WO2009123151A1 - Plate type reactor, manufacturing method therefor, and reaction product manufacturing method using the plate type reactor - Google Patents

Plate type reactor, manufacturing method therefor, and reaction product manufacturing method using the plate type reactor Download PDF

Info

Publication number
WO2009123151A1
WO2009123151A1 PCT/JP2009/056567 JP2009056567W WO2009123151A1 WO 2009123151 A1 WO2009123151 A1 WO 2009123151A1 JP 2009056567 W JP2009056567 W JP 2009056567W WO 2009123151 A1 WO2009123151 A1 WO 2009123151A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
reaction
plate
catalyst
raw material
Prior art date
Application number
PCT/JP2009/056567
Other languages
French (fr)
Japanese (ja)
Inventor
真治 磯谷
公克 神野
康之 坂倉
洋治 川谷
修平 矢田
Original Assignee
三菱化学株式会社
三菱化学エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008327973A external-priority patent/JP6088120B2/en
Application filed by 三菱化学株式会社, 三菱化学エンジニアリング株式会社 filed Critical 三菱化学株式会社
Priority to CN2009801103159A priority Critical patent/CN101977678A/en
Priority to RU2010144507/05A priority patent/RU2489203C2/en
Publication of WO2009123151A1 publication Critical patent/WO2009123151A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/249Plate-type reactors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/215Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of saturated hydrocarbyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2453Plates arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2456Geometry of the plates
    • B01J2219/2459Corrugated plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2461Heat exchange aspects
    • B01J2219/2462Heat exchange aspects the reactants being in indirect heat exchange with a non reacting heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2469Feeding means
    • B01J2219/2471Feeding means for the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2481Catalysts in granular from between plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2491Other constructional details
    • B01J2219/2497Size aspects, i.e. concrete sizes are being mentioned in the classified document
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2491Other constructional details
    • B01J2219/2498Additional structures inserted in the channels, e.g. plates, catalyst holding meshes

Definitions

  • the present invention relates to a plate reactor used for a reaction involving heat generation or endotherm using a catalyst, a method for producing the same, and a method for producing a reaction product by a gas phase contact reaction using the plate reactor.
  • the present invention also relates to a plate reactor and a production method for producing a reaction product by supplying a reaction raw material to a plate reactor filled with a catalyst and reacting the reaction raw material.
  • a reaction tube in a reaction vessel is filled with the catalyst.
  • a multi-tubular reactor see, for example, Patent Document 1
  • a plate reactor in which a catalyst is filled in a gap between a plurality of heat transfer plates in a reaction vessel see, for example, Patent Documents 2 and 3).
  • reactors used for the gas phase contact reaction are generally required to be manufactured with high accuracy. For example, if there is a large error in the tube diameter of the heat transfer tubes that make up the reaction tubes in a multi-tube reactor or a heat transfer plate in a plate reactor, a part of the catalyst layer that is poor in heat removal will react. May run away and the catalyst may deteriorate locally. However, if an attempt is made to produce a reactor with higher accuracy, production of the reactor may require a great deal of labor and a large amount of steel.
  • a heat transfer tube in a plate reactor is generally manufactured by forming a steel plate so that a plurality of shapes obtained by dividing the cross-sectional shape of the heat transfer tube are continuous, and welding convex edges of the formed steel plate.
  • the cross-sectional shape and the cross-sectional size of the heat transfer tube are generally determined from the viewpoint of adjusting the thickness and form of the catalyst layer formed in the gap between the heat transfer plates.
  • the form and manufacturing method of the heat transfer plate in the plate reactor makes it difficult to manufacture the plate reactor with high accuracy.
  • the maximum error for the set value of the distance between the heat transfer plates is usually 3-5 mm. It is said to be more or less.
  • a reactor used in a gas phase reaction in which a granular solid catalyst is used, such as a gas phase catalytic oxidation reaction of propane, propylene, or acrolein, and a granular solid catalyst is used, for example, a gaseous reaction raw material is reacted.
  • a reaction vessel, a plurality of heat transfer plates provided side by side in the reaction vessel, and a device for supplying a heat medium to the heat transfer tube, wherein the reaction vessel is supplied The gas is discharged through a gap between adjacent heat transfer plates, and the heat transfer plate includes a plurality of the heat transfer tubes connected at the peripheral edge or the edge of the cross-sectional shape.
