WO2009125147A2 - Procede de pompage d'un laser bi-frequence, dispositif de pompage associe et laser bi-frequence incorporant un tel dispositif de pompage - Google Patents

Procede de pompage d'un laser bi-frequence, dispositif de pompage associe et laser bi-frequence incorporant un tel dispositif de pompage Download PDF

Info

Publication number
WO2009125147A2
WO2009125147A2 PCT/FR2009/050528 FR2009050528W WO2009125147A2 WO 2009125147 A2 WO2009125147 A2 WO 2009125147A2 FR 2009050528 W FR2009050528 W FR 2009050528W WO 2009125147 A2 WO2009125147 A2 WO 2009125147A2
Authority
WO
WIPO (PCT)
Prior art keywords
laser
crystal
birefringent
optical
extraordinary
Prior art date
Application number
PCT/FR2009/050528
Other languages
English (en)
Other versions
WO2009125147A3 (fr
Inventor
Alain Brenier
Original Assignee
Universite Claude Bernard Lyon I
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Claude Bernard Lyon I, Centre National De La Recherche Scientifique filed Critical Universite Claude Bernard Lyon I
Publication of WO2009125147A2 publication Critical patent/WO2009125147A2/fr
Publication of WO2009125147A3 publication Critical patent/WO2009125147A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/08022Longitudinal modes
    • H01S3/08031Single-mode emission
    • H01S3/08036Single-mode emission using intracavity dispersive, polarising or birefringent elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/113Q-switching using intracavity saturable absorbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08086Multiple-wavelength emission
    • H01S3/0809Two-wavelenghth emission

