WO2009123228A1 - Crosslinked thermoplastic elastomer composition and manufacturing method for said composition - Google Patents

Crosslinked thermoplastic elastomer composition and manufacturing method for said composition Download PDF

Info

Publication number
WO2009123228A1
WO2009123228A1 PCT/JP2009/056734 JP2009056734W WO2009123228A1 WO 2009123228 A1 WO2009123228 A1 WO 2009123228A1 JP 2009056734 W JP2009056734 W JP 2009056734W WO 2009123228 A1 WO2009123228 A1 WO 2009123228A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ethylene
copolymer
isocyanate
elastomer composition
Prior art date
Application number
PCT/JP2009/056734
Other languages
French (fr)
Japanese (ja)
Inventor
毅 岩
圭司 岡田
智昭 松木
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2010505953A priority Critical patent/JPWO2009123228A1/en
Publication of WO2009123228A1 publication Critical patent/WO2009123228A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/728Polymerisation products of compounds having carbon-to-carbon unsaturated bonds and having isocyanate or isothiocyanate groups or groups forming isocyanate or isothiocyanate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/757Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the cycloaliphatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene

Definitions

  • the present invention relates to a crosslinked thermoplastic elastomer composition and a method for producing the composition, and more specifically, a crosslinked thermoplastic elastomer composition containing a crystalline olefin polymer and a specific crosslinked ethylene copolymer, and the composition.
  • the present invention relates to a method for manufacturing a product.
  • Cross-linked thermoplastic elastomers are used in various fields such as automobile parts, electrical / electronic parts, and building parts, taking advantage of superior mechanical properties such as heat resistance and moldability.
  • thermoplastic elastomer an extrusion vulcanized molded article composed of a rubber compound of ethylene / propylene / non-conjugated diene terpolymer (EPDM) is used in a part requiring low hardness and rubber elasticity. Has been used.
  • EPDM ethylene / propylene / non-conjugated diene terpolymer
  • the crosslinked thermoplastic elastomer that does not require this vulcanization step is obtained by dynamically crosslinking a mixture of an ethylene / propylene (non-conjugated diene) copolymer and a crystalline polyolefin using a peroxide.
  • a mixture of an ethylene / propylene (non-conjugated diene) copolymer and a crystalline polyolefin is dynamically crosslinked using a peroxide.
  • polypropylene has been used as the crystalline polyolefin especially considering physical properties and moldability.
  • the present invention is a cross-linked thermoplastic elastomer composition having oil resistance superior to that of conventional cross-linked thermoplastic elastomers and having mechanical properties (tensile strength, elongation, etc.) equivalent to those of conventional cross-linked thermoplastic elastomers. It is an object to provide a product and a method for producing the composition.
  • the cross-linked thermoplastic elastomer composition (D) of the present invention includes a crystalline olefin polymer (A) and a cross-linked ethylene copolymer (B), and the cross-linked ethylene copolymer (B) is cross-linked.
  • the site (C) is an organic group (c1) having at least one nitrogen-containing group selected from the group consisting of an amide group and an imide group and an ester group.
  • the crosslinked ethylene copolymer (B) is an ethylene / ⁇ -olefin copolymer having a functional group capable of reacting with an isocyanate group, and an ethylene / ⁇ -olefin / nonconjugated polyene copolymer having a functional group capable of reacting with an isocyanate group.
  • the polymer is preferably a polymer obtained by crosslinking at least one ethylene copolymer (E) selected from the group consisting of a polymer and an ethylene / unsaturated carboxylic acid copolymer.
  • the organic group (c1) preferably contains a divalent group represented by the following general formula R 2.
  • each R 3 is independently an alkylene group having 1 to 15 carbon atoms or an aromatic group having 6 to 15 carbon atoms which may have a branch, and each R 4 is independently And an optionally substituted alkylene group having 1 to 15 carbon atoms.
  • the organic group (c1) is preferably at least one organic group selected from the group consisting of the following general formula Ra and the following general formula Rb.
  • each Rc is independently a trivalent hydrocarbon group having 1 to 20 carbon atoms
  • each Rd is independently a divalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 1 are each independently a diisocyanate residue
  • R 2 are each independently a divalent group represented by the following general formula.
  • each R 3 is independently an alkylene group having 1 to 15 carbon atoms or an aromatic group having 6 to 15 carbon atoms which may have a branch, and each R 4 is independently And an optionally substituted alkylene group having 1 to 15 carbon atoms.
  • R 1 is a divalent carbon atom having 6 to 20 carbon atoms having an optionally branched alkylene group having 2 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, and an alicyclic hydrocarbon group. It is preferably at least one group selected from the group consisting of hydrogen groups.
  • the weight ratio (A / B) between the crystalline olefin polymer (A) and the crosslinked ethylene copolymer (B) is preferably 10/90 to 50/50.
  • n is preferably 0 to 3
  • m is preferably 7 to 20.
  • the crosslinked thermoplastic elastomer composition (D) forms a sea-island structure in which the sea phase is a crystalline olefin polymer (A) and at least a part of the island phase is a crosslinked ethylene copolymer (B).
  • Such a crosslinked thermoplastic elastomer composition (D) is preferably composed of the crystalline olefin polymer (A), an ethylene / ⁇ -olefin copolymer having a functional group capable of reacting with an isocyanate group, and an isocyanate group.
  • an isocyanate group-containing oligomer (F) having an amide group, an ester group, and two or more isocyanate groups is introduced as a crosslinking agent.
  • crosslinking agent introducing the polyester polycarboxylic acid (G) and the polyvalent isocyanate is preferably obtained by dynamically crosslinking the ethylene copolymer (E).
  • the number average molecular weight in terms of standard polyethylene glycol determined by gel permeation chromatography (GPC) of the isocyanate group-containing oligomer (F) is preferably more than 2000, and the isocyanate group-containing oligomer (F) is More preferably, it is represented by the general formula Rx.
  • each R 1 is independently a diisocyanate residue, and each R 2 is independently a divalent group represented by the following general formula.
  • each R 3 is independently an alkylene group having 1 to 15 carbon atoms or an aromatic group having 6 to 15 carbon atoms which may have a branch, and each R 4 is independently And an optionally substituted alkylene group having 1 to 15 carbon atoms.
  • R 1 is a divalent carbon atom having 6 to 20 carbon atoms having an optionally branched alkylene group having 2 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, and an alicyclic hydrocarbon group. It is preferably at least one group selected from the group consisting of hydrogen groups.
  • n is preferably 0 to 3
  • m is preferably 7 to 20.
  • the isocyanate group-containing oligomer (F) is obtained by reacting a polyisocyanate with a polyester polycarboxylic acid (G) produced from a polyhydric alcohol and a polyvalent carboxylic acid. At least one of carboxylic acid and polyvalent isocyanate may contain a trivalent or higher monomer.
  • the polyvalent isocyanate contains a trivalent or higher polyvalent isocyanate.
  • the functional group capable of reacting with an isocyanate group is preferably a carboxyl group or a carboxylic anhydride group.
  • the method for producing the cross-linked thermoplastic elastomer composition (D) comprises reacting with a crystalline olefin polymer (A), an ethylene / ⁇ -olefin copolymer having a functional group capable of reacting with an isocyanate group, and an isocyanate group.
  • E ethylene copolymer
  • the molded product of the present invention is composed of the cross-linked thermoplastic elastomer composition (D).
  • the molded article of the present invention is preferably an automotive part, and more preferably an automotive part selected from the group consisting of a boot, a wire harness cover, a seat adjuster cover, and a hose.
  • the crosslinkable thermoplastic elastomer composition (D) of the present invention has oil resistance superior to that of the conventional crosslinkable thermoplastic elastomer, and has the same mechanical properties (tensile strength, elongation as the conventional crosslinkable thermoplastic elastomer). Etc.). For this reason, the molded object formed from a bridge
  • the cross-linked thermoplastic elastomer composition (D) of the present invention includes a crystalline olefin polymer (A) and a cross-linked ethylene copolymer (B), and a cross-linked site of the cross-linked ethylene copolymer (B) ( C) is an organic group (c1) having at least one nitrogen-containing group selected from the group consisting of an amide group and an imide group and an ester group.
  • the crosslinked thermoplastic elastomer composition (D) of the present invention is excellent in oil resistance because the organic group (c1) has a nitrogen-containing group and an ester group, which are hydrophilic groups.
  • the crosslinked thermoplastic elastomer composition (D) comprises a crosslinked olefin polymer (A) and a crosslinked ethylene copolymer formed mainly from ethylene, if necessary, ⁇ -olefin and non-conjugated polyene, except for the crosslinking site. Since the polymer (B) is included, thermal deterioration during molding can be prevented. For this reason, the crosslinkable thermoplastic elastomer composition (D) has mechanical properties (tensile strength, elongation, etc.) equivalent to those of conventional crosslinkable thermoplastic elastomers.
  • Crystall olefin polymer (A) There is no limitation in particular as crystalline olefin polymer (A) used for this invention, A conventionally well-known crystalline olefin polymer can be used.
  • Crystallinity means that the melting point (Tm) is measured by differential scanning calorimetry (DSC).
  • Examples of the crystalline olefin polymer (A) include ethylene polymers and propylene polymers.
  • ethylene-based polymer an ethylene homopolymer, an ethylene / ⁇ -olefin copolymer (preferably a copolymer of ethylene and an ⁇ -olefin having 3 to 10 carbon atoms) and the like can be used.
  • copolymer a propylene homopolymer, a propylene / ⁇ -olefin copolymer or the like (preferably a copolymer of propylene and an ⁇ -olefin having 2 or 4 to 10 carbon atoms) can be used. .
  • the crystalline olefin polymer (A) it is preferable to use a propylene polymer from the viewpoints of physical properties and moldability.
  • the propylene-based polymer is preferably a propylene-based polymer having an isotactic pentad fraction of the boiling heptane insoluble part of 0.955 or more and a content of the boiling heptane soluble part of 9% by weight or less, Specifically, a propylene homopolymer or a copolymer of propylene and a small amount of an ⁇ -sodium olefin having 2 or 4 to 10 carbon atoms is preferable.
  • ⁇ - olefins having 2, 4 to 10 carbon atoms include ethylene, 1-butene, 1-pentene, 3-methyl-1- butene, 1-hexene, 3-methyl-1- Examples include pentene, 4-methyl-1- pentene, 1-octene, and 1-decene. Of these, ethylene, 1-butene, 1-hexene, 1-octene and 4-methyl-1- pentene are preferable.
  • the ⁇ -olefins may be used alone or in combination of two or more.
  • the propylene-based polymer is a copolymer of propylene and a small amount of an ⁇ -sodium olefin having 2 or 4 to 10 carbon atoms
  • the ⁇ -olefin having 2 or 4 to 10 carbon atoms in the copolymer Is usually 10 mol% or less, preferably less than 5 mol%.
  • the isotactic pentad fraction of the boiling heptane-insoluble part is 0.955 or more and the content of the boiling heptane-soluble part is 9% by weight or less.
  • Use of a propylene-based polymer is preferable because a crosslinked thermoplastic elastomer resin composition (D) capable of forming a high-strength molded product can be obtained.
  • the isotactic pentad fraction in the boiling heptane-insoluble part and the content in the boiling heptane-soluble part are measured as follows.
  • the temperature was lowered to 20 ° C. and left for 4 hours. Thereafter, it is filtered and separated into a 20 ° C. xylene soluble part and an insoluble part.
  • the 20 ° C. xylene-insoluble part is further subjected to Soxhlet extraction with boiling n-heptane for 8 hours to separate into an extraction residue and an extract. This extraction residue is defined as a “boiling heptane insoluble part” of the propylene-based polymer.
  • the “boiling heptane-soluble part” of the propylene-based polymer is the sum of the 20 ° C. xylene-soluble part and the previous boiling n-heptane extract.
  • the weight percentage of the boiling heptane-soluble part is calculated from the weight of the boiling heptane-soluble part and the total propylene polymer weight used for the measurement.
  • the isotactic pentad fraction is the pentad unit in the propylene polymer molecular chain measured by the method published by A Zambelli et al. In Macromolecules 6 925 (1973), ie using 13 C-NMR.
  • the isotactic fraction of In other words, the isotactic pentad fraction is the fraction of propylene monomer units at the center of a chain in which five propylene monomer units are continuously meso-bonded.
  • the attribution of the peak since a corrected version of Macromolecules 6 , 925 (1973) is described in Macromolecules 8 , 678 (1975), it shall be performed based on this.
  • the isotactic pentad fraction is measured as the area fraction of the mmmm peak in the total absorption peak in the methyl carbon region of the 13 C-NMR spectrum.
  • the isotactic pentad fraction of NPL reference material CRM No. M19-14 Polypropylene PP / MWD / 2 from NATIONAL PHYSICAL LABORATORY, UK was measured to be 0.944.
  • the propylene polymer preferably used in the present invention can be prepared, for example, by the method described in JP-A-53-33289.
  • a Lewis base can also be used during the polymerization. When a Lewis base is used, the content of the boiling heptane-soluble part is generally decreased, but the isotactic pentad fraction of the boiling heptane-insoluble part is not changed.
  • the melt flow rate (MFR; ASTM D 1238, 230 ° C., 2.16 kg load) of the propylene-based polymer as described above is preferably 0.1 to 100 g / 10 minutes, more preferably 0.5 to 80 g / 10. Min, more preferably 0.5 to 60 g / 10 min.
  • MFR melt flow rate
  • a propylene polymer having a melt flow rate within the above range is used, a cross-linked thermoplastic elastomer resin composition (D) having good processability (moldability) can be obtained, and mechanical strength characteristics and oil resistance can be obtained.
  • a molded article having excellent physical properties such as the above can be obtained.
  • the crystalline olefin polymer (A) used in the present invention may be one produced by a known method or a commercially available product.
  • the crystalline olefin polymer (A) such as the propylene-based polymer as described above usually has a weight ratio (A / B) to the crosslinked ethylene copolymer (B) described later of 10/90 to 50/50. It is preferably 15/85 to 45/55, more preferably 20/80 to 40/60.
  • a crosslinked thermoplastic elastomer composition (D) having good fluidity and excellent moldability is obtained. From the composition, a molded article having excellent appearance can be obtained.
  • the crosslinked ethylene copolymer (B) used in the present invention comprises at least one nitrogen-containing group selected from the group consisting of an amide group and an imide group, an ester group, and a crosslinking site (C) of the copolymer.
  • the crosslinked ethylene copolymer (B) is not particularly limited as long as it is an ethylene copolymer having an organic group (c1), but is obtained by crosslinking the ethylene copolymer (E) described later. It is preferable that it is a coalescence from the viewpoint of oil resistance of the cross-linked thermoplastic elastomer composition (D).
  • an isocyanate group-containing oligomer (F) having an amide group, an ester group, and two or more isocyanate groups is used as a crosslinking agent, or a polyester polycarboxylic acid.
  • G) and a polyvalent isocyanate are used as a crosslinking agent.
  • the polyester polycarboxylic acid (G) and the polyvalent isocyanate are the two kinds of compounds and act as a crosslinking agent in the present invention.
  • polyvalent isocyanate polyvalent isocyanate other than an isocyanate group containing oligomer (F) is used normally.
  • the organic group (c1) preferably contains a divalent group represented by the following general formula R 2 from the viewpoint of oil resistance of the crosslinked thermoplastic elastomer composition (D), and the organic group (c1) is More preferably, it is at least one organic group selected from the group consisting of the following general formula Ra and the following general formula Rb.
  • each R 3 is independently an alkylene group having 1 to 15 carbon atoms or an aromatic group having 6 to 15 carbon atoms which may have a branch, and each R 4 is independently And an optionally substituted alkylene group having 1 to 15 carbon atoms.
  • each Rc is independently a trivalent hydrocarbon group having 1 to 20 carbon atoms
  • each Rd is independently a divalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 1 each independently represents a diisocyanate residue
  • R 2 each independently represents a divalent group represented by the above general formula.
  • each Rc independently represents a trivalent hydrocarbon group having 1 to 20 carbon atoms.
  • Rc is a group present at the end of the crosslinking site, and usually Rc forms an imide ring together with two adjacent carbonyl groups and a nitrogen atom.
  • a specific example of Rc is shown in the following general formula (1) together with two adjacent carbonyl groups and a nitrogen atom.
  • each Rd is independently a divalent hydrocarbon group having 1 to 20 carbon atoms.
  • Rd is a group present at the end of the crosslinking site, and specific examples of Rd include an optionally substituted alkylene group having 1 to 20 carbon atoms, preferably — (CH 2 ) x—.
  • each R 1 is independently a diisocyanate residue.
  • the crosslinked ethylene copolymer (B) used in the present invention is usually obtained by dynamically crosslinking an ethylene copolymer (E) described later in the presence of a crosslinking agent described later.
  • R 1 is a diisocyanate residue (diisocyanate residue) used when the isocyanate group-containing oligomer (F) is produced, or a diisocyanate residue used during dynamic crosslinking.
  • R 1 s there are a plurality of R 1 s , which are independent of each other and may be the same or different from each other.
  • the diisocyanate residue is a portion corresponding to -X- when the structure of the diisocyanate used is OCN-X-NCO.
  • R 1 an optionally branched alkylene group having 2 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, and a divalent divalent hydrocarbon having 6 to 20 carbon atoms having an alicyclic hydrocarbon group. From the viewpoint of economy, it is preferably at least one group selected from the group consisting of hydrocarbon groups.
  • R 1 A preferred specific example of R 1 is shown in the following general formula (2).
  • Each R 2 is independently a divalent group represented by the above general formula. Since R 2 has an ester group and an amide group, R 2 is a divalent group having excellent hydrophilicity, and is a group contributing to the oil resistance of the crosslinked thermoplastic elastomer composition (D) of the present invention.
  • R 2 has an ester group and an amide group
  • R 2 is a divalent group having excellent hydrophilicity, and is a group contributing to the oil resistance of the crosslinked thermoplastic elastomer composition (D) of the present invention.
  • Ra and Rb when a plurality of R 2 are present, they are independent of each other and may be the same or different from each other.
  • each R 3 is independently an alkylene group having 1 to 15 carbon atoms or an aromatic group having 6 to 15 carbon atoms which may have a branch.
  • an ethylene copolymer (E) described later is used as an isocyanate group-containing oligomer (Fx) described later, or a polyester dicarboxylic acid and a diisocyanate.
  • the R 3 is a residue of a dicarboxylic acid used in producing an isocyanate group-containing oligomer (Fx) or a polyester dicarboxylic acid.
  • there are a plurality of R 3 s which are independent of each other and may be the same or different from each other.
  • the dicarboxylic acid residue indicates a portion corresponding to -X- when the structure of the dicarboxylic acid used is HOOC-X-COOH.
  • R 3 is an optionally substituted alkylene group having 1 to 15 carbon atoms or an aromatic group having 6 to 15 carbon atoms.
  • alkylene group an alkylene group represented by the following general formula (3) is preferable from the viewpoint of economy.
  • aromatic group the aromatic group represented by the following general formula (3 ') is preferable from an economical viewpoint.
  • each R 4 is independently an alkylene group having 1 to 15 carbon atoms which may have a branch.
  • an ethylene copolymer (E) described later is used as an isocyanate group-containing oligomer (Fx) described later, or a polyester dicarboxylic acid and a diisocyanate.
  • R 4 is a residue of a diol used for producing an isocyanate group-containing oligomer (Fx) or polyester dicarboxylic acid.
  • there are a plurality of R 4 s which are independent of each other and may be the same or different from each other.
  • the diol residue indicates a portion corresponding to -X- when the structure of the diol used is HO-X-OH.
  • R 4 is an alkylene group having 1 to 15 carbon atoms. Specifically, an alkylene group represented by the following general formula (4) is preferable from the viewpoint of economy.
  • n is 0-5.
  • the preferable range of n varies depending on Rc, Rd, R 1 and R 2 , but is 0 to 3, more preferably 0 to 2.
  • m is 1-20.
  • a preferable range of m is 7 to 20, although it varies depending on R 3 and R 4 .
  • the crosslinked ethylene copolymer (B) used in the present invention is usually an ethylene / ⁇ -olefin copolymer having a functional group capable of reacting with an isocyanate group, and an ethylene / ⁇ -olefin having a functional group capable of reacting with an isocyanate group.
  • crosslinking a group such as a functional group capable of reacting with an isocyanate group that the ethylene copolymer (E) usually has, a carboxyl group derived from the unsaturated carboxylic acid, a carboxylic acid anhydride group derived from the unsaturated carboxylic acid, and the like
  • the crosslinking agent (to be described later) reacts to form a crosslinking site (C).
  • the structure of the portion other than the crosslinking site (C) in the crosslinked ethylene copolymer (B) is usually a structure derived from the ethylene copolymer (E) described later.
  • the ethylene copolymer (E) in the present invention is an ethylene / ⁇ -olefin copolymer having a functional group capable of reacting with an isocyanate group, or an ethylene / ⁇ -olefin / non-conjugated polyene having a functional group capable of reacting with an isocyanate group. It is at least one copolymer selected from the group consisting of a copolymer and an ethylene / unsaturated carboxylic acid copolymer.
  • the functional group capable of reacting with the isocyanate group is usually a carboxyl group derivative such as a carboxyl group or a carboxylic anhydride group.
  • the ethylene / ⁇ -olefin copolymer having a functional group capable of reacting with an isocyanate group in the present invention, and the ethylene / ⁇ -olefin / nonconjugated polyene copolymer having a functional group capable of reacting with an isocyanate group are usually ethylene.
  • Ethylene copolymers (E-1) obtained by graft-modifying ⁇ -olefin copolymers and ethylene / ⁇ -olefin / non-conjugated polyene copolymers with unsaturated carboxylic acids or unsaturated carboxylic acid derivatives
  • ethylene, an ⁇ -olefin, a monomer having a functional group capable of reacting with an isocyanate group, and an ethylene copolymer (E-2) obtained by copolymerizing a non-conjugated polyene, if necessary, are used.
  • E-1 ⁇ Ethylene copolymer (E-1)>
  • the density is 0.88 to 0.97 g / cm 3 , preferably 0.89 to 0.96 g / cm 3 .
  • an ⁇ -olefin having 3 to 10 carbon atoms is usually used as the ⁇ -olefin copolymerized with ethylene.
  • the ⁇ -olefin having 3 to 10 carbon atoms include propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, and the like. -Hexene, 1-octene and 4-methyl-1-pentene are preferred.
  • the ⁇ -olefins may be used alone or in combination of two or more.
  • non-conjugated polyene that may be copolymerized with ethylene and ⁇ -olefin include 1,4-hexadiene, 3-methyl-1,4-hexadiene, 4-methyl-1,4-hexadiene.
  • 5-ethylidene-2-norbornene 5-vinyl-2-norbornene, cyclopentadiene, and 4-ethylidene-8-methyl-1,7-nanodiene are preferable.
  • a nonconjugated polyene may be used individually by 1 type, or may use 2 or more types.
  • the structural unit derived from ethylene is usually 40 to 99 mol%, preferably 50 to 90 mol%, more preferably 60 to 85 mol%
  • the structural unit derived from ⁇ -olefin is usually 60 to 1 mol%, preferably 50 to 10 mol%, more preferably 40 to 15 mol%.
  • the amount of each structural unit can be determined by 13 C-NMR.
  • the ethylene / ⁇ -olefin copolymer before graft modification has an intrinsic viscosity [ ⁇ ] measured in decalin of 135 ° C. of 0.3 to 10 dl / g, preferably 0.5 to 10 dl / g.
  • the melt flow rate [MFR (190 ° C.)] at 190 ° C. and 2.16 kg load according to ASTM D1238 of the ethylene / ⁇ -olefin copolymer before graft modification is usually 0.001 to 100 g / 10 min, preferably Is 0.1 to 50 g / 10 min.
  • the structural unit derived from ethylene is 40 to 99 mol%, usually 50 to 90 mol%, preferably 60 to 85 mol%.
  • the structural unit derived from ⁇ -olefin is 60 to 1 mol%, usually 50 to 10 mol%, preferably 40 to 15 mol% (provided that the total of ethylene content and ⁇ -olefin content is 100 mol%) And).
  • the non-conjugated polyene content is usually 0.1 to 30, preferably 0.1 to 25 in terms of iodine value.
  • the amount of structural units derived from ethylene and structural units derived from ⁇ -olefin can be determined by 13 C-NMR.
  • the method for preparing the ethylene / ⁇ -olefin copolymer or the ethylene / ⁇ -olefin / non-conjugated polyene copolymer before graft modification is not particularly limited.
  • a soluble vanadium compound and an alkylaluminum halide compound Prepared by random copolymerization of ethylene and ⁇ -olefin, and if necessary, non-conjugated polyene in the presence of a vanadium-based catalyst or a zirconium-based catalyst of a zirconium metallocene compound and an organoaluminum oxy compound. be able to.
  • soluble vanadium compound used in the vanadium-based catalyst include vanadium tetrachloride, vanadium oxytrichloride, vanadium monoethoxydichloride, vanadium triacetylacetonate, oxyvanadium triacetylacetonate, and the like.
  • alkylaluminum halide compound used in the vanadium catalyst examples include ethylaluminum dichloride, diethylaluminum monochloride, ethylaluminum sesquichloride, diethylaluminum monobromide, diisobutylaluminum monochloride, isobutylaluminum dichloride, isobutylaluminum.
  • Examples include sesquichloride.
  • zirconium metallocene compounds used in zirconium-based catalysts include ethylene bis (indenyl) zirconium dibromide, dimethylsilylene bis (2-methylindenyl) zirconium dichloride, and bis (cyclopentadienyl) zirconium dibromide. And bis (dimethylcyclopentadienyl) zirconium dichloride.
  • organoaluminum oxy compound used in the zirconium-based catalyst there are aluminoxane or benzene insoluble organoaluminum oxy compound.
  • the zirconium-based catalyst may contain an organoaluminum compound together with a zirconium metallocene compound and an organoaluminum oxy compound.
  • organoaluminum compounds include triisobutylaluminum, dimethylaluminum chloride, methylaluminum sesquichloride, and the like.
  • the polymerization can be carried out in the form of a solution or suspension or in the middle region. In any case, it is preferable to use an inert solvent as a reaction medium.
  • ethylene copolymer (E) Grafting ethylene / ⁇ -olefin copolymer or ethylene / ⁇ -olefin / non-conjugated polyene copolymer, which is one embodiment of ethylene copolymer (E), with unsaturated carboxylic acid or unsaturated carboxylic acid derivative
  • the ethylene copolymer (E-1) obtained by modification is an unsaturated carboxylic acid or an unsaturated ethylene / ⁇ -olefin copolymer or ethylene / ⁇ -olefin / unconjugated polyene copolymer before graft modification. Graft-modified with a carboxylic acid derivative. That is, the ethylene copolymer (E-1) has a carboxyl group or a group derived from the carboxyl group as a functional group capable of reacting with an isocyanate group.
  • Examples of unsaturated carboxylic acids used here include acrylic acid, maleic acid, fumaric acid, 10-undecenoic acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid and nadic acid TM (endocis- Bicyclo [2,2,1] hept-5-ene-2,3-dicarboxylic acid).
  • Examples of the unsaturated carboxylic acid derivatives include acid halide compounds, acid anhydrides, amide compounds, imide compounds, and ester compounds of the above unsaturated carboxylic acids. Specific examples include maleyl chloride, maleimide, maleic anhydride, citraconic anhydride, monomethyl maleate, dimethyl maleate, glycidyl maleate, and the like.
  • unsaturated dicarboxylic acids or acid anhydrides thereof are preferable, and maleic acid, nadic acid TM or acid anhydrides thereof, or 10-undecenoic acid is particularly preferable.
  • the number of functional groups capable of reacting with the isocyanate group contained in the ethylene copolymer (E-1) is such that the ethylene copolymer (E-1).
  • the amount of unsaturated carboxylic acid or its derivative is adjusted so that it is usually 0.10 mmol / g or more, preferably 0.20 mmol / g or more, more preferably 0.30 mmol / g or more. To do.
  • the upper limit of the number of functional groups is usually 2.0 mmol / g or less from the viewpoint of physical properties and moldability.
  • An ethylene copolymer (E-1) produced with a graft amount in which the number of functional groups falls within the above range is used by using an isocyanate group-containing oligomer (F) or a polyester polycarboxylic acid (G) described later and a polyvalent isocyanate.
  • the crosslinked ethylene copolymer (B) obtained by crosslinking is excellent in dispersibility and thermal stability in the crosslinked thermoplastic elastomer composition (D) of the present invention, and the resin is colored when melted. It is also excellent in oil resistance. Further, by using the crosslinked ethylene copolymer (B), a crosslinked thermoplastic elastomer composition (D) capable of providing a molded article having excellent mechanical strength can be obtained.
  • the graft position of the unsaturated carboxylic acid or its derivative grafted to the ethylene / ⁇ -olefin copolymer or the ethylene / ⁇ -olefin / non-conjugated polyene copolymer before the graft modification is not particularly limited. If an unsaturated carboxylic acid or derivative thereof is bonded to any carbon atom in the polymer chain derived from the previous ethylene / ⁇ -olefin copolymer or ethylene / ⁇ -olefin / non-conjugated polyene copolymer Good.
  • the ethylene copolymer (E-1) can be prepared using various conventionally known methods, for example, the following methods. (1) A method in which the ethylene / ⁇ -olefin copolymer or the ethylene / ⁇ -olefin / non-conjugated polyene copolymer before graft modification is melted and an unsaturated carboxylic acid or the like is added to perform graft copolymerization.
  • the graft reaction is preferably performed in the presence of a radical initiator.
  • radical initiator organic peroxides, azo compounds and the like are used.
  • radical initiators include benzoyl peroxide, dichlorobenzoyl peroxide, dicumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di (peroxide benzoate) hexyne- 3,1,4-bis (tert-butylperoxyisopropyl) benzene, lauroyl peroxide, tert-butylperacetate, 2,5-dimethyl-2,5-di- (tert-butylperoxide) hexyne-3, 2,5 -Dimethyl-2,5-di (tert-butylperoxide) hexane, tert-butylperbenzoate, tert-butylperphenylacetate, tert-butylperisobutyrate, tert-butylper-sec-octoate
  • dicumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexyne-3, 2,5-dimethyl-2,5-di (tert Dialkyl peroxides such as -butylperoxy) hexane and 1,4-bis (tert-butylperoxyisopropyl) benzene are preferably used.
  • radical initiators are usually 0.001 to 1 part by weight with respect to 100 parts by weight of the ethylene / ⁇ -olefin copolymer or ethylene / ⁇ -olefin / non-conjugated polyene copolymer before the graft modification,
  • the amount is preferably 0.005 to 0.5 parts by weight, more preferably 0.01 to 0.3 parts by weight.
  • the reaction temperature in the grafting reaction using the radical initiator as described above or in the grafting reaction performed without using the radical initiator is usually set in the range of 60 to 350 ° C., preferably 150 to 300 ° C.
  • the ethylene copolymer (E-2) can be obtained by copolymerizing ethylene, an ⁇ -olefin, a monomer having a functional group capable of reacting with an isocyanate group, and if necessary, a non-conjugated polyene.
  • an ⁇ -olefin having 3 to 20 carbon atoms is usually used.
  • the ⁇ -olefin having 3 to 20 carbon atoms include propylene, 1-butene, 2-butene, 1-pentene, 3- Methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4,4-dimethyl-1-pentene, 4-methyl-1- Hexene, 4,4-dimethyl-1-hexene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-hexadecene Examples include octadecene and 1-eicosene.
  • ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1-octene are exemplified.
  • propylene, 1-butene, 4-methylpentene-1, 1-hexene and 1-octene are preferable, and propylene is more preferable.
  • the ⁇ -olefin one kind may be used alone, or two or more kinds may be used.
  • non-conjugated polyene copolymerized as needed include 1,4-hexadiene, 3-methyl-1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1 , 4-hexadiene, 4,5-dimethyl-1,4-hexadiene, 7-methyl-1,6-octadiene, 8-methyl-4-ethylidene-1,7-nonadiene, 4-ethylidene-1,7-undecadiene Chain non-conjugated dienes such as; Methyltetrahydroindene, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, 5-isopropylidene-2-norbornene, 5-vinylidene-2-norbornene, 6-chloromethyl-5-isopropenyl-2-norbornene Cyclic non-conjugated dienes such as 5-vinyl-2-nor
  • 5-ethylidene-2-norbornene 5-vinyl-2-norbornene, cyclopentadiene, and 4-ethylidene-8-methyl-1,7-nanodiene are preferable.
  • a nonconjugated polyene may be used individually by 1 type, or may use 2 or more types.
  • the monomer having a functional group capable of reacting with an isocyanate group which is used for obtaining the ethylene copolymer (E-2), usually has a carboxyl group or a group derived from the carboxyl group as a functional group capable of reacting with an isocyanate group. .
  • Examples of the monomer include polar group-containing monomers represented by the following general formula (Z).
  • CH 2 CH—R 5 —Z (Z)
  • R 5 is a hydrocarbon group such as a saturated or unsaturated aliphatic hydrocarbon group, alicyclic hydrocarbon group, aromatic hydrocarbon group, preferably a hydrocarbon having 1 to 20 carbon atoms.
  • saturated or unsaturated aliphatic hydrocarbon group examples include linear or branched hydrocarbon groups having 1 to 20 carbon atoms, and specifically include methylene, ethylene, trimethylene, methylethylene, tetramethylene. , Methyltrimethylene, pentamethylene, hexamethylene, heptamethylene, octamethylene, nonamethylene, decamethylene, undecamethylene, dodecamethylene, tetradecamethylene, pentadecamethylene, hexadecamethylene, heptacamethylene, octadecamethylene, nonadeca Examples include methylene and icosamethylene.
  • alicyclic hydrocarbon group a group having 3 to 20 carbon atoms having an alicyclic structure as a part of the structure is preferable, and specifically, cyclopropylene, cyclopentylene, cyclohexylene, cyclooctylene, and the like are included. Can be mentioned.
  • the aromatic hydrocarbon group is preferably a group having 6 to 20 carbon atoms having an aromatic ring in a part of its structure, specifically, —Ph—, —Ph—CH 2 —, —Ph— (CH 2 ) 2 -, - Ph- (CH 2) 3 -, - Ph- (CH 2) 6 -, - Ph- (CH 2) 10 -, - Ph- (CH 2) 11 -, - Ph- (CH 2 ) 12 -, - Ph- (CH 2) 14 - , and the like.
  • Z represents a carboxyl group or a carboxylic anhydride group.
  • polar group-containing monomer represented by the general formula (Z) include 5-hexenoic acid, 6-heptenoic acid, 7-octenoic acid, 8-nonenoic acid, 9-decenoic acid, 10 ⁇ -alkenylcarboxylic acids such as 2-undecenoic acid and 11-dodecenoic acid; 2-methyl-5-hexenoic acid, 2-methyl-6-heptenoic acid, 2-methyl-7-octenoic acid, 2-methyl-8-nonene Acid, 2-methyl-9-decenoic acid, 2-methyl-10-undecenoic acid, 2-methyl-11-dodecenoic acid, 2-ethyl-5-hexenoic acid, 2-ethyl-6-heptenoic acid, 2-ethyl -7-octenoic acid, 2-ethyl-8-nonenoic acid, 2-ethyl-9-decenoic acid, 2-ethyl-10-undecenoic acid, 2-propyl
  • Examples of the monomer having a functional group capable of reacting with an isocyanate group other than the polar group-containing monomer represented by the general formula (Z) include a polar group represented by the following general formula (Z ′) and the general formula (W). Containing monomers can also be used.
  • CH 2 CH—R 6 —Z (Z ′)
  • CH 2 CH-R 7 - (W) n ⁇ (W)
  • R 6 is substituted with a carbonyl group such as a saturated or unsaturated aliphatic hydrocarbon group, an alicyclic hydrocarbon group, or an aromatic hydrocarbon group substituted with a carbonyl group.
  • a hydrocarbon group preferably a hydrocarbon group having 1 to 20 carbon atoms substituted with a carbonyl group, and Z represents a carboxyl group or a carboxylic anhydride group.
  • polar group-containing monomer represented by the general formula (Z ′) include those represented by the following general formula (9).
  • R 7 is a carbonyl group such as a saturated or unsaturated aliphatic hydrocarbon group, alicyclic hydrocarbon group, aromatic hydrocarbon group, which may be substituted with a carbonyl group.
  • An optionally substituted hydrocarbon group preferably a hydrocarbon group having 1 to 20 carbon atoms, n represents 2 or 3, and W independently represents a carboxyl group or a carboxylic anhydride group.
  • polar group-containing monomer represented by the general formula (W) include those represented by the following general formula (10).
  • the ethylene copolymer (E-2) can be obtained by copolymerizing a monomer having a functional group capable of reacting with ethylene, an ⁇ -olefin, and an isocyanate group, and if necessary, a non-conjugated polyene. Randomly combined.
  • the ethylene copolymer (E-2) the molar ratio (( ⁇ ) :( ⁇ )) of the structural unit ( ⁇ ) derived from ethylene and the structural unit ( ⁇ ) derived from ⁇ -olefin is usually 40: 60 to 99: 1, preferably 50:50 to 90:10, more preferably 60:40 to 85:15.
  • the molar ratio of the total amount of the structural unit derived from ethylene ( ⁇ ) and the structural unit derived from ⁇ -olefin ( ⁇ ) to the structural unit derived from a monomer having a functional group capable of reacting with an isocyanate group ( ⁇ ) (( ⁇ ) + ( ⁇ ) :( ⁇ )) is usually 99.9: 0.1 to 50:50, preferably 99.5: 0.5 to 55:45.
  • the iodine value is usually 0.1 to 30, preferably 0.1 to 25.
  • the ⁇ -olefin, the monomer having a functional group capable of reacting with an isocyanate group, and the non-conjugated polyene may be used alone or in combination of two or more.
  • the ethylene copolymer (E-2) comprises (A) a transition metal compound selected from Groups 3 to 10 of the periodic table (Group 3 includes lanthanoids and actinoids), and (B) (B-1 Olefin polymerization catalyst comprising:) an organoaluminum oxy compound, (B-2) a compound that reacts with the compound (A) to form an ion pair, and (B-3) at least one compound selected from the organoaluminum compounds.
  • the monomer having a functional group capable of reacting with ethylene, an ⁇ -olefin and an isocyanate group, and if necessary, a non-conjugated polyene is copolymerized.
  • the number of functional groups capable of reacting with the isocyanate group of the ethylene copolymer (E-2) is such that the ethylene copolymer (E-2) ) Of the monomer having a functional group capable of reacting with an isocyanate group so that it is usually 0.10 mmol / g or more, preferably 0.20 mmol / g or more, more preferably 0.30 mmol / g or more. Adjust usage.
  • the upper limit of the number of functional groups is usually 2.0 mmol / g or less from the viewpoint of physical properties and moldability.
  • a cross-linking agent such as an isocyanate group-containing oligomer (F) described later.
  • the coalesced (B) is excellent in dispersibility, excellent in thermal stability, and is excellent in oil resistance without coloring the resin when melted.
  • a crosslinked thermoplastic elastomer composition (D) capable of providing a molded article having excellent mechanical strength can be obtained.
  • transition metal compound (A) used in the present invention a known organometallic complex can be used in addition to the Ziegler-Natta catalyst and the metallocene catalyst.
  • Preferred compounds as the transition metal compound (A) Examples include the following.
  • M 1 represents a transition metal atom of Groups 3 to 10 of the periodic table
  • R 25 , R 26 , R 27 and R 28 may be the same or different from each other.
  • a part of the groups adjacent to each other may be linked to form a ring together with the carbon atom to which these groups are bonded
  • X 1 and X 2 are May be the same as or different from each other
  • Y 1 represents a divalent hydrocarbon group having 1 to 20 carbon atoms, a halogen
  • M 1 is a transition metal atom selected from Group 3-10 of the periodic table, Cp represents a cyclopentadienyl group or its derivative bonded ⁇ to M 1, Z 1 is an oxygen atom, sulfur atom, a ligand containing a boron atom or a periodic table group 14 element, Y 1 represents a ligand containing an atom selected from a nitrogen atom, phosphorus atom, oxygen atom and sulfur atom, X 1 is May be the same as or different from each other, a hydrogen atom, a halogen atom, a hydrocarbon group containing up to 20 carbon atoms and optionally having one or more double bonds, up to 20 silicon atoms; A silyl group or a germanyl group containing a germanium atom is shown.
  • M 1 represents a transition metal atom selected from Groups 3 to 10 of the periodic table
  • R 11 to R 14 , R 17 to R 20 and R 41 may be the same or different from each other, and 1 to 40 hydrocarbon group, halogenated hydrocarbon group having 1 to 40 carbon atoms, oxygen-containing group, sulfur-containing group, silicon-containing group, halogen atom or hydrogen atom, R 11 , R 12 , R 13 ,
  • R 14 , R 17 , R 18 , R 19 , R 20 and R 41 a part of the groups adjacent to each other is linked to form a ring with the carbon atom to which these groups are bonded.
  • X 1 and X 2 may be the same or different from each other, and are a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an oxygen-containing group, a sulfur-containing group, a silicon-containing group, a hydrogen atom or a halogen atom, Y 1 is TansoHara A divalent hydrocarbon group having 1 to 20 carbon atoms, a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, a divalent silicon-containing group, a divalent germanium-containing group, a divalent tin-containing group, O -, - CO -, - S -, - SO -, - SO 2 -, - Ge -, - Sn -, - NR 21 -, - P (R 21) -, - P (O) (R 21) -, - BR 21 - or -AlR 21 - (provided that, R
  • M 1 represents a transition metal atom selected from Groups 3 to 10 of the periodic table
  • R 11 , R 12 , R 41 and R 42 may be the same as or different from each other and have 1 to 40 carbon atoms.
  • a halogenated hydrocarbon group having 1 to 40 carbon atoms, an oxygen-containing group, a sulfur-containing group, a silicon-containing group, a halogen atom or a hydrogen atom R 11 , R 12 , R 41 , R 42
  • a part of the groups adjacent to each other may be linked to form a ring together with the carbon atom to which these groups are bonded
  • X 1 and X 2 may be the same or different from each other
  • a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an oxygen-containing group, a sulfur-containing group, a silicon-containing group, a hydrogen atom or a halogen atom, and Y 1 represents the number of
  • R 41 and R 42 may be the same as or different from each other, and may be a hydrocarbon group having 1 to 40 carbon atoms, A halogenated hydrocarbon group having 1 to 40 carbon atoms, an oxygen-containing group, a sulfur-containing group, a silicon-containing group, a halogen atom or a hydrogen atom, and among the groups represented by R 41 and R 42 , A part thereof may be linked to form a ring together with the carbon atom to which these groups are bonded, and X 1 and X 2 may be the same as or different from each other, a hydrocarbon group having 1 to 20 carbon atoms, A halogenated hydrocarbon group having 1 to 20 carbon atoms, an oxygen-containing group, a sulfur-containing group, a silicon-containing group, a hydrogen atom or a halogen atom, Y 1 is a divalent hydrocarbon group having 1 to 20 carbon atoms, Divalent hal
  • the organoaluminum oxy compound (B-1) used in the present invention may be a conventionally known aluminoxane (also referred to as alumoxane), or a benzene-insoluble compound as exemplified in JP-A-2-78687. It may be an organoaluminum oxy compound. Furthermore, as an organoaluminum oxy compound, an organoaluminum oxy compound containing boron represented by the following general formula can be exemplified.
  • R 8 represents a hydrocarbon group having 1 to 10 carbon atoms.
  • R 9 may be the same as or different from each other, and represents a hydrogen atom, a halogen atom, or a hydrocarbon group having 1 to 10 carbon atoms.
  • compound (B-2) (hereinafter sometimes referred to as “ionized ionic compound”) which forms an ion pair by reacting with the transition metal compound (A) used in the present invention, JP-A-1-501950 No. 1-502036, JP-A-3-179005, JP-A-3-179006, JP-A-3-207703, JP-A-3-207704, USP (US Patent) -5321106 Lewis acids, ionic compounds, borane compounds, and carborane compounds described in No. etc. Heteropoly compounds and isopoly compounds can also be mentioned.
  • the Lewis acid examples include magnesium-containing Lewis acid, aluminum-containing Lewis acid, and boron-containing Lewis acid. Among these, boron-containing Lewis acid is preferable.
  • the ionic compound is a salt composed of a cationic compound and an anionic compound. The anion functions to cationize the transition metal compound by reacting with the transition metal compound and stabilize the transition metal cation species by forming an ion pair. Examples of such anions include organoboron compound anions, organoarsenic compound anions, organoaluminum compound anions, and the like, which are relatively bulky and stabilize the transition metal cation species. Such ionized ionic compounds can be used as a mixture of two or more.
  • the organoaluminum compound (B-3) used in the present invention is an aluminum compound substituted with a hydrocarbon group having 1 to 12 carbon atoms and / or a halogen atom, an alkoxy group, a siloxy group, an amide group or a hydrogen atom. is there. These organoaluminum compounds can be used in combination of two or more.
  • the olefin polymerization catalyst used in the present invention is selected from the above transition metal compounds (A), organoaluminum oxy compounds (B-1), ionized ionic compounds (B-2), and organoaluminum compounds (B-3).
  • the transition metal compound (A) is a transition metal compound containing a ligand having a cyclopentadienyl skeleton
  • the olefin polymerization catalyst used in the present invention includes at least a transition metal compound (A), an organoaluminum oxy compound (B-1), an ionized ionic compound (B-2), and an organoaluminum compound (B-3).
  • the ethylene copolymer (E-2) is a monomer having a functional group capable of reacting with the ethylene, ⁇ -olefin and isocyanate group in the presence of the olefin polymerization catalyst as described above, and optionally a non-conjugated polyene.
  • the polymerization conditions are usually as follows.
  • the transition metal compound (A) is usually 0.00005 to 0.1 mmol, preferably 0.0001 to 0.05 mmol in terms of transition metal atoms per liter of polymerization volume. Used in quantity.
  • the organoaluminum oxy compound (B-1) is used in such an amount that the amount of aluminum atom is usually 1 to 10,000 mol, preferably 10 to 5,000 mol, per 1 mol of transition metal atom.
  • the ionized ionic compound (B-2) is used in such an amount that the boron atom is usually 0.5 to 500 mol, preferably 1 to 100 mol, per 1 mol of the transition metal atom.
  • the organoaluminum compound (B-3) is used in an amount that is usually 0 to 200 mol, preferably 0 to 100 mol, based on 1 mol of aluminum atoms in the organoaluminum oxy compound (B-1). Used.
  • the amount used is usually 0 to 1000 mol, preferably 0 to 500 mol, per 1 mol of boron in the ionized ionic compound (B-2).
  • Copolymerization When hydrogen is used, it is used in an amount of 10 -5 to 1 mol, preferably 10 -4 to 10 -1 mol, relative to 1 mol of the monomer to be polymerized.
  • Copolymerization can be carried out by any of liquid phase polymerization methods such as suspension polymerization and solution polymerization, gas phase polymerization methods and high pressure methods.
  • aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclopentane; benzene, toluene, Aromatic hydrocarbons such as xylene; inert hydrocarbon media such as halogenated hydrocarbons such as ethylene chloride, chlorobenzene and dichloromethane are used. Also, ethylene or ⁇ -olefin itself can be used as a solvent. These may be used in combination.
  • the polymerization temperature is usually in the range of ⁇ 50 to 100 ° C., preferably 0 to 90 ° C. when the suspension polymerization method is performed, and is usually 0 to 300 when the solution polymerization method is performed.
  • the temperature is preferably in the range of 20 ° C., preferably 20 to 250 ° C.
  • the polymerization temperature is usually 0 to 120 ° C., preferably 20 to 100 ° C.
  • the polymerization temperature is usually in the range of 50 to 1000 ° C., preferably 100 to 500 ° C.
  • the polymerization pressure is usually from normal pressure to 100 kg / cm 2 , preferably from normal pressure to 50 kg / cm 2.
  • the high pressure method it is usually from 100 to 10,000 kg / cm 2 , preferably from 500 to 5000 kg / cm 2.
  • Condition 2 The polymerization reaction can be carried out in any of batch, semi-continuous and continuous methods. Furthermore, the polymerization can be performed in two or more stages having different reaction conditions.
  • the molecular weight of the resulting ethylene copolymer (E-2) can be adjusted by adjusting the amount of hydrogen or changing the polymerization temperature and polymerization pressure.
  • ethylene / unsaturated carboxylic acid copolymer a copolymer obtained by copolymerizing at least ethylene and at least one unsaturated carboxylic acid is usually used.
  • the copolymer has a carboxyl group or a carboxylic anhydride group derived from an unsaturated carboxylic acid.
  • the ethylene / unsaturated carboxylic acid copolymer may be a copolymer obtained by copolymerizing ethylene, at least one unsaturated carboxylic acid and another monomer.
  • the constituent unit derived from the unsaturated carboxylic acid is preferably 1 to 30% by weight, more preferably 4 to 20% by weight with respect to 100% by weight of the copolymer. is there.
  • the constitutional unit derived from the other monomer is usually based on 100% by weight of the copolymer. 30% by weight or less, preferably 10% by weight or less.
  • the unsaturated carboxylic acid examples include acrylic acid, methacrylic acid, fumaric acid, maleic acid, maleic anhydride, itaconic anhydride, maleic acid monomethyl ester, maleic acid monoethyl ester, etc., and particularly acrylic acid or methacrylic acid. Acid is most preferred.
  • the unsaturated carboxylic acid used for obtaining the ethylene / unsaturated carboxylic acid copolymer includes an acid anhydride of unsaturated carboxylic acid and an ester of unsaturated carboxylic acid.
  • the above-mentioned other optional monomers include vinyl esters such as vinyl acetate and vinyl propionate, methyl acrylate, ethyl acrylate, isobutyl acrylate, nbutyl acrylate, 2-ethylhexyl acrylate, methacrylic acid.
  • vinyl esters such as vinyl acetate and vinyl propionate, methyl acrylate, ethyl acrylate, isobutyl acrylate, nbutyl acrylate, 2-ethylhexyl acrylate, methacrylic acid.
  • unsaturated carboxylic acid esters such as methyl acid, isobutyl methacrylate and diethyl maleate, and carbon monoxide.
  • Ethylene / unsaturated carboxylic acid copolymer has a melt flow rate at 190 ° C. under a load of 2160 g according to ASTM D1238, usually 0.1 to 300 g / 10 min, preferably 0.5 to 100 g / 10 min. .
  • Such an ethylene / unsaturated carboxylic acid copolymer is obtained by radical copolymerization of ethylene, an unsaturated carboxylic acid, and optionally other monomers under high temperature and high pressure, in the same manner as in the production of high-pressure polyethylene. Can be obtained by:
  • the isocyanate group-containing oligomer (F) has an amide group, an ester group, and two or more isocyanate groups, and an ethylene / ⁇ -olefin copolymer having a functional group capable of reacting with the isocyanate group, Functional groups capable of reacting with isocyanate groups of ethylene / ⁇ -olefin / non-conjugated polyene copolymers having functional groups capable of reacting with isocyanate groups, carboxyl groups and carboxylic acids possessed by ethylene / unsaturated carboxylic acid copolymers By reacting with the anhydride group, the crosslinked ethylene copolymer (B) is obtained. That is, the isocyanate group-containing oligomer (F) serves as a crosslinking agent for the ethylene copolymer (E).
  • the number average molecular weight calculated by gel permeation chromatography (GPC) of the isocyanate group-containing oligomer (F) is preferably more than 2000, more preferably 3000 or more, and particularly preferably 4000 or more.
  • the number average molecular weight is usually 20000 or less and preferably 10,000 or less.
  • the cross-linked thermoplastic elastomer composition (D) is excellent in oil resistance and the production of the isocyanate group-containing oligomer (F) is easy. preferable.
  • the isocyanate group-containing oligomer (F) is particularly preferably represented by the following general formula Rx.
  • n is preferably 0 to 3
  • m is more preferably 7 to 20.
  • each R 1 is independently a diisocyanate residue, and each R 2 is independently a divalent group represented by the following general formula.
  • each R 3 is independently an alkylene group having 1 to 15 carbon atoms or an aromatic group having 6 to 15 carbon atoms which may have a branch, and each R 4 is independently And an optionally substituted alkylene group having 1 to 15 carbon atoms.
  • Rx In the above general formula Rx, R 1 and R 2 are the same as R 1 and R 2 in the general formula Ra and Rb.
  • the isocyanate group-containing oligomer (F) represented by the general formula Rx, which is a preferred embodiment of the isocyanate group-containing oligomer (F), is also referred to as an isocyanate group-containing oligomer (Fx).
  • the isocyanate group-containing oligomer (F) is an isocyanate group-containing oligomer obtained by reacting a polyester polycarboxylic acid (G) produced from a polyhydric alcohol and a polyvalent carboxylic acid with a polyvalent isocyanate.
  • an isocyanate group-containing oligomer hereinafter also referred to as an isocyanate group-containing oligomer (Fy)) characterized in that at least one of the polyhydric alcohol, polyvalent carboxylic acid and polyvalent isocyanate contains a trivalent or higher monomer. ) Is also preferred.
  • the isocyanate group-containing oligomer (Fy) has at least three isocyanate groups at its terminals because at least one of polyhydric alcohol, polyvalent carboxylic acid and polyvalent isocyanate contains a trivalent or higher monomer as a raw material. Have. Therefore, the isocyanate group-containing oligomer (Fy) is excellent in crosslinking reactivity.
  • the isocyanate group-containing oligomer (F) can be obtained by reacting a terminal carboxyl group-containing oligomer with a polyvalent isocyanate such as diisocyanate.
  • the terminal carboxyl group-containing oligomer in the present invention is a polycarboxylic acid containing a carboxyl group at the molecular end and having a number average molecular weight of, for example, 200 to 20000, preferably 500 to 10,000.
  • the number average molecular weight can be measured by gel permeation chromatography (GPC).
  • GPC measurement the number average molecular weight of a peak including the molecular weight (retention time) of the maximum frequency of the measured chromatogram is calculated with reference to a calibration curve created using standard polyethylene glycol. Thereby, the number average molecular weight is calculated as a converted value of standard polyethylene glycol.
  • the viscosity at 80 ° C. measured with a cone plate viscometer is preferably 30000 mPa ⁇ s or less.
  • terminal carboxyl group-containing oligomers examples include polyester polycarboxylic acid (G).
  • the polyester polycarboxylic acid (G) can be obtained, for example, by a reaction between a polyvalent carboxylic acid and a polyhydric alcohol.
  • examples of the polyvalent carboxylic acid include dicarboxylic acid.
  • dicarboxylic acids examples include oxalic acid, malonic acid, succinic acid, methyl succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and other aliphatic dicarboxylic acids (having 11 to 13 carbon atoms).
  • Hydrogenated dimer acid maleic acid, fumaric acid, itaconic acid, orthophthalic acid, isophthalic acid, terephthalic acid, toluene dicarboxylic acid, dimer acid, dicarboxylic acid such as het acid, and alkyl esters of these dicarboxylic acids.
  • alkyl ester of polycarboxylic acid such as dicarboxylic acid can react as a polyhydric alcohol in the same manner as polycarboxylic acid to obtain a polyester polycarboxylic acid (G)
  • alkyl esters of divalent carboxylic acids It is possible to use alkyl esters of divalent carboxylic acids.
  • polyvalent carboxylic acid a trivalent or higher polyvalent carboxylic acid having three or more carboxyl groups can be used.
  • dicarboxylic acids and trivalent or higher polyvalent carboxylic acids can be used alone or in combination of two or more.
  • polyhydric alcohol examples include diols having two hydroxyl groups.
  • diol examples include ethylene glycol, propylene glycol, trimethylene glycol, 1,4-butylene glycol, 1,3-butylene glycol, 1,2-butylene glycol, 1,5-pentanediol, and 3-methyl-1,5.
  • -Pentanediol 2,2-dimethyl-1,3-propanediol, neopentyl glycol, 1,6-hexanediol, 2,5-hexanediol, 2,2-diethyl-1,3-propanediol, 3, C2-22 alkanediols such as 3-dimethylolheptane, 2-ethyl-2-butyl-1,3-propanediol, 1,12-dodecanediol, 1,18-octadecanediol, such as 2-butene-1, 4-diol, 2,6-dimethyl-1-octene-3,8-diol, etc.
  • Aliphatic diols such as alkene diol.
  • diol examples include alicyclic diols such as 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, hydrogenated bisphenol A or its C2-4 alkylene oxide adduct.
  • diol examples include aromatic diols such as resorcin, xylylene glycol, bishydroxyethoxybenzene, bishydroxyethylene terephthalate, bisphenol A, bisphenol S, bisphenol F, and C2-4 alkylene oxide adducts of these bisphenols. It is done.
  • examples of the diol include polyether diols such as diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polyethylene polypropylene block glycol, and polytetramethylene ether glycol.
  • polyether diols such as diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polyethylene polypropylene block glycol, and polytetramethylene ether glycol.
  • polyhydric alcohol a trihydric or higher polyhydric alcohol having three or more hydroxyl groups can be used.
  • trihydric or higher polyhydric alcohol examples include glycerin, 2-methyl-2-hydroxymethyl-1,3-propanediol, 2,4-dihydroxy-3-hydroxymethylpentane, 1,2,6-hexanetriol, Such as trimethylolethane, trimethylolpropane, 2,4-dihydroxy-3- (hydroxymethyl) pentane, 2,2-bis (hydroxymethyl) -3-butanol and other aliphatic triols (8 to 24 carbon atoms) Examples include triols such as polyols having four or more hydroxyl groups such as pentaerythritol, dipentaerythritol, D-sorbitol, xylitol, and D-mannitol.
  • polyhydric alcohols can be used alone or in combination of two or more.
  • a diol is preferable.
  • polyester polycarboxylic acid obtained by reaction of dicarboxylic acid and diol is also described as polyester dicarboxylic acid.
  • the polyester polycarboxylic acid (G) is a mixture of polyvalent carboxylic acid and polyhydric alcohol, in which the acid group (carboxyl group, carboxylic acid ester) of the polyvalent carboxylic acid is in excess of the hydroxyl group of the polyhydric alcohol ( It can be obtained by blending at a ratio of COOH / OH exceeding 1.0 (preferably a ratio of 1.01 to 2.10) and subjecting them to an esterification reaction.
  • the esterification reaction is, for example, a condensation reaction or a transesterification reaction, and may be under known conditions. For example, an atmospheric pressure and an inert gas atmosphere are used, the reaction temperature is 100 to 250 ° C., and the reaction time is 1 to 50. It's time.
  • a catalyst an organic tin catalyst, an organic titanium catalyst, an amine catalyst, an alkali metal salt or an alkaline earth metal salt described later
  • a solvent or the like can be used as necessary.
  • the polyester polycarboxylic acid (G) thus obtained has a number average molecular weight of usually 200 to 20000, preferably 500 to 10,000.
  • the acid value of the polyester polycarboxylic acid (G) is usually 5 to 500 mgKOH / g, preferably 10 to 250 mgKOH / g, and the hydroxyl value of the polyester polycarboxylic acid (G) is usually 5 mgKOH. / G or less, preferably 3 mgKOH / g or less.
  • the polyester polycarboxylic acid (G) can be used alone or in combination of two or more.
  • the isocyanate group-containing oligomer (F) can be obtained by reacting the terminal carboxyl group-containing oligomer with a polyvalent isocyanate.
  • the polyvalent isocyanate include diisocyanates and trivalent or higher polyvalent isocyanates.
  • Polyvalent isocyanate can be used.
  • Examples of the diisocyanate to be reacted with the terminal carboxyl group-containing oligomer include aliphatic diisocyanate, alicyclic diisocyanate, araliphatic diisocyanate, and aromatic diisocyanate.
  • aliphatic diisocyanate examples include hexamethylene diisocyanate (HDI), trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 1,2-, 2,3- or 1,3-butylene diisocyanate.
  • aliphatic diisocyanates such as 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate and 2,6-diisocyanatomethylcaproate.
  • alicyclic diisocyanates examples include 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 4,4'-, 2,4'- or 2,2'-dicyclohexylmethane.
  • Diisocyanate or mixtures thereof H 12 MDI
  • 1,3- or 1,4-bis (isocyanatomethyl) cyclohexane or mixtures thereof hydrogenated xylylene diisocyanate, H 6 XDI), 2,5- or 2,6- Bis (isocyanatomethyl) norbornane or a mixture thereof (NBDI)
  • alicyclic diisocyanates such as 6-cyclohexane diisocyanate.
  • araliphatic diisocyanate examples include 1,3- or 1,4-xylylene diisocyanate or a mixture thereof (XDI), 1,3- or 1,4-tetramethylxylylene diisocyanate or a mixture thereof (TMXDI), ⁇ , ⁇ '-diisocyanato-1,4-diethylbenzene, and the like.
  • Aromatic diisocyanates include, for example, 4,4′-, 2,4′- or 2,2′-diphenylmethane diisocyanate or mixtures thereof (MDI), 2,4- or 2,6-tolylene diisocyanate or mixtures thereof ( TDI), 3,3′-dimethoxybiphenyl-4,4′-diisocyanate, 1,5-naphthalene diisocyanate (NDI), m- or p-phenylene diisocyanate or mixtures thereof, 4,4′-diphenyl diisocyanate, 4,4 And aromatic diisocyanates such as' -diphenyl ether diisocyanate.
  • MDI 4,4′-, 2,4′- or 2,2′-diphenylmethane diisocyanate or mixtures thereof
  • TDI 2,4- or 2,6-tolylene diisocyanate or mixtures thereof
  • NDI 1,5-naphthalene diisocyanate
  • the diisocyanate includes the above-described diisocyanate multimers (for example, dimers, trimers, etc.), biuret-modified products produced by the reaction of the above diisocyanates or multimers with water, alcohols (one Allophanate-modified products produced by reaction with polyhydric alcohols or polyhydric alcohols), oxadiazine trione-modified products produced by reaction with carbon dioxide, or polyol-modified products produced by reaction with the above-mentioned polyhydric alcohols, etc. Is included.
  • diisocyanates include sulfur-containing diisocyanates such as phenyl diisothiocyanate.
  • polyvalent isocyanate a trivalent or higher polyvalent isocyanate having three or more isocyanate groups can be used.
  • polymeric MDI polymethylene polyphenyl polyisocyanate
  • Can be used for Polymeric MDI is a mixture containing trivalent or higher polyvalent isocyanate (polynuclear MDI trinuclear or higher) and usually also divalent isocyanate (MDI).
  • polyisocyanates such as diisocyanates can be used alone or in combination of two or more.
  • the polyvalent isocyanate preferably contains at least a diisocyanate, and it is preferable to use an aliphatic diisocyanate, an alicyclic diisocyanate, or an araliphatic diisocyanate.
  • the isocyanate group-containing oligomer (F) comprises a terminal carboxyl group-containing oligomer and a polyisocyanate such as diisocyanate, and the isocyanate group of the polyvalent isocyanate such as diisocyanate is excessive with respect to the carboxyl group of the terminal carboxyl group-containing oligomer.
  • a ratio in which NCO / COOH exceeds 1.0, preferably a ratio of 1.05 to 2.50 and amidation reaction thereof.
  • the equivalent ratio of NCO / COOH When the equivalent ratio of NCO / COOH is in the above range, production can be stabilized.
  • the equivalent ratio of NCO / COOH is 1.00 or less, the isocyanate group content of the isocyanate group-containing oligomer (F) decreases, and the crystalline olefin polymer (A) can react with the isocyanate group.
  • the amidation reaction is not particularly limited.
  • the reaction temperature is 120 ° C. or lower, preferably 40 to 120 ° C., more preferably 40 to 100 ° C., and the reaction time is 0.5 to 50 hours.
  • the reaction is preferably carried out for 1 to 15 hours.
  • the catalyst is preferably an alkali metal salt or an alkaline earth metal salt.
  • the alkali metal salt include lithium fluoride, lithium chloride, lithium hydroxide, sodium fluoride, sodium chloride, sodium hydroxide, potassium fluoride, potassium chloride, and potassium hydroxide.
  • the alkaline earth metal salt include calcium stearate, calcium perchlorate, calcium chloride, calcium hydroxide, magnesium stearate, magnesium perchlorate, magnesium chloride, magnesium hydroxide and the like.
  • a catalyst can be used individually or can use 2 or more types together.
  • calcium stearate, calcium perchlorate, magnesium stearate, and magnesium perchlorate are preferable, and magnesium stearate is more preferable.
  • the catalyst is added, for example, in a ratio of 0.001 to 10 mol parts, preferably 0.005 to 2 mol parts, relative to 100 mol parts of all carboxyl groups of the terminal carboxyl group-containing oligomer. If the addition ratio of the catalyst is less than this, the amidation reaction does not proceed sufficiently and the productivity may be lowered. On the other hand, at more than this, the amide selectivity of the amidation reaction does not change, which may be economically disadvantageous.
  • reaction temperature when the reaction temperature is within the above range, production can be stabilized.
  • reaction temperature exceeds 120 ° C., side reactions of isocyanate groups are promoted, and the isocyanate group content may be lower than the theoretical value, resulting in an increase in the viscosity of the resulting resin. Therefore, it is selected from the group consisting of an ethylene / ⁇ -olefin copolymer having a functional group capable of reacting with an isocyanate group and an ethylene / ⁇ -olefin / non-conjugated polyene copolymer having a functional group capable of reacting with an isocyanate group.
  • the reactivity with at least one ethylene copolymer (E) may decrease.
  • the reaction temperature is too low, the reaction between the carboxyl group of the terminal carboxyl group-containing oligomer and the isocyanate group of a polyvalent isocyanate such as diisocyanate does not proceed sufficiently, and the productivity may decrease.
  • the amidation reaction can be preferably carried out under normal pressure, but it can also be carried out under reduced pressure while removing carbon dioxide generated during the reaction. Further, the amidation reaction can be carried out under pressure using carbon dioxide generated during the reaction. You can also be carried out under normal pressure, but it can also be carried out under reduced pressure while removing carbon dioxide generated during the reaction. Further, the amidation reaction can be carried out under pressure using carbon dioxide generated during the reaction. You can also be carried out under normal pressure, but it can also be carried out under reduced pressure while removing carbon dioxide generated during the reaction. Further, the amidation reaction can be carried out under pressure using carbon dioxide generated during the reaction. You can also
  • the isocyanate group decomposes when it reacts with water (such as moisture in the air). Therefore, this reaction is preferably carried out in an inert gas atmosphere in order to avoid contact with moisture in the air.
  • an inert gas nitrogen gas, helium gas, etc. are mentioned, for example, Preferably nitrogen gas is mentioned.
  • a solvent can be used if necessary.
  • a terminal carboxyl group-containing oligomer, a polyisocyanate such as diisocyanate, and a catalyst may be mixed at once, or a terminal carboxyl group-containing oligomer and a polyisocyanate such as diisocyanate are mixed in advance, A catalyst can also be mixed.
  • a terminal carboxyl group-containing oligomer and a catalyst may be mixed in advance, and the mixture may be mixed with a polyvalent isocyanate such as diisocyanate, or a polyvalent isocyanate such as diisocyanate and a catalyst may be mixed in advance.
  • a polyvalent isocyanate such as diisocyanate
  • a polyvalent isocyanate such as diisocyanate and a catalyst
  • the mixture and the terminal carboxyl group-containing oligomer can also be mixed.
  • the above reaction can also be carried out stepwise.
  • an isocyanate group-containing oligomer is synthesized by reacting a terminal carboxyl group-containing oligomer and a polyvalent isocyanate such as diisocyanate at an NCO / COOH equivalent ratio of less than 1.0.
  • the isocyanate group-containing oligomer obtained in the first stage and the polyvalent isocyanate of a type different from the polyvalent isocyanate used in the first stage are finally converted into an NCO / COOH equivalent ratio of 1.0. Is reacted so that the isocyanate group-containing oligomer (F) is obtained.
  • the catalyst may be added to the first stage, may be added to the second stage, or may be added to both the first stage and the second stage.
  • the isocyanate group-containing oligomer (F) thus obtained has an isocyanate group content of 90 to 110%, preferably 95 to 105% of the calculated value from the blending ratio.
  • an ethylene / ⁇ -olefin copolymer having a functional group capable of reacting with an isocyanate group and an ethylene / ⁇ -olefin / non-conjugated polyene copolymer having a functional group capable of reacting with an isocyanate group.
  • Reactivity with at least one ethylene copolymer (E) selected from the group consisting of a polymer and an ethylene / unsaturated carboxylic acid copolymer is good.
  • the obtained cross-linked thermoplastic elastomer composition (D) of the present invention is excellent in physical properties and moldability.
  • the carboxyl group amidation rate of the terminal carboxyl group-containing oligomer in producing the isocyanate group-containing oligomer (F) is usually 76 to 100%, preferably 86 to 100%. When the amidation rate is in the above range, excellent physical properties and moldability can be obtained.
  • isocyanate group-containing oligomer (F) it is preferable to use an isocyanate group-containing oligomer (Fx) or an isocyanate group-containing oligomer (Fy).
  • an isocyanate group-containing oligomer (Fx) When an isocyanate group-containing oligomer (Fx) is used, an oligomer of a diol and a dicarboxylic acid represented by the following general formula Ry is used as the terminal carboxyl group-containing oligomer.
  • R 3 is the residue of a carboxylic acid HOOC-R 3 -COOH structure, represented by the following general formula (5) or (5 ') Specific examples of the carboxylic acid HOOC-R 3 -COOH structure Is preferred.
  • R 4 is the residue of a diol HO-R 4 -OH structure is preferably represented by the following general formula (6) Specific examples of diols HO-R 4 -OH structure.
  • the isocyanate group-containing oligomer (Fx) can be obtained by reacting a diisocyanate with an oligomer of a diol represented by the Ry formula and a dicarboxylic acid.
  • the structure of the diisocyanate is represented by OCN—R 1 —.
  • R 1 may have a branched alkylene group having 2 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, and an alicyclic hydrocarbon group having 6 carbon atoms. From the viewpoint of economy, it is preferably at least one group selected from the group consisting of ⁇ 20 divalent hydrocarbon groups.
  • a specific example of the diisocyanate having an OCN—R 1 —NCO structure is preferably represented by the following general formula (7).
  • the isocyanate group-containing oligomer (Fy) is obtained by reacting a polyisocyanate with a polyester polycarboxylic acid (G) produced from a polyhydric alcohol and a polyvalent carboxylic acid.
  • G polyester polycarboxylic acid
  • the isocyanate group-containing oligomer (Fy) is produced, as described above, at least one of the polyhydric alcohol, polyvalent carboxylic acid and polyvalent isocyanate contains a trivalent or higher monomer. That is, as the trivalent or higher monomer contained, any of the polyhydric alcohol, polyvalent carboxylic acid, and polyvalent isocyanate may contain a trivalent or higher monomer. Further, among the polyhydric alcohol, polyvalent carboxylic acid, and polyvalent isocyanate, a plurality of components may be trivalent or higher.
  • isocyanate group-containing oligomer (Fy) for example, an oligomer of a diol and a dicarboxylic acid represented by the general formula Ry is reacted with a polyvalent isocyanate containing a trivalent or higher polyvalent isocyanate such as polymeric MDI. What is obtained is mentioned.
  • polyester polycarboxylic acid (G) and polyvalent isocyanate There is no limitation in particular as polyester polycarboxylic acid (G), Polyester polycarboxylic acid (G) can be obtained by reaction of polyhydric carboxylic acid and polyhydric alcohol, for example. Examples of the polyvalent carboxylic acid include dicarboxylic acid.
  • dicarboxylic acids examples include oxalic acid, malonic acid, succinic acid, methyl succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and other aliphatic dicarboxylic acids (having 11 to 13 carbon atoms).
  • Hydrogenated dimer acid maleic acid, fumaric acid, itaconic acid, orthophthalic acid, isophthalic acid, terephthalic acid, toluene dicarboxylic acid, dimer acid, dicarboxylic acid such as het acid, and alkyl esters of these dicarboxylic acids.
  • alkyl ester of polycarboxylic acid such as dicarboxylic acid can react as a polyhydric alcohol in the same manner as polycarboxylic acid to obtain a polyester polycarboxylic acid (G)
  • alkyl esters of divalent carboxylic acids It is possible to use alkyl esters of divalent carboxylic acids.
  • polyvalent carboxylic acid a trivalent or higher polyvalent carboxylic acid having three or more carboxyl groups can be used.
  • dicarboxylic acids and trivalent or higher polyvalent carboxylic acids can be used alone or in combination of two or more.
  • polyhydric alcohol examples include diols having two hydroxyl groups.
  • diol examples include ethylene glycol, propylene glycol, trimethylene glycol, 1,4-butylene glycol, 1,3-butylene glycol, 1,2-butylene glycol, 1,5-pentanediol, and 3-methyl-1,5.
  • -Pentanediol 2,2-dimethyl-1,3-propanediol, neopentyl glycol, 1,6-hexanediol, 2,5-hexanediol, 2,2-diethyl-1,3-propanediol, 3, C2-22 alkanediols such as 3-dimethylolheptane, 2-ethyl-2-butyl-1,3-propanediol, 1,12-dodecanediol, 1,18-octadecanediol, such as 2-butene-1, 4-diol, 2,6-dimethyl-1-octene-3,8-diol, etc.
  • Aliphatic diols such as alkene diol.
  • diol examples include alicyclic diols such as 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, hydrogenated bisphenol A or its C2-4 alkylene oxide adduct.
  • diol examples include aromatic diols such as resorcin, xylylene glycol, bishydroxyethoxybenzene, bishydroxyethylene terephthalate, bisphenol A, bisphenol S, bisphenol F, and C2-4 alkylene oxide adducts of these bisphenols. It is done.
  • examples of the diol include polyether diols such as diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polyethylene polypropylene block glycol, and polytetramethylene ether glycol.
  • polyether diols such as diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polyethylene polypropylene block glycol, and polytetramethylene ether glycol.
  • polyhydric alcohol a trihydric or higher polyhydric alcohol having three or more hydroxyl groups can be used.
  • trihydric or higher polyhydric alcohol examples include glycerin, 2-methyl-2-hydroxymethyl-1,3-propanediol, 2,4-dihydroxy-3-hydroxymethylpentane, 1,2,6-hexanetriol, Such as trimethylolethane, trimethylolpropane, 2,4-dihydroxy-3- (hydroxymethyl) pentane, 2,2-bis (hydroxymethyl) -3-butanol and other aliphatic triols (8 to 24 carbon atoms) Examples include triols such as polyols having four or more hydroxyl groups such as pentaerythritol, dipentaerythritol, D-sorbitol, xylitol, and D-mannitol.
  • polyhydric alcohols can be used alone or in combination of two or more.
  • a diol is preferable.
  • polyester polycarboxylic acid obtained by reaction of dicarboxylic acid and diol is also described as polyester dicarboxylic acid.
  • the polyester polycarboxylic acid (G) is a mixture of polyvalent carboxylic acid and polyhydric alcohol, in which the acid group (carboxyl group, carboxylic acid ester) of the polyvalent carboxylic acid is in excess of the hydroxyl group of the polyhydric alcohol ( It can be obtained by blending at a ratio of COOH / OH exceeding 1.0 (preferably a ratio of 1.01 to 2.10) and subjecting them to an esterification reaction.
  • the esterification reaction is, for example, a condensation reaction or a transesterification reaction, and may be under known conditions. For example, an atmospheric pressure and an inert gas atmosphere are used, the reaction temperature is 100 to 250 ° C., and the reaction time is 1 to 50. It's time.
  • a catalyst an organic tin catalyst, an organic titanium catalyst, an amine catalyst, an alkali metal salt or an alkaline earth metal salt described later
  • a solvent or the like can be used as necessary.
  • the polyester polycarboxylic acid (G) thus obtained has a number average molecular weight of usually 200 to 20000, preferably 500 to 10,000.
  • the number average molecular weight can be measured by gel permeation chromatography (GPC).
  • GPC measurement the number average molecular weight of a peak including the molecular weight (retention time) of the maximum frequency of the measured chromatogram is calculated with reference to a calibration curve created using standard polyethylene glycol. Thereby, the number average molecular weight is calculated as a converted value of standard polyethylene glycol.
  • the acid value of the polyester polycarboxylic acid (G) is usually 5 to 500 mgKOH / g, preferably 10 to 250 mgKOH / g, and the hydroxyl value of the polyester polycarboxylic acid (G) is usually 5 mgKOH. / G or less, preferably 3 mgKOH / g or less.
  • the polyester polycarboxylic acid (G) has a viscosity at 80 ° C. measured with a cone plate viscometer, preferably 30000 mPa ⁇ s or less.
  • Polyester polycarboxylic acid (G) can be used alone or in combination of two or more.
  • polyester polycarboxylic acid (G) an oligomer of a diol and a dicarboxylic acid represented by the following general formula Ry is preferably used.
  • R 3 is the residue of a carboxylic acid HOOC-R 3 -COOH structure, represented by the following general formula (5) or (5 ') Specific examples of the carboxylic acid HOOC-R 3 -COOH structure Is preferred.
  • R 4 is the residue of a diol HO-R 4 -OH structure is preferably represented by the following general formula (6) Specific examples of diols HO-R 4 -OH structure.
  • the polyisocyanate is not particularly limited, and diisocyanate or trivalent or higher polyvalent isocyanate can be used.
  • diisocyanate examples include aliphatic diisocyanate, alicyclic diisocyanate, araliphatic diisocyanate, and aromatic diisocyanate.
  • aliphatic diisocyanate examples include hexamethylene diisocyanate (HDI), trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 1,2-, 2,3- or 1,3-butylene diisocyanate.
  • aliphatic diisocyanates such as 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate and 2,6-diisocyanatomethylcaproate.
  • alicyclic diisocyanates examples include 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 4,4'-, 2,4'- or 2,2'-dicyclohexylmethane.
  • Diisocyanate or mixtures thereof H 12 MDI
  • 1,3- or 1,4-bis (isocyanatomethyl) cyclohexane or mixtures thereof hydrogenated xylylene diisocyanate, H 6 XDI), 2,5- or 2,6- Bis (isocyanatomethyl) norbornane or a mixture thereof (NBDI)
  • alicyclic diisocyanates such as 6-cyclohexane diisocyanate.
  • araliphatic diisocyanate examples include 1,3- or 1,4-xylylene diisocyanate or a mixture thereof (XDI), 1,3- or 1,4-tetramethylxylylene diisocyanate or a mixture thereof (TMXDI), ⁇ , ⁇ '-diisocyanato-1,4-diethylbenzene, and the like.
  • Aromatic diisocyanates include, for example, 4,4′-, 2,4′- or 2,2′-diphenylmethane diisocyanate or mixtures thereof (MDI), 2,4- or 2,6-tolylene diisocyanate or mixtures thereof ( TDI), 3,3′-dimethoxybiphenyl-4,4′-diisocyanate, 1,5-naphthalene diisocyanate (NDI), m- or p-phenylene diisocyanate or mixtures thereof, 4,4′-diphenyl diisocyanate, 4,4 And aromatic diisocyanates such as' -diphenyl ether diisocyanate.
  • MDI 4,4′-, 2,4′- or 2,2′-diphenylmethane diisocyanate or mixtures thereof
  • TDI 2,4- or 2,6-tolylene diisocyanate or mixtures thereof
  • NDI 1,5-naphthalene diisocyanate
  • the diisocyanate includes the above-described diisocyanate multimers (for example, dimers, trimers, etc.), biuret-modified products produced by the reaction of the above diisocyanates or multimers with water, alcohols, or the above
  • generated by reaction with the above-mentioned polyhydric alcohol etc. are contained.
  • diisocyanates include sulfur-containing diisocyanates such as phenyl diisothiocyanate.
  • polyvalent isocyanate a trivalent or higher polyvalent isocyanate having three or more isocyanate groups can be used.
  • polymeric MDI polymethylene polyphenyl polyisocyanate
  • Can be used for Polymeric MDI is a mixture containing trivalent or higher polyvalent isocyanate (polynuclear MDI trinuclear or higher) and usually also divalent isocyanate (MDI).
  • polyisocyanates such as diisocyanates can be used alone or in combination of two or more. From the viewpoint of easy control of the side reaction, at least diisocyanate is preferably used as the polyvalent isocyanate, and aliphatic diisocyanate, alicyclic diisocyanate, and araliphatic diisocyanate are preferably used.
  • R 1 When the structure of the diisocyanate is OCN—R 1 —NCO, R 1 may be an alkylene group having 2 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, and an aliphatic group. From the viewpoint of economy, it is preferably at least one group selected from the group consisting of a C 6-20 divalent hydrocarbon group having a cyclic hydrocarbon group.
  • a specific example of the diisocyanate having an OCN—R 1 —NCO structure is preferably represented by the following general formula (7).
  • the polyvalent isocyanate is used.
  • the crosslinked ethylene copolymer (B) used in the present invention is a polymer usually obtained by crosslinking the ethylene copolymer (E), preferably using the ethylene copolymer (E) as a crosslinking agent.
  • Crosslinking is performed using an isocyanate group-containing oligomer (F) having an amide group, an ester group, and two or more isocyanate groups, or using a polyester polycarboxylic acid (G) and a polyvalent isocyanate as a crosslinking agent.
  • F isocyanate group-containing oligomer having an amide group, an ester group, and two or more isocyanate groups
  • G polyester polycarboxylic acid
  • a polyvalent isocyanate as a crosslinking agent.
  • the crosslinked ethylene copolymer (B) used in the present invention it is obtained by crosslinking the ethylene copolymer (E) with the isocyanate group-containing oligomer (F).
  • the functional group capable of reacting with the isocyanate group of the ethylene copolymer (E) reacts with the isocyanate group of the isocyanate group-containing oligomer (F) to form a crosslinking site (C).
  • the isocyanate group of the polyvalent isocyanate reacts to form a cross-linked site (C).
  • the crosslinked thermoplastic elastomer composition (D) may be obtained by mixing with the crystalline olefin polymer (A).
  • the crosslinked thermoplastic elastomer composition (D) of the present invention comprises the crystalline olefin polymer (A) and the above-mentioned
  • the isocyanate group-containing oligomer (F) is introduced into the mixture with the ethylene copolymer (E) as a crosslinking agent, or the polyester polycarboxylic acid (G) and the polyvalent isocyanate are introduced as a crosslinking agent. It is preferable to produce the union (E) by dynamic crosslinking.
  • the cross-linked thermoplastic elastomer composition (D) of the present invention contains the crystalline olefin polymer (A) and the cross-linked ethylene copolymer (B).
  • the crosslinkable thermoplastic elastomer composition (D) may contain a softener as a fluidity or hardness adjusting agent.
  • softeners include petroleum-based softeners such as process oil, lubricating oil, paraffin, liquid paraffin, polyethylene wax, polypropylene wax, petroleum asphalt, and petroleum jelly.
  • Coal tar softeners such as coal tar and coal tar pitch;
  • Fatty oil softeners such as castor oil, linseed oil, rapeseed oil, soybean oil, coconut oil; Tall oil; Sub, (Factis); Waxes such as beeswax, carnauba wax, lanolin;
  • Fatty acids and fatty acid salts such as ricinoleic acid, palmitic acid, stearic acid, barium stearate, calcium stearate, zinc laurate; Naphthenic acid; Pine oil, rosin or derivatives thereof; Synthetic polymer materials such as terpene resin, petroleum resin, coumarone indene resin, atactic polypropylene;
  • Ester softeners such as dioctyl phthalate, dioct
  • the blending amount of the softener in the crosslinked thermoplastic elastomer composition (D) is usually 0 when the total of the crystalline olefin polymer (A) and the crosslinked ethylene copolymer (B) is 100 parts by weight.
  • the range of ⁇ 60 parts by weight, preferably 0 to 50 parts by weight is preferred.
  • a softening agent is added to the crosslinked thermoplastic elastomer composition (D)
  • a softening agent is added to the mixture of the crystalline olefin polymer (A) and the ethylene copolymer (E).
  • a softener may be blended in the mixture of the crystalline olefin polymer (A) and the crosslinked ethylene copolymer (B).
  • the cross-linked thermoplastic elastomer composition (D) according to the present invention contains additives such as slip agents, fillers, antioxidants, weathering stabilizers, colorants, compatibilizers, and the like as necessary. You may mix
  • Such an additive may be blended in the production process of the cross-linked thermoplastic elastomer composition (D), and is added to the mixture of the crystalline olefin polymer (A) and the cross-linked ethylene copolymer (B). You may mix
  • slip agent examples include fatty acid amide, silicone oil, glycerin, wax, and paraffinic oil.
  • filler examples include conventionally known fillers, specifically, carbon black, clay, talc, calcium carbonate, kaolin, diatomaceous earth, silica, alumina, graphite, glass fiber, and the like.
  • compatibilizing agent examples include ethylene / ethylene glycol copolymers and propylene / ethylene glycol copolymers.
  • the amount of the compatibilizing agent is usually 100 parts by weight when the total of the crystalline olefin polymer (A) and the crosslinked ethylene copolymer (B) is 100 parts by weight.
  • the range of 0 to 30 parts by weight, preferably 0 to 20 parts by weight is preferred.
  • the cross-linked thermoplastic elastomer composition (D) is preferably a mixture of the crystalline olefin polymer (A) and the ethylene copolymer (E), an amide group, an ester group, Introducing an isocyanate group-containing oligomer (F) having one or more isocyanate groups or introducing a polyester polycarboxylic acid (G) and a polyvalent isocyanate as a crosslinking agent to dynamically crosslink an ethylene copolymer (E) Can be obtained.
  • the sea phase is the crystalline olefin polymer (A)
  • at least a part of the island phase is the crosslinked ethylene copolymer (B). It is preferable to form a sea-island structure.
  • a molded body formed from the cross-linked thermoplastic elastomer composition (D) that forms a sea-island structure is preferable because of its excellent physical properties and moldability.
  • the cross-linked thermoplastic elastomer composition (D) preferably forms a sea-island structure, but the island phase may be at least partly a cross-linked ethylene copolymer. You may have the island phase formed.
  • the island phase formed from other components include an island phase formed from an isocyanate group-containing oligomer (F), an island phase formed from a polyester polycarboxylic acid (G) and a polyvalent isocyanate.
  • the weight ratio (A / B) between the crystalline olefin polymer (A) and the crosslinked ethylene copolymer (B) contained in the crosslinked thermoplastic elastomer composition (D) is usually 10 / It is 90 to 50/50, preferably 15/85 to 45/55, and more preferably 20/80 to 40/60. Within the above range, it is preferable because of excellent physical properties and moldability.
  • isocyanate group containing oligomer (F) was introduce
  • the amount of the crosslinked ethylene copolymer (B) is determined from the amount of the ethylene copolymer (E) and the isocyanate group-containing oligomer (F). Is calculated.
  • the polyester copolymer (G) and the polyvalent isocyanate are introduced as a crosslinking agent and the ethylene copolymer (E) is dynamically crosslinked, the ethylene copolymer (E),
  • the amount of the crosslinked ethylene copolymer (B) is calculated from the amount of the polyester polycarboxylic acid (G) and the polyvalent isocyanate.
  • the cross-linked thermoplastic elastomer composition (D) of the present invention forms a sea-island structure in which the sea phase is a crystalline olefin polymer (A) and at least a part of the island phase is a cross-linked ethylene copolymer (B). It is preferable to do.
  • the observation that the crosslinked thermoplastic elastomer composition (D) forms a sea-island structure can be performed by TEM observation of the obtained crosslinked thermoplastic elastomer composition (D).
  • the crosslinked thermoplastic elastomer composition (D) is subjected to trimming and used as a sample, and then the sample is stained with RuO 4 . Then, an ultrathin section was prepared from the frozen sample, and carbon reinforcement was performed to obtain a measurement sample.
  • crystalline polyolefin is difficult to be colored by dyeing with RuO 4 , and when the sea phase is lighter than the island phase, the sea phase is a crystalline olefin polymer (A). It can be confirmed that at least a part of the island phase is the crosslinked ethylene copolymer (B).
  • the island phase has an island phase formed from other components other than the crosslinked ethylene copolymer (B)
  • two or more types of island phases having different color densities (shades) are present.
  • the degree of coloring varies depending on the structure, type and degree of crosslinking. Accordingly, at least one of the dark island phases is the crosslinked ethylene copolymer (B).
  • the mixture obtained by melt-kneading the crystalline olefin polymer (A) and the ethylene copolymer (E) in advance under a nitrogen stream is similar to the above-mentioned crosslinked thermoplastic elastomer composition (D).
  • the sea-island structure can also be confirmed when performing TEM observation.
  • the island phase was less stained than the sea phase. That is, as described above, since the crystalline polyolefin is difficult to be colored by dyeing with RuO 4 , the island phase is crystalline olefin in the mixture of the crystalline olefin polymer (A) and the ethylene copolymer (E). It was a polymer (A) and the sea phase was judged to be an ethylene copolymer (E).
  • an isocyanate group-containing oligomer (F) is introduced as a crosslinking agent into a mixture of the crystalline olefin polymer (A) and the ethylene copolymer (E), or a polyester polycarboxylic acid as a crosslinking agent. It was found that the sea-island phase was reversed by introducing (G) and a polyvalent isocyanate and dynamically crosslinking the ethylene copolymer (E).
  • the cross-linked thermoplastic elastomer composition (D) of the present invention preferably has a melt processing temperature of 200 ° C. or higher.
  • the cross-linked thermoplastic elastomer composition (D) of the present invention has excellent oil resistance because the cross-linked site (C) of the cross-linked ethylene copolymer (B) has hydrophilicity.
  • it since it has mechanical properties equivalent to those of conventional cross-linked thermoplastic elastomer compositions, it can be used as a modifier for engineering plastics used in various molded products and automobile parts.
  • a test piece of 20 mm ⁇ 20 mm ⁇ 2 mm was prepared from a 2 mm thick sheet obtained by press-molding the crosslinked thermoplastic elastomer composition (D) at 200 ° C., and then applied to JIS No. 3 oil at 70 ° C. for 72 hours.
  • the weight change rate ⁇ V can be calculated from the weight before and after the immersion according to the formula (I).
  • Tw is the weight of the test piece after immersion
  • Td is the weight of the test piece before immersion.
  • the weight change rate ⁇ V determined by the above formula (I) of the crosslinked thermoplastic elastomer composition (D) is usually 100 to 1%, preferably 50 to 1%.
  • the cross-linked thermoplastic elastomer composition (D) of the present invention is excellent in hardness.
  • the Shore A hardness measured according to JIS K6253 of the crosslinked thermoplastic elastomer composition (D) is usually 100 to 60, preferably 95 to 60.
  • the crosslinked thermoplastic elastomer composition (D) of the present invention has mechanical properties equivalent to those of the conventional crosslinked thermoplastic elastomer composition.
  • the tensile strength and elongation at break when the tensile test was performed under the following conditions are usually 8 MPa or more and 300% or more, Preferably, it is 10 MPa or more and 500% or more.
  • the tensile test was performed by using the cross-linked thermoplastic elastomer composition (D) to produce a sheet with a press molding machine, punching out a JIS No. 3 test piece, and using the test piece under a tensile speed of 500 mm / min. Do.
  • a typical production method of the crosslinked thermoplastic elastomer composition (D) is that an isocyanate group-containing oligomer (as a crosslinking agent) is added to the mixture of the crystalline olefin polymer (A) and the ethylene copolymer (E). It is characterized in that F) is introduced or a polyester polycarboxylic acid (G) and a polyvalent isocyanate are introduced as a crosslinking agent to dynamically crosslink the ethylene copolymer (E).
  • the crystalline olefin polymer (A) and the ethylene copolymer (E) are mixed to obtain a mixture, it is preferable to knead in a non-open type apparatus. Moreover, when obtaining a mixture, it is preferable to carry out in inert gas atmosphere, such as nitrogen and a carbon dioxide gas.
  • the kneading temperature at the time of kneading is equal to or higher than the temperature at which the crystalline olefin polymer (A) can be sufficiently melted, and when the ethylene copolymer (E) has a carboxyl group, the adjacent carboxyl group is dehydrated,
  • the temperature is usually 170 to 280 ° C., preferably 190 to 240 ° C., in order to completely close the ring to form a carboxylic acid anhydride group.
  • the kneading time for kneading is usually 1 to 20 minutes, preferably 1 to 10 minutes.
  • the shear forces exerted in performing kneading 10 ⁇ 100,000sec -1 as the shear rate is preferably 100 ⁇ 50,000sec -1.
  • a mixing roll an intensive mixer (for example, a Banbury mixer, a kneader), a single-screw or twin-screw extruder can be used, and a non-open type apparatus is preferable.
  • an intensive mixer for example, a Banbury mixer, a kneader
  • a single-screw or twin-screw extruder can be used, and a non-open type apparatus is preferable.
  • a non-open type apparatus is preferable.
  • it may be a lab plast mill.
  • the crystalline olefin polymer (A) obtained by mixing the crystalline olefin polymer (A) and the ethylene copolymer (E).
  • an ethylene copolymer (E) an isocyanate group-containing oligomer (F) is introduced as a crosslinking agent, or a polyester polycarboxylic acid (G) and a polyvalent isocyanate are introduced as a crosslinking agent.
  • the copolymer (E) is dynamically cross-linked, and dynamic cross-linking means cross-linking by kneading in a molten state (hereinafter also referred to as melt kneading).
  • a polyester polycarboxylic acid (G) and a polyvalent isocyanate are introduced as a crosslinking agent into a mixture of the crystalline olefin polymer (A) and the ethylene copolymer (E), and the ethylene copolymer (E) is moved.
  • the polyester polycarboxylic acid (G) is preferably introduced into the mixture of the crystalline olefin polymer (A) and the ethylene copolymer (E) prior to the polyvalent isocyanate.
  • a mixture of a crystalline olefin polymer (A) and an ethylene copolymer (E) and a polyester polycarboxylic acid (G) are kneaded to obtain a kneaded product, It is preferable to knead with a polyvalent isocyanate.
  • the kneading temperature when kneading the mixture of the crystalline olefin polymer (A) and the ethylene copolymer (E) with the polyester polycarboxylic acid (G) is usually 100 to 240 ° C., preferably 120 to 210 ° C.
  • the kneading time for kneading is usually 1 to 20 minutes, preferably 1 to 10 minutes.
  • the shear force applied at the time of kneading, 10 ⁇ 100,000sec -1 as the shear rate is preferably 100 ⁇ 50,000sec -1.
  • a mixing roll an intensive mixer (for example, a Banbury mixer, a kneader), a single-screw or twin-screw extruder can be used, and a non-open type apparatus is preferable.
  • an intensive mixer for example, a Banbury mixer, a kneader
  • a single-screw or twin-screw extruder can be used, and a non-open type apparatus is preferable.
  • a non-open type apparatus is preferable.
  • it may be a lab plast mill.
  • polyvalent isocyanate is introduced into a kneaded product obtained by kneading a mixture of a crystalline olefin polymer (A) and an ethylene copolymer (E) and a polyester polycarboxylic acid (G). Or immediately before that, it is preferable to add an amidation catalyst to the kneaded product.
  • an alkali metal salt or an alkaline earth metal salt is preferably used.
  • the alkali metal salt include lithium fluoride, lithium chloride, lithium hydroxide, sodium fluoride, sodium chloride, sodium hydroxide, potassium fluoride, potassium chloride, and potassium hydroxide.
  • the alkaline earth metal salt include calcium stearate, calcium perchlorate, calcium chloride, calcium hydroxide, magnesium stearate, magnesium perchlorate, magnesium chloride, magnesium hydroxide and the like.
  • the amidation catalyst can be used alone or in combination of two or more.
  • As the amidation catalyst calcium stearate, calcium perchlorate, magnesium stearate, and magnesium perchlorate are preferable from the viewpoint of amide selectivity in the amidation reaction, and magnesium stearate is more preferable.
  • amidation catalyst a conventionally known catalyst can be used for the production of polyurethane foam (see, for example, Nobutaka Matsudaira and Tetsuro Maeda, “Polyurethane” No. 8 127-129, Tsuji Shoten (1964)). ).
  • catalysts used in the production of polyurethane foam include fats such as triethylenediamine, N, N, N ′, N′-tetramethylhexamethylenediamine, bis (N, N-dimethylaminoethyl ether), and morpholines.
  • Group amines organotin compounds such as tin octoate and dibutyltin dilaurate, alkali metal salts of carboxylic acids such as potassium acetate and sodium acetate, triethylamine, triethylenediamine, 1,3,5-tris (dimethylaminopropyl) ) -S-hexahydrotriazine, 2,4,6-tris (dimethylaminomethyl) phenol, tertiary amine catalyst such as 1,8-diazabicyclo [5,4,0] undecene-7, carboxylic acid and tertiary A quaternary ammonium salt composed of an amine is used. These catalysts can be used alone or in combination of two or more.
  • amidation catalyst a phosphazenium compound represented by the following chemical formula (X), a phosphazenium salt of an active hydrogen compound represented by the following chemical formula (Y), or a phosphazenium hydroxide represented by the following chemical formula (Z) may be used. Good. When these amidation catalysts are used, the reactivity between an isocyanate group and a carboxyl group becomes extremely high, and amidation can be efficiently performed. Amidation catalysts can be used alone or in combination of two or more.
  • each R 1 is independently a hydrocarbon group having 1 to 10 carbon atoms, and two R 1 on the same nitrogen atom may be bonded to each other to form a ring structure.
  • X is included. (The amount of water molecules is expressed in molar ratio and is 0 to 5.0.)
  • n is an integer of 1 to 8 and represents the number of phosphazenium cations
  • Z n ⁇ is the elimination of n protons from an active hydrogen compound having an active hydrogen atom on an oxygen or nitrogen atom.
  • Examples of the phosphine oxide compound represented by the chemical formula (X) include tris [tris (dimethylamino) phosphoranylideneamino] phosphine oxide, tris (tripyrrolidinophosphoranylideneamino) phosphine oxide, tris (tripiperidinophospho). Ranylideneamino) phosphine oxide and the like, and tris [tris (dimethylamino) phosphoranylideneamino] phosphine oxide is preferable.
  • Examples of the phosphazenium salt of the active hydrogen compound represented by the chemical formula (Y) include dimethylaminotris [tris (dimethylamino) phosphoranylideneamino] phosphonium tetrafluoroborate, tetrakis [tri (pyrrolidin-1-yl) phosphoranylidene.
  • Examples include amino] phosphonium tetrafluoroborate, tetrakis [tris (dimethylamino) phosphoranylideneamino] phosphonium chloride, diethylaminotris [tris (diethylamino) phosphoranylideneamino] phosphonium tetrafluoroborate, and preferably tetrakis [tris ( Dimethylamino) phosphoranylideneamino] phosphonium chloride.
  • Examples of the phosphazenium hydroxide represented by the chemical formula (Z) include tetrakis [tris (dimethylamino) phosphoranylideneamino] phosphonium hydroxide, (dimethylamino) tris [tris (dimethylamino) phosphoranylideneamino] phosphonium hydroxide. Of these, tetrakis [tris (dimethylamino) phosphoranylideneamino] phosphonium hydroxide is preferred.
  • the amount of these amidation catalysts used is such that when the isocyanate group-containing oligomer (F) is introduced into a mixture of the crystalline olefin polymer (A) and the ethylene copolymer (E), the ethylene copolymer It is 0.001 to 10 mol, preferably 0.005 to 2 mol, per 100 mol of the functional group that can react with an isocyanate group such as a carboxyl group in (E).
  • the amount of the amidation catalyst used is the amount of kneaded material obtained by kneading the mixture of the crystalline olefin polymer (A) and the ethylene copolymer (E) and the polyester polycarboxylic acid (G).
  • the amount of the functional group that the ethylene copolymer (E) can react with an isocyanate group such as a carboxyl group and the carboxyl group of the polyester polycarboxylic acid (G) The amount is 0.001 to 10 mol, preferably 0.005 to 2 mol, per 100 mol of the total amount.
  • the amount of the amidation catalyst used is less than this, the amidation reaction does not proceed sufficiently and the productivity may decrease. On the other hand, at more than this, the amide selectivity of the amidation reaction does not change, which may be economically disadvantageous.
  • dynamic crosslinking is preferably performed in a non-open type apparatus.
  • the dynamic crosslinking is preferably performed in an inert gas atmosphere such as nitrogen or carbon dioxide.
  • the kneading temperature at the time of dynamic crosslinking is not less than the temperature at which the crystalline olefin polymer (A) can be sufficiently melted, and suppresses the self-reaction of the isocyanate group-containing oligomer (F) and the isocyanate group of the polyvalent isocyanate.
  • the viscosity of the isocyanate group-containing oligomer (F) and the polyvalent isocyanate is desirably not suitable for melt kneading, and is preferably 170 to 240 ° C, more preferably 190 to 230 ° C.
  • the kneading time at the time of dynamic crosslinking is usually 1 to 20 minutes, preferably 3 to 10 minutes. Further, the applied shearing force when performing the dynamic crosslinking, 10 ⁇ 100,000sec -1 as the shear rate is preferably 100 ⁇ 50,000sec -1.
  • a lab plast mill for example, a lab plast mill, a mixing roll, an intensive mixer (for example, a Banbury mixer, a kneader), a single screw extruder, a twin screw extruder, or the like can be used. Although it can be used, a non-open device is preferred.
  • the ethylene copolymer (E) is crosslinked with the isocyanate group-containing oligomer (F) or the polyester polycarboxylic acid (G) and the polyvalent isocyanate by dynamic crosslinking, and the crosslinked ethylene copolymer ( B), and a crosslinked thermoplastic elastomer composition (D) can be produced.
  • the production of the cross-linked thermoplastic elastomer composition (D) is preferably carried out continuously using the single screw extruder, twin screw extruder or the like.
  • a crystalline olefin polymer (A) and an ethylene copolymer (E) are supplied to a twin screw extruder and the like, mixed, and then an isocyanate group-containing oligomer (F) or a polyester polycarboxylic acid (G) and polyisocyanate are supplied using a side foot etc., and the method of carrying out dynamic crosslinking of the ethylene copolymer (E) is mentioned.
  • the production of the crosslinked thermoplastic elastomer composition (D) can be continuously performed including the production of the ethylene copolymer (E).
  • ethylene copolymer (E) Specific examples include an ethylene / ⁇ -olefin copolymer, an ethylene / ⁇ -olefin / non-conjugated polyene copolymer, and an unsaturated carboxylic acid before graft modification described in the ethylene copolymer (E-1).
  • a method of dynamically crosslinking the ethylene copolymer (E) by supplying using side feet or the like can be mentioned.
  • Etc. are supplied to a twin-screw extruder or the like to perform modification, and after obtaining an ethylene copolymer (E), the crystalline olefin polymer (A) is supplied using a side foot or the like, and mixing is performed. Next, the polyester polycarboxylic acid (G) is supplied using a side foot or the like, and the polyvalent isocyanate is supplied using a side foot or the like to dynamically crosslink the ethylene copolymer (E). Can be mentioned.
  • the temperature at which the crystalline olefin polymer (A) and the ethylene copolymer (E) are mixed is equal to or higher than the temperature at which the crystalline olefin polymer (A) can be sufficiently melted, and the viscosity is melted. It is desirable that it is not unsuitable for kneading, preferably 170 to 240 ° C, more preferably 190 to 230 ° C.
  • the isocyanate group-containing oligomer (F) and the polyvalent isocyanate are highly reactive with water, so that moisture can be surely excluded. desirable.
  • an isocyanate group-containing oligomer (F) or a polyester polycarboxylic acid (G) and a polyvalent isocyanate are converted into a crystalline olefin polymer (A) under an inert gas atmosphere such as nitrogen or carbon dioxide. It is preferable to add to the mixture with the ethylene copolymer (E).
  • the cross-linked thermoplastic elastomer composition (D) In the production of the cross-linked thermoplastic elastomer composition (D), raw materials with high hygroscopicity such as isocyanate group-containing oligomer (F), polyester polycarboxylic acid (G), and optionally used compatibilizer are used as raw materials. It is preferable to perform a dehumidification treatment before use. If water is present during the production of the cross-linked thermoplastic elastomer composition (D), the isocyanate group reacts with water to form a urea bond with poor heat resistance, an amino group, or CO2 generation. There is a case. For this reason, it is preferable that water is not present as much as possible when the crosslinked thermoplastic elastomer composition (D) is produced.
  • the highly hygroscopic raw material is treated at a temperature of 70.
  • a method of holding for 8 to 24 hours under the conditions of up to 120 ° C. and pressure of 0.1 to 10 kPa is preferred.
  • thermoplastic elastomer composition (D) it is preferable to rapidly cool the product taken out from an extruder or the like after dynamic crosslinking. Any method may be used for the rapid cooling as long as it is a known method.
  • the amount of the ethylene copolymer (E) and the isocyanate group-containing oligomer (F) used for the production of the cross-linked thermoplastic elastomer composition (D) is the amount of the ethylene copolymer (E) used for the production.
  • the ratio (isocyanate group / functional group capable of reacting with an isocyanate group) of the amount [mol] of the functional group capable of reacting with an isocyanate group and the amount [mol] of the isocyanate group contained in the isocyanate group-containing oligomer (F) is 0. .3 to 2.5, preferably 0.5 to 2.0, and more preferably 0.7 to 1.5.
  • the ratio (isocyanate group / functional group capable of reacting with isocyanate group) is 1, the number of isocyanate groups and the number of functional groups capable of reacting with isocyanate groups are equivalent, which is particularly preferable.
  • the functional group capable of reacting with the isocyanate group is a functional group that easily dehydrates to form a carboxylic anhydride group, such as a carboxyl group derived from maleic acid
  • the functional group capable of reacting with an isocyanate group in the functional group capable of reacting with carboxylic acid anhydride is an amount in terms of a carboxylic acid anhydride group. Further, it is desirable to confirm the ratio of ring opening (carboxyl group) and ring closing (carboxylic anhydride group) by IR or the like.
  • the amount of the isocyanate group-containing oligomer (F) used in the production of the crosslinked thermoplastic elastomer composition (D) is the weight ratio of the crystalline olefin polymer (A) and the crosslinked ethylene copolymer (B).
  • the ratio is determined by the ratio of the amount of the group to the amount of the isocyanate group (isocyanate group / functional group capable of reacting with the isocyanate group).
  • the crystalline olefin polymer (A) and the ethylene copolymer (E) are used.
  • 10 to 80 wt%, preferably 15 to 60 wt%, more preferably 100 wt% of the total of the isocyanate group-containing oligomer (F) Ku is 30 ⁇ 50wt%.
  • the amount of the ethylene copolymer (E) and the polyester polycarboxylic acid (G) used for the production of the cross-linked thermoplastic elastomer composition (D) is the amount of the ethylene copolymer (E) used for the production.
  • the functional group capable of reacting with the isocyanate group of the compound (E)) is 1.0 to 6.0, preferably 1.0 to 4.0, more preferably 1.0 to 3.0. is there.
  • the amount of the ethylene copolymer (E), the polyester polycarboxylic acid (G), and the polyvalent isocyanate used for the production of the crosslinked thermoplastic elastomer composition (D) is the same as that of the ethylene copolymer ( E) the amount [mol] of the functional group capable of reacting with the isocyanate group possessed by the amount [mol] of the carboxyl group possessed by the polyester polycarboxylic acid (G), and the amount of the isocyanate group possessed by the polyvalent isocyanate [ mol] (the sum of the amount of the functional group capable of reacting with the isocyanate group of the isocyanate group / ethylene copolymer (E) and the amount of the carboxyl group of the polyester polycarboxylic acid (G)) is 1 0.0 to 5.0, preferably 1.05 to 3.0, and more preferably 1.1 to 2.5.
  • the ratio (isocyanate group / ethylene) is carboxylic acid. It is the amount in terms of anhydride group. Further, it is desirable to confirm the ratio of ring opening (carboxyl group) and ring closing (carboxylic anhydride group) by IR or the like.
  • the amount of the polyester polycarboxylic acid (G) and the polyvalent isocyanate used for the production of the crosslinked thermoplastic elastomer composition (D) is the same as that of the crystalline olefin polymer (A) and the crosslinked ethylene copolymer (B).
  • the molecular weight of the polyester polycarboxylic acid (G) and the polyvalent isocyanate group, the amount of the functional group capable of reacting with the isocyanate group of the ethylene copolymer (E), and the polyester polycarboxylic acid (G) The sum of the amount of carboxyl groups, the molecular weight of the ethylene copolymer (E), the amount of functional groups capable of reacting with the isocyanate group, and the amount of carboxyl groups of the polyester polycarboxylic acid (G), Ratio (the amount of the functional group capable of reacting with the isocyanate group of the isocyanate group / ethylene copolymer (E) and the polyester) Terpolycarboxylic acid (G) with the amount of carboxyl groups), preferably crystalline olefin polymer (A), ethylene copolymer (E) and polyester polycarboxylic acid (G) The amount of the polyester polycarboxylic acid (G) and the polyvalent isocyanate is 10 to the
  • the molded product of the present invention is formed from the crosslinked thermoplastic elastomer composition (D).
  • crosslinkable thermoplastic elastomer composition (D) Since the crosslinkable thermoplastic elastomer composition (D) has mechanical properties (tensile strength, elongation, etc.) equivalent to those of conventional crosslinkable thermoplastic elastomers, it can be used for various applications. In addition, since the crosslinkable thermoplastic elastomer composition (D) has excellent oil resistance as compared with the conventional crosslinkable thermoplastic elastomer, it is difficult to use the conventional crosslinkable thermoplastic elastomer. Can also be used.
  • the crosslinked thermoplastic elastomer composition (D) is lightweight, heat resistant, flexible, rubber elastic, moldability, low temperature characteristics, weather resistance, amphiphilicity, compatibility, reformability, and easy adhesion. Excellent adhesion.
  • the crosslinked thermoplastic elastomer composition (D) is excellent in molding processability, it can be molded by various molding methods.
  • the molding include extrusion molding, injection molding, compression molding, calendar molding, vacuum molding, press molding, stamping molding, and blow molding.
  • blow molding include breath blow molding, direct blow molding, injection blow molding, and the like.
  • the molded product of the present invention can be obtained by molding the crosslinked thermoplastic elastomer composition (D).
  • it can be obtained by molding the crosslinked thermoplastic elastomer composition (D) by a conventional plastic molding method such as extrusion molding, injection molding or compression molding.
  • scraps and burrs generated by such a molding method can be recovered and reused.
  • Examples of the molded body of the present invention include bumper parts, body panels, side shields, glass run channels, instrument panel skins, door skins, ceiling skins, weatherstrip materials, hoses, steering wheels, boots, wire harness covers, seat adjuster covers.
  • Automotive parts such as electric wire coverings, connectors, cap plugs, etc .; footwear such as shoe soles and sandals; leisure items such as swimming fins, underwater glasses, golf club grips, baseball bat grips, gaskets, waterproof cloth, Belts, garden hoses; various civil engineering and architectural gaskets and sheets.
  • the molded article of the present invention is particularly suitable for uses requiring oil resistance, and automotive parts such as hoses, boots, wire harness covers, and sheet adjuster covers are particularly preferred uses.
  • automobile parts are preferable as the molded body of the present invention, and more detailed examples of the automobile parts include a mechanism member, an interior member, an exterior member, and other members.
  • Mechanical members include CVJ boots, suspension boots, rack and pinion boots, steering rod covers, AT cushions, AT slide covers, leaf spring bushes, ball joint retainers, timing belts, V belts, engine room hoses, air ducts, air Examples include a bag cover and a propeller shaft cover material.
  • Interior materials include various skin materials (instrumental panel, door trim, ceiling, rear pillar), console box, armrest, airbag case lid, shift knob, assist grip, side step mat, reclining cover, trunk seat, seat belt buckle, Examples include lever slide plates, door latch strikers, seat belt parts, and switches.
  • various molding materials inner / outer window moldings, roof moldings, belt moldings, side trim moldings
  • door seals body seals
  • glass run channels glass run channels
  • mudguards kicking plates
  • step mats number plate housings
  • silencer gears Control cable covers and emblems.
  • Other members include air duct packing, air duct hose, air duct cover, air intake pipe, air dam skirt, timing belt cover seal, opening seal / trunk seal member, bonnet cushion, fuel tank band, cable and the like.
  • the molded article of the present invention may be miscellaneous goods, daily necessities, or these members.
  • Miscellaneous goods, daily necessities or these components include grips (eg, ballpoint pens, mechanical pencils, toothbrushes, cups, disposable razors, handrails, cutters, power tools, screwdrivers, power cables, door grips), assist grips, shift knobs, toys , Notebook skins, gaskets (for example, gaskets for tableware, tappers, etc.), various rubber feet, sports equipment (for example, sheathed soles, ski boots, skis, ski bindings, ski soles, golf balls, goggles members, snowboard members, snowboard shoes) , Snowboard bindings, surfboard members, body boards, banana boats, kiteboards, snorkeling members, water skiing members, parasailing members, wakeboard members and other sports equipment), belts ( In example, belts and watches belt, fashion belt), hairbrush, bath panel button sheet, cap, shoes of the inner sole, and the like health equipment member.
  • grips eg, ball
  • the molded article of the present invention may be a home appliance / electronic information member.
  • Home appliances / electronic information members include hoses (for example, hoses for washing machines, futon dryers, air conditioners, etc.), anti-vibration rubber for air conditioner outdoor units / AV devices, mobile phone members (for example, earphone covers, antenna covers, Mobile phone members such as connector covers), keypads of various remote controls, silencer gears, grips (for example, grips such as digital cameras and videos), and the like.
  • the molded product of the present invention may be an industrial material.
  • Industrial materials include architectural gaskets, waterproof sheets, water shielding sheets, suspensions, protective sheets, waterproofing materials, hoses (for example, hoses such as hydraulic hoses, pneumatic hoses, fire hoses), conveyor belts, gaskets, etc. Can be mentioned.
  • the crosslinkable thermoplastic elastomer composition (D) is excellent in amphiphilicity, it is compatible with both nonpolar resins and polar resins, and can be used by mixing with various resins. That is, the cross-linked thermoplastic elastomer composition (D) can be used as a modifier.
  • the cross-linked thermoplastic elastomer composition (D) and any resin for example, polypropylene, polyethylene, olefin elastomer, It is obtained by mixing styrene resin, ester resin, amide resin, acrylonitrile / butadiene / styrene (ABS) resin, polycarbonate, polyvinylidene chloride, and thermoplastic polyurethane (TPU)).
  • any resin for example, polypropylene, polyethylene, olefin elastomer, It is obtained by mixing styrene resin, ester resin, amide resin, acrylonitrile / butadiene / styrene (ABS) resin, polycarbonate, polyvinylidene chloride, and thermoplastic polyurethane (TPU)).
  • ABS acrylonitrile / butadiene / styrene
  • TPU thermoplastic polyurethane
  • the arbitrary resin is at least one selected from nonpolar resins (for example, polypropylene, polyethylene, olefin elastomer).
  • nonpolar resins for example, polypropylene, polyethylene, olefin elastomer.
  • the composition is preferable because it is excellent in electrostatic (chargeability), water absorption, adhesiveness, and wettability (paintability and colorability) as compared with a nonpolar resin.
  • an arbitrary resin is a polar resin (for example, a styrene resin, an ester resin, an amide resin).
  • a polar resin for example, a styrene resin, an ester resin, an amide resin.
  • ABS acrylonitrile / butadiene / styrene
  • TPU thermoplastic polyurethane
  • the composition obtained by mixing the crosslinked thermoplastic elastomer composition (D) and an arbitrary resin, when the arbitrary resin is a polar resin and a nonpolar resin, the composition Is preferable because the cross-linked thermoplastic elastomer composition (D) acts as a compatibilizing agent.
  • composition obtained by mixing the cross-linked thermoplastic elastomer composition (D) and an arbitrary resin is excellent in adhesion to other resins and other materials.
  • the molded body of the present invention may be a laminate.
  • a laminate having a layer formed from the cross-linked thermoplastic elastomer composition (D) and a layer formed from another resin or other material may be a cross-linked thermoplastic elastomer composition (D )
  • an arbitrary resin may be used, and a laminate having a layer formed from a composition obtained by mixing an arbitrary resin and a layer formed from another resin or another material may be used.
  • the other materials include metals (for example, copper, aluminum, gold, silver, etc.) and inorganic substances (for example, silica, titanium oxide, etc.).
  • the above-mentioned various molded object may be formed from the composition obtained by mixing the said bridge
  • molded body of the present invention examples include known extrusion molding, injection molding, inflation molding, blow molding, extrusion blow molding, injection blow molding, press molding, vacuum molding, calendar molding, foam molding, powder slush molding, and the like. And a molded body obtained by the thermoforming method.
  • the molded body of the present invention will be described below by giving several examples.
  • the shape and product type of the molded body are not particularly limited.
  • a sheet, a molding, a pipe, a hose, an electric wire covering material, A filament, a bottle, a tube, etc. are mentioned.
  • these molded products are used especially for seats, skin materials, automotive inner and outer layer materials, building materials, various automotive boots, automotive moldings, air ducts, automotive instrument panels, interior trim materials such as door trims, etc. It is preferable to be used.
  • thermoplastic elastomer composition (D) When extruding the cross-linked thermoplastic elastomer composition (D), conventionally known extruding equipment and molding conditions can be employed. For example, a single screw extruder, a kneading extruder, a ram extruder, a gear can be used. The melted composition can be formed into a desired shape by extruding it from a specific die or the like using an extruder or the like.
  • Sheets, pipes, hoses, wire covering materials, and tubes formed from the crosslinked thermoplastic elastomer composition (D) have oil resistance, mechanical properties, light weight, flexibility, heat resistance, stretchability, and aging resistance. It is excellent and can be used widely.
  • the sheet may be a laminate formed from a plurality of layers.
  • the sheet has at least one layer formed from the crosslinked thermoplastic elastomer composition (D). It only has to be.
  • Examples of layers other than the layer formed from the crosslinked thermoplastic elastomer composition (D) of the laminate include polyolefins such as polyethylene, polypropylene, and TPO (thermoplastic polyolefin), polyamides, polyesters, polystyrenes, thermoplastic polyurethanes, and the like. And polar metals, metals such as aluminum, iron, copper, gold, silver, silica, and titanium oxide, and inorganic substances. Since the crosslinked thermoplastic elastomer composition (D) is amphiphilic, it can be laminated on nonpolar resins and polar resins. Furthermore, the crosslinked thermoplastic elastomer composition (D) is useful as an adhesive material that can be bonded to both nonpolar resins and polar resins regardless of the resin.
  • the molded article of the present invention is an injection molded article
  • the crosslinked thermoplastic elastomer composition (D) is injected into various shapes by adopting known conditions using a conventionally known injection molding apparatus. It can be manufactured by molding.
  • the injection-molded product is excellent in oil resistance, mechanical properties, lightness, flexibility, heat resistance, stretchability, and aging resistance, and can be widely used.
  • the blow molded article of the present invention is a blow molded article, by adopting known conditions using a conventionally known blow molding apparatus, blow molding the crosslinked thermoplastic elastomer composition (D) Can be manufactured.
  • the blow molded article made of the crosslinked thermoplastic elastomer composition (D) may be a molded article having a multilayer structure.
  • the molded body having the multilayer structure has at least one layer formed from the crosslinked thermoplastic elastomer composition (D).
  • the blow molded article is excellent in oil resistance, mechanical properties, lightness, flexibility, heat resistance, stretchability, and aging resistance, and can be widely used for automobile boots.
  • examples of the press molded body include a mold stamping molded body.
  • examples of the mold stamping molded body include a molded body obtained by press-molding a base material and a skin material at the same time and performing composite integral molding (mold stamping molding) of both.
  • the skin material can be formed of the crosslinked thermoplastic elastomer composition (D).
  • Specific examples of the mold stamping molded body include automotive interior materials such as door rims, rear package trims, seat back garnishes, and instrument panels.
  • the press-molded body is excellent in oil resistance, mechanical properties, lightness, flexibility, heat resistance, stretchability, and aging resistance.
  • the molded article of the present invention is a foam molded article, it can be obtained by foam molding of the crosslinked thermoplastic elastomer composition (D) using known conditions.
  • the crosslinked thermoplastic elastomer composition (D) preferably contains a foaming agent as an additive, and may contain a foaming aid.
  • a foaming agent and foaming adjuvant there is no limitation in particular as a foaming agent and foaming adjuvant, A well-known foaming agent and foaming adjuvant can be used.
  • the cross-linked thermoplastic elastomer composition (D) containing a foaming agent and, if necessary, a foaming aid has good foaming properties, and the resulting foamed molded product has oil resistance, mechanical properties, and light weight. Excellent in flexibility, flexibility, heat resistance, elasticity, and aging resistance.
  • the molded body of the present invention is a vacuum molded body, it can be obtained by vacuum molding the cross-linked thermoplastic elastomer composition (D) using known conditions.
  • the vacuum molded body include interior skin materials such as instrument panels and door trims for automobiles.
  • the molded body is excellent in oil resistance, mechanical properties, lightness, flexibility, heat resistance, stretchability, and aging resistance.
  • the molded body of the present invention is a powder slush molded body
  • it can be obtained by powder slush molding of the crosslinked thermoplastic elastomer composition (D) using known conditions.
  • the powder slush molded body include automobile parts, home appliance parts, toys, sundries and the like.
  • the molded body is excellent in oil resistance, mechanical properties, lightness, flexibility, heat resistance, stretchability, and aging resistance.
  • the laminate may have at least one layer formed from the crosslinked thermoplastic elastomer composition (D).
  • the layer formed from the crosslinked thermoplastic elastomer composition (D) includes the crosslinked thermoplastic elastomer composition (D) and any resin (PP, PE, St resin, ester resin, A layer formed from an amide resin, vinyl chloride, or the like) may be used.
  • the laminate having a layer formed from the cross-linked thermoplastic elastomer composition (D) and a nonpolar resin such as polyolefin is obtained by the cross-linkable thermoplastic elastomer composition (D) having excellent amphiphilic properties.
  • a laminate having a layer formed from the cross-linked thermoplastic elastomer composition (D) and a polar resin such as nylon, engineering plastic, or thermoplastic polyurethane is a cross-linked thermoplastic elastomer composition having excellent amphiphilic properties.
  • D can improve the lightness, thermal stability, fluidity, flexibility, and low-temperature impact properties of the polar resin, so that it can be used in various applications.
  • the molded article of the present invention is an automobile molding.
  • automobile malls include the following i) to iii).
  • the cross-linked thermoplastic elastomer composition (D) is used at least at a site where scratch resistance or abrasion resistance is required.
  • Body, terminal, corner, etc. obtained by injection molding, such as side molding, bumper molding, roof molding, window molding, glass run channel, weather strip molding, belt molding.
  • Instrument panel processed by vacuum molding or stamping molding of a sheet-like molded body obtained by extrusion molding or calender molding of the cross-linked thermoplastic elastomer composition (D) ) Skin, door skin, ceiling skin, console skin, etc.
  • Instrument panel instrument panel
  • instrument panel skin, door skin, and ceiling skin processed by pulverizing the crosslinked thermoplastic elastomer composition (D) into a powder of 1.0 mm or less and powder slush molding , Console epidermis and so on.
  • a handle skin, a console skin, an armrest skin, a shift knob skin, a parking lever grip skin, an assist grip skin, a seat adjustment grip skin, etc. which are molded and processed by the injection molding of the crosslinked thermoplastic elastomer composition (D).
  • the base material formed from the olefin resin and the skin formed from the cross-linked thermoplastic elastomer composition (D) are integrally formed by sequential injection molding with an olefin resin such as polypropylene, and simultaneous injection molding. You can also
  • the molded article of the present invention is an automobile interior skin member
  • a conventionally known heat stabilizer, anti-aging agent, weather stabilizer, antistatic agent A composition containing an additive such as a crystal nucleating agent or a lubricant may be used.
  • an automobile interior skin member formed using the cross-linked thermoplastic elastomer composition (D) containing a lubricant is preferable because it is particularly excellent in scratch resistance and wear resistance.
  • the lubricant include higher fatty acid amides, metal soaps, waxes, silicone oils, fluorine polymers, etc. Among them, higher fatty acid amides, silicone oils, fluorine polymers have excellent scratch resistance and abrasion resistance.
  • An automobile interior skin member can be obtained, which is preferable.
  • higher fatty acid amides examples include saturated fatty acid amides such as lauric acid amide, palmitic acid amide, stearic acid amide, and behemic acid amide; unsaturated fatty acid amides such as erucic acid amide, oleic acid amide, brassic acid amide, and elaidic acid amide. Amides; bis fatty acid amides such as methylene bis stearic acid amide, methylene bis oleic acid amide, ethylene bis stearic acid amide, ethylene bis oleic acid amide;
  • silicone oil examples include dimethyl silicone oil, phenylmethyl silicone oil, alkyl silicone oil, fluorosilicone oil, tetramethyltetraphenyltrisiloxane, and modified silicone oil.
  • fluorine polymer examples include polytetrafluoroethylene, polyvinylidene fluoride, and vinylidene fluoride copolymer.
  • erucic acid amide oleic acid amide
  • ethylene bis-oleic acid amide dimethyl silicone oil, phenyl methyl silicone oil, alkyl silicone oil, polytetrafluoroethylene, polyvinylidene fluoride,
  • a vinylidene fluoride copolymer is preferable, and erucic acid amide, oleic acid amide, dimethyl silicone oil, and vinylidene fluoride copolymer are particularly preferable.
  • Examples of the molded body of the present invention include bumper parts, body panels, moldings, side shields, glass run channels, instrument panel skins, door skins, ceiling skins, other interior skin materials, weatherstrip materials, hoses, steering wheels, boots, etc. Automotive parts; electrical parts such as wire coverings, connectors, cap plugs; footwear such as shoe soles and sandals; leisure items such as swimming fins, underwater glasses, golf club grips, baseball bat grips, gaskets, waterproof cloth, belts , Garden hoses; various gaskets and sheets for civil engineering and construction.
  • the molded product of the present invention is suitable for applications such as hoses, steering wheels, and boots that require oil resistance, mechanical properties, lightness, flexibility, heat resistance, stretchability, and aging resistance.
  • the molded body of the present invention includes a costume case, a laminate (including glass), a foam, an electric cable, a sound insulation material, a vibration damping material, a vibration insulation material, a sound absorbing material, a sound insulation material, a foam material, a building material, and a building material skin material. It can be widely used for non-woven fabrics, modifiers, bulletproof materials and the like.
  • the crosslinked thermoplastic elastomer composition (D) can also be used for applications such as an adhesive, a compatibilizing agent, a chipping resistant agent, and a chipping resistance improving agent.
  • melt flow rate (Melt flow rate (MFR)) The melt flow rate was measured at 230 ° C. and a 2.16 kg load in accordance with ASTM D1238.
  • the acid value was measured according to “Partial acid value” in Section 5.3 “Acid value” of JIS K6901 “Test method for liquid unsaturated polyester resin”.
  • the isocyanate group content was measured according to Section 6.3 “Isocyanate group content” of JIS K7301 “Testing method for tolylene diisocyanate type prepolymer for thermosetting urethane elastomer”.
  • the number average molecular weight was measured under the following conditions using a gel permeation chromatograph (GPC) after 0.03 g of a sample was dissolved in 10 ml of tetrahydrofuran at room temperature and then filtered through a filter having a pore size of 0.45 ⁇ m.
  • GPC gel permeation chromatograph
  • the number average molecular weight of the peak including the maximum frequency molecular weight (retention time) of the measured chromatogram was calculated with reference to a calibration curve created using standard polyethylene glycol.
  • HLC-8020 (manufactured by Tosoh Corporation) Column: TSKgel guardcolum HXL-L + G1000H XL + G2000H XL + G3000H XL manufactured by Tosoh Corporation Eluent: Tetrahydrofuran Flow rate: 0.8 ml / min Column temperature: 40 ° C Injection volume: 20 ⁇ l Detector: RI (viscosity) The viscosity was measured using a cone plate type rotational viscometer (made by ICI) under the conditions of cone type: 100 P, rotation speed: 75 rpm, temperature: 100 ° C. or 80 ° C.
  • amidation rate The amidation rate was calculated from 1 H-NMR under the following conditions.
  • Device JNM-AL400 (manufactured by JEOL) Frequency: 400MHz Measurement temperature: Room temperature integration number: 128 times After dissolving 20 mg of a sample in 0.65 ml of dimethylsulfoxide-d6 (containing 0.05% TMS) at room temperature, 1H-NMR was measured under the above conditions.
  • the amidation rate was calculated from the integral value of proton (H) of the isocyanate derivative and the integral value of proton (NH) in the amide.
  • the test was performed by producing a sheet with a press molding machine, punching out a JIS No. 3 test piece, and using the test piece at a tensile speed of 500 mm / min.
  • Hardness measured Shore A hardness based on JISK6253.
  • Tw is the weight of the test piece after immersion
  • Td is the weight of the test piece before immersion.
  • TEM observation method Measuring instrument: Transmission electron microscope H-7650 (manufactured by Hitachi, Ltd.)
  • the polymer is collected by filtration and dried under reduced pressure at 80 ° C. for 10 hours to give an ethylene / propylene / 10-undecenoic acid terpolymer (an ethylene / ⁇ -olefin copolymer having a functional group capable of reacting with an isocyanate group). (E-1)) was obtained.
  • composition ratio of the structural unit derived from the monomer constituting the ethylene / ⁇ -olefin copolymer (E-1) having a functional group capable of reacting with an isocyanate group from 1 H-NMR measurement is the structural unit derived from ethylene / derived from propylene
  • the structural unit derived from 10-undecenoic acid was estimated to be 75.1 / 23.7 / 1.23 (mol%). Therefore, there are 0.38 mmol / g carboxyl groups derived from 10-undecenoic acid per 1 g of the ethylene / ⁇ -olefin copolymer (E-1) having a functional group capable of reacting with an isocyanate group.
  • the copolymer thus obtained has a 1-butene content of 19 mol%, an intrinsic viscosity [ ⁇ ] measured in decalin at 135 ° C. of 2.2 dl / g, and a glass transition temperature of ⁇ 65. ° C.
  • Unreacted maleic anhydride is extracted from the obtained graft-modified ethylene / 1-butene random copolymer with acetone, and an ethylene / ⁇ -olefin copolymer having a functional group capable of reacting with an isocyanate group (E-2 )
  • E-2 an ethylene / ⁇ -olefin copolymer having a functional group capable of reacting with an isocyanate group
  • the amount of maleic anhydride grafted from this graft-modified ethylene / 1-butene random copolymer (ethylene / ⁇ -olefin copolymer (E-2) having a functional group capable of reacting with an isocyanate group) was determined by 1 H-NMR measurement. When measured, the graft amount was 2.60% by weight.
  • the ethylene / ⁇ -olefin copolymer (E-2) having a functional group capable of reacting with an isocyanate group has 0.261 mmol / g of a carboxylic acid anhydride group derived from maleic anhydride per gram.
  • a pellet sample formed from a graft-modified ethylene / propylene copolymer was obtained by kneading at an extrusion rate of 3 kg / h and a rotational speed of 200 rpm. Unreacted maleic acid and organic peroxide were removed from the pellet sample using a vacuum pump from the vent port of the extruder.
  • the amount of maleic anhydride grafted in the obtained graft-modified ethylene / propylene copolymer (ethylene / ⁇ -olefin copolymer (E-3) having a functional group capable of reacting with an isocyanate group) was measured by 1 H-NMR measurement. As a result, the amount of maleic anhydride grafted was 1.0% by weight.
  • the obtained pellets were extracted with acetone, and the amount of unreacted maleic anhydride was measured by 1 H-NMR. As a result, it was not detected. Therefore, the ethylene / ⁇ -olefin copolymer (E-3) having a functional group capable of reacting with an isocyanate group has 0.102 mmol / g of carboxylic acid anhydride group derived from maleic anhydride per 1 g.
  • a pellet sample formed from the graft-modified ethylene / butene copolymer was obtained by kneading at an extrusion rate of 3 kg / h and a rotational speed of 200 rpm. Unreacted maleic acid and organic peroxide were removed from the pellet sample using a vacuum pump from the vent port of the extruder.
  • the amount of maleic anhydride grafted in the obtained graft-modified ethylene / butene copolymer (ethylene / ⁇ -olefin copolymer (E-4) having a functional group capable of reacting with an isocyanate group) was measured by 1 H-NMR measurement. As a result, the amount of maleic anhydride grafted was 1.0% by weight.
  • the obtained pellets were extracted with acetone, and the amount of unreacted maleic anhydride was measured by 1 H-NMR. As a result, it was not detected. Therefore, the ethylene / ⁇ -olefin copolymer (E-4) having a functional group capable of reacting with an isocyanate group has 0.102 mmol / g of carboxylic anhydride group derived from maleic anhydride per 1 g.
  • 1,3-bis (isocyanatomethyl) cyclohexane (trade name: Takenate 600, manufactured by Mitsui Chemicals Polyurethanes) (NCO / COOH equivalent ratio: 2.10), 0.253 parts by weight Magnesium stearate (0.053 mol part with respect to 100 mol parts of the carboxyl group of the polyester polycarboxylic acid) and 0.500 parts by weight of Florene AC-1190 (manufactured by Kyoeisha Chemical Co., Ltd., antifoaming agent) were charged.
  • the isocyanate group-containing ester amide oligomer (F-1) obtained has an isocyanate content of 3.7% by weight (theoretical value 3.7% by weight), a viscosity of 4800 mPa ⁇ s / 100 ° C., and a number average molecular weight of 4390. there were.
  • the temperature was raised to 60 ° C. with a mantle heater while introducing nitrogen.
  • polyester polycarboxylic acid (G-1) heated to 75 ° C. was added.
  • polyester polycarboxylic acid (G-1) heated to 75 ° C. was added. The same phenomenon was confirmed earlier.
  • polyester polycarboxylic acid (G-1) heated to 75 ° C. in about 110 minutes was added 10 times in total, and then 74.7 parts by weight heated to 75 ° C.
  • Polyester polycarboxylic acid (G-1) was added once. Also at this time, it was confirmed that the foaming and the temperature was raised to about 65 ° C.
  • 833.70 parts by weight of the total amount of the polyester polycarboxylic acid (G-1) was added (NCO / COOH equivalent ratio: 2.13).
  • the isocyanate group content was 4.05% by weight (theoretical value: 3.95% by weight), the viscosity was 4300 mPa ⁇ s / 100 ° C., and the number average molecular weight was 3750. Met.
  • isocyanate group content is 31.0% by weight
  • 0.220 parts by weight of magnesium stearate 100 mol parts of carboxyl groups of polyester polycarboxylic acid (G-1) obtained in Synthesis Example G-1 below) 0.05 mol part
  • Florene AC-1190 manufactured by Kyoeisha Chemical Co., Ltd., antifoaming agent
  • the temperature was raised to 55 ° C. with a mantle heater while introducing nitrogen.
  • polyester polycarboxylic acid (G-1) heated to 70 ° C. was added.
  • polyester polycarboxylic acid (G-1) heated to 70 ° C. was added. The same phenomenon was confirmed earlier.
  • polyester polycarboxylic acid (G-1) heated to 70 ° C. in about 110 minutes was added 10 times in total, and then 70.25 parts by weight heated to 70 ° C.
  • Polyester polycarboxylic acid (G-1) was added once. Also at this time, it was confirmed that the foaming and the temperature was raised to about 65 ° C.
  • Polyester polycarboxylic acid (G-1) was added in a total amount of 782.25 parts by weight (NCO / COOH equivalent ratio: 2.13).
  • the isocyanate group content was 3.82% by weight (theoretical value 3.70% by weight), the viscosity was 4300 mPa ⁇ s / 100 ° C., and the number average molecular weight was 3750. Met.
  • polyester polycarboxylic acid (G-1) Distillation of water started when the temperature reached 150 ° C., the temperature was raised to 230 ° C. while distilling water, and dehydration condensation was continued at 230 ° C.
  • the reaction product was withdrawn from the flask and cooled to obtain polyester polycarboxylic acid (G-1).
  • the obtained polyester polycarboxylic acid (G-1) had an acid value of 54.8 mgKOH / g and a hydroxyl value of 2.7 mgKOH / g.
  • the viscosity of the polyester polycarboxylic acid (G-1) was 1000 mPa ⁇ s / 80 ° C., and the number average molecular weight was 3841.
  • polyester polycarboxylic acid (G-1) The synthesis conditions and properties of polyester polycarboxylic acid (G-1) are shown in Table 1.
  • m in Table 1 means m in the general formula Ry, and is a value calculated from the charged amount of each polyester polycarboxylic acid raw material and the number average molecular weight.
  • Example 1 A lab plast mill (Model 20R200, manufactured by Toyo Seiki Seisakusho) was preheated to 200 ° C., and nitrogen was circulated at 1 L / min. The rotation speed was 60 rpm.
  • ethylene / ⁇ -olefin copolymer (E-1) having a functional group capable of reacting with an isocyanate group was added.
  • the mixture was kneaded for 4 minutes after adding ethylene / ⁇ -olefin copolymer (E-1) having a functional group capable of reacting with an isocyanate group.
  • the torque after kneading for 4 minutes was 13.8 kg ⁇ m.
  • the temperature was 200 ° C. and the rotation speed was 60 rpm.
  • the isocyanate group-containing ester amide oligomer (F-1) is a functional group value of an ethylene / ⁇ -olefin copolymer (E-1) having a functional group whose isocyanate functional group number can react with an isocyanate group. 8.8 g was added so as to be equivalent to the number.
  • the torque immediately after charging was 1.2 kg ⁇ m.
  • the temperature was 200 ° C. and the rotation speed was 60 rpm.
  • the mixture was kneaded for 5 minutes after adding the isocyanate group-containing ester amide oligomer (F-1).
  • the torque after kneading for 5 minutes was 17.6 kg ⁇ m.
  • the temperature was 200 ° C. and the rotation speed was 60 rpm. Since the increase in torque was no longer observed, the rotation of the lab plast mill was stopped, the sample was taken out, and cold-pressed at 15 ° C. and 100 kg / cm 2 for 5 minutes to obtain a thermoplastic crosslinked elastomer composition (D -1) was obtained.
  • thermoplastic cross-linked elastomer composition (D-1) 13.8 g was placed in a mold of 8 cm ⁇ 8 cm ⁇ thickness 2 mm. To this, preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . It was performed by cold pressing for 5 minutes to obtain a sample for oil resistance, hardness measurement and TEM observation.
  • thermoplastic cross-linked elastomer composition (D-1) was placed in a mold of 8 cm ⁇ 8 cm ⁇ 1 mm thickness. To this, preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . This was performed by cold pressing for 5 minutes to obtain a sample for measuring mechanical properties.
  • thermoplastic crosslinked elastomer composition (D-1) As a result of TEM observation of the thermoplastic crosslinked elastomer composition (D-1), a sea-island structure could be confirmed.
  • the sea phase was slightly stained and the island phase was observed with a deep staining. It is known that homopolypropylene is difficult to color by staining with RuO 4 . Therefore, it could be judged that the sea phase is a homopolypropylene and the sea-island structure is an ethylene / ⁇ -olefin copolymer in which the island phase is crosslinked.
  • Example 2 A lab plast mill (Model 20R200, manufactured by Toyo Seiki Seisakusho) was preheated to 200 ° C., and nitrogen was circulated at 1 L / min. The rotation speed was 60 rpm.
  • ethylene / ⁇ -olefin copolymer (E-2) having a functional group capable of reacting with an isocyanate group was added.
  • the mixture was kneaded for 4 minutes after the ethylene / ⁇ -olefin copolymer (E-2) having a functional group capable of reacting with an isocyanate group was added.
  • the torque after kneading for 4 minutes was 14.6 kg ⁇ m.
  • the temperature was 200 ° C. and the rotation speed was 60 rpm.
  • the isocyanate group-containing ester amide oligomer (F-1) is a functional group value of an ethylene / ⁇ -olefin copolymer (E-2) having a functional group whose isocyanate functional group number can react with an isocyanate group. 6.60 g was added so as to be equivalent to the number.
  • the torque immediately after charging was 1.2 kg ⁇ m.
  • the temperature was 200 ° C. and the rotation speed was 60 rpm.
  • the mixture was kneaded for 5 minutes after adding the isocyanate group-containing ester amide oligomer (F-1).
  • the torque after kneading for 5 minutes was 15.7 kg ⁇ m.
  • the temperature was 200 ° C.
  • thermoplastic crosslinked elastomer composition (D -2) was obtained.
  • thermoplastic cross-linked elastomer composition (D-2) 13.8 g was placed in a mold of 8 cm ⁇ 8 cm ⁇ 2 mm thickness. To this, preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . It was performed by cold pressing for 5 minutes to obtain a sample for oil resistance, hardness measurement and TEM observation.
  • thermoplastic cross-linked elastomer composition (D-2) was put into a mold having a size of 8 cm ⁇ 8 cm ⁇ thickness 1 mm.
  • preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . This was performed by cold pressing for 5 minutes to obtain a sample for measuring mechanical properties.
  • thermoplastic crosslinked elastomer composition (D-2) As a result of TEM observation of the thermoplastic crosslinked elastomer composition (D-2), a sea-island structure could be confirmed.
  • the sea phase was slightly stained and the island phase was observed with a deep staining. It is known that homopolypropylene is difficult to color by staining with RuO 4 . Therefore, it could be judged that the sea phase is a homopolypropylene and the sea-island structure is an ethylene / ⁇ -olefin copolymer in which the island phase is crosslinked.
  • Example 3 A lab plast mill (Model 20R200, manufactured by Toyo Seiki Seisakusho) was preheated to 200 ° C., and nitrogen was circulated at 1 L / min. The rotation speed was 60 rpm.
  • the isocyanate group-containing ester amide oligomer (F-2) is a functional group value of an ethylene / ⁇ -olefin copolymer (E-2) having a functional group whose isocyanate functional group number can react with an isocyanate group. 6.20 g was added so as to be equivalent to the number. The torque immediately after charging was 1.2 kg ⁇ m. The temperature was 200 ° C. and the rotation speed was 60 rpm.
  • the mixture was kneaded for 5 minutes after adding the isocyanate group-containing ester amide oligomer (F-2).
  • the torque after kneading for 5 minutes was 15.7 kg ⁇ m.
  • the temperature was 200 ° C. and the rotation speed was 60 rpm. Since the increase in torque was not observed, the rotation of the lab plast mill was stopped, the sample was taken out, and cold-pressed at 15 ° C. and 100 kg / cm 2 for 5 minutes to obtain a thermoplastic cross-linked elastomer composition ( D-3) was obtained.
  • thermoplastic cross-linked elastomer composition (D-3) 13.8 g was placed in a mold of 8 cm ⁇ 8 cm ⁇ thickness 2 mm. To this, preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . It was performed by cold pressing for 5 minutes to obtain a sample for oil resistance, hardness measurement and TEM observation.
  • thermoplastic cross-linked elastomer composition (D-3) was placed in a mold of 8 cm ⁇ 8 cm ⁇ thickness 1 mm. To this, preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . This was performed by cold pressing for 5 minutes to obtain a sample for measuring mechanical properties.
  • thermoplastic cross-linked elastomer composition (D-3) As a result of TEM observation of the thermoplastic cross-linked elastomer composition (D-3), a sea-island structure could be confirmed.
  • the sea phase was slightly stained and the island phase was observed with a deep staining. It is known that homopolypropylene is difficult to color by staining with RuO 4 . Therefore, it could be judged that the sea phase is a homopolypropylene and the sea-island structure is an ethylene / ⁇ -olefin copolymer in which the island phase is crosslinked.
  • Example 4 A lab plast mill (manufactured by Toyo Seiki Seisakusho, model 20R200) was preheated to 200 ° C. and 1 L / min of nitrogen was circulated. The rotation speed was 60 rpm.
  • the isocyanate group-containing ester amide oligomer (F-3) is a functional group value of an ethylene / ⁇ -olefin copolymer (E-2) having a functional group whose isocyanate functional group number can react with an isocyanate group. 6.60 g was added so as to be equivalent to the number.
  • the torque immediately after charging was 1.2 kg ⁇ m.
  • the temperature was 200 ° C. and the rotation speed was 60 rpm.
  • the mixture was kneaded for 5 minutes after adding the isocyanate group-containing ester amide oligomer (F-3).
  • the torque after kneading for 5 minutes was 16.0 kg ⁇ m.
  • the temperature was 200 ° C.
  • thermoplastic crosslinked elastomer composition (D -4) was obtained.
  • thermoplastic cross-linked elastomer composition (D-4) 13.8 g was placed in a mold of 8 cm ⁇ 8 cm ⁇ thickness 2 mm. To this, preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . It was performed by cold pressing for 5 minutes to obtain a sample for oil resistance, hardness measurement and TEM observation.
  • thermoplastic cross-linked elastomer composition (D-4) was put into a mold having a size of 8 cm ⁇ 8 cm ⁇ thickness 1 mm.
  • preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . This was performed by cold pressing for 5 minutes to obtain a sample for measuring mechanical properties.
  • thermoplastic cross-linked elastomer composition (D-4) the sea-island structure could be confirmed.
  • the sea phase was slightly stained and the island phase was observed with a deep staining. It is known that homopolypropylene is difficult to color by staining with RuO 4 . Therefore, it could be judged that the sea phase is a homopolypropylene and the sea-island structure is an ethylene / ⁇ -olefin copolymer in which the island phase is crosslinked.
  • an ethylene / ⁇ -olefin copolymer (E-2) having a functional group capable of reacting with an isocyanate group was added.
  • the mixture was kneaded for 4 minutes after the ethylene / ⁇ -olefin copolymer (E-2) having a functional group capable of reacting with an isocyanate group was added.
  • the torque after kneading for 4 minutes was 14.7 kg ⁇ m.
  • the temperature was 200 ° C. and the rotation speed was 60 rpm.
  • 1,3-bis (isocyanatomethyl) cyclohexane (trade name: Takenate 600, manufactured by Mitsui Chemicals Polyurethanes Co., Ltd.) is reacted with an isocyanate group having a functional group whose isocyanate functional group valency can react with an isocyanate group.
  • 0.72 g was added so as to be equivalent to the functional group valence of the ethylene / ⁇ -olefin copolymer (E-2) having a functional group capable of being converted.
  • the torque immediately after charging was 20.1 kg ⁇ m.
  • the temperature was 200 ° C. and the rotation speed was 60 rpm.
  • the mixture was kneaded for 5 minutes after 1,3-bis (isocyanatomethyl) cyclohexane was added.
  • the torque after kneading for 5 minutes was 17.5 kg ⁇ m.
  • the temperature was 200 ° C. and the rotation speed was 60 rpm. Since no increase in torque was observed, the rotation of the lab plastmill was stopped, the sample was taken out, and cold-pressed at 15 ° C. and 100 kg / cm 2 for 5 minutes to obtain a thermoplastic crosslinked elastomer composition (D- 5) Obtained.
  • thermoplastic cross-linked elastomer composition (D-5) 13.8 g was placed in a mold having a size of 8 cm ⁇ 8 cm ⁇ thickness 2 mm. To this, preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . It was performed by cold pressing for 5 minutes to obtain a sample for oil resistance, hardness measurement and TEM observation.
  • thermoplastic cross-linked elastomer composition (D-5) was placed in a mold of 8 cm ⁇ 8 cm ⁇ 1 mm thickness.
  • preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . This was performed by cold pressing for 5 minutes to obtain a sample for measuring mechanical properties.
  • thermoplastic cross-linked elastomer composition (D-5) As a result of TEM observation of the thermoplastic cross-linked elastomer composition (D-5), a sea-island structure could be confirmed.
  • the sea phase was slightly stained and the island phase was observed with a deep staining. It is known that homopolypropylene is difficult to color by staining with RuO 4 . Therefore, it was judged that the sea phase was a sea-island structure, which was an ethylene / ⁇ -olefin copolymer crosslinked with homopolypropylene and island phases with 1,3-bis (isocyanatomethyl) cyclohexane.
  • thermoplastic elastomer composition (D-6).
  • thermoplastic elastomer composition (D-6) 13.8 g was placed in a mold of 8 cm ⁇ 8 cm ⁇ 2 mm thickness. To this, preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . It was performed by cold pressing for 5 minutes to obtain a sample for oil resistance, hardness measurement and TEM observation.
  • thermoplastic elastomer composition (D-6) was placed in a mold having a size of 8 cm ⁇ 8 cm ⁇ thickness 1 mm. To this, preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . This was performed by cold pressing for 5 minutes to obtain a sample for measuring mechanical properties.
  • the sea-island structure could be confirmed.
  • the island phase was slightly stained and the sea phase was densely stained. It is known that homopolypropylene is difficult to color by staining with RuO 4 . Therefore, it could be judged that the island phase is a homopolypropylene and the sea phase is a sea-island structure which is an ethylene / ⁇ -olefin copolymer having a functional group capable of reacting with an isocyanate group.
  • Example 5 A lab plast mill (Model 20R200, manufactured by Toyo Seiki Seisakusho) was preheated to 200 ° C., and nitrogen was circulated at 1 L / min. The rotation speed was 50 rpm.
  • thermoplastic cross-linked elastomer composition (D-7) 13.8 g was placed in a mold of 8 cm ⁇ 8 cm ⁇ thickness 2 mm. To this, preheating is performed at 230 ° C. for 7 minutes, then pressurization is performed by hot pressing for 3 minutes at 230 ° C. and 100 kg / cm 2 , and then cooling is performed at 15 ° C. and 100 kg / cm 2 . It was performed by cold pressing for 5 minutes to obtain a sample for oil resistance, hardness measurement and TEM observation.
  • thermoplastic cross-linked elastomer composition (D-7) was put into a mold having a size of 8 cm ⁇ 8 cm ⁇ thickness 1 mm. To this, preheating is performed at 230 ° C. for 7 minutes, then pressurization is performed by hot pressing for 3 minutes at 230 ° C. and 100 kg / cm 2 , and then cooling is performed at 15 ° C. and 100 kg / cm 2 . This was performed by cold pressing for 5 minutes to obtain a sample for measuring mechanical properties.
  • thermoplastic cross-linked elastomer composition (D-7) the sea-island structure could be confirmed.
  • the sea phase was slightly stained and the island phase was observed with a deep staining.
  • Dyeing with RuO4 is known to be difficult to color homopolypropylene. Therefore, it was judged that the sea phase was a homopolypropylene and the sea-island structure was an ethylene / ⁇ -olefin copolymer in which at least a part of the island phase was crosslinked.
  • Examples 6 to 17 were carried out in the same manner as Example 5 except that the raw materials and reaction conditions were changed to the raw materials and reaction conditions described in the attached tables (Tables 2 to 5).
  • n in the item of the isocyanate group-containing oligomer means n in the general formulas Rx, Ra, and Rb, and is a value obtained from the amount of raw materials charged in Synthesis Examples F-1 to F-3. It is.
  • n in the item of polyester polycarboxylic acid is the cross-linked ethylene copolymer (B) formed from the polyester polycarboxylic acid, polyisocyanate, and ethylene copolymer (E). It means n in the general formulas Ra and Rb, and is a value obtained from the amount of raw material charged in the example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

