and verification method, signature generation device, and signature verification device |
JP2010507130A JP5341878B2 (ja) | 2008-04-09 | 2009-03-02 | 署名及び検証方法、署名生成装置並びに署名検証装置 |
CN200980108247.2A CN101965711B (zh) | 2008-04-09 | 2009-03-02 | 签名及验证方法、签名生成装置及签名验证装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008101281 | 2008-04-09 | ||
JP2008-101281 | 2008-04-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009125537A1 true WO2009125537A1 (ja) | 2009-10-15 |
Family
ID=41161675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/000923 WO2009125537A1 (ja) | 2008-04-09 | 2009-03-02 | 署名及び検証方法、署名生成装置並びに署名検証装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8452975B2 (ja) |
EP (1) | EP2264941A1 (ja) |
JP (1) | JP5341878B2 (ja) |
CN (1) | CN101965711B (ja) |
WO (1) | WO2009125537A1 (ja) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101026021B1 (ko) * | 2009-09-16 | 2011-03-30 | 포항공과대학교 산학협력단 | 시공간 블록 부호의 검출 방법 및 장치 |
IL205803A0 (en) * | 2010-05-16 | 2010-12-30 | Yaron Sella | Collision-based signature scheme |
US20120291096A1 (en) * | 2011-05-12 | 2012-11-15 | Nokia Corporation | Method and apparatus for secure signing and utilization of distributed computations |
JP5790286B2 (ja) * | 2011-08-12 | 2015-10-07 | ソニー株式会社 | 情報処理装置、署名生成装置、情報処理方法、署名生成方法、及びプログラム |
JP5790318B2 (ja) * | 2011-08-29 | 2015-10-07 | ソニー株式会社 | 情報処理装置、署名生成装置、情報処理方法、署名生成方法、及びプログラム |
CN103780382B (zh) * | 2014-01-13 | 2017-01-18 | 华南理工大学 | 一种基于超球面的多变量公钥加密/解密系统及方法 |
JP2016116134A (ja) * | 2014-12-16 | 2016-06-23 | パナソニックIpマネジメント株式会社 | 署名検証装置、署名生成装置、署名処理システム、署名検証方法及び署名生成方法 |
US10728227B2 (en) | 2016-08-02 | 2020-07-28 | X-Logos, LLC | Methods and systems for enhanced data-centric encryption systems using geometric algebra |
US9698986B1 (en) * | 2016-09-23 | 2017-07-04 | ISARA Corporation | Generating shared secrets for lattice-based cryptographic protocols |
WO2018187604A1 (en) * | 2017-04-07 | 2018-10-11 | X-Logos, LLC | Methods and systems for enhanced data-centric scalar multiplicative homomorphic encryption systems using geometric algebra |
US11080365B2 (en) * | 2018-10-31 | 2021-08-03 | Fujitsu Limited | Solving lattice problems using annealing |
CN110351097B (zh) * | 2019-07-01 | 2020-08-14 | 中国科学院数学与系统科学研究院 | 一种基于格的数字签名方法 |
DE102020119569B3 (de) * | 2020-07-24 | 2021-12-09 | Infineon Technologies Ag | Bereitstellen einer kryptografischen Information |
WO2022035909A1 (en) | 2020-08-10 | 2022-02-17 | X-Logos, LLC | Methods for somewhat homomorphic encryption and key updates based on geometric algebra for distributed ledger technology |
CN112003707A (zh) * | 2020-08-25 | 2020-11-27 | 湖南宸瀚信息科技有限责任公司 | 一种抗量子计算攻击的区块链数字签名加密方法及系统 |
US11683151B2 (en) | 2020-09-17 | 2023-06-20 | Algemetric, Inc. | Methods and systems for distributed computation within a fully homomorphic encryption scheme using p-adic numbers |
KR102474894B1 (ko) * | 2022-09-01 | 2022-12-06 | (주)노르마 | 양자 내성 암호화 알고리즘에 기초한 서명과 인증을 수행함으로써 가상 사설 네트워크를 제공하는 가상 사설 네트워크 형성 방법 및 이를 수행하는 가상 사설 네트워크 운용 시스템 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000516733A (ja) | 1996-08-19 | 2000-12-12 | エヌティーアールユー クリプトシステムズ,インコーポレーテッド | 公開鍵暗号システム方法および装置 |