Definitions

  • the present invention relates to the field of dual-frequency lasers and more particularly to a method of pumping such lasers and a pumping device adapted for implementing this method and a dual-frequency laser incorporating such a pumping device.
  • Dual-frequency lasers are lasers that make it possible to emit two laser waves of different frequencies but also capable of generating sums and / or differences in frequencies, for example of the order of terahertz, which allow the use of such dual frequency lasers in telecommunications type applications or non-invasive imaging of hidden objects for example.
  • Such dual-frequency lasers can be made according to different technologies allowing the emission within the laser cavity of two beams of different frequencies, that is to say of two beams having different wavelengths inside the laser cavity.
  • a preferred technique for producing such two-frequency lasers is to introduce into the laser cavity a birefringent element, that is to say an element having two different refractive indices depending on the polarization of the light.
  • a birefringent element is generally formed of a crystalline inorganic material which may also, if appropriate, also be a laser material, that is to say a material likely to constitute the amplifying medium emitting one or more laser waves within the laser cavity.
  • Such a birefringent material introduced into the cavity of a two-frequency laser thus makes it possible to obtain, by means of the excitation beam (pump beam), two separate laser beams, said ordinary beam and extraordinary beam, which have a wavelength and a polarization different.
  • One of the problems currently encountered in dual-frequency lasers incorporating a birefringent element in the laser cavity lies in the significant difficulty existing in pumping and therefore generating simultaneously the two ordinary and extraordinary laser uncles capable of being emitted into the laser cavity incorporating the birefringent element.
  • both ordinary and extraordinary laser sources are emitted simultaneously for use in a device generating a new wave corresponding to the difference or the sum of their frequencies.
  • the longitudinal pumping of an ordinary or extraordinary wave in a laser material may advantageously be performed with a power laser diode.
  • the laser gain is then maximal inside the material if the spatial overlap (volume) between the pump beam and the laser mode of the cavity, preferably the fundamental Gaussian mode, is optimized.
  • the emitting element of a multimode laser power diode is generally a rectangular strip emitting its light power astigmatically and with an asymmetric divergence and M 2 factor.
  • the optimization of the spatial overlap of the pump and laser beams in the laser medium requires a reshaping of the pump beam based on a complex optical assembly, comprising inter alia either anamorphic prisms or cylindrical lenses.
  • a complex optical assembly comprising inter alia either anamorphic prisms or cylindrical lenses.
  • the first type we use a single light source whose emission is separated into two parts by a beam splitter device before being redirected on the paths of the two ordinary and extraordinary waves.
  • the second type two independent light sources are used, the emission of each of them being directed on the routes the two waves ordinary and extraordinary.
  • Brenier, C. Tu, Z. Zhu, J. Li use a very large pump beam to spatially cover all of the two ordinary and extraordinary laser modes. Being larger than each laser mode and being centered between these two laser modes, the pump beam can not optimize the pump / laser mode spatial overlap. In addition, the portion of the pump power exciting one mode can not be adjusted independently of that exciting the other mode.
  • a single emitting diode whose light beam is separated in two by a birefringent crystal is used.
  • the power adjustment of each pump path is accomplished by turning the emitter diode about an axis of rotation, which is a serious disadvantage if one considers that a power diode must be attached to a radiator cooled by Pelletier effect. or water circulation, often heavy and bulky. Added to this is the difficulty of simultaneously turning the complex optical system of fitness of the beam. It is conceivable that such a device can be set and fixed once and for all in the factory, but its versatile setting, in real time, on demand, by a user is difficult.
  • the object of the present invention is to provide a method of simultaneous optical pumping of ordinary and extraordinary laser waves of a laser medium associated with a birefringent element whose optical axis is neither parallel nor perpendicular to the direction of propagation, element which may be the laser crystal itself, inserted into the cavity of a dual frequency laser.
  • Another object of the invention is also to provide a device specifically adapted to the implementation of such a method.
  • Another aim of the invention is to provide a simultaneous optical pumping method for the ordinary and extraordinary waves of a birefringent laser medium, possibly associated with a birefringent element, which makes it possible to optimize the spatial separation of ordinary and extraordinary laser waves. in order to treat them independently, in particular by independently optimizing their spatial overlap with their pump beam inside the laser material.
  • Another object of the invention is also to provide a pumping method that simultaneously pumps the ordinary and extraordinary laser waves of a laser medium associated with a birefringent element with a single emitting source favoring the correlations of the fluctuations of the two laser waves. .
  • Another object of the invention is also to provide a pumping method that simultaneously pumps the ordinary and extraordinary laser waves of a laser medium associated with a birefringent element with a single emitting source or with two emitting sources independent and that allows to independently modulate the power of each ordinary and extraordinary waves emitted by the laser medium, easily, versatile, real time.
  • Another object of the invention is also to provide a pumping method that simultaneously pumping the ordinary and extraordinary laser waves of a laser medium associated with a birefringent element that is operative whatever the conditions required by the anisotropy of the absorption or emission of the laser material.
  • optical pumping means comprising a bifurcated optical fiber having two independent input ends each fixed in a connector and subjected to an optical excitation means of the laser material and two output ends fixed in the same third connector and placed in correspondence with the points on the input face of the laser medium which optimize the spatial overlap of each laser wave with its pump beam inside the laser material.
  • the optical pumping comes from a single light source, so more stable and economical than two independent sources dedicated to pumping each wave.
  • a fluctuation of the single light source causes, for example by variation of heating of the pumped laser medium, a displacement in the same direction and comparable amplitude of the frequencies of the two ordinary and extraordinary waves and thus their frequency difference remains substantially constant.
  • the paths of ordinary and extraordinary uncles in the laser medium each undergo fluctuations independent of the source which pumps it as when two pumping sources are used.
  • the pumping generates a high laser gain and the pumping power of both ordinary and extraordinary waves is independently adjustable for each of said waves.
  • the pumping technique used is simple and relies on optical components available at a reasonable cost.
  • the anisotropic laser material is placed in a laser cavity consisting of a plane dichroic input mirror through which the laser material is pumped by means of the bifurcated fiber and at least one concave mirror.
  • the laser material chosen is preferably an anisotropic birefringent crystal whose principal axes are at an angle different from 0 degrees and 90 degrees with respect to the axis of propagation of ordinary and extraordinary laser beams. the laser cavity.
  • the anisotropic laser material is placed in the laser cavity of the two-frequency laser between the dichroic mirror and the concave mirror.
  • the pumping power delivered to the anisotropic laser material is adjusted by each of the output ends of the bifurcated optical fiber, so as to adjust the power of the two ordinary and extraordinary laser waves emitted by the laser material.
  • the two ordinary and extraordinary laser waves of the anisotropic laser material are pumped by means of an optical excitation means consisting of a laser diode whose beam is projected onto the points which optimize the spatial overlap of each laser wave with its pump beam inside the laser material, on one side of said laser material via the bifurcated optical fiber.
  • optical excitation means consisting of a laser diode whose beam is projected onto the points which optimize the spatial overlap of each laser wave with its pump beam inside the laser material, on one side of said laser material via the bifurcated optical fiber.
  • the output ends of the bifurcated optical fiber are imaged on the face of the laser material where are the points which optimize the spatial overlap of each laser wave with its pump beam inside the laser material, via a focusing device positioned between said output ends of the bifurcated optical fiber and said laser material.
  • the pump beam emitted by the optical excitation means is divided and distributed in adjustable proportions by means of a beam splitter positioned between the excitation means.