Disclosed are a crosslinked thermoplastic elastomer composition, which possesses superior oil resistance and the hardness and mechanical properties of which are equal to conventional crosslinked thermoplastic elastomers, a compact thereof, and a manufacturing method for said composition. The crosslinked elastomer composition (D) comprises a crystalline polyolefin polymer (A) and a crosslinked ethylene copolymer (B). The crosslinking sites (C) in the aforementioned crosslinked ethylene copolymer (B) are at least one type of nitrogen-containing group selected from a group comprising amide groups and imide groups, and are an organic group (c1) that possesses an ester group.

Description

架橋型熱可塑性エラストマー組成物および該組成物の製造方法Cross-linked thermoplastic elastomer composition and method for producing the composition
 本発明は、架橋型熱可塑性エラストマー組成物および該組成物の製造方法に関し、詳しくは、結晶性オレフィン重合体と、特定の架橋エチレン共重合体とを含む架橋型熱可塑性エラストマー組成物および該組成物の製造方法に関する。 The present invention relates to a crosslinked thermoplastic elastomer composition and a method for producing the composition, and more specifically, a crosslinked thermoplastic elastomer composition containing a crystalline olefin polymer and a specific crosslinked ethylene copolymer, and the composition. The present invention relates to a method for manufacturing a product.
 架橋型熱可塑性エラストマーは、耐熱性、成形性等の優位な機械特性を生かして、自動車部品、電気・電子部品、建築部品等の様々な分野で使用されている。 Cross-linked thermoplastic elastomers are used in various fields such as automobile parts, electrical / electronic parts, and building parts, taking advantage of superior mechanical properties such as heat resistance and moldability.
 従来、この架橋型熱可塑性エラストマーとしては、エチレン・プロピレン・非共役ジエン三元共重合体(EPDM)のゴム配合物からなる押出加硫成形品が、低硬度かつゴム弾性が要求される部品において用いられてきた。 Conventionally, as this cross-linkable thermoplastic elastomer, an extrusion vulcanized molded article composed of a rubber compound of ethylene / propylene / non-conjugated diene terpolymer (EPDM) is used in a part requiring low hardness and rubber elasticity. Has been used.
 他方、各種用途でのシール用材料として、エチレン・プロピレン・非共役ジエン三元共重合体(EPDM)を使用した加硫ゴムに代わって、生産性、環境対応性および軽量化の見地から、加硫工程が不要な架橋型熱可塑性エラストマー(組成物)が使用され始めている。 On the other hand, in place of vulcanized rubber using ethylene / propylene / non-conjugated diene terpolymer (EPDM) as a sealing material for various applications, it has been added from the viewpoint of productivity, environmental friendliness and weight reduction. Cross-linked thermoplastic elastomers (compositions) that do not require a sulfurization process are beginning to be used.
 この加硫工程が不要な架橋型熱可塑性エラストマーは、エチレン・プロピレン(・非共役ジエン)共重合体と結晶性ポリオレフィンの混合物について、過酸化物を用いて、動的架橋させて得られる。 The crosslinked thermoplastic elastomer that does not require this vulcanization step is obtained by dynamically crosslinking a mixture of an ethylene / propylene (non-conjugated diene) copolymer and a crystalline polyolefin using a peroxide.
 この過酸化物を用いた架橋型熱可塑性エラストマーの組成に関する技術としては、エチレン・プロピレン(・非共役ジエン)共重合体と結晶性ポリオレフィンの混合物を、過酸化物を用いて動的架橋するものが公知の技術であるが、特に物性および成形性を考慮すると結晶性ポリオレフィンとしてポリプロピレンが用いられてきた。 As a technique related to the composition of a crosslinked thermoplastic elastomer using a peroxide, a mixture of an ethylene / propylene (non-conjugated diene) copolymer and a crystalline polyolefin is dynamically crosslinked using a peroxide. Is a known technique, but polypropylene has been used as the crystalline polyolefin especially considering physical properties and moldability.
 しかしながら、この架橋型熱可塑性エラストマーでは、過酸化物を添加することにより結晶性ポリオレフィン成分が分解して分子量低下が起こり、十分な流動性は得られるものの、結晶ポリオレフィン成分の分子量低下により機械特性(引張強度、伸び等)が低下するという問題があった。 However, in this cross-linked thermoplastic elastomer, the addition of peroxide decomposes the crystalline polyolefin component and causes a decrease in molecular weight, resulting in sufficient fluidity. However, the mechanical properties ( There was a problem that the tensile strength, elongation, etc.) were reduced.
 そこで、機械特性を改善するために、反応性置換基を有する弾性重合体を、反応性置換基を有する分子量約2000未満の架橋剤を用いて架橋を行うことにより得られる、架橋した弾性重合体や、該架橋した弾性重合体および熱可塑性重合体を含む溶融加工可能熱可塑性組成物が提案されている(例えば、特許文献1参照)。
特表2000-515184号公報
Accordingly, a crosslinked elastic polymer obtained by crosslinking an elastic polymer having a reactive substituent with a crosslinking agent having a reactive substituent and having a molecular weight of less than about 2000 in order to improve mechanical properties. In addition, a melt-processable thermoplastic composition containing the crosslinked elastic polymer and thermoplastic polymer has been proposed (see, for example, Patent Document 1).
JP 2000-515184 A
 しかし、特許文献1に記載された、架橋した弾性重合体や溶融加工可能熱可塑性組成物であっても、耐油性の面で、他の架橋型熱可塑性エラストマーを始めとするオレフィン系エラストマー同様に、ウレタン系エラストマーより劣るという欠点を有している。 However, even the cross-linked elastic polymer and melt-processable thermoplastic composition described in Patent Document 1 are similar to other olefin elastomers including other cross-linked thermoplastic elastomers in terms of oil resistance. , Has the disadvantage of being inferior to urethane elastomers.
 本発明は、従来の架橋型熱可塑性エラストマーよりも優れた耐油性を有し、かつ従来の架橋型熱可塑性エラストマーと同等の機械特性(引張強度、伸び等)を有する、架橋型熱可塑性エラストマー組成物および該組成物の製造方法を提供することを目的とする。 The present invention is a cross-linked thermoplastic elastomer composition having oil resistance superior to that of conventional cross-linked thermoplastic elastomers and having mechanical properties (tensile strength, elongation, etc.) equivalent to those of conventional cross-linked thermoplastic elastomers. It is an object to provide a product and a method for producing the composition.
 本発明者らは鋭意研究を重ねた結果、下記特定の有機基で架橋された架橋エチレン共重合体と結晶性オレフィン重合体とを含む架橋型熱可塑性エラストマー組成物は、前記課題を解決することができることを見出し本発明を完成させた。 As a result of intensive studies, the present inventors have found that a crosslinked thermoplastic elastomer composition containing a crosslinked ethylene copolymer crosslinked with the following specific organic group and a crystalline olefin polymer solves the above problems. The present invention has been completed.
 すなわち、本発明の架橋型熱可塑性エラストマー組成物(D)は、結晶性オレフィン重合体(A)と、架橋エチレン共重合体(B)とを含み、前記架橋エチレン共重合体(B)の架橋部位(C)が、アミド基およびイミド基からなる群から選択される少なくとも1種の含窒素基と、エステル基とを有する有機基(c1)であることを特徴とする。 That is, the cross-linked thermoplastic elastomer composition (D) of the present invention includes a crystalline olefin polymer (A) and a cross-linked ethylene copolymer (B), and the cross-linked ethylene copolymer (B) is cross-linked. The site (C) is an organic group (c1) having at least one nitrogen-containing group selected from the group consisting of an amide group and an imide group and an ester group.
 前記架橋エチレン共重合体(B)が、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン・非共役ポリエン共重合体およびエチレン・不飽和カルボン酸共重合体からなる群から選択される少なくとも1種のエチレン共重合体(E)を架橋することにより得られる重合体であることが好ましい。 The crosslinked ethylene copolymer (B) is an ethylene / α-olefin copolymer having a functional group capable of reacting with an isocyanate group, and an ethylene / α-olefin / nonconjugated polyene copolymer having a functional group capable of reacting with an isocyanate group. The polymer is preferably a polymer obtained by crosslinking at least one ethylene copolymer (E) selected from the group consisting of a polymer and an ethylene / unsaturated carboxylic acid copolymer.
 前記有機基(c1)が、下記一般式R2で表わされる二価の基を含むことが好ましい。 The organic group (c1) preferably contains a divalent group represented by the following general formula R 2.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 (上記一般式R2において、R3はそれぞれ独立に、分岐を有していてもよい炭素数1~15のアルキレン基または炭素数6~15の芳香族基であり、R4はそれぞれ独立に、分岐を有していてもよい炭素数1~15のアルキレン基である。)
 前記有機基(c1)が下記一般式Raおよび下記一般式Rbからなる群から選択される少なくとも1種の有機基であることが好ましい。
(In the above general formula R 2 , each R 3 is independently an alkylene group having 1 to 15 carbon atoms or an aromatic group having 6 to 15 carbon atoms which may have a branch, and each R 4 is independently And an optionally substituted alkylene group having 1 to 15 carbon atoms.)
The organic group (c1) is preferably at least one organic group selected from the group consisting of the following general formula Ra and the following general formula Rb.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 (上記一般式RaおよびRbにおいて、Rcはそれぞれ独立に、炭素数1~20の三価の炭化水素基であり、Rdはそれぞれ独立に、炭素数1~20の二価の炭化水素基であり、R1はそれぞれ独立に、ジイソシアネート残基であり、R2はそれぞれ独立に、下記一般式で表わされる二価の基である。) (In the above general formulas Ra and Rb, each Rc is independently a trivalent hydrocarbon group having 1 to 20 carbon atoms, and each Rd is independently a divalent hydrocarbon group having 1 to 20 carbon atoms. , R 1 are each independently a diisocyanate residue, and R 2 are each independently a divalent group represented by the following general formula.)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 (上記一般式R2において、R3はそれぞれ独立に、分岐を有していてもよい炭素数1~15のアルキレン基または炭素数6~15の芳香族基であり、R4はそれぞれ独立に、分岐を有していてもよい炭素数1~15のアルキレン基である。)
 前記R1が、分岐を有していてもよい炭素数2~10のアルキレン基、炭素数6~20のアリーレン基、および脂環式炭化水素基を有する炭素数6~20の二価の炭化水素基からなる群から選択される少なくとも一種の基であることが好ましい。
(In the above general formula R 2 , each R 3 is independently an alkylene group having 1 to 15 carbon atoms or an aromatic group having 6 to 15 carbon atoms which may have a branch, and each R 4 is independently And an optionally substituted alkylene group having 1 to 15 carbon atoms.)
R 1 is a divalent carbon atom having 6 to 20 carbon atoms having an optionally branched alkylene group having 2 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, and an alicyclic hydrocarbon group. It is preferably at least one group selected from the group consisting of hydrogen groups.
 前記結晶性オレフィン重合体(A)と、架橋エチレン共重合体(B)との重量比(A/B)が10/90~50/50であることが好ましい。 The weight ratio (A / B) between the crystalline olefin polymer (A) and the crosslinked ethylene copolymer (B) is preferably 10/90 to 50/50.
 前記一般式Raおよび一般式Rbにおいて、nが0~3であり、前記一般式R2において、mが7~20であることが好ましい。 In the general formula Ra and the general formula Rb, n is preferably 0 to 3, and in the general formula R 2 , m is preferably 7 to 20.
 前記架橋型熱可塑性エラストマー組成物(D)は、海相が結晶性オレフィン重合体(A)であり、島相の少なくとも一部が架橋エチレン共重合体(B)である海島構造を形成することが好ましく、このような架橋型熱可塑性エラストマー組成物(D)は、前記結晶性オレフィン重合体(A)と、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン・非共役ポリエン共重合体およびエチレン・不飽和カルボン酸共重合体からなる群から選択される少なくとも1種のエチレン共重合体(E)との混合物に、架橋剤として、アミド基と、エステル基と、二つ以上のイソシアネート基とを有する、イソシアネート基含有オリゴマー(F)を導入または、架橋剤として、ポリエステルポリカルボン酸(G)および多価イソシアネートを導入し、エチレン共重合体(E)を動的架橋することにより得られることが好ましい。 The crosslinked thermoplastic elastomer composition (D) forms a sea-island structure in which the sea phase is a crystalline olefin polymer (A) and at least a part of the island phase is a crosslinked ethylene copolymer (B). Such a crosslinked thermoplastic elastomer composition (D) is preferably composed of the crystalline olefin polymer (A), an ethylene / α-olefin copolymer having a functional group capable of reacting with an isocyanate group, and an isocyanate group. And at least one ethylene copolymer (E) selected from the group consisting of an ethylene / α-olefin / non-conjugated polyene copolymer and an ethylene / unsaturated carboxylic acid copolymer having a functional group capable of reacting with Into the mixture, an isocyanate group-containing oligomer (F) having an amide group, an ester group, and two or more isocyanate groups is introduced as a crosslinking agent. As crosslinking agent, introducing the polyester polycarboxylic acid (G) and the polyvalent isocyanate is preferably obtained by dynamically crosslinking the ethylene copolymer (E).
 前記イソシアネート基含有オリゴマー(F)の、ゲルパーミエイションクロマトグラフィー(GPC)により求められる、標準ポリエチレングリコール換算の数平均分子量が2000を超えることが好ましく、前記イソシアネート基含有オリゴマー(F)が、下記一般式Rxで表わされることがより好ましい。 The number average molecular weight in terms of standard polyethylene glycol determined by gel permeation chromatography (GPC) of the isocyanate group-containing oligomer (F) is preferably more than 2000, and the isocyanate group-containing oligomer (F) is More preferably, it is represented by the general formula Rx.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 (上記一般式Rxにおいて、R1はそれぞれ独立に、ジイソシアネート残基であり、R2はそれぞれ独立に、下記一般式で表わされる二価の基である。) (In the general formula Rx, each R 1 is independently a diisocyanate residue, and each R 2 is independently a divalent group represented by the following general formula.)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 (上記一般式R2において、R3はそれぞれ独立に、分岐を有していてもよい炭素数1~15のアルキレン基または炭素数6~15の芳香族基であり、R4はそれぞれ独立に、分岐を有していてもよい炭素数1~15のアルキレン基である。)
 前記R1が、分岐を有していてもよい炭素数2~10のアルキレン基、炭素数6~20のアリーレン基、および脂環式炭化水素基を有する炭素数6~20の二価の炭化水素基からなる群から選択される少なくとも一種の基であることが好ましい。
(In the above general formula R 2 , each R 3 is independently an alkylene group having 1 to 15 carbon atoms or an aromatic group having 6 to 15 carbon atoms which may have a branch, and each R 4 is independently And an optionally substituted alkylene group having 1 to 15 carbon atoms.)
R 1 is a divalent carbon atom having 6 to 20 carbon atoms having an optionally branched alkylene group having 2 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, and an alicyclic hydrocarbon group. It is preferably at least one group selected from the group consisting of hydrogen groups.
 前記一般式Rxにおいて、nが0~3であり、前記一般式R2において、mが7~20であることが好ましい。 In the general formula Rx, n is preferably 0 to 3, and in the general formula R 2 , m is preferably 7 to 20.
 前記イソシアネート基含有オリゴマー(F)が、多価アルコールと多価カルボン酸とから製造されたポリエステルポリカルボン酸(G)と、多価イソシアネートとを反応させて得られ、前記多価アルコール、多価カルボン酸および多価イソシアネートの少なくとも1種が三価以上のモノマーを含むことを特徴とするものであってもよい。 The isocyanate group-containing oligomer (F) is obtained by reacting a polyisocyanate with a polyester polycarboxylic acid (G) produced from a polyhydric alcohol and a polyvalent carboxylic acid. At least one of carboxylic acid and polyvalent isocyanate may contain a trivalent or higher monomer.
 前記多価イソシアネートが、三価以上の多価イソシアネートを含むことが好ましい。 It is preferable that the polyvalent isocyanate contains a trivalent or higher polyvalent isocyanate.
 前記エチレン共重合体(E)においてイソシアネート基と反応しうる官能基が、カルボキシル基またはカルボン酸無水物基であることが好ましい。 In the ethylene copolymer (E), the functional group capable of reacting with an isocyanate group is preferably a carboxyl group or a carboxylic anhydride group.
 架橋型熱可塑性エラストマー組成物(D)を製造する方法は、結晶性オレフィン重合体(A)と、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン・非共役ポリエン共重合体およびエチレン・不飽和カルボン酸共重合体からなる群から選択される少なくとも1種のエチレン共重合体(E)との混合物に、架橋剤として、アミド基と、エステル基と、二つ以上のイソシアネート基とを有する、イソシアネート基含有オリゴマー(F)を導入または、架橋剤として、ポリエステルポリカルボン酸(G)および多価イソシアネートを導入し、エチレン共重合体(E)を動的架橋することを特徴とする。 The method for producing the cross-linked thermoplastic elastomer composition (D) comprises reacting with a crystalline olefin polymer (A), an ethylene / α-olefin copolymer having a functional group capable of reacting with an isocyanate group, and an isocyanate group. A mixture of at least one ethylene copolymer (E) selected from the group consisting of an ethylene / α-olefin / non-conjugated polyene copolymer having a functional group and an ethylene / unsaturated carboxylic acid copolymer; Introducing an isocyanate group-containing oligomer (F) having an amide group, an ester group, and two or more isocyanate groups as a crosslinking agent, or introducing a polyester polycarboxylic acid (G) and a polyvalent isocyanate as a crosslinking agent And the ethylene copolymer (E) is dynamically cross-linked.
 本発明の成形体は、前記架橋型熱可塑性エラストマー組成物(D)からなる。 The molded product of the present invention is composed of the cross-linked thermoplastic elastomer composition (D).
 本発明の成形体は、自動車用部品であることが好ましく、ブーツ、ワイヤーハーネスカバー、シートアジャスターカバーおよびホースからなる群から選択される自動車用部品であることがより好ましい。 The molded article of the present invention is preferably an automotive part, and more preferably an automotive part selected from the group consisting of a boot, a wire harness cover, a seat adjuster cover, and a hose.
 本発明の架橋型熱可塑性エラストマー組成物(D)は、従来の架橋型熱可塑性エラストマーよりも優れた耐油性を有し、かつ従来の架橋型熱可塑性エラストマーと同等の機械特性(引張強度、伸び等)を有する。このため、架橋型熱可塑性エラストマー組成物(D)から形成される成形体は、様々な用途に用いることが可能である。 The crosslinkable thermoplastic elastomer composition (D) of the present invention has oil resistance superior to that of the conventional crosslinkable thermoplastic elastomer, and has the same mechanical properties (tensile strength, elongation as the conventional crosslinkable thermoplastic elastomer). Etc.). For this reason, the molded object formed from a bridge | crosslinking-type thermoplastic elastomer composition (D) can be used for various uses.
発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION
 次に本発明について具体的に説明する。 Next, the present invention will be specifically described.
 本発明の架橋型熱可塑性エラストマー組成物(D)は、結晶性オレフィン重合体(A)と、架橋エチレン共重合体(B)とを含み、前記架橋エチレン共重合体(B)の架橋部位(C)が、アミド基およびイミド基からなる群から選択される少なくとも1種の含窒素基と、エステル基とを有する有機基(c1)であることを特徴とする。 The cross-linked thermoplastic elastomer composition (D) of the present invention includes a crystalline olefin polymer (A) and a cross-linked ethylene copolymer (B), and a cross-linked site of the cross-linked ethylene copolymer (B) ( C) is an organic group (c1) having at least one nitrogen-containing group selected from the group consisting of an amide group and an imide group and an ester group.
 本発明の架橋型熱可塑性エラストマー組成物(D)は、有機基(c1)が親水性基である、含窒素基およびエステル基を有しているため、耐油性に優れている。また、架橋型熱可塑性エラストマー組成物(D)は、結晶性オレフィン重合体(A)と、架橋部位以外が、主としてエチレン、必要に応じてα-オレフィン、非共役ポリエンから形成される架橋エチレン共重合体(B)を含んでいるため、成形時の熱劣化を防ぐことができる。このため、架橋型熱可塑性エラストマー組成物(D)は、従来の架橋型熱可塑性エラストマー同等の機械特性(引張強度、伸び等)を有する。 The crosslinked thermoplastic elastomer composition (D) of the present invention is excellent in oil resistance because the organic group (c1) has a nitrogen-containing group and an ester group, which are hydrophilic groups. In addition, the crosslinked thermoplastic elastomer composition (D) comprises a crosslinked olefin polymer (A) and a crosslinked ethylene copolymer formed mainly from ethylene, if necessary, α-olefin and non-conjugated polyene, except for the crosslinking site. Since the polymer (B) is included, thermal deterioration during molding can be prevented. For this reason, the crosslinkable thermoplastic elastomer composition (D) has mechanical properties (tensile strength, elongation, etc.) equivalent to those of conventional crosslinkable thermoplastic elastomers.
 〔結晶性オレフィン重合体(A)〕
 本発明に用いる結晶性オレフィン重合体(A)としては特に限定は無く、従来公知の結晶性オレフィン重合体を用いることができる。
[Crystalline Olefin Polymer (A)]
There is no limitation in particular as crystalline olefin polymer (A) used for this invention, A conventionally well-known crystalline olefin polymer can be used.
 なお、結晶性とは、示差走査熱量測定(DSC)にて、融点(Tm)が測定されることを意味する。 Crystallinity means that the melting point (Tm) is measured by differential scanning calorimetry (DSC).
 結晶性オレフィン重合体(A)としては、例えばエチレン系重合体、プロピレン系重合体が挙げられる。エチレン系重合体としては、エチレン単独重合体、エチレン・α-オレフィン共重合体(好ましくは、エチレンと、炭素数3~10のα-オレフィンとの共重合体)等を用いることができ、プロピレン系共重合体としては、プロピレン単独重合体、プロピレン・α-オレフィン共重合体等(好ましくは、プロピレンと、炭素数2または4~10のα-オレフィンとの共重合体)を用いることができる。 Examples of the crystalline olefin polymer (A) include ethylene polymers and propylene polymers. As the ethylene-based polymer, an ethylene homopolymer, an ethylene / α-olefin copolymer (preferably a copolymer of ethylene and an α-olefin having 3 to 10 carbon atoms) and the like can be used. As the copolymer, a propylene homopolymer, a propylene / α-olefin copolymer or the like (preferably a copolymer of propylene and an α-olefin having 2 or 4 to 10 carbon atoms) can be used. .
 これらの中でも、結晶性オレフィン重合体(A)としては、プロピレン系重合体を用いることが物性および成形性の観点から好ましい。 Among these, as the crystalline olefin polymer (A), it is preferable to use a propylene polymer from the viewpoints of physical properties and moldability.
 プロピレン系重合体としては、沸騰ヘプタン不溶部のアイソタクチック・ペンタッド分率が0.955以上で、かつ、沸騰ヘプタン可溶部の含有量が9重量%以下であるプロピレン系重合体が好ましく、具体的にはプロピレン単独重合体や、プロピレンと少量の炭素数2または4~10のα- オレフィンとの共重合体が好ましい。 The propylene-based polymer is preferably a propylene-based polymer having an isotactic pentad fraction of the boiling heptane insoluble part of 0.955 or more and a content of the boiling heptane soluble part of 9% by weight or less, Specifically, a propylene homopolymer or a copolymer of propylene and a small amount of an α-sodium olefin having 2 or 4 to 10 carbon atoms is preferable.
 このような炭素数2、4~10のα- オレフィンとしては、具体的には、エチレン、1-ブテン、1-ペンテン、3-メチル-1- ブテン、1-ヘキセン、3-メチル-1-ペンテン、4-メチル-1- ペンテン、1-オクテン、1-デセンなどが挙げられる。中でも、エチレン、1-ブテン、1-ヘキセン、1-オクテン、4-メチル-1- ペンテンが好ましい。前記α-オレフィンは一種単独で用いても、二種以上を用いてもよい。 Specific examples of such α- olefins having 2, 4 to 10 carbon atoms include ethylene, 1-butene, 1-pentene, 3-methyl-1- butene, 1-hexene, 3-methyl-1- Examples include pentene, 4-methyl-1- pentene, 1-octene, and 1-decene. Of these, ethylene, 1-butene, 1-hexene, 1-octene and 4-methyl-1- pentene are preferable. The α-olefins may be used alone or in combination of two or more.
 前記プロピレン系重合体が、プロピレンと少量の炭素数2または4~10のα- オレフィンとの共重合体である場合には、共重合体中、炭素原子数2または4~10のα-オレフィンから導かれる構成単位が、通常は10モル%以下、好ましくは5モル%未満である。 When the propylene-based polymer is a copolymer of propylene and a small amount of an α-sodium olefin having 2 or 4 to 10 carbon atoms, the α-olefin having 2 or 4 to 10 carbon atoms in the copolymer Is usually 10 mol% or less, preferably less than 5 mol%.
 本発明において、結晶性オレフィン重合体(A)として、沸騰ヘプタン不溶部のアイソタクチック・ペンタッド分率が0.955以上で、かつ、沸騰ヘプタン可溶部の含有量が9重量%以下であるプロピレン系重合体を用いると、高強度の成形体を形成可能な架橋型熱可塑性エラストマー樹脂組成物(D)を得ることができるため好ましい。 In the present invention, as the crystalline olefin polymer (A), the isotactic pentad fraction of the boiling heptane-insoluble part is 0.955 or more and the content of the boiling heptane-soluble part is 9% by weight or less. Use of a propylene-based polymer is preferable because a crosslinked thermoplastic elastomer resin composition (D) capable of forming a high-strength molded product can be obtained.
 なお、沸騰ヘプタン不溶部のアイソタクチック・ペンタッド分率および沸騰ヘプタン可溶部の含有量は次のようにして測定される。 The isotactic pentad fraction in the boiling heptane-insoluble part and the content in the boiling heptane-soluble part are measured as follows.
 前記プロピレン系重合体5gを沸騰キシレン500mlに完全に溶解させた後、20℃に降温し4時間放置する。その後、濾別し20℃キシレン可溶部と不溶部に分離する。次いで、20℃キシレン不溶部をさらに沸騰n-ヘプタンで8時間ソックスレー抽出して抽出残渣と抽出物に分離する。この抽出残渣をプロピレン系重合体の「沸騰ヘプタン不溶部」とする。また、本明細書におけるプロピレン系重合体の「沸騰ヘプタン可溶部」とは、20℃キシレン可溶部と先の沸騰n-ヘプタン抽出物とを足し合わせたものである。この沸騰ヘプタン可溶部の重量と、測定に供した全プロピレン系重合体重量から、沸騰ヘプタン可溶部の重量百分率を算出する。 After 5 g of the propylene polymer was completely dissolved in 500 ml of boiling xylene, the temperature was lowered to 20 ° C. and left for 4 hours. Thereafter, it is filtered and separated into a 20 ° C. xylene soluble part and an insoluble part. Next, the 20 ° C. xylene-insoluble part is further subjected to Soxhlet extraction with boiling n-heptane for 8 hours to separate into an extraction residue and an extract. This extraction residue is defined as a “boiling heptane insoluble part” of the propylene-based polymer. In the present specification, the “boiling heptane-soluble part” of the propylene-based polymer is the sum of the 20 ° C. xylene-soluble part and the previous boiling n-heptane extract. The weight percentage of the boiling heptane-soluble part is calculated from the weight of the boiling heptane-soluble part and the total propylene polymer weight used for the measurement.
 アイソタクチック・ペンタッド分率とは、A ZambelliらによってMacromolecules 925 (1973)に発表されている方法、すなわち13C-NMRを使用して測定されるプロピレン系重合体分子鎖中のペンタッド単位でのアイソタクチック分率である。換言すれば、アイソタクチック・ペンタッド分率は、プロピレンモノマー単位が5個連続してメソ結合した連鎖の中心にあるプロピレンモノマー単位の分率である。ただし、ピークの帰属に関しては、Macromolecules ,678(1975)にMacromolecules ,925(1973)の訂正版が記載されているのでこれに基づいて行なうものとする。 The isotactic pentad fraction is the pentad unit in the propylene polymer molecular chain measured by the method published by A Zambelli et al. In Macromolecules 6 925 (1973), ie using 13 C-NMR. The isotactic fraction of In other words, the isotactic pentad fraction is the fraction of propylene monomer units at the center of a chain in which five propylene monomer units are continuously meso-bonded. However, regarding the attribution of the peak, since a corrected version of Macromolecules 6 , 925 (1973) is described in Macromolecules 8 , 678 (1975), it shall be performed based on this.
 具体的には、13C-NMRスペクトルのメチル炭素領域の全吸収ピーク中のmmmmピークの面積分率としてアイソタクチック・ペンタッド分率を測定する。この方法により英国 NATIONAL PHYSICAL LABORATORY のNPL標準物質CRMNo.M19-14 Polypropylene PP/MWD/2のアイソタクチック・ペンタッド分率を測定したところ0.944であった。 Specifically, the isotactic pentad fraction is measured as the area fraction of the mmmm peak in the total absorption peak in the methyl carbon region of the 13 C-NMR spectrum. The isotactic pentad fraction of NPL reference material CRM No. M19-14 Polypropylene PP / MWD / 2 from NATIONAL PHYSICAL LABORATORY, UK was measured to be 0.944.
 本発明で好ましく用いられる上記プロピレン系重合体は、例えば特開昭53-33289号公報に記載の方法により調製することができる。また、重合時にルイス塩基を使用することもできる。ルイス塩基を使用すると、一般に沸騰ヘプタン可溶部の含有量は減少するが、沸騰ヘプタン不溶部のアイソタクチック・ペンタッド分率は変化しない。 The propylene polymer preferably used in the present invention can be prepared, for example, by the method described in JP-A-53-33289. A Lewis base can also be used during the polymerization. When a Lewis base is used, the content of the boiling heptane-soluble part is generally decreased, but the isotactic pentad fraction of the boiling heptane-insoluble part is not changed.
 上記のようなプロピレン系重合体のメルトフローレート(MFR;ASTM D 1238,230℃、2.16kg荷重)は、好ましくは0.1~100g/10分、より好ましくは0.5~80g/10分、さらに好ましくは0.5~60g/10分である。メルトフローレートが上記範囲内にあるプロピレン系重合体を用いると、加工性(成形性)が良好な架橋型熱可塑性エラストマー樹脂組成物(D)が得られ、しかも、機械的強度特性、耐油性等の物性に優れる成形体を得ることができる。 The melt flow rate (MFR; ASTM D 1238, 230 ° C., 2.16 kg load) of the propylene-based polymer as described above is preferably 0.1 to 100 g / 10 minutes, more preferably 0.5 to 80 g / 10. Min, more preferably 0.5 to 60 g / 10 min. When a propylene polymer having a melt flow rate within the above range is used, a cross-linked thermoplastic elastomer resin composition (D) having good processability (moldability) can be obtained, and mechanical strength characteristics and oil resistance can be obtained. A molded article having excellent physical properties such as the above can be obtained.
 本発明に用いる結晶性オレフィン重合体(A)は、公知の方法で製造したものを用いてもよく、市販品を用いてもよい。 The crystalline olefin polymer (A) used in the present invention may be one produced by a known method or a commercially available product.
 上記のようなプロピレン系重合体等の結晶性オレフィン重合体(A)は、後述する架橋エチレン共重合体(B)との重量比(A/B)が通常は、10/90~50/50であり、好ましくは15/85~45/55であり、より好ましくは20/80~40/60である。結晶性オレフィン重合体(A)および後述する架橋エチレン共重合体(B)を上記割合で用いると、流動性が良好で成形性に優れる架橋型熱可塑性エラストマー組成物(D)が得られ、この組成物から、外観に優れる成形体を得ることができる。 The crystalline olefin polymer (A) such as the propylene-based polymer as described above usually has a weight ratio (A / B) to the crosslinked ethylene copolymer (B) described later of 10/90 to 50/50. It is preferably 15/85 to 45/55, more preferably 20/80 to 40/60. When the crystalline olefin polymer (A) and the later-described crosslinked ethylene copolymer (B) are used in the above ratio, a crosslinked thermoplastic elastomer composition (D) having good fluidity and excellent moldability is obtained. From the composition, a molded article having excellent appearance can be obtained.
 〔架橋エチレン共重合体(B)〕
 本発明に用いる架橋エチレン共重合体(B)は、該共重合体の架橋部位(C)が、アミド基およびイミド基からなる群から選択される少なくとも1種の含窒素基と、エステル基とを有する有機基(c1)である。
[Crosslinked ethylene copolymer (B)]
The crosslinked ethylene copolymer (B) used in the present invention comprises at least one nitrogen-containing group selected from the group consisting of an amide group and an imide group, an ester group, and a crosslinking site (C) of the copolymer. An organic group (c1) having
 架橋エチレン共重合体(B)としては、有機基(c1)を有するエチレン共重合体であればよく、特に限定はされないが、後述するエチレン共重合体(E)を架橋することにより得られる重合体であることが、架橋型熱可塑性エラストマー組成物(D)の耐油性の観点から好ましい。 The crosslinked ethylene copolymer (B) is not particularly limited as long as it is an ethylene copolymer having an organic group (c1), but is obtained by crosslinking the ethylene copolymer (E) described later. It is preferable that it is a coalescence from the viewpoint of oil resistance of the cross-linked thermoplastic elastomer composition (D).
 エチレン共重合体(E)を架橋する際には、アミド基と、エステル基と、二つ以上のイソシアネート基とを有する、イソシアネート基含有オリゴマー(F)を架橋剤として用いたり、ポリエステルポリカルボン酸(G)および多価イソシアネートを架橋剤として用いたりする。前記ポリエステルポリカルボン酸(G)および多価イソシアネートは、該二種類の化合物で、本発明における架橋剤として作用する。また、前記多価イソシアネートとしては、イソシアネート基含有オリゴマー(F)以外の多価イソシアネートを通常は用いる。 When the ethylene copolymer (E) is crosslinked, an isocyanate group-containing oligomer (F) having an amide group, an ester group, and two or more isocyanate groups is used as a crosslinking agent, or a polyester polycarboxylic acid. (G) and a polyvalent isocyanate are used as a crosslinking agent. The polyester polycarboxylic acid (G) and the polyvalent isocyanate are the two kinds of compounds and act as a crosslinking agent in the present invention. Moreover, as said polyvalent isocyanate, polyvalent isocyanate other than an isocyanate group containing oligomer (F) is used normally.
 前記有機基(c1)としては、架橋型熱可塑性エラストマー組成物(D)の耐油性の観点から、下記一般式R2で表わされる二価の基を含むことが好ましく、有機基(c1)が下記一般式Raおよび下記一般式Rbからなる群から選択される少なくとも1種の有機基であることがより好ましい。 The organic group (c1) preferably contains a divalent group represented by the following general formula R 2 from the viewpoint of oil resistance of the crosslinked thermoplastic elastomer composition (D), and the organic group (c1) is More preferably, it is at least one organic group selected from the group consisting of the following general formula Ra and the following general formula Rb.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 (上記一般式R2において、R3はそれぞれ独立に、分岐を有していてもよい炭素数1~15のアルキレン基または炭素数6~15の芳香族基であり、R4はそれぞれ独立に、分岐を有していてもよい炭素数1~15のアルキレン基である。) (In the above general formula R 2 , each R 3 is independently an alkylene group having 1 to 15 carbon atoms or an aromatic group having 6 to 15 carbon atoms which may have a branch, and each R 4 is independently And an optionally substituted alkylene group having 1 to 15 carbon atoms.)
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 (上記一般式RaおよびRbにおいて、Rcはそれぞれ独立に、炭素数1~20の三価の炭化水素基であり、Rdはそれぞれ独立に、炭素数1~20の二価の炭化水素基であり、R1はそれぞれ独立に、ジイソシアネート残基であり、R2はそれぞれ独立に、前記一般式で表わされる二価の基である。)
 上記一般式Raにおいて、Rcはそれぞれ独立に、炭素数1~20の三価の炭化水素基を示す。Rcは架橋部位の末端に存在する基であり、通常Rcは、隣接する二つのカルボニル基および窒素原子と共に、イミド環を形成する。Rcの具体例を、隣接する二つのカルボニル基および窒素原子と共に、下記一般式(1)に示す。なお、一般式Raにおいて、Rcは二つ存在するが、それぞれ独立であり、相互に同一でも異なっていてもよい。
(In the above general formulas Ra and Rb, each Rc is independently a trivalent hydrocarbon group having 1 to 20 carbon atoms, and each Rd is independently a divalent hydrocarbon group having 1 to 20 carbon atoms. , R 1 each independently represents a diisocyanate residue, and R 2 each independently represents a divalent group represented by the above general formula.)
In the above general formula Ra, each Rc independently represents a trivalent hydrocarbon group having 1 to 20 carbon atoms. Rc is a group present at the end of the crosslinking site, and usually Rc forms an imide ring together with two adjacent carbonyl groups and a nitrogen atom. A specific example of Rc is shown in the following general formula (1) together with two adjacent carbonyl groups and a nitrogen atom. In general formula Ra, there are two Rc, but they are independent of each other and may be the same or different from each other.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 上記一般式Rbにおいて、Rdはそれぞれ独立に、炭素数1~20の二価の炭化水素基である。Rdは架橋部位の末端に存在する基であり、Rdの具体例としては、分岐を有していてもよい炭素数1~20のアルキレン基等が挙げられ、好ましくは-(CH2)x-で表わされるアルキレン基(X=1~20の整数)である。なお、一般式Rbにおいて、Rdは二つ存在するが、それぞれ独立であり、相互に同一でも異なっていてもよい。 In the general formula Rb, each Rd is independently a divalent hydrocarbon group having 1 to 20 carbon atoms. Rd is a group present at the end of the crosslinking site, and specific examples of Rd include an optionally substituted alkylene group having 1 to 20 carbon atoms, preferably — (CH 2 ) x—. Is an alkylene group (X is an integer of 1 to 20). In the general formula Rb, there are two Rd, but they are independent of each other and may be the same or different from each other.
 上記一般式RaおよびRbにおいて、R1はそれぞれ独立に、ジイソシアネート残基である。本発明に用いる架橋エチレン共重合体(B)は通常、後述するエチレン共重合体(E)を、後述する架橋剤存在下で動的架橋することにより得られる。この場合において、前記R1は、イソシアネート基含有オリゴマー(F)を製造する際に用いるジイソシアネートの残基(ジイソシアネート残基)、または動的架橋の際に用いられるジイソシアネートの残基である。なお、一般式RaおよびRbにおいて、R1は複数存在するが、それぞれ独立であり、相互に同一でも異なっていてもよい。 In the above general formulas Ra and Rb, each R 1 is independently a diisocyanate residue. The crosslinked ethylene copolymer (B) used in the present invention is usually obtained by dynamically crosslinking an ethylene copolymer (E) described later in the presence of a crosslinking agent described later. In this case, R 1 is a diisocyanate residue (diisocyanate residue) used when the isocyanate group-containing oligomer (F) is produced, or a diisocyanate residue used during dynamic crosslinking. In general formulas Ra and Rb, there are a plurality of R 1 s , which are independent of each other and may be the same or different from each other.
 なお、ジイソシアネート残基とは、用いるジイソシアネートの構造をOCN-X-NCOとした場合に、-X-に相当する部分を示す。 The diisocyanate residue is a portion corresponding to -X- when the structure of the diisocyanate used is OCN-X-NCO.
 前記R1としては、分岐を有していてもよい炭素数2~10のアルキレン基、炭素数6~20のアリーレン基、および脂環式炭化水素基を有する炭素数6~20の二価の炭化水素基からなる群から選択される少なくとも一種の基であることが経済性の観点から好ましい。 As R 1 , an optionally branched alkylene group having 2 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, and a divalent divalent hydrocarbon having 6 to 20 carbon atoms having an alicyclic hydrocarbon group. From the viewpoint of economy, it is preferably at least one group selected from the group consisting of hydrocarbon groups.
 前記R1の好ましい具体例を、下記一般式(2)に示す。 A preferred specific example of R 1 is shown in the following general formula (2).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 上記R2はそれぞれ独立に、上記一般式で表わされる二価の基である。R2はエステル基およびアミド基を有しているため、親水性に優れる二価の基であり、本発明の架橋型熱可塑性エラストマー組成物(D)の耐油性に寄与する基である。なお、一般式RaおよびRbにおいて、R2が複数存在する場合には、それぞれ独立であり、相互に同一でも異なっていてもよい。 Each R 2 is independently a divalent group represented by the above general formula. Since R 2 has an ester group and an amide group, R 2 is a divalent group having excellent hydrophilicity, and is a group contributing to the oil resistance of the crosslinked thermoplastic elastomer composition (D) of the present invention. In the general formulas Ra and Rb, when a plurality of R 2 are present, they are independent of each other and may be the same or different from each other.
 上記一般式R2において、R3はそれぞれ独立に、分岐を有していてもよい炭素数1~15のアルキレン基または炭素数6~15の芳香族基である。本発明に用いる架橋エチレン共重合体(B)の一態様としては、後述するエチレン共重合体(E)を、後述するイソシアネート基含有オリゴマー(F-x)、またはポリエステルジカルボン酸とジイソシアネートとを用いて架橋することにより得ることができるが、この場合において、前記R3は、イソシアネート基含有オリゴマー(F-x)またはポリエステルジカルボン酸を製造する際に用いるジカルボン酸の残基である。なお、一般式R2において、R3は複数存在するが、それぞれ独立であり、相互に同一でも異なっていてもよい。 In the above general formula R 2 , each R 3 is independently an alkylene group having 1 to 15 carbon atoms or an aromatic group having 6 to 15 carbon atoms which may have a branch. As an embodiment of the crosslinked ethylene copolymer (B) used in the present invention, an ethylene copolymer (E) described later is used as an isocyanate group-containing oligomer (Fx) described later, or a polyester dicarboxylic acid and a diisocyanate. In this case, the R 3 is a residue of a dicarboxylic acid used in producing an isocyanate group-containing oligomer (Fx) or a polyester dicarboxylic acid. In the general formula R 2 , there are a plurality of R 3 s , which are independent of each other and may be the same or different from each other.
 なお、ジカルボン酸の残基とは、用いるジカルボン酸の構造をHOOC-X-COOHとした場合に、-X-に相当する部分を示す。 The dicarboxylic acid residue indicates a portion corresponding to -X- when the structure of the dicarboxylic acid used is HOOC-X-COOH.
 前記R3は、分岐を有していてもよい炭素数1~15のアルキレン基または炭素数6~15の芳香族基である。アルキレン基としては下記一般式(3)で表わされるアルキレン基が経済性の観点から好ましい。また、芳香族基としては、下記一般式(3’)で表わされる芳香族基が経済性の観点から好ましい。 R 3 is an optionally substituted alkylene group having 1 to 15 carbon atoms or an aromatic group having 6 to 15 carbon atoms. As the alkylene group, an alkylene group represented by the following general formula (3) is preferable from the viewpoint of economy. Moreover, as an aromatic group, the aromatic group represented by the following general formula (3 ') is preferable from an economical viewpoint.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 上記一般式(3)および(3’)で表わされるR3の中でも物性および成形性の観点から-(CH2)s-で表わされるアルキレン基(s=2~6の整数)がより好ましい。 Among R 3 represented by the above general formulas (3) and (3 ′), an alkylene group represented by — (CH 2 ) s— (an integer of s = 2 to 6) is more preferable from the viewpoint of physical properties and moldability.
 上記一般式R2において、R4はそれぞれ独立に、分岐を有していてもよい炭素数1~15のアルキレン基である。本発明に用いる架橋エチレン共重合体(B)の一態様としては、後述するエチレン共重合体(E)を、後述するイソシアネート基含有オリゴマー(F-x)、またはポリエステルジカルボン酸とジイソシアネートとを用いて架橋することにより得ることができるが、この場合において、前記R4は、イソシアネート基含有オリゴマー(F-x)またはポリエステルジカルボン酸を製造する際に用いるジオールの残基である。なお、一般式R2において、R4は複数存在するが、それぞれ独立であり、相互に同一でも異なっていてもよい。 In the above general formula R 2 , each R 4 is independently an alkylene group having 1 to 15 carbon atoms which may have a branch. As an embodiment of the crosslinked ethylene copolymer (B) used in the present invention, an ethylene copolymer (E) described later is used as an isocyanate group-containing oligomer (Fx) described later, or a polyester dicarboxylic acid and a diisocyanate. In this case, R 4 is a residue of a diol used for producing an isocyanate group-containing oligomer (Fx) or polyester dicarboxylic acid. In the general formula R 2 , there are a plurality of R 4 s , which are independent of each other and may be the same or different from each other.
 なお、ジオールの残基とは、用いるジオールの構造をHO-X-OHとした場合に、-X-に相当する部分を示す。 The diol residue indicates a portion corresponding to -X- when the structure of the diol used is HO-X-OH.
 前記R4は、炭素数1~15のアルキレン基であり、具体的には下記一般式(4)で表わされるアルキレン基が、経済性の観点から好ましい。 R 4 is an alkylene group having 1 to 15 carbon atoms. Specifically, an alkylene group represented by the following general formula (4) is preferable from the viewpoint of economy.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 また、上記一般式RaおよびRbにおいて、nは0~5である。nの好ましい範囲は、Rc、Rd、R1およびR2によっても異なるが、0~3であり、より好ましくは0~2である。 In the above general formulas Ra and Rb, n is 0-5. The preferable range of n varies depending on Rc, Rd, R 1 and R 2 , but is 0 to 3, more preferably 0 to 2.
 また、上記一般式R2おいて、mは1~20である。mの好ましい範囲は、R3およびR4によっても異なるが、7~20である。 In the above general formula R 2 , m is 1-20. A preferable range of m is 7 to 20, although it varies depending on R 3 and R 4 .
 本発明に用いる架橋エチレン共重合体(B)は、通常、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン・非共役ポリエン共重合体およびエチレン・不飽和カルボン酸共重合体からなる群から選択される少なくとも1種のエチレン共重合体(E)を架橋することにより得られる重合体である。前記架橋においては、通常エチレン共重合体(E)が有するイソシアネート基と反応しうる官能基、前記不飽和カルボン酸由来のカルボキシル基、前記不飽和カルボン酸由来のカルボン酸無水物基等の基と、後述する架橋剤とが反応し、架橋部位(C)が形成される。 The crosslinked ethylene copolymer (B) used in the present invention is usually an ethylene / α-olefin copolymer having a functional group capable of reacting with an isocyanate group, and an ethylene / α-olefin having a functional group capable of reacting with an isocyanate group. A polymer obtained by crosslinking at least one ethylene copolymer (E) selected from the group consisting of non-conjugated polyene copolymers and ethylene / unsaturated carboxylic acid copolymers. In the crosslinking, a group such as a functional group capable of reacting with an isocyanate group that the ethylene copolymer (E) usually has, a carboxyl group derived from the unsaturated carboxylic acid, a carboxylic acid anhydride group derived from the unsaturated carboxylic acid, and the like The crosslinking agent (to be described later) reacts to form a crosslinking site (C).
 すなわち、架橋エチレン共重合体(B)における、架橋部位(C)以外の部分の構造は、通常後述するエチレン共重合体(E)に由来する構造である。 That is, the structure of the portion other than the crosslinking site (C) in the crosslinked ethylene copolymer (B) is usually a structure derived from the ethylene copolymer (E) described later.
 〔エチレン共重合体(E)〕
 本発明におけるエチレン共重合体(E)は、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン・非共役ポリエン共重合体およびエチレン・不飽和カルボン酸共重合体からなる群から選択される少なくとも1種の共重合体である。
[Ethylene copolymer (E)]
The ethylene copolymer (E) in the present invention is an ethylene / α-olefin copolymer having a functional group capable of reacting with an isocyanate group, or an ethylene / α-olefin / non-conjugated polyene having a functional group capable of reacting with an isocyanate group. It is at least one copolymer selected from the group consisting of a copolymer and an ethylene / unsaturated carboxylic acid copolymer.
 前記イソシアネート基と反応しうる官能基としては通常、カルボキシル基またはカルボン酸無水物基等のカルボキシル基の誘導体である。 The functional group capable of reacting with the isocyanate group is usually a carboxyl group derivative such as a carboxyl group or a carboxylic anhydride group.
 本発明におけるイソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体や、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン・非共役ポリエン共重合体としては通常、エチレン・α-オレフィン共重合体や、エチレン・α-オレフィン・非共役ポリエン共重合体を、不飽和カルボン酸もしくは不飽和カルボン酸の誘導体でグラフト変性して得られるエチレン共重合体(E-1)や、エチレン、α-オレフィン、およびイソシアネート基と反応しうる官能基を有するモノマー、必要に応じて非共役ポリエンを共重合することにより得られるエチレン共重合体(E-2)が用いられる。 The ethylene / α-olefin copolymer having a functional group capable of reacting with an isocyanate group in the present invention, and the ethylene / α-olefin / nonconjugated polyene copolymer having a functional group capable of reacting with an isocyanate group are usually ethylene.・ Ethylene copolymers (E-1) obtained by graft-modifying α-olefin copolymers and ethylene / α-olefin / non-conjugated polyene copolymers with unsaturated carboxylic acids or unsaturated carboxylic acid derivatives Alternatively, ethylene, an α-olefin, a monomer having a functional group capable of reacting with an isocyanate group, and an ethylene copolymer (E-2) obtained by copolymerizing a non-conjugated polyene, if necessary, are used.
 <エチレン共重合体(E-1)>
 前記エチレン共重合体(E-1)を得る際に用いる、グラフト変性前のエチレン・α-オレフィン共重合体、エチレン・α-オレフィン・非共役ポリエン共重合体としては特に限定は無く、通常は密度が0.88~0.97g/cm3、好ましくは0.89~0.96g/cm3である。
<Ethylene copolymer (E-1)>
There are no particular limitations on the ethylene / α-olefin copolymer before graft modification and the ethylene / α-olefin / non-conjugated polyene copolymer used to obtain the ethylene copolymer (E-1), and usually The density is 0.88 to 0.97 g / cm 3 , preferably 0.89 to 0.96 g / cm 3 .
 エチレンと共重合するα-オレフィンとしては、通常は炭素数3~10のαオレフィンが用いられる。炭素数3~10のα-オレフィンの具体例としては、プロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン等が挙げられ、1-ブテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテンが好ましい。なおα-オレフィンは一種単独で用いても、二種以上を用いてもよい。 As the α-olefin copolymerized with ethylene, an α-olefin having 3 to 10 carbon atoms is usually used. Specific examples of the α-olefin having 3 to 10 carbon atoms include propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, and the like. -Hexene, 1-octene and 4-methyl-1-pentene are preferred. The α-olefins may be used alone or in combination of two or more.
 また、エチレンおよびα-オレフィンと共重合してもよい非共役ポリエンとしては、具体的には、1,4-ヘキサジエン、3-メチル-1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、4,5-ジメチル-1,4-ヘキサジエン、7-メチル-1,6-オクタジエン、8-メチル-4-エチリデン-1,7-ノナジエン、4-エチリデン-1,7-ウンデカジエン等の鎖状非共役ジエン;
メチルテトラヒドロインデン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、5-ビニリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペニル-2-ノルボルネン、5-ビニル-2-ノルボルネン、5-イソプロペニル-2-ノルボルネン、5-イソブテニル-2-ノルボルネン、シクロペンタジエン、ノルボルナジエン等の環状非共役ジエン;
2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリデン-5-ノルボルネン、2-プロペニル-2,2-ノルボルナジエン、4-エチリデン-8-メチル-1,7-ナノジエン等のトリエンなどが挙げられる。
Specific examples of the non-conjugated polyene that may be copolymerized with ethylene and α-olefin include 1,4-hexadiene, 3-methyl-1,4-hexadiene, 4-methyl-1,4-hexadiene. , 5-methyl-1,4-hexadiene, 4,5-dimethyl-1,4-hexadiene, 7-methyl-1,6-octadiene, 8-methyl-4-ethylidene-1,7-nonadiene, 4-ethylidene Linear unconjugated dienes such as -1,7-undecadiene;
Methyltetrahydroindene, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, 5-isopropylidene-2-norbornene, 5-vinylidene-2-norbornene, 6-chloromethyl-5-isopropenyl-2-norbornene Cyclic non-conjugated dienes such as 5-vinyl-2-norbornene, 5-isopropenyl-2-norbornene, 5-isobutenyl-2-norbornene, cyclopentadiene, norbornadiene;
2,3-diisopropylidene-5-norbornene, 2-ethylidene-3-isopropylidene-5-norbornene, 2-propenyl-2,2-norbornadiene, 4-ethylidene-8-methyl-1,7-nanodiene, etc. And triene.
 中でも、5-エチリデン-2-ノルボルネン、5-ビニル-2-ノルボルネン、シクロペンタジエン、4-エチリデン-8-メチル-1,7-ナノジエンが好ましい。なお非共役ポリエンは一種単独で用いても、二種以上を用いてもよい。 Of these, 5-ethylidene-2-norbornene, 5-vinyl-2-norbornene, cyclopentadiene, and 4-ethylidene-8-methyl-1,7-nanodiene are preferable. In addition, a nonconjugated polyene may be used individually by 1 type, or may use 2 or more types.
 グラフト変性前のエチレン・α-オレフィン共重合体としては、エチレンから導かれる構造単位が、通常は40~99モル%、好ましくは50~90モル%、さらに好ましくは60~85モル%であり、α-オレフィンから導かれる構造単位が、通常は60~1モル%、好ましくは50~10モル%、さらに好ましくは40~15モル%である。各構成単位の量は13C-NMRで求めることができる。 As the ethylene / α-olefin copolymer before graft modification, the structural unit derived from ethylene is usually 40 to 99 mol%, preferably 50 to 90 mol%, more preferably 60 to 85 mol%, The structural unit derived from α-olefin is usually 60 to 1 mol%, preferably 50 to 10 mol%, more preferably 40 to 15 mol%. The amount of each structural unit can be determined by 13 C-NMR.
 またグラフト変性前のエチレン・α-オレフィン共重合体は、135℃デカリン中で測定した極限粘度[η]が0.3~10dl/g、好ましくは0.5~10dl/gである。 The ethylene / α-olefin copolymer before graft modification has an intrinsic viscosity [η] measured in decalin of 135 ° C. of 0.3 to 10 dl / g, preferably 0.5 to 10 dl / g.
 また、グラフト変性前のエチレン・α-オレフィン共重合体のASTM D1238による190℃、2.16kg荷重におけるメルトフローレート〔MFR(190℃)〕が、通常は0.001~100g/10分、好ましくは0.1~50g/10分である。 The melt flow rate [MFR (190 ° C.)] at 190 ° C. and 2.16 kg load according to ASTM D1238 of the ethylene / α-olefin copolymer before graft modification is usually 0.001 to 100 g / 10 min, preferably Is 0.1 to 50 g / 10 min.
 グラフト変性前のエチレン・α-オレフィン・非共役ポリエン共重合体としては、エチレンから導かれる構造単位が、40~99モル%、通常は50~90モル%、好ましくは60~85モル%であり、α- オレフィンから導かれる構成単位が、60~1モル%、通常50~10モル%、好ましくは40~15モル%である(ただし、エチレン含量とα-オレフィン含量との合計を100モル%とする。)。また、非共役ポリエン含量は、ヨウ素価で通常0.1~30、好ましくは0.1~25である。なお、エチレンから導かれる構成単位およびα- オレフィンから導かれる構成単位の量は、13C-NMRで求めることができる。 As the ethylene / α-olefin / non-conjugated polyene copolymer before graft modification, the structural unit derived from ethylene is 40 to 99 mol%, usually 50 to 90 mol%, preferably 60 to 85 mol%. The structural unit derived from α-olefin is 60 to 1 mol%, usually 50 to 10 mol%, preferably 40 to 15 mol% (provided that the total of ethylene content and α-olefin content is 100 mol%) And). The non-conjugated polyene content is usually 0.1 to 30, preferably 0.1 to 25 in terms of iodine value. The amount of structural units derived from ethylene and structural units derived from α-olefin can be determined by 13 C-NMR.
 上記のようなグラフト変性前のエチレン・α-オレフィン共重合体やエチレン・α-オレフィン・非共役ポリエン共重合体の調製方法としては特に限定は無いが、例えば可溶性バナジウム化合物とアルキルアルミニウムハライド化合物とからなるバナジウム系触媒、またはジルコニウムのメタロセン化合物と有機アルミニウムオキシ化合物とからなるジルコニウム系触媒の存在下に、エチレンおよびα-オレフィン、必要に応じて非共役ポリエンをランダムに共重合させることによって調製することができる。 The method for preparing the ethylene / α-olefin copolymer or the ethylene / α-olefin / non-conjugated polyene copolymer before graft modification is not particularly limited. For example, a soluble vanadium compound and an alkylaluminum halide compound Prepared by random copolymerization of ethylene and α-olefin, and if necessary, non-conjugated polyene in the presence of a vanadium-based catalyst or a zirconium-based catalyst of a zirconium metallocene compound and an organoaluminum oxy compound. be able to.
 バナジウム系触媒で用いられる可溶性バナジウム化合物としては、具体的には、四塩化バナジウム、オキシ三塩化バナジウム、モノエトキシ二塩化バナジウム、バナジウムトリアセチルアセトネート、オキシバナジウムトリアセチルアセトネートなどが挙げられる。 Specific examples of the soluble vanadium compound used in the vanadium-based catalyst include vanadium tetrachloride, vanadium oxytrichloride, vanadium monoethoxydichloride, vanadium triacetylacetonate, oxyvanadium triacetylacetonate, and the like.
 また、バナジウム系触媒で用いられるアルキルアルミニウムハライド化合物としては、具体的には、エチルアルミニウムジクロリド、ジエチルアルミニウムモノクロリド、エチルアルミニウムセスキクロリド、ジエチルアルミニウムモノブロミド、ジイソブチルアルミニウムモノクロリド、イソブチルアルミニウムジクロリド、イソブチルアルミニウムセスキクロリドなどが挙げられる。 Specific examples of the alkylaluminum halide compound used in the vanadium catalyst include ethylaluminum dichloride, diethylaluminum monochloride, ethylaluminum sesquichloride, diethylaluminum monobromide, diisobutylaluminum monochloride, isobutylaluminum dichloride, isobutylaluminum. Examples include sesquichloride.
 ジルコニウム系触媒で用いられるジルコニウムのメタロセン化合物としては、具体的には、エチレンビス(インデニル)ジルコニウムジブロミド、ジメチルシリレンビス(2-メチルインデニル)ジルコニウムジクロリド、ビス(シクロペンタジエニル)ジルコニウムジブロミド、ビス(ジメチルシクロペンタジエニル)ジルコニウムジクロリドなどが挙げられる。 Specific examples of zirconium metallocene compounds used in zirconium-based catalysts include ethylene bis (indenyl) zirconium dibromide, dimethylsilylene bis (2-methylindenyl) zirconium dichloride, and bis (cyclopentadienyl) zirconium dibromide. And bis (dimethylcyclopentadienyl) zirconium dichloride.
 また、ジルコニウム系触媒で用いられる有機アルミニウムオキシ化合物としては、アルミノオキサンまたはベンゼン不溶性の有機アルミニウムオキシ化合物がある。 Also, as the organoaluminum oxy compound used in the zirconium-based catalyst, there are aluminoxane or benzene insoluble organoaluminum oxy compound.
 ジルコニウム系触媒は、ジルコニウムのメタロセン化合物および有機アルミニウムオキシ化合物とともに、有機アルミニウム化合物を含有していてもよい。このような有機アルミニウム化合物としては、具体的には、トリイソブチルアルミニウム、ジメチルアルミニウムクロリド、メチルアルミニウムセスキクロリドなどが挙げられる。 The zirconium-based catalyst may contain an organoaluminum compound together with a zirconium metallocene compound and an organoaluminum oxy compound. Specific examples of such organoaluminum compounds include triisobutylaluminum, dimethylaluminum chloride, methylaluminum sesquichloride, and the like.
 上記重合は、溶液状または懸濁状あるいはこの中間領域で行うことができ、いずれの場合にも不活性溶剤を反応媒体として用いるのが好ましい。 The polymerization can be carried out in the form of a solution or suspension or in the middle region. In any case, it is preferable to use an inert solvent as a reaction medium.
 エチレン共重合体(E)の一態様である、エチレン・α-オレフィン共重合体や、エチレン・α-オレフィン・非共役ポリエン共重合体を、不飽和カルボン酸もしくは不飽和カルボン酸の誘導体でグラフト変性して得られるエチレン共重合体(E-1)は、前記グラフト変性前のエチレン・α-オレフィン共重合体やエチレン・α-オレフィン・非共役ポリエン共重合体が不飽和カルボン酸もしくは不飽和カルボン酸の誘導体でグラフト変性されてなる。すなわち、エチレン共重合体(E-1)は、カルボキシル基または、カルボキシル基から誘導される基をイソシアネート基と反応しうる官能基として有する。 Grafting ethylene / α-olefin copolymer or ethylene / α-olefin / non-conjugated polyene copolymer, which is one embodiment of ethylene copolymer (E), with unsaturated carboxylic acid or unsaturated carboxylic acid derivative The ethylene copolymer (E-1) obtained by modification is an unsaturated carboxylic acid or an unsaturated ethylene / α-olefin copolymer or ethylene / α-olefin / unconjugated polyene copolymer before graft modification. Graft-modified with a carboxylic acid derivative. That is, the ethylene copolymer (E-1) has a carboxyl group or a group derived from the carboxyl group as a functional group capable of reacting with an isocyanate group.
 ここで使用される不飽和カルボン酸の例としては、アクリル酸、マレイン酸、フマル酸、10-ウンデセン酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸およびナジック酸TM(エンドシス- ビシクロ[2,2,1]ヘプト-5-エン-2,3- ジカルボン酸)などが挙げられる。また、不飽和カルボン酸の誘導体としては、例えば上記不飽和カルボン酸の酸ハライド化合物、酸無水物、アミド化合物、イミド化合物およびエステル化合物などを挙げることができる。具体的には、塩化マレニル、マレイミド、無水マレイン酸、無水シトラコン酸、マレイン酸モノメチル、マレイン酸ジメチル、グリシジルマレエートなどが挙げられる。 Examples of unsaturated carboxylic acids used here include acrylic acid, maleic acid, fumaric acid, 10-undecenoic acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid and nadic acid TM (endocis- Bicyclo [2,2,1] hept-5-ene-2,3-dicarboxylic acid). Examples of the unsaturated carboxylic acid derivatives include acid halide compounds, acid anhydrides, amide compounds, imide compounds, and ester compounds of the above unsaturated carboxylic acids. Specific examples include maleyl chloride, maleimide, maleic anhydride, citraconic anhydride, monomethyl maleate, dimethyl maleate, glycidyl maleate, and the like.
 これらの中では、不飽和ジカルボン酸またはその酸無水物が好適であり、特にマレイン酸、ナジック酸TMまたはこれらの酸無水物、または10-ウンデセン酸が好適である。 Among these, unsaturated dicarboxylic acids or acid anhydrides thereof are preferable, and maleic acid, nadic acid TM or acid anhydrides thereof, or 10-undecenoic acid is particularly preferable.
 なお、エチレン共重合体(E-1)の製造の際には、エチレン共重合体(E-1)が有するイソシアネート基と反応しうる官能基の官能基数が、エチレン共重合体(E-1)の単位重量あたり、通常は0.10mmol/g以上、好ましくは0.20mmol/g以上、更に好ましくは0.30mmol/g以上となるように、不飽和カルボン酸またはその誘導体のグラフト量を調整する。官能基数の上限としては、物性および成形性の観点から通常は2.0mmol/g以下である。 In the production of the ethylene copolymer (E-1), the number of functional groups capable of reacting with the isocyanate group contained in the ethylene copolymer (E-1) is such that the ethylene copolymer (E-1 The amount of unsaturated carboxylic acid or its derivative is adjusted so that it is usually 0.10 mmol / g or more, preferably 0.20 mmol / g or more, more preferably 0.30 mmol / g or more. To do. The upper limit of the number of functional groups is usually 2.0 mmol / g or less from the viewpoint of physical properties and moldability.
 官能基数が上記範囲になるグラフト量で製造されたエチレン共重合体(E-1)を、後述するイソシアネート基含有オリゴマー(F)、またはポリエステルポリカルボン酸(G)と多価イソシアネートとを用いて架橋することにより得られたる架橋エチレン共重合体(B)は、本発明の架橋型熱可塑性エラストマー組成物(D)において、分散性に優れるとともに、熱安定性に優れ、溶融時に樹脂が着色することもなく、耐油性にも優れる。また、架橋エチレン共重合体(B)を用いることにより、機械的強度に優れた成形体を提供し得る架橋型熱可塑性エラストマー組成物(D)を得ることができる。 An ethylene copolymer (E-1) produced with a graft amount in which the number of functional groups falls within the above range is used by using an isocyanate group-containing oligomer (F) or a polyester polycarboxylic acid (G) described later and a polyvalent isocyanate. The crosslinked ethylene copolymer (B) obtained by crosslinking is excellent in dispersibility and thermal stability in the crosslinked thermoplastic elastomer composition (D) of the present invention, and the resin is colored when melted. It is also excellent in oil resistance. Further, by using the crosslinked ethylene copolymer (B), a crosslinked thermoplastic elastomer composition (D) capable of providing a molded article having excellent mechanical strength can be obtained.
 なお、前記グラフト変性前のエチレン・α-オレフィン共重合体やエチレン・α-オレフィン・非共役ポリエン共重合体にグラフトされる不飽和カルボン酸またはその誘導体のグラフト位置に特に限定はなく、グラフト変性前のエチレン・α-オレフィン共重合体やエチレン・α-オレフィン・非共役ポリエン共重合体に由来する重合体鎖中の任意の炭素原子に、不飽和カルボン酸またはその誘導体が結合していればよい。 The graft position of the unsaturated carboxylic acid or its derivative grafted to the ethylene / α-olefin copolymer or the ethylene / α-olefin / non-conjugated polyene copolymer before the graft modification is not particularly limited. If an unsaturated carboxylic acid or derivative thereof is bonded to any carbon atom in the polymer chain derived from the previous ethylene / α-olefin copolymer or ethylene / α-olefin / non-conjugated polyene copolymer Good.
 エチレン共重合体(E-1)は、従来公知の種々の方法、例えば次のような方法を用いて調製することができる。
(1)前記グラフト変性前のエチレン・α-オレフィン共重合体やエチレン・α-オレフィン・非共役ポリエン共重合体を溶融させて不飽和カルボン酸等を添加してグラフト共重合させる方法。
(2)前記グラフト変性前のエチレン・α-オレフィン共重合体やエチレン・α-オレフィン・非共役ポリエン共重合体を溶媒に溶解させて不飽和カルボン酸等を添加してグラフト共重合させる方法。
The ethylene copolymer (E-1) can be prepared using various conventionally known methods, for example, the following methods.
(1) A method in which the ethylene / α-olefin copolymer or the ethylene / α-olefin / non-conjugated polyene copolymer before graft modification is melted and an unsaturated carboxylic acid or the like is added to perform graft copolymerization.
(2) A method in which the ethylene / α-olefin copolymer or the ethylene / α-olefin / non-conjugated polyene copolymer before graft modification is dissolved in a solvent and an unsaturated carboxylic acid or the like is added to perform graft copolymerization.
 いずれの方法も、前記不飽和カルボン酸等のグラフトモノマーを効率よくグラフト共重合させるためには、ラジカル開始剤の存在下にグラフト反応を行なうのが好ましい。 In any method, in order to efficiently graft copolymerize the graft monomer such as the unsaturated carboxylic acid, the graft reaction is preferably performed in the presence of a radical initiator.
 前記ラジカル開始剤としては、有機ペルオキシド、アゾ化合物などが使用される。このようなラジカル開始剤としては、具体的には、ベンゾイルペルオキシド、ジクロルベンゾイルペルオキシド、ジクミルペルオキシド、ジ‐tert‐ブチルペルオキシド、2,5‐ジメチル‐2,5‐ジ(ペルオキシドベンゾエート)ヘキシン‐3、1,4‐ビス(tert‐ブチルペルオキシイソプロピル)ベンゼン、ラウロイルペルオキシド、tert‐ブチルペルアセテート、2,5‐ジメチル‐2,5‐ジ‐(tert‐ブチルペルオキシド)ヘキシン‐3、2,5‐ジメチル‐2,5‐ジ(tert‐ブチルペルオキシド)ヘキサン、tert‐ブチルペルベンゾエート、tert‐ブチルペルフェニルアセテート、tert‐ブチルペルイソブチレート、tert‐ブチルペル‐sec‐オクトエート、tert‐ブチルペルピバレート、クミルペルピバレート、tert‐ブチルペルジエチルアセテート等の有機ペルオキシド;アゾビスイソブチロニトリル、ジメチルアゾイソブチレート等のアゾ化合物などが挙げられる。これらの中では、ジクミルペルオキシド、ジ‐tert‐ブチルペルオキシド、2,5‐ジメチル‐2,5‐ジ(tert‐ブチルペルオキシ)ヘキシン-3、2,5‐ジメチル‐2,5‐ジ(tert‐ブチルペルオキシ)ヘキサン、1,4‐ビス(tert‐ブチルペルオキシイソプロピル)ベンゼンなどのジアルキルペルオキシドが好ましく用いられる。 As the radical initiator, organic peroxides, azo compounds and the like are used. Specific examples of such radical initiators include benzoyl peroxide, dichlorobenzoyl peroxide, dicumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di (peroxide benzoate) hexyne- 3,1,4-bis (tert-butylperoxyisopropyl) benzene, lauroyl peroxide, tert-butylperacetate, 2,5-dimethyl-2,5-di- (tert-butylperoxide) hexyne-3, 2,5 -Dimethyl-2,5-di (tert-butylperoxide) hexane, tert-butylperbenzoate, tert-butylperphenylacetate, tert-butylperisobutyrate, tert-butylper-sec-octoate, tert-butylperpi Organic peroxides such as barate, cumyl perpivalate, tert-butyl perdiethyl acetate Azobisisobutyronitrile, azo compounds such as dimethyl azoisobutyrate, and the like. Among these, dicumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexyne-3, 2,5-dimethyl-2,5-di (tert Dialkyl peroxides such as -butylperoxy) hexane and 1,4-bis (tert-butylperoxyisopropyl) benzene are preferably used.
 これらのラジカル開始剤は、前記グラフト変性前のエチレン・α-オレフィン共重合体やエチレン・α-オレフィン・非共役ポリエン共重合体100量部に対して、通常は0.001~1重量部、好ましくは0.005~0.5重量部、さらに好ましくは0.01~0.3重量部の量で用いられる。 These radical initiators are usually 0.001 to 1 part by weight with respect to 100 parts by weight of the ethylene / α-olefin copolymer or ethylene / α-olefin / non-conjugated polyene copolymer before the graft modification, The amount is preferably 0.005 to 0.5 parts by weight, more preferably 0.01 to 0.3 parts by weight.
 前記のようなラジカル開始剤を使用したグラフト反応、あるいはラジカル開始剤を使用せずに行なうグラフト反応における反応温度は、通常60~350℃、好ましくは150~300℃の範囲内に設定される。 The reaction temperature in the grafting reaction using the radical initiator as described above or in the grafting reaction performed without using the radical initiator is usually set in the range of 60 to 350 ° C., preferably 150 to 300 ° C.
 <エチレン共重合体(E-2)>
 前記エチレン共重合体(E-2)は、エチレン、α-オレフィン、およびイソシアネート基と反応しうる官能基を有するモノマー、必要に応じて非共役ポリエンを共重合することにより得られる。
<Ethylene copolymer (E-2)>
The ethylene copolymer (E-2) can be obtained by copolymerizing ethylene, an α-olefin, a monomer having a functional group capable of reacting with an isocyanate group, and if necessary, a non-conjugated polyene.
 α-オレフィンとしては、通常炭素数3~20のα-オレフィンが用いられ、炭素数3~20のα-オレフィンの例としては、プロピレン、1-ブテン、2-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4,4-ジメチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどが挙げられる。これらの中でもエチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテンが挙げられる。中でも、プロピレン、1-ブテン、4-メチルペンテン-1、1-ヘキセン、1-オクテンが好ましく、プロピレンがより好ましい。α-オレフィンとしては、一種単独で用いても、二種以上を用いてもよい。 As the α-olefin, an α-olefin having 3 to 20 carbon atoms is usually used. Examples of the α-olefin having 3 to 20 carbon atoms include propylene, 1-butene, 2-butene, 1-pentene, 3- Methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4,4-dimethyl-1-pentene, 4-methyl-1- Hexene, 4,4-dimethyl-1-hexene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-hexadecene Examples include octadecene and 1-eicosene. Among these, ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1-octene are exemplified. Among these, propylene, 1-butene, 4-methylpentene-1, 1-hexene and 1-octene are preferable, and propylene is more preferable. As the α-olefin, one kind may be used alone, or two or more kinds may be used.
 必要に応じて共重合される非共役ポリエンとしては、具体的には、1,4-ヘキサジエン、3-メチル-1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、4,5-ジメチル-1,4-ヘキサジエン、7-メチル-1,6-オクタジエン、8-メチル-4-エチリデン-1,7-ノナジエン、4-エチリデン-1,7-ウンデカジエン等の鎖状非共役ジエン;