  • a plate reactor in which a catalyst is filled in a gap between matching heat transfer plates (see, for example, Patent Document 3).
  • Such a plate reactor generally has a plurality of catalyst layers formed in the gaps between adjacent heat transfer plates and has excellent contact between the heat transfer plates and the catalyst. It is excellent from the viewpoint of efficiently producing a product by a phase reaction in a large amount.
  • the gap between adjacent heat transfer plates is filled with a catalyst in layers, so it is difficult to fill each gap and the catalyst uniformly, and the gap is filled uniformly with the catalyst. A technology that can do this has been desired.
  • a multi-tubular reactor having a tubular heat exchanger shape is used from an industrial and practical viewpoint. ing.
  • a solid catalyst is filled inside the reaction tube of the multitubular reactor, and a temperature-controlled heat medium is circulated outside the reaction tube. The temperature inside the reaction tube is controlled by the heat medium.
  • Patent Documents 4 and 5 propose a method in which a catalytic gas phase oxidation reaction of propylene and acrolein, which are reaction raw materials, is carried out with an increased processing load per unit catalyst using the multi-tubular reactor.
  • the reaction tube used in the multi-tube reactor is a pipe having a radius of 20 to 30 millimeters, and a reaction tube having the same diameter from the inlet to the outlet of the reaction fluid (a general term for a reaction raw material mixture and a reaction product mixture). Therefore, under conditions where the processing load per unit catalyst of the reaction fluid is high, the pressure loss of the reaction fluid is large, the pressure in the reactor rises, and as a result, the yield of the target reactant decreases. is there. Further, as the internal pressure of the reactor increases, the energy of the compressor for supplying the reaction fluid and the like increases, which is disadvantageous in terms of cost in addition to the yield of the target reactant.
  • Patent Document 2 proposes a plate-type catalytic reaction apparatus in which a catalyst is filled between two heat transfer plates and a heat medium is supplied to the outside of the heat transfer plate.
  • Patent Document 3 a heat transfer plate in which a plurality of corrugated plates formed into an arc or an elliptical arc face each other and the convex portions of the corrugated plates are joined to each other to form a plurality of heat medium channels is provided.
  • a plate-type catalytic reactor in which a plurality of arrayed and adjacent corrugated convex portions and concave portions of adjacent heat transfer plates face each other to form a catalyst layer at a predetermined interval has been proposed.
  • the above proposal describes the structure of the plate reactor and its application to the catalytic gas phase oxidation reaction.
  • the yield of the target reactant is reduced while appropriately controlling the heat generated by the reaction to prevent hot spots.
  • the processing load per unit catalyst is increased, heat generated by the reaction is appropriately controlled to prevent hot spots, damage to the catalyst, and the yield and production amount of the target reactant are improved. There is no mention about.
  • the present invention provides a plate reactor that can prevent reaction runaway in the production of a reaction product and can be used for production of a reaction product with high productivity.
  • the present invention provides a method for preventing reaction runaway and producing a reaction product with high productivity in the production of a reaction product using a plate reactor.
  • the present invention also provides a plate reactor that can uniformly and easily fill the gaps between adjacent heat transfer plates.
  • the present invention also provides a plate reactor in which the gap between adjacent heat transfer plates can be uniformly and easily filled with the catalyst, and the filling state of the catalyst in the gap can be easily adjusted. .
  • the present invention increases the processing load of a reaction raw material per unit catalyst in a production method in which a reaction raw material is supplied to a plate reactor filled with a catalyst and the reaction raw material is reacted to produce a reaction product. Even if it is, the target reaction can be generated while preventing an increase in the pressure loss of the reaction gas passing through the catalyst and preventing the hot spot by properly controlling the heat generated by the reaction, preventing the catalyst from being damaged.
  • the object is to provide a novel method for improving the yield of the product.
  • the temperature range of the plate reactor is controlled by setting the allowable error range to -0.6 to +2.0 mm with respect to the design value of the distance between the surfaces of the heat transfer plates.
  • the present invention provides a technology for producing a valuable material by an industrially advantageous method while maintaining the production cost of a plate reactor at a low cost without depending on the use of a low activity catalyst or dilution of the catalyst.
  • the present invention provides a reaction vessel for reacting a gaseous raw material, a plurality of heat transfer plates provided side by side in the reaction vessel, and a heat for supplying a heat medium at a desired temperature to the heat transfer plate.