  • optical which is preferably a laser diode, and the two input ends of the bifurcated fiber.
  • Another object of the invention is also to provide an optical pumping device for a dual-frequency laser, characterized in that it comprises an optical excitation means, in particular a laser diode, and a bifurcated optical fiber comprising two optical fiber ends.
  • an optical excitation means in particular a laser diode
  • a bifurcated optical fiber comprising two optical fiber ends.
  • the pumping device of the invention comprises means for adjusting the optical power delivered by each output end of the bifurcated fiber to the anisotropic laser material to ensure the pumping thereof. ci and generate the laser emission in the laser cavity of a dual-frequency laser.
  • said means for adjusting the power delivered by each output end of the bifurcated fiber comprises an adjustable beam splitter placed between the optical excitation means and the two input ends of the bifurcated fiber.
  • the focusing means comprise lens doublets or triplets of lenses or aspherical lenses.
  • a last object of the invention is to propose a two-frequency laser comprising a laser cavity inside which is placed a birefringent anisotropic laser material or a laser crystal, where appropriate birefringent, associated with an independent birefringent crystal and characterized in that it comprises a pumping device as defined above.
  • the dual frequency laser according to the present invention is also characterized by the fact that the laser cavity thereof is preferably constituted by a plane dichroic input mirror through which pumping is effected by means of the bifurcated fiber of the pumping device, and at least one concave mirror.
  • the dual-frequency laser according to the invention also comprises, inside the laser cavity, a saturable absorber placed in said cavity and, for example, an absorbent such as a YAG crystal: Cr 4+ .
  • FIG. 1 schematically represents a dual-frequency laser according to the present invention
  • FIG. 2 schematically shows the emission of two ordinary and extraordinary laser waves by a birefringent laser crystal as implemented in a preferred embodiment of the invention. invention
  • FIG. 3 to 4 show schematically the emission of two ordinary and extraordinary laser waves by the combination of a birefringent crystal and a laser crystal as implemented in a variant of the invention.
  • FIG. 5 shows schematically the emission of two ordinary and extraordinary laser waves by the combination of a birefringent crystal and two contiguous laser crystals as implemented in a variant of the invention.
  • FIG. 6 schematically represents the emission of two ordinary and extraordinary laser waves by the combination of a birefringent crystal and a laser crystal on which is deposited a highly reflective mirror and attached to a radiator as implemented in FIG. a variant of the invention.
  • a dual frequency laser L according to the present invention is shown in Figure 1 in a preferred embodiment.
  • This dual frequency laser comprises conventionally a pumping device P and a laser cavity C comprising a laser-capable active medium under the excitation of the pumping device P.
  • the pumping device P firstly comprises a laser diode 1 which emits a pumping laser beam 2 into an optical fiber having a core diameter of 100 ⁇ m, for example.
  • This pump beam 2 is divided into two branches 2 1 , 2 2 via a splitted optical fiber or a beam splitter 3, possibly adjustable, and guided towards the two input branches of an optical fiber bifurcated 4, which guides and projects each of the branches 2i, 2 2 of the pump beam 2 towards lenses 5, 6 for focusing the branches of the pump beam towards the active medium of the laser cavity C.
  • This cavity C is, in the example shown, a plane-concave cavity formed by a plane dichroic mirror 7 and a concave mirror 9, between which is placed a birefringent laser crystal 8 which constitutes the active medium of the laser cavity C.
  • the Birefringent laser crystal 8 of the laser of the invention also independently represented in FIG. 2, has an optical axis 10 making an angle ⁇ different from 0 ° and 90 ° with respect to the propagation direction D of the dual-frequency laser beam F emitted by the crystal 8 pumped by the pumping device P.
  • the crystal 8 is able to emit two distinct laser waves, a so-called ordinary wave O 0 and an extraordinary wave O e of different frequencies.
  • These two laser waves are centered at two distinct points E 1 , E 2 on a first face 8 a, called the crystal input face, propagate from these two points E 1 , E 2 within the crystal 8 in two distinct directions up to the same emergence point E 3 on a second face 8b of the birefringent crystal opposite to the input face 8a and called the output face, forming a birefringence angle p between them.
  • the pumping device P of the laser L makes it possible to optically pump simultaneously the two ordinary and extraordinary laser waves O 0 , O e so as to generate the emission of the dual-frequency laser beam F at the point d emergence E 3 on the output face 8b of the laser crystal 8.
  • the position of the center E1 of the ordinary wave on the input face 8a of the laser crystal 8 is adjusted so as to optimize the spatial overlap inside the laser material of the ordinary laser wave O 0 and pump beam from the end 4i of the bifurcated fiber 4.
  • This optimum is obtained by manipulating the orientation of the concave mirror 9 and corresponds to the maximum of the power of the ordinary laser wave O 0 .
  • the latter is translated perpendicularly to the cavity axis by a distance d opt which optimizes the spatial overlap inside the laser material of the extraordinary laser wave O e and pump beam from the end 4 2 of the bifurcated fiber 4, which corresponds to the maximum power of the extraordinary laser wave O e .
  • the dual-frequency laser is optimized. If the distance d opt is found non-zero, it returns the concave mirror to its reference position then introduced a birefringent crystal 11 between the concave mirror 9 and the laser crystal 8 so as to create an additional d opt spacing of the two regular waves and extraordinary, in accordance with the alternative embodiment of the dual-frequency laser shown in FIG.
  • the images 4n and 4 22 of the ends 4i and 4 2 on the input face 8a of the laser crystal 8 are not necessarily centered on the emergence points E 1 and E 2 respectively of the ordinary and extraordinary waves on the input face 8a of the laser crystal 8. It is also possible that the optimization of the power of the extraordinary wave requires a approximation using a birefringent crystal of both ordinary and extraordinary waves and not a gap.
  • the emission of the dual-frequency laser beam F composed of the emission and the simultaneous propagation of the ordinary and extraordinary waves O 0 , O e in the birefringent laser crystal 8 is obtained. , which propagates and is then amplified within the cavity C between the mirrors 7, 9 thereof.
  • each input branch of the bifurcated fiber of the pumping device P is connected to the output of the adjustable beam splitter 3 itself fed at the input by the pump beam 2 emitted by the laser diode 1
  • the beam splitter 3 allows an individual adjustment of the power delivered in each of the branches 2 ir 2 2 , for example by means of a manual micrometer actuator, and thus the optimized individual pumping of each of the ordinary and extraordinary waves. 0 / O e forming the laser L dual frequency laser beam.
  • This adjustment of the injected powers is also necessary in order to obtain, in an alternative embodiment of the laser L of the invention, where the laser cavity C is passively switched by the introduction of a saturable absorber such as for example, a crystal of YAG: Cr 4+ , the simultaneity of emission of the two pulses O 0 , O e , which do not occur at the same pumping threshold.
  • a saturable absorber such as for example, a crystal of YAG: Cr 4+
  • the pumping powers P 0 and P e that they absorb respectively should be adjusted to ensure that the repetition frequencies f 0 and f e of the two are equal.
  • ordinary and extraordinary waves: fo fe each frequency of repetition of one of these ordinary or extraordinary waves being related to the power absorbed by the relation:
  • - n 0 and n e are the population densities of the emitter level at the laser threshold for the ordinary and extraordinary wave respectively - ⁇ 0 and ⁇ e are the fractions of populations of the transmitter level which remain at the end of a pulses for the ordinary and extraordinary wave respectively.
  • Such a birefringent laser crystal then emits a dual-frequency laser wave F at 1045 nm in ordinary polarization and 1040 nm in extraordinary polarization when it is pumped by a bifurcated optical fiber 4, each strand of which is 100 micron diameter of core, powered by a laser diode 1 pump emitting at 977 nm.
  • the laser L shown in FIG. 6 it is also possible to envisage as active medium of the cavity C a laser crystal 8 on which is deposited a highly reflective mirror 13 attached to a radiator 14.
  • a laser crystal 8 on which is deposited a highly reflective mirror 13 attached to a radiator 14.
  • the laser crystal 8 may be a semiconductor.
  • the laser L of the present invention thus comprises an optical pumping device and a laser cavity C both constituted to allow the simultaneous pumping and emission of the two ordinary and extraordinary laser waves of a birefringent laser crystal to generate a dual-frequency laser beam.
  • F The invention is not limited to the examples described and shown because various modifications can be made without departing from its scope.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Lasers (AREA)

Abstract

La présente invention concerne un procédé de pompage d'un laser bifréquence, caractérisé en ce que l'on pompe simultanément les deux ondes laser ordinaire et extraordinaire d'un cristal laser biréfringent par l'intermédiaire de moyens de pompage optique comprenant une fibre optique bifurquée. L'invention se rapporte également à un dispositif de pompage et un laser bifréquence pour la mise en œuvre de ce procédé.

Description

PROCEDE DE POMPAGE D'UN LASER BI-FREQUENCE, DISPOSITIF DE POMPAGE ASSOCIE ET LASER BI-FREQUENCE INCORPORANT UN TEL DISPOSITIF DE POMPAGE
La présente invention concerne le domaine des lasers bifréquence et a plus particulièrement pour objet un procédé de pompage de tels lasers ainsi qu'un dispositif de pompage adapté pour la mise en œuvre de ce procédé et un laser bifréquence intégrant un tel dispositif de pompage.
Les lasers bifréquence sont des lasers permettant d'émettre deux ondes laser de fréquences différentes mais également susceptibles d'engendrer des sommes et/ou des différences de fréquences, par exemple de l'ordre du Téra-Hertz, qui permettent l'utilisation de tels lasers bifréquence dans des applications de type télécommunications ou imagerie non invasive d'objets dissimulés par exemple.
De tels lasers bifréquence peuvent être réalisés selon différentes technologies permettant l'émission au sein de la cavité laser de deux faisceaux de fréquences différentes, c'est-à-dire de deux faisceaux possédant des longueurs d'ondes différentes à l'intérieur de la cavité laser.
Une technique privilégiée pour la réalisation de tels lasers bifréquence consiste à introduire dans la cavité laser un élément biréfringent, c'est-à-dire un élément présentant deux indices de réfraction différents en fonction de la polarisation de la lumière. Un tel élément biréfringent est généralement formé d'un matériau inorganique cristallin qui peut également, le cas échéant, être également un matériau laser, c'est-à-dire un matériau susceptible de constituer le milieu amplificateur émetteur d'une ou plusieurs ondes laser au sein de la cavité laser.
Un tel matériau biréfringent introduit dans la cavité d'un laser bifréquence permet ainsi d'obtenir au moyen du faisceau d'excitation (faisceau de pompe) deux faisceaux laser séparés dits faisceau ordinaire et faisceau extraordinaire qui présentent une longueur d'onde et une polarisation différentes. Un des problèmes actuellement rencontré dans les lasers bifréquence incorporant un élément biréfringent dans la cavité laser réside dans la difficulté importante existant à pomper et donc à générer simultanément les deux oncles laser ordinaire et extraordinaire susceptibles d'être émises dans la cavité laser incorporant l'élément biréfringent.
De plus, lorsque le laser bifréquence fonctionne en régime puisé, il est important que les deux puises laser ordinaire et extraordinaire soient émis simultanément pour être utilisés dans un dispositif générant une nouvelle onde correspondant à la différence ou à la somme de leurs fréquences.
Le pompage longitudinal d'une onde ordinaire ou extraordinaire dans un matériau laser peut être avantageusement réalisé avec une diode laser de puissance. Le gain laser est alors maximal à l'intérieur du matériau si le recouvrement spatial (volumique) entre le faisceau de pompe et le mode laser de la cavité, préférentiellement le mode gaussien fondamental, est optimisé.
Cette optimisation est en général obtenue par la coïncidence des maxima des faisceaux de pompe et laser, une valeur inférieure du diamètre du faisceau de pompe à celui du faisceau laser, signe d'une grande concentration de la puissance de pompe dans la région la plus intense de l'onde laser, étant un facteur favorable pour l'émission stimulée. Or l'élément émetteur d'une diode laser multimode de puissance est généralement une barrette rectangulaire émettant sa puissance lumineuse de façon astigmatique et avec une divergence et un facteur M2 asymétriques.
Ainsi l'optimisation du recouvrement spatial des faisceaux de pompe et laser dans le milieu laser exige une remise en forme du faisceau de pompe basée sur un ensemble optique complexe, comprenant entre autres soit des prismes anamorphoseurs soit des lentilles cylindriques. Dans le but de générer les deux ondes laser ordinaire et extraordinaire d'un laser bi-fréquence, deux types de pompages peuvent être envisagés.
Dans le premier type on utilise une seule source lumineuse dont l'émission est séparée en deux parties par un dispositif séparateur de faisceaux avant d'être redirigée sur les trajets les deux ondes ordinaire et extraordinaire. Dans le deuxième type on utilise deux sources lumineuses indépendantes, l'émission de chacune d'elle étant dirigée sur les trajets les deux ondes ordinaire et extraordinaire.
Or, les techniques actuellement employées pour obtenir le pompage et l'émission simultanés de deux ondes laser ordinaire et extraordinaire d'un cristal laser biréfringent, possédant un axe optique ni parallèle ni perpendiculaire à l'axe de la cavité laser dans laquelle il est placé, ne sont pas satisfaisantes.
Dans l'article Electronics Letters 40 (15), 942-943 (2004), R. Czarny, M. Alouini, C. Larat, M. Krakowski, D. Dolfi utilisent un prisme interceptant le faisceau d'une diode laser pour dédoubler le point focal. Mais les deux points focaux ainsi obtenus n'ont pas la symétrie de révolution circulaire, n'optimise donc pas le recouvrement spatial pompe/laser et leur puissance ne peut pas être ajustée indépendamment. Dans l'article Applied Physics B: Lasers and Optics 89 (2007) 323, A.
Brenier, C. Tu, Z. Zhu, J. Li utilisent un faisceau de pompe très large pour recouvrir spatialement l'ensemble des deux modes lasers ordinaire et extraordinaire. Etant donc plus large que chaque mode laser et étant centré entre ces deux modes lasers, le faisceau de pompe ne peut pas optimiser le recouvrement spatial pompe/mode laser. De plus la partie de la puissance de pompe excitant un mode ne peut pas être ajustée indépendamment de celle excitant l'autre mode.
Dans le document WO 2006/102084 Al, différentes configurations techniques sont proposées afin de pomper deux modes lasers ordinaire et extraordinaire séparés.
Dans une première proposition, une diode émettrice unique dont le faisceau lumineux est séparé en deux par un cristal biréfringent est employée. L'ajustement en puissance de chaque voie de pompe est accompli en tournant la diode émettrice autour d'un axe de rotation, ce qui est un grave inconvénient si on considère qu'une diode de puissance doit être fixée sur un radiateur refroidi par effet Pelletier ou circulation d'eau, souvent lourd et encombrant. A cela s'ajoute la difficulté de tourner simultanément le système optique complexe de remise en forme du faisceau. On conçoit qu'un tel dispositif puisse être réglé et fixé une fois pour toute en usine, mais son réglage versatile, en temps réel, à la demande, par un utilisateur est difficile. Dans un autre mode de réalisation, il est proposé d'utiliser deux sources émettrices indépendantes, ce qui est incompatible avec la corrélation des fluctuations des deux ondes lasers engendrées au final. De plus ces deux sources ne sont pas appliquées au pompage d'un cristal laser simultanément biréfringent avec son axe optique ni parallèle ni perpendiculaire à l'axe de propagation des faisceaux lasers. Le but de la présente invention est de procurer un procédé de pompage optique simultané des ondes laser ordinaire et extraordinaire d'un milieu laser associé à un élément biréfringent dont l'axe optique n'est ni parallèle ni perpendiculaire à la direction de propagation, élément qui peut être le cristal laser lui-même, insérés dans la cavité d'un laser bifréquence. Un autre but de l'invention est également de procurer un dispositif spécifiquement adapté à la mise en œuvre d'un tel procédé.
Un autre but de l'invention est de procurer un procédé de pompage optique simultané des ondes ordinaire et extraordinaire d'un milieu laser, biréfringent, associé éventuellement à un élément biréfringent, qui permette d'optimiser la séparation spatiale des ondes laser ordinaire et extraordinaire afin de traiter celles-ci indépendamment, notamment en optimisant indépendamment leur recouvrement spatial avec leur faisceau de pompe à l'intérieur du matériau laser.
Un autre but de l'invention consiste également à procurer un procédé de pompage qui permette de pomper simultanément les ondes laser ordinaire et extraordinaire d'un milieu laser associé à un élément biréfringent avec une source émettrice unique favorisant les corrélations des fluctuations des deux ondes lasers.
Un autre but de l'invention consiste également à procurer un procédé de pompage qui permette de pomper simultanément les ondes laser ordinaire et extraordinaire d'un milieu laser associé à un élément biréfringent avec une source émettrice unique ou avec deux sources émettrices indépendantes et qui permette de moduler indépendamment la puissance de chacune des ondes ordinaire et extraordinaire émises par le milieu laser, de façon aisée, versatile, en temps réel.
Un autre but de l'invention consiste également à procurer un procédé de pompage qui permette de pomper simultanément les ondes laser ordinaire et extraordinaire d'un milieu laser associé à un élément biréfringent qui soit opérant quelles que soient les conditions requises par l'anisotropie de l'absorption ou de l'émission du matériau laser.
Ces différents buts sont atteints conformément à la présente invention par la mise en oeuvre d'un procédé de pompage d'un laser bi-fréquence généré par excitation d'un matériau laser anisotrope, caractérisé en ce que l'on pompe simultanément les deux ondes lasers ordinaire et extraordinaire séparées spatialement du matériau laser anisotrope par l'intermédiaire de moyens de pompage optiques comprenant une fibre optique bifurquée comportant deux extrémités d'entrées indépendantes fixées chacune dans un connecteur et soumises à un moyen d'excitation optique du matériau laser et deux extrémités de sortie fixées dans un même troisième connecteur et placées en correspondance avec les points sur la face d'entrée du milieu laser qui optimisent le recouvrement spatial de chaque onde laser avec son faisceau de pompe à l'intérieur du matériau laser.
Le procédé de l'invention procure plusieurs avantages important par rapport aux procédés de l'art antérieur. En premier lieu, le pompage optique est issu d'une source lumineuse unique, donc plus stable et économique que deux sources indépendante dédiées au pompage de chaque onde. En effet, dans le cas où la radiation bi-fréquence est utilisée dans un dispositif supplémentaire pour générer une différence de fréquences, une fluctuation de la source lumineuse unique entraine, par exemple par variation d'échauffement du milieu laser pompé, un déplacement dans le même sens et d'amplitude comparable des fréquences des deux ondes ordinaire et extraordinaire et ainsi leur différence de fréquences reste sensiblement constante. Ce n'est pas le cas si les trajets des oncles ordinaire et extraordinaire dans le milieu laser subissent chacun les fluctuations indépendantes de la source qui le pompe comme lorsque deux sources de pompage sont utilisées. Ainsi il est avantageux de pomper le laser bifréquence par une source lumineuse unique pour maintenir une corrélation entre les fluctuations des deux modes ordinaire et extraordinaire.
De plus, avec le procédé de l'invention, le pompage engendre un gain laser élevé et la puissance du pompage des deux ondes ordinaire et extraordinaire est ajustable indépendamment pour chacune desdites ondes. Enfin, la technique de pompage utilisée est simple et s'appuie sur des composants optiques disponibles à un coût raisonnable.
Conformément à une première caractéristique préférée du procédé de l'invention, le matériau laser anisotrope est placé dans une cavité laser constituée d'un miroir d'entrée dichroïque plan au travers duquel s'effectue le pompage du matériau laser à l'aide de la fibre bifurquée et d'au moins un miroir concave.
Toujours selon le procédé de l'invention, le matériau laser choisi est de préférence un cristal biréfringent anisotrope dont les axes principaux font un angle différent de 0 degré et de 90 degrés par rapport à l'axe de propagation des faisceaux laser ordinaire et extraordinaire dans la cavité laser.
Toujours selon l'invention, il est également préféré dans la mise en œuvre du procédé de pompage proposé, que le matériau laser anisotrope soit placé dans la cavité laser du laser bifréquence entre le miroir dichroïque et le miroir concave. Conformément à une autre caractéristique avantageuse du procédé de l'invention, on ajuste la puissance de pompage délivrée au matériau laser anisotrope par chacune des extrémités de sortie de la fibre optique bifurquée, de manière à ajuster la puissance des deux ondes laser ordinaire et extraordinaire émises par le matériau laser. De préférence, dans le procédé de l'invention, on pompe les deux ondes laser ordinaire et extraordinaire du matériau laser anisotrope par l'intermédiaire d'un moyen d'excitation optique constitué d'une diode laser dont le faisceau est projeté sur les points qui optimisent le recouvrement spatial de chaque onde laser avec son faisceau de pompe à l'intérieur du matériau laser, sur une des faces dudit matériau laser par l'intermédiaire de la fibre optique bifurquée. Ces points sont à proximité des points d'émergence des ondes lasers ordinaires et extraordinaires sur la face d'entrée du matériau laser, mais ne sont pas nécessairement confondus avec ces derniers.
Toujours selon le procédé de l'invention, on image les extrémités de sortie de la fibre optique bifurquée sur la face du matériau laser où se trouvent les points qui optimisent le recouvrement spatial de chaque onde laser avec son faisceau de pompe à l'intérieur du matériau laser, par l'intermédiaire d'un dispositif de focalisation positionné entre lesdites extrémités de sortie de la fibre optique bifurquée et ledit matériau laser.
Selon une autre caractéristique préférée du procédé de l'invention, on divise et on répartit dans des proportions ajustables le faisceau de pompage émis par le moyen d'excitation optique par l'intermédiaire d'un diviseur de faisceau positionné entre le moyen d'excitation optique, lequel est de préférence une diode laser, et les deux extrémités d'entrée de la fibre bifurquée. Enfin, toujours selon l'invention, il est également avantageux de moduler passivement la qualité de la cavité laser (Q-switch passif) par introduction d'un absorbant saturable dans ladite cavité ou, en variante, de moduler activement de ladite cavité laser par introduction d'un dispositif mécanique, acousto-optique ou électro-optique dans ladite cavité. Un autre objet de l'invention consiste également à procurer un dispositif de pompage optique pour un laser bifréquence, caractérisé en ce qu'il comporte un moyen d'excitation optique, en particulier une diode laser, et une fibre optique bifurquée comportant deux extrémités d'entrée indépendantes fixées chacune dans un connecteur, reliées au moyen d'excitation optique et deux extrémités de sortie regroupées dans le même troisième connecteur, et aptes à être placées par des moyens appropriés en correspondance sur la face d'entrée du matériau laser anisotrope avec les points qui optimisent le recouvrement spatial de chaque onde laser ordinaire et extraordinaire avec son faisceau de pompe à l'intérieur du matériau laser, ondes aptes à être émises par un matériau laser anisotrope placé dans une cavité laser d'un laser bifréquence, et des moyens de focalisation aptes à imager les deux extrémités de sortie de la fibre bifurquée sur lesdits points qui optimisent le recouvrement spatial de chaque onde laser ordinaire et extraordinaire avec son faisceau de pompe à l'intérieur dudit matériau laser.
Conformément à une première caractéristique avantageuse du dispositif de pompage de l'invention, celui-ci comporte des moyens d'ajustement de la puissance optique délivrée par chaque extrémité de sortie de la fibre bifurquée sur le matériau laser anisotrope pour assurer le pompage de celui- ci et générer l'émission laser dans la cavité laser d'un laser bifréquence.
De préférence, lesdits moyens d'ajustement de la puissance délivrée par chaque extrémité de sortie de la fibre bifurquée comportent un diviseur ajustable de faisceaux placé entre le moyen d'excitation optique et les deux extrémités d'entrée de la fibre bifurquée.
D'autre part, conformément à une autre caractéristique préférée du dispositif de pompage de l'invention, les moyens de focalisation comportent des doublets de lentilles ou des triplets de lentilles ou encore des lentilles asphériques.
Enfin, un dernier objet de l'invention consiste à proposer un laser bifréquence comportant une cavité laser à l'intérieur de laquelle est placé un matériau laser anisotrope biréfringent ou encore un cristal laser, le cas échéant biréfringent, associé à un cristal biréfringent indépendant et caractérisé en ce qu'il comprend un dispositif de pompage tel que défini précédemment.
Le laser bifréquence selon la présente invention se caractérise également par le fait que la cavité laser de celui-ci est, de préférence, constituée d'un miroir d'entrée dichroïque plan au travers duquel s'effectue le pompage à l'aide de la fibre bifurquée du dispositif de pompage, et d'au moins un miroir concave. Dans un mode de réalisation particulièrement avantageux, le laser bifréquence selon l'invention comporte également à l'intérieur de la cavité laser un absorbant saturable placé dans ladite cavité et, par exemple, un absorbant tel qu'un cristal de YAG : Cr4+. L'insertion et l'utilisation d'un tel absorbant saturable dans la cavité laser permet notamment de moduler passivement la qualité de la cavité laser (Q-switch passif de la cavité), ce qui permet de façon avantageuse de garantir l'émission simultanée des deux ondes laser ordinaire et extraordinaire par le matériau laser placé dans la cavité. Les caractéristiques et avantages de la présente invention seront mieux compris à la lecture de la description détaillée qui va suivre faite en référence aux dessins annexés parmi lesquels :
- la figure 1 représente schématiquement un laser bifréquence conforme à la présente invention, - la figure 2 représente schématiquement l'émission de deux ondes laser ordinaire et extraordinaire par un cristal laser biréfringent tel que mis en œuvre dans un mode de réalisation préféré de l'invention ;
- les figures 3 à 4 représentent schématiquement l'émission de deux ondes laser ordinaire et extraordinaire par l'association d'un cristal biréfringent et d'un cristal laser tel que mis en œuvre dans une variante de l'invention.
- la figure 5 représente schématiquement l'émission de deux ondes laser ordinaire et extraordinaire par l'association d'un cristal biréfringent et de deux cristaux lasers accolés tel que mis en œuvre dans une variante de l'invention.
- la figure 6 représente schématiquement l'émission de deux ondes laser ordinaire et extraordinaire par l'association d'un cristal biréfringent et d'un cristal laser sur lequel est déposé un miroir hautement réfléchissant et accolé à un radiateur tel que mis en œuvre dans une variante de l'invention.
Un laser bifréquence L conforme à la présente invention est représenté à la figure 1 dans un mode préféré de réalisation. Ce laser bifréquence comporte de façon traditionnelle un dispositif de pompage P et une cavité laser C comprenant un milieu actif apte à laser sous l'excitation du dispositif de pompage P.
Le dispositif de pompage P comporte en premier lieu une diode laser 1 qui émet un faisceau laser de pompage 2 dans une fibre optique de diamètre de cœur de 100 μm par exemple. Ce faisceau de pompage 2 est divisé en deux branches 2i, 22 par l'intermédiaire d'une fibre optique splittée ou d'un diviseur de faisceau 3, éventuellement ajustable, et guidé vers les deux branches d'entrée d'une fibre optique bifurquée 4, qui guide et projette chacune des branches 2i, 22 du faisceau de pompage 2 vers des lentilles 5, 6 de focalisation des branches du faisceau de pompage vers le milieu actif de la cavité laser C.
Cette cavité C est, dans l'exemple représenté, une cavité plan-concave formée par un miroir dichroïque plan 7 et un miroir concave 9, entre lesquels est placé un cristal laser biréfringent 8 qui constitue le milieu actif de la cavité laser C. Le cristal laser biréfringent 8 du laser de l'invention, également représenté indépendamment sur la figure 2, présente un axe optique 10 faisant un angle θ différent de 0° et de 90° par rapport à la direction de propagation D du faisceau laser bifréquence F émis par le cristal 8 pompé par le dispositif de pompage P.
Comme représenté sur les figures 1 à 2 et conformément aux propriétés connues des cristaux biréfringents, le cristal 8 est apte à émettre deux ondes lasers distinctes, une onde dite ordinaire O0 et une onde dite extraordinaire Oe de fréquences différentes. Ces deux ondes laser sont centrées en deux points distincts Ei, E2 sur une première face 8a, dite face d'entrée du cristal, se propagent depuis ces deux points Ei, E2 au sein du cristal 8 selon deux directions distinctes jusqu'à un même point d'émergence E3 sur une seconde face 8b du cristal biréfringent opposée à la face d'entrée 8a et appelée face de sortie, en formant un angle de biréfringence p entre elles. Les points d'émergence Ei, E2 sur la face d'entrée 8a du cristal laser sont distants d'une distance d déterminée par la relation suivante : d = eχtg(p),
avec p = ±arctgf (no /ne Jtg(6>) J + θ et e est la longueur du cristal laser
8.
Conformément au procédé de l'invention, le dispositif de pompage P du laser L permet de pomper optiquement de façon simultanée les deux ondes lasers ordinaire et extraordinaire O0, Oe de manière à générer l'émission du faisceau laser bifréquence F au point d'émergence E3 sur la face de sortie 8b du cristal laser 8.
Pour ce faire, conformément à l'invention, la position du centre El de l'onde ordinaire sur la face d'entrée 8a du cristal laser 8 est ajustée de façon à optimiser le recouvrement spatial à l'intérieur du matériau laser de l'onde laser ordinaire O0 et du faisceau de pompe issu de l'extrémité 4i de la fibre bifurquée 4. Cet optimum s'obtient en manoeuvrant l'orientation du miroir concave 9 et correspond au maximum de la puissance de l'onde laser ordinaire O0. Ensuite, à partir de cette position de référence du miroir concave, on translate celui-ci perpendiculairement à l'axe de cavité d'une distance dopt qui optimise le recouvrement spatial à l'intérieur du matériau laser de l'onde laser extraordinaire Oe et du faisceau de pompe issu de l'extrémité 42 de la fibre bifurquée 4, ce qui correspond au maximum de la puissance de l'onde laser extraordinaire Oe. Si la distance dopt est trouvée nulle, le laser bifréquence est optimisé. Si la distance dopt est trouvée non nulle, on ramène le miroir concave à sa position de référence puis on introduit un cristal biréfringent 11 entre le miroir concave 9 et le cristal laser 8 de façon à créer un écartement supplémentaire dopt des deux ondes ordinaire et extraordinaire, conformément à la variante de réalisation du laser bifréquence représentée sur la figure 3.
Les images 4n et 422 des extrémités 4i et 42 sur la face d'entrée 8a du cristal laser 8 ne sont pas nécessairement centrées sur les points d'émergence respectivement Ei et E2 des ondes ordinaire et extraordinaire sur la face d'entrée 8a du cristal laser 8. Il est aussi possible que l'optimisation de la puissance de l'onde extraordinaire nécessite un rapprochement à l'aide d'un cristal biréfringent des deux ondes ordinaire et extraordinaire et non un écartement.
On obtient ainsi, au point E3 sur la face de sortie 8b, l'émission du faisceau laser bifréquence F, composé de l'émission et de la propagation simultanée des ondes ordinaire et extraordinaire O0, Oe dans le cristal laser biréfringent 8, qui se propage et est amplifiée ensuite au sein de la cavité C entre les miroirs 7, 9 de celle-ci.
De façon originale et particulièrement avantageuse, chaque branche d'entrée de la fibre bifurquée du dispositif de pompage P est reliée à la sortie du diviseur de faisceau ajustable 3 lui-même alimenté en entrée par le faisceau de pompage 2 émis par la diode laser 1. Le diviseur de faisceau 3 permet un réglage individuel de la puissance délivré dans chacune des branches 2ir 22, par l'intermédiaire par exemple d'un actionneur micrométrique manuel, et ainsi le pompage individuel optimisé de chacune des ondes ordinaire et extraordinaire 00/ Oe formant le faisceau laser bifréquence F du laser L.
Cet ajustement des puissances injectées s'avère également nécessaire afin d'obtenir, dans une variante de réalisation du laser L de l'invention où l'on Q-switche passivement la cavité laser C par l'introduction d'un absorbant saturable tel que par exemple un cristal de YAG :Cr4+, la simultanéité d'émission des deux puises O0, Oe, lesquels ne se produisent pas au même seuil de pompage.
Pour que la simultanéité d'émission des ondes puisées ordinaire et extraordinaire intervienne, il convient que les puissances de pompage P0 et Pe qu'elles absorbent respectivement soient ajustées pour assurer l'égalité des fréquences de répétition f0 et fe des deux ondes ordinaire et extraordinaire : fo=fe chaque fréquence de répétition d'une de ces ondes ordinaire ou extraordinaire étant liée à la puissance absorbée par la relation :
Figure imgf000015_0001
OU
- τ est la durée de vie du niveau émetteur laser - Vp est la fréquence de l'onde de pompe
- ωp est le rayon de l'onde de pompe
- e est l'épaisseur du cristal laser
- n0 et ne sont les densités de population du niveau émetteur au seuil laser pour l'onde ordinaire et extraordinaire respectivement - δ0 et δe sont les fractions de populations du niveau émetteur qui restent à la fin d'un puise pour l'onde ordinaire et extraordinaire respectivement.
L'avantage d'une émission laser puisée résultant du Q-switch passif ou actif de la cavité réside dans la grande puissance lumineuse instantanée au maximum du puise. Ceci favorise les phénomènes optiques non linéaires qui ont lieu dans la matière, en particulier la génération d'une nouvelle onde dont la fréquence est la différence des fréquences des deux ondes ordinaire et extraordinaire issues du laser bifréquence.
Dans un exemple de réalisation du laser L de l'invention, on peut notamment utiliser dans la cavité C un cristal laser biréfringent 8 de GdAI3(BOa)4 dopé Yb3+ dont l'axe optique 10 est orienté à 45° par rapport à la direction de propagation du faisceau laser F. Un tel cristal laser biréfringent émet alors une onde laser bifréquence F à 1045 nm en polarisation ordinaire et 1040 nm en polarisation extraordinaire lorsqu'il est pompé par une fibre optique bifurquée 4 dont chaque brin a 100 μm de diamètre de cœur, alimentée par une diode laser 1 de pompe émettant à 977 nm. Dans une variante de réalisation du laser L représentée sur les figures 3 et 4, on peut également envisager comme milieu actif de la cavité C non pas un seul cristal laser biréfringent 8 mais deux cristaux distincts associés et complémentaires, un cristal biréfringent 11 dont l'axe optique 10 fait un angle différent de zéro degré et de quatre-vingt dix degrés par rapport à l'axe de propagation du faisceau laser bifréquence F pour obtenir et séparer deux faisceaux ordinaire et extraordinaire et former le faisceau de sortie bifréquence F du laser L et un cristal laser 8 insuffisamment biréfringent ou pas biréfringent, d'axe optique 12, générant deux faisceaux lasers de fréquences différentes en amont du cristal biréfringent 11 à l'entrée de la cavité C, ces deux faisceaux parallèles étant ensuite rendus colinéaires par le cristal biréfringent 11 pour former le faisceau bifréquence F.
Dans une autre variante de réalisation du laser L représentée sur la figure 5, on peut également envisager comme milieu actif de la cavité C non pas un seul cristal laser 8 mais deux cristaux distincts accolés.
Dans une autre variante de réalisation du laser L représentée sur la figure 6, on peut également envisager comme milieu actif de la cavité C un cristal laser 8 sur lequel est déposé un miroir 13 hautement réfléchissant accolé sur un radiateur 14. Sur la figure 6 un exemple de positions des images 4n et 422 des extrémités 4i et 42 de la fibre optique bifurquée est représenté. Eventuellement le cristal laser 8 peut être un semi-conducteur.
Le laser L de la présente invention comporte ainsi un dispositif de pompage optique et une cavité laser C constitués tous deux pour permettre le pompage et l'émission simultanés des deux ondes lasers ordinaire et extraordinaire d'un cristal laser biréfringent pour générer un faisceau laser bifréquence unique F. L'invention n'est pas limitée aux exemples décrits et représentés car diverses modifications peuvent y être apportées sans sortir de son cadre.

Claims

REVENDICATIONS
1 - Procédé de pompage d'un laser bifréquence (L) généré par excitation d'un cristal laser biréfringent (8) dont l'axe optique (10) fait un angle différent de zéro degré et de quatre-vingt dix degrés par rapport à l'axe de propagation du faisceau laser (F) dans une cavité laser (C), caractérisé en ce que l'on pompe simultanément les deux ondes laser ordinaire (O0) et extraordinaire (Oe) du cristal laser biréfringent (8) par l'intermédiaire de moyens de pompage optiques (P) comprenant une fibre optique bifurquée (4) comportant deux extrémités d'entrée connectées à un moyen d'excitation optique (1) du cristal laser biréfringent et deux extrémités de sortie positionnées sur une des faces (8a) du cristal laser biréfringent de manière à optimiser le recouvrement spatial à l'intérieur du cristal laser entre chaque onde laser ordinaire et extraordinaire et son faisceau de pompe.
2 - Procédé selon la revendication 1, caractérisé en ce que l'on ajuste la puissance de pompage délivrée par chacune des extrémités de sortie de la fibre bifurquée (4) au cristal biréfringent (8) pour ajuster la puissance des deux ondes laser ordinaires et extraordinaires (O0, Oe) émises par le cristal.
3 - Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que l'on Q-switche passivement la cavité laser (C) dans laquelle le cristal est placé par introduction d'un absorbant saturable dans ladite cavité ou activement par introduction d'un dispositif acousto-optique ou électrooptique.
4 - Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'on pompe les deux ondes de laser ordinaires et extraordinaires (O0, Oe) du cristal laser biréfringent par l'intermédiaire d'un moyen d'excitation optique constitué d'une diode laser (1) dont le faisceau (2) est projeté par l'intermédiaire des deux extrémités de sortie de la fibre optique bifurquée (4) sur les points d'une des faces du cristal laser biréfringent qui permettent l'optimisation du recouvrement spatial à l'intérieur du cristal laser entre chaque onde laser ordinaire et extraordinaire et son faisceau de pompe.
5 - Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la projection des faisceaux de sortie de la fibre bifurquée sur les points d'une des faces du cristal laser biréfringent qui permettent l'optimisation du recouvrement spatial à l'intérieur du cristal laser entre les ondes lasers ordinaire et extraordinaire et leur faisceau de pompe est réalisée par l'intermédiaire d'un dispositif de focalisation imageant lesdites extrémités de sortie sur une dite face du cristal laser biréfringent.
6 - Dispositif de pompage (P) optique pour un laser bifréquence, caractérisé en ce qu'il comporte un moyen d'excitation optique (1), en particulier une diode laser, et une fibre optique bifurquée (4) comportant deux extrémités d'entrée reliées au moyen d'excitation optique par deux connecteurs distincts et deux extrémités de sortie aptes à être positionnées par un troisième connecteur en correspondance avec des points d'une des faces du cristal laser biréfringent (8) placé dans la cavité laser (C) d'un laser bifréquence (L) qui permettent l'optimisation du recouvrement spatial à l'intérieur du cristal laser entre chaque onde laser ordinaire et extraordinaire et son faisceau de pompe, et des moyens de focalisation (5, 6) aptes à imager les deux extrémités de sortie de la fibre bifurquée sur ladite face du cristal laser biréfringent (8) placé dans la cavité laser.
7 - Dispositif de pompage selon la revendication 6, caractérisé en ce qu'il comporte des moyens d'ajustement (3) de la puissance optique délivrée par chaque extrémité de sortie de la fibre bifurquée (4) sur le cristal laser biréfringent (8) pour assurer le pompage de celui-ci et générer l'émission laser dans la cavité laser d'un laser bi-fréquence.
8 - Dispositif selon la revendication 7, caractérisé en ce que les moyens d'ajustement de la puissance délivrée par chaque extrémité de sortie de la fibre bifurquée comportent un diviseur de faisceau placé entre le moyen d'excitation optique et l'extrémité d'entrée de la fibre bifurquée.
9 - Dispositif selon l'une des revendications 6 à 8, caractérisé en ce que les moyens de focalisation comportent au moins deux doublets de lentilles ou deux lentilles asphériques. 10 - Laser bifréquence comportant une cavité laser à l'intérieur de laquelle est placé un cristal laser biréfringent et caractérisé en ce qu'il comprend un dispositif de pompage dudit cristal laser biréfringent selon l'une des revendications 6 à 9.
11 - Laser bifréquence selon la revendication 10, caractérisé en ce que la cavité laser est une cavité plan concave. 12 - Laser bifréquence selon l'une des revendications 10 ou 11, caractérisé en ce qu'il comporte un absorbant saturable ou un modulateur acousto-optique ou électro-optique placé dans la cavité laser.
13 - Laser bifréquence selon la revendication 12, caractérisé en ce que l'absorbant saturable est constitué d'un cristal de YAG : Cr4+.
PCT/FR2009/050528 2008-04-04 2009-03-30 Procede de pompage d'un laser bi-frequence, dispositif de pompage associe et laser bi-frequence incorporant un tel dispositif de pompage WO2009125147A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0852287 2008-04-04
FR0852287A FR2929766A1 (fr) 2008-04-04 2008-04-04 Procede de pompage d'un laser bifrequence, dispositif de pompage associe et laser bifrequence incorporant un tel dispositif de pompage