メチルテトラヒドロインデン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、5-ビニリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペニル-2-ノルボルネン、5-ビニル-2- ノルボルネン、5-イソプロペニル-2- ノルボルネン、5-イソブテニル-2-ノルボルネン、シクロペンタジエン、ノルボルナジエン等の環状非共役ジエン;
2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリデン-5-ノルボルネン、2-プロペニル-2,2-ノルボルナジエン、4-エチリデン-8- メチル-1,7-ナノジエン等のトリエンなどが挙げられる。
Specific examples of the non-conjugated polyene copolymerized as needed include 1,4-hexadiene, 3-methyl-1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1 , 4-hexadiene, 4,5-dimethyl-1,4-hexadiene, 7-methyl-1,6-octadiene, 8-methyl-4-ethylidene-1,7-nonadiene, 4-ethylidene-1,7-undecadiene Chain non-conjugated dienes such as;
Methyltetrahydroindene, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, 5-isopropylidene-2-norbornene, 5-vinylidene-2-norbornene, 6-chloromethyl-5-isopropenyl-2-norbornene Cyclic non-conjugated dienes such as 5-vinyl-2-norbornene, 5-isopropenyl-2-norbornene, 5-isobutenyl-2-norbornene, cyclopentadiene, norbornadiene;
2,3-diisopropylidene-5-norbornene, 2-ethylidene-3-isopropylidene-5-norbornene, 2-propenyl-2,2-norbornadiene, 4-ethylidene-8-methyl-1,7-nanodiene, etc. And triene.
 中でも、5-エチリデン-2-ノルボルネン、5-ビニル-2-ノルボルネン、シクロペンタジエン、4-エチリデン-8-メチル-1,7-ナノジエンが好ましい。なお非共役ポリエンは一種単独で用いても、二種以上を用いてもよい。 Of these, 5-ethylidene-2-norbornene, 5-vinyl-2-norbornene, cyclopentadiene, and 4-ethylidene-8-methyl-1,7-nanodiene are preferable. In addition, a nonconjugated polyene may be used individually by 1 type, or may use 2 or more types.
 エチレン共重合体(E-2)を得るために用いる、イソシアネート基と反応しうる官能基を有するモノマーは、通常イソシアネート基と反応しうる官能基としてカルボキシル基またはカルボキシル基から誘導される基を有する。 The monomer having a functional group capable of reacting with an isocyanate group, which is used for obtaining the ethylene copolymer (E-2), usually has a carboxyl group or a group derived from the carboxyl group as a functional group capable of reacting with an isocyanate group. .
 該モノマーとしては、下記一般式(Z)で表される極性基含有モノマーが挙げられる。
CH2=CH-R5-Z  ・・・(Z)
 上記一般式(Z)において、R5は飽和または不飽和の脂肪族炭化水素基、脂環族炭化水素基、芳香族炭化水素基などの炭化水素基、好ましくは炭素数1~20の炭化水素基を示し、エチレン共重合体(E-2)および後述するイソシアネート基含有オリゴマー(F-x)から、架橋エチレン共重合体(B)を得た場合には、前記一般式RaのRc部分または一般式RbのRd部分に該当する。
Examples of the monomer include polar group-containing monomers represented by the following general formula (Z).
CH 2 = CH—R 5 —Z (Z)
In the above general formula (Z), R 5 is a hydrocarbon group such as a saturated or unsaturated aliphatic hydrocarbon group, alicyclic hydrocarbon group, aromatic hydrocarbon group, preferably a hydrocarbon having 1 to 20 carbon atoms. When the crosslinked ethylene copolymer (B) is obtained from the ethylene copolymer (E-2) and the isocyanate group-containing oligomer (Fx) described later, the Rc moiety of the general formula Ra or Corresponds to the Rd portion of the general formula Rb.
 飽和または不飽和の脂肪族炭化水素基としては、炭素原子数1~20の直鎖状または分岐状の炭化水素基が挙げられ、具体的には、メチレン、エチレン、トリメチレン、メチルエチレン、テトラメチレン、メチルトリメチレン、ペンタメチレン、ヘキサメチレン、ヘプタメチレン、オクタメチレン、ノナメチレン、デカメチレン、ウンデカメチレン、ドデカメチレン、テトラデカメチレン、ペンタデカメチレン、ヘキサデカメチレン、ヘプタデカメチレン、オクタデカメチレン、ノナデカメチレン、イコサメチレンなどが挙げられる。 Examples of the saturated or unsaturated aliphatic hydrocarbon group include linear or branched hydrocarbon groups having 1 to 20 carbon atoms, and specifically include methylene, ethylene, trimethylene, methylethylene, tetramethylene. , Methyltrimethylene, pentamethylene, hexamethylene, heptamethylene, octamethylene, nonamethylene, decamethylene, undecamethylene, dodecamethylene, tetradecamethylene, pentadecamethylene, hexadecamethylene, heptacamethylene, octadecamethylene, nonadeca Examples include methylene and icosamethylene.
 脂環族炭化水素基としては、その構造の一部に脂環構造を有する炭素原子数3~20の基が好ましく、具体的にはシクロプロピレン、シクロペンチレン、シクロヘキシレン、シクロオクチレンなどが挙げられる。 As the alicyclic hydrocarbon group, a group having 3 to 20 carbon atoms having an alicyclic structure as a part of the structure is preferable, and specifically, cyclopropylene, cyclopentylene, cyclohexylene, cyclooctylene, and the like are included. Can be mentioned.
 芳香族炭化水素基としては、その構造の一部に芳香環を有する炭素原子数6~20の基が好ましく、具体的には-Ph-、-Ph-CH2-、-Ph-(CH2)2-、-Ph-(CH2)3-、-Ph-(CH2)6-、-Ph-(CH2)10-、-Ph-(CH2)11-、-Ph-(CH2)12-、-Ph-(CH2)14-などが挙げられる。 The aromatic hydrocarbon group is preferably a group having 6 to 20 carbon atoms having an aromatic ring in a part of its structure, specifically, —Ph—, —Ph—CH 2 —, —Ph— (CH 2 ) 2 -, - Ph- (CH 2) 3 -, - Ph- (CH 2) 6 -, - Ph- (CH 2) 10 -, - Ph- (CH 2) 11 -, - Ph- (CH 2 ) 12 -, - Ph- (CH 2) 14 - , and the like.
 上記一般式(Z)において、Zは、カルボキシル基、カルボン酸無水物基を示す。 In the general formula (Z), Z represents a carboxyl group or a carboxylic anhydride group.
 このような一般式(Z)で表される極性基含有モノマーの具体的な例としては、5-ヘキセン酸、6-ヘプテン酸、7-オクテン酸、8-ノネン酸、9-デセン酸、10-ウンデセン酸、11-ドデセン酸などのω-アルケニルカルボン酸類;2-メチル-5-ヘキセン酸、2-メチル-6-ヘプテン酸、2-メチル-7-オクテン酸、2-メチル-8-ノネン酸、2-メチル-9-デセン酸、2-メチル-10-ウンデセン酸、2-メチル-11-ドデセン酸、2-エチル-5-ヘキセン酸、2-エチル-6-ヘプテン酸、2-エチル-7-オクテン酸、2-エチル-8-ノネン酸、2-エチル-9-デセン酸、2-エチル-10-ウンデセン酸、2-プロピル-5-ヘキセン酸、2-プロピル-6-ヘプテン酸、2-プロピル-7-オクテン酸、2-プロピル-8-ノネン酸、2-プロピル-9-デセン酸、2-プロピル-10-ウンデセン酸、2-ブチル-5-ヘキセン酸、2-ブチル-6-ヘプテン酸、2-ブチル-7-オクテン酸、2-ブチル-8-ノネン酸、2-ブチル-9-デセン酸、2-ブチル-10-ウンデセン酸などの炭化水素基部分が直鎖状のアルケニルカルボン酸類;2-イソプロピル-5-ヘキセン酸、2-イソプロピル-6-ヘプテン酸、2-イソプロピル-7-オクテン酸、2-イソプロピル-8-ノネン酸、2-イソプロピル-9-デセン酸、2-イソプロピル-10-ウンデセン酸、2-イソブチル-5-ヘキセン酸、2-t-ブチル-6-ヘプテン酸、2-イソプロピル-3-メチル-7-オクテン酸、2-メチル-3-イソプロピル-8-ノネン酸、3-イソブチル-3-メチル-9-デセン酸、2,2-ジメチル-10-ウンデセン酸、2,3,3-トリメチル-11-ドデセン酸などの炭化水素基部分が分枝状であるアルケニルカルボン酸類などの上記一般式(Z)においてZがカルボキシル基である化合物、および上記Zがカルボキシル基である化合物の例示において、カルボキシル基をカルボン酸無水物基に置き換えた化合物などの、上記一般式(Z)においてZが酸無水物基である化合物が挙げられる。 Specific examples of the polar group-containing monomer represented by the general formula (Z) include 5-hexenoic acid, 6-heptenoic acid, 7-octenoic acid, 8-nonenoic acid, 9-decenoic acid, 10 Ω-alkenylcarboxylic acids such as 2-undecenoic acid and 11-dodecenoic acid; 2-methyl-5-hexenoic acid, 2-methyl-6-heptenoic acid, 2-methyl-7-octenoic acid, 2-methyl-8-nonene Acid, 2-methyl-9-decenoic acid, 2-methyl-10-undecenoic acid, 2-methyl-11-dodecenoic acid, 2-ethyl-5-hexenoic acid, 2-ethyl-6-heptenoic acid, 2-ethyl -7-octenoic acid, 2-ethyl-8-nonenoic acid, 2-ethyl-9-decenoic acid, 2-ethyl-10-undecenoic acid, 2-propyl-5-hexenoic acid, 2-propyl-6-heptenoic acid 2-propyl-7-octenoic acid, 2-propyl-8-nonenoic acid, 2-propyl-9-decenoic acid, 2-propyl-10-undecenoic acid, 2-butyl-5-hexenoic acid, 2-butyl- 6-Heptenoic acid, 2-butyl-7-oct Alkenyl carboxylic acids in which the hydrocarbon moiety is linear, such as tennoic acid, 2-butyl-8-nonenoic acid, 2-butyl-9-decenoic acid, 2-butyl-10-undecenoic acid; 2-isopropyl-5- Hexenoic acid, 2-isopropyl-6-heptenoic acid, 2-isopropyl-7-octenoic acid, 2-isopropyl-8-nonenoic acid, 2-isopropyl-9-decenoic acid, 2-isopropyl-10-undecenoic acid, 2- Isobutyl-5-hexenoic acid, 2-t-butyl-6-heptenoic acid, 2-isopropyl-3-methyl-7-octenoic acid, 2-methyl-3-isopropyl-8-nonenoic acid, 3-isobutyl-3- General formulas such as alkenyl carboxylic acids having a branched hydrocarbon group such as methyl-9-decenoic acid, 2,2-dimethyl-10-undecenoic acid and 2,3,3-trimethyl-11-dodecenoic acid In the examples of the compound in which Z is a carboxyl group in (Z) and the compound in which Z is a carboxyl group, Such as the compounds obtained by replacing a cyclohexyl group to a carboxylic acid anhydride group, and Z is an acid anhydride group in the general formula (Z) and the like.
 前記一般式(Z)で表される極性基含有モノマー以外の、イソシアネート基と反応しうる官能基を有するモノマーとしては、下記一般式(Z')や、一般式(W)で表わされる極性基含有モノマーを用いることもできる。
CH2=CH-R6-Z  ・・・(Z')
CH2=CH-R7-(W)n  ・・・(W)
 上記一般式(Z')において、R6はカルボニル基で置換された飽和または不飽和の脂肪族炭化水素基、脂環族炭化水素基、芳香族炭化水素基などの、カルボニル基で置換された炭化水素基、好ましくはカルボニル基で置換された炭素数1~20の炭化水素基を示し、Zは、カルボキシル基、カルボン酸無水物基を示す。
Examples of the monomer having a functional group capable of reacting with an isocyanate group other than the polar group-containing monomer represented by the general formula (Z) include a polar group represented by the following general formula (Z ′) and the general formula (W). Containing monomers can also be used.
CH 2 = CH—R 6 —Z (Z ′)
CH 2 = CH-R 7 - (W) n ··· (W)
In the general formula (Z ′), R 6 is substituted with a carbonyl group such as a saturated or unsaturated aliphatic hydrocarbon group, an alicyclic hydrocarbon group, or an aromatic hydrocarbon group substituted with a carbonyl group. A hydrocarbon group, preferably a hydrocarbon group having 1 to 20 carbon atoms substituted with a carbonyl group, and Z represents a carboxyl group or a carboxylic anhydride group.
 このような一般式(Z')で表される極性基含有モノマーの具体的な例としては、下記一般式(9)で表わされるものが挙げられる。 Specific examples of the polar group-containing monomer represented by the general formula (Z ′) include those represented by the following general formula (9).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記一般式(W)において、R7はカルボニル基で置換されていてもよい、飽和または不飽和の脂肪族炭化水素基、脂環族炭化水素基、芳香族炭化水素基などの、カルボニル基で置換されていてもよい炭化水素基、好ましくは炭素数1~20の炭化水素基を示し、nは2または3を示し、Wは、それぞれ独立にカルボキシル基、カルボン酸無水物基を示す。 In the general formula (W), R 7 is a carbonyl group such as a saturated or unsaturated aliphatic hydrocarbon group, alicyclic hydrocarbon group, aromatic hydrocarbon group, which may be substituted with a carbonyl group. An optionally substituted hydrocarbon group, preferably a hydrocarbon group having 1 to 20 carbon atoms, n represents 2 or 3, and W independently represents a carboxyl group or a carboxylic anhydride group.
 このような一般式(W)で表される極性基含有モノマーの具体的な例としては、下記一般式(10)で表わされるものが挙げられる。 Specific examples of the polar group-containing monomer represented by the general formula (W) include those represented by the following general formula (10).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 エチレン共重合体(E-2)は、エチレン、α-オレフィン、およびイソシアネート基と反応しうる官能基を有するモノマー、必要に応じて非共役ポリエンを共重合することにより得られるが、これらは通常ランダムに結合している。エチレン共重合体(E-2)としては、エチレン由来の構成単位(α)と、α-オレフィン由来の構成単位(β)とのモル比((α):(β))は通常、40:60~99:1、好ましくは50:50~90:10、さらに好ましくは60:40~85:15である。 The ethylene copolymer (E-2) can be obtained by copolymerizing a monomer having a functional group capable of reacting with ethylene, an α-olefin, and an isocyanate group, and if necessary, a non-conjugated polyene. Randomly combined. As the ethylene copolymer (E-2), the molar ratio ((α) :( β)) of the structural unit (α) derived from ethylene and the structural unit (β) derived from α-olefin is usually 40: 60 to 99: 1, preferably 50:50 to 90:10, more preferably 60:40 to 85:15.
 また、エチレン由来の構成単位(α)およびα-オレフィン由来の構成単位(β)の合計量と、イソシアネート基と反応しうる官能基を有するモノマー由来の構成単位(γ)とのモル比((α)+(β):(γ))は、通常99.9:0.1~50:50、好ましくは99.5:0.5~55:45である。 Further, the molar ratio of the total amount of the structural unit derived from ethylene (α) and the structural unit derived from α-olefin (β) to the structural unit derived from a monomer having a functional group capable of reacting with an isocyanate group (γ) (( α) + (β) :( γ)) is usually 99.9: 0.1 to 50:50, preferably 99.5: 0.5 to 55:45.
 また、エチレン共重合体(E-2)に非共役ポリエン由来の構成単位が含まれている場合には、ヨウ素価で通常0.1~30、好ましくは0.1~25である。 When the ethylene copolymer (E-2) contains a structural unit derived from non-conjugated polyene, the iodine value is usually 0.1 to 30, preferably 0.1 to 25.
 なお、エチレン共重合体(E-2)の製造の際には、α-オレフィン、イソシアネート基と反応しうる官能基を有するモノマーおよび非共役ポリエンはそれぞれ一種単独でも、二種以上用いてもよい。 In the production of the ethylene copolymer (E-2), the α-olefin, the monomer having a functional group capable of reacting with an isocyanate group, and the non-conjugated polyene may be used alone or in combination of two or more. .
 エチレン共重合体(E-2)は、(A)周期表第3~10族(3族にはランタノイドおよびアクチノイドも含まれる。)から選ばれる遷移金属の化合物と、(B)(B-1)有機アルミニウムオキシ化合物、(B-2)前記化合物(A)と反応してイオン対を形成する化合物、および(B-3)有機アルミニウム化合物から選ばれる少なくとも1種の化合物とからなるオレフィン重合触媒の存在下で、前記エチレン、α-オレフィンおよびイソシアネート基と反応しうる官能基を有するモノマー、必要に応じて非共役ポリエンを共重合することにより得られる。 The ethylene copolymer (E-2) comprises (A) a transition metal compound selected from Groups 3 to 10 of the periodic table (Group 3 includes lanthanoids and actinoids), and (B) (B-1 Olefin polymerization catalyst comprising:) an organoaluminum oxy compound, (B-2) a compound that reacts with the compound (A) to form an ion pair, and (B-3) at least one compound selected from the organoaluminum compounds. In the presence of a monomer, the monomer having a functional group capable of reacting with ethylene, an α-olefin and an isocyanate group, and if necessary, a non-conjugated polyene is copolymerized.
 なお、エチレン共重合体(E-2)の製造の際には、エチレン共重合体(E-2)が有するイソシアネート基と反応しうる官能基の官能基数が、エチレン共重合体(E-2)の単位重量あたり、通常は0.10mmol/g以上、好ましくは0.20mmol/g以上、更に好ましくは0.30mmol/g以上となるように、イソシアネート基と反応しうる官能基を有するモノマーの使用量を調整する。官能基数の上限としては、物性および成形性の観点から通常は、2.0mmol/g以下である。 In the production of the ethylene copolymer (E-2), the number of functional groups capable of reacting with the isocyanate group of the ethylene copolymer (E-2) is such that the ethylene copolymer (E-2) ) Of the monomer having a functional group capable of reacting with an isocyanate group so that it is usually 0.10 mmol / g or more, preferably 0.20 mmol / g or more, more preferably 0.30 mmol / g or more. Adjust usage. The upper limit of the number of functional groups is usually 2.0 mmol / g or less from the viewpoint of physical properties and moldability.
 官能基数が上記範囲になる条件で製造されたエチレン共重合体(E-2)を、後述するイソシアネート基含有オリゴマー(F)等の架橋剤を用いて架橋することにより得られたる架橋エチレン共重合体(B)は、本発明の架橋型熱可塑性エラストマー組成物(D)において、分散性に優れるとともに、熱安定性に優れ、溶融時に樹脂が着色することもなく、耐油性にも優れる。また、架橋エチレン共重合体(B)を用いることにより、機械的強度に優れた成形体を提供し得る架橋型熱可塑性エラストマー組成物(D)を得ることができる。 A cross-linked ethylene copolymer obtained by cross-linking the ethylene copolymer (E-2) produced under the conditions in which the number of functional groups falls within the above range using a cross-linking agent such as an isocyanate group-containing oligomer (F) described later. In the crosslinked thermoplastic elastomer composition (D) of the present invention, the coalesced (B) is excellent in dispersibility, excellent in thermal stability, and is excellent in oil resistance without coloring the resin when melted. Further, by using the crosslinked ethylene copolymer (B), a crosslinked thermoplastic elastomer composition (D) capable of providing a molded article having excellent mechanical strength can be obtained.
 本発明で用いられる遷移金属化合物(A)としては、チーグラーナッタ触媒、メタロセン触媒の他に、公知の有機金属錯体を用いることができる。遷移金属化合物(A)として好ましい化合物としては。例えば下記のようなものが挙げられる。 As the transition metal compound (A) used in the present invention, a known organometallic complex can be used in addition to the Ziegler-Natta catalyst and the metallocene catalyst. Preferred compounds as the transition metal compound (A) Examples include the following.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(式中、M1は、周期表第3~10族の遷移金属原子を示し、R25、R26、R27およびR28は、互いに同一でも異なっていてもよく、水素原子、窒素含有基、リン含有基、炭素原子数1~20の炭化水素基、炭素原子数1~20のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基、ハロゲン原子を示し、R25、R26、R27、R28で示される基のうち、互いに隣接する基の一部が連結してそれらの基が結合する炭素原子とともに環を形成していてもよく、X1およびX2は、互いに同一でも異なっていてもよく、炭素原子数1~20の炭化水素基、炭素原子数1~20のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基、水素原子またはハロゲン原子を示し、Y1は、炭素原子数1~20の2価の炭化水素基、炭素原子数1~20の2価のハロゲン化炭化水素基、2価のケイ素含有基、2価のゲルマニウム含有基、2価のスズ含有基、-O-、-CO-、-S-、-SO-、-SO2-、-Ge-、-Sn-、-NR21-、-P(R21)-、-P(O)(R21)-、-BR21-または-AlR21-(ただし、R21は、互いに同一でも異なっていてもよく、炭素原子数1~20の炭化水素基、炭素原子数1~20のハロゲン化炭化水素基、水素原子またはハロゲン原子である)を示す。) (In the formula, M 1 represents a transition metal atom of Groups 3 to 10 of the periodic table, and R 25 , R 26 , R 27 and R 28 may be the same or different from each other. , Phosphorus-containing group, hydrocarbon group having 1 to 20 carbon atoms, halogenated hydrocarbon group having 1 to 20 carbon atoms, oxygen-containing group, sulfur-containing group, silicon-containing group, halogen atom, R 25 , R Of the groups represented by 26 , R 27 and R 28 , a part of the groups adjacent to each other may be linked to form a ring together with the carbon atom to which these groups are bonded, and X 1 and X 2 are May be the same as or different from each other, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an oxygen-containing group, a sulfur-containing group, a silicon-containing group, a hydrogen atom or a halogen atom Y 1 represents a divalent hydrocarbon group having 1 to 20 carbon atoms A divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, a divalent silicon-containing group, a divalent germanium-containing group, a divalent tin-containing group, -O-, -CO-, -S-, -SO -, - SO 2 -, - Ge -, - Sn -, - NR 21 -, - P (R 21) -, - P (O) (R 21) -, - BR 21 - or -AlR 21 - Wherein R 21 may be the same or different and is a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, a hydrogen atom or a halogen atom. .)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(式中、M1は周期表第3~10族から選ばれる遷移金属原子を示し、CpはM1にπ結合しているシクロペンタジエニル基またはその誘導体を示し、Z1は酸素原子、イオウ原子、ホウ素原子または周期表第14族の元素を含む配位子を示し、Y1は窒素原子、リン原子、酸素原子およびイオウ原子から選ばれる原子を含む配位子を示し、X1は互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、20個以下の炭素原子を含有し1もしくは2以上の二重結合を有していてもよい炭化水素基、20個以下のケイ素原子を含有するシリル基またはゲルマニウム原子を含有するゲルミル基を示す。) (Wherein, M 1 is a transition metal atom selected from Group 3-10 of the periodic table, Cp represents a cyclopentadienyl group or its derivative bonded π to M 1, Z 1 is an oxygen atom, sulfur atom, a ligand containing a boron atom or a periodic table group 14 element, Y 1 represents a ligand containing an atom selected from a nitrogen atom, phosphorus atom, oxygen atom and sulfur atom, X 1 is May be the same as or different from each other, a hydrogen atom, a halogen atom, a hydrocarbon group containing up to 20 carbon atoms and optionally having one or more double bonds, up to 20 silicon atoms; A silyl group or a germanyl group containing a germanium atom is shown.)
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(式中、M1は周期表第3~10族から選ばれる遷移金属原子を示し、R11ないしR14、R17ないしR20およびR41は互いに同一でも異なっていてもよく、炭素原子数1~40の炭化水素基、炭素原子数1~40のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基、ハロゲン原子または水素原子を示し、R11、R12、R13、R14、R17、R18、R19、R20、R41で示される基のうち、互いに隣接する基の一部が連結してそれらの基が結合する炭素原子とともに環を形成していてもよく、X1およびX2は互いに同一でも異なっていてもよく、炭素原子数1~20の炭化水素基、炭素原子数1~20のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基、水素原子またはハロゲン原子を示し、Y1は炭素原子数1~20の2価の炭化水素基、炭素原子数1~20の2価のハロゲン化炭化水素基、2価のケイ素含有基、2価のゲルマニウム含有基、2価のスズ含有基、-O-、-CO-、-S-、-SO-、-SO2-、-Ge-、-Sn-、-NR21-、-P(R21)-、-P(O)(R21)-、-BR21-または-AlR21-(ただし、R21は互いに同一でも異なっていてもよく、炭素原子数1~20の炭化水素基、炭素原子数1~20のハロゲン化炭化水素基、水素原子またはハロゲン原子である。)を示す。) (Wherein M 1 represents a transition metal atom selected from Groups 3 to 10 of the periodic table, and R 11 to R 14 , R 17 to R 20 and R 41 may be the same or different from each other, and 1 to 40 hydrocarbon group, halogenated hydrocarbon group having 1 to 40 carbon atoms, oxygen-containing group, sulfur-containing group, silicon-containing group, halogen atom or hydrogen atom, R 11 , R 12 , R 13 , Of the groups represented by R 14 , R 17 , R 18 , R 19 , R 20 and R 41 , a part of the groups adjacent to each other is linked to form a ring with the carbon atom to which these groups are bonded. X 1 and X 2 may be the same or different from each other, and are a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an oxygen-containing group, a sulfur-containing group, a silicon-containing group, a hydrogen atom or a halogen atom, Y 1 is TansoHara A divalent hydrocarbon group having 1 to 20 carbon atoms, a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, a divalent silicon-containing group, a divalent germanium-containing group, a divalent tin-containing group, O -, - CO -, - S -, - SO -, - SO 2 -, - Ge -, - Sn -, - NR 21 -, - P (R 21) -, - P (O) (R 21) -, - BR 21 - or -AlR 21 - (provided that, R 21 may be the same or different from each other, a hydrocarbon group, halogenated hydrocarbon group of 1 to 20 carbon atoms having 1 to 20 carbon atoms, A hydrogen atom or a halogen atom.)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(式中、M1は周期表第3~10族から選ばれる遷移金属原子を示し、R11、R12、R41およびR42は互いに同一でも異なっていてもよく、炭素原子数1~40の炭化水素基、炭素原子数1~40のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基、ハロゲン原子または水素原子を示し、R11、R12、R41、R42で示される基のうち、互いに隣接する基の一部が連結してそれらの基が結合する炭素原子とともに環を形成していてもよく、X1およびX2は互いに同一でも異なっていてもよく、炭素原子数1~20の炭化水素基、炭素原子数1~20のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基、水素原子またはハロゲン原子を示し、Y1は炭素原子数1~20の2価の炭化水素基(但し、R11、R12、R41およびR42のすべてが水素原子である場合はY1はエチレンではない。)、炭素原子数1~20の2価のハロゲン化炭化水素基、2価のケイ素含有基、2価のゲルマニウム含有基、2価のスズ含有基、-O-、-CO-、-S-、-SO-、-SO2-、-Ge-、-Sn-、-NR21-、-P(R21)-、-P(O)(R21)-、-BR21-または-AlR21-(ただし、R21は互いに同一でも異なっていてもよく、炭素原子数1~20の炭化水素基、炭素原子数1~20のハロゲン化炭化水素基、水素原子またはハロゲン原子である。)を示す。) (Wherein M 1 represents a transition metal atom selected from Groups 3 to 10 of the periodic table, and R 11 , R 12 , R 41 and R 42 may be the same as or different from each other and have 1 to 40 carbon atoms. Or a halogenated hydrocarbon group having 1 to 40 carbon atoms, an oxygen-containing group, a sulfur-containing group, a silicon-containing group, a halogen atom or a hydrogen atom, R 11 , R 12 , R 41 , R 42 Among the groups shown, a part of the groups adjacent to each other may be linked to form a ring together with the carbon atom to which these groups are bonded, and X 1 and X 2 may be the same or different from each other, A hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an oxygen-containing group, a sulfur-containing group, a silicon-containing group, a hydrogen atom or a halogen atom, and Y 1 represents the number of carbon atoms 1-20 divalent hydrocarbon groups (provided that R 11 , R 1 2 , Y 1 is not ethylene when R 41 and R 42 are all hydrogen atoms.), A divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, a divalent silicon-containing group, divalent Germanium-containing group, divalent tin-containing group, —O—, —CO—, —S—, —SO—, —SO 2 —, —Ge—, —Sn—, —NR 21 —, —P (R 21) -, - P (O ) (R 21) -, - BR 21 - and -AlR 21 - (However, R 21 may be the same or different from each other, a hydrocarbon group having 1 to 20 carbon atoms, A halogenated hydrocarbon group having 1 to 20 carbon atoms, a hydrogen atom or a halogen atom).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(式中、M1は周期表第3ないし10族から選ばれる遷移金属原子を示し、R41およびR42は、互いに同一でも異なっていてもよく、炭素原子数1~40の炭化水素基、炭素原子数1~40のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基、ハロゲン原子または水素原子を示し、R41、R42で示される基のうち、互いに隣接する基の一部が連結してそれらの基が結合する炭素原子とともに環を形成していてもよく、X1およびX2は互いに同一でも異なっていてもよく、炭素原子数1~20の炭化水素基、炭素原子数1~20のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基、水素原子またはハロゲン原子を示し、Y1は炭素原子数1~20の2価の炭化水素基、炭素原子数1~20の2価のハロゲン化炭化水素基、2価のケイ素含有基、2価のゲルマニウム含有基、2価のスズ含有基、-O-、-CO-、-S-、-SO-、-SO2-、-Ge-、-Sn-、-NR21-、-P(R21)-、-P(O)(R21)-、-BR21-または-AlR21-(ただし、R21は互いに同一でも異なっていてもよく、炭素原子数1~20の炭化水素基、炭素原子数1~20のハロゲン化炭化水素基、水素原子またはハロゲン原子である。)。 (Wherein M 1 represents a transition metal atom selected from Groups 3 to 10 of the periodic table, R 41 and R 42 may be the same as or different from each other, and may be a hydrocarbon group having 1 to 40 carbon atoms, A halogenated hydrocarbon group having 1 to 40 carbon atoms, an oxygen-containing group, a sulfur-containing group, a silicon-containing group, a halogen atom or a hydrogen atom, and among the groups represented by R 41 and R 42 , A part thereof may be linked to form a ring together with the carbon atom to which these groups are bonded, and X 1 and X 2 may be the same as or different from each other, a hydrocarbon group having 1 to 20 carbon atoms, A halogenated hydrocarbon group having 1 to 20 carbon atoms, an oxygen-containing group, a sulfur-containing group, a silicon-containing group, a hydrogen atom or a halogen atom, Y 1 is a divalent hydrocarbon group having 1 to 20 carbon atoms, Divalent halogenation with 1 to 20 carbon atoms Hydrocarbon group, a divalent silicon-containing group, a divalent germanium-containing group, a divalent tin-containing group, -O -, - CO -, - S -, - SO -, - SO 2 -, - Ge-, -Sn -, - NR 21 -, - P (R 21) -, - P (O) (R 21) -, - BR 21 - or -AlR 21 - (However, if R 21 is either the same or different from each other It is preferably a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, a hydrogen atom or a halogen atom.
 本発明で用いられる有機アルミニウムオキシ化合物(B-1)は、従来公知のアルミノキサン(アルモキサンともいう。)であってもよく、また特開平2-78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物であってもよい。さらに有機アルミニウムオキシ化合物としては、下記一般式で表されるボロンを含んだ有機アルミニウムオキシ化合物を挙げることもできる。 The organoaluminum oxy compound (B-1) used in the present invention may be a conventionally known aluminoxane (also referred to as alumoxane), or a benzene-insoluble compound as exemplified in JP-A-2-78687. It may be an organoaluminum oxy compound. Furthermore, as an organoaluminum oxy compound, an organoaluminum oxy compound containing boron represented by the following general formula can be exemplified.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 式中、R8は炭素原子数1~10の炭化水素基を示す。R9は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数1~10の炭化水素基を示す。 In the formula, R 8 represents a hydrocarbon group having 1 to 10 carbon atoms. R 9 may be the same as or different from each other, and represents a hydrogen atom, a halogen atom, or a hydrocarbon group having 1 to 10 carbon atoms.
 本発明で用いられる前記遷移金属化合物(A)と反応してイオン対を形成する化合物(B-2)(以下「イオン化イオン性化合物」ということがある)としては、特表平1-501950号公報、特表平1-502036号公報、特開平3-179005号公報、特開平3-179006号公報、特開平3-207703号公報、特開平3-207704号公報、USP(米国特許)-5321106号などに記載されたルイス酸、イオン性化合物およびボラン化合物、カルボラン化合物が挙げられる。さらにヘテロポリ化合物およびイソポリ化合物を挙げることもできる。 As compound (B-2) (hereinafter sometimes referred to as “ionized ionic compound”) which forms an ion pair by reacting with the transition metal compound (A) used in the present invention, JP-A-1-501950 No. 1-502036, JP-A-3-179005, JP-A-3-179006, JP-A-3-207703, JP-A-3-207704, USP (US Patent) -5321106 Lewis acids, ionic compounds, borane compounds, and carborane compounds described in No. etc. Heteropoly compounds and isopoly compounds can also be mentioned.
 ルイス酸としてはマグネシウム含有ルイス酸、アルミニウム含有ルイス酸、ホウ素含有ルイス酸などが挙げられ、こられのうちホウ素含有ルイス酸が好ましい。イオン性化合物は、カチオン性化合物とアニオン性化合物とからなる塩である。アニオンは前記遷移金属化合物と反応することにより遷移金属化合物をカチオン化し、イオン対を形成することにより遷移金属カチオン種を安定化させる働きがある。そのようなアニオンとしては、有機ホウ素化合物アニオン、有機ヒ素化合物アニオン、有機アルミニウム化合物アニオンなどがあり、比較的嵩高で遷移金属カチオン種を安定化させるものが好ましい。このようなイオン化イオン性化合物は、2種以上混合して用いることができる。 Examples of the Lewis acid include magnesium-containing Lewis acid, aluminum-containing Lewis acid, and boron-containing Lewis acid. Among these, boron-containing Lewis acid is preferable. The ionic compound is a salt composed of a cationic compound and an anionic compound. The anion functions to cationize the transition metal compound by reacting with the transition metal compound and stabilize the transition metal cation species by forming an ion pair. Examples of such anions include organoboron compound anions, organoarsenic compound anions, organoaluminum compound anions, and the like, which are relatively bulky and stabilize the transition metal cation species. Such ionized ionic compounds can be used as a mixture of two or more.
 本発明で用いられる有機アルミニウム化合物(B-3)は、炭素原子数1~12の炭化水素基および/またはハロゲン原子、アルコキシ基、シロキシ基、アミド基、水素原子で置換されているアルミニウム化合物である。これらの有機アルミニウム化合物は、2種以上組合わせて用いることもできる。本発明で用いられるオレフィン重合触媒は、上記遷移金属化合物(A)と、有機アルミニウムオキシ化合物(B-1)、イオン化イオン性化合物(B-2)および有機アルミニウム化合物(B-3)から選ばれる少なくとも1種の化合物(B)から形成され、例えば遷移金属化合物(A)がシクロペンタジエニル骨格を有する配位子を含む遷移金属化合物である場合には、該化合物と、有機アルミニウムオキシ化合物(B-1)および/またはイオン化イオン性化合物(B-2)と、必要に応じて有機アルミニウム化合物(B-3)とから形成される。 The organoaluminum compound (B-3) used in the present invention is an aluminum compound substituted with a hydrocarbon group having 1 to 12 carbon atoms and / or a halogen atom, an alkoxy group, a siloxy group, an amide group or a hydrogen atom. is there. These organoaluminum compounds can be used in combination of two or more. The olefin polymerization catalyst used in the present invention is selected from the above transition metal compounds (A), organoaluminum oxy compounds (B-1), ionized ionic compounds (B-2), and organoaluminum compounds (B-3). When formed from at least one compound (B), for example, when the transition metal compound (A) is a transition metal compound containing a ligand having a cyclopentadienyl skeleton, the compound and an organoaluminum oxy compound ( B-1) and / or an ionized ionic compound (B-2) and, if necessary, an organoaluminum compound (B-3).
 本発明で用いられるオレフィン重合触媒には、遷移金属化合物(A)と、有機アルミニウムオキシ化合物(B-1)、イオン化イオン性化合物(B-2)および有機アルミニウム化合物(B-3)のうち少なくとも1つの成分とが粒子状担体に担持されてなる固体状触媒や、粒子状担体と、遷移金属化合物(A)と、有機アルミニウムオキシ化合物(B-1)(またはイオン化イオン性化合物(B-2))と予備重合により生成するオレフィン重合体と、必要に応じて有機アルミニウム化合物(B-3)とからなる予備重合触媒が含まれる。 The olefin polymerization catalyst used in the present invention includes at least a transition metal compound (A), an organoaluminum oxy compound (B-1), an ionized ionic compound (B-2), and an organoaluminum compound (B-3). A solid catalyst in which one component is supported on a particulate carrier, a particulate carrier, a transition metal compound (A), an organoaluminum oxy compound (B-1) (or an ionized ionic compound (B-2) )) And an olefin polymer produced by prepolymerization and, if necessary, a prepolymerization catalyst comprising an organoaluminum compound (B-3).
 エチレン共重合体(E-2)は、上記のようなオレフィン重合用触媒の存在下で、前記エチレン、α-オレフィンおよびイソシアネート基と反応しうる官能基を有するモノマー、必要に応じて非共役ポリエンを共重合することにより得られるが、その重合条件は通常以下のとおりである。 The ethylene copolymer (E-2) is a monomer having a functional group capable of reacting with the ethylene, α-olefin and isocyanate group in the presence of the olefin polymerization catalyst as described above, and optionally a non-conjugated polyene. The polymerization conditions are usually as follows.
 重合する際には、上記遷移金属化合物(A)は、重合容積1リットル当り、遷移金属原子に換算して、通常0.00005~0.1ミリモル、好ましくは0.0001~0.05ミリモルの量で用いられる。 In the polymerization, the transition metal compound (A) is usually 0.00005 to 0.1 mmol, preferably 0.0001 to 0.05 mmol in terms of transition metal atoms per liter of polymerization volume. Used in quantity.
 有機アルミニウムオキシ化合物(B-1)は、遷移金属原子1モルに対して、アルミニウム原子が、通常1~10,000モル、好ましくは10~5,000モルとなるような量で用いられる。イオン化イオン性化合物(B-2)は、遷移金属原子1モルに対して、ボロン原子が、通常0.5~500モル、好ましくは1~100モルとなるような量で用いられる。 The organoaluminum oxy compound (B-1) is used in such an amount that the amount of aluminum atom is usually 1 to 10,000 mol, preferably 10 to 5,000 mol, per 1 mol of transition metal atom. The ionized ionic compound (B-2) is used in such an amount that the boron atom is usually 0.5 to 500 mol, preferably 1 to 100 mol, per 1 mol of the transition metal atom.
 有機アルミニウム化合物(B-3)は、有機アルミニウムオキシ化合物(B-1)中のアルミニウム原子1モルに対して、通常0~200モル、好ましくは0~100モルとなるような量で必要に応じて用いられる。また、イオン化イオン性化合物(B-2)中のボロン1モルに対して、通常0~1000モル、好ましくは0~500モルとなるような量で用いられる。 The organoaluminum compound (B-3) is used in an amount that is usually 0 to 200 mol, preferably 0 to 100 mol, based on 1 mol of aluminum atoms in the organoaluminum oxy compound (B-1). Used. The amount used is usually 0 to 1000 mol, preferably 0 to 500 mol, per 1 mol of boron in the ionized ionic compound (B-2).
 水素を用いる場合は、重合に供されるモノマー1モルに対して10-5~1モル、好ましくは10-4~10-1モルとなるような量で用いられる。共重合は、懸濁重合、溶液重合などの液相重合法、気相重合法あるいは高圧法いずれにおいても実施できる。液相重合法では、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素などの不活性炭化水素媒体が用いられる。また、エチレンやα-オレフィン自体を溶媒として用いることもできる。これらは組み合わせて用いてもよい。 When hydrogen is used, it is used in an amount of 10 -5 to 1 mol, preferably 10 -4 to 10 -1 mol, relative to 1 mol of the monomer to be polymerized. Copolymerization can be carried out by any of liquid phase polymerization methods such as suspension polymerization and solution polymerization, gas phase polymerization methods and high pressure methods. In the liquid phase polymerization method, aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclopentane; benzene, toluene, Aromatic hydrocarbons such as xylene; inert hydrocarbon media such as halogenated hydrocarbons such as ethylene chloride, chlorobenzene and dichloromethane are used. Also, ethylene or α-olefin itself can be used as a solvent. These may be used in combination.
 重合温度は、懸濁重合法を実施する際には、通常-50~100℃、好ましくは0~90℃の範囲であることが望ましく、溶液重合法を実施する際には、通常0~300℃、好ましくは20~250℃の範囲であることが望ましく、気相重合法を実施する際には、重合温度は通常0~120℃、好ましくは20~100℃の範囲であることが望ましい。また、高圧法を実施する際には、重合温度は通常50~1000℃、好ましくは100~500℃の範囲であることが好ましい。重合圧力は、通常常圧~100kg/cm2、好ましくは常圧~50kg/cm2 の条件下であり、高圧法の場合には、通常100~10000kg/cm2 、好ましくは500~5000kg/cm2 の条件であり。重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。さらに重合を反応条件の異なる2段以上に分けて行うことも可能である。 The polymerization temperature is usually in the range of −50 to 100 ° C., preferably 0 to 90 ° C. when the suspension polymerization method is performed, and is usually 0 to 300 when the solution polymerization method is performed. The temperature is preferably in the range of 20 ° C., preferably 20 to 250 ° C. When the gas phase polymerization method is carried out, the polymerization temperature is usually 0 to 120 ° C., preferably 20 to 100 ° C. In carrying out the high pressure method, the polymerization temperature is usually in the range of 50 to 1000 ° C., preferably 100 to 500 ° C. The polymerization pressure is usually from normal pressure to 100 kg / cm 2 , preferably from normal pressure to 50 kg / cm 2. In the case of the high pressure method, it is usually from 100 to 10,000 kg / cm 2 , preferably from 500 to 5000 kg / cm 2. Condition 2 The polymerization reaction can be carried out in any of batch, semi-continuous and continuous methods. Furthermore, the polymerization can be performed in two or more stages having different reaction conditions.
 得られるエチレン共重合体(E-2)の分子量は、水素の量を調整するか、または重合温度、重合圧力を変化させることによって調節することができる。 The molecular weight of the resulting ethylene copolymer (E-2) can be adjusted by adjusting the amount of hydrogen or changing the polymerization temperature and polymerization pressure.
 <エチレン・不飽和カルボン酸共重合体>
 前記エチレン・不飽和カルボン酸共重合体としては通常、少なくともエチレンと少なくとも1種の不飽和カルボン酸とを共重合することにより得られる共重合体が用いられる。該共重合体は、不飽和カルボン酸に由来する、カルボキシル基やカルボン酸無水物基を有する。エチレン・不飽和カルボン酸共重合体は、エチレンと、少なくとも1種の不飽和カルボン酸と他の単量体とを共重合することにより得られる共重合体であってもよい。
<Ethylene / unsaturated carboxylic acid copolymer>
As the ethylene / unsaturated carboxylic acid copolymer, a copolymer obtained by copolymerizing at least ethylene and at least one unsaturated carboxylic acid is usually used. The copolymer has a carboxyl group or a carboxylic anhydride group derived from an unsaturated carboxylic acid. The ethylene / unsaturated carboxylic acid copolymer may be a copolymer obtained by copolymerizing ethylene, at least one unsaturated carboxylic acid and another monomer.
 エチレン・不飽和カルボン酸共重合体としては、不飽和カルボン酸由来の構成単位が、該共重合体100重量%に対して、好ましくは1~30重量%、より好ましくは4~20重量%である。 As the ethylene / unsaturated carboxylic acid copolymer, the constituent unit derived from the unsaturated carboxylic acid is preferably 1 to 30% by weight, more preferably 4 to 20% by weight with respect to 100% by weight of the copolymer. is there.
 エチレン・不飽和カルボン酸共重合体が、他の単量体由来の構成単位を有する場合には、他の単量体由来の構成単位が、該共重合体100重量%に対して、通常は30重量%以下、好ましくは10重量%以下である。 When the ethylene / unsaturated carboxylic acid copolymer has a constitutional unit derived from another monomer, the constitutional unit derived from the other monomer is usually based on 100% by weight of the copolymer. 30% by weight or less, preferably 10% by weight or less.
 不飽和カルボン酸としては、アクリル酸、メタクリル酸、フマル酸、マレイン酸、無水マレイン酸、無水イタコン酸、マレイン酸モノメチルエステル、マレイン酸モノエチルエステルなどを例示することができ、とくにアクリル酸又はメタクリル酸が最も好ましい。なお、エチレン・不飽和カルボン酸共重合体を得るために用いる不飽和カルボン酸には、不飽和カルボン酸の酸無水物、不飽和カルボン酸のエステルが含まれるものとする。 Examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, fumaric acid, maleic acid, maleic anhydride, itaconic anhydride, maleic acid monomethyl ester, maleic acid monoethyl ester, etc., and particularly acrylic acid or methacrylic acid. Acid is most preferred. The unsaturated carboxylic acid used for obtaining the ethylene / unsaturated carboxylic acid copolymer includes an acid anhydride of unsaturated carboxylic acid and an ester of unsaturated carboxylic acid.
 また、任意成分である上記他の単量体としては、酢酸ビニル、プロピオン酸ビニルなどのビニルエステル、アクリル酸メチル、アクリル酸エチル、アクリル酸イソブチル、アクリル酸nブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸イソブチル、マレイン酸ジエチルなどの不飽和カルボン酸エステル、一酸化炭素などを例示することができる。 Further, the above-mentioned other optional monomers include vinyl esters such as vinyl acetate and vinyl propionate, methyl acrylate, ethyl acrylate, isobutyl acrylate, nbutyl acrylate, 2-ethylhexyl acrylate, methacrylic acid. Examples thereof include unsaturated carboxylic acid esters such as methyl acid, isobutyl methacrylate and diethyl maleate, and carbon monoxide.
 エチレン・不飽和カルボン酸共重合体は、ASTM D1238による190℃、2160g荷重におけるメルトフローレートが、通常は0.1~300g/10分であり、好ましくは0.5~100g/10分である。このようなエチレン・不飽和カルボン酸共重合体は、高圧法ポリエチレンの製造と同様にして、エチレン、不飽和カルボン酸、任意に他の単量体を、高温、高圧下、ラジカル共重合することによって得ることができる。 Ethylene / unsaturated carboxylic acid copolymer has a melt flow rate at 190 ° C. under a load of 2160 g according to ASTM D1238, usually 0.1 to 300 g / 10 min, preferably 0.5 to 100 g / 10 min. . Such an ethylene / unsaturated carboxylic acid copolymer is obtained by radical copolymerization of ethylene, an unsaturated carboxylic acid, and optionally other monomers under high temperature and high pressure, in the same manner as in the production of high-pressure polyethylene. Can be obtained by:
 〔イソシアネート基含有オリゴマー(F)〕
 イソシアネート基含有オリゴマー(F)は、アミド基と、エステル基と、二つ以上のイソシアネート基とを有しており、前記イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン・非共役ポリエン共重合体が有するイソシアネート基と反応しうる官能基、エチレン・不飽和カルボン酸共重合体が有する、カルボキシル基やカルボン酸無水物基と反応することにより、前記架橋エチレン共重合体(B)が得られる。すなわちイソシアネート基含有オリゴマー(F)は、前記エチレン共重合体(E)の架橋剤として働く。
[Isocyanate group-containing oligomer (F)]
The isocyanate group-containing oligomer (F) has an amide group, an ester group, and two or more isocyanate groups, and an ethylene / α-olefin copolymer having a functional group capable of reacting with the isocyanate group, Functional groups capable of reacting with isocyanate groups of ethylene / α-olefin / non-conjugated polyene copolymers having functional groups capable of reacting with isocyanate groups, carboxyl groups and carboxylic acids possessed by ethylene / unsaturated carboxylic acid copolymers By reacting with the anhydride group, the crosslinked ethylene copolymer (B) is obtained. That is, the isocyanate group-containing oligomer (F) serves as a crosslinking agent for the ethylene copolymer (E).
 イソシアネート基含有オリゴマー(F)の、ゲルパーミエイションクロマトグラフィー(GPC)により求められる、標準ポリエチレングリコール換算の数平均分子量が2000を超えることが好ましく、3000以上がより好ましく、4000以上が特に好ましい。数平均分子量は、通常20000以下であり、10000以下が好ましい。イソシアネート基含有オリゴマー(F)の数平均分子量が上記範囲内であると、架橋型熱可塑性エラストマー組成物(D)の耐油性に優れ、またイソシアネート基含有オリゴマー(F)の製造が容易であるため好ましい。 The number average molecular weight calculated by gel permeation chromatography (GPC) of the isocyanate group-containing oligomer (F) is preferably more than 2000, more preferably 3000 or more, and particularly preferably 4000 or more. The number average molecular weight is usually 20000 or less and preferably 10,000 or less. When the number average molecular weight of the isocyanate group-containing oligomer (F) is within the above range, the cross-linked thermoplastic elastomer composition (D) is excellent in oil resistance and the production of the isocyanate group-containing oligomer (F) is easy. preferable.
 また、前記イソシアネート基含有オリゴマー(F)が、下記一般式Rxで表わされることが特に好ましい。 The isocyanate group-containing oligomer (F) is particularly preferably represented by the following general formula Rx.
 なお、前記一般式Rxにおいて、nが0~3であり、前記一般式R2において、mが7~20であることがより好ましい。 In the general formula Rx, n is preferably 0 to 3, and in the general formula R 2 , m is more preferably 7 to 20.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 (上記一般式Rxにおいて、R1はそれぞれ独立に、ジイソシアネート残基であり、R2はそれぞれ独立に、下記一般式で表わされる二価の基である。) (In the general formula Rx, each R 1 is independently a diisocyanate residue, and each R 2 is independently a divalent group represented by the following general formula.)
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 (上記一般式R2において、R3はそれぞれ独立に、分岐を有していてもよい炭素数1~15のアルキレン基または炭素数6~15の芳香族基であり、R4はそれぞれ独立に、分岐を有していてもよい炭素数1~15のアルキレン基である。)
 上記一般式Rxにおいて、R1およびR2は上記一般式RaおよびRbにおけるR1およびR2と同様である。
(In the above general formula R 2 , each R 3 is independently an alkylene group having 1 to 15 carbon atoms or an aromatic group having 6 to 15 carbon atoms which may have a branch, and each R 4 is independently And an optionally substituted alkylene group having 1 to 15 carbon atoms.)
In the general formula Rx, R 1 and R 2 are the same as R 1 and R 2 in the general formula Ra and Rb.
 なお、本発明において、イソシアネート基含有オリゴマー(F)の好ましい態様である、一般式Rxで表わされるイソシアネート基含有オリゴマー(F)を、イソシアネート基含有オリゴマー(F-x)とも記す。 In the present invention, the isocyanate group-containing oligomer (F) represented by the general formula Rx, which is a preferred embodiment of the isocyanate group-containing oligomer (F), is also referred to as an isocyanate group-containing oligomer (Fx).
 また、イソシアネート基含有オリゴマー(F)としては、多価アルコールと多価カルボン酸とから製造されたポリエステルポリカルボン酸(G)と、多価イソシアネートとを反応させて得られるイソシアネート基含有オリゴマーであり、かつ前記多価アルコール、多価カルボン酸および多価イソシアネートの少なくとも1種が三価以上のモノマーを含むことを特徴とするイソシアネート基含有オリゴマー(以下、イソシアネート基含有オリゴマー(F-y)とも記す)を用いることも好ましい。該イソシアネート基含有オリゴマー(F-y)は、その原料として、多価アルコール、多価カルボン酸および多価イソシアネートの少なくとも1種が三価以上のモノマーを含むため、末端に少なくとも3つのイソシアネート基を有する。このためイソシアネート基含有オリゴマー(F-y)は架橋反応性に優れる。 The isocyanate group-containing oligomer (F) is an isocyanate group-containing oligomer obtained by reacting a polyester polycarboxylic acid (G) produced from a polyhydric alcohol and a polyvalent carboxylic acid with a polyvalent isocyanate. And an isocyanate group-containing oligomer (hereinafter also referred to as an isocyanate group-containing oligomer (Fy)) characterized in that at least one of the polyhydric alcohol, polyvalent carboxylic acid and polyvalent isocyanate contains a trivalent or higher monomer. ) Is also preferred. The isocyanate group-containing oligomer (Fy) has at least three isocyanate groups at its terminals because at least one of polyhydric alcohol, polyvalent carboxylic acid and polyvalent isocyanate contains a trivalent or higher monomer as a raw material. Have. Therefore, the isocyanate group-containing oligomer (Fy) is excellent in crosslinking reactivity.
 本発明において、イソシアネート基含有オリゴマー(F)は、末端カルボキシル基含有オリゴマーと、ジイソシアネート等の多価イソシアネートとを反応させることにより、得ることができる。 In the present invention, the isocyanate group-containing oligomer (F) can be obtained by reacting a terminal carboxyl group-containing oligomer with a polyvalent isocyanate such as diisocyanate.
 本発明における前記末端カルボキシル基含有オリゴマーは、分子末端にカルボキシル基を含有する、数平均分子量が、例えば、200~20000、好ましくは、500~10000のポリカルボン酸である。数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定することができる。GPC測定では、測定されたクロマトグラムの最大頻度の分子量(保持時間)を含むピークの数平均分子量を、標準ポリエチレングリコールを使用して作成された検量線を基準として算出する。これによって、数平均分子量は、標準ポリエチレングリコールの換算値として算出される。また、末端カルボキシル基含有オリゴマーでは、コーンプレート粘度計で測定した80℃における粘度が、好ましくは、30000mPa・s以下である。 The terminal carboxyl group-containing oligomer in the present invention is a polycarboxylic acid containing a carboxyl group at the molecular end and having a number average molecular weight of, for example, 200 to 20000, preferably 500 to 10,000. The number average molecular weight can be measured by gel permeation chromatography (GPC). In GPC measurement, the number average molecular weight of a peak including the molecular weight (retention time) of the maximum frequency of the measured chromatogram is calculated with reference to a calibration curve created using standard polyethylene glycol. Thereby, the number average molecular weight is calculated as a converted value of standard polyethylene glycol. In the terminal carboxyl group-containing oligomer, the viscosity at 80 ° C. measured with a cone plate viscometer is preferably 30000 mPa · s or less.
 このような末端カルボキシル基含有オリゴマーとして、例えば、ポリエステルポリカルボン酸(G)が挙げられる。 Examples of such terminal carboxyl group-containing oligomers include polyester polycarboxylic acid (G).
 ポリエステルポリカルボン酸(G)は、例えば、多価カルボン酸と、多価アルコールとの反応により得ることができる。多価カルボン酸としては、ジカルボン酸が挙げられる。 The polyester polycarboxylic acid (G) can be obtained, for example, by a reaction between a polyvalent carboxylic acid and a polyhydric alcohol. Examples of the polyvalent carboxylic acid include dicarboxylic acid.
 ジカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、メチルコハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、その他の脂肪族ジカルボン酸(炭素数11~13)、水添ダイマー酸、マレイン酸、フマル酸、イタコン酸、オルソフタル酸、イソフタル酸、テレフタル酸、トルエンジカルボン酸、ダイマー酸、ヘット酸などのジカルボン酸、および、それらジカルボン酸のアルキルエステルが挙げられる。なお、ジカルボン酸等の多価カルボン酸のアルキルエステルは、多価カルボン酸と同様に多価アルコールとして反応し、ポリエステルポリカルボン酸(G)を得ることができるため、多価カルボン酸として、多価カルボン酸のアルキルエステルを用いることが可能である。 Examples of dicarboxylic acids include oxalic acid, malonic acid, succinic acid, methyl succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and other aliphatic dicarboxylic acids (having 11 to 13 carbon atoms). , Hydrogenated dimer acid, maleic acid, fumaric acid, itaconic acid, orthophthalic acid, isophthalic acid, terephthalic acid, toluene dicarboxylic acid, dimer acid, dicarboxylic acid such as het acid, and alkyl esters of these dicarboxylic acids. In addition, since the alkyl ester of polycarboxylic acid such as dicarboxylic acid can react as a polyhydric alcohol in the same manner as polycarboxylic acid to obtain a polyester polycarboxylic acid (G), It is possible to use alkyl esters of divalent carboxylic acids.
 また、前記多価カルボン酸として、カルボキシル基を三つ以上有する、三価以上の多価カルボン酸を用いることもできる。 Also, as the polyvalent carboxylic acid, a trivalent or higher polyvalent carboxylic acid having three or more carboxyl groups can be used.
 これらジカルボン酸や、三価以上の多価カルボン酸は、単独で使用または2種類以上を併用することができる。 These dicarboxylic acids and trivalent or higher polyvalent carboxylic acids can be used alone or in combination of two or more.
 多価アルコールとしては、例えば、ヒドロキシル基を2つ有するジオールが挙げられる。 Examples of the polyhydric alcohol include diols having two hydroxyl groups.
 ジオールとして、例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブチレングリコール、1,3-ブチレングリコール、1,2-ブチレングリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、2,5-ヘキサンジオール、2,2-ジエチル-1,3-プロパンジオール、3,3-ジメチロールヘプタン、2-エチル-2-ブチル-1,3-プロパンジオール、1,12-ドデカンジオール、1,18-オクタデカンジオールなどのC2-22アルカンジオール、例えば、2-ブテン-1,4-ジオール、2,6-ジメチル-1-オクテン-3,8-ジオールなどのアルケンジオールなどの脂肪族ジオールが挙げられる。 Examples of the diol include ethylene glycol, propylene glycol, trimethylene glycol, 1,4-butylene glycol, 1,3-butylene glycol, 1,2-butylene glycol, 1,5-pentanediol, and 3-methyl-1,5. -Pentanediol, 2,2-dimethyl-1,3-propanediol, neopentyl glycol, 1,6-hexanediol, 2,5-hexanediol, 2,2-diethyl-1,3-propanediol, 3, C2-22 alkanediols such as 3-dimethylolheptane, 2-ethyl-2-butyl-1,3-propanediol, 1,12-dodecanediol, 1,18-octadecanediol, such as 2-butene-1, 4-diol, 2,6-dimethyl-1-octene-3,8-diol, etc. Aliphatic diols such as alkene diol.
 また、ジオールとして、例えば、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、水添ビスフェノールAまたはそのC2-4アルキレンオキサイド付加体などの脂環族ジオールが挙げられる。 Examples of the diol include alicyclic diols such as 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, hydrogenated bisphenol A or its C2-4 alkylene oxide adduct.
 また、ジオールとして、例えば、レゾルシン、キシリレングリコール、ビスヒドロキシエトキシベンゼン、ビスヒドロキシエチレンテレフタレート、ビスフェノールA、ビスフェノールS、ビスフェノールF、これらビスフェノール類のC2-4アルキレンオキサイド付加体などの芳香族ジオールが挙げられる。 Examples of the diol include aromatic diols such as resorcin, xylylene glycol, bishydroxyethoxybenzene, bishydroxyethylene terephthalate, bisphenol A, bisphenol S, bisphenol F, and C2-4 alkylene oxide adducts of these bisphenols. It is done.
 さらに、ジオールとして、例えば、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンポリプロピレンブロックグリコール、ポリテトラメチレンエーテルグリコールなどのポリエーテルジオールが挙げられる。 Furthermore, examples of the diol include polyether diols such as diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polyethylene polypropylene block glycol, and polytetramethylene ether glycol.
 また、多価アルコールとしては、ヒドロキシル基を3つ以上有する、三価以上の多価アルコールを用いることもできる。 Also, as the polyhydric alcohol, a trihydric or higher polyhydric alcohol having three or more hydroxyl groups can be used.
 三価以上の多価アルコールとしては、例えばグリセリン、2-メチル-2-ヒドロキシメチル-1,3-プロパンジオール、2,4-ジヒドロキシ-3-ヒドロキシメチルペンタン、1,2,6-ヘキサントリオール、トリメチロールエタン、トリメチロールプロパン、2,4-ジヒドロキシ-3-(ヒドロキシメチル)ペンタン、2,2-ビス(ヒドロキシメチル)-3-ブタノールおよびその他の脂肪族トリオール(炭素数8~24)などのトリオール、例えば、ペンタエリスリトール、ジペンタエリスリトール、D-ソルビトール、キシリトール、D-マンニトールなどのヒドロキシル基を4つ以上有するポリオール等が挙げられる。 Examples of the trihydric or higher polyhydric alcohol include glycerin, 2-methyl-2-hydroxymethyl-1,3-propanediol, 2,4-dihydroxy-3-hydroxymethylpentane, 1,2,6-hexanetriol, Such as trimethylolethane, trimethylolpropane, 2,4-dihydroxy-3- (hydroxymethyl) pentane, 2,2-bis (hydroxymethyl) -3-butanol and other aliphatic triols (8 to 24 carbon atoms) Examples include triols such as polyols having four or more hydroxyl groups such as pentaerythritol, dipentaerythritol, D-sorbitol, xylitol, and D-mannitol.
 これら多価アルコールは、単独で使用または2種類以上を併用することができる。多価アルコールとしては、ジオールが好ましい。 These polyhydric alcohols can be used alone or in combination of two or more. As the polyhydric alcohol, a diol is preferable.
 なお、ジカルボン酸とジオールとの反応により得られるポリエステルポリカルボン酸を、ポリエステルジカルボン酸とも記す。 In addition, the polyester polycarboxylic acid obtained by reaction of dicarboxylic acid and diol is also described as polyester dicarboxylic acid.
 そして、ポリエステルポリカルボン酸(G)は、多価カルボン酸と多価アルコールとを、多価カルボン酸の酸基(カルボキシル基、カルボン酸エステル)が多価アルコールのヒドロキシル基より過剰となる割合(COOH/OHが1.0を超過する割合、好ましくは、1.01~2.10の割合)で配合して、それらをエステル化反応させることにより、得ることができる。 The polyester polycarboxylic acid (G) is a mixture of polyvalent carboxylic acid and polyhydric alcohol, in which the acid group (carboxyl group, carboxylic acid ester) of the polyvalent carboxylic acid is in excess of the hydroxyl group of the polyhydric alcohol ( It can be obtained by blending at a ratio of COOH / OH exceeding 1.0 (preferably a ratio of 1.01 to 2.10) and subjecting them to an esterification reaction.
 エステル化反応は、例えば、縮合反応またはエステル交換反応であり、公知の条件でよく、例えば、常圧、不活性ガス雰囲気とし、その反応温度が100~250℃で、その反応時間が1~50時間である。エステル化反応には、必要により、触媒(有機錫触媒、有機チタン触媒、アミン触媒、後述するアルカリ金属塩やアルカリ土類金属塩など)や溶媒などを用いることができる。 The esterification reaction is, for example, a condensation reaction or a transesterification reaction, and may be under known conditions. For example, an atmospheric pressure and an inert gas atmosphere are used, the reaction temperature is 100 to 250 ° C., and the reaction time is 1 to 50. It's time. In the esterification reaction, a catalyst (an organic tin catalyst, an organic titanium catalyst, an amine catalyst, an alkali metal salt or an alkaline earth metal salt described later), a solvent, or the like can be used as necessary.
 このようにして得られるポリエステルポリカルボン酸(G)は、数平均分子量が通常は200~20000であり、好ましくは、500~10000である。また、ポリエステルポリカルボン酸(G)の酸価が、通常は5~500mgKOH/gであり、好ましくは、10~250mgKOH/gであり、ポリエステルポリカルボン酸(G)の水酸基価が、通常は5mgKOH/g以下であり、好ましくは、3mgKOH/g以下である。 The polyester polycarboxylic acid (G) thus obtained has a number average molecular weight of usually 200 to 20000, preferably 500 to 10,000. The acid value of the polyester polycarboxylic acid (G) is usually 5 to 500 mgKOH / g, preferably 10 to 250 mgKOH / g, and the hydroxyl value of the polyester polycarboxylic acid (G) is usually 5 mgKOH. / G or less, preferably 3 mgKOH / g or less.
 末端カルボキシル基含有オリゴマーとして、ポリエステルポリカルボン酸(G)は、単独で使用または2種類以上を併用することができる。 As the terminal carboxyl group-containing oligomer, the polyester polycarboxylic acid (G) can be used alone or in combination of two or more.
 本発明において、イソシアネート基含有オリゴマー(F)は、前記末端カルボキシル基含有オリゴマーと、多価イソシアネートとを反応させることにより、得ることができるが、多価イソシアネートとしては、ジイソシアネートや、三価以上の多価イソシアネートを用いることができる。 In the present invention, the isocyanate group-containing oligomer (F) can be obtained by reacting the terminal carboxyl group-containing oligomer with a polyvalent isocyanate. Examples of the polyvalent isocyanate include diisocyanates and trivalent or higher polyvalent isocyanates. Polyvalent isocyanate can be used.
 前記末端カルボキシル基含有オリゴマーと反応させるジイソシアネートとしては、例えば、脂肪族ジイソシアネート、脂環族ジイソシアネート、芳香脂肪族ジイソシアネート、芳香族ジイソシアネートなどが挙げられる。 Examples of the diisocyanate to be reacted with the terminal carboxyl group-containing oligomer include aliphatic diisocyanate, alicyclic diisocyanate, araliphatic diisocyanate, and aromatic diisocyanate.
 脂肪族ジイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート(HDI)、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、1,2-プロピレンジイソシアネート、1,2-、2,3-または1,3-ブチレンジイソシアネート、2,4,4-または2,2,4-トリメチルヘキサメチレンジイソシアネート、2,6-ジイソシアナトメチルカプロエートなどの脂肪族ジイソシアネートが挙げられる。 Examples of the aliphatic diisocyanate include hexamethylene diisocyanate (HDI), trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 1,2-, 2,3- or 1,3-butylene diisocyanate. And aliphatic diisocyanates such as 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate and 2,6-diisocyanatomethylcaproate.
 脂環族ジイソシアネートとしては、例えば、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート、IPDI)、4,4′-、2,4′-または2,2′-ジシクロヘキシルメタンジイソシアネートもしくはその混合物(H12MDI)、1,3-または1,4-ビス(イソシアナトメチル)シクロヘキサンもしくはその混合物(水添キシリレンジイソシアネート、H6XDI)、2,5-または2,6-ビス(イソシアナトメチル)ノルボルナンもしくはその混合物(NBDI)、1,3-シクロペンタンジイソシアネート、1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネートなどの脂環族ジイソシアネートが挙げられる。 Examples of alicyclic diisocyanates include 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 4,4'-, 2,4'- or 2,2'-dicyclohexylmethane. Diisocyanate or mixtures thereof (H 12 MDI), 1,3- or 1,4-bis (isocyanatomethyl) cyclohexane or mixtures thereof (hydrogenated xylylene diisocyanate, H 6 XDI), 2,5- or 2,6- Bis (isocyanatomethyl) norbornane or a mixture thereof (NBDI), 1,3-cyclopentane diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, methyl-2,4-cyclohexane diisocyanate, methyl-2, And alicyclic diisocyanates such as 6-cyclohexane diisocyanate.
 芳香脂肪族ジイソシアネートとしては、例えば、1,3-または1,4-キシリレンジイソシアネートもしくはその混合物(XDI)、1,3-または1,4-テトラメチルキシリレンジイソシアネートもしくはその混合物(TMXDI)、ω,ω′-ジイソシアナト-1,4-ジエチルベンゼンなどの芳香脂肪族ジイソシアネートが挙げられる。 Examples of the araliphatic diisocyanate include 1,3- or 1,4-xylylene diisocyanate or a mixture thereof (XDI), 1,3- or 1,4-tetramethylxylylene diisocyanate or a mixture thereof (TMXDI), ω , Ω'-diisocyanato-1,4-diethylbenzene, and the like.
 芳香族ジイソシアネートとしては、例えば、4,4′-、2,4′-または2,2′-ジフェニルメタンジイソシアネートもしくはその混合物(MDI)、2,4-または2,6-トリレンジイソシアネートもしくはその混合物(TDI)、3,3′-ジメトキシビフェニル-4,4′-ジイソシアネート、1,5-ナフタレンジイソシアネート(NDI)、m-またはp-フェニレンジイソシアネートもしくはその混合物、4,4′-ジフェニルジイソシアネート、4,4′-ジフェニルエーテルジイソシアネートなどの芳香族ジイソシアネートが挙げられる。 Aromatic diisocyanates include, for example, 4,4′-, 2,4′- or 2,2′-diphenylmethane diisocyanate or mixtures thereof (MDI), 2,4- or 2,6-tolylene diisocyanate or mixtures thereof ( TDI), 3,3′-dimethoxybiphenyl-4,4′-diisocyanate, 1,5-naphthalene diisocyanate (NDI), m- or p-phenylene diisocyanate or mixtures thereof, 4,4′-diphenyl diisocyanate, 4,4 And aromatic diisocyanates such as' -diphenyl ether diisocyanate.
 また、ジイソシアネートには、上記したジイソシアネートの多量体(例えば、二量体、三量体など)や、例えば、上記したジイソシアネートまたは多量体と、水との反応により生成するビウレット変性体、アルコール(一価アルコールまたは上記多価アルコール)との反応により生成するアロファネート変性体、炭酸ガスとの反応により生成するオキサジアジントリオン変性体、または、上記した多価アルコールとの反応により生成するポリオール変性体などが含まれる。さらに、ジイソシアネートには、フェニルジイソチオシアネートなどの硫黄含有ジイソシアネートが含まれる。 In addition, the diisocyanate includes the above-described diisocyanate multimers (for example, dimers, trimers, etc.), biuret-modified products produced by the reaction of the above diisocyanates or multimers with water, alcohols (one Allophanate-modified products produced by reaction with polyhydric alcohols or polyhydric alcohols), oxadiazine trione-modified products produced by reaction with carbon dioxide, or polyol-modified products produced by reaction with the above-mentioned polyhydric alcohols, etc. Is included. In addition, diisocyanates include sulfur-containing diisocyanates such as phenyl diisothiocyanate.
 また、多価イソシアネートとしては、イソシアネート基を3つ以上有する、三価以上の多価イソシアネートを用いることもできる。三価以上の多価イソシアネートとしては、前記MDIの3核体以上の多核体を含有する、ポリメリックMDI(ポリメチレンポリフェニルポリイソシアネート)(例えば、三井化学ポリウレタン(株)製コスモネートシリーズ)が好適に使用できる。なお、ポリメリックMDIは、三価以上の多価イソシアネート(MDIの3核体以上の多核体)とともに、通常二価のイソシアネート(MDI)も含有する混合物である。 Further, as the polyvalent isocyanate, a trivalent or higher polyvalent isocyanate having three or more isocyanate groups can be used. As the trivalent or higher polyvalent isocyanate, polymeric MDI (polymethylene polyphenyl polyisocyanate) (for example, Cosmonate series manufactured by Mitsui Chemicals Polyurethanes Co., Ltd.) containing a polynuclear body of three or more nuclei of MDI is suitable. Can be used for Polymeric MDI is a mixture containing trivalent or higher polyvalent isocyanate (polynuclear MDI trinuclear or higher) and usually also divalent isocyanate (MDI).
 これらジイソシアネート等の多価イソシアネートは、単独で使用または2種類以上を併用することができる。副反応の制御の容易性の観点から、多価イソシアネートとしては、少なくともジイソシアネートを含むことが好ましく、脂肪族ジイソシアネート、脂環族ジイソシアネート、芳香脂肪族ジイソシアネートを用いることが好ましい。 These polyisocyanates such as diisocyanates can be used alone or in combination of two or more. From the viewpoint of easy control of side reactions, the polyvalent isocyanate preferably contains at least a diisocyanate, and it is preferable to use an aliphatic diisocyanate, an alicyclic diisocyanate, or an araliphatic diisocyanate.
 そして、イソシアネート基含有オリゴマー(F)は、末端カルボキシル基含有オリゴマーとジイソシアネート等の多価イソシアネートとを、末端カルボキシル基含有オリゴマーのカルボキシル基に対してジイソシアネート等の多価イソシアネートの、イソシアネート基が過剰となる割合(NCO/COOHが1.0を超過する割合、好ましくは、1.05~2.50の割合)で配合して、それらをアミド化反応させることにより、得ることができる。 The isocyanate group-containing oligomer (F) comprises a terminal carboxyl group-containing oligomer and a polyisocyanate such as diisocyanate, and the isocyanate group of the polyvalent isocyanate such as diisocyanate is excessive with respect to the carboxyl group of the terminal carboxyl group-containing oligomer. (A ratio in which NCO / COOH exceeds 1.0, preferably a ratio of 1.05 to 2.50) and amidation reaction thereof.
 NCO/COOHの当量比が上記範囲にあると、生産を安定させることができる。一方、NCO/COOHの当量比が1.00以下になると、イソシアネート基含有オリゴマー(F)のイソシアネート基含有率が低下し、前記結晶性オレフィン重合体(A)と、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン・非共役ポリエン共重合体およびエチレン・不飽和カルボン酸共重合体からなる群から選択される少なくとも1種のエチレン共重合体(E)との混合物と反応するときに長時間を要するか、あるいは、完全に反応できない場合がある。他方、NCO/COOHの当量比が高すぎると、イソシアネート基含有オリゴマー(F)中に不純物として含まれるジイソシアネートの残存量が多くなり、これがイソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン・非共役ポリエン共重合体およびエチレン・不飽和カルボン酸共重合体からなる群から選択される少なくとも1種のエチレン共重合体(E)と反応し物性や成形性の悪化を招く場合がある。 When the equivalent ratio of NCO / COOH is in the above range, production can be stabilized. On the other hand, when the equivalent ratio of NCO / COOH is 1.00 or less, the isocyanate group content of the isocyanate group-containing oligomer (F) decreases, and the crystalline olefin polymer (A) can react with the isocyanate group. Selected from the group consisting of ethylene / α-olefin copolymers having functional groups, ethylene / α-olefin / nonconjugated polyene copolymers having functional groups capable of reacting with isocyanate groups, and ethylene / unsaturated carboxylic acid copolymers. It may take a long time to react with the mixture with at least one ethylene copolymer (E) or may not be able to react completely. On the other hand, if the equivalent ratio of NCO / COOH is too high, the residual amount of diisocyanate contained as an impurity in the isocyanate group-containing oligomer (F) increases, and this ethylene / α-olefin having a functional group capable of reacting with the isocyanate group At least one ethylene copolymer selected from the group consisting of copolymers, ethylene / α-olefin / non-conjugated polyene copolymers having functional groups capable of reacting with isocyanate groups, and ethylene / unsaturated carboxylic acid copolymers It may react with the union (E) and cause deterioration of physical properties and moldability.
 アミド化反応は、特に制限されないが、例えば、触媒の存在下、反応温度120℃以下、好ましくは、40~120℃、さらに好ましくは、40~100℃で、反応時間0.5~50時間、好ましくは1~15時間、反応させる。 The amidation reaction is not particularly limited. For example, in the presence of a catalyst, the reaction temperature is 120 ° C. or lower, preferably 40 to 120 ° C., more preferably 40 to 100 ° C., and the reaction time is 0.5 to 50 hours. The reaction is preferably carried out for 1 to 15 hours.
 触媒として、好ましくは、アルカリ金属塩、アルカリ土類金属塩が挙げられる。アルカリ金属塩としては、例えば、フッ化リチウム、塩化リチウム、水酸化リチウム、フッ化ナトリウム、塩化ナトリウム、水酸化ナトリウム、フッ化カリウム、塩化カリウム、水酸化カリウムなどが挙げられる。また、アルカリ土類金属塩としては、例えば、ステアリン酸カルシウム、過塩素酸カルシウム、塩化カルシウム、水酸化カルシウム、ステアリン酸マグネシウム、過塩素酸マグネシウム、塩化マグネシウム、水酸化マグネシウムなどが挙げられる。触媒は、単独で使用または2種類以上を併用することができる。好ましくは、アミド化反応におけるアミド選択性の観点から、ステアリン酸カルシウム、過塩素酸カルシウム、ステアリン酸マグネシウム、過塩素酸マグネシウムが挙げられ、さらに好ましくは、ステアリン酸マグネシウムが挙げられる。 The catalyst is preferably an alkali metal salt or an alkaline earth metal salt. Examples of the alkali metal salt include lithium fluoride, lithium chloride, lithium hydroxide, sodium fluoride, sodium chloride, sodium hydroxide, potassium fluoride, potassium chloride, and potassium hydroxide. Examples of the alkaline earth metal salt include calcium stearate, calcium perchlorate, calcium chloride, calcium hydroxide, magnesium stearate, magnesium perchlorate, magnesium chloride, magnesium hydroxide and the like. A catalyst can be used individually or can use 2 or more types together. Preferably, from the viewpoint of amide selectivity in the amidation reaction, calcium stearate, calcium perchlorate, magnesium stearate, and magnesium perchlorate are preferable, and magnesium stearate is more preferable.
 また、触媒は、例えば、末端カルボキシル基含有オリゴマーの全カルボキシル基100モル部に対して0.001~10モル部、好ましくは、0.005~2モル部の割合で添加される。触媒の添加割合が、これより少ないと、アミド化反応が十分に進行せず、生産性が低下する場合がある。一方、これより多くとも、アミド化反応のアミド選択性は変わらず、経済的に不利となる場合がある。 Further, the catalyst is added, for example, in a ratio of 0.001 to 10 mol parts, preferably 0.005 to 2 mol parts, relative to 100 mol parts of all carboxyl groups of the terminal carboxyl group-containing oligomer. If the addition ratio of the catalyst is less than this, the amidation reaction does not proceed sufficiently and the productivity may be lowered. On the other hand, at more than this, the amide selectivity of the amidation reaction does not change, which may be economically disadvantageous.
 また、反応温度が上記範囲にあると、生産を安定させることができる。一方、反応温度が120℃を超えると、イソシアネート基の副反応が促進され、イソシアネート基含有率が理論値より低下して、得られる樹脂の粘度が高くなる場合がある。そのため、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体およびイソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン・非共役ポリエン共重合体からなる群から選択される少なくとも1種のエチレン共重合体(E)との反応性が低下する場合がある。他方、反応温度が低すぎると、末端カルボキシル基含有オリゴマーのカルボキシル基とジイソシアネート等の多価イソシアネートのイソシアネート基との反応が十分に進行せず、生産性が低下する場合がある。 Also, when the reaction temperature is within the above range, production can be stabilized. On the other hand, when the reaction temperature exceeds 120 ° C., side reactions of isocyanate groups are promoted, and the isocyanate group content may be lower than the theoretical value, resulting in an increase in the viscosity of the resulting resin. Therefore, it is selected from the group consisting of an ethylene / α-olefin copolymer having a functional group capable of reacting with an isocyanate group and an ethylene / α-olefin / non-conjugated polyene copolymer having a functional group capable of reacting with an isocyanate group. The reactivity with at least one ethylene copolymer (E) may decrease. On the other hand, if the reaction temperature is too low, the reaction between the carboxyl group of the terminal carboxyl group-containing oligomer and the isocyanate group of a polyvalent isocyanate such as diisocyanate does not proceed sufficiently, and the productivity may decrease.
 また、アミド化反応は、好ましくは、常圧下において実施できるが、反応時に発生する二酸化炭素を除去しつつ減圧下で実施することもでき、さらには、反応時に発生する二酸化炭素により加圧下で実施することもできる。 The amidation reaction can be preferably carried out under normal pressure, but it can also be carried out under reduced pressure while removing carbon dioxide generated during the reaction. Further, the amidation reaction can be carried out under pressure using carbon dioxide generated during the reaction. You can also
 また、アミド化反応では、イソシアネート基は、水(空気中の水分など)と反応すると分解する。そのため、この反応は、空気中の水分との接触を回避すべく、好ましくは、不活性ガス雰囲気下で実施する。不活性ガスとしては、例えば、窒素ガス、ヘリウムガスなどが挙げられ、好ましくは、窒素ガスが挙げられる。 In the amidation reaction, the isocyanate group decomposes when it reacts with water (such as moisture in the air). Therefore, this reaction is preferably carried out in an inert gas atmosphere in order to avoid contact with moisture in the air. As an inert gas, nitrogen gas, helium gas, etc. are mentioned, for example, Preferably nitrogen gas is mentioned.
 また、アミド化反応では、必要により溶媒を用いることもできる。 In the amidation reaction, a solvent can be used if necessary.
 アミド化反応では、末端カルボキシル基含有オリゴマー、ジイソシアネート等の多価イソシアネートおよび触媒を一度に混合してもよく、また、予め末端カルボキシル基含有オリゴマーおよびジイソシアネート等の多価イソシアネートを混合し、その混合物と触媒とを混合することもできる。 In the amidation reaction, a terminal carboxyl group-containing oligomer, a polyisocyanate such as diisocyanate, and a catalyst may be mixed at once, or a terminal carboxyl group-containing oligomer and a polyisocyanate such as diisocyanate are mixed in advance, A catalyst can also be mixed.
 また、アミド化反応では、予め末端カルボキシル基含有オリゴマーおよび触媒を混合し、その混合物とジイソシアネート等の多価イソシアネートとを混合してもよく、予めジイソシアネート等の多価イソシアネートおよび触媒を混合し、その混合物と末端カルボキシル基含有オリゴマーとを混合することもできる。 In the amidation reaction, a terminal carboxyl group-containing oligomer and a catalyst may be mixed in advance, and the mixture may be mixed with a polyvalent isocyanate such as diisocyanate, or a polyvalent isocyanate such as diisocyanate and a catalyst may be mixed in advance. The mixture and the terminal carboxyl group-containing oligomer can also be mixed.
 なお、触媒として、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウムなどの水酸化物を用いる場合には、末端カルボキシル基含有オリゴマーと水酸化物とを混合すると、それらが反応して水が生成する。そのため、この場合には、混合後、脱水処理により水分を除去した後、その混合物とジイソシアネート等の多価イソシアネートとを混合する必要がある。これにより、生成した水によるイソシアネート基の分解を抑制することができる。 In addition, when using hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, and magnesium hydroxide as a catalyst, mixing the terminal carboxyl group-containing oligomer and hydroxide, React to produce water. Therefore, in this case, after mixing, after removing moisture by dehydration, it is necessary to mix the mixture and a polyvalent isocyanate such as diisocyanate. Thereby, decomposition | disassembly of the isocyanate group by the produced | generated water can be suppressed.
 なお、上記の反応は段階的に実施することもできる。例えば、1段目として、末端カルボキシル基含有オリゴマーとジイソシアネート等の多価イソシアネートとを、NCO/COOHの当量比1.0未満で反応させて、イソシアネート基含有オリゴマーを合成する。次いで、2段目として、1段目で得られたイソシアネート基含有オリゴマーと、1段目で用いた多価イソシアネートと種類の異なる多価イソシアネートを、最終的にNCO/COOHの当量比1.0を超過するように反応させて、イソシアネート基含有オリゴマー(F)を得る。このようにイソシアネート基含有オリゴマー(F)を合成すれば、ジイソシアネート等の多価イソシアネートに由来する構造単位が、分子末端と分子中とで異なる樹脂を得ることができる。上記2段の反応において、触媒は、1段目に添加してもよく、2段目に添加してもよく、さらには、1段目と2段目の両方に添加することもできる。 The above reaction can also be carried out stepwise. For example, as the first stage, an isocyanate group-containing oligomer is synthesized by reacting a terminal carboxyl group-containing oligomer and a polyvalent isocyanate such as diisocyanate at an NCO / COOH equivalent ratio of less than 1.0. Next, as the second stage, the isocyanate group-containing oligomer obtained in the first stage and the polyvalent isocyanate of a type different from the polyvalent isocyanate used in the first stage are finally converted into an NCO / COOH equivalent ratio of 1.0. Is reacted so that the isocyanate group-containing oligomer (F) is obtained. By synthesizing the isocyanate group-containing oligomer (F) in this way, it is possible to obtain resins in which structural units derived from polyisocyanates such as diisocyanate are different at the molecular ends and in the molecules. In the two-stage reaction, the catalyst may be added to the first stage, may be added to the second stage, or may be added to both the first stage and the second stage.
 このようにして得られるイソシアネート基含有オリゴマー(F)は、イソシアネート基含率が、配合割合からの計算値の90~110%、好ましくは、95~105%である。イソシアネート基含有率が上記範囲にあると、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン・非共役ポリエン共重合体およびエチレン・不飽和カルボン酸共重合体からなる群から選択される少なくとも1種のエチレン共重合体(E)との反応性が良好である。そのため得られた、本発明の架橋型熱可塑性エラストマー組成物(D)の物性や成形性に優れる。また、イソシアネート基含有オリゴマー(F)を製造する際の末端カルボキシル基含有オリゴマーの有するカルボキシル基のアミド化率は、通常76~100%、好ましくは86~100%である。アミド化率が上記範囲にあると、優れた物性や成形性を得ることができる。 The isocyanate group-containing oligomer (F) thus obtained has an isocyanate group content of 90 to 110%, preferably 95 to 105% of the calculated value from the blending ratio. When the isocyanate group content is within the above range, an ethylene / α-olefin copolymer having a functional group capable of reacting with an isocyanate group, and an ethylene / α-olefin / non-conjugated polyene copolymer having a functional group capable of reacting with an isocyanate group. Reactivity with at least one ethylene copolymer (E) selected from the group consisting of a polymer and an ethylene / unsaturated carboxylic acid copolymer is good. Therefore, the obtained cross-linked thermoplastic elastomer composition (D) of the present invention is excellent in physical properties and moldability. In addition, the carboxyl group amidation rate of the terminal carboxyl group-containing oligomer in producing the isocyanate group-containing oligomer (F) is usually 76 to 100%, preferably 86 to 100%. When the amidation rate is in the above range, excellent physical properties and moldability can be obtained.
 イソシアネート基含有オリゴマー(F)として、イソシアネート基含有オリゴマー(F-x)や、イソシアネート基含有オリゴマー(F-y)を用いることが好ましい。 As the isocyanate group-containing oligomer (F), it is preferable to use an isocyanate group-containing oligomer (Fx) or an isocyanate group-containing oligomer (Fy).
 イソシアネート基含有オリゴマー(F-x)を用いる場合には、前記末端カルボキシル基含有オリゴマーとしては、下記一般式Ryで表わされるジオールとジカルボン酸とのオリゴマーが用いられる。 When an isocyanate group-containing oligomer (Fx) is used, an oligomer of a diol and a dicarboxylic acid represented by the following general formula Ry is used as the terminal carboxyl group-containing oligomer.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 なお、m、R3およびR4は、上記R2におけるm、R3およびR4と同様である。前記R3はHOOC-R3-COOH構造のカルボン酸の残基であり、HOOC-R3-COOH構造のカルボン酸の具体例としては下記一般式(5)や(5’)で表わされることが好ましい。また前記R4はHO-R4-OH構造のジオールの残基であり、HO-R4-OH構造のジオールの具体例としては下記一般式(6)で表わされることが好ましい。 Incidentally, m, R 3 and R 4 are the same as m, and R 3 and R 4 in the above R 2. Wherein R 3 is the residue of a carboxylic acid HOOC-R 3 -COOH structure, represented by the following general formula (5) or (5 ') Specific examples of the carboxylic acid HOOC-R 3 -COOH structure Is preferred. Also, the R 4 is the residue of a diol HO-R 4 -OH structure is preferably represented by the following general formula (6) Specific examples of diols HO-R 4 -OH structure.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 イソシアネート基含有オリゴマー(F-x)は、前記Ry式で表わされるジオールとジカルボン酸とのオリゴマーと、ジイソシアネートとを反応させることにより得ることができるが、前記ジイソシアネートの構造を、OCN-R1-NCOとした際に、前記R1としては、分岐を有していてもよい炭素数2~10のアルキレン基、炭素数6~20のアリーレン基、および脂環式炭化水素基を有する炭素数6~20の二価の炭化水素基からなる群から選択される少なくとも一種の基であることが経済性の観点から好ましい。OCN-R1-NCO構造を有するジイソシアネートの具体例としては、下記一般式(7)で表わされることが好ましい。 The isocyanate group-containing oligomer (Fx) can be obtained by reacting a diisocyanate with an oligomer of a diol represented by the Ry formula and a dicarboxylic acid. The structure of the diisocyanate is represented by OCN—R 1 —. In the case of NCO, R 1 may have a branched alkylene group having 2 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, and an alicyclic hydrocarbon group having 6 carbon atoms. From the viewpoint of economy, it is preferably at least one group selected from the group consisting of ˜20 divalent hydrocarbon groups. A specific example of the diisocyanate having an OCN—R 1 —NCO structure is preferably represented by the following general formula (7).
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 また、イソシアネート基含有オリゴマー(F-y)は、多価アルコールと多価カルボン酸とから製造されたポリエステルポリカルボン酸(G)と、多価イソシアネートとを反応させて得られる。イソシアネート基含有オリゴマー(F-y)を製造する際には、前述のように前記多価アルコール、多価カルボン酸および多価イソシアネートの少なくとも1種が三価以上のモノマーを含む。すなわち、含まれる三価以上のモノマーとしては、前記多価アルコール、多価カルボン酸、多価イソシアネートのいずれかが三価以上のモノマーを含んでいればよい。また前記多価アルコール、多価カルボン酸、多価イソシアネートのうち、複数の成分が三価以上であってもよい。 The isocyanate group-containing oligomer (Fy) is obtained by reacting a polyisocyanate with a polyester polycarboxylic acid (G) produced from a polyhydric alcohol and a polyvalent carboxylic acid. When the isocyanate group-containing oligomer (Fy) is produced, as described above, at least one of the polyhydric alcohol, polyvalent carboxylic acid and polyvalent isocyanate contains a trivalent or higher monomer. That is, as the trivalent or higher monomer contained, any of the polyhydric alcohol, polyvalent carboxylic acid, and polyvalent isocyanate may contain a trivalent or higher monomer. Further, among the polyhydric alcohol, polyvalent carboxylic acid, and polyvalent isocyanate, a plurality of components may be trivalent or higher.
 イソシアネート基含有オリゴマー(F-y)としては、例えば前記一般式Ryで表わされるジオールとジカルボン酸とのオリゴマーと、ポリメリックMDI等の三価以上の多価イソシアネートを含む多価イソシアネートとを反応させて得られるものが挙げられる。 As the isocyanate group-containing oligomer (Fy), for example, an oligomer of a diol and a dicarboxylic acid represented by the general formula Ry is reacted with a polyvalent isocyanate containing a trivalent or higher polyvalent isocyanate such as polymeric MDI. What is obtained is mentioned.
 〔ポリエステルポリカルボン酸(G)および多価イソシアネート〕
 ポリエステルポリカルボン酸(G)としては特に限定はなく、ポリエステルポリカルボン酸(G)は例えば、多価カルボン酸と、多価アルコールとの反応により得ることができる。多価カルボン酸としては、ジカルボン酸が挙げられる。
[Polyester polycarboxylic acid (G) and polyvalent isocyanate]
There is no limitation in particular as polyester polycarboxylic acid (G), Polyester polycarboxylic acid (G) can be obtained by reaction of polyhydric carboxylic acid and polyhydric alcohol, for example. Examples of the polyvalent carboxylic acid include dicarboxylic acid.
 ジカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、メチルコハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、その他の脂肪族ジカルボン酸(炭素数11~13)、水添ダイマー酸、マレイン酸、フマル酸、イタコン酸、オルソフタル酸、イソフタル酸、テレフタル酸、トルエンジカルボン酸、ダイマー酸、ヘット酸などのジカルボン酸、および、それらジカルボン酸のアルキルエステルが挙げられる。なお、ジカルボン酸等の多価カルボン酸のアルキルエステルは、多価カルボン酸と同様に多価アルコールとして反応し、ポリエステルポリカルボン酸(G)を得ることができるため、多価カルボン酸として、多価カルボン酸のアルキルエステルを用いることが可能である。 Examples of dicarboxylic acids include oxalic acid, malonic acid, succinic acid, methyl succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and other aliphatic dicarboxylic acids (having 11 to 13 carbon atoms). , Hydrogenated dimer acid, maleic acid, fumaric acid, itaconic acid, orthophthalic acid, isophthalic acid, terephthalic acid, toluene dicarboxylic acid, dimer acid, dicarboxylic acid such as het acid, and alkyl esters of these dicarboxylic acids. In addition, since the alkyl ester of polycarboxylic acid such as dicarboxylic acid can react as a polyhydric alcohol in the same manner as polycarboxylic acid to obtain a polyester polycarboxylic acid (G), It is possible to use alkyl esters of divalent carboxylic acids.
 また、前記多価カルボン酸として、カルボキシル基を三つ以上有する、三価以上の多価カルボン酸を用いることもできる。 Also, as the polyvalent carboxylic acid, a trivalent or higher polyvalent carboxylic acid having three or more carboxyl groups can be used.
 これらジカルボン酸や、三価以上の多価カルボン酸は、単独で使用または2種類以上を併用することができる。 These dicarboxylic acids and trivalent or higher polyvalent carboxylic acids can be used alone or in combination of two or more.
 多価アルコールとしては、例えば、ヒドロキシル基を2つ有するジオールが挙げられる。 Examples of the polyhydric alcohol include diols having two hydroxyl groups.
 ジオールとして、例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブチレングリコール、1,3-ブチレングリコール、1,2-ブチレングリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、2,5-ヘキサンジオール、2,2-ジエチル-1,3-プロパンジオール、3,3-ジメチロールヘプタン、2-エチル-2-ブチル-1,3-プロパンジオール、1,12-ドデカンジオール、1,18-オクタデカンジオールなどのC2-22アルカンジオール、例えば、2-ブテン-1,4-ジオール、2,6-ジメチル-1-オクテン-3,8-ジオールなどのアルケンジオールなどの脂肪族ジオールが挙げられる。 Examples of the diol include ethylene glycol, propylene glycol, trimethylene glycol, 1,4-butylene glycol, 1,3-butylene glycol, 1,2-butylene glycol, 1,5-pentanediol, and 3-methyl-1,5. -Pentanediol, 2,2-dimethyl-1,3-propanediol, neopentyl glycol, 1,6-hexanediol, 2,5-hexanediol, 2,2-diethyl-1,3-propanediol, 3, C2-22 alkanediols such as 3-dimethylolheptane, 2-ethyl-2-butyl-1,3-propanediol, 1,12-dodecanediol, 1,18-octadecanediol, such as 2-butene-1, 4-diol, 2,6-dimethyl-1-octene-3,8-diol, etc. Aliphatic diols such as alkene diol.
 また、ジオールとして、例えば、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、水添ビスフェノールAまたはそのC2-4アルキレンオキサイド付加体などの脂環族ジオールが挙げられる。 Examples of the diol include alicyclic diols such as 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, hydrogenated bisphenol A or its C2-4 alkylene oxide adduct.
 また、ジオールとして、例えば、レゾルシン、キシリレングリコール、ビスヒドロキシエトキシベンゼン、ビスヒドロキシエチレンテレフタレート、ビスフェノールA、ビスフェノールS、ビスフェノールF、これらビスフェノール類のC2-4アルキレンオキサイド付加体などの芳香族ジオールが挙げられる。 Examples of the diol include aromatic diols such as resorcin, xylylene glycol, bishydroxyethoxybenzene, bishydroxyethylene terephthalate, bisphenol A, bisphenol S, bisphenol F, and C2-4 alkylene oxide adducts of these bisphenols. It is done.
 さらに、ジオールとして、例えば、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンポリプロピレンブロックグリコール、ポリテトラメチレンエーテルグリコールなどのポリエーテルジオールが挙げられる。 Furthermore, examples of the diol include polyether diols such as diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polyethylene polypropylene block glycol, and polytetramethylene ether glycol.
 また、多価アルコールとしては、ヒドロキシル基を3つ以上有する、三価以上の多価アルコールを用いることもできる。 Also, as the polyhydric alcohol, a trihydric or higher polyhydric alcohol having three or more hydroxyl groups can be used.
 三価以上の多価アルコールとしては、例えばグリセリン、2-メチル-2-ヒドロキシメチル-1,3-プロパンジオール、2,4-ジヒドロキシ-3-ヒドロキシメチルペンタン、1,2,6-ヘキサントリオール、トリメチロールエタン、トリメチロールプロパン、2,4-ジヒドロキシ-3-(ヒドロキシメチル)ペンタン、2,2-ビス(ヒドロキシメチル)-3-ブタノールおよびその他の脂肪族トリオール(炭素数8~24)などのトリオール、例えば、ペンタエリスリトール、ジペンタエリスリトール、D-ソルビトール、キシリトール、D-マンニトールなどのヒドロキシル基を4つ以上有するポリオール等が挙げられる。 Examples of the trihydric or higher polyhydric alcohol include glycerin, 2-methyl-2-hydroxymethyl-1,3-propanediol, 2,4-dihydroxy-3-hydroxymethylpentane, 1,2,6-hexanetriol, Such as trimethylolethane, trimethylolpropane, 2,4-dihydroxy-3- (hydroxymethyl) pentane, 2,2-bis (hydroxymethyl) -3-butanol and other aliphatic triols (8 to 24 carbon atoms) Examples include triols such as polyols having four or more hydroxyl groups such as pentaerythritol, dipentaerythritol, D-sorbitol, xylitol, and D-mannitol.
 これら多価アルコールは、単独で使用または2種類以上を併用することができる。多価アルコールとしては、ジオールが好ましい。 These polyhydric alcohols can be used alone or in combination of two or more. As the polyhydric alcohol, a diol is preferable.
 なお、ジカルボン酸とジオールとの反応により得られるポリエステルポリカルボン酸を、ポリエステルジカルボン酸とも記す。 In addition, the polyester polycarboxylic acid obtained by reaction of dicarboxylic acid and diol is also described as polyester dicarboxylic acid.
 そして、ポリエステルポリカルボン酸(G)は、多価カルボン酸と多価アルコールとを、多価カルボン酸の酸基(カルボキシル基、カルボン酸エステル)が多価アルコールのヒドロキシル基より過剰となる割合(COOH/OHが1.0を超過する割合、好ましくは、1.01~2.10の割合)で配合して、それらをエステル化反応させることにより、得ることができる。 The polyester polycarboxylic acid (G) is a mixture of polyvalent carboxylic acid and polyhydric alcohol, in which the acid group (carboxyl group, carboxylic acid ester) of the polyvalent carboxylic acid is in excess of the hydroxyl group of the polyhydric alcohol ( It can be obtained by blending at a ratio of COOH / OH exceeding 1.0 (preferably a ratio of 1.01 to 2.10) and subjecting them to an esterification reaction.
 エステル化反応は、例えば、縮合反応またはエステル交換反応であり、公知の条件でよく、例えば、常圧、不活性ガス雰囲気とし、その反応温度が100~250℃で、その反応時間が1~50時間である。エステル化反応には、必要により、触媒(有機錫触媒、有機チタン触媒、アミン触媒、後述するアルカリ金属塩やアルカリ土類金属塩など)や溶媒などを用いることができる。 The esterification reaction is, for example, a condensation reaction or a transesterification reaction, and may be under known conditions. For example, an atmospheric pressure and an inert gas atmosphere are used, the reaction temperature is 100 to 250 ° C., and the reaction time is 1 to 50. It's time. In the esterification reaction, a catalyst (an organic tin catalyst, an organic titanium catalyst, an amine catalyst, an alkali metal salt or an alkaline earth metal salt described later), a solvent, or the like can be used as necessary.
 このようにして得られるポリエステルポリカルボン酸(G)は、数平均分子量が通常は200~20000であり、好ましくは、500~10000である。数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定することができる。GPC測定では、測定されたクロマトグラムの最大頻度の分子量(保持時間)を含むピークの数平均分子量を、標準ポリエチレングリコールを使用して作成された検量線を基準として算出する。これによって、数平均分子量は、標準ポリエチレングリコールの換算値として算出される。また、ポリエステルポリカルボン酸(G)の酸価が、通常は5~500mgKOH/gであり、好ましくは、10~250mgKOH/gであり、ポリエステルポリカルボン酸(G)の水酸基価が、通常は5mgKOH/g以下であり、好ましくは、3mgKOH/g以下である。また、ポリエステルポリカルボン酸(G)は、コーンプレート粘度計で測定した80℃における粘度が、好ましくは、30000mPa・s以下である。 The polyester polycarboxylic acid (G) thus obtained has a number average molecular weight of usually 200 to 20000, preferably 500 to 10,000. The number average molecular weight can be measured by gel permeation chromatography (GPC). In GPC measurement, the number average molecular weight of a peak including the molecular weight (retention time) of the maximum frequency of the measured chromatogram is calculated with reference to a calibration curve created using standard polyethylene glycol. Thereby, the number average molecular weight is calculated as a converted value of standard polyethylene glycol. The acid value of the polyester polycarboxylic acid (G) is usually 5 to 500 mgKOH / g, preferably 10 to 250 mgKOH / g, and the hydroxyl value of the polyester polycarboxylic acid (G) is usually 5 mgKOH. / G or less, preferably 3 mgKOH / g or less. The polyester polycarboxylic acid (G) has a viscosity at 80 ° C. measured with a cone plate viscometer, preferably 30000 mPa · s or less.
 ポリエステルポリカルボン酸(G)は、単独で使用または2種類以上を併用することができる。 Polyester polycarboxylic acid (G) can be used alone or in combination of two or more.
 ポリエステルポリカルボン酸(G)としては、下記一般式Ryで表わされるジオールとジカルボン酸とのオリゴマーが好適に用いられる。 As the polyester polycarboxylic acid (G), an oligomer of a diol and a dicarboxylic acid represented by the following general formula Ry is preferably used.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 なお、m、R3およびR4は、上記R2におけるm、R3およびR4と同様である。前記R3はHOOC-R3-COOH構造のカルボン酸の残基であり、HOOC-R3-COOH構造のカルボン酸の具体例としては下記一般式(5)や(5’)で表わされることが好ましい。また前記R4はHO-R4-OH構造のジオールの残基であり、HO-R4-OH構造のジオールの具体例としては下記一般式(6)で表わされることが好ましい。 Incidentally, m, R 3 and R 4 are the same as m, and R 3 and R 4 in the above R 2. Wherein R 3 is the residue of a carboxylic acid HOOC-R 3 -COOH structure, represented by the following general formula (5) or (5 ') Specific examples of the carboxylic acid HOOC-R 3 -COOH structure Is preferred. Also, the R 4 is the residue of a diol HO-R 4 -OH structure is preferably represented by the following general formula (6) Specific examples of diols HO-R 4 -OH structure.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 また、多価イソシアネートとしては、特に限定はなく、ジイソシアネートや、三価以上の多価イソシアネートを用いることができる。 The polyisocyanate is not particularly limited, and diisocyanate or trivalent or higher polyvalent isocyanate can be used.
 ジイソシアネートとしては、例えば、脂肪族ジイソシアネート、脂環族ジイソシアネート、芳香脂肪族ジイソシアネート、芳香族ジイソシアネートなどが挙げられる。 Examples of the diisocyanate include aliphatic diisocyanate, alicyclic diisocyanate, araliphatic diisocyanate, and aromatic diisocyanate.
 脂肪族ジイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート(HDI)、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、1,2-プロピレンジイソシアネート、1,2-、2,3-または1,3-ブチレンジイソシアネート、2,4,4-または2,2,4-トリメチルヘキサメチレンジイソシアネート、2,6-ジイソシアナトメチルカプロエートなどの脂肪族ジイソシアネートが挙げられる。 Examples of the aliphatic diisocyanate include hexamethylene diisocyanate (HDI), trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 1,2-, 2,3- or 1,3-butylene diisocyanate. And aliphatic diisocyanates such as 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate and 2,6-diisocyanatomethylcaproate.
 脂環族ジイソシアネートとしては、例えば、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート、IPDI)、4,4′-、2,4′-または2,2′-ジシクロヘキシルメタンジイソシアネートもしくはその混合物(H12MDI)、1,3-または1,4-ビス(イソシアナトメチル)シクロヘキサンもしくはその混合物(水添キシリレンジイソシアネート、H6XDI)、2,5-または2,6-ビス(イソシアナトメチル)ノルボルナンもしくはその混合物(NBDI)、1,3-シクロペンタンジイソシアネート、1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネートなどの脂環族ジイソシアネートが挙げられる。 Examples of alicyclic diisocyanates include 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 4,4'-, 2,4'- or 2,2'-dicyclohexylmethane. Diisocyanate or mixtures thereof (H 12 MDI), 1,3- or 1,4-bis (isocyanatomethyl) cyclohexane or mixtures thereof (hydrogenated xylylene diisocyanate, H 6 XDI), 2,5- or 2,6- Bis (isocyanatomethyl) norbornane or a mixture thereof (NBDI), 1,3-cyclopentane diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, methyl-2,4-cyclohexane diisocyanate, methyl-2, And alicyclic diisocyanates such as 6-cyclohexane diisocyanate.
 芳香脂肪族ジイソシアネートとしては、例えば、1,3-または1,4-キシリレンジイソシアネートもしくはその混合物(XDI)、1,3-または1,4-テトラメチルキシリレンジイソシアネートもしくはその混合物(TMXDI)、ω,ω′-ジイソシアナト-1,4-ジエチルベンゼンなどの芳香脂肪族ジイソシアネートが挙げられる。 Examples of the araliphatic diisocyanate include 1,3- or 1,4-xylylene diisocyanate or a mixture thereof (XDI), 1,3- or 1,4-tetramethylxylylene diisocyanate or a mixture thereof (TMXDI), ω , Ω'-diisocyanato-1,4-diethylbenzene, and the like.
 芳香族ジイソシアネートとしては、例えば、4,4′-、2,4′-または2,2′-ジフェニルメタンジイソシアネートもしくはその混合物(MDI)、2,4-または2,6-トリレンジイソシアネートもしくはその混合物(TDI)、3,3′-ジメトキシビフェニル-4,4′-ジイソシアネート、1,5-ナフタレンジイソシアネート(NDI)、m-またはp-フェニレンジイソシアネートもしくはその混合物、4,4′-ジフェニルジイソシアネート、4,4′-ジフェニルエーテルジイソシアネートなどの芳香族ジイソシアネートが挙げられる。 Aromatic diisocyanates include, for example, 4,4′-, 2,4′- or 2,2′-diphenylmethane diisocyanate or mixtures thereof (MDI), 2,4- or 2,6-tolylene diisocyanate or mixtures thereof ( TDI), 3,3′-dimethoxybiphenyl-4,4′-diisocyanate, 1,5-naphthalene diisocyanate (NDI), m- or p-phenylene diisocyanate or mixtures thereof, 4,4′-diphenyl diisocyanate, 4,4 And aromatic diisocyanates such as' -diphenyl ether diisocyanate.
 また、ジイソシアネートには、上記したジイソシアネートの多量体(例えば、二量体、三量体など)や、例えば、上記したジイソシアネートまたは多量体と、水との反応により生成するビウレット変性体、アルコールまたは上記した多価アルコールとの反応により生成するアロファネート変性体、炭酸ガスとの反応により生成するオキサジアジントリオン変性体、または、上記した多価アルコールとの反応により生成するポリオール変性体などが含まれる。さらに、ジイソシアネートには、フェニルジイソチオシアネートなどの硫黄含有ジイソシアネートが含まれる。 In addition, the diisocyanate includes the above-described diisocyanate multimers (for example, dimers, trimers, etc.), biuret-modified products produced by the reaction of the above diisocyanates or multimers with water, alcohols, or the above The allophanate modified body produced | generated by reaction with the produced polyhydric alcohol, the oxadiazine trione modified body produced | generated by reaction with a carbon dioxide gas, or the polyol modified body produced | generated by reaction with the above-mentioned polyhydric alcohol etc. are contained. In addition, diisocyanates include sulfur-containing diisocyanates such as phenyl diisothiocyanate.
 また、多価イソシアネートとしては、イソシアネート基を3つ以上有する、三価以上の多価イソシアネートを用いることもできる。三価以上の多価イソシアネートとしては、前記MDIの3核体以上の多核体を含有する、ポリメリックMDI(ポリメチレンポリフェニルポリイソシアネート)(例えば、三井化学ポリウレタン(株)製コスモネートシリーズ)が好適に使用できる。なお、ポリメリックMDIは、三価以上の多価イソシアネート(MDIの3核体以上の多核体)とともに、通常二価のイソシアネート(MDI)も含有する混合物である。 Further, as the polyvalent isocyanate, a trivalent or higher polyvalent isocyanate having three or more isocyanate groups can be used. As the trivalent or higher polyvalent isocyanate, polymeric MDI (polymethylene polyphenyl polyisocyanate) (for example, Cosmonate series manufactured by Mitsui Chemicals Polyurethanes Co., Ltd.) containing a polynuclear body of three or more nuclei of MDI is suitable. Can be used for Polymeric MDI is a mixture containing trivalent or higher polyvalent isocyanate (polynuclear MDI trinuclear or higher) and usually also divalent isocyanate (MDI).
 これらジイソシアネート等の多価イソシアネートは、単独で使用または2種類以上を併用することができる。副反応の制御の容易性の観点から、多価イソシアネートとしては、少なくともジイソシアネートを用いることが好ましく、脂肪族ジイソシアネート、脂環族ジイソシアネート、芳香脂肪族ジイソシアネートを用いることが好ましい。 These polyisocyanates such as diisocyanates can be used alone or in combination of two or more. From the viewpoint of easy control of the side reaction, at least diisocyanate is preferably used as the polyvalent isocyanate, and aliphatic diisocyanate, alicyclic diisocyanate, and araliphatic diisocyanate are preferably used.
 ジイソシアネートの構造を、OCN-R1-NCOとした際に、前記R1としては、分岐を有していてもよい炭素数2~10のアルキレン基、炭素数6~20のアリーレン基、および脂環式炭化水素基を有する炭素数6~20の二価の炭化水素基からなる群から選択される少なくとも一種の基であることが経済性の観点から好ましい。OCN-R1-NCO構造を有するジイソシアネートの具体例としては、下記一般式(7)で表わされることが好ましい。 When the structure of the diisocyanate is OCN—R 1 —NCO, R 1 may be an alkylene group having 2 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, and an aliphatic group. From the viewpoint of economy, it is preferably at least one group selected from the group consisting of a C 6-20 divalent hydrocarbon group having a cyclic hydrocarbon group. A specific example of the diisocyanate having an OCN—R 1 —NCO structure is preferably represented by the following general formula (7).
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 架橋剤として、ポリエステルポリカルボン酸(G)および多価イソシアネートを用いて、前記エチレン共重合体(E)を架橋することにより、架橋エチレン共重合体(B)を得る場合には、多価イソシアネートが、三価以上の多価イソシアネートを含むことが好ましい。 In the case of obtaining the crosslinked ethylene copolymer (B) by crosslinking the ethylene copolymer (E) using the polyester polycarboxylic acid (G) and the polyvalent isocyanate as the crosslinking agent, the polyvalent isocyanate is used. However, it is preferable to contain a polyvalent isocyanate having three or more valences.
 本発明に用いる架橋エチレン共重合体(B)は、通常前記エチレン共重合体(E)を架橋することにより得られる重合体であり、好ましくはエチレン共重合体(E)を、架橋剤として、アミド基と、エステル基と、二つ以上のイソシアネート基とを有する、イソシアネート基含有オリゴマー(F)を用いて、または架橋剤として、ポリエステルポリカルボン酸(G)および多価イソシアネートを用いて架橋することにより得られる。 The crosslinked ethylene copolymer (B) used in the present invention is a polymer usually obtained by crosslinking the ethylene copolymer (E), preferably using the ethylene copolymer (E) as a crosslinking agent. Crosslinking is performed using an isocyanate group-containing oligomer (F) having an amide group, an ester group, and two or more isocyanate groups, or using a polyester polycarboxylic acid (G) and a polyvalent isocyanate as a crosslinking agent. Can be obtained.
 すなわち、本発明に用いる架橋エチレン共重合体(B)の一態様としては、前記エチレン共重合体(E)を、前記イソシアネート基含有オリゴマー(F)で架橋することにより得られる。この態様においては、エチレン共重合体(E)が有するイソシアネート基と反応しうる官能基と、イソシアネート基含有オリゴマー(F)の有するイソシアネート基とが反応し、架橋部位(C)を形成する。 That is, as an embodiment of the crosslinked ethylene copolymer (B) used in the present invention, it is obtained by crosslinking the ethylene copolymer (E) with the isocyanate group-containing oligomer (F). In this embodiment, the functional group capable of reacting with the isocyanate group of the ethylene copolymer (E) reacts with the isocyanate group of the isocyanate group-containing oligomer (F) to form a crosslinking site (C).
 また、本発明に用いる架橋エチレン共重合体(B)の別態様としては、エチレン共重合体(E)が有するイソシアネート基と反応しうる官能基およびポリエステルポリカルボン酸(G)が有するカルボキシル基と、多価イソシアネートの有するイソシアネート基とが反応し、架橋部位(C)を形成する。 Moreover, as another aspect of the crosslinked ethylene copolymer (B) used for this invention, the functional group which can react with the isocyanate group which ethylene copolymer (E) has, and the carboxyl group which polyester polycarboxylic acid (G) has, The isocyanate group of the polyvalent isocyanate reacts to form a cross-linked site (C).
 本発明において、架橋エチレン共重合体(B)を製造した後に、前記結晶性オレフィン重合体(A)と混合することにより架橋型熱可塑性エラストマー組成物(D)を得てもよいが、結晶性オレフィン重合体(A)と架橋エチレン共重合体(B)との分散性の観点から、本発明の架橋型熱可塑性エラストマー組成物(D)は、前記結晶性オレフィン重合体(A)と、前記エチレン共重合体(E)との混合物に、架橋剤として、前記イソシアネート基含有オリゴマー(F)を導入または、架橋剤として、ポリエステルポリカルボン酸(G)および多価イソシアネートを導入し、エチレン共重合体(E)を動的架橋することにより製造することが好ましい。 In the present invention, after producing the crosslinked ethylene copolymer (B), the crosslinked thermoplastic elastomer composition (D) may be obtained by mixing with the crystalline olefin polymer (A). From the viewpoint of dispersibility between the olefin polymer (A) and the crosslinked ethylene copolymer (B), the crosslinked thermoplastic elastomer composition (D) of the present invention comprises the crystalline olefin polymer (A) and the above-mentioned The isocyanate group-containing oligomer (F) is introduced into the mixture with the ethylene copolymer (E) as a crosslinking agent, or the polyester polycarboxylic acid (G) and the polyvalent isocyanate are introduced as a crosslinking agent. It is preferable to produce the union (E) by dynamic crosslinking.
 〔架橋型熱可塑性エラストマー組成物(D)〕
 本発明の架橋型熱可塑性エラストマー組成物(D)は、前記結晶性オレフィン重合体(A)と、架橋エチレン共重合体(B)とを含む。
[Crosslinked thermoplastic elastomer composition (D)]
The cross-linked thermoplastic elastomer composition (D) of the present invention contains the crystalline olefin polymer (A) and the cross-linked ethylene copolymer (B).
 架橋型熱可塑性エラストマー組成物(D)には、流動性や硬度の調整剤として軟化剤が配合されていてもよい。 The crosslinkable thermoplastic elastomer composition (D) may contain a softener as a fluidity or hardness adjusting agent.
 軟化剤としては具体的には、プロセスオイル、潤滑油、パラフィン、流動パラフィン、ポリエチレンワックス、ポリプロピレンワックス、石油アスファルト、ワセリン等の石油系軟化剤;
コールタール、コールタールピッチ等のコールタール系軟化剤;
ヒマシ油、アマニ油、ナタネ油、大豆油、椰子油等の脂肪油系軟化剤;
トール油;
サブ、(ファクチス);
蜜ロウ、カルナウバロウ、ラノリン等のロウ類;
リシノール酸、パルミチン酸、ステアリン酸、ステアリン酸バリウム、ステアリン酸カルシウム、ラウリン酸亜鉛等の脂肪酸および脂肪酸塩;
ナフテン酸;
パイン油、ロジンまたはその誘導体;
テルペン樹脂、石油樹脂、クマロンインデン樹脂、アタクチックポリプロピレン等の合成高分子物質;
ジオクチルフタレート、ジオクチルアジペート、ジオクチルセバケート等のエステル系軟化剤;
マイクロクリスタリンワックス、液状ポリブタジエン、変性液状ポリブタジエン、液状ポリイソプレン、末端変性ポリイソプレン、水添末端変性ポリイソプレン、液状チオコール、炭化水素系合成潤滑油などが挙げられる。中でも、石油系軟化剤が好ましく、プロセスオイルがより好ましく用いられる。
Specific examples of softeners include petroleum-based softeners such as process oil, lubricating oil, paraffin, liquid paraffin, polyethylene wax, polypropylene wax, petroleum asphalt, and petroleum jelly.
Coal tar softeners such as coal tar and coal tar pitch;
Fatty oil softeners such as castor oil, linseed oil, rapeseed oil, soybean oil, coconut oil;
Tall oil;
Sub, (Factis);
Waxes such as beeswax, carnauba wax, lanolin;
Fatty acids and fatty acid salts such as ricinoleic acid, palmitic acid, stearic acid, barium stearate, calcium stearate, zinc laurate;
Naphthenic acid;
Pine oil, rosin or derivatives thereof;
Synthetic polymer materials such as terpene resin, petroleum resin, coumarone indene resin, atactic polypropylene;
Ester softeners such as dioctyl phthalate, dioctyl adipate, dioctyl sebacate;
Examples thereof include microcrystalline wax, liquid polybutadiene, modified liquid polybutadiene, liquid polyisoprene, terminal-modified polyisoprene, hydrogenated terminal-modified polyisoprene, liquid thiocol, and hydrocarbon-based synthetic lubricating oil. Of these, petroleum softeners are preferable, and process oil is more preferably used.
 架橋型熱可塑性エラストマー組成物(D)における、軟化剤の配合量は、前記結晶性オレフィン重合体(A)と、架橋エチレン共重合体(B)との合計を100重量部とすると、通常0~60重量部、好ましくは0~50重量部の範囲が好ましい。 The blending amount of the softener in the crosslinked thermoplastic elastomer composition (D) is usually 0 when the total of the crystalline olefin polymer (A) and the crosslinked ethylene copolymer (B) is 100 parts by weight. The range of ˜60 parts by weight, preferably 0 to 50 parts by weight is preferred.
 架橋型熱可塑性エラストマー組成物(D)に、軟化剤が配合される場合には、前記結晶性オレフィン重合体(A)と、エチレン共重合体(E)との混合物に軟化剤を配合してもよく、前記結晶性オレフィン重合体(A)と、架橋エチレン共重合体(B)との混合物に軟化剤を配合してもよい。また、結晶性オレフィン重合体(A)や、エチレン共重合体(E)の少なくとも一方に軟化剤をあらかじめ配合してもよい。 When a softening agent is added to the crosslinked thermoplastic elastomer composition (D), a softening agent is added to the mixture of the crystalline olefin polymer (A) and the ethylene copolymer (E). Alternatively, a softener may be blended in the mixture of the crystalline olefin polymer (A) and the crosslinked ethylene copolymer (B). Moreover, you may mix | blend a softener with at least one of a crystalline olefin polymer (A) and an ethylene copolymer (E) previously.
 また、本発明に係る架橋型熱可塑性エラストマー組成物(D)は、必要に応じて、スリップ剤、充填剤、酸化防止剤、耐候安定剤、着色剤、相溶化剤等の添加剤を、本発明の目的を損なわない範囲で配合されていてもよい。 In addition, the cross-linked thermoplastic elastomer composition (D) according to the present invention contains additives such as slip agents, fillers, antioxidants, weathering stabilizers, colorants, compatibilizers, and the like as necessary. You may mix | blend in the range which does not impair the objective of invention.
 このような添加剤は、架橋型熱可塑性エラストマー組成物(D)の製造工程で配合されてもよく、前記結晶性オレフィン重合体(A)と、架橋エチレン共重合体(B)との混合物に配合されてもよい。 Such an additive may be blended in the production process of the cross-linked thermoplastic elastomer composition (D), and is added to the mixture of the crystalline olefin polymer (A) and the cross-linked ethylene copolymer (B). You may mix | blend.
 スリップ剤としては、例えば脂肪酸アミド、シリコーンオイル、グリセリン、ワックス、パラフィン系オイルなどが挙げられる。 Examples of the slip agent include fatty acid amide, silicone oil, glycerin, wax, and paraffinic oil.
 充填剤としては、従来公知の充填剤、具体的には、カーボンブラック、クレー、タルク、炭酸カルシウム、カオリン、ケイソウ土、シリカ、アルミナ、グラファイト、ガラス繊維などが挙げられる。 Examples of the filler include conventionally known fillers, specifically, carbon black, clay, talc, calcium carbonate, kaolin, diatomaceous earth, silica, alumina, graphite, glass fiber, and the like.
 相溶化剤としては、例えばエチレン・エチレングリコール共重合体、プロピレン・エチレングリコール共重合体などが挙げられる。 Examples of the compatibilizing agent include ethylene / ethylene glycol copolymers and propylene / ethylene glycol copolymers.
 架橋型熱可塑性エラストマー組成物(D)における、相溶化剤の配合量は、前記結晶性オレフィン重合体(A)と、架橋エチレン共重合体(B)との合計を100重量部とすると、通常0~30重量部、好ましくは0~20重量部の範囲が好ましい。 In the crosslinked thermoplastic elastomer composition (D), the amount of the compatibilizing agent is usually 100 parts by weight when the total of the crystalline olefin polymer (A) and the crosslinked ethylene copolymer (B) is 100 parts by weight. The range of 0 to 30 parts by weight, preferably 0 to 20 parts by weight is preferred.
 架橋型熱可塑性エラストマー組成物(D)は、好ましくは前記結晶性オレフィン重合体(A)と、エチレン共重合体(E)との混合物に、架橋剤として、アミド基と、エステル基と、二つ以上のイソシアネート基とを有する、イソシアネート基含有オリゴマー(F)を導入または、架橋剤として、ポリエステルポリカルボン酸(G)および多価イソシアネートを導入し、エチレン共重合体(E)を動的架橋することにより得られる。このようにして得られた架橋型熱可塑性エラストマー組成物(D)は、海相が結晶性オレフィン重合体(A)であり、島相の少なくとも一部が架橋エチレン共重合体(B)である海島構造を形成することが好ましい。海島構造を形成する架橋型熱可塑性エラストマー組成物(D)から形成された成形体は物性、成形性に優れているため好ましい。 The cross-linked thermoplastic elastomer composition (D) is preferably a mixture of the crystalline olefin polymer (A) and the ethylene copolymer (E), an amide group, an ester group, Introducing an isocyanate group-containing oligomer (F) having one or more isocyanate groups or introducing a polyester polycarboxylic acid (G) and a polyvalent isocyanate as a crosslinking agent to dynamically crosslink an ethylene copolymer (E) Can be obtained. In the crosslinked thermoplastic elastomer composition (D) thus obtained, the sea phase is the crystalline olefin polymer (A), and at least a part of the island phase is the crosslinked ethylene copolymer (B). It is preferable to form a sea-island structure. A molded body formed from the cross-linked thermoplastic elastomer composition (D) that forms a sea-island structure is preferable because of its excellent physical properties and moldability.
 前述のように架橋型熱可塑性エラストマー組成物(D)は、海島構造を形成することが好ましいが、前記島相としては、少なくとも一部が架橋エチレン共重合体であればよく、他の成分から形成される島相を有していてもよい。他の成分から形成される島相としては、イソシアネート基含有オリゴマー(F)から形成される島相や、ポリエステルポリカルボン酸(G)および多価イソシアネートから形成される島相等が挙げられる。 As described above, the cross-linked thermoplastic elastomer composition (D) preferably forms a sea-island structure, but the island phase may be at least partly a cross-linked ethylene copolymer. You may have the island phase formed. Examples of the island phase formed from other components include an island phase formed from an isocyanate group-containing oligomer (F), an island phase formed from a polyester polycarboxylic acid (G) and a polyvalent isocyanate.
 また、架橋型熱可塑性エラストマー組成物(D)に含まれる、前記結晶性オレフィン重合体(A)と、架橋エチレン共重合体(B)との重量比(A/B)は、通常は10/90~50/50であり、好ましくは15/85~45/55であり、より好ましくは20/80~40/60である。前記範囲内では物性、成形性に優れているため好ましい。 The weight ratio (A / B) between the crystalline olefin polymer (A) and the crosslinked ethylene copolymer (B) contained in the crosslinked thermoplastic elastomer composition (D) is usually 10 / It is 90 to 50/50, preferably 15/85 to 45/55, and more preferably 20/80 to 40/60. Within the above range, it is preferable because of excellent physical properties and moldability.
 なお、架橋型熱可塑性エラストマー組成物(D)を、結晶性オレフィン重合体(A)と、エチレン共重合体(E)との混合物に、架橋剤として、イソシアネート基含有オリゴマー(F)を導入し、エチレン共重合体(E)を動的架橋することにより得た場合には、前記エチレン共重合体(E)およびイソシアネート基含有オリゴマー(F)の量から架橋エチレン共重合体(B)の量を算出する。また、架橋剤として、ポリエステルポリカルボン酸(G)および多価イソシアネートを導入し、エチレン共重合体(E)を動的架橋することにより得た場合には、前記エチレン共重合体(E)、ポリエステルポリカルボン酸(G)および多価イソシアネートの量から架橋エチレン共重合体(B)の量を算出する。 In addition, isocyanate group containing oligomer (F) was introduce | transduced into a mixture of a crystalline thermoplastic olefin polymer (A) and a copolymer of a crystalline olefin polymer (A) and an ethylene copolymer (E) as a crosslinking agent. When obtained by dynamically crosslinking the ethylene copolymer (E), the amount of the crosslinked ethylene copolymer (B) is determined from the amount of the ethylene copolymer (E) and the isocyanate group-containing oligomer (F). Is calculated. Further, when the polyester copolymer (G) and the polyvalent isocyanate are introduced as a crosslinking agent and the ethylene copolymer (E) is dynamically crosslinked, the ethylene copolymer (E), The amount of the crosslinked ethylene copolymer (B) is calculated from the amount of the polyester polycarboxylic acid (G) and the polyvalent isocyanate.
 本発明の架橋型熱可塑性エラストマー組成物(D)は、海相が結晶性オレフィン重合体(A)であり、島相の少なくとも一部が架橋エチレン共重合体(B)である海島構造を形成することが好ましい。架橋型熱可塑性エラストマー組成物(D)が海島構造を形成することの観察は、得られた架橋型熱可塑性エラストマー組成物(D)をTEM観察することにより行うことができる。架橋型熱可塑性エラストマー組成物(D)の海島構造を観察するための、前処理として、架橋型熱可塑性エラストマー組成物(D)にトリミングによる面出しを施し試料とし、次いで試料をRuO4で染色を行い、凍結させた試料から超薄切片を作成し、カーボン補強を行い、測定試料とした。 The cross-linked thermoplastic elastomer composition (D) of the present invention forms a sea-island structure in which the sea phase is a crystalline olefin polymer (A) and at least a part of the island phase is a cross-linked ethylene copolymer (B). It is preferable to do. The observation that the crosslinked thermoplastic elastomer composition (D) forms a sea-island structure can be performed by TEM observation of the obtained crosslinked thermoplastic elastomer composition (D). As a pretreatment for observing the sea-island structure of the crosslinked thermoplastic elastomer composition (D), the crosslinked thermoplastic elastomer composition (D) is subjected to trimming and used as a sample, and then the sample is stained with RuO 4 . Then, an ultrathin section was prepared from the frozen sample, and carbon reinforcement was performed to obtain a measurement sample.
 一般に、RuO4による染色では、結晶性ポリオレフィンは着色しにくいことが知られており、海相が、島相よりも染色が薄い場合には、海相が結晶性オレフィン重合体(A)であり、島相の少なくとも一部が架橋エチレン共重合体(B)であることが確認できる。 In general, it is known that crystalline polyolefin is difficult to be colored by dyeing with RuO 4 , and when the sea phase is lighter than the island phase, the sea phase is a crystalline olefin polymer (A). It can be confirmed that at least a part of the island phase is the crosslinked ethylene copolymer (B).
 なお島相が、架橋エチレン共重合体(B)以外の他の成分から形成される島相を有している場合には、色の濃さ(濃淡)の異なる、2種以上の島相が観察される。このような場合には、架橋の構造、種類、程度により着色の程度が異なる。従って、少なくとも、色の濃い島相の一つが架橋エチレン共重合体(B)である。 In addition, when the island phase has an island phase formed from other components other than the crosslinked ethylene copolymer (B), two or more types of island phases having different color densities (shades) are present. Observed. In such a case, the degree of coloring varies depending on the structure, type and degree of crosslinking. Accordingly, at least one of the dark island phases is the crosslinked ethylene copolymer (B).
 なお、後述する実施例においては、架橋型熱可塑性エラストマー組成物(D)のTEM観察により得られたTEM像は全て、海相が島相よりも染色が薄く、海相が結晶性オレフィン重合体(A)であり、島相の少なくとも一部が架橋エチレン共重合体(B)であることが確認された。 In the examples described later, all the TEM images obtained by TEM observation of the crosslinked thermoplastic elastomer composition (D) are less dyed than the island phase in the sea phase, and the sea phase is a crystalline olefin polymer. (A), and it was confirmed that at least a part of the island phase was a crosslinked ethylene copolymer (B).
 また、結晶性オレフィン重合体(A)と、エチレン共重合体(E)とを、窒素流通下で予め溶融混練して得た混合物を、前記架橋型熱可塑性エラストマー組成物(D)と同様にTEM観察する場合にも、海島構造を確認することができる。 Moreover, the mixture obtained by melt-kneading the crystalline olefin polymer (A) and the ethylene copolymer (E) in advance under a nitrogen stream is similar to the above-mentioned crosslinked thermoplastic elastomer composition (D). The sea-island structure can also be confirmed when performing TEM observation.
 後述する実施例においては、前記(A)と(E)との混合物のTEM観察により得られたTEM像は、島相が、海相よりも染色が薄かった。すなわち、前述のようにRuO4による染色では、結晶性ポリオレフィンは着色しにくいため、結晶性オレフィン重合体(A)と、エチレン共重合体(E)との混合物においては、島相が結晶性オレフィン重合体(A)であり、海相がエチレン共重合体(E)であると判断できた。 In Examples to be described later, in the TEM image obtained by TEM observation of the mixture of (A) and (E), the island phase was less stained than the sea phase. That is, as described above, since the crystalline polyolefin is difficult to be colored by dyeing with RuO 4 , the island phase is crystalline olefin in the mixture of the crystalline olefin polymer (A) and the ethylene copolymer (E). It was a polymer (A) and the sea phase was judged to be an ethylene copolymer (E).
 以上のことから、結晶性オレフィン重合体(A)と、エチレン共重合体(E)との混合物に、架橋剤として、イソシアネート基含有オリゴマー(F)を導入または、架橋剤として、ポリエステルポリカルボン酸(G)および多価イソシアネートを導入し、エチレン共重合体(E)を動的架橋することにより海島相反転することが分かった。 From the above, an isocyanate group-containing oligomer (F) is introduced as a crosslinking agent into a mixture of the crystalline olefin polymer (A) and the ethylene copolymer (E), or a polyester polycarboxylic acid as a crosslinking agent. It was found that the sea-island phase was reversed by introducing (G) and a polyvalent isocyanate and dynamically crosslinking the ethylene copolymer (E).
 また、本発明の架橋型熱可塑性エラストマー組成物(D)は、溶融加工温度が200℃以上であることが好ましい。 Further, the cross-linked thermoplastic elastomer composition (D) of the present invention preferably has a melt processing temperature of 200 ° C. or higher.
 本発明の架橋型熱可塑性エラストマー組成物(D)は、架橋エチレン共重合体(B)の有する架橋部位(C)が、親水性を有しているため、耐油性に優れる。また、従来の架橋型熱可塑性エラストマー組成物と同等の機械特性も有しているため、各種成形体や、自動車部品等に用いられるエンジニアリングプラスチックの改質剤等として用いることができる。 The cross-linked thermoplastic elastomer composition (D) of the present invention has excellent oil resistance because the cross-linked site (C) of the cross-linked ethylene copolymer (B) has hydrophilicity. In addition, since it has mechanical properties equivalent to those of conventional cross-linked thermoplastic elastomer compositions, it can be used as a modifier for engineering plastics used in various molded products and automobile parts.
 なお、耐油性については、架橋型熱可塑性エラストマー組成物(D)を、200℃でプレス成形した2mm厚シートから20mm×20mm×2mmの試験片を作成し、70℃のJIS3号油に72時間浸漬した前後の重量から式(I)に従い重量変化率ΔVを算出することにより評価することができる。
{(Tw-Td)/Td}×100=ΔV・・・・(I)
(式(I)において、Twは浸漬後の試験片重量であり、Tdは浸漬前の試験片重量である。)
 架橋型熱可塑性エラストマー組成物(D)の、上記式(I)により求められる重量変化率ΔVが、通常は100~1%であり、好ましくは50~1%である。
For oil resistance, a test piece of 20 mm × 20 mm × 2 mm was prepared from a 2 mm thick sheet obtained by press-molding the crosslinked thermoplastic elastomer composition (D) at 200 ° C., and then applied to JIS No. 3 oil at 70 ° C. for 72 hours. The weight change rate ΔV can be calculated from the weight before and after the immersion according to the formula (I).
{(Tw−Td) / Td} × 100 = ΔV (I)
(In Formula (I), Tw is the weight of the test piece after immersion, and Td is the weight of the test piece before immersion.)
The weight change rate ΔV determined by the above formula (I) of the crosslinked thermoplastic elastomer composition (D) is usually 100 to 1%, preferably 50 to 1%.
 本発明の架橋型熱可塑性エラストマー組成物(D)は硬度に優れる。具体的には、架橋型熱可塑性エラストマー組成物(D)のJIS K6253に準拠して、測定されるショアーA硬度は、通常は100~60であり、好ましくは95~60である。 The cross-linked thermoplastic elastomer composition (D) of the present invention is excellent in hardness. Specifically, the Shore A hardness measured according to JIS K6253 of the crosslinked thermoplastic elastomer composition (D) is usually 100 to 60, preferably 95 to 60.
 また、本発明の架橋型熱可塑性エラストマー組成物(D)は、従来の架橋型熱可塑性エラストマー組成物と同等の機械特性を有する。架橋型熱可塑性エラストマー組成物(D)のJIS K6251に準拠して、引張試験を下記の条件で行った際の、破断時の引張強度および伸びが、通常は8MPa以上、300%以上であり、好ましくは10MPa以上、500%以上である。引張試験の条件は、架橋型熱可塑性エラストマー組成物(D)を用いて、プレス成形機によりシートを作製し、JIS3号試験片を打ち抜き、該試験片を用いて引張速度500mm/分の条件で行う。 Further, the crosslinked thermoplastic elastomer composition (D) of the present invention has mechanical properties equivalent to those of the conventional crosslinked thermoplastic elastomer composition. In accordance with JIS K6251 of the cross-linked thermoplastic elastomer composition (D), the tensile strength and elongation at break when the tensile test was performed under the following conditions are usually 8 MPa or more and 300% or more, Preferably, it is 10 MPa or more and 500% or more. The tensile test was performed by using the cross-linked thermoplastic elastomer composition (D) to produce a sheet with a press molding machine, punching out a JIS No. 3 test piece, and using the test piece under a tensile speed of 500 mm / min. Do.
 〔架橋型熱可塑性エラストマー組成物(D)の製造方法〕
 以下、前記架橋型熱可塑性エラストマー組成物(D)の代表的な製造方法について述べる。架橋型熱可塑性エラストマー組成物(D)の代表的な製造方法は、前記結晶性オレフィン重合体(A)と、エチレン共重合体(E)との混合物に、架橋剤として、イソシアネート基含有オリゴマー(F)を導入または、架橋剤として、ポリエステルポリカルボン酸(G)および多価イソシアネートを導入し、エチレン共重合体(E)を動的架橋することを特徴とする。
[Method for Producing Crosslinked Thermoplastic Elastomer Composition (D)]
Hereinafter, a typical method for producing the crosslinked thermoplastic elastomer composition (D) will be described. A typical production method of the crosslinked thermoplastic elastomer composition (D) is that an isocyanate group-containing oligomer (as a crosslinking agent) is added to the mixture of the crystalline olefin polymer (A) and the ethylene copolymer (E). It is characterized in that F) is introduced or a polyester polycarboxylic acid (G) and a polyvalent isocyanate are introduced as a crosslinking agent to dynamically crosslink the ethylene copolymer (E).
 前記結晶性オレフィン重合体(A)と、エチレン共重合体(E)とを混合し、混合物を得る際には、非開放型の装置中で混練を行なうことが好ましい。また混合物を得る際には、窒素、炭酸ガス等の不活性ガス雰囲気下で行なうことが好ましい。 When the crystalline olefin polymer (A) and the ethylene copolymer (E) are mixed to obtain a mixture, it is preferable to knead in a non-open type apparatus. Moreover, when obtaining a mixture, it is preferable to carry out in inert gas atmosphere, such as nitrogen and a carbon dioxide gas.
 混練を行う際の混練温度は、結晶性オレフィン重合体(A)が十分溶融できる温度以上であり、また、エチレン共重合体(E)がカルボキシル基を有する場合、隣接するカルボキシル基を脱水させ、完全に閉環させカルボン酸無水物基とするために、通常170~280℃、好ましくは190~240℃である。混練を行う際の混練時間は、通常1~20分間、好ましくは1~10分間である。また、混練を行う際の加えられる剪断力は、剪断速度として10~100,000sec-1、好ましくは100~50,000sec-1である。 The kneading temperature at the time of kneading is equal to or higher than the temperature at which the crystalline olefin polymer (A) can be sufficiently melted, and when the ethylene copolymer (E) has a carboxyl group, the adjacent carboxyl group is dehydrated, The temperature is usually 170 to 280 ° C., preferably 190 to 240 ° C., in order to completely close the ring to form a carboxylic acid anhydride group. The kneading time for kneading is usually 1 to 20 minutes, preferably 1 to 10 minutes. Moreover, the shear forces exerted in performing kneading, 10 ~ 100,000sec -1 as the shear rate is preferably 100 ~ 50,000sec -1.
 混練装置としては、ミキシングロール、インテンシブミキサー(例えばバンバリーミキサー、ニーダー)、一軸または二軸押出機等を用い得るが、非開放型の装置が好ましい。実験的にはラボプラストミルでもよい。 As the kneading apparatus, a mixing roll, an intensive mixer (for example, a Banbury mixer, a kneader), a single-screw or twin-screw extruder can be used, and a non-open type apparatus is preferable. Experimentally, it may be a lab plast mill.
 架橋型熱可塑性エラストマー組成物(D)の製造方法において、前記結晶性オレフィン重合体(A)と、エチレン共重合体(E)とを混合することにより得られた、結晶性オレフィン重合体(A)と、エチレン共重合体(E)との混合物に、架橋剤として、イソシアネート基含有オリゴマー(F)を導入または、架橋剤として、ポリエステルポリカルボン酸(G)および多価イソシアネートを導入し、エチレン共重合体(E)を動的架橋するが、動的架橋とは、溶融状態で混練(以下、溶融混練とも記す)することにより架橋することをいう。 In the method for producing a crosslinked thermoplastic elastomer composition (D), the crystalline olefin polymer (A) obtained by mixing the crystalline olefin polymer (A) and the ethylene copolymer (E). ) And an ethylene copolymer (E), an isocyanate group-containing oligomer (F) is introduced as a crosslinking agent, or a polyester polycarboxylic acid (G) and a polyvalent isocyanate are introduced as a crosslinking agent. The copolymer (E) is dynamically cross-linked, and dynamic cross-linking means cross-linking by kneading in a molten state (hereinafter also referred to as melt kneading).
 結晶性オレフィン重合体(A)と、エチレン共重合体(E)との混合物に、架橋剤として、ポリエステルポリカルボン酸(G)および多価イソシアネートを導入し、エチレン共重合体(E)を動的架橋する場合には、結晶性オレフィン重合体(A)と、エチレン共重合体(E)との混合物に、ポリエステルポリカルボン酸(G)を多価イソシアネートに先んじて導入することが好ましい。具体的には、結晶性オレフィン重合体(A)と、エチレン共重合体(E)との混合物と、ポリエステルポリカルボン酸(G)とを混練し、混練物を得て、該混練物と多価イソシアネートとを混練することが好ましい。 A polyester polycarboxylic acid (G) and a polyvalent isocyanate are introduced as a crosslinking agent into a mixture of the crystalline olefin polymer (A) and the ethylene copolymer (E), and the ethylene copolymer (E) is moved. In the case of mechanical crosslinking, the polyester polycarboxylic acid (G) is preferably introduced into the mixture of the crystalline olefin polymer (A) and the ethylene copolymer (E) prior to the polyvalent isocyanate. Specifically, a mixture of a crystalline olefin polymer (A) and an ethylene copolymer (E) and a polyester polycarboxylic acid (G) are kneaded to obtain a kneaded product, It is preferable to knead with a polyvalent isocyanate.
 結晶性オレフィン重合体(A)と、エチレン共重合体(E)との混合物と、ポリエステルポリカルボン酸(G)とを混練する際の、混練温度は、通常100~240℃、好ましくは120~210℃である。混練する際の混練時間は、通常1~20分間、好ましくは1~10分間である。また、混練する際の加えられる剪断力は、剪断速度として10~100,000sec-1、好ましくは100~50,000sec-1である。 The kneading temperature when kneading the mixture of the crystalline olefin polymer (A) and the ethylene copolymer (E) with the polyester polycarboxylic acid (G) is usually 100 to 240 ° C., preferably 120 to 210 ° C. The kneading time for kneading is usually 1 to 20 minutes, preferably 1 to 10 minutes. Further, the shear force applied at the time of kneading, 10 ~ 100,000sec -1 as the shear rate is preferably 100 ~ 50,000sec -1.
 混練装置としては、ミキシングロール、インテンシブミキサー(例えばバンバリーミキサー、ニーダー)、一軸または二軸押出機等を用い得るが、非開放型の装置が好ましい。実験的にはラボプラストミルでもよい。 As the kneading apparatus, a mixing roll, an intensive mixer (for example, a Banbury mixer, a kneader), a single-screw or twin-screw extruder can be used, and a non-open type apparatus is preferable. Experimentally, it may be a lab plast mill.
 架橋型熱可塑性エラストマー組成物(D)の製造方法においては、結晶性オレフィン重合体(A)と、エチレン共重合体(E)との混合物に、イソシアネート基含有オリゴマー(F)を導入する時またはその直前に、結晶性オレフィン重合体(A)と、エチレン共重合体(E)との混合物にアミド化触媒を添加することが好ましい。 In the method for producing the crosslinked thermoplastic elastomer composition (D), when the isocyanate group-containing oligomer (F) is introduced into the mixture of the crystalline olefin polymer (A) and the ethylene copolymer (E) or Immediately before that, it is preferable to add an amidation catalyst to the mixture of the crystalline olefin polymer (A) and the ethylene copolymer (E).
 また、結晶性オレフィン重合体(A)と、エチレン共重合体(E)との混合物と、ポリエステルポリカルボン酸(G)とを混練して得られた混練物に、多価イソシアネートを導入する時またはその直前に、該混練物にアミド化触媒を添加することが好ましい。 In addition, when polyvalent isocyanate is introduced into a kneaded product obtained by kneading a mixture of a crystalline olefin polymer (A) and an ethylene copolymer (E) and a polyester polycarboxylic acid (G). Or immediately before that, it is preferable to add an amidation catalyst to the kneaded product.
 アミド化触媒としては、好ましくはアルカリ金属塩、アルカリ土類金属塩が用いられる。アルカリ金属塩としては、例えば、フッ化リチウム、塩化リチウム、水酸化リチウム、フッ化ナトリウム、塩化ナトリウム、水酸化ナトリウム、フッ化カリウム、塩化カリウム、水酸化カリウムなどが挙げられる。また、アルカリ土類金属塩としては、例えば、ステアリン酸カルシウム、過塩素酸カルシウム、塩化カルシウム、水酸化カルシウム、ステアリン酸マグネシウム、過塩素酸マグネシウム、塩化マグネシウム、水酸化マグネシウムなどが挙げられる。 As the amidation catalyst, an alkali metal salt or an alkaline earth metal salt is preferably used. Examples of the alkali metal salt include lithium fluoride, lithium chloride, lithium hydroxide, sodium fluoride, sodium chloride, sodium hydroxide, potassium fluoride, potassium chloride, and potassium hydroxide. Examples of the alkaline earth metal salt include calcium stearate, calcium perchlorate, calcium chloride, calcium hydroxide, magnesium stearate, magnesium perchlorate, magnesium chloride, magnesium hydroxide and the like.
 アミド化触媒は、単独で使用または2種類以上を併用することができる。アミド化触媒としては、アミド化反応におけるアミド選択性の観点から、ステアリン酸カルシウム、過塩素酸カルシウム、ステアリン酸マグネシウム、過塩素酸マグネシウムが好ましく、ステアリン酸マグネシウムがより好ましい。 The amidation catalyst can be used alone or in combination of two or more. As the amidation catalyst, calcium stearate, calcium perchlorate, magnesium stearate, and magnesium perchlorate are preferable from the viewpoint of amide selectivity in the amidation reaction, and magnesium stearate is more preferable.
 また、アミド化触媒としては、ポリウレタンフォームの製造に際して用いられる触媒として従来公知のものも使用できる(例えば、松平信孝、前田哲郎共編、「ポリウレタン」第8刷127-129、槙書店(1964)参照)。 As the amidation catalyst, a conventionally known catalyst can be used for the production of polyurethane foam (see, for example, Nobutaka Matsudaira and Tetsuro Maeda, “Polyurethane” No. 8 127-129, Tsuji Shoten (1964)). ).
 ポリウレタンフォームの製造に際して用いられる触媒の具体例としては、トリエチレンジアミン、N,N,N',N'-テトラメチルヘキサメチレンジアミン、ビス(N,N-ジメチルアミノエチルエーテル)、モルホリン類等の脂肪族アミン類やオクタン酸スズやジブチルチンジラウレイト等の有機錫化合物、さらに、酢酸カリウム、酢酸ナトリウム等のカルボン酸のアルカリ金属塩、トリエチルアミン、トリエチレンジアミン、1,3,5-トリス(ジメチルアミノプロピル)-s-ヘキサハイドロトリアジン、2,4,6-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ[5,4,0]ウンデセン-7等の3級アミン系触媒、カルボン酸と3級アミンとから成る4級アンモニウム塩等が用いられる。これらの触媒は単独で使用または2種類以上を併用することができる。 Specific examples of catalysts used in the production of polyurethane foam include fats such as triethylenediamine, N, N, N ′, N′-tetramethylhexamethylenediamine, bis (N, N-dimethylaminoethyl ether), and morpholines. Group amines, organotin compounds such as tin octoate and dibutyltin dilaurate, alkali metal salts of carboxylic acids such as potassium acetate and sodium acetate, triethylamine, triethylenediamine, 1,3,5-tris (dimethylaminopropyl) ) -S-hexahydrotriazine, 2,4,6-tris (dimethylaminomethyl) phenol, tertiary amine catalyst such as 1,8-diazabicyclo [5,4,0] undecene-7, carboxylic acid and tertiary A quaternary ammonium salt composed of an amine is used. These catalysts can be used alone or in combination of two or more.
 さらにアミド化触媒としては、下記化学式(X)で表されるホスフィンオキシド化合物、下記化学式(Y)で表わされる活性水素化合物のホスファゼニウム塩、下記化学式(Z)で表わされる水酸化ホスファゼニウムを用いてもよい。これらのアミド化触媒を用いると、イソシアネート基とカルボキシル基との反応性が極めて高くなり、効率的にアミド化ができる。アミド化触媒は、単独で使用または2種類以上を併用することができる。 Furthermore, as the amidation catalyst, a phosphazenium compound represented by the following chemical formula (X), a phosphazenium salt of an active hydrogen compound represented by the following chemical formula (Y), or a phosphazenium hydroxide represented by the following chemical formula (Z) may be used. Good. When these amidation catalysts are used, the reactivity between an isocyanate group and a carboxyl group becomes extremely high, and amidation can be efficiently performed. Amidation catalysts can be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
(式中、R1はそれぞれ独立に炭素数1~10の炭化水素基であり、同一窒素原子上の2個のR1が互いに結合して環構造を形成してもよい。xは含まれる水分子の量をモル比で示し、0~5.0である。) (In the formula, each R 1 is independently a hydrocarbon group having 1 to 10 carbon atoms, and two R 1 on the same nitrogen atom may be bonded to each other to form a ring structure. X is included. (The amount of water molecules is expressed in molar ratio and is 0 to 5.0.)
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
(式中、nは1~8の整数であってホスファゼニウムカチオンの数を表し、Zn-は活性水素原子を酸素原子または窒素原子上に有する活性水素化合物からn個のプロトンが離脱して導かれるn価の活性水素化合物のアニオンである。a、b、cおよびdはそれぞれ独立に、3以下の正の整数または0であるが、全てが同時に0ではない。R2はそれぞれ独立に、炭素数1~10の炭化水素基であり、同一窒素原子上の2個のR2が互いに結合して環構造を形成してもよい。) (In the formula, n is an integer of 1 to 8 and represents the number of phosphazenium cations, and Z n− is the elimination of n protons from an active hydrogen compound having an active hydrogen atom on an oxygen or nitrogen atom. An anion of an n-valent active hydrogen compound derived as follows: a, b, c and d are each independently a positive integer of 3 or less or 0, but all are not 0 at the same time, R 2 is each Independently, it is a hydrocarbon group having 1 to 10 carbon atoms, and two R 2 on the same nitrogen atom may be bonded to each other to form a ring structure.)