  • the heat transfer plate includes a plurality of heat transfer tubes connected at a peripheral edge or an edge of a cross-sectional shape, and the heat medium supply device is a heat transfer plate accommodated in a reaction vessel
  • the plate reactor that is a device for supplying a heat transfer medium to the heat transfer tube, a gap between the heat transfer plates facing each other is transferred in a direction perpendicular to a surface that is equidistant from the surface formed by the axis of the heat transfer plate.
  • the design value of the distance between the surfaces of the heat plate is 5 to 50 mm, and the difference of the measured value of the distance between the surfaces with respect to the design value is ⁇ 0.6 to +2.0 mm (hereinafter, “First plate reaction Also referred to) to provide a ".
  • the present invention also provides a first plate reactor in which the heat transfer plate has an axial length of preferably 5 m or less, more preferably 2 m or less.
  • the present invention preferably provides a first plate reactor that further includes a spacer for forming a predetermined interval between the heat transfer plates.
  • the heat transfer plate is formed by joining two steel plates formed so that a plurality of shapes obtained by dividing the cross-sectional shape of the heat transfer tube into two by the shaft of the heat transfer plate are continuous.
  • a plate reactor is provided.
  • the difference in the measured value of the distance between the surfaces with respect to the design value at a position where the reaction rate of the raw material in the raw material gas is 70% or less is a position where the reaction rate is greater than 70%.
  • the first plate reactor is smaller than the difference between the measured values of the distance between the surfaces with respect to the design value at.
  • the present invention preferably provides a first plate reactor in which the total volume of the gap is 3 L or more.
  • the present invention preferably provides a first plate reactor that further includes a temperature measuring device for measuring temperatures at two or more positions of the catalyst layer in which the gap is filled with a catalyst.
  • the present invention uses a plate reactor in which a plurality of heat transfer plates are provided side by side in a reaction vessel, and a catalyst layer is formed by filling a catalyst between gaps between the heat transfer plates.
  • the raw material gas is reacted in the presence of the catalyst, including a step of supplying the raw material and passing through the catalyst layer, and a step of supplying a heat medium having a predetermined temperature to the plurality of heat transfer tubes constituting the heat transfer plate.
  • the plate reactor of the present invention is used for the plate reactor, and the peak temperature of the catalyst layer is set when the plate reactor is designed.
  • a method for producing a reaction product hereinafter, also referred to as “first production method for reaction product” in which a heat medium having a temperature set to the peak temperature of the catalyst layer is supplied to the heat transfer tube.
  • the present invention preferably provides a first method for producing a reaction product in which the reaction of the raw material in the raw material gas in the presence of a catalyst is an exothermic reaction.
  • the reaction product is one or both of acrolein and acrylic acid, one or both of methacrolein and methacrylic acid, maleic acid, phthalic acid, ethylene oxide, paraffin, alcohol, acetone and phenol, Alternatively, a first method for producing a reaction product that is butadiene is provided.
  • the present invention provides a reaction vessel for reacting a gaseous raw material, a plurality of heat transfer plates provided side by side in the reaction vessel, and a heat medium supply for supplying a heat medium of a desired temperature to the heat transfer plate
  • the heat transfer plate includes a plurality of heat transfer tubes connected at a peripheral edge or an edge of a cross-sectional shape
  • the heat medium supply device includes a heat transfer plate accommodated in a reaction vessel.
  • the heat transfer plate is formed by joining two steel plates formed such that a plurality of shapes obtained by dividing the cross-sectional shape of the heat transfer tube into two by the shaft of the heat transfer plate are continuous.
  • a method for producing the plate reactor using a formed steel plate wherein the steel plate formed using a hot plate has an error of ⁇ 0.5 mm or less with respect to a design value for forming the steel plate.
  • the present invention preferably provides a method for producing the plate reactor, wherein the heat transfer plate is a heat transfer plate having an axial length of 5 m or less, preferably 2 m or less. To do.
  • the distance between the surfaces of the heat transfer plates is transferred to the reaction container before joining with the heat transfer medium supply device via a spacer that forms an interval between the heat transfer plates.
  • a method for manufacturing the plate reactor is further provided, further comprising the step of arranging a hot plate.
  • a plurality of compartments capable of accommodating the catalyst are formed in the gaps between adjacent heat transfer plates in the plate reactor along the flow direction of the reaction raw material, Provided is a plate reactor that can be packed uniformly with a catalyst.
  • a plurality of compartments capable of accommodating the catalyst are formed in the gap between adjacent heat transfer plates in the plate reactor along the flow direction of the reaction raw material.
  • a plate reactor capable of charging and discharging the catalyst independently.
  • the present invention comprises a reaction vessel for reacting reaction raw materials, a heat transfer tube, a plurality of heat transfer plates provided side by side in the reaction vessel, a device for supplying a heat medium to the heat transfer tube,
  • the reaction vessel is a vessel in which the supplied reaction raw material is discharged through a gap between adjacent heat transfer plates, and the heat transfer plate is connected at a peripheral edge or an edge of a cross-sectional shape.
  • the gap between the adjacent heat transfer plates is arranged along the ventilation direction in the reaction vessel.
  • a plate reactor hereinafter, also referred to as “second plate reactor” further having a partition for dividing a packed catalyst into a plurality of compartments.
  • the present invention preferably also provides a second plate reactor in which the volumes of the plurality of compartments are the same.
  • the present invention preferably provides a second plate reactor in which the volume of each of the plurality of compartments is 1 to 100 L.
  • the present invention preferably provides a second plate reactor in which the volume of each of the plurality of compartments is 2 to 25 L.
  • the present invention preferably includes a plurality of vent plugs that are breathable, are detachably fixed to the end portions of the respective compartments, and block the end portions of the respective compartments so as to hold the catalyst accommodated in the respective compartments.
  • a second plate reactor is further provided.
  • one or both of the partition and the heat transfer plate have a first locking portion for locking the vent plug, and the vent plug has air permeability and a catalyst.
  • a ventilation plate that does not pass through, a skirt portion that is provided perpendicularly to the ventilation plate at a part or all of the periphery of the ventilation plate, and a detachable engagement with the first locking portion provided in the skirt portion A second plate reactor having a second locking portion.
  • the present invention preferably provides a second plate reactor in which the interval between the plurality of partitions is 0.1 to 1 m.
  • the present invention is preferably a method for producing a reaction product using a second plate reactor, Supplying a heat medium having a desired temperature to the heat transfer tube, supplying a reaction raw material to a gap between adjacent heat transfer plates filled with a catalyst, and obtaining a reaction product discharged from the gap;
  • the reaction raw material is at least one selected from the group consisting of ethylene; hydrocarbons having 3 and 4 carbon atoms and tertiary butanol, or at least 1 selected from the group consisting of unsaturated aliphatic aldehydes having 3 and 4 carbon atoms.
  • reaction product is ethylene oxide; at least one of unsaturated aliphatic aldehydes having 3 and 4 carbon atoms and unsaturated fatty acids having 3 and 4 carbon atoms; maleic acid; phthalic acid; paraffin; alcohol; acetone and phenol; Or styrene (hereinafter, also referred to as “second production method of reaction product”).
  • the present inventors have intensively studied to solve the above problems, and the plate-type reaction is divided into a plurality of reaction zones in which the average layer thickness of the catalyst layer formed between the heat transfer plates is different.
  • the present invention It came to be completed. That is, the gist of the present invention is as follows.
  • the present invention (A) a plate reactor having a catalyst layer formed between heat transfer plates, at least one reaction raw material selected from the group consisting of hydrocarbons having 3 and 4 carbon atoms and tertiary butanol; and Supplying a reaction raw material mixture containing molecular oxygen, catalytic vapor phase oxidation of the reaction raw material, and at least one selected from the group consisting of unsaturated hydrocarbons and unsaturated aliphatic aldehydes having 3 and 4 carbon atoms Producing a reaction product, or (B) A production method using a plate reactor provided with a catalyst layer formed between heat transfer plates, wherein at least a reaction raw material selected from the group consisting of unsaturated aliphatic aldehydes having 3 and 4 carbon atoms A reaction raw material mixture containing one kind and molecular oxygen is supplied, and the reaction raw material is subjected to catalytic gas phase oxidation to produce at least one reaction product selected from the group consisting of unsaturated fatty acids having 3 and 4 carbon
  • the plate reactor is divided into a plurality of reaction zones having different average layer thicknesses of the catalyst layers, and a heat medium whose temperature is independently adjusted is supplied to the plurality of reaction zones.
  • the heat generated is removed through the heat transfer plate, and the temperature in the catalyst layer is independently controlled,
  • the temperature T (S1) of the heating medium supplied to the reaction zone S1 closest to the inlet of the reaction raw material mixture is adjacent to the reaction zone S1 and is located downstream of the flow of the reaction raw material mixture.
  • the load of the reaction raw material when oxidizing at least one of the reaction raw materials selected from the group consisting of the hydrocarbons having 3 and 4 carbon atoms and tertiary butanol is 150 liters per hour per liter of catalyst [standard state (Temperature 0 ° C., 101.325 kPa) conversion]
  • the loading amount of the reaction raw material is 160 liters per hour per 1 liter of catalyst [standard state (temperature One or more reactions selected from the group consisting of unsaturated hydrocarbons, unsaturated aliphatic aldehydes having 3 and 4 carbon atoms, and unsaturated fatty acids having 3 and 4 carbon atoms.
  • a production method for producing a product (hereinafter also referred to as “third production method of a reaction product”) is provided.
  • the temperature of the heat medium supplied to any unspecified reaction zone S (j) is T (Sj), adjacent to the reaction zone S (j), and the flow of the reaction raw material mixture
  • T (Sj) the temperature of the heat medium supplied to the reaction zone S (j + 1) located downstream
  • T (Sj) and T (Sj + 1) are T (Sj) ⁇ T (Sj + 1) )> 5
  • a third method for producing a reaction product is provided.
  • the number of the reaction zones is 2 to 5, and the average layer thickness of the catalyst layer in each reaction zone increases from the reaction raw material mixture inlet to the outlet.
  • the amount of the reaction raw material loaded when oxidizing at least one of the reaction raw materials selected from the group consisting of the hydrocarbons having 3 and 4 carbon atoms and tertiary butanol is the catalyst 1
  • a third method for producing a reaction product is provided which is 170 to 290 liters per liter per hour [converted to a standard state (temperature 0 ° C., 101.325 kPa)].
  • the amount of the reaction raw material loaded per liter of the catalyst when oxidizing at least one of the reaction raw materials selected from the group consisting of the above-mentioned unsaturated aliphatic aldehydes having 3 and 4 carbon atoms is preferable.
  • a third method for producing a reaction product which is 180 to 300 liters per hour [converted to a standard state (temperature 0 ° C., 101.325 kPa)], is provided.
  • the present invention preferably provides a third method for producing a reaction product, wherein the conversion rate of the reaction raw material at the reaction product outlet of the plate reactor is 90% or more.
  • the reaction raw material is propylene
  • the temperature of the heat medium supplied to the plurality of reaction zones is 320 to 400 ° C.
  • the reaction raw material is acrolein
  • a third method for producing a reaction product is provided, wherein the temperature of the heat medium supplied to the reaction zone is 250 to 320 ° C.
  • the measured value of the distance between the surfaces of the heat transfer plate in the plate reactor is included in the specific range described above with respect to the design value. It is possible to control without causing the reaction to runaway, and a plate reactor capable of such control can be manufactured without much labor and use of a large amount of steel. A reactor can be obtained.
  • the length of the heat transfer plate in the axial direction is 5 m or less, preferably 2 m or less. It is more effective from the viewpoint of obtaining a small plate reactor.
  • the first plate reactor further includes a spacer for forming a predetermined interval between the heat transfer plates, so that the difference between the measured values with respect to the design value of the distance between the surfaces of the heat transfer plates is small. It is much more effective from the viewpoint of obtaining a plate reactor.
  • the heat transfer plate is formed by joining two steel plates formed so that a plurality of shapes obtained by dividing the cross-sectional shape of the heat transfer tube into two by the shaft of the heat transfer plate are continuous. This is even more effective from the viewpoint of reducing the difference between the measured values with respect to the design value of the distance between the surfaces of the heat transfer plates.
  • the difference in the measured value of the distance between the surfaces with respect to the design value is smaller on the upstream side in the flow direction of the raw material gas in the gap between the heat transfer plates.
  • the difference in the measured value of the distance between the surfaces with respect to the design value at a position where the reaction rate of the raw material in the raw material gas is 70% or less is more effective from the viewpoint of increasing the accuracy of the reaction gas. It is even more effective that it is smaller than the difference of the measured value of the distance between the surfaces with respect to the design value at a larger position.