Publications (2)

Publication Number Publication Date
WO2009125147A2 true WO2009125147A2 (fr) 2009-10-15
WO2009125147A3 WO2009125147A3 (fr) 2010-11-04

Family

ID=40029067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/050528 WO2009125147A2 (fr) 2008-04-04 2009-03-30 Procede de pompage d'un laser bi-frequence, dispositif de pompage associe et laser bi-frequence incorporant un tel dispositif de pompage

Country Status (2)

Country Link
FR (1) FR2929766A1 (fr)
WO (1) WO2009125147A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101367A1 (fr) 2011-01-28 2012-08-02 Universite Claude Bernard Lyon I Cavite laser bifrequences accordable et procede de reglage de la difference de frequence entre une onde ordinaire et une onde extraordinaire d'un laser bifrequences

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010009048A1 (de) * 2010-02-23 2011-08-25 LPKF Laser & Electronics AG, 30827 Laseranordnung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19610371A1 (de) * 1996-03-16 1997-09-18 Daimler Benz Ag Diodengepumpter Festkörperlaser
WO2006102084A1 (fr) * 2005-03-18 2006-09-28 Pavilion Integration Corporation Microlaser monolithique a combinaison intracavite de faisceaux et melange de frequence somme et de frequence difference

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19610371A1 (de) * 1996-03-16 1997-09-18 Daimler Benz Ag Diodengepumpter Festkörperlaser
WO2006102084A1 (fr) * 2005-03-18 2006-09-28 Pavilion Integration Corporation Microlaser monolithique a combinaison intracavite de faisceaux et melange de frequence somme et de frequence difference

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. BRENIER ET AL: "Dual-polarization and dual-wavelength diode-pumped laser operation from a birefringent Yb3+ doped GdAl3(BO3)4 nonlinear crystal" APPLIED PHYSICS B, vol. 89, 28 septembre 2007 (2007-09-28), pages 323-328, XP002505916 *
LE GOUET J ET AL: "DUAL-FREQUENCY SINGLE-AXIS LASER USING A LEAD LANTHANUM ZIRCONATE TANTALATE (PLZT) BIREFRINGENT ETALON FOR MILLIMETER WAVE GENERATION: BEYOND THE STANDARD LIMIT OF TUNABILITY" OPTICS LETTERS, OSA, OPTICAL SOCIETY OF AMERICA, WASHINGTON, DC, US, vol. 32, no. 9, 1 mai 2007 (2007-05-01), pages 1090-1092, XP001540993 ISSN: 0146-9592 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101367A1 (fr) 2011-01-28 2012-08-02 Universite Claude Bernard Lyon I Cavite laser bifrequences accordable et procede de reglage de la difference de frequence entre une onde ordinaire et une onde extraordinaire d'un laser bifrequences
FR2971096A1 (fr) * 2011-01-28 2012-08-03 Univ Claude Bernard Lyon Cavite laser bifrequences accordable et procede de reglage de la difference de frequences entre une onde ordinaire et une onde extraordinaire d'un laser bifrequences

Also Published As

Publication number Publication date
WO2009125147A3 (fr) 2010-11-04
FR2929766A1 (fr) 2009-10-09

Similar Documents

Publication Publication Date Title
FR2938935A1 (fr) Dispositif d'allongement de la duree de vie d'un systeme optique non lineaire soumis au rayonnement d'un faisceau laser intense et source optique non lineaire comprenant ce dispositif
EP0390662B1 (fr) Générateur laser de puissance avec contrôle de la direction d'émission du faisceau de sortie
FR2665307A1 (fr) Systeme laser adapte.
WO2019233899A1 (fr) Procédés et systèmes pour la génération d'impulsions laser de forte puissance crête
FR2666699A1 (fr) Laser a guides optiques couples.
EP3804050B1 (fr) Procédés et systèmes pour la génération d'impulsions laser de forte puissance crête
EP2147487B1 (fr) Laser a puce pulse
EP0847115B1 (fr) Dispositif amplificateur de lumière à deux faisceaux incidents
WO2009125147A2 (fr) Procede de pompage d'un laser bi-frequence, dispositif de pompage associe et laser bi-frequence incorporant un tel dispositif de pompage
FR2826191A1 (fr) Source laser stabilisee en frequence et adaptee pour etre utilisee comme etalon de frequence en particulier dans le domaine des telecommunications
CN102263364B (zh) 泵浦光高效利用的端面泵浦激光器
FR2967309A1 (fr) Dispositif laser raman a faible bruit, systeme laser raman et procede associes.
EP4097535A1 (fr) Dispositif de traitement d'un faisceau lumineux par l'intermediaire d'un convertisseur multi plan pour le conformer à une forme prédéterminée
EP2676338B1 (fr) Laser a fibre optique de forte puissance
EP2345117B1 (fr) Systeme amplificateur optique pour laser impulsionnel a base d'un milieu a gain guidant et laser impulsionnel le comprenant
FR2781613A1 (fr) Laser en espace libre avec sortie fibre autoalignee
FR2971096A1 (fr) Cavite laser bifrequences accordable et procede de reglage de la difference de frequences entre une onde ordinaire et une onde extraordinaire d'un laser bifrequences
FR2589290A1 (fr) Laser a doublement de frequence par accord de phase de type ii
EP2283548B1 (fr) Dispositif d'imagerie active intégrant une source d'imagerie à 1,5 micromètre
FR2739732A1 (fr) Dispositif d'amplification optique
EP3701602A1 (fr) Source laser a solide
WO2005015698A1 (fr) Source laser de puissance a grande finesse spectrale
FR2826192A1 (fr) Laser solide a cavite plan/plan et source laser stabilisee en frequence mettant en oeuvre ledit laser solide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09730406

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09730406

Country of ref document: EP

Kind code of ref document: A2