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
(式中、Meはメチル基を表す。a’、b’、c’およびd’は0または1であり、全てが同時に0ではない。)
 前記化学式(X)で表されるホスフィンオキシド化合物としては、トリス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]ホスフィンオキシド、トリス(トリピロリジノホスホラニリデンアミノ)ホスフィンオキシド、トリス(トリピペリジノホスホラニリデンアミノ)ホスフィンオキシド等が挙げられるが、好ましくはトリス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]ホスフィンオキシドである。
(In the formula, Me represents a methyl group. A ′, b ′, c ′ and d ′ are 0 or 1, and all are not 0 at the same time.)
Examples of the phosphine oxide compound represented by the chemical formula (X) include tris [tris (dimethylamino) phosphoranylideneamino] phosphine oxide, tris (tripyrrolidinophosphoranylideneamino) phosphine oxide, tris (tripiperidinophospho). Ranylideneamino) phosphine oxide and the like, and tris [tris (dimethylamino) phosphoranylideneamino] phosphine oxide is preferable.
 前記化学式(Y)で表される活性水素化合物のホスファゼニウム塩としては、ジメチルアミノトリス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]ホスホニウムテトラフルオロボレート、テトラキス[トリ(ピロリジン-1-イル)ホスホラニリデンアミノ]ホスホニウムテトラフルオロボレート、テトラキス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]ホスホニウムクロライド、ジエチルアミノトリス[トリス(ジエチルアミノ)ホスホラニリデンアミノ]ホスホニウムテトラフルオロボレート等が挙げられるが、好ましくはテトラキス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]ホスホニウムクロライドである。 Examples of the phosphazenium salt of the active hydrogen compound represented by the chemical formula (Y) include dimethylaminotris [tris (dimethylamino) phosphoranylideneamino] phosphonium tetrafluoroborate, tetrakis [tri (pyrrolidin-1-yl) phosphoranylidene. Examples include amino] phosphonium tetrafluoroborate, tetrakis [tris (dimethylamino) phosphoranylideneamino] phosphonium chloride, diethylaminotris [tris (diethylamino) phosphoranylideneamino] phosphonium tetrafluoroborate, and preferably tetrakis [tris ( Dimethylamino) phosphoranylideneamino] phosphonium chloride.
 前記化学式(Z)で表される水酸化ホスファゼニウムとしては、テトラキス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]ホスホニウムヒドロキシド、(ジメチルアミノ)トリス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]ホスホニウムヒドロキシドが挙げられるが、好ましくはテトラキス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]ホスホニウムヒドロキシドである。 Examples of the phosphazenium hydroxide represented by the chemical formula (Z) include tetrakis [tris (dimethylamino) phosphoranylideneamino] phosphonium hydroxide, (dimethylamino) tris [tris (dimethylamino) phosphoranylideneamino] phosphonium hydroxide. Of these, tetrakis [tris (dimethylamino) phosphoranylideneamino] phosphonium hydroxide is preferred.
 これらのアミド化触媒の使用量は、結晶性オレフィン重合体(A)と、エチレン共重合体(E)との混合物に、イソシアネート基含有オリゴマー(F)を導入する場合には、エチレン共重合体(E)の有する、カルボキシル基等のイソシアネート基と反応しうる官能基の量100モル当たり、0.001~10モルであり、0.005~2モルであることが好ましい。 The amount of these amidation catalysts used is such that when the isocyanate group-containing oligomer (F) is introduced into a mixture of the crystalline olefin polymer (A) and the ethylene copolymer (E), the ethylene copolymer It is 0.001 to 10 mol, preferably 0.005 to 2 mol, per 100 mol of the functional group that can react with an isocyanate group such as a carboxyl group in (E).
 また、アミド化触媒の使用量は、結晶性オレフィン重合体(A)と、エチレン共重合体(E)との混合物と、ポリエステルポリカルボン酸(G)とを混練して得られた混練物に、多価イソシアネートを導入する場合には、エチレン共重合体(E)の有する、カルボキシル基等のイソシアネート基と反応しうる官能基の量および、ポリエステルポリカルボン酸(G)の有する、カルボキシル基の量の合計100モル当たり、0.001~10モルであり、0.005~2モルであることが好ましい。 The amount of the amidation catalyst used is the amount of kneaded material obtained by kneading the mixture of the crystalline olefin polymer (A) and the ethylene copolymer (E) and the polyester polycarboxylic acid (G). In the case of introducing a polyvalent isocyanate, the amount of the functional group that the ethylene copolymer (E) can react with an isocyanate group such as a carboxyl group and the carboxyl group of the polyester polycarboxylic acid (G) The amount is 0.001 to 10 mol, preferably 0.005 to 2 mol, per 100 mol of the total amount.
 アミド化触媒の使用量が、これより少ないと、アミド化反応が充分に進行せず、生産性が低下する場合がある。一方、これより多くとも、アミド化反応のアミド選択性は変わらず、経済的に不利となる場合がある。 If the amount of the amidation catalyst used is less than this, the amidation reaction does not proceed sufficiently and the productivity may decrease. On the other hand, at more than this, the amide selectivity of the amidation reaction does not change, which may be economically disadvantageous.
 本発明において動的架橋は、非開放型の装置中で行なうことが好ましい。また動的架橋は、窒素、炭酸ガス等の不活性ガス雰囲気下で行なうことが好ましい。 In the present invention, dynamic crosslinking is preferably performed in a non-open type apparatus. The dynamic crosslinking is preferably performed in an inert gas atmosphere such as nitrogen or carbon dioxide.
 動的架橋を行う際の混練温度は、結晶性オレフィン重合体(A)が十分溶融できる温度以上であり、イソシアネート基含有オリゴマー(F)や、多価イソシアネートの有するイソシアネート基の自己反応を抑制することができ、かつ、イソシアネート基含有オリゴマー(F)や、多価イソシアネートの粘度が溶融混練するのには不適でないことが望ましく、好ましくは170~240℃、より好ましくは190~230℃である。動的架橋を行う際の混練時間は、通常1~20分間、好ましくは3~10分間である。また、動的架橋を行う際の加えられる剪断力は、剪断速度として10~100,000sec-1、好ましくは100~50,000sec-1である。 The kneading temperature at the time of dynamic crosslinking is not less than the temperature at which the crystalline olefin polymer (A) can be sufficiently melted, and suppresses the self-reaction of the isocyanate group-containing oligomer (F) and the isocyanate group of the polyvalent isocyanate. The viscosity of the isocyanate group-containing oligomer (F) and the polyvalent isocyanate is desirably not suitable for melt kneading, and is preferably 170 to 240 ° C, more preferably 190 to 230 ° C. The kneading time at the time of dynamic crosslinking is usually 1 to 20 minutes, preferably 3 to 10 minutes. Further, the applied shearing force when performing the dynamic crosslinking, 10 ~ 100,000sec -1 as the shear rate is preferably 100 ~ 50,000sec -1.
 混練装置としては、ラボプラストミル、ミキシングロール、インテンシブミキサー(例えばバンバリーミキサー、ニーダー)、一軸押出機、二軸押出機等を用いることができる。用い得るが、非開放型の装置が好ましい。 As the kneading apparatus, a lab plast mill, a mixing roll, an intensive mixer (for example, a Banbury mixer, a kneader), a single screw extruder, a twin screw extruder, or the like can be used. Although it can be used, a non-open device is preferred.
 本発明によれば、動的架橋によって、エチレン共重合体(E)が、イソシアネート基含有オリゴマー(F)または、ポリエステルポリカルボン酸(G)および多価イソシアネートにより架橋され、架橋エチレン共重合体(B)となり、架橋型熱可塑性エラストマー組成物(D)を製造することができる。 According to the present invention, the ethylene copolymer (E) is crosslinked with the isocyanate group-containing oligomer (F) or the polyester polycarboxylic acid (G) and the polyvalent isocyanate by dynamic crosslinking, and the crosslinked ethylene copolymer ( B), and a crosslinked thermoplastic elastomer composition (D) can be produced.
 なお、架橋型熱可塑性エラストマー組成物(D)の製造は、前記一軸押出機、二軸押出機またはこれらに類するものを用いて、連続的に行うことが好ましい。具体例としては、結晶性オレフィン重合体(A)およびエチレン共重合体(E)を二軸押出機等に供給し、混合を行い、次いで、イソシアネート基含有オリゴマー(F)または、ポリエステルポリカルボン酸(G)および多価イソシアネートを、サイドフィート等を用いて供給し、エチレン共重合体(E)を動的架橋する方法が挙げられる。 The production of the cross-linked thermoplastic elastomer composition (D) is preferably carried out continuously using the single screw extruder, twin screw extruder or the like. As a specific example, a crystalline olefin polymer (A) and an ethylene copolymer (E) are supplied to a twin screw extruder and the like, mixed, and then an isocyanate group-containing oligomer (F) or a polyester polycarboxylic acid (G) and polyisocyanate are supplied using a side foot etc., and the method of carrying out dynamic crosslinking of the ethylene copolymer (E) is mentioned.
 さらには、架橋型熱可塑性エラストマー組成物(D)の製造をエチレン共重合体(E)の製造を含めて、連続的に行うこともできる。具体例としては、前記エチレン共重合体(E-1)で記載したグラフト変性前のエチレン・α-オレフィン共重合体やエチレン・α-オレフィン・非共役ポリエン共重合体、および不飽和カルボン酸等を二軸押出機等に供給しすることにより、変性を行い、エチレン共重合体(E)を得た後に、結晶性オレフィン重合体(A)をサイドフィート等を用いて供給し、混合を行い、次いで、サイドフィート等を用いて供給し、エチレン共重合体(E)を動的架橋する方法が挙げられる。 Furthermore, the production of the crosslinked thermoplastic elastomer composition (D) can be continuously performed including the production of the ethylene copolymer (E). Specific examples include an ethylene / α-olefin copolymer, an ethylene / α-olefin / non-conjugated polyene copolymer, and an unsaturated carboxylic acid before graft modification described in the ethylene copolymer (E-1). Is supplied to a twin-screw extruder or the like to perform modification, and after obtaining an ethylene copolymer (E), the crystalline olefin polymer (A) is supplied using a side foot or the like and mixed. Then, a method of dynamically crosslinking the ethylene copolymer (E) by supplying using side feet or the like can be mentioned.
 別の例としては、前記エチレン共重合体(E-1)で記載したグラフト変性前のエチレン・α-オレフィン共重合体やエチレン・α-オレフィン・非共役ポリエン共重合体、および不飽和カルボン酸等を二軸押出機等に供給しすることにより、変性を行い、エチレン共重合体(E)を得た後に、結晶性オレフィン重合体(A)をサイドフィート等を用いて供給し、混合を行い、次いで、ポリエステルポリカルボン酸(G)をサイドフィート等を用いて供給し、さらに、多価イソシアネートをサイドフィート等を用いて供給し、エチレン共重合体(E)を動的架橋する方法も挙げられる。 Other examples include an ethylene / α-olefin copolymer, an ethylene / α-olefin / non-conjugated polyene copolymer before graft modification, and an unsaturated carboxylic acid described in the ethylene copolymer (E-1). Etc. are supplied to a twin-screw extruder or the like to perform modification, and after obtaining an ethylene copolymer (E), the crystalline olefin polymer (A) is supplied using a side foot or the like, and mixing is performed. Next, the polyester polycarboxylic acid (G) is supplied using a side foot or the like, and the polyvalent isocyanate is supplied using a side foot or the like to dynamically crosslink the ethylene copolymer (E). Can be mentioned.
 なお、前記結晶性オレフィン重合体(A)およびエチレン共重合体(E)を混合する際の温度は、結晶性オレフィン重合体(A)が十分溶融できる温度以上であり、かつ、その粘度が溶融混練するのには不適でないことが望ましく、好ましくは170~240℃、より好ましくは190~230℃である。 The temperature at which the crystalline olefin polymer (A) and the ethylene copolymer (E) are mixed is equal to or higher than the temperature at which the crystalline olefin polymer (A) can be sufficiently melted, and the viscosity is melted. It is desirable that it is not unsuitable for kneading, preferably 170 to 240 ° C, more preferably 190 to 230 ° C.
 また、架橋型熱可塑性エラストマー組成物(D)の製造の際には、イソシアネート基含有オリゴマー(F)や、多価イソシアネートは、水との反応性が高いため、水分を確実に排除することが望ましい。水分を排除するために、窒素、炭酸ガス等の不活性ガス雰囲気下でイソシアネート基含有オリゴマー(F)または、ポリエステルポリカルボン酸(G)および多価イソシアネートを、結晶性オレフィン重合体(A)と、エチレン共重合体(E)との混合物に添加することが好ましい。 Further, in the production of the crosslinked thermoplastic elastomer composition (D), the isocyanate group-containing oligomer (F) and the polyvalent isocyanate are highly reactive with water, so that moisture can be surely excluded. desirable. In order to eliminate moisture, an isocyanate group-containing oligomer (F) or a polyester polycarboxylic acid (G) and a polyvalent isocyanate are converted into a crystalline olefin polymer (A) under an inert gas atmosphere such as nitrogen or carbon dioxide. It is preferable to add to the mixture with the ethylene copolymer (E).
 また、架橋型熱可塑性エラストマー組成物(D)の製造において、イソシアネート基含有オリゴマー(F)、ポリエステルポリカルボン酸(G)、任意に用いられる相溶化剤等の吸湿性の高い原料は、原料として用いる前に脱湿処理を行うことが好ましい。架橋型熱可塑性エラストマー組成物(D)の製造の際に水が存在すると、イソシアネート基と水とが反応し、耐熱性に劣るウレア結合が生成したり、アミノ基が生成したり、CO2が発生する場合がある。このため架橋型熱可塑性エラストマー組成物(D)の製造の際には、極力水が存在しないことが好ましい。 In the production of the cross-linked thermoplastic elastomer composition (D), raw materials with high hygroscopicity such as isocyanate group-containing oligomer (F), polyester polycarboxylic acid (G), and optionally used compatibilizer are used as raw materials. It is preferable to perform a dehumidification treatment before use. If water is present during the production of the cross-linked thermoplastic elastomer composition (D), the isocyanate group reacts with water to form a urea bond with poor heat resistance, an amino group, or CO2 generation. There is a case. For this reason, it is preferable that water is not present as much as possible when the crosslinked thermoplastic elastomer composition (D) is produced.
 脱湿処理としては、従来知られている方法ならばどのような方法でも構わないが、脱湿の効率と縮合反応等の副反応を抑制する観点から、前記吸湿性の高い原料を、温度70~120℃、圧力0.1~10kPaの条件で、8~24時間保持する方法が好ましい。 Any method known in the art may be used as the dehumidification treatment. From the viewpoint of suppressing the dehumidification efficiency and side reactions such as the condensation reaction, the highly hygroscopic raw material is treated at a temperature of 70. A method of holding for 8 to 24 hours under the conditions of up to 120 ° C. and pressure of 0.1 to 10 kPa is preferred.
 さらに、架橋型熱可塑性エラストマー組成物(D)の製造において、動的架橋を行った後に、押出機等から取り出された製造物を急冷することが好ましい。急冷する方法は公知の方法ならばいずれの方法を用いてもよい。 Furthermore, in the production of the crosslinked thermoplastic elastomer composition (D), it is preferable to rapidly cool the product taken out from an extruder or the like after dynamic crosslinking. Any method may be used for the rapid cooling as long as it is a known method.
 なお、架橋型熱可塑性エラストマー組成物(D)の製造に用いる、エチレン共重合体(E)とイソシアネート基含有オリゴマー(F)との量は、製造に用いる前記エチレン共重合体(E)の有するイソシアネート基と反応しうる官能基の量[mol]と、イソシアネート基含有オリゴマー(F)が有するイソシアネート基の量[mol]との比(イソシアネート基/イソシアネート基と反応しうる官能基)が、0.3~2.5であり、好ましくは0.5~2.0であり、さらに好ましくは0.7~1.5である。前記比(イソシアネート基/イソシアネート基と反応しうる官能基)が1であると、イソシアネート基の基数とイソシアネート基と反応しうる官能基の基数が等価となり特に好ましい。 The amount of the ethylene copolymer (E) and the isocyanate group-containing oligomer (F) used for the production of the cross-linked thermoplastic elastomer composition (D) is the amount of the ethylene copolymer (E) used for the production. The ratio (isocyanate group / functional group capable of reacting with an isocyanate group) of the amount [mol] of the functional group capable of reacting with an isocyanate group and the amount [mol] of the isocyanate group contained in the isocyanate group-containing oligomer (F) is 0. .3 to 2.5, preferably 0.5 to 2.0, and more preferably 0.7 to 1.5. When the ratio (isocyanate group / functional group capable of reacting with isocyanate group) is 1, the number of isocyanate groups and the number of functional groups capable of reacting with isocyanate groups are equivalent, which is particularly preferable.
 前記イソシアネート基と反応しうる官能基が、マレイン酸由来のカルボキシル基等の、容易に脱水して、カルボン酸無水物基を形成する官能基である場合には、前記比(イソシアネート基/イソシアネート基と反応しうる官能基)における、イソシアネート基と反応しうる官能基は、カルボン酸無水物基換算の量である。また、開環(カルボキシル基)、閉環(カルボン酸無水物基)の割合をIR等により確認することが望ましい。 When the functional group capable of reacting with the isocyanate group is a functional group that easily dehydrates to form a carboxylic anhydride group, such as a carboxyl group derived from maleic acid, the ratio (isocyanate group / isocyanate group) The functional group capable of reacting with an isocyanate group in the functional group capable of reacting with carboxylic acid anhydride is an amount in terms of a carboxylic acid anhydride group. Further, it is desirable to confirm the ratio of ring opening (carboxyl group) and ring closing (carboxylic anhydride group) by IR or the like.
 また、架橋型熱可塑性エラストマー組成物(D)の製造に用いる、イソシアネート基含有オリゴマー(F)の量は、前記結晶性オレフィン重合体(A)と架橋エチレン共重合体(B)との重量比、イソシアネート基含有オリゴマー(F)の分子量、エチレン共重合体(E)の有するイソシアネート基と反応しうる官能基の量、エチレン共重合体(E)の分子量および、前記イソシアネート基と反応しうる官能基の量と、イソシアネート基の量との比(イソシアネート基/イソシアネート基と反応しうる官能基)により決定されるが、好ましくは、結晶性オレフィン重合体(A)、エチレン共重合体(E)およびイソシアネート基含有オリゴマー(F)の合計100wt%あたり、10~80wt%、好ましくは15~60wt%、より好ましくは30~50wt%である。 The amount of the isocyanate group-containing oligomer (F) used in the production of the crosslinked thermoplastic elastomer composition (D) is the weight ratio of the crystalline olefin polymer (A) and the crosslinked ethylene copolymer (B). , The molecular weight of the isocyanate group-containing oligomer (F), the amount of the functional group that can react with the isocyanate group of the ethylene copolymer (E), the molecular weight of the ethylene copolymer (E), and the functionality that can react with the isocyanate group The ratio is determined by the ratio of the amount of the group to the amount of the isocyanate group (isocyanate group / functional group capable of reacting with the isocyanate group). Preferably, the crystalline olefin polymer (A) and the ethylene copolymer (E) are used. And 10 to 80 wt%, preferably 15 to 60 wt%, more preferably 100 wt% of the total of the isocyanate group-containing oligomer (F) Ku is 30 ~ 50wt%.
 また、架橋型熱可塑性エラストマー組成物(D)の製造に用いる、エチレン共重合体(E)とポリエステルポリカルボン酸(G)との量は、製造に用いる前記エチレン共重合体(E)の有するイソシアネート基と反応しうる官能基の量[mol]と、ポリエステルポリカルボン酸(G)の有するカルボキシル基の量[mol]との比(ポリエステルポリカルボン酸(G)の有するカルボキシル基/エチレン共重合体(E)の有するイソシアネート基と反応しうる官能基)が、1.0~6.0であり、好ましくは1.0~4.0であり、さらに好ましくは1.0~3.0である。 The amount of the ethylene copolymer (E) and the polyester polycarboxylic acid (G) used for the production of the cross-linked thermoplastic elastomer composition (D) is the amount of the ethylene copolymer (E) used for the production. Ratio [mol] of functional group capable of reacting with isocyanate group and amount [mol] of carboxyl group of polyester polycarboxylic acid (G) (carboxyl group / ethylene copolymer of polyester polycarboxylic acid (G) The functional group capable of reacting with the isocyanate group of the compound (E)) is 1.0 to 6.0, preferably 1.0 to 4.0, more preferably 1.0 to 3.0. is there.
 また、架橋型熱可塑性エラストマー組成物(D)の製造に用いる、エチレン共重合体(E)とポリエステルポリカルボン酸(G)と多価イソシアネートとの量は、製造に用いる前記エチレン共重合体(E)の有するイソシアネート基と反応しうる官能基の量[mol]と、ポリエステルポリカルボン酸(G)の有するカルボキシル基の量[mol]との和と、多価イソシアネートが有するイソシアネート基の量[mol]との比(イソシアネート基/エチレン共重合体(E)の有するイソシアネート基と反応しうる官能基の量と、ポリエステルポリカルボン酸(G)の有するカルボキシル基の量との和)が、1.0~5.0であり、好ましくは1.05~3.0であり、さらに好ましくは1.1~2.5である。 The amount of the ethylene copolymer (E), the polyester polycarboxylic acid (G), and the polyvalent isocyanate used for the production of the crosslinked thermoplastic elastomer composition (D) is the same as that of the ethylene copolymer ( E) the amount [mol] of the functional group capable of reacting with the isocyanate group possessed by the amount [mol] of the carboxyl group possessed by the polyester polycarboxylic acid (G), and the amount of the isocyanate group possessed by the polyvalent isocyanate [ mol] (the sum of the amount of the functional group capable of reacting with the isocyanate group of the isocyanate group / ethylene copolymer (E) and the amount of the carboxyl group of the polyester polycarboxylic acid (G)) is 1 0.0 to 5.0, preferably 1.05 to 3.0, and more preferably 1.1 to 2.5.
 前記イソシアネート基と反応しうる官能基が、マレイン酸由来のカルボキシル基等の、容易に脱水して、カルボン酸無水物基を形成する官能基である場合には、前記比(イソシアネート基/エチレン共重合体(E)の有するイソシアネート基と反応しうる官能基の量と、ポリエステルポリカルボン酸(G)の有するカルボキシル基の量との和)における、イソシアネート基と反応しうる官能基は、カルボン酸無水物基換算の量である。また、開環(カルボキシル基)、閉環(カルボン酸無水物基)の割合をIR等により確認することが望ましい。 When the functional group capable of reacting with the isocyanate group is a functional group that easily dehydrates to form a carboxylic anhydride group, such as a carboxyl group derived from maleic acid, the ratio (isocyanate group / ethylene The functional group capable of reacting with the isocyanate group in the sum of the amount of the functional group capable of reacting with the isocyanate group of the polymer (E) and the amount of the carboxyl group of the polyester polycarboxylic acid (G) is carboxylic acid. It is the amount in terms of anhydride group. Further, it is desirable to confirm the ratio of ring opening (carboxyl group) and ring closing (carboxylic anhydride group) by IR or the like.
 また、架橋型熱可塑性エラストマー組成物(D)の製造に用いる、ポリエステルポリカルボン酸(G)と多価イソシアネートとの量は、前記結晶性オレフィン重合体(A)と架橋エチレン共重合体(B)との重量比、ポリエステルポリカルボン酸(G)や多価イソシアネート基の分子量、エチレン共重合体(E)の有するイソシアネート基と反応しうる官能基の量、ポリエステルポリカルボン酸(G)の有するカルボキシル基の量、エチレン共重合体(E)の分子量および、前記イソシアネート基と反応しうる官能基の量と、ポリエステルポリカルボン酸(G)の有するカルボキシル基の量との和と、イソシアネート基の量との比(イソシアネート基/エチレン共重合体(E)の有するイソシアネート基と反応しうる官能基の量と、ポリエステルポリカルボン酸(G)の有するカルボキシル基の量との和)により決定されるが、好ましくは、結晶性オレフィン重合体(A)、エチレン共重合体(E)およびポリエステルポリカルボン酸(G)と多価イソシアネートとの合計100wt%あたり、ポリエステルポリカルボン酸(G)と多価イソシアネートとの量が、10~80wt%、好ましくは15~60wt%、さらに好ましくは30~50wt%である。 The amount of the polyester polycarboxylic acid (G) and the polyvalent isocyanate used for the production of the crosslinked thermoplastic elastomer composition (D) is the same as that of the crystalline olefin polymer (A) and the crosslinked ethylene copolymer (B). ), The molecular weight of the polyester polycarboxylic acid (G) and the polyvalent isocyanate group, the amount of the functional group capable of reacting with the isocyanate group of the ethylene copolymer (E), and the polyester polycarboxylic acid (G) The sum of the amount of carboxyl groups, the molecular weight of the ethylene copolymer (E), the amount of functional groups capable of reacting with the isocyanate group, and the amount of carboxyl groups of the polyester polycarboxylic acid (G), Ratio (the amount of the functional group capable of reacting with the isocyanate group of the isocyanate group / ethylene copolymer (E) and the polyester) Terpolycarboxylic acid (G) with the amount of carboxyl groups), preferably crystalline olefin polymer (A), ethylene copolymer (E) and polyester polycarboxylic acid (G) The amount of the polyester polycarboxylic acid (G) and the polyvalent isocyanate is 10 to 80 wt%, preferably 15 to 60 wt%, and more preferably 30 to 50 wt% per 100 wt% of the total amount of styrene and polyvalent isocyanate.
 〔成形体〕
 本発明の成形体は、前記架橋型熱可塑性エラストマー組成物(D)から形成される。
[Molded body]
The molded product of the present invention is formed from the crosslinked thermoplastic elastomer composition (D).
 前記架橋型熱可塑性エラストマー組成物(D)は、従来の架橋型熱可塑性エラストマーと同等の機械特性(引張強度、伸び等)を有しているため、各種用途に用いることができる。また、架橋型熱可塑性エラストマー組成物(D)は、従来の架橋型熱可塑性エラストマーと比べて優れた耐油性を有しているため、従来の架橋型熱可塑性エラストマーを用いることが困難な分野にも用いることが可能である。 Since the crosslinkable thermoplastic elastomer composition (D) has mechanical properties (tensile strength, elongation, etc.) equivalent to those of conventional crosslinkable thermoplastic elastomers, it can be used for various applications. In addition, since the crosslinkable thermoplastic elastomer composition (D) has excellent oil resistance as compared with the conventional crosslinkable thermoplastic elastomer, it is difficult to use the conventional crosslinkable thermoplastic elastomer. Can also be used.
 また、架橋型熱可塑性エラストマー組成物(D)は、軽量性、耐熱性、柔軟性、ゴム弾性、成形加工性、低温特性、耐候性、両親媒性、相溶性、改質性、易接着性、接着性にも優れている。 The crosslinked thermoplastic elastomer composition (D) is lightweight, heat resistant, flexible, rubber elastic, moldability, low temperature characteristics, weather resistance, amphiphilicity, compatibility, reformability, and easy adhesion. Excellent adhesion.
 架橋型熱可塑性エラストマー組成物(D)は、成形加工性に優れているため、様々な成形法により、成形が可能である。前記成形としては、押出成形、射出成形、圧縮成形、カレンダー成形、真空成形、プレス成形、スタンピング成形、ブロー成形等が挙げられる。なお、ブロー成形としては、ブレスブロー成形、ダイレクトブロー成形、インジェクションブロー成形等が挙げられる。 Since the crosslinked thermoplastic elastomer composition (D) is excellent in molding processability, it can be molded by various molding methods. Examples of the molding include extrusion molding, injection molding, compression molding, calendar molding, vacuum molding, press molding, stamping molding, and blow molding. Examples of blow molding include breath blow molding, direct blow molding, injection blow molding, and the like.
 本発明の成形体は、前記架橋型熱可塑性エラストマー組成物(D)を、成形することにより得られる。例えば前記架橋型熱可塑性エラストマー組成物(D)を、押出成形、射出成形、圧縮成形等の従来のプラスチック成形法によって成形することにより得られる。また、このような成形法によって生じた屑やバリを回収して再利用することもできる。 The molded product of the present invention can be obtained by molding the crosslinked thermoplastic elastomer composition (D). For example, it can be obtained by molding the crosslinked thermoplastic elastomer composition (D) by a conventional plastic molding method such as extrusion molding, injection molding or compression molding. In addition, scraps and burrs generated by such a molding method can be recovered and reused.
 本発明の成形体としては、例えばバンパー部品、ボディパネル、サイドシールド、グラスランチャンネル、インストルメントパネル表皮、ドア表皮、天井表皮、ウェザーストリップ材、ホース、ステアリングホイール、ブーツ、ワイヤーハーネスカバー、シートアジャスターカバー等の自動車部品;電線被覆材、コネクター、キャッププラグ等の電気部品;靴底、サンダル等の履物;水泳用フィン、水中眼鏡、ゴルフクラブグリップ、野球バットグリップ等のレジャー用品、ガスケット、防水布、ベルト、ガーデンホース;土木・建築用各種ガスケットおよびシートなどが挙げられる。本発明の成形体としては、特に耐油性が求められる用途に適しており、ホース、ブーツ、ワイヤーハーネスカバー、シートアジャスターカバー等の自動車部品が特に好ましい用途として挙げられる。 Examples of the molded body of the present invention include bumper parts, body panels, side shields, glass run channels, instrument panel skins, door skins, ceiling skins, weatherstrip materials, hoses, steering wheels, boots, wire harness covers, seat adjuster covers. Automotive parts such as electric wire coverings, connectors, cap plugs, etc .; footwear such as shoe soles and sandals; leisure items such as swimming fins, underwater glasses, golf club grips, baseball bat grips, gaskets, waterproof cloth, Belts, garden hoses; various civil engineering and architectural gaskets and sheets. The molded article of the present invention is particularly suitable for uses requiring oil resistance, and automotive parts such as hoses, boots, wire harness covers, and sheet adjuster covers are particularly preferred uses.
 本発明の成形体としては、前述のように自動車部品が好ましく、自動車部品のより詳細な例としては、機構部材、内装部材、外装部材、その他部材が挙げられる。 As described above, automobile parts are preferable as the molded body of the present invention, and more detailed examples of the automobile parts include a mechanism member, an interior member, an exterior member, and other members.
 機構部材としては、CVJブーツ、サスペンションブーツ、ラック&ピニオンブーツ、ステアリングロッドカバー、ATクッション、ATスライドカバー、リーフスプリングブッシュ、ボールジョイントリテーナ、タイミングベルト、Vベルト、エンジンルーム内ホース、エアーダクト、エアバッグカバー、プロペラシャフトカバー材などが挙げられる。 Mechanical members include CVJ boots, suspension boots, rack and pinion boots, steering rod covers, AT cushions, AT slide covers, leaf spring bushes, ball joint retainers, timing belts, V belts, engine room hoses, air ducts, air Examples include a bag cover and a propeller shaft cover material.
 内装部材としては、各種表皮材(インストルメンタルパネル、ドアトリム、天井、リアピラー)、コンソールボックス、アームレスト、エアバックケースリッド、シフトノブ、アシストグリップ、サイドステップマット、リクライニングカバー、トランク内シート、シートベルトバックル、レバースライドプレート、ドアラッチストライカー、シートベルト部品、スイッチ類などが挙げられる。 Interior materials include various skin materials (instrumental panel, door trim, ceiling, rear pillar), console box, armrest, airbag case lid, shift knob, assist grip, side step mat, reclining cover, trunk seat, seat belt buckle, Examples include lever slide plates, door latch strikers, seat belt parts, and switches.
 外装部材としては、各種モール材(インナー/アウターウィンドウモール、ルーフモール、ベルトモール、サイドトリムモール)、ドアシール、ボディシール、グラスランチャンネル、泥よけ、キッキングプレート、ステップマット、ナンバープレートハウジング、消音ギア、コントロールケーブルカバー、エンブレムなどが挙げられる。 As exterior members, various molding materials (inner / outer window moldings, roof moldings, belt moldings, side trim moldings), door seals, body seals, glass run channels, mudguards, kicking plates, step mats, number plate housings, silencer gears , Control cable covers and emblems.
 その他部材としては、エアダクトパッキン、エアダクトホース、エアダクトカバー、エアインテークパイプ、エアダムスカート、タイミングベルトカバーシール、オープニングシール・トランクシール部材、ボンネットクッション、燃料タンクバンド、ケーブルなどが挙げられる。 Other members include air duct packing, air duct hose, air duct cover, air intake pipe, air dam skirt, timing belt cover seal, opening seal / trunk seal member, bonnet cushion, fuel tank band, cable and the like.
 本発明の成形体としては、雑貨、日用品またはこれらの部材であってもよい。雑貨、日用品またはこれらの部材としては、グリップ(例えば、ボールペン、シャープペンシル、歯ブラシ、カップ、使い捨てカミソリ、手すり、カッター、電動工具、ドライバー、電源ケーブル、ドアなどのグリップ)、アシストグリップ、シフトノブ、玩具、手帳表皮、ガスケット(例えば食器・タッパーなどのガスケット)、各種足ゴム、スポーツ用品(例えば、シーズソール、スキーブーツ、スキー板、スキービンディング、スキーソール、ゴルフボール、ゴーグル部材、スノーボード部材、スノーボードシューズ、スノーボードビンディング、サーフボード部材、ボディボード、バナナボート、カイトボード、シュノーケリング部材、 水上スキー部材、パラセーリング部材、ウェイクボード部材などのスポーツ用品)、ベルト(例えば、時計用ベルト、ファッションベルトなどのベルト)、ヘアブラシ、浴槽パネルボタンシート、キャップ、靴のインナーソール、健康器具部材などが挙げられる。 The molded article of the present invention may be miscellaneous goods, daily necessities, or these members. Miscellaneous goods, daily necessities or these components include grips (eg, ballpoint pens, mechanical pencils, toothbrushes, cups, disposable razors, handrails, cutters, power tools, screwdrivers, power cables, door grips), assist grips, shift knobs, toys , Notebook skins, gaskets (for example, gaskets for tableware, tappers, etc.), various rubber feet, sports equipment (for example, sheathed soles, ski boots, skis, ski bindings, ski soles, golf balls, goggles members, snowboard members, snowboard shoes) , Snowboard bindings, surfboard members, body boards, banana boats, kiteboards, snorkeling members, water skiing members, parasailing members, wakeboard members and other sports equipment), belts ( In example, belts and watches belt, fashion belt), hairbrush, bath panel button sheet, cap, shoes of the inner sole, and the like health equipment member.
 本発明の成形体としては、家電・電子情報部材であってもよい。家電・電子情報部材としては、ホース類(例えば、洗濯機、布団乾燥機、エアコンなどのホース)、エアコン室外機・AV機器などの防振ゴム、携帯電話部材(例えば、イヤホンカバー、アンテナカバー、コネクターカバーなどの携帯電話部材)、各種リモコンのキーパット、消音ギア、グリップ類(例えば、デジタルカメラ・ビデオなどのグリップ類)などが挙げられる。 The molded article of the present invention may be a home appliance / electronic information member. Home appliances / electronic information members include hoses (for example, hoses for washing machines, futon dryers, air conditioners, etc.), anti-vibration rubber for air conditioner outdoor units / AV devices, mobile phone members (for example, earphone covers, antenna covers, Mobile phone members such as connector covers), keypads of various remote controls, silencer gears, grips (for example, grips such as digital cameras and videos), and the like.
 本発明の成形体としては、工業資材であってもよい。工業資材としては、建築用ガスケット、防水シート、遮水シート、サスペンション、保護シート、止水材、ホース類(例えば、油圧ホース、空圧ホース、消防ホースなどのホース)、コンベアベルト、ガスケットなどが挙げられる。 The molded product of the present invention may be an industrial material. Industrial materials include architectural gaskets, waterproof sheets, water shielding sheets, suspensions, protective sheets, waterproofing materials, hoses (for example, hoses such as hydraulic hoses, pneumatic hoses, fire hoses), conveyor belts, gaskets, etc. Can be mentioned.
 前記架橋型熱可塑性エラストマー組成物(D)は、両親媒性に優れているため、非極性樹脂および極性樹脂の双方と相溶性があり、様々な樹脂と混合して用いることができる。すなわち、前記架橋型熱可塑性エラストマー組成物(D)は、改質材として用いることができる。 Since the crosslinkable thermoplastic elastomer composition (D) is excellent in amphiphilicity, it is compatible with both nonpolar resins and polar resins, and can be used by mixing with various resins. That is, the cross-linked thermoplastic elastomer composition (D) can be used as a modifier.
 前記架橋型熱可塑性エラストマー組成物(D)を改質材として用いた組成物としては、前記架橋型熱可塑性エラストマー組成物(D)と、任意の樹脂(例えば、ポリプロピレン、ポリエチレン、オレフィン系エラストマー、スチレン系樹脂、エステル系樹脂、アミド系樹脂、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂、ポリカーボネート、ポリ塩化ビニリデン、熱可塑性ポリウレタン(TPU)から選ばれる少なくとも1種の樹脂)とを混合することにより得られる組成物が挙げられる。 As the composition using the cross-linked thermoplastic elastomer composition (D) as a modifier, the cross-linked thermoplastic elastomer composition (D) and any resin (for example, polypropylene, polyethylene, olefin elastomer, It is obtained by mixing styrene resin, ester resin, amide resin, acrylonitrile / butadiene / styrene (ABS) resin, polycarbonate, polyvinylidene chloride, and thermoplastic polyurethane (TPU)). The composition which can be mentioned is mentioned.
 前記架橋型熱可塑性エラストマー組成物(D)と、任意の樹脂とを混合することにより得られる組成物としては、任意の樹脂が非極性樹脂(例えばポリプロピレン、ポリエチレン、オレフィン系エラストマーから選ばれる少なくとも1種の樹脂)である場合には、該組成物は、非極性樹脂と比べて、静電性(帯電性)、吸水性、接着性、濡れ性(塗装性や着色性)に優れるため好ましい。 As the composition obtained by mixing the cross-linked thermoplastic elastomer composition (D) and an arbitrary resin, the arbitrary resin is at least one selected from nonpolar resins (for example, polypropylene, polyethylene, olefin elastomer). In the case of a resin of a kind, the composition is preferable because it is excellent in electrostatic (chargeability), water absorption, adhesiveness, and wettability (paintability and colorability) as compared with a nonpolar resin.
 また、前記架橋型熱可塑性エラストマー組成物(D)と、任意の樹脂とを混合することにより得られる組成物としては、任意の樹脂が極性樹脂(例えばスチレン系樹脂、エステル系樹脂、アミド系樹脂、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂、ポリカーボネート、ポリ塩化ビニリデン、熱可塑性ポリウレタン(TPU)から選ばれる少なくとも1種の樹脂)である場合には、該組成物は、極性樹脂と比べて、軽量化が可能であり、また熱安定性、流動性、柔軟性、低温衝撃性に優れるため好ましい。 In addition, as a composition obtained by mixing the cross-linked thermoplastic elastomer composition (D) and an arbitrary resin, an arbitrary resin is a polar resin (for example, a styrene resin, an ester resin, an amide resin). , At least one resin selected from acrylonitrile / butadiene / styrene (ABS) resin, polycarbonate, polyvinylidene chloride, and thermoplastic polyurethane (TPU)), the composition is lighter than the polar resin. And is excellent in thermal stability, fluidity, flexibility and low temperature impact resistance.
 また、前記架橋型熱可塑性エラストマー組成物(D)と、任意の樹脂とを混合することにより得られる組成物としては、任意の樹脂が極性樹脂および非極性樹脂である場合には、該組成物は、前記架橋型熱可塑性エラストマー組成物(D)が相溶化剤として作用するため好ましい。 In addition, as a composition obtained by mixing the crosslinked thermoplastic elastomer composition (D) and an arbitrary resin, when the arbitrary resin is a polar resin and a nonpolar resin, the composition Is preferable because the cross-linked thermoplastic elastomer composition (D) acts as a compatibilizing agent.
 また、前記架橋型熱可塑性エラストマー組成物(D)と、任意の樹脂とを混合することにより得られる組成物は、他の樹脂や、他の素材との接着性に優れる。 In addition, the composition obtained by mixing the cross-linked thermoplastic elastomer composition (D) and an arbitrary resin is excellent in adhesion to other resins and other materials.
 本発明の成形体は、積層体であってもよい。積層体としては、架橋型熱可塑性エラストマー組成物(D)から形成される層と、他の樹脂や他の素材から形成される層とを有する積層体でも、架橋型熱可塑性エラストマー組成物(D)と任意の樹脂とを混合することにより得られる組成物から形成される層と、他の樹脂や他の素材から形成される層とを有する積層体でもよい。前記他の素材としては、金属(例えば銅、アルミ、金、銀など)、無機物(例えばシリカ、酸化チタンなど)が挙げられる。 The molded body of the present invention may be a laminate. As the laminate, even a laminate having a layer formed from the cross-linked thermoplastic elastomer composition (D) and a layer formed from another resin or other material may be a cross-linked thermoplastic elastomer composition (D ) And an arbitrary resin may be used, and a laminate having a layer formed from a composition obtained by mixing an arbitrary resin and a layer formed from another resin or another material may be used. Examples of the other materials include metals (for example, copper, aluminum, gold, silver, etc.) and inorganic substances (for example, silica, titanium oxide, etc.).
 また、本発明の成形体としては、前述の各種成形体が、前記架橋型熱可塑性エラストマー組成物(D)と、任意の樹脂とを混合することにより得られる組成物から形成されていてもよい。 Moreover, as a molded object of this invention, the above-mentioned various molded object may be formed from the composition obtained by mixing the said bridge | crosslinking-type thermoplastic elastomer composition (D) and arbitrary resin. .
 次に本発明の成形体を、その成形方法の観点から説明する。 Next, the molded body of the present invention will be described from the viewpoint of the molding method.
 本発明の成形体としては具体的には、押出成形、射出成形、インフレーション成形、ブロー成形、押出ブロー成形、射出ブロー成形、プレス成形、真空成形、カレンダー成形、発泡成形、パウダースラッシュ成形などの公知の熱成形方法により得られる成形体が挙げられる。以下に数例挙げて、本発明の成形体を説明する。 Specific examples of the molded body of the present invention include known extrusion molding, injection molding, inflation molding, blow molding, extrusion blow molding, injection blow molding, press molding, vacuum molding, calendar molding, foam molding, powder slush molding, and the like. And a molded body obtained by the thermoforming method. The molded body of the present invention will be described below by giving several examples.
 本発明に係る成形体がたとえば押出成形体、射出成形体あるいはブロー成形体である場合、該成形体の形状および製品種類は特に限定されないが、例えばシート、モール、パイプ、ホース、電線被覆材、フィラメント、ボトル、チューブ等が挙げられる。また、これらの成形体は、特にシート、表皮材、自動車内外層材、建築資材、自動車用各種ブーツ、自動車用モール、エアーダクト、自動車のインストゥルメントパネル、ドアトリムなどの内装表皮材等などに用いられることが好ましい。 When the molded body according to the present invention is, for example, an extrusion molded body, an injection molded body, or a blow molded body, the shape and product type of the molded body are not particularly limited. For example, a sheet, a molding, a pipe, a hose, an electric wire covering material, A filament, a bottle, a tube, etc. are mentioned. In addition, these molded products are used especially for seats, skin materials, automotive inner and outer layer materials, building materials, various automotive boots, automotive moldings, air ducts, automotive instrument panels, interior trim materials such as door trims, etc. It is preferable to be used.
 前記架橋型熱可塑性エラストマー組成物(D)を押出成形する際には、従来公知の押出装置および成形条件を採用することができ、たとえば単軸スクリュー押出機、混練押出機、ラム押出機、ギヤ押出機などを用いて、溶融した組成物を特定のダイスなどから押出すことにより所望の形状に成形することができる。 When extruding the cross-linked thermoplastic elastomer composition (D), conventionally known extruding equipment and molding conditions can be employed. For example, a single screw extruder, a kneading extruder, a ram extruder, a gear can be used. The melted composition can be formed into a desired shape by extruding it from a specific die or the like using an extruder or the like.
 前記架橋型熱可塑性エラストマー組成物(D)から形成されるシート、パイプ、ホース、電線被覆材、チューブは、耐油性、機械特性、軽量性、柔軟性、耐熱性、伸縮性、耐老化性に優れており幅広く用いることができる。 Sheets, pipes, hoses, wire covering materials, and tubes formed from the crosslinked thermoplastic elastomer composition (D) have oil resistance, mechanical properties, light weight, flexibility, heat resistance, stretchability, and aging resistance. It is excellent and can be used widely.
 前記シートは複数の層から形成される積層体であってもよく、前記シートが積層体である場合には前記架橋型熱可塑性エラストマー組成物(D)から形成される層を少なくとも1層有していればよい。 The sheet may be a laminate formed from a plurality of layers. When the sheet is a laminate, the sheet has at least one layer formed from the crosslinked thermoplastic elastomer composition (D). It only has to be.
 前記積層体の前記架橋型熱可塑性エラストマー組成物(D)から形成される層以外の層としては、ポリエチレン、ポリプロピレン、TPO(熱可塑性ポリオレフィン)等のポリオレフィン、ポリアミド、ポリエステル、ポリスチレン、熱可塑性ポリウレタン等の極性樹脂、アルミ、鉄、銅、金、銀、シリカ、酸化チタンなどの金属や無機物などが挙げられる。前記架橋型熱可塑性エラストマー組成物(D)は両親媒性があるため、非極性樹脂にも、極性樹脂にも積層が可能である。さらに、前記架橋型熱可塑性エラストマー組成物(D)は、非極性樹脂とも極性樹脂双方に対して樹脂を選ばず接着が可能な接着材料としても有用である。 Examples of layers other than the layer formed from the crosslinked thermoplastic elastomer composition (D) of the laminate include polyolefins such as polyethylene, polypropylene, and TPO (thermoplastic polyolefin), polyamides, polyesters, polystyrenes, thermoplastic polyurethanes, and the like. And polar metals, metals such as aluminum, iron, copper, gold, silver, silica, and titanium oxide, and inorganic substances. Since the crosslinked thermoplastic elastomer composition (D) is amphiphilic, it can be laminated on nonpolar resins and polar resins. Furthermore, the crosslinked thermoplastic elastomer composition (D) is useful as an adhesive material that can be bonded to both nonpolar resins and polar resins regardless of the resin.
 本発明の成形体が、射出成形体である場合には、従来公知の射出成形装置を用いて公知の条件を採用して、前記架橋型熱可塑性エラストマー組成物(D)を種々の形状に射出成形して製造することができる。前記射出成形体は耐油性、機械特性、軽量性、柔軟性、耐熱性、伸縮性、耐老化性に優れており、幅広く用いることができる。 When the molded article of the present invention is an injection molded article, the crosslinked thermoplastic elastomer composition (D) is injected into various shapes by adopting known conditions using a conventionally known injection molding apparatus. It can be manufactured by molding. The injection-molded product is excellent in oil resistance, mechanical properties, lightness, flexibility, heat resistance, stretchability, and aging resistance, and can be widely used.
 本発明の成形体が、ブロー成形体である場合には、従来公知のブロー成形装置を用いて公知の条件を採用して、前記架橋型熱可塑性エラストマー組成物(D)をブロー成形することにより製造することができる。この場合、前記架橋型熱可塑性エラストマー組成物(D)からなるブロー成形体は多層構造を有する成形体であってもよい。前記多層構造を有する成形体は、前記架橋型熱可塑性エラストマー組成物(D)から形成される層を少なくとも1層有している。前記ブロー成形体は、耐油性、機械特性、軽量性、柔軟性、耐熱性、伸縮性、耐老化性に優れており、自動車用ブーツ等幅広く用いることができる。 When the molded article of the present invention is a blow molded article, by adopting known conditions using a conventionally known blow molding apparatus, blow molding the crosslinked thermoplastic elastomer composition (D) Can be manufactured. In this case, the blow molded article made of the crosslinked thermoplastic elastomer composition (D) may be a molded article having a multilayer structure. The molded body having the multilayer structure has at least one layer formed from the crosslinked thermoplastic elastomer composition (D). The blow molded article is excellent in oil resistance, mechanical properties, lightness, flexibility, heat resistance, stretchability, and aging resistance, and can be widely used for automobile boots.
 本発明の成形体が、プレス成形体である場合には、プレス成形体としてはモールドスタンピング成形体が挙げられる。モールドスタンピング成形体としては、例えば基材と表皮材とを同時にプレス成形して両者を複合一体化成形(モールドスタンピング成形)することにより得られる成形体が挙げられる。モールドスタンピング成形体としては、前記表皮材を前記架橋型熱可塑性エラストマー組成物(D)で形成することができる。前記モールドスタンピング成形体としては、具体的には、ドアートリム、リアーパッケージトリム、シートバックガーニッシュ、インストルメントパネルなどの自動車用内装材が挙げられる。前記プレス成形体は、耐油性、機械特性、軽量性、柔軟性、耐熱性、伸縮性、耐老化性に優れている。 When the molded body of the present invention is a press molded body, examples of the press molded body include a mold stamping molded body. Examples of the mold stamping molded body include a molded body obtained by press-molding a base material and a skin material at the same time and performing composite integral molding (mold stamping molding) of both. As a mold stamping molded body, the skin material can be formed of the crosslinked thermoplastic elastomer composition (D). Specific examples of the mold stamping molded body include automotive interior materials such as door rims, rear package trims, seat back garnishes, and instrument panels. The press-molded body is excellent in oil resistance, mechanical properties, lightness, flexibility, heat resistance, stretchability, and aging resistance.
 本発明の成形体が、発泡成形体である場合には、公知の条件を採用して、前記架橋型熱可塑性エラストマー組成物(D)を発泡成形することにより得ることができる。発泡成形を行う場合には、前記架橋型熱可塑性エラストマー組成物(D)には、添加剤として、発泡剤が含まれていることが好ましく、発泡助剤が含まれていてもよい。なお、発泡剤や発泡助剤としては、特に限定はなく、公知の発泡剤や発泡助剤を用いることができる。発泡剤を含み、必要に応じて発泡助剤を含む架橋型熱可塑性エラストマー組成物(D)は、良好な発泡性を有しており、得られる発泡成形体は、耐油性、機械特性、軽量性、柔軟性、耐熱性、伸縮性、耐老化性に優れている。 When the molded article of the present invention is a foam molded article, it can be obtained by foam molding of the crosslinked thermoplastic elastomer composition (D) using known conditions. When performing foam molding, the crosslinked thermoplastic elastomer composition (D) preferably contains a foaming agent as an additive, and may contain a foaming aid. In addition, there is no limitation in particular as a foaming agent and foaming adjuvant, A well-known foaming agent and foaming adjuvant can be used. The cross-linked thermoplastic elastomer composition (D) containing a foaming agent and, if necessary, a foaming aid has good foaming properties, and the resulting foamed molded product has oil resistance, mechanical properties, and light weight. Excellent in flexibility, flexibility, heat resistance, elasticity, and aging resistance.
 本発明の成形体が、真空成形体である場合には、公知の条件を採用して、前記架橋型熱可塑性エラストマー組成物(D)を真空成形することにより得ることができる。真空成形体としては、自動車のインストゥルメントパネル、ドアトリムなどの内装表皮材等が挙げられる。該成形体は耐油性、機械特性、軽量性、柔軟性、耐熱性、伸縮性、耐老化性に優れている。 When the molded body of the present invention is a vacuum molded body, it can be obtained by vacuum molding the cross-linked thermoplastic elastomer composition (D) using known conditions. Examples of the vacuum molded body include interior skin materials such as instrument panels and door trims for automobiles. The molded body is excellent in oil resistance, mechanical properties, lightness, flexibility, heat resistance, stretchability, and aging resistance.
 本発明の成形体が、パウダースラッシュ成形体である場合には、公知の条件を採用して、前記架橋型熱可塑性エラストマー組成物(D)をパウダースラッシュ成形することにより得ることができる。パウダースラッシュ成形体としては、自動車部品、家電部品、玩具、雑貨等が挙げられる。該成形体は耐油性、機械特性、軽量性、柔軟性、耐熱性、伸縮性、耐老化性に優れている。 When the molded body of the present invention is a powder slush molded body, it can be obtained by powder slush molding of the crosslinked thermoplastic elastomer composition (D) using known conditions. Examples of the powder slush molded body include automobile parts, home appliance parts, toys, sundries and the like. The molded body is excellent in oil resistance, mechanical properties, lightness, flexibility, heat resistance, stretchability, and aging resistance.
 本発明の成形体が、積層体である場合には、該積層体としては、前記架橋型熱可塑性エラストマー組成物(D)から形成される層を少なくとも1層有していればよい。また、前記架橋型熱可塑性エラストマー組成物(D)から形成される層としては、前記架橋型熱可塑性エラストマー組成物(D)と、任意の樹脂(PP、PE、St系樹脂、エステル系樹脂、アミド系樹脂、塩ビなど)とから形成される層でもよい。前記架橋型熱可塑性エラストマー組成物(D)と、ポリオレフィン等の非極性樹脂とから形成される層を有する積層体は、両親媒性に優れた前記架橋型熱可塑性エラストマー組成物(D)によって、非極性樹脂の静電制御性、帯電防止性、吸水性、接着性、濡れ性を改良することができるため、様々な用途に用いることができる。前記架橋型熱可塑性エラストマー組成物(D)と、ナイロン、エンプラ、熱可塑性ポリウレタン等の極性樹脂とから形成される層を有する積層体は、両親媒性に優れた前記架橋型熱可塑性エラストマー組成物(D)によって、極性樹脂の軽量性、熱安定性、流動性、柔軟性、低温衝撃性を改良することができるため、様々な用途への展開が可能になる。 When the molded product of the present invention is a laminate, the laminate may have at least one layer formed from the crosslinked thermoplastic elastomer composition (D). The layer formed from the crosslinked thermoplastic elastomer composition (D) includes the crosslinked thermoplastic elastomer composition (D) and any resin (PP, PE, St resin, ester resin, A layer formed from an amide resin, vinyl chloride, or the like) may be used. The laminate having a layer formed from the cross-linked thermoplastic elastomer composition (D) and a nonpolar resin such as polyolefin is obtained by the cross-linkable thermoplastic elastomer composition (D) having excellent amphiphilic properties. Since the electrostatic controllability, antistatic property, water absorption, adhesiveness and wettability of the nonpolar resin can be improved, it can be used for various applications. A laminate having a layer formed from the cross-linked thermoplastic elastomer composition (D) and a polar resin such as nylon, engineering plastic, or thermoplastic polyurethane is a cross-linked thermoplastic elastomer composition having excellent amphiphilic properties. (D) can improve the lightness, thermal stability, fluidity, flexibility, and low-temperature impact properties of the polar resin, so that it can be used in various applications.
 また、本発明の成形体は、前述したように自動車用モールであることが有用である。自動車用モールとしては具体的には次i)~iii)が挙げられる。
i)単層の押出成形により得られる、サイドモール、バンパーモール、ルーフモール、ウィンドウモール、グラスランチャネル、ウエザーストリップモール、ベルトモール等。
ii)他材料との多層積層押出成形により得られるサイドモール、バンパーモール、ルーフモール、ウィンドウモール、グラスランチャネル、ウエザーストリップモール、ベルトモール等。その際、前記架橋型熱可塑性エラストマー組成物(D)は、少なくとも耐傷付性、或いは耐摩耗性が求められる部位に使用される。
iii)射出成形により得られる、サイドモール、バンパーモール、ルーフモール、ウィンドウモール、グラスランチャネル、ウエザーストリップモール、ベルトモールなどの本体、端末部、コーナー部等。
Further, as described above, it is useful that the molded article of the present invention is an automobile molding. Specific examples of automobile malls include the following i) to iii).
i) Side molding, bumper molding, roof molding, window molding, glass run channel, weather strip molding, belt molding, etc. obtained by extrusion molding of a single layer.
ii) Side moldings, bumper moldings, roof moldings, window moldings, glass run channels, weather strip moldings, belt moldings and the like obtained by multilayer lamination extrusion molding with other materials. At that time, the cross-linked thermoplastic elastomer composition (D) is used at least at a site where scratch resistance or abrasion resistance is required.
iii) Body, terminal, corner, etc. obtained by injection molding, such as side molding, bumper molding, roof molding, window molding, glass run channel, weather strip molding, belt molding.
 また、本発明の成形体が、自動車用内装表皮部材である場合には、具体的には次のI)~III)が挙げられる。
I)前記架橋型熱可塑性エラストマー組成物(D)を押出成形、或いはカレンダー成形することにより得られたシート状成形体を真空成形、或いはスタンピング成形することにより加工される、インパネ(インストゥルメントパネル)表皮、ドア表皮、天井表皮、コンソール表皮など。
II)前記架橋型熱可塑性エラストマー組成物(D)を粉砕により1.0mm以下の粉体状にし、パウダースラッシュ成形することにより加工される、インパネ(インストゥルメントパネル)表皮、ドア表皮、天井表皮、コンソール表皮など。
III)前記架橋型熱可塑性エラストマー組成物(D)を射出成形により成形・加工される、ハンドル表皮、コンソール表皮、アームレスト表皮、シフトノブ表皮、パーキングレバーグリップ表皮、アシストグリップ表皮、シートアジャストグリップ表皮などの各種表皮。この場合、ポリプロピレンなどのオレフィン系樹脂との逐次射出成形、同時射出成形によりオレフィン系樹脂から形成される基材と前記架橋型熱可塑性エラストマー組成物(D)から形成される表皮とを一体成形することもできる。
Further, when the molded article of the present invention is an automobile interior skin member, the following I) to III) are specifically mentioned.
I) Instrument panel (instrument panel) processed by vacuum molding or stamping molding of a sheet-like molded body obtained by extrusion molding or calender molding of the cross-linked thermoplastic elastomer composition (D) ) Skin, door skin, ceiling skin, console skin, etc.
II) Instrument panel (instrument panel) skin, door skin, and ceiling skin processed by pulverizing the crosslinked thermoplastic elastomer composition (D) into a powder of 1.0 mm or less and powder slush molding , Console epidermis and so on.
III) A handle skin, a console skin, an armrest skin, a shift knob skin, a parking lever grip skin, an assist grip skin, a seat adjustment grip skin, etc., which are molded and processed by the injection molding of the crosslinked thermoplastic elastomer composition (D). Various epidermis. In this case, the base material formed from the olefin resin and the skin formed from the cross-linked thermoplastic elastomer composition (D) are integrally formed by sequential injection molding with an olefin resin such as polypropylene, and simultaneous injection molding. You can also
 さらに、本発明の成形体が、自動車内装表皮部材である場合には、前記架橋型熱可塑性エラストマー組成物(D)として、従来公知の耐熱安定剤、老化防止剤、耐候安定剤、帯電防止剤、結晶核剤、滑材などの添加剤を含有する組成物を用いてもよい。特に滑材を含有する前記架橋型熱可塑性エラストマー組成物(D)を用いて形成された、自動車内装表皮部材は、耐傷付性、耐摩耗性に特に優れるため好ましい。前記滑材としては、高級脂肪酸アミド、金属セッケン、ワックス、シリコーンオイル、フッ素系ポリマー等が挙げられ、中でも高級脂肪酸アミド、シリコーンオイル、フッ素系ポリマーが、優れた耐傷付性、耐摩耗性を有する自動車内装表皮部材を得ることができるため好ましい。 Further, when the molded article of the present invention is an automobile interior skin member, as the crosslinked thermoplastic elastomer composition (D), a conventionally known heat stabilizer, anti-aging agent, weather stabilizer, antistatic agent A composition containing an additive such as a crystal nucleating agent or a lubricant may be used. In particular, an automobile interior skin member formed using the cross-linked thermoplastic elastomer composition (D) containing a lubricant is preferable because it is particularly excellent in scratch resistance and wear resistance. Examples of the lubricant include higher fatty acid amides, metal soaps, waxes, silicone oils, fluorine polymers, etc. Among them, higher fatty acid amides, silicone oils, fluorine polymers have excellent scratch resistance and abrasion resistance. An automobile interior skin member can be obtained, which is preferable.
 前記高級脂肪酸アミドとしては、ラウリル酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベへミン酸アミド等の飽和脂肪酸アミド;エルカ酸アミド、オレイン酸アミド、ブラシジン酸アミド、エライジン酸アミド等の不飽和脂肪酸アミド;メチレンビスステアリン酸アミド、メチレンビスオレイン酸アミド、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド等のビス脂肪酸アミド;などが挙げられる。 Examples of the higher fatty acid amides include saturated fatty acid amides such as lauric acid amide, palmitic acid amide, stearic acid amide, and behemic acid amide; unsaturated fatty acid amides such as erucic acid amide, oleic acid amide, brassic acid amide, and elaidic acid amide. Amides; bis fatty acid amides such as methylene bis stearic acid amide, methylene bis oleic acid amide, ethylene bis stearic acid amide, ethylene bis oleic acid amide;
 前記シリコーンオイルとしては、ジメチルシリコーンオイル、フェニルメチルシリコーンオイル、アルキルシリコーンオイル、フルオロシリコーンオイル、テトラメチルテトラフェニルトリシロキサン、変性シリコーン油などが挙げられる。 Examples of the silicone oil include dimethyl silicone oil, phenylmethyl silicone oil, alkyl silicone oil, fluorosilicone oil, tetramethyltetraphenyltrisiloxane, and modified silicone oil.
 前記フッ素系ポリマーとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ化ビニリデン系共重合体などが挙げられる。 Examples of the fluorine polymer include polytetrafluoroethylene, polyvinylidene fluoride, and vinylidene fluoride copolymer.
 前記高級脂肪酸アミド、シリコーンオイルおよびフッ素系ポリマーの中でも、エルカ酸アミド、オレイン酸アミド、エチレンビスオレイン酸アミド、ジメチルシリコーンオイル、フェニルメチルシリコーンオイル、アルキルシリコーンオイル、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ化ビニリデン系共重合体が好ましく、エルカ酸アミド、オレイン酸アミド、ジメチルシリコーンオイル、フッ化ビニリデン系共重合体が特に好ましい。 Among the higher fatty acid amides, silicone oils and fluoropolymers, erucic acid amide, oleic acid amide, ethylene bis-oleic acid amide, dimethyl silicone oil, phenyl methyl silicone oil, alkyl silicone oil, polytetrafluoroethylene, polyvinylidene fluoride, A vinylidene fluoride copolymer is preferable, and erucic acid amide, oleic acid amide, dimethyl silicone oil, and vinylidene fluoride copolymer are particularly preferable.
 本発明の成形体としては、例えばバンパー部品、ボディパネル、モール、サイドシールド、グラスランチャンネル、インストルメントパネル表皮、ドア表皮、天井表皮、その他内装表皮材、ウェザーストリップ材、ホース、ステアリングホイール、ブーツ等の自動車部品;電線被覆材、コネクター、キャッププラグ等の電気部品;靴底、サンダル等の履物;水泳用フィン、水中眼鏡、ゴルフクラブグリップ、野球バットグリップ等のレジャー用品、ガスケット、防水布、ベルト、ガーデンホース;土木・建築用各種ガスケットおよびシートなどが挙げられる。特に本発明の成形体としては、ホース、ステアリングホイール、ブーツのような耐油性や機械特性、軽量性、柔軟性、耐熱性、伸縮性、耐老化性が求められる用途に適している。また、本発明の成形体は、衣装ケース、積層体(ガラス含む)、発泡体、電線ケーブル、防音材、制振材、防振材、吸音材、遮音材、発泡材、建材、建材表皮材、不織布、改質材、防弾材等の用途に幅広く使用することができる。また、前記架橋型熱可塑性エラストマー組成物(D)は、接着剤、相溶化剤、耐チッピング剤、耐チッピング性改良剤等の用途に使用することもできる。 Examples of the molded body of the present invention include bumper parts, body panels, moldings, side shields, glass run channels, instrument panel skins, door skins, ceiling skins, other interior skin materials, weatherstrip materials, hoses, steering wheels, boots, etc. Automotive parts; electrical parts such as wire coverings, connectors, cap plugs; footwear such as shoe soles and sandals; leisure items such as swimming fins, underwater glasses, golf club grips, baseball bat grips, gaskets, waterproof cloth, belts , Garden hoses; various gaskets and sheets for civil engineering and construction. In particular, the molded product of the present invention is suitable for applications such as hoses, steering wheels, and boots that require oil resistance, mechanical properties, lightness, flexibility, heat resistance, stretchability, and aging resistance. In addition, the molded body of the present invention includes a costume case, a laminate (including glass), a foam, an electric cable, a sound insulation material, a vibration damping material, a vibration insulation material, a sound absorbing material, a sound insulation material, a foam material, a building material, and a building material skin material. It can be widely used for non-woven fabrics, modifiers, bulletproof materials and the like. The crosslinked thermoplastic elastomer composition (D) can also be used for applications such as an adhesive, a compatibilizing agent, a chipping resistant agent, and a chipping resistance improving agent.
 以下、本発明を合成例、実施例および比較例に基づいて説明するが、本発明は、これに限定されるものではない。また、合成例、実施例および比較例の分析、測定は、以下の方法に準拠した。 Hereinafter, the present invention will be described based on synthesis examples, examples, and comparative examples, but the present invention is not limited thereto. Moreover, the analysis and measurement of a synthesis example, an Example, and a comparative example were based on the following method.
 (メルトフローレート(MFR))
 メルトフローレートは、ASTM D1238に準拠して230℃、2.16kg荷重で測定した。
(Melt flow rate (MFR))
The melt flow rate was measured at 230 ° C. and a 2.16 kg load in accordance with ASTM D1238.
 (酸価)
 酸価は、JIS K6901「液状不飽和ポリエステル樹脂試験方法」の5.3項「酸価」の「部分酸価」に従って測定した。
(Acid value)
The acid value was measured according to “Partial acid value” in Section 5.3 “Acid value” of JIS K6901 “Test method for liquid unsaturated polyester resin”.
 (水酸基価)
 水酸基価は、JIS K1557「ポリウレタン用ポリエーテル試験方法」の6.4項「水酸基価」に従って測定した。
(Hydroxyl value)
The hydroxyl value was measured according to 6.4 “Hydroxyl value” of JIS K1557 “Polyether test method for polyurethane”.
 (イソシアネート基含有率)
 イソシアネート基含有率は、JIS K7301「熱硬化性ウレタンエラストマー用トリレンジイソシアネート型プレポリマー試験方法」の6.3項「イソシアネート基含有率」に従って測定した。
(Isocyanate group content)
The isocyanate group content was measured according to Section 6.3 “Isocyanate group content” of JIS K7301 “Testing method for tolylene diisocyanate type prepolymer for thermosetting urethane elastomer”.
 (数平均分子量)
 数平均分子量は、試料0.03gをテトラヒドロフラン10mlに室温で溶解し、次いで、孔径0.45μmのフィルタでろ過した後、ゲルパーミエーションクロマトグラフ(GPC)を用いて、下記条件で測定した。数平均分子量は、測定されたクロマトグラムの最大頻度の分子量(保持時間)を含むピークの数平均分子量を、標準ポリエチレングリコールを使用して作成された検量線を基準として算出した。
装置:HLC-8020(東ソー社製)
カラム:東ソー社製 TSKgel guardcolum HXL-L + G1000H XL + G2000H XL + G3000H XL
溶離液:テトラヒドロフラン
流量:0.8ml/分
カラム温度:40℃
注入量:20μl
検出器:RI
 (粘度)
 粘度は、コーンプレート型回転粘度計(ICI社製)を用い、コーン種類:100P、回転数:75rpm、温度:100℃または80℃の条件で測定した。
(Number average molecular weight)
The number average molecular weight was measured under the following conditions using a gel permeation chromatograph (GPC) after 0.03 g of a sample was dissolved in 10 ml of tetrahydrofuran at room temperature and then filtered through a filter having a pore size of 0.45 μm. For the number average molecular weight, the number average molecular weight of the peak including the maximum frequency molecular weight (retention time) of the measured chromatogram was calculated with reference to a calibration curve created using standard polyethylene glycol.
Apparatus: HLC-8020 (manufactured by Tosoh Corporation)
Column: TSKgel guardcolum HXL-L + G1000H XL + G2000H XL + G3000H XL manufactured by Tosoh Corporation
Eluent: Tetrahydrofuran Flow rate: 0.8 ml / min Column temperature: 40 ° C
Injection volume: 20 μl
Detector: RI
(viscosity)
The viscosity was measured using a cone plate type rotational viscometer (made by ICI) under the conditions of cone type: 100 P, rotation speed: 75 rpm, temperature: 100 ° C. or 80 ° C.
 (アミド化率)
 アミド化率は、下記条件の1H‐NMRより算出した。
装置:JNM-AL400(JEOL社製)
周波数:400MHz
測定温度:室温
積算回数:128回
 試料20mgをジメチルスルホキシド-d6(0.05%TMS含有)0.65mlに室温で溶解した後、上記条件で1H-NMRを測定した。アミド化率は、イソシアネート誘導体のプロトン(H)の積分値とアミド中のプロトン(NH)の積分値とから算出した。
(Amidation rate)
The amidation rate was calculated from 1 H-NMR under the following conditions.
Device: JNM-AL400 (manufactured by JEOL)
Frequency: 400MHz
Measurement temperature: Room temperature integration number: 128 times After dissolving 20 mg of a sample in 0.65 ml of dimethylsulfoxide-d6 (containing 0.05% TMS) at room temperature, 1H-NMR was measured under the above conditions. The amidation rate was calculated from the integral value of proton (H) of the isocyanate derivative and the integral value of proton (NH) in the amide.
 (機械特性:引張強さ、伸び)
 JIS K6251に準拠して、引張試験を下記の条件で行ない、破断時の引張強度と伸びを測定した。
(Mechanical properties: tensile strength, elongation)
In accordance with JIS K6251, a tensile test was performed under the following conditions, and the tensile strength and elongation at break were measured.
 試験は、プレス成形機によりシートを作製し、JIS3号試験片を打ち抜き、該試験片を用いて引張速度500mm/分の条件で行なった。 The test was performed by producing a sheet with a press molding machine, punching out a JIS No. 3 test piece, and using the test piece at a tensile speed of 500 mm / min.
 (硬度)
 硬度は、JIS K6253に準拠して、ショアーA硬度を測定した。
(hardness)
Hardness measured Shore A hardness based on JISK6253.
 測定は、プレス成形機によりシートを作製し、A型測定器を用い、押針接触後直ちに目盛りを読み取った。 Measured by preparing a sheet with a press molding machine and reading the scale immediately after contact with the pressing needle using an A-type measuring instrument.
 (極限粘度[η])
 共重合体ゴムの極限粘度[η]は、135℃デカリン中で測定した。
(Intrinsic viscosity [η])
The intrinsic viscosity [η] of the copolymer rubber was measured in 135 ° C. decalin.
 (耐油性試験)
 200℃でプレス成形した2mm厚シートから20mm×20mm×2mmの試験片を作成し、70℃のJIS3号油に72時間浸漬した前後の重量から式(I)に従い重量変化率ΔVを算出した。
{(Tw-Td)/Td}×100=ΔV・・・・(I)
(式(I)において、Twは浸漬後の試験片重量であり、Tdは浸漬前の試験片重量である。)
 (TEM観察法)
測定機器:透過型電子顕微鏡H-7650(日立製作所製)
前処理:検体にトリミングによる面出しを施し試料とし、次いで試料をRuO4で染色を行い、凍結させた試料から超薄切片を作成し、カーボン補強を行い、測定試料とした。
写真倍率:3000倍、10000倍
 [合成例E-1 イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-1)の製造]
 窒素置換した2Lガラス製重合器に脱水トルエン1700mLを入れ、エチレン(100L/h)/プロピレン(50L/h)の混合ガスを流通させた。80℃まで昇温したところで、トリエチルアルミニウム(10.2mL)と10-ウンデセン酸(6.0mL)を順次添加し、メチルアルモキサン([Al]=1.26Mのトルエン溶液10.26mL)で活性化されたメタロセン触媒(式(8))(20.3mg)を加え重合を開始した。攪拌速度600rpm、80℃、前記の混合ガス流通状態で90分間重合後、イソブチルアルコール(30mL)を加え重合を停止した。重合溶液を50℃まで降温した後にメタノール3.0L(濃塩酸10mLを含む)に注ぎポリマーを析出させた。
(Oil resistance test)
A test piece of 20 mm × 20 mm × 2 mm was prepared from a 2 mm thick sheet press-molded at 200 ° C., and the weight change rate ΔV was calculated from the weight before and after being immersed in JIS No. 3 oil at 70 ° C. for 72 hours according to the formula (I).
{(Tw−Td) / Td} × 100 = ΔV (I)
(In Formula (I), Tw is the weight of the test piece after immersion, and Td is the weight of the test piece before immersion.)
(TEM observation method)
Measuring instrument: Transmission electron microscope H-7650 (manufactured by Hitachi, Ltd.)
Pretreatment: Trimming the specimen to make a sample, then staining the sample with RuO 4 , creating an ultrathin section from the frozen sample, carbon reinforcing, and using as a measurement sample.
Photo magnification: 3000 times, 10,000 times [Synthesis Example E-1 Production of an ethylene / α-olefin copolymer (E-1) having a functional group capable of reacting with an isocyanate group]
1700 mL of dehydrated toluene was placed in a 2 L glass polymerization vessel purged with nitrogen, and a mixed gas of ethylene (100 L / h) / propylene (50 L / h) was circulated. When the temperature was raised to 80 ° C., triethylaluminum (10.2 mL) and 10-undecenoic acid (6.0 mL) were added sequentially, and metallocene activated with methylalumoxane ([Al] = 1.26 M in toluene solution 10.26 mL) was added. The catalyst (formula (8)) (20.3 mg) was added to initiate polymerization. After polymerization for 90 minutes at a stirring speed of 600 rpm and 80 ° C. in the above mixed gas flow state, isobutyl alcohol (30 mL) was added to terminate the polymerization. The temperature of the polymerization solution was lowered to 50 ° C., and then poured into 3.0 L of methanol (including 10 mL of concentrated hydrochloric acid) to precipitate a polymer.
 ポリマーを濾取し、減圧下80℃で10時間乾燥させることで、エチレン/プロピレン/10-ウンデセン酸3元共重合体(イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-1))を得た。 The polymer is collected by filtration and dried under reduced pressure at 80 ° C. for 10 hours to give an ethylene / propylene / 10-undecenoic acid terpolymer (an ethylene / α-olefin copolymer having a functional group capable of reacting with an isocyanate group). (E-1)) was obtained.
 1H-NMR測定よりイソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-1)を構成する、モノマー由来の構成単位の組成比はエチレン由来の構成単位/プロピレン由来の構成単位/10-ウンデセン酸由来の構成単位=75.1/23.7/1.23(mol%)と見積もられた。したがって、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-1)1g当り、0.38mmol/gの10-ウンデセン酸由来のカルボキシル基がある。 The composition ratio of the structural unit derived from the monomer constituting the ethylene / α-olefin copolymer (E-1) having a functional group capable of reacting with an isocyanate group from 1 H-NMR measurement is the structural unit derived from ethylene / derived from propylene The structural unit derived from 10-undecenoic acid was estimated to be 75.1 / 23.7 / 1.23 (mol%). Therefore, there are 0.38 mmol / g carboxyl groups derived from 10-undecenoic acid per 1 g of the ethylene / α-olefin copolymer (E-1) having a functional group capable of reacting with an isocyanate group.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 [合成例E-2 イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-2)の製造]
 重合器中で、オキシ三塩化バナジウムとエチルアルミニウムセスキクロリドを重合触媒とし、重合溶媒ヘキサン中にエチレンと1-ブテンの混合ガスおよび水素ガスを供給し、40℃、5kg/cm2、滞留時間1時間の条件下で連続的にエチレンと1-ブテンとを重合した。次いで、得られた反応溶液から、溶媒を分離し、目的とするエチレン・1-ブテンランダム共重合体を得た。このようにして得られた共重合体は、1-ブテン含量が19モル%であり、135℃デカリン中で測定した極限粘度[η]が2.2dl/gであり、ガラス転移温度が-65℃であった。
[Synthesis Example E-2 Production of ethylene / α-olefin copolymer (E-2) having a functional group capable of reacting with an isocyanate group]
In the polymerization vessel, vanadium oxytrichloride and ethylaluminum sesquichloride are used as a polymerization catalyst, and a mixed gas of ethylene and 1-butene and hydrogen gas are supplied into a polymerization solvent hexane, at 40 ° C., 5 kg / cm 2 , residence time 1 Ethylene and 1-butene were polymerized continuously under time conditions. Next, the solvent was separated from the obtained reaction solution to obtain the target ethylene / 1-butene random copolymer. The copolymer thus obtained has a 1-butene content of 19 mol%, an intrinsic viscosity [η] measured in decalin at 135 ° C. of 2.2 dl / g, and a glass transition temperature of −65. ° C.
 上記のエチレン・1-ブテンランダム共重合体10kgと、無水マレイン酸300gおよびジ-tert-ブチルペルオキシド18gを300gのアセトンに溶解させた溶液とをヘンシェルミキサー中でブレンドした。 10 kg of the above ethylene / 1-butene random copolymer was blended in a Henschel mixer with a solution of 300 g of maleic anhydride and 18 g of di-tert-butyl peroxide in 300 g of acetone.
 次いで、上記のようにして得られたブレンド物をスクリュー径40mm、L/D=26の1軸押出機のホッパーより投入し、樹脂温度260℃、押出量6kg/時間でストランド状に押し出して水冷した後、ペレタイズして無水マレイン酸グラフト変性エチレン・1-ブテンランダム共重合体を得た。得られたグラフト変性エチレン・1-ブテンランダム共重合体から未反応の無水マレイン酸をアセトンで抽出して、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-2)を得た。このグラフト変性エチレン・1-ブテンランダム共重合体(イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-2))の無水マレイン酸グラフト量を1H-NMR測定より測定したところ、このグラフト量は2.60重量%であった。したがって、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-2)が1g当り、0.261mmol/gの無水マレイン酸由来のカルボン酸無水物基がある。 Next, the blend obtained as described above was introduced from a hopper of a single screw extruder having a screw diameter of 40 mm and L / D = 26, extruded into a strand at a resin temperature of 260 ° C. and an extrusion rate of 6 kg / hour, and then water-cooled. And then pelletized to obtain a maleic anhydride graft-modified ethylene / 1-butene random copolymer. Unreacted maleic anhydride is extracted from the obtained graft-modified ethylene / 1-butene random copolymer with acetone, and an ethylene / α-olefin copolymer having a functional group capable of reacting with an isocyanate group (E-2 ) The amount of maleic anhydride grafted from this graft-modified ethylene / 1-butene random copolymer (ethylene / α-olefin copolymer (E-2) having a functional group capable of reacting with an isocyanate group) was determined by 1 H-NMR measurement. When measured, the graft amount was 2.60% by weight. Accordingly, the ethylene / α-olefin copolymer (E-2) having a functional group capable of reacting with an isocyanate group has 0.261 mmol / g of a carboxylic acid anhydride group derived from maleic anhydride per gram.
 [合成例E-3 イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-3)の製造]
 エチレン・プロピレン共重合体(三井化学社製、商品名タフマーP-0680、MFR=0.8g/10min(190℃、2.16kgf))10kgと、無水マレイン酸120gおよび有機過酸化物(日油(株)社製、商品名パーヘキシン25B、2,5-Dimethyl-2,5-bis(t-butylperoxy)hexyne-3)6gを120gのアセトンに溶解させた溶液とをヘンシェルミキサー中でブレンドした。
[Synthesis Example E-3 Production of ethylene / α-olefin copolymer (E-3) having a functional group capable of reacting with an isocyanate group]
10 kg of ethylene / propylene copolymer (trade name Toughmer P-0680, MFR = 0.8 g / 10 min (190 ° C., 2.16 kgf), manufactured by Mitsui Chemicals, Inc.), 120 g of maleic anhydride and organic peroxide (NOF) A solution obtained by dissolving 6 g of trade name Perhexin 25B, 2,5-Dimethyl-2,5-bis (t-butylperoxy) hexyne-3) in 120 g of acetone was blended in a Henschel mixer.
 上記のようにして得られたブレンド物をプラスチック工学社製2軸押出機BT-30(30mmφ、L/D=46、同方向回転、ニーデイングゾーン4カ所)を用いて設定温度250℃で、押出量3kg/h、回転数200rpmにて混練して、グラフト変性エチレン・プロピレン共重合体から形成されるペレットサンプルを得た。押出機のベント口より真空ポンプを用いてペレットサンプルから未反応マレイン酸および有機過酸化物を除去した。 The blend obtained as described above was set at a set temperature of 250 ° C. using a plastic engineering company twin screw extruder BT-30 (30 mmφ, L / D = 46, rotating in the same direction, four knee zones). A pellet sample formed from a graft-modified ethylene / propylene copolymer was obtained by kneading at an extrusion rate of 3 kg / h and a rotational speed of 200 rpm. Unreacted maleic acid and organic peroxide were removed from the pellet sample using a vacuum pump from the vent port of the extruder.
 得られたグラフト変性エチレン・プロピレン共重合体(イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-3))における無水マレイン酸グラフト量を1H-NMR測定により測定したところ、無水マレイン酸グラフト量は1.0重量%であった。 The amount of maleic anhydride grafted in the obtained graft-modified ethylene / propylene copolymer (ethylene / α-olefin copolymer (E-3) having a functional group capable of reacting with an isocyanate group) was measured by 1 H-NMR measurement. As a result, the amount of maleic anhydride grafted was 1.0% by weight.
 また得られたペレットをアセトンで抽出して未反応の無水マレイン酸量を1H-NMRにて測定したところ検出されなかった。したがって、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-3)は、1g当り、0.102mmol/gの無水マレイン酸由来のカルボン酸無水物基がある。 The obtained pellets were extracted with acetone, and the amount of unreacted maleic anhydride was measured by 1 H-NMR. As a result, it was not detected. Therefore, the ethylene / α-olefin copolymer (E-3) having a functional group capable of reacting with an isocyanate group has 0.102 mmol / g of carboxylic acid anhydride group derived from maleic anhydride per 1 g.
 [合成例E-4 イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-4)の製造]
 エチレン・ブテン共重合体(三井化学社製、商品名タフマーP-0550(MFR=1.0g/10min(190℃、2.16kgf))10kgと、無水マレイン酸120gおよび有機過酸化物(日油(株)社製、商品名パーヘキシン25B、2,5-Dimethyl-2,5-bis(t-butylperoxy)hexyne-3)6gを120gのアセトンに溶解させた溶液とをヘンシェルミキサー中でブレンドした。
[Synthesis Example E-4 Production of Ethylene / α-Olefin Copolymer (E-4) Having Functional Group Reactive with Isocyanate Group]
10 kg of ethylene / butene copolymer (trade name Toughmer P-0550 (MFR = 1.0 g / 10 min (190 ° C., 2.16 kgf)), manufactured by Mitsui Chemicals, Inc.), 120 g of maleic anhydride and organic peroxide (NOF) A solution obtained by dissolving 6 g of trade name Perhexin 25B, 2,5-Dimethyl-2,5-bis (t-butylperoxy) hexyne-3) in 120 g of acetone was blended in a Henschel mixer.
 上記のようにして得られたブレンド物をプラスチック工学社製2軸押出機BT-30(30mmφ、L/D=46、同方向回転、ニーデイングゾーン4カ所)を用いて設定温度250℃で、押出量3kg/h、回転数200rpmにて混練して、グラフト変性エチレン・ブテン共重合体から形成されるペレットサンプルを得た。押出機のベント口より真空ポンプを用いてペレットサンプルから未反応マレイン酸および有機過酸化物を除去した。 The blend obtained as described above was set at a set temperature of 250 ° C. using a plastic engineering company twin screw extruder BT-30 (30 mmφ, L / D = 46, rotating in the same direction, four knee zones). A pellet sample formed from the graft-modified ethylene / butene copolymer was obtained by kneading at an extrusion rate of 3 kg / h and a rotational speed of 200 rpm. Unreacted maleic acid and organic peroxide were removed from the pellet sample using a vacuum pump from the vent port of the extruder.
 得られたグラフト変性エチレン・ブテン共重合体(イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-4))における無水マレイン酸グラフト量を1H-NMR測定により測定したところ、無水マレイン酸グラフト量は1.0重量%であった。 The amount of maleic anhydride grafted in the obtained graft-modified ethylene / butene copolymer (ethylene / α-olefin copolymer (E-4) having a functional group capable of reacting with an isocyanate group) was measured by 1 H-NMR measurement. As a result, the amount of maleic anhydride grafted was 1.0% by weight.
 また得られたペレットをアセトンで抽出して未反応の無水マレイン酸量を1H-NMRにて測定したところ検出されなかった。したがって、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-4)が1g当り、0.102mmol/gの無水マレイン酸由来のカルボン酸無水物基がある。 The obtained pellets were extracted with acetone, and the amount of unreacted maleic anhydride was measured by 1 H-NMR. As a result, it was not detected. Therefore, the ethylene / α-olefin copolymer (E-4) having a functional group capable of reacting with an isocyanate group has 0.102 mmol / g of carboxylic anhydride group derived from maleic anhydride per 1 g.
 [合成例F-1 イソシアネート基含有エステルアミドオリゴマー(F-1)の製造]
 還流冷却器、窒素ガス導入管、温度計および攪拌装置が取り付けられた2リットルの反応フラスコに、834.1重量部の下記合成例G-1で得られたポリエステルポリカルボン酸(G-1)、165.9重量部の1,3-ビス(イソシアナトメチル)シクロヘキサン(商品名:タケネート600、三井化学ポリウレタン社製)(NCO/COOHの当量比:2.10)、0.253重量部のステアリン酸マグネシウム(ポリエステルポリカルボン酸のカルボキシル基100モル部に対して0.053モル部)、および、0.500重量部のフローレンAC-1190(共栄社化学製、消泡剤)を仕込んだ。
[Synthesis Example F-1 Production of Isocyanate Group-Containing Esteramide Oligomer (F-1)]
In a 2 liter reaction flask equipped with a reflux condenser, a nitrogen gas inlet tube, a thermometer, and a stirrer, 834.1 parts by weight of the polyester polycarboxylic acid (G-1) obtained in Synthesis Example G-1 below was added. , 165.9 parts by weight of 1,3-bis (isocyanatomethyl) cyclohexane (trade name: Takenate 600, manufactured by Mitsui Chemicals Polyurethanes) (NCO / COOH equivalent ratio: 2.10), 0.253 parts by weight Magnesium stearate (0.053 mol part with respect to 100 mol parts of the carboxyl group of the polyester polycarboxylic acid) and 0.500 parts by weight of Florene AC-1190 (manufactured by Kyoeisha Chemical Co., Ltd., antifoaming agent) were charged.
 その後、窒素を導入しながら、マントルヒーターで80℃まで昇温した後、その反応を反応温度80℃で5時間継続して、イソシアネート基含有オリゴマー(F)であるイソシアネート基含有エステルアミドオリゴマー(F-1)を得た。 Thereafter, the temperature was raised to 80 ° C. with a mantle heater while introducing nitrogen, and then the reaction was continued at a reaction temperature of 80 ° C. for 5 hours to obtain an isocyanate group-containing ester amide oligomer (F) that is an isocyanate group-containing oligomer (F). -1) was obtained.
 得られたイソシアネート基含有エステルアミドオリゴマー(F-1)の、イソシアネート含有率は3.7重量%(理論値3.7重量%)、粘度は4800mPa・s/100℃、数平均分子量は4390であった。 The isocyanate group-containing ester amide oligomer (F-1) obtained has an isocyanate content of 3.7% by weight (theoretical value 3.7% by weight), a viscosity of 4800 mPa · s / 100 ° C., and a number average molecular weight of 4390. there were.
 また、得られたイソシアネート基含有エステルアミドオリゴマー(F-1)の1H-NMRを測定した。NMRチャートから、1,3-ビス(イソシアナトメチル)シクロヘキサン誘導体の脂環部分の10Hのうちのケミカルシフト0.6ppmに現れる0.7346H部分の積分値を0.7346としたときの、ケミカルシフト7.8ppmに現れるアミドのNHの積分値からアミド化率を算出したところ90%であった。 Further, 1 H-NMR of the resulting isocyanate group-containing ester amide oligomer (F-1) was measured. From the NMR chart, the chemical shift when the integral value of the 0.7346H portion appearing at the chemical shift of 0.6 ppm out of 10H of the alicyclic portion of the 1,3-bis (isocyanatomethyl) cyclohexane derivative is 0.7346. When the amidation rate was calculated from the integral value of NH of amide appearing at 7.8 ppm, it was 90%.
 [合成例F-2 イソシアネート基含有エステルアミドオリゴマー(F-2)の製造]
 還流冷却器、窒素ガス導入管、温度計および攪拌装置が取り付けられた2リットルの反応フラスコに、166.3重量部の1,3-ビス(イソシアナトメチル)シクロヘキサン(商品名:タケネート600、三井化学ポリウレタン社製)、0.240重量部のステアリン酸マグネシウム(下記合成例G-1で得られたポリエステルポリカルボン酸(G-1)のカルボキシル基100モル部に対して0.05モル部)、および、0.500重量部のフローレンAC-1190(共栄社化学製、消泡剤)を仕込んだ。
[Synthesis Example F-2 Production of Isocyanate Group-Containing Esteramide Oligomer (F-2)]
166.3 parts by weight of 1,3-bis (isocyanatomethyl) cyclohexane (trade name: Takenate 600, Mitsui) was added to a 2 liter reaction flask equipped with a reflux condenser, a nitrogen gas inlet tube, a thermometer and a stirrer. (Manufactured by Chemical Polyurethane Co., Ltd.), 0.240 parts by weight of magnesium stearate (0.05 mol parts with respect to 100 mol parts of carboxyl groups of the polyester polycarboxylic acid (G-1) obtained in Synthesis Example G-1 below) And 0.500 parts by weight of Florene AC-1190 (manufactured by Kyoeisha Chemical Co., Ltd., antifoaming agent).
 その後、窒素を導入しながら、マントルヒーターで60℃まで昇温した。 Thereafter, the temperature was raised to 60 ° C. with a mantle heater while introducing nitrogen.
 ここに、75℃に昇温した75.9重量部のポリエステルポリカルボン酸(G-1)を添加した。 Here, 75.9 parts by weight of polyester polycarboxylic acid (G-1) heated to 75 ° C. was added.
 添加直後、発泡および65℃まで昇温することを確認した。添加後約10分で60℃まで降温し発泡もおさまった。 Immediately after the addition, it was confirmed that the foaming and the temperature rose to 65 ° C. About 10 minutes after the addition, the temperature was lowered to 60 ° C. and the foaming stopped.
 降温し発泡もおさまったことを確認したのち、75℃に昇温した75.9重量部のポリエステルポリカルボン酸(G-1)を添加した。さきほど同様の現象を確認した。 After confirming that the temperature was lowered and foaming was stopped, 75.9 parts by weight of polyester polycarboxylic acid (G-1) heated to 75 ° C. was added. The same phenomenon was confirmed earlier.
 このようにして、およそ110分間で、75℃に昇温した75.9重量部のポリエステルポリカルボン酸(G-1)を合計10回添加したのち、75℃に昇温した74.7重量部のポリエステルポリカルボン酸(G-1)を1回添加した。このときも、発泡および65℃程度まで昇温することを確認した。以上のようにして、ポリエステルポリカルボン酸(G-1)を全量で、833.70重量部添加した(NCO/COOHの当量比:2.13)。 In this manner, 75.9 parts by weight of polyester polycarboxylic acid (G-1) heated to 75 ° C. in about 110 minutes was added 10 times in total, and then 74.7 parts by weight heated to 75 ° C. Polyester polycarboxylic acid (G-1) was added once. Also at this time, it was confirmed that the foaming and the temperature was raised to about 65 ° C. As described above, 833.70 parts by weight of the total amount of the polyester polycarboxylic acid (G-1) was added (NCO / COOH equivalent ratio: 2.13).
 このあと、80℃に昇温させ7時間熟成反応させ、イソシアネート基含有オリゴマー(F)であるイソシアネート基含有エステルアミドオリゴマー(F-2)を得た。 Thereafter, the mixture was heated to 80 ° C. and aged for 7 hours to obtain an isocyanate group-containing ester amide oligomer (F-2) which is an isocyanate group-containing oligomer (F).
 得られたイソシアネート基含有エステルアミドオリゴマー(F-2)において、イソシアネート基含有率は4.05重量%(理論値3.95重量%)、粘度は4300mPa・s/100℃、数平均分子量は3750であった。 In the obtained isocyanate group-containing ester amide oligomer (F-2), the isocyanate group content was 4.05% by weight (theoretical value: 3.95% by weight), the viscosity was 4300 mPa · s / 100 ° C., and the number average molecular weight was 3750. Met.
 また、得られたイソシアネート基含有エステルアミドオリゴマー(F-2)の1H-NMRを測定した。NMRチャートから、1,3-ビス(イソシアナトメチル)シクロヘキサン誘導体の脂環部分の10Hのうちのケミカルシフト0.6ppmに現れる0.7346H部分の積分値を0.7346としたときの、ケミカルシフト7.8ppmに現れるアミドのNHの積分値からアミド化率を算出したところ90%であった。 Further, 1 H-NMR of the obtained isocyanate group-containing ester amide oligomer (F-2) was measured. From the NMR chart, the chemical shift when the integral value of the 0.7346H portion appearing at the chemical shift of 0.6 ppm out of 10H of the alicyclic portion of the 1,3-bis (isocyanatomethyl) cyclohexane derivative is 0.7346. When the amidation rate was calculated from the integral value of NH of amide appearing at 7.8 ppm, it was 90%.
 [合成例F-3 イソシアネート基含有エステルアミドオリゴマー(F-3)の製造]
 還流冷却器、窒素ガス導入管、温度計および攪拌装置が取り付けられた2リットルの反応フラスコに、217.75重量部のポリメチレンポリフェニルポリイソシアネート(商品名:コスモネートM-200、三井化学ポリウレタン社製、イソシアネート基含有率は31.0重量%)、0.220重量部のステアリン酸マグネシウム(下記合成例G-1で得られたポリエステルポリカルボン酸(G-1)のカルボキシル基100モル部に対して0.05モル部)、および、0.500重量部のフローレンAC-1190(共栄社化学製、消泡剤)を仕込んだ。
[Synthesis Example F-3 Production of Isocyanate Group-Containing Esteramide Oligomer (F-3)]
A 2 liter reaction flask equipped with a reflux condenser, a nitrogen gas inlet tube, a thermometer and a stirrer was charged with 217.75 parts by weight of polymethylene polyphenyl polyisocyanate (trade name: Cosmonate M-200, Mitsui Chemicals Polyurethane). Made by the company, isocyanate group content is 31.0% by weight), 0.220 parts by weight of magnesium stearate (100 mol parts of carboxyl groups of polyester polycarboxylic acid (G-1) obtained in Synthesis Example G-1 below) 0.05 mol part) and 0.500 parts by weight of Florene AC-1190 (manufactured by Kyoeisha Chemical Co., Ltd., antifoaming agent) were charged.
 その後、窒素を導入しながら、マントルヒーターで55℃まで昇温した。 Thereafter, the temperature was raised to 55 ° C. with a mantle heater while introducing nitrogen.
 ここに、70℃に昇温した71.20重量部のポリエステルポリカルボン酸(G-1)を添加した。 Here, 71.20 parts by weight of polyester polycarboxylic acid (G-1) heated to 70 ° C. was added.
 添加直後、発泡および60℃まで昇温することを確認した。添加後約10分で55℃まで降温し発泡もおさまった。 Immediately after addition, it was confirmed that foaming and the temperature was raised to 60 ° C. About 10 minutes after the addition, the temperature was lowered to 55 ° C. and the foaming stopped.
 降温し発泡もおさまったことを確認したのち、70℃に昇温した71.20重量部のポリエステルポリカルボン酸(G-1)を添加した。さきほど同様の現象を確認した。 After confirming that the temperature was lowered and foaming stopped, 71.20 parts by weight of polyester polycarboxylic acid (G-1) heated to 70 ° C. was added. The same phenomenon was confirmed earlier.
 このようにして、およそ110分間で、70℃に昇温した71.20重量部のポリエステルポリカルボン酸(G-1)を合計10回添加したのち、70℃に昇温した70.25重量部のポリエステルポリカルボン酸(G-1)を1回添加した。このときも、発泡および65℃程度まで昇温することを確認した。ポリエステルポリカルボン酸(G-1)を全量で、782.25重量部添加した(NCO/COOHの当量比:2.13)。 In this manner, 71.20 parts by weight of polyester polycarboxylic acid (G-1) heated to 70 ° C. in about 110 minutes was added 10 times in total, and then 70.25 parts by weight heated to 70 ° C. Polyester polycarboxylic acid (G-1) was added once. Also at this time, it was confirmed that the foaming and the temperature was raised to about 65 ° C. Polyester polycarboxylic acid (G-1) was added in a total amount of 782.25 parts by weight (NCO / COOH equivalent ratio: 2.13).
 このあと、75℃に昇温させ7時間熟成反応させ、イソシアネート基含有オリゴマー(F)であるイソシアネート基含有エステルアミドオリゴマー(F-3)を得た。 Thereafter, the mixture was heated to 75 ° C. and aged for 7 hours to obtain an isocyanate group-containing ester amide oligomer (F-3) which was an isocyanate group-containing oligomer (F).
 得られたイソシアネート基含有エステルアミドオリゴマー(F-3)において、イソシアネート基含有率は3.82重量%(理論値3.70重量%)、粘度は4300mPa・s/100℃、数平均分子量は3750であった。 In the obtained isocyanate group-containing ester amide oligomer (F-3), the isocyanate group content was 3.82% by weight (theoretical value 3.70% by weight), the viscosity was 4300 mPa · s / 100 ° C., and the number average molecular weight was 3750. Met.
 また、得られたイソシアネート基含有エステルアミドオリゴマー(F-3)の1H-NMRを測定した。NMRチャートから、ポリメチレンポリフェニルポリイソシアネート誘導体のベンゼン環部分のHのケミカルシフトは7.2ppm、一方、アミド結合のNHのHのケミカルシフトは9.8ppm、双方の積分値からアミド化率を算出したところ89%であった。 Further, 1 H-NMR of the obtained isocyanate group-containing ester amide oligomer (F-3) was measured. From the NMR chart, the chemical shift of H in the benzene ring portion of the polymethylene polyphenyl polyisocyanate derivative is 7.2 ppm, while the chemical shift of H in the amide bond is 9.8 ppm. It was 89% when calculated.
 [合成例G-1 ポリエステルポリカルボン酸(G-1)の製造]
 還流冷却器、水分離装置、窒素ガス導入管、温度計および攪拌装置が取り付けられた5リットルのフラスコに、2045.1重量部のアジピン酸と、1306.5重量部のネオペンチルグリコール(COOH/OHの当量比:1.12)とを仕込み、窒素を導入しながら、マントルヒーターで昇温した。
[Synthesis Example G-1 Production of Polyester Polycarboxylic Acid (G-1)]
A 5-liter flask equipped with a reflux condenser, a water separator, a nitrogen gas inlet tube, a thermometer and a stirrer was charged with 2045.1 parts by weight of adipic acid and 1306.5 parts by weight of neopentyl glycol (COOH / OH equivalent ratio: 1.12), and the temperature was raised with a mantle heater while introducing nitrogen.
 150℃に達したところで水の留出が始まり、水を留出させながら230℃まで昇温した後、230℃で脱水縮合を継続した。反応生成物の酸価、水酸基価が下記値に達したところを終点として、反応生成物をフラスコより抜き出して冷却し、ポリエステルポリカルボン酸(G-1)を得た。得られたポリエステルポリカルボン酸(G-1)は、酸価54.8mgKOH/g、水酸基価2.7mgKOH/gであった。また、ポリエステルポリカルボン酸(G-1)の粘度は1000mPa・s/80℃、数平均分子量は3841であった。 Distillation of water started when the temperature reached 150 ° C., the temperature was raised to 230 ° C. while distilling water, and dehydration condensation was continued at 230 ° C. When the acid value and hydroxyl value of the reaction product reached the following values, the reaction product was withdrawn from the flask and cooled to obtain polyester polycarboxylic acid (G-1). The obtained polyester polycarboxylic acid (G-1) had an acid value of 54.8 mgKOH / g and a hydroxyl value of 2.7 mgKOH / g. The viscosity of the polyester polycarboxylic acid (G-1) was 1000 mPa · s / 80 ° C., and the number average molecular weight was 3841.
 ポリエステルポリカルボン酸(G-1)の合成条件および特性を表1に示す。 The synthesis conditions and properties of polyester polycarboxylic acid (G-1) are shown in Table 1.
 [合成例G-2~G-4 ポリエステルポリカルボン酸(G-2)~(G-4)の製造]
 合成例G-2~G-4は、合成条件を、表1記載の条件に代えた以外は、合成例G-1と同様に行った。ポリエステルポリカルボン酸(G-2)~(G-4)の合成条件および特性を表1に示す。
[Synthesis Examples G-2 to G-4 Production of Polyester Polycarboxylic Acids (G-2) to (G-4)]
Synthesis Examples G-2 to G-4 were carried out in the same manner as Synthesis Example G-1, except that the synthesis conditions were changed to those described in Table 1. Table 1 shows the synthesis conditions and characteristics of the polyester polycarboxylic acids (G-2) to (G-4).
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 なお、表1中のmは、前記一般式Ryにおけるmを意味し、各ポリエステルポリカルボン酸の原料の仕込み量、および数平均分子量から計算した値である。 In addition, m in Table 1 means m in the general formula Ry, and is a value calculated from the charged amount of each polyester polycarboxylic acid raw material and the number average molecular weight.
 [実施例1]
 ラボプラストミル(東洋精機製作所製、モデル20R200)を予め200℃に昇温させ、窒素を1L/min流通させた。回転数は60rpmにした。
[Example 1]
A lab plast mill (Model 20R200, manufactured by Toyo Seiki Seisakusho) was preheated to 200 ° C., and nitrogen was circulated at 1 L / min. The rotation speed was 60 rpm.
 ここに、ホモポリプロピレン(MFR13.7g/10分(230℃、2.16kgf)、融点(Tm)162℃)を12.5g投入した。ホモポリプロピレン投入後1分間混練行った。1分間混練後のトルクは2.0kg・mであった。なお、温度は200℃、回転数は60rpmであった。 Here, 12.5 g of homopolypropylene (MFR 13.7 g / 10 min (230 ° C., 2.16 kgf), melting point (Tm) 162 ° C.) was added. The mixture was kneaded for 1 minute after the homopolypropylene was charged. The torque after kneading for 1 minute was 2.0 kg · m. The temperature was 200 ° C. and the rotation speed was 60 rpm.
 ここに、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-1)を20.4g投入した。イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-1)投入後4分間混練行った。4分間混練後のトルクは13.8kg・mであった。なお、温度は200℃、回転数は60rpmであった。 Here, 20.4 g of ethylene / α-olefin copolymer (E-1) having a functional group capable of reacting with an isocyanate group was added. The mixture was kneaded for 4 minutes after adding ethylene / α-olefin copolymer (E-1) having a functional group capable of reacting with an isocyanate group. The torque after kneading for 4 minutes was 13.8 kg · m. The temperature was 200 ° C. and the rotation speed was 60 rpm.
 ここに、イソシアネート基含有エステルアミドオリゴマー(F-1)を、そのイソシアネート官能基価数がイソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-1)の官能基価数と等価となるように、8.8g投入した。投入直後のトルクは1.2kg・mであった。なお、温度は200℃、回転数は60rpmであった。イソシアネート基含有エステルアミドオリゴマー(F-1)投入後5分間混練行った。 Here, the isocyanate group-containing ester amide oligomer (F-1) is a functional group value of an ethylene / α-olefin copolymer (E-1) having a functional group whose isocyanate functional group number can react with an isocyanate group. 8.8 g was added so as to be equivalent to the number. The torque immediately after charging was 1.2 kg · m. The temperature was 200 ° C. and the rotation speed was 60 rpm. The mixture was kneaded for 5 minutes after adding the isocyanate group-containing ester amide oligomer (F-1).
 5分間混練後のトルクは17.6kg・mであった。なお、温度は200℃、回転数は60rpmであった。トルクの上昇がみられなくなったので、ここで、ラボプラストミルの回転を止めて、サンプルを取り出し、15℃100kg/cm2で5分間冷間プレスを行い、熱可塑性架橋型エラストマー組成物(D-1)を得た。 The torque after kneading for 5 minutes was 17.6 kg · m. The temperature was 200 ° C. and the rotation speed was 60 rpm. Since the increase in torque was no longer observed, the rotation of the lab plast mill was stopped, the sample was taken out, and cold-pressed at 15 ° C. and 100 kg / cm 2 for 5 minutes to obtain a thermoplastic crosslinked elastomer composition (D -1) was obtained.
 この熱可塑性架橋型エラストマー組成物(D-1)、13.8gを、8cm×8cm×厚さ2mmの型枠に入れた。これに、余熱を200℃で、7分間行い、次いで加圧を200℃、100kg/cm2の条件で3分間熱間プレスすることにより行い、次いで冷却を15℃、100kg/cm2の条件で5分間冷間プレスすることにより行い、耐油性、硬度測定およびTEM観察用サンプルとした。 13.8 g of this thermoplastic cross-linked elastomer composition (D-1) was placed in a mold of 8 cm × 8 cm × thickness 2 mm. To this, preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . It was performed by cold pressing for 5 minutes to obtain a sample for oil resistance, hardness measurement and TEM observation.
 また、同様に、この熱可塑性架橋型エラストマー組成物(D-1)、6.8gを、8cm×8cm×厚さ1mmの型枠に入れた。これに、余熱を200℃で、7分間行い、次いで加圧を200℃、100kg/cm2の条件で3分間熱間プレスすることにより行い、次いで冷却を15℃、100kg/cm2の条件で5分間冷間プレスすることにより行い、機械特性測定用サンプルとした。 Similarly, 6.8 g of this thermoplastic cross-linked elastomer composition (D-1) was placed in a mold of 8 cm × 8 cm × 1 mm thickness. To this, preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . This was performed by cold pressing for 5 minutes to obtain a sample for measuring mechanical properties.
 また、熱可塑性架橋型エラストマー組成物(D-1)のTEM観察の結果、海島構造を確認することができた。海相は、染色がうすく、島相は、染色が濃く、観察された。RuO4による染色は、ホモポリプロピレンは着色しにくいことが知られている。従って、海相がホモポリプロピレン、島相が架橋されたエチレン・α-オレフィン共重合体である海島構造であると判断できた。 As a result of TEM observation of the thermoplastic crosslinked elastomer composition (D-1), a sea-island structure could be confirmed. The sea phase was slightly stained and the island phase was observed with a deep staining. It is known that homopolypropylene is difficult to color by staining with RuO 4 . Therefore, it could be judged that the sea phase is a homopolypropylene and the sea-island structure is an ethylene / α-olefin copolymer in which the island phase is crosslinked.
 製造条件、耐油性、硬度、機械特性の測定結果およびTEM観察の結果を別表に示す。 Manufacturing conditions, oil resistance, hardness, mechanical property measurement results and TEM observation results are shown in a separate table.
 [実施例2]
 ラボプラストミル(東洋精機製作所製、モデル20R200)を予め200℃に昇温させ、窒素を1L/min流通させた。回転数は60rpmにした。
[Example 2]
A lab plast mill (Model 20R200, manufactured by Toyo Seiki Seisakusho) was preheated to 200 ° C., and nitrogen was circulated at 1 L / min. The rotation speed was 60 rpm.
 ここに、ホモポリプロピレン(MFR13.7g/10分(230℃、2.16kgf)、融点(Tm)162℃)を12.35g投入した。ホモポリプロピレン投入後1分間混練行った。1分間混練後のトルクは2.0kg・mであった。なお、温度は200℃、回転数は60rpmであった。 Here, 12.35 g of homopolypropylene (MFR 13.7 g / 10 min (230 ° C., 2.16 kgf), melting point (Tm) 162 ° C.) was added. The mixture was kneaded for 1 minute after the homopolypropylene was charged. The torque after kneading for 1 minute was 2.0 kg · m. The temperature was 200 ° C. and the rotation speed was 60 rpm.
 ここに、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-2)を22.30g投入した。イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-2)投入後4分間混練行った。4分間混練後のトルクは14.6kg・mであった。なお、温度は200℃、回転数は60rpmであった。 Here, 22.30 g of ethylene / α-olefin copolymer (E-2) having a functional group capable of reacting with an isocyanate group was added. The mixture was kneaded for 4 minutes after the ethylene / α-olefin copolymer (E-2) having a functional group capable of reacting with an isocyanate group was added. The torque after kneading for 4 minutes was 14.6 kg · m. The temperature was 200 ° C. and the rotation speed was 60 rpm.
 ここに、イソシアネート基含有エステルアミドオリゴマー(F-1)を、そのイソシアネート官能基価数がイソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-2)の官能基価数と等価となるように、6.60g投入した。投入直後のトルクは1.2kg・mであった。なお、温度は200℃、回転数は60rpmであった。イソシアネート基含有エステルアミドオリゴマー(F-1)投入後5分間混練行った。5分間混練後のトルクは15.7kg・mであった。温度は200℃、回転数は60rpmであった。トルクの上昇がみられなくなったので、ここで、ラボプラストミルの回転を止めて、サンプルを取り出し、15℃100kg/cm2で5分間冷間プレスを行い、熱可塑性架橋型エラストマー組成物(D-2)を得た。 Here, the isocyanate group-containing ester amide oligomer (F-1) is a functional group value of an ethylene / α-olefin copolymer (E-2) having a functional group whose isocyanate functional group number can react with an isocyanate group. 6.60 g was added so as to be equivalent to the number. The torque immediately after charging was 1.2 kg · m. The temperature was 200 ° C. and the rotation speed was 60 rpm. The mixture was kneaded for 5 minutes after adding the isocyanate group-containing ester amide oligomer (F-1). The torque after kneading for 5 minutes was 15.7 kg · m. The temperature was 200 ° C. and the rotation speed was 60 rpm. Since the increase in torque was no longer observed, the rotation of the lab plast mill was stopped, the sample was taken out, and cold-pressed at 15 ° C. and 100 kg / cm 2 for 5 minutes to obtain a thermoplastic crosslinked elastomer composition (D -2) was obtained.
 この熱可塑性架橋型エラストマー組成物(D-2)、13.8gを、8cm×8cm×厚さ2mmの型枠に入れた。これに、余熱を200℃で、7分間行い、次いで加圧を200℃、100kg/cm2の条件で3分間熱間プレスすることにより行い、次いで冷却を15℃、100kg/cm2の条件で5分間冷間プレスすることにより行い、耐油性、硬度測定およびTEM観察用サンプルとした。 13.8 g of this thermoplastic cross-linked elastomer composition (D-2) was placed in a mold of 8 cm × 8 cm × 2 mm thickness. To this, preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . It was performed by cold pressing for 5 minutes to obtain a sample for oil resistance, hardness measurement and TEM observation.
 また、同様に、この熱可塑性架橋型エラストマー組成物(D-2)、6.8gを、8cm×8cm×厚さ1mmの型枠に入れた。これに、余熱を200℃で、7分間行い、次いで加圧を200℃、100kg/cm2の条件で3分間熱間プレスすることにより行い、次いで冷却を15℃、100kg/cm2の条件で5分間冷間プレスすることにより行い、機械特性測定用サンプルとした。 Similarly, 6.8 g of this thermoplastic cross-linked elastomer composition (D-2) was put into a mold having a size of 8 cm × 8 cm × thickness 1 mm. To this, preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . This was performed by cold pressing for 5 minutes to obtain a sample for measuring mechanical properties.
 また、熱可塑性架橋型エラストマー組成物(D-2)のTEM観察の結果、海島構造を確認することができた。海相は、染色がうすく、島相は、染色が濃く、観察された。RuO4による染色は、ホモポリプロピレンは着色しにくいことが知られている。従って、海相がホモポリプロピレン、島相が架橋されたエチレン・α-オレフィン共重合体である海島構造であると判断できた。 As a result of TEM observation of the thermoplastic crosslinked elastomer composition (D-2), a sea-island structure could be confirmed. The sea phase was slightly stained and the island phase was observed with a deep staining. It is known that homopolypropylene is difficult to color by staining with RuO 4 . Therefore, it could be judged that the sea phase is a homopolypropylene and the sea-island structure is an ethylene / α-olefin copolymer in which the island phase is crosslinked.
 製造条件、耐油性、硬度、機械特性の測定結果およびTEM観察の結果を別表に示す。 Manufacturing conditions, oil resistance, hardness, mechanical property measurement results and TEM observation results are shown in a separate table.
 [実施例3]
 ラボプラストミル(東洋精機製作所製、モデル20R200)を予め200℃に昇温させ、窒素を1L/min流通させた。回転数は60rpmにした。
[Example 3]
A lab plast mill (Model 20R200, manufactured by Toyo Seiki Seisakusho) was preheated to 200 ° C., and nitrogen was circulated at 1 L / min. The rotation speed was 60 rpm.
 ここに、ホモポリプロピレン(MFR13.7g/10分(230℃、2.16kgf)、融点(Tm)162℃)を12.45g投入した。ホモポリプロピレン投入後1分間混練行った。1分間混練後のトルクは2.0kg・mであった。なお、温度は200℃、回転数は60rpmであった。 Here, 12.45 g of homopolypropylene (MFR 13.7 g / 10 min (230 ° C., 2.16 kgf), melting point (Tm) 162 ° C.) was added. The mixture was kneaded for 1 minute after the homopolypropylene was charged. The torque after kneading for 1 minute was 2.0 kg · m. The temperature was 200 ° C. and the rotation speed was 60 rpm.
 ここに、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-2)を22.90g投入した。イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-2)投入後4分間混練行った。4分間混練後のトルクは14.9kg・mであった。なお、温度は200℃、回転数は60rpmであった。 Here, 22.90 g of ethylene / α-olefin copolymer (E-2) having a functional group capable of reacting with an isocyanate group was charged. The mixture was kneaded for 4 minutes after the ethylene / α-olefin copolymer (E-2) having a functional group capable of reacting with an isocyanate group was added. The torque after 4 minutes of kneading was 14.9 kg · m. The temperature was 200 ° C. and the rotation speed was 60 rpm.
 ここに、イソシアネート基含有エステルアミドオリゴマー(F-2)を、そのイソシアネート官能基価数がイソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-2)の官能基価数と等価となるように、6.20g投入した。投入直後のトルクは1.2kg・mであった。なお、温度は200℃、回転数は60rpmであった。 Here, the isocyanate group-containing ester amide oligomer (F-2) is a functional group value of an ethylene / α-olefin copolymer (E-2) having a functional group whose isocyanate functional group number can react with an isocyanate group. 6.20 g was added so as to be equivalent to the number. The torque immediately after charging was 1.2 kg · m. The temperature was 200 ° C. and the rotation speed was 60 rpm.
 イソシアネート基含有エステルアミドオリゴマー(F-2)投入後5分間混練行った。5分間混練後のトルクは15.7kg・mであった。なお、温度は200℃、回転数は60rpmであった。トルクの上昇がみられなくなったので、ここで、ラボプラストミルの回転を止めて、サンプルを取り出し、15℃、100kg/cm2で5分間冷間プレスを行い、熱可塑性架橋型エラストマー組成物(D-3)を得た。 The mixture was kneaded for 5 minutes after adding the isocyanate group-containing ester amide oligomer (F-2). The torque after kneading for 5 minutes was 15.7 kg · m. The temperature was 200 ° C. and the rotation speed was 60 rpm. Since the increase in torque was not observed, the rotation of the lab plast mill was stopped, the sample was taken out, and cold-pressed at 15 ° C. and 100 kg / cm 2 for 5 minutes to obtain a thermoplastic cross-linked elastomer composition ( D-3) was obtained.
 この熱可塑性架橋型エラストマー組成物(D-3)、13.8gを、8cm×8cm×厚さ2mmの型枠に入れた。これに、余熱を200℃で、7分間行い、次いで加圧を200℃、100kg/cm2の条件で3分間熱間プレスすることにより行い、次いで冷却を15℃、100kg/cm2の条件で5分間冷間プレスすることにより行い、耐油性、硬度測定およびTEM観察用サンプルとした。 13.8 g of this thermoplastic cross-linked elastomer composition (D-3) was placed in a mold of 8 cm × 8 cm × thickness 2 mm. To this, preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . It was performed by cold pressing for 5 minutes to obtain a sample for oil resistance, hardness measurement and TEM observation.
 また、同様に、この熱可塑性架橋型エラストマー組成物(D-3)、6.8gを、8cm×8cm×厚さ1mmの型枠に入れた。これに、余熱を200℃で、7分間行い、次いで加圧を200℃、100kg/cm2の条件で3分間熱間プレスすることにより行い、次いで冷却を15℃、100kg/cm2の条件で5分間冷間プレスすることにより行い、機械特性測定用サンプルとした。 Similarly, 6.8 g of this thermoplastic cross-linked elastomer composition (D-3) was placed in a mold of 8 cm × 8 cm × thickness 1 mm. To this, preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . This was performed by cold pressing for 5 minutes to obtain a sample for measuring mechanical properties.
 また、熱可塑性架橋型エラストマー組成物(D-3)のTEM観察の結果、海島構造を確認することができた。海相は、染色がうすく、島相は、染色が濃く、観察された。RuO4による染色は、ホモポリプロピレンは着色しにくいことが知られている。従って、海相がホモポリプロピレン、島相が架橋されたエチレン・α-オレフィン共重合体である海島構造であると判断できた。 As a result of TEM observation of the thermoplastic cross-linked elastomer composition (D-3), a sea-island structure could be confirmed. The sea phase was slightly stained and the island phase was observed with a deep staining. It is known that homopolypropylene is difficult to color by staining with RuO 4 . Therefore, it could be judged that the sea phase is a homopolypropylene and the sea-island structure is an ethylene / α-olefin copolymer in which the island phase is crosslinked.
 製造条件、耐油性、硬度、機械特性の測定結果およびTEM観察の結果を別表に示す。 Manufacturing conditions, oil resistance, hardness, mechanical property measurement results and TEM observation results are shown in a separate table.
 [実施例4]
 ラボプラストミル(東洋精機製作所製、モデル20R200)を予め200℃に昇温させ、窒素を1L/min流通させた。回転数は60rpmにした。
[Example 4]
A lab plast mill (manufactured by Toyo Seiki Seisakusho, model 20R200) was preheated to 200 ° C. and 1 L / min of nitrogen was circulated. The rotation speed was 60 rpm.
 ここに、ホモポリプロピレン(MFR13.7g/10分(230℃、2.16kgf)、融点(Tm)162℃)を12.70g投入した。ホモポリプロピレン投入後1分間混練行った。1分間混練後のトルクは2.1kg・mであった。なお、温度は200℃、回転数は60rpmであった。 Here, 12.70 g of homopolypropylene (MFR 13.7 g / 10 min (230 ° C., 2.16 kgf), melting point (Tm) 162 ° C.) was added. The mixture was kneaded for 1 minute after the homopolypropylene was charged. The torque after kneading for 1 minute was 2.1 kg · m. The temperature was 200 ° C. and the rotation speed was 60 rpm.
 ここに、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-2)を23.10g投入した。イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-2)投入後4分間混練行った。4分間混練後のトルクは15.3kg・mであった。なお、温度は200℃、回転数は60rpmであった。 Here, 23.10 g of ethylene / α-olefin copolymer (E-2) having a functional group capable of reacting with an isocyanate group was added. The mixture was kneaded for 4 minutes after the ethylene / α-olefin copolymer (E-2) having a functional group capable of reacting with an isocyanate group was added. The torque after kneading for 4 minutes was 15.3 kg · m. The temperature was 200 ° C. and the rotation speed was 60 rpm.
 ここに、イソシアネート基含有エステルアミドオリゴマー(F-3)を、そのイソシアネート官能基価数がイソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-2)の官能基価数と等価となるように、6.60g投入した。投入直後のトルクは1.2kg・mであった。なお、温度は200℃、回転数は60rpmであった。イソシアネート基含有エステルアミドオリゴマー(F-3)投入後5分間混練行った。5分間混練後のトルクは16.0kg・mであった。温度は200℃、回転数は60rpmであった。トルクの上昇がみられなくなったので、ここで、ラボプラストミルの回転を止めて、サンプルを取り出し、15℃100kg/cm2で5分間冷間プレスを行い、熱可塑性架橋型エラストマー組成物(D-4)を得た。 Here, the isocyanate group-containing ester amide oligomer (F-3) is a functional group value of an ethylene / α-olefin copolymer (E-2) having a functional group whose isocyanate functional group number can react with an isocyanate group. 6.60 g was added so as to be equivalent to the number. The torque immediately after charging was 1.2 kg · m. The temperature was 200 ° C. and the rotation speed was 60 rpm. The mixture was kneaded for 5 minutes after adding the isocyanate group-containing ester amide oligomer (F-3). The torque after kneading for 5 minutes was 16.0 kg · m. The temperature was 200 ° C. and the rotation speed was 60 rpm. Since the increase in torque was no longer observed, the rotation of the lab plast mill was stopped, the sample was taken out, and cold-pressed at 15 ° C. and 100 kg / cm 2 for 5 minutes to obtain a thermoplastic crosslinked elastomer composition (D -4) was obtained.
 この熱可塑性架橋型エラストマー組成物(D-4)、13.8gを、8cm×8cm×厚さ2mmの型枠に入れた。これに、余熱を200℃で、7分間行い、次いで加圧を200℃、100kg/cm2の条件で3分間熱間プレスすることにより行い、次いで冷却を15℃、100kg/cm2の条件で5分間冷間プレスすることにより行い、耐油性、硬度測定およびTEM観察用サンプルとした。 13.8 g of this thermoplastic cross-linked elastomer composition (D-4) was placed in a mold of 8 cm × 8 cm × thickness 2 mm. To this, preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . It was performed by cold pressing for 5 minutes to obtain a sample for oil resistance, hardness measurement and TEM observation.
 また、同様に、この熱可塑性架橋型エラストマー組成物(D-4)、6.8gを、8cm×8cm×厚さ1mmの型枠に入れた。これに、余熱を200℃で、7分間行い、次いで加圧を200℃、100kg/cm2の条件で3分間熱間プレスすることにより行い、次いで冷却を15℃、100kg/cm2の条件で5分間冷間プレスすることにより行い、機械特性測定用サンプルとした。 Similarly, 6.8 g of this thermoplastic cross-linked elastomer composition (D-4) was put into a mold having a size of 8 cm × 8 cm × thickness 1 mm. To this, preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . This was performed by cold pressing for 5 minutes to obtain a sample for measuring mechanical properties.
 また、熱可塑性架橋型エラストマー組成物(D-4)のTEM観察の結果、海島構造を確認することができた。海相は、染色がうすく、島相は、染色が濃く、観察された。RuO4による染色は、ホモポリプロピレンは着色しにくいことが知られている。従って、海相がホモポリプロピレン、島相が架橋されたエチレン・α-オレフィン共重合体である海島構造であると判断できた。 As a result of TEM observation of the thermoplastic cross-linked elastomer composition (D-4), the sea-island structure could be confirmed. The sea phase was slightly stained and the island phase was observed with a deep staining. It is known that homopolypropylene is difficult to color by staining with RuO 4 . Therefore, it could be judged that the sea phase is a homopolypropylene and the sea-island structure is an ethylene / α-olefin copolymer in which the island phase is crosslinked.
 製造条件、耐油性、硬度、機械特性の測定結果およびTEM観察の結果を別表に示す。 Manufacturing conditions, oil resistance, hardness, mechanical property measurement results and TEM observation results are shown in a separate table.
 [比較例1]
 ラボプラストミル(東洋精機製作所製、モデル20R200)を予め200℃に昇温させ、窒素を1L/min流通させた。回転数は60rpmにした。
[Comparative Example 1]
A lab plast mill (Model 20R200, manufactured by Toyo Seiki Seisakusho) was preheated to 200 ° C., and nitrogen was circulated at 1 L / min. The rotation speed was 60 rpm.
 ここに、ホモポリプロピレン(MFR13.7g/10分(230℃、2.16kgf)、融点(Tm)162℃)を12.5g投入した。ホモポリプロピレン投入後1分間混練行た。1分間混練後のトルクは2.0kg・mであった。なお、温度は200℃、回転数は60rpmであった。 Here, 12.5 g of homopolypropylene (MFR 13.7 g / 10 min (230 ° C., 2.16 kgf), melting point (Tm) 162 ° C.) was added. The mixture was kneaded for 1 minute after the homopolypropylene was charged. The torque after kneading for 1 minute was 2.0 kg · m. The temperature was 200 ° C. and the rotation speed was 60 rpm.
 ここに、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-2)を28.5g投入した。イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-2)投入後4分間混練行った。4分間混練後のトルクは14.7kg・mであった。なお、温度は200℃、回転数は60rpmであった。 Here, 28.5 g of an ethylene / α-olefin copolymer (E-2) having a functional group capable of reacting with an isocyanate group was added. The mixture was kneaded for 4 minutes after the ethylene / α-olefin copolymer (E-2) having a functional group capable of reacting with an isocyanate group was added. The torque after kneading for 4 minutes was 14.7 kg · m. The temperature was 200 ° C. and the rotation speed was 60 rpm.
 ここに、1,3-ビス(イソシアナトメチル)シクロヘキサン(商品名:タケネート600、三井化学ポリウレタン社製)を、そのイソシアネート官能基価数がイソシアネート基と反応しうる官能基を有するイソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-2)の官能基価数と当価となるように、0.72g投入した。投入直後のトルクは20.1kg・mであった。なお、温度は200℃、回転数は60rpmであった。1,3-ビス(イソシアナトメチル)シクロヘキサン投入後5分間混練行った。5分間混練後のトルクは17.5kg・mであった。なお、温度は200℃、回転数は60rpmであった。トルクの上昇がみられないので、ここで、ラボプラストミルの回転を止めて、サンプルを取り出し、15℃100kg/cm2で5分間冷間プレスを行い、熱可塑性架橋型エラストマー組成物(D-5)得た。 Here, 1,3-bis (isocyanatomethyl) cyclohexane (trade name: Takenate 600, manufactured by Mitsui Chemicals Polyurethanes Co., Ltd.) is reacted with an isocyanate group having a functional group whose isocyanate functional group valency can react with an isocyanate group. 0.72 g was added so as to be equivalent to the functional group valence of the ethylene / α-olefin copolymer (E-2) having a functional group capable of being converted. The torque immediately after charging was 20.1 kg · m. The temperature was 200 ° C. and the rotation speed was 60 rpm. The mixture was kneaded for 5 minutes after 1,3-bis (isocyanatomethyl) cyclohexane was added. The torque after kneading for 5 minutes was 17.5 kg · m. The temperature was 200 ° C. and the rotation speed was 60 rpm. Since no increase in torque was observed, the rotation of the lab plastmill was stopped, the sample was taken out, and cold-pressed at 15 ° C. and 100 kg / cm 2 for 5 minutes to obtain a thermoplastic crosslinked elastomer composition (D- 5) Obtained.
 この熱可塑性架橋型エラストマー組成物(D-5)、13.8gを、8cm×8cm×厚さ2mmの型枠に入れた。これに、余熱を200℃で、7分間行い、次いで加圧を200℃、100kg/cm2の条件で3分間熱間プレスすることにより行い、次いで冷却を15℃、100kg/cm2の条件で5分間冷間プレスすることにより行い、耐油性、硬度測定およびTEM観察用サンプルとした。 13.8 g of this thermoplastic cross-linked elastomer composition (D-5) was placed in a mold having a size of 8 cm × 8 cm × thickness 2 mm. To this, preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . It was performed by cold pressing for 5 minutes to obtain a sample for oil resistance, hardness measurement and TEM observation.
 また、同様に、この熱可塑性架橋型エラストマー組成物(D-5)、6.8gを、8cm×8cm×厚さ1mmの型枠に入れた。これに、余熱を200℃で、7分間行い、次いで加圧を200℃、100kg/cm2の条件で3分間熱間プレスすることにより行い、次いで冷却を15℃、100kg/cm2の条件で5分間冷間プレスすることにより行い、機械特性測定用サンプルとした。 Similarly, 6.8 g of this thermoplastic cross-linked elastomer composition (D-5) was placed in a mold of 8 cm × 8 cm × 1 mm thickness. To this, preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . This was performed by cold pressing for 5 minutes to obtain a sample for measuring mechanical properties.
 また、熱可塑性架橋型エラストマー組成物(D-5)のTEM観察の結果、海島構造を確認することができた。海相は、染色がうすく、島相は、染色が濃く、観察された。RuO4による染色は、ホモポリプロピレンは着色しにくいことが知られている。従って、海相がホモポリプロピレン、島相が1,3-ビス(イソシアナトメチル)シクロヘキサンで架橋されたエチレン・α-オレフィン共重合体である海島構造であると判断できた。 As a result of TEM observation of the thermoplastic cross-linked elastomer composition (D-5), a sea-island structure could be confirmed. The sea phase was slightly stained and the island phase was observed with a deep staining. It is known that homopolypropylene is difficult to color by staining with RuO 4 . Therefore, it was judged that the sea phase was a sea-island structure, which was an ethylene / α-olefin copolymer crosslinked with homopolypropylene and island phases with 1,3-bis (isocyanatomethyl) cyclohexane.
 製造条件、耐油性、硬度、機械特性の測定結果およびTEM観察の結果を別表に示す。 Manufacturing conditions, oil resistance, hardness, mechanical property measurement results and TEM observation results are shown in a separate table.
 [比較例2]
 ラボプラストミル(東洋精機製作所製、モデル20R200)を予め200℃に昇温させ、窒素を1L/min流通させた。回転数は60rpmにした。
[Comparative Example 2]
A lab plast mill (Model 20R200, manufactured by Toyo Seiki Seisakusho) was preheated to 200 ° C., and nitrogen was circulated at 1 L / min. The rotation speed was 60 rpm.
 ここに、ホモポリプロピレン(MFR13.7g/10分(230℃、2.16kgf)、融点(Tm)162℃)を12.3g投入した。ホモポリプロピレン投入後1分間混練行った。1分間混練後のトルクは2.0kg・mであった。なお、温度は200℃、回転数は60rpmであった。 12.3 g of homopolypropylene (MFR 13.7 g / 10 min (230 ° C., 2.16 kgf), melting point (Tm) 162 ° C.) was added thereto. The mixture was kneaded for 1 minute after the homopolypropylene was charged. The torque after kneading for 1 minute was 2.0 kg · m. The temperature was 200 ° C. and the rotation speed was 60 rpm.
 ここに、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-2)を28.7g投入した。イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-2)投入後4分間混練行った。4分間混練後のトルクは14.6kg・mであった。温度は200℃、回転数は60rpmであった。 Here, 28.7 g of an ethylene / α-olefin copolymer (E-2) having a functional group capable of reacting with an isocyanate group was added. The mixture was kneaded for 4 minutes after the ethylene / α-olefin copolymer (E-2) having a functional group capable of reacting with an isocyanate group was added. The torque after kneading for 4 minutes was 14.6 kg · m. The temperature was 200 ° C. and the rotation speed was 60 rpm.
 ここで、ラボプラストミルの回転を止めて、サンプルを取り出し、15℃100kg/cm2で5分間冷間プレスを行い、熱可塑性エラストマー組成物(D-6)を得た。 Here, the rotation of the lab plast mill was stopped, the sample was taken out, and cold-pressed at 15 ° C. and 100 kg / cm 2 for 5 minutes to obtain a thermoplastic elastomer composition (D-6).
 この熱可塑性エラストマー組成物(D-6)、13.8gを、8cm×8cm×厚さ2mmの型枠に入れた。これに、余熱を200℃で、7分間行い、次いで加圧を200℃、100kg/cm2の条件で3分間熱間プレスすることにより行い、次いで冷却を15℃、100kg/cm2の条件で5分間冷間プレスすることにより行い、耐油性、硬度測定およびTEM観察用サンプルとした。 13.8 g of this thermoplastic elastomer composition (D-6) was placed in a mold of 8 cm × 8 cm × 2 mm thickness. To this, preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . It was performed by cold pressing for 5 minutes to obtain a sample for oil resistance, hardness measurement and TEM observation.
 また、同様に、この熱可塑性エラストマー組成物(D-6)、6.8gを、8cm×8cm×厚さ1mmの型枠に入れた。これに、余熱を200℃で、7分間行い、次いで加圧を200℃、100kg/cm2の条件で3分間熱間プレスすることにより行い、次いで冷却を15℃、100kg/cm2の条件で5分間冷間プレスすることにより行い、機械特性測定用サンプルとした。 Similarly, 6.8 g of this thermoplastic elastomer composition (D-6) was placed in a mold having a size of 8 cm × 8 cm × thickness 1 mm. To this, preheating is carried out at 200 ° C. for 7 minutes, followed by hot pressing for 3 minutes at 200 ° C. and 100 kg / cm 2 , and then cooling at 15 ° C. and 100 kg / cm 2 . This was performed by cold pressing for 5 minutes to obtain a sample for measuring mechanical properties.
 また、熱可塑性エラストマー組成物(D-6)のTEM観察の結果、海島構造を確認することができた。島相は、染色がうすく、海相は、染色が濃く、観察された。RuO4による染色は、ホモポリプロピレンは着色しにくいことが知られている。従って、島相がホモポリプロピレン、海相がイソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体である海島構造であると判断できた。 Further, as a result of TEM observation of the thermoplastic elastomer composition (D-6), the sea-island structure could be confirmed. The island phase was slightly stained and the sea phase was densely stained. It is known that homopolypropylene is difficult to color by staining with RuO 4 . Therefore, it could be judged that the island phase is a homopolypropylene and the sea phase is a sea-island structure which is an ethylene / α-olefin copolymer having a functional group capable of reacting with an isocyanate group.
 製造条件、耐油性、硬度、機械特性の測定結果およびTEM観察の結果を別表に示す。 Manufacturing conditions, oil resistance, hardness, mechanical property measurement results and TEM observation results are shown in a separate table.
 [実施例5]
 ラボプラストミル(東洋精機製作所製、モデル20R200)を予め200℃に昇温させ、窒素を1L/min流通させた。回転数は50rpmにした。
[Example 5]
A lab plast mill (Model 20R200, manufactured by Toyo Seiki Seisakusho) was preheated to 200 ° C., and nitrogen was circulated at 1 L / min. The rotation speed was 50 rpm.
 ここに、ホモポリプロピレン(プライムポリマー社製、商品名J105G、MFR9.0g/10分(230℃、2.16kgf))を8.53g、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体(E-3)を7.54g、エチレン・不飽和カルボン酸共重合体としてエチレン-メタクリル酸共重合体(三井・デュポンポリケミカル社製、商品名ニュクレルN1108C)を3.22g、酸化防止剤としてペンタエリスチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕(チバジャパン社製、商品名イルガノックス1010)を0.05g、相溶化剤として、予め、105℃、圧力1kPaの条件で12時間保持することにより脱湿処理したプロピレン・エチレングリコール共重合体(三洋化成工業社製、商品名ペレスタット300)を3.52g投入した。投入後4分間混練した。この間の最大トルクは4.1N・mであった(温度200℃、回転数50rpm)。このあと、軟化剤としてプロセスオイル(石油系炭化水素)(出光興産社製、商品名ダイアナプロセスオイルPW100)6.94gを6分間かけて混練しながら投入した。投入完了後、さらに5分間混練後、混練を停止して140℃に降温した。 8.53 g of homopolypropylene (manufactured by Prime Polymer Co., Ltd., trade name J105G, MFR 9.0 g / 10 min (230 ° C., 2.16 kgf)), ethylene / α-olefin having a functional group capable of reacting with an isocyanate group 7.54 g of copolymer (E-3), 3.22 g of ethylene / methacrylic acid copolymer (trade name Nucrel N1108C, manufactured by Mitsui DuPont Polychemical Co., Ltd.) as an ethylene / unsaturated carboxylic acid copolymer, oxidized 0.05 g of pentaeryristyl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (trade name: Irganox 1010, manufactured by Ciba Japan Co., Ltd.) as a compatibilizer Propylene / ethylene glycol copolymer (Sanyo Chemical Industries, Ltd.) previously dehumidified by holding for 12 hours at 105 ° C. and 1 kPa pressure Ltd., was the product name PELESTAT 300) and 3.52g on. The mixture was kneaded for 4 minutes after the addition. The maximum torque during this period was 4.1 N · m (temperature 200 ° C., rotation speed 50 rpm). Thereafter, 6.94 g of process oil (petroleum hydrocarbon) (trade name Diana Process Oil PW100, manufactured by Idemitsu Kosan Co., Ltd.) was added as a softening agent while kneading for 6 minutes. After completion of the addition, the mixture was further kneaded for 5 minutes, the kneading was stopped, and the temperature was lowered to 140 ° C.
 140℃まで降温したら、回転数を50rpmにして、4分間混練した。 When the temperature was lowered to 140 ° C., the number of revolutions was 50 rpm, and the mixture was kneaded for 4 minutes.
 この後、予め、105℃、圧力1kPaの条件で12時間保持することにより脱湿処理したポリエステルポリカルボン酸(G-1)12.44gを14分間かけて混練しながら投入した。投入完了後、さらに5分間混練した。最終トルクは5.8N・mであった(温度140℃、回転数50rpm)。ここで、混練を停止して200℃に昇温した。 Thereafter, 12.44 g of a polyester polycarboxylic acid (G-1) that had been dehumidified by holding it at 105 ° C. and a pressure of 1 kPa for 12 hours in advance was added while kneading for 14 minutes. After completion of the addition, the mixture was further kneaded for 5 minutes. The final torque was 5.8 N · m (temperature 140 ° C., rotation speed 50 rpm). Here, kneading was stopped and the temperature was raised to 200 ° C.
 200℃まで昇温したら、回転数を100rpmにして、触媒としてトリエチレンジアミンを0.44g、1,8-ジアザビシクロ[5,4,0]ウンデセン-7を0.48gを投入し、4分間混練した。4分間混練後のトルクは1.01N・mであった(温度200℃、回転数100rpm)。 When the temperature was raised to 200 ° C., the rotation speed was set to 100 rpm, 0.44 g of triethylenediamine and 0.48 g of 1,8-diazabicyclo [5,4,0] undecene-7 were added as catalysts and kneaded for 4 minutes. . The torque after kneading for 4 minutes was 1.01 N · m (temperature 200 ° C., rotation speed 100 rpm).
 ここに、多価イソシアネートとしてポリメチレンポリフェニルポリイソシアネート(三井化学ポリウレタン社製、商品名コスモネートM-200)3.49gを混練しながら投入した。投入完了後、さらに12分間混練した。最終トルクは12.1N・mであった(温度200℃、回転数100rpm)。ここで、混練を停止して、サンプルを取り出し、15℃100kg/cm2で5分間冷間プレスを行い、熱可塑性架橋型エラストマー組成物(D-7)を得た。 Here, 3.49 g of polymethylene polyphenyl polyisocyanate (manufactured by Mitsui Chemicals Polyurethane Co., Ltd., trade name Cosmonate M-200) was added as a polyvalent isocyanate while kneading. After completion of the addition, the mixture was further kneaded for 12 minutes. The final torque was 12.1 N · m (temperature 200 ° C., rotation speed 100 rpm). Here, kneading was stopped, a sample was taken out, and cold pressing was performed at 15 ° C. and 100 kg / cm 2 for 5 minutes to obtain a thermoplastic crosslinked elastomer composition (D-7).
 この熱可塑性架橋型エラストマー組成物(D-7)、13.8gを、8cm×8cm×厚さ2mmの型枠に入れた。これに、余熱を230℃で、7分間行い、次いで加圧を230℃、100kg/cm2の条件で3分間熱間プレスすることにより行い、次いで冷却を15℃、100kg/cm2の条件で5分間冷間プレスすることにより行い、耐油性、硬度測定およびTEM観察用サンプルとした。 13.8 g of this thermoplastic cross-linked elastomer composition (D-7) was placed in a mold of 8 cm × 8 cm × thickness 2 mm. To this, preheating is performed at 230 ° C. for 7 minutes, then pressurization is performed by hot pressing for 3 minutes at 230 ° C. and 100 kg / cm 2 , and then cooling is performed at 15 ° C. and 100 kg / cm 2 . It was performed by cold pressing for 5 minutes to obtain a sample for oil resistance, hardness measurement and TEM observation.
 また、同様に、この熱可塑性架橋型エラストマー組成物(D-7)、6.8gを、8cm×8cm×厚さ1mmの型枠に入れた。これに、余熱を230℃で、7分間行い、次いで加圧を230℃、100kg/cm2の条件で3分間熱間プレスすることにより行い、次いで冷却を15℃、100kg/cm2の条件で5分間冷間プレスすることにより行い、機械特性測定用サンプルとした。 Similarly, 6.8 g of this thermoplastic cross-linked elastomer composition (D-7) was put into a mold having a size of 8 cm × 8 cm × thickness 1 mm. To this, preheating is performed at 230 ° C. for 7 minutes, then pressurization is performed by hot pressing for 3 minutes at 230 ° C. and 100 kg / cm 2 , and then cooling is performed at 15 ° C. and 100 kg / cm 2 . This was performed by cold pressing for 5 minutes to obtain a sample for measuring mechanical properties.
 また、熱可塑性架橋型エラストマー組成物(D-7)のTEM観察の結果、海島構造を確認することができた。海相は、染色がうすく、島相は、染色が濃く、観察された。RuO4による染色は、ホモポリプロピレンは着色しにくいことが知られている。従って、海相がホモポリプロピレン、島相の少なくとも一部が架橋されたエチレン・α-オレフィン共重合体である海島構造であると判断できた。 Further, as a result of TEM observation of the thermoplastic cross-linked elastomer composition (D-7), the sea-island structure could be confirmed. The sea phase was slightly stained and the island phase was observed with a deep staining. Dyeing with RuO4 is known to be difficult to color homopolypropylene. Therefore, it was judged that the sea phase was a homopolypropylene and the sea-island structure was an ethylene / α-olefin copolymer in which at least a part of the island phase was crosslinked.
 製造条件、耐油性、硬度、機械特性の測定結果およびTEM観察の結果を別表に示す。 Manufacturing conditions, oil resistance, hardness, mechanical property measurement results and TEM observation results are shown in a separate table.
 [実施例6~17]
 実施例6~17は、原料や反応条件を、別表(表2~5)に記載の原料や反応条件に変えた以外は、実施例5と同様に行った。
[Examples 6 to 17]
Examples 6 to 17 were carried out in the same manner as Example 5 except that the raw materials and reaction conditions were changed to the raw materials and reaction conditions described in the attached tables (Tables 2 to 5).
 製造条件、耐油性、硬度、機械特性の測定結果およびTEM観察の結果を別表に示す。 Manufacturing conditions, oil resistance, hardness, mechanical property measurement results and TEM observation results are shown in a separate table.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 なお、表2および4において、*1~*13は以下の成分を示す。 In Tables 2 and 4, * 1 to * 13 indicate the following components.
 また、表2および4において、イソシアネート基含有オリゴマーの項目のnは、前記一般式Rx、Ra、Rbにおけるnを意味し、合成例F-1~F-3における原料の仕込み量から求めた値である。表2および4において、ポリエステルポリカルボン酸の項目のnは、該ポリエステルポリカルボン酸と、ポリイソシアネートと、エチレン共重合体(E)とから形成される架橋エチレン共重合体(B)が有する前記一般式Ra,Rbにおけるnを意味し、当該実施例における原料の仕込み量から求めた値である。
*1 :ポリプロピレン
*2 :ホモポリプロピレン、プライムポリマー社製、商品名J105G
*3 :エチレン-メタクリル酸共重合体、三井・デュポンポリケミカル社製、商品名ニュクレルN1108C
*4 :1,3-ビス(イソシアナトメチル)シクロヘキサン、三井化学ポリウレタン社製、商品名タケネート600
*5 :ポリメチレンポリフェニルポリイソシアネート、三井化学ポリウレタン社製、 商品名コスモネートM-200、イソシアネート基含有率は31.0重量%
*6 :ポリメチレンポリフェニルポリイソシアネート、三井化学ポリウレタン社製、 商品名コスモネートT-100、イソシアネート基含有率は48.3重量%
*7 :ペンタエリスチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、チバジャパン社製、商品名イルガノックス1010
*8 :プロピレン・エチレングリコール共重合体、三洋化成工業社製、商品名ペレスタット300
*9 :プロセスオイル(石油系炭化水素)出光興産社製、商品名ダイアナプロセスオイルPW100
*10:トリエチレンジアミン
*11:ステアリン酸マグネシウム
*12:テトラキス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]ホスホニウムクロライド
*13:1,8-ジアザビシクロ[5,4,0]ウンデセン-7
In Tables 2 and 4, n in the item of the isocyanate group-containing oligomer means n in the general formulas Rx, Ra, and Rb, and is a value obtained from the amount of raw materials charged in Synthesis Examples F-1 to F-3. It is. In Tables 2 and 4, n in the item of polyester polycarboxylic acid is the cross-linked ethylene copolymer (B) formed from the polyester polycarboxylic acid, polyisocyanate, and ethylene copolymer (E). It means n in the general formulas Ra and Rb, and is a value obtained from the amount of raw material charged in the example.
* 1: Polypropylene * 2: Homopolypropylene, manufactured by Prime Polymer Co., Ltd., trade name J105G
* 3: Ethylene-methacrylic acid copolymer, manufactured by Mitsui DuPont Polychemical Co., Ltd., trade name Nukurel N1108C
* 4: 1,3-bis (isocyanatomethyl) cyclohexane, manufactured by Mitsui Chemicals Polyurethanes, Inc., trade name Takenate 600
* 5: Polymethylene polyphenyl polyisocyanate, manufactured by Mitsui Chemicals Polyurethanes Co., Ltd., trade name Cosmonate M-200, isocyanate group content is 31.0% by weight
* 6: Polymethylene polyphenyl polyisocyanate, manufactured by Mitsui Chemicals Polyurethanes, trade name Cosmonate T-100, isocyanate group content is 48.3 wt%
* 7: Pentaerystyl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], manufactured by Ciba Japan, trade name Irganox 1010
* 8: Propylene / ethylene glycol copolymer, manufactured by Sanyo Chemical Industries, trade name Pelestat 300
* 9: Process oil (petroleum hydrocarbon) manufactured by Idemitsu Kosan Co., Ltd., trade name Diana Process Oil PW100
* 10: Triethylenediamine * 11: Magnesium stearate * 12: Tetrakis [tris (dimethylamino) phosphoranylideneamino] phosphonium chloride * 13: 1,8-diazabicyclo [5,4,0] undecene-7

Claims (19)

  1.  結晶性オレフィン重合体(A)と、架橋エチレン共重合体(B)とを含み、
     前記架橋エチレン共重合体(B)の架橋部位(C)が、アミド基およびイミド基からなる群から選択される少なくとも1種の含窒素基と、エステル基とを有する有機基(c1)であることを特徴とする架橋型熱可塑性エラストマー組成物(D)。
    Including a crystalline olefin polymer (A) and a crosslinked ethylene copolymer (B),
    The crosslinking site (C) of the crosslinked ethylene copolymer (B) is an organic group (c1) having at least one nitrogen-containing group selected from the group consisting of an amide group and an imide group, and an ester group. A cross-linked thermoplastic elastomer composition (D) characterized by the above.
  2.  前記架橋エチレン共重合体(B)が、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン・非共役ポリエン共重合体およびエチレン・不飽和カルボン酸共重合体からなる群から選択される少なくとも1種のエチレン共重合体(E)を架橋することにより得られる重合体であることを特徴とする請求項1に記載の架橋型熱可塑性エラストマー組成物(D)。 The crosslinked ethylene copolymer (B) is an ethylene / α-olefin copolymer having a functional group capable of reacting with an isocyanate group, and an ethylene / α-olefin / nonconjugated polyene copolymer having a functional group capable of reacting with an isocyanate group. 2. The polymer obtained by crosslinking at least one ethylene copolymer (E) selected from the group consisting of a polymer and an ethylene / unsaturated carboxylic acid copolymer. The cross-linked thermoplastic elastomer composition (D) described.
  3.  前記有機基(c1)が、下記一般式R2で表わされる二価の基を含むことを特徴とする請求項1または2に記載の架橋型熱可塑性エラストマー(D)。
    Figure JPOXMLDOC01-appb-C000001
     (上記一般式R2において、R3はそれぞれ独立に、分岐を有していてもよい炭素数1~15のアルキレン基または炭素数6~15の芳香族基であり、R4はそれぞれ独立に、分岐を有していてもよい炭素数1~15のアルキレン基である。)
    The organic group (c1) is, crosslinked thermoplastic elastomer according to claim 1 or 2 characterized in that it comprises a divalent group represented by general formula R 2 (D).
    Figure JPOXMLDOC01-appb-C000001
    (In the above general formula R 2 , each R 3 is independently an alkylene group having 1 to 15 carbon atoms or an aromatic group having 6 to 15 carbon atoms which may have a branch, and each R 4 is independently And an optionally substituted alkylene group having 1 to 15 carbon atoms.)
  4.  前記有機基(c1)が下記一般式Raおよび下記一般式Rbからなる群から選択される少なくとも1種の有機基であることを特徴とする請求項1~3のいずれか一項に記載の架橋型熱可塑性エラストマー組成物(D)。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
     (上記一般式RaおよびRbにおいて、Rcはそれぞれ独立に、炭素数1~20の三価の炭化水素基であり、Rdはそれぞれ独立に、炭素数1~20の二価の炭化水素基であり、R1はそれぞれ独立に、ジイソシアネート残基であり、R2はそれぞれ独立に、下記一般式で表わされる二価の基である。)
    Figure JPOXMLDOC01-appb-C000004
     (上記一般式R2において、R3はそれぞれ独立に、分岐を有していてもよい炭素数1~15のアルキレン基または炭素数6~15の芳香族基であり、R4はそれぞれ独立に、分岐を有していてもよい炭素数1~15のアルキレン基である。)
    The cross-linking according to any one of claims 1 to 3, wherein the organic group (c1) is at least one organic group selected from the group consisting of the following general formula Ra and the following general formula Rb. Type thermoplastic elastomer composition (D).
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (In the above general formulas Ra and Rb, each Rc is independently a trivalent hydrocarbon group having 1 to 20 carbon atoms, and each Rd is independently a divalent hydrocarbon group having 1 to 20 carbon atoms. , R 1 are each independently a diisocyanate residue, and R 2 are each independently a divalent group represented by the following general formula.)
    Figure JPOXMLDOC01-appb-C000004
    (In the above general formula R 2 , each R 3 is independently an alkylene group having 1 to 15 carbon atoms or an aromatic group having 6 to 15 carbon atoms which may have a branch, and each R 4 is independently And an optionally substituted alkylene group having 1 to 15 carbon atoms.)
  5.  前記R1が、分岐を有していてもよい炭素数2~10のアルキレン基、炭素数6~20のアリーレン基、および脂環式炭化水素基を有する炭素数6~20の二価の炭化水素基からなる群から選択される少なくとも一種の基であることを特徴とする請求項4に記載の架橋型熱可塑性エラストマー組成物(D)。 R 1 is a divalent carbon atom having 6 to 20 carbon atoms having an optionally branched alkylene group having 2 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, and an alicyclic hydrocarbon group. The crosslinked thermoplastic elastomer composition (D) according to claim 4, which is at least one group selected from the group consisting of hydrogen groups.
  6.  前記結晶性オレフィン重合体(A)と、架橋エチレン共重合体(B)との重量比(A/B)が10/90~50/50であることを特徴とする請求項1~5のいずれか一項に記載の架橋型熱可塑性エラストマー組成物(D)。 6. The weight ratio (A / B) between the crystalline olefin polymer (A) and the crosslinked ethylene copolymer (B) is 10/90 to 50/50, The crosslinked thermoplastic elastomer composition (D) according to any one of the above.
  7.  前記一般式Raおよび一般式Rbにおいて、nが0~3であり、前記一般式R2において、mが7~20であることを特徴とする請求項4~6のいずれか一項に記載の架橋型熱可塑性エラストマー組成物(D)。 7. The general formula Ra and the general formula Rb, wherein n is 0 to 3, and in the general formula R 2 , m is 7 to 20, according to any one of claims 4 to 6, Cross-linked thermoplastic elastomer composition (D).
  8.  前記結晶性オレフィン重合体(A)と、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン・非共役ポリエン共重合体およびエチレン・不飽和カルボン酸共重合体からなる群から選択される少なくとも1種のエチレン共重合体(E)との混合物に、
     架橋剤として、アミド基と、エステル基と、二つ以上のイソシアネート基とを有する、イソシアネート基含有オリゴマー(F)を導入または、架橋剤として、ポリエステルポリカルボン酸(G)および多価イソシアネートを導入し、エチレン共重合体(E)を動的架橋することにより得られる、
     海相が結晶性オレフィン重合体(A)であり、島相の少なくとも一部が架橋エチレン共重合体(B)である海島構造を形成することを特徴とする請求項1~7のいずれか一項に記載の架橋型熱可塑性エラストマー組成物(D)。
    The crystalline olefin polymer (A), an ethylene / α-olefin copolymer having a functional group capable of reacting with an isocyanate group, and an ethylene / α-olefin / nonconjugated polyene copolymer having a functional group capable of reacting with an isocyanate group. In a mixture with a polymer and at least one ethylene copolymer (E) selected from the group consisting of an ethylene / unsaturated carboxylic acid copolymer,
    Introducing an isocyanate group-containing oligomer (F) having an amide group, an ester group, and two or more isocyanate groups as a crosslinking agent, or introducing a polyester polycarboxylic acid (G) and a polyvalent isocyanate as a crosslinking agent And obtained by dynamically crosslinking the ethylene copolymer (E).
    The sea-island structure in which the sea phase is a crystalline olefin polymer (A) and at least a part of the island phase is a crosslinked ethylene copolymer (B) is formed. The crosslinked thermoplastic elastomer composition (D) according to Item.
  9.  前記イソシアネート基含有オリゴマー(F)の、ゲルパーミエイションクロマトグラフィー(GPC)により求められる、標準ポリエチレングリコール換算の数平均分子量が2000を超えることを特徴とする請求項8に記載の架橋型熱可塑性エラストマー組成物(D)。 The number average molecular weight of the said isocyanate group containing oligomer (F) calculated | required by gel permeation chromatography (GPC) in conversion of a standard polyethyleneglycol exceeds 2000, Crosslinked type thermoplasticity of Claim 8 characterized by the above-mentioned. Elastomer composition (D).
  10.  前記イソシアネート基含有オリゴマー(F)が、下記一般式Rxで表わされることを特徴とする請求項8または9に記載の架橋型熱可塑性エラストマー組成物(D)。
    Figure JPOXMLDOC01-appb-C000005
     (上記一般式Rxにおいて、R1はそれぞれ独立に、ジイソシアネート残基であり、R2はそれぞれ独立に、下記一般式で表わされる二価の基である。)
    Figure JPOXMLDOC01-appb-C000006
     (上記一般式R2において、R3はそれぞれ独立に、分岐を有していてもよい炭素数1~15のアルキレン基または炭素数6~15の芳香族基であり、R4はそれぞれ独立に、分岐を有していてもよい炭素数1~15のアルキレン基である。)
    The cross-linked thermoplastic elastomer composition (D) according to claim 8 or 9, wherein the isocyanate group-containing oligomer (F) is represented by the following general formula Rx.
    Figure JPOXMLDOC01-appb-C000005
    (In the general formula Rx, each R 1 is independently a diisocyanate residue, and each R 2 is independently a divalent group represented by the following general formula.)
    Figure JPOXMLDOC01-appb-C000006
    (In the above general formula R 2 , each R 3 is independently an alkylene group having 1 to 15 carbon atoms or an aromatic group having 6 to 15 carbon atoms which may have a branch, and each R 4 is independently And an optionally substituted alkylene group having 1 to 15 carbon atoms.)
  11.  前記R1が、分岐を有していてもよい炭素数2~10のアルキレン基、炭素数6~20のアリーレン基、および脂環式炭化水素基を有する炭素数6~20の二価の炭化水素基からなる群から選択される少なくとも一種の基であることを特徴とする請求項10に記載の架橋型熱可塑性エラストマー組成物(D)。 R 1 is a divalent carbon atom having 6 to 20 carbon atoms having an optionally branched alkylene group having 2 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, and an alicyclic hydrocarbon group. The crosslinked thermoplastic elastomer composition (D) according to claim 10, which is at least one group selected from the group consisting of hydrogen groups.
  12.  前記一般式Rxにおいて、nが0~3であり、前記一般式R2において、mが7~20であることを特徴とする請求項10または11に記載の架橋型熱可塑性エラストマー組成物(D)。 In the general formula Rx, n is 0 to 3, wherein in the general formula R 2, m is 7 to crosslinked thermoplastic elastomer composition according to claim 10 or 11, characterized in that it is 20 (D ).
  13.  前記イソシアネート基含有オリゴマー(F)が、多価アルコールと多価カルボン酸とから製造されたポリエステルポリカルボン酸(G)と、多価イソシアネートとを反応させて得られ、
     前記多価アルコール、多価カルボン酸および多価イソシアネートの少なくとも1種が三価以上のモノマーを含むことを特徴とする請求項8に記載の架橋型熱可塑性エラストマー組成物(D)。
    The isocyanate group-containing oligomer (F) is obtained by reacting a polyisocyanate with a polyester polycarboxylic acid (G) produced from a polyhydric alcohol and a polycarboxylic acid,
    The cross-linked thermoplastic elastomer composition (D) according to claim 8, wherein at least one of the polyhydric alcohol, polycarboxylic acid and polyisocyanate contains a trivalent or higher monomer.
  14.  前記多価イソシアネートが、三価以上の多価イソシアネートを含むことを特徴とする請求項8に記載の架橋型熱可塑性エラストマー組成物(D)。 The cross-linked thermoplastic elastomer composition (D) according to claim 8, wherein the polyvalent isocyanate contains a trivalent or higher polyvalent isocyanate.
  15.  前記エチレン共重合体(E)においてイソシアネート基と反応しうる官能基が、カルボキシル基またはカルボン酸無水物基であることを特徴とする請求項8~14のいずれか一項に記載の架橋型熱可塑性エラストマー組成物(D)。 The crosslinkable heat according to any one of claims 8 to 14, wherein the functional group capable of reacting with an isocyanate group in the ethylene copolymer (E) is a carboxyl group or a carboxylic anhydride group. Plastic elastomer composition (D).
  16.  結晶性オレフィン重合体(A)と、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン共重合体、イソシアネート基と反応しうる官能基を有するエチレン・α-オレフィン・非共役ポリエン共重合体およびエチレン・不飽和カルボン酸共重合体からなる群から選択される少なくとも1種のエチレン共重合体(E)との混合物に、
     架橋剤として、アミド基と、エステル基と、二つ以上のイソシアネート基とを有する、イソシアネート基含有オリゴマー(F)を導入または、架橋剤として、ポリエステルポリカルボン酸(G)および多価イソシアネートを導入し、エチレン共重合体(E)を動的架橋することを特徴とする請求項1~15のいずれか一項に記載の架橋型熱可塑性エラストマー組成物(D)を製造する方法。
    Crystalline olefin polymer (A), ethylene / α-olefin copolymer having functional group capable of reacting with isocyanate group, ethylene / α-olefin / nonconjugated polyene copolymer having functional group capable of reacting with isocyanate group A mixture with at least one ethylene copolymer (E) selected from the group consisting of a copolymer and an ethylene / unsaturated carboxylic acid copolymer,
    Introducing an isocyanate group-containing oligomer (F) having an amide group, an ester group, and two or more isocyanate groups as a crosslinking agent, or introducing a polyester polycarboxylic acid (G) and a polyvalent isocyanate as a crosslinking agent The method for producing a crosslinked thermoplastic elastomer composition (D) according to any one of claims 1 to 15, wherein the ethylene copolymer (E) is dynamically crosslinked.
  17.  請求項1~15のいずれか一項に記載の架橋型熱可塑性エラストマー組成物(D)からなる成形体。 A molded body comprising the crosslinked thermoplastic elastomer composition (D) according to any one of claims 1 to 15.
  18.  自動車用部品であることを特徴とする請求項17に記載の成形体。 The molded article according to claim 17, wherein the molded article is an automotive part.
  19.  ブーツ、ワイヤーハーネスカバー、シートアジャスターカバーおよびホースからなる群から選択される自動車用部品であることを特徴とする請求項17に記載の成形体。 The molded article according to claim 17, wherein the molded article is an automotive part selected from the group consisting of a boot, a wire harness cover, a seat adjuster cover, and a hose.
PCT/JP2009/056734 2008-04-01 2009-03-31 Crosslinked thermoplastic elastomer composition and manufacturing method for said composition WO2009123228A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010505953A JPWO2009123228A1 (en) 2008-04-01 2009-03-31 Cross-linked thermoplastic elastomer composition and method for producing the composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008095229 2008-04-01
JP2008-095229 2008-04-01
JP2008139261 2008-05-28
JP2008-139261 2008-05-28

Publications (1)

Publication Number Publication Date
WO2009123228A1 true WO2009123228A1 (en) 2009-10-08

Family

ID=41135596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056734 WO2009123228A1 (en) 2008-04-01 2009-03-31 Crosslinked thermoplastic elastomer composition and manufacturing method for said composition

Country Status (2)

Country Link
JP (1) JPWO2009123228A1 (en)
WO (1) WO2009123228A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073405A1 (en) * 2015-10-29 2017-05-04 バンドー化学株式会社 Elastomer member and sealing member for machine tools
CN111491958A (en) * 2017-12-22 2020-08-04 Sabic环球技术有限责任公司 Process for preparing amorphous functionalized olefin copolymers
WO2023286797A1 (en) * 2021-07-13 2023-01-19 花王株式会社 Asphalt composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05170988A (en) * 1991-12-19 1993-07-09 Asahi Chem Ind Co Ltd Polypropylene-based resin composition
JP2001071413A (en) * 1999-09-06 2001-03-21 Toyo Mooton Kk Manufacture of laminate
JP2002213657A (en) * 2001-01-24 2002-07-31 Yokohama Rubber Co Ltd:The Gas conduit
JP2005213478A (en) * 2004-02-02 2005-08-11 Idemitsu Kosan Co Ltd Carbon fiber-reinforced polyolefin resin composition and molded item consisting of it
JP2006160937A (en) * 2004-12-09 2006-06-22 Sumitomo Chemical Co Ltd Propylene polymer composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4318126B2 (en) * 1998-07-02 2009-08-19 アドバンスド エラストマー システムズ,エル.ピー. Co-cured rubber-thermoplastic elastomer composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05170988A (en) * 1991-12-19 1993-07-09 Asahi Chem Ind Co Ltd Polypropylene-based resin composition
JP2001071413A (en) * 1999-09-06 2001-03-21 Toyo Mooton Kk Manufacture of laminate
JP2002213657A (en) * 2001-01-24 2002-07-31 Yokohama Rubber Co Ltd:The Gas conduit
JP2005213478A (en) * 2004-02-02 2005-08-11 Idemitsu Kosan Co Ltd Carbon fiber-reinforced polyolefin resin composition and molded item consisting of it
JP2006160937A (en) * 2004-12-09 2006-06-22 Sumitomo Chemical Co Ltd Propylene polymer composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073405A1 (en) * 2015-10-29 2017-05-04 バンドー化学株式会社 Elastomer member and sealing member for machine tools
CN111491958A (en) * 2017-12-22 2020-08-04 Sabic环球技术有限责任公司 Process for preparing amorphous functionalized olefin copolymers
CN111511785A (en) * 2017-12-22 2020-08-07 Sabic环球技术有限责任公司 Process for preparing functionalized ethylene and propylene copolymers
US11396565B2 (en) 2017-12-22 2022-07-26 Sabic Global Technologies B.V. Process for preparation of semi-crystalline functionalized olefin copolymer
US11401360B2 (en) 2017-12-22 2022-08-02 Sabic Global Technologies B.V. Process for preparation of amorphous polyolefinic ionomers
US11447585B2 (en) * 2017-12-22 2022-09-20 Sabic Global Technologies B.V. Process for preparation of functionalized ethylene and propylene copolymer
US11466110B2 (en) * 2017-12-22 2022-10-11 Sabic Global Technologies B.V. Process for preparation of semi-crystalline polyolefinic ionomers
US11466109B2 (en) * 2017-12-22 2022-10-11 Sabic Global Technologies B.V. Process for preparation of amorphous functionalized olefin copolymer
US11472900B2 (en) * 2017-12-22 2022-10-18 Sabic Global Technologies B.V. Process for preparation of ethylene and propylene ionomer
US11773195B2 (en) 2017-12-22 2023-10-03 Sabic Global Technologies B.V. Process for preparation of semi-crystalline functionalized olefin copolymer
WO2023286797A1 (en) * 2021-07-13 2023-01-19 花王株式会社 Asphalt composition

Also Published As

Publication number Publication date
JPWO2009123228A1 (en) 2011-07-28

Similar Documents

Publication Publication Date Title
KR101455425B1 (en) Polyolefin compositions and articles prepared therefrom, and methods for making the same
KR101513741B1 (en) Functionalized olefin polymers compositions and articles prepared therefrom and methods for making the same
EP2294102B1 (en) Polyolefin compositions and articles prepared therefrom and methods of making the same
JP2010508424A (en) POLYURETHANE COMPOSITION, ARTICLE PRODUCED THEREFROM, AND METHOD FOR PRODUCING THE SAME
US8609766B2 (en) Polymer compositions
KR100941567B1 (en) Ethylene copolymer, composition containing the copolymer, and use of the same
CN105980454B (en) Cross-linking agent and its Manufacturing approach and use and vinyl copolymer
US20080233376A1 (en) Automotive Parts Prepared From Ethylene/Alpha-Olefins Compositions
WO2009017868A1 (en) Compositions of thermoplastic polyurethane (tpu), polybutadiene and polydiene-based tpu
WO2013002136A1 (en) Propylene-based polymer composition and application therefor
WO2009123228A1 (en) Crosslinked thermoplastic elastomer composition and manufacturing method for said composition
JP2011105812A (en) Crosslinked thermoplastic elastomer composition and method for producing the same
JP5055072B2 (en) Method for producing thermoplastic elastomer composition and molded body
CN113195243B (en) Rubber composition and tire using same
JP2001207051A (en) Polyurethane elastomer composition
WO2013039850A1 (en) Compositions and articles formed from the same
JP2007160610A (en) Olefinic thermoplastic elastomer laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727464

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505953

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09727464

Country of ref document: EP

Kind code of ref document: A1