JP2002230202A (ja) * | 2001-01-31 | 2002-08-16 | Ricoh Co Ltd | 電子データ化方法及び装置 |
WO2003050998A1 (en) | 2001-12-07 | 2003-06-19 | Ntru Cryptosystems, Inc. | Digital signature and authentication method and apparatus |
JP2005072917A (ja) * | 2003-08-22 | 2005-03-17 | National Institute Of Information & Communication Technology | 暗号化データ作成装置および方法ならびにそのプログラム |
JP2006053715A (ja) * | 2004-08-11 | 2006-02-23 | Kddi Corp | 擬似乱数生成装置および方法 |
WO2006114948A1 (ja) * | 2005-04-18 | 2006-11-02 | Matsushita Electric Industrial Co., Ltd. | 署名生成装置および署名検証装置 |
JP2007288230A (ja) * | 2006-03-24 | 2007-11-01 | Tatsuomi Sakata | コンピュータ通信装置、複号情報生成装置、プログラム |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6959085B1 (en) * | 1999-05-03 | 2005-10-25 | Ntru Cryptosystems, Inc. | Secure user identification based on ring homomorphisms |
WO2002091664A1 (en) | 2001-05-04 | 2002-11-14 | Docomo Communications Laboratories Usa, Inc. | Ring-based signature scheme |
US20040151309A1 (en) | 2002-05-03 | 2004-08-05 | Gentry Craig B | Ring-based signature scheme |
-
2009
- 2009-03-02 EP EP09730374A patent/EP2264941A1/en not_active Withdrawn
- 2009-03-02 US US12/921,507 patent/US8452975B2/en active Active
- 2009-03-02 CN CN200980108247.2A patent/CN101965711B/zh active Active
- 2009-03-02 WO PCT/JP2009/000923 patent/WO2009125537A1/ja active Application Filing
- 2009-03-02 JP JP2010507130A patent/JP5341878B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000516733A (ja) | 1996-08-19 | 2000-12-12 | エヌティーアールユー クリプトシステムズ,インコーポレーテッド | 公開鍵暗号システム方法および装置 |
JP2002230202A (ja) * | 2001-01-31 | 2002-08-16 | Ricoh Co Ltd | 電子データ化方法及び装置 |
WO2003050998A1 (en) | 2001-12-07 | 2003-06-19 | Ntru Cryptosystems, Inc. | Digital signature and authentication method and apparatus |
JP2005072917A (ja) * | 2003-08-22 | 2005-03-17 | National Institute Of Information & Communication Technology | 暗号化データ作成装置および方法ならびにそのプログラム |
JP2006053715A (ja) * | 2004-08-11 | 2006-02-23 | Kddi Corp | 擬似乱数生成装置および方法 |
WO2006114948A1 (ja) * | 2005-04-18 | 2006-11-02 | Matsushita Electric Industrial Co., Ltd. | 署名生成装置および署名検証装置 |
JP2007288230A (ja) * | 2006-03-24 | 2007-11-01 | Tatsuomi Sakata | コンピュータ通信装置、複号情報生成装置、プログラム |
Non-Patent Citations (9)
Title |
---|
D.E. KNUTH: "Seminumerical Algorithms", vol. 2, 1981, ADDISON-WESLEY, article "THE ART OF COMPUTER PROGRAMMING", pages: 129 - 130 |
EFFICIENT EMBEDDED SECURITY STANDARDS (EESS) EESS #1: IMPLEMENTATION ASPECTS OFNTRUENCRYPT AND NTRUSIGN", VER. 2.0, 20 June 2003 (2003-06-20) |
J. HOFFSTEIN; J. PIPHER; J. SILVERMAN: "Advances in Cryptology-Eurocrypt '01, LNCS", vol. 2045, 2001, SPRINGER-VERLAG, article "NSS: An NTRU Lattice-Based Signature Scheme", pages: 123 - 137 |
J. HOFFSTEIN; J. PIPHER; J.H. SILVERMAN: "Lecture Notes in Computer Science", vol. 1423, 1998, SPRINGER-VERLAG, article "NTRU: A ring based public key cryptosystem", pages: 267 - 288 |