  • the total volume of the gaps between the heat transfer plates is 3 L or more, which is more effective from the viewpoint of producing the reaction product with high productivity.
  • the first plate reactor further includes a temperature measuring device for measuring temperatures at two or more positions of the catalyst layer in which a catalyst is filled in a gap between the heat transfer plates. This is even more effective from the viewpoint of increasing control accuracy.
  • the reaction of the raw material in the raw material gas in the presence of the catalyst is an exothermic reaction, which is more effective from the viewpoint that the effect of the present invention is remarkably obtained. It is even more effective that the reaction product is one or both of acrolein and acrylic acid, one or both of methacrolein and methacrylic acid, maleic acid, phthalic acid, ethylene oxide, paraffin, alcohol, acetone and phenol, or butadiene. Is.
  • the heat transfer plates before joining are arranged through spacers that form a distance between the heat transfer plates so that the distance between the surfaces of the opposite heat transfer plates is a design value. This is more effective from the viewpoint of reducing the difference between the measured values and the design values.
  • the second plate reactor Since the second plate reactor has the partition, it can be filled with an amount of catalyst corresponding to the capacity of each section formed by the partition, and the packing state of the catalyst is made constant in each section. Thus, the catalyst can be uniformly filled in the entire gap between adjacent heat transfer plates in the plate reactor. Thus, in the plate reactor of the present invention, the catalyst can be uniformly and easily filled in the gaps between the adjacent heat transfer plates as compared with the conventional plate reactor.
  • the volume of each of the plurality of compartments is the same from the viewpoint of easily keeping the packed state of the catalyst in each compartment.
  • the volume of each of the plurality of compartments is 1 to 100 L, which is more effective from the viewpoint of facilitating the catalyst filling operation in each compartment.
  • the volume of each of the plurality of compartments is 2 to 25 L, which is more effective from the viewpoint of facilitating the catalyst filling operation in each compartment.
  • the vent plug so that the catalyst filled in the gap between the adjacent heat transfer plates can be taken out in a unit of unit, and the gap between the adjacent heat transfer plates can be uniformly and easily. It is more effective from the viewpoint of easily filling the catalyst with the catalyst and easily adjusting the filling state of the catalyst in the gap.
  • the first locking portion, the vent plate, the skirt portion, and the second locking portion have sufficient vent plugs at the end of each section. This is more effective from the viewpoint of fixing with strength and easy attachment / detachment of the vent plug.
  • the interval between the plurality of partitions is 0.1 to 1 m, which is more effective from the viewpoint of facilitating the catalyst filling operation in each section.
  • the raw material is at least one selected from the group consisting of ethylene; hydrocarbons having 3 and 4 carbon atoms and tertiary butanol, or unsaturated fat having 3 and 4 carbon atoms. At least one selected from the group consisting of a group aldehyde; hydrocarbon having 4 or more carbon atoms; xylene and / or naphthalene; olefin; carbonyl compound; cumene hydroperoxide; butene; or ethylbenzene; At least one of C3 and C4 unsaturated aliphatic aldehyde and C3 and C4 unsaturated fatty acid; maleic acid; phthalic acid; paraffin; alcohol; acetone and phenol; butadiene;
  • the plate reactor Since the raw material is processed by uniformly filled catalyst between the heat transfer plates, it is more effective from the viewpoint of improving the heat removal or the heating method of the heat of reaction in such catalytic reaction.
  • a reaction raw material is supplied to a plate reactor filled with a catalyst, and the reaction raw material is reacted to produce a reaction product.
  • the purpose is to prevent an increase in the pressure loss of the reaction fluid that passes through the catalyst when the processing load is increased, and to prevent hot spots by appropriately controlling the heat generated by the reaction, thereby preventing damage to the catalyst. It is possible to improve the yield of the reaction product.
  • FIG. 1 is a diagram schematically showing the configuration of a plate reactor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the plate reactor of FIG. 1 taken along line A-A ′.
  • FIG. 3 is a cross-sectional view of the plate reactor of FIG. 1 taken along line B-B ′.
  • FIG. 4 is a diagram showing an example of the appearance of the plate reactor of FIG.
  • FIG. 5 is a view showing dimensions of the heat transfer tube 1.
  • FIG. 6 is a diagram illustrating an example of a heat medium mixing apparatus.