J. HOFFSTEIN; N. GRAHAM; J. PIPHER; J. SILVERMAN; W. WHYTE: "CT-RSA'03, LNCS", vol. 2612, 2003, SPRINGER-VERLAG, article "NTRUSign: Digital Signatures Using the NTRU Lattice", pages: 122 - 140 |
JEFFREY HOFFSTEIN: "NTRUSign: Digital Signatures Using the NTRU Lattice", ASIACRYPT, vol. 2001, 2001, pages 1 - 31, XP008140131, Retrieved from the Internet <URL:http://www.ntru.com/cryptolab/introntrusign.htm> [retrieved on 20090319] * |
JEFFREY HOFFSTEIN: "NTRUSign: Digital Signatures Using the NTRU Lattice", CT-RSA, vol. 2003, 2003, pages 1 - 18, XP008140135, Retrieved from the Internet <URL:http://www. ntru.com/cryptolab/pdf/NTRUSign_RSA.pdf> [retrieved on 20090319] * |
O. GOLDREICH; S. GOLDWASSER; S. HALEVI: "Proc. CRYPTO '97, LNCS", vol. 1294, 1997, SPRINGER-VERLAG, article "Public-key cryptography from lattice reduction problems", pages: 112 - 131 |
TATSUAKI OKAMOTO; HIROSUKE YAMAMOTO: "Gendai Angoka", 1997, SANGYO TOSHO |
Also Published As
Publication number | Publication date |
---|---|
US20110016325A1 (en) | 2011-01-20 |
EP2264941A1 (en) | 2010-12-22 |
CN101965711B (zh) | 2014-12-03 |
JPWO2009125537A1 (ja) | 2011-07-28 |
JP5341878B2 (ja) | 2013-11-13 |
US8452975B2 (en) | 2013-05-28 |
CN101965711A (zh) | 2011-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5341878B2 (ja) | 署名及び検証方法、署名生成装置並びに署名検証装置 | |
CN104539423B (zh) | 一种无双线性对运算的无证书公钥密码体制的实现方法 | |
JP4620669B2 (ja) | 署名生成装置、署名検証装置、それらの方法、および集積回路 | |
JP4548737B2 (ja) | 署名生成装置及び署名検証装置 | |
JP4899867B2 (ja) | グループ署名方式 | |
JP4544538B2 (ja) | 署名生成装置、鍵生成装置及び署名生成方法 | |
JP4830860B2 (ja) | 署名装置、検証装置、証明装置、暗号化装置、及び復号化装置 | |
JP4546231B2 (ja) | Idベース署名及び暗号化システムおよび方法 | |
JP4776906B2 (ja) | 署名生成方法及び情報処理装置 | |
JP2009171521A (ja) | 電子署名方式、電子署名プログラムおよび電子署名装置 | |
US20130073857A1 (en) | One way authentication | |
CN106936584B (zh) | 一种无证书公钥密码系统的构造方法 | |
EP2061178A1 (en) | Electronic signature system and electronic signature verifying method | |
TWI511517B (zh) | Information processing apparatus, information processing method, program and recording medium | |
WO2006114948A1 (ja) | 署名生成装置および署名検証装置 | |
JP2000502196A (ja) | 制御自写像公開鍵システム | |
JP5058654B2 (ja) | 電子署名装置、方法、およびプログラム | |
Tahat et al. | A new digital signature scheme with message recovery using hybrid problems | |
Gentry | How to compress Rabin ciphertexts and signatures (and more) | |
Andreevich et al. | On Using Mersenne Primes in Designing Cryptoschemes | |
Prasad et al. | Digital signatures | |
Qi | A zero-knowledge proof of digital signature scheme based on the elliptic curve cryptosystem | |
JP2007151073A (ja) | 鍵生成プログラム | |
JP2007329889A (ja) | 公開鍵認証プログラム及び電子署名プログラム | |
JP6528560B2 (ja) | 指標算出システム、指標算出方法、指標算出プログラム、及び、照合システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980108247.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09730374 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010507130 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009730374 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12921507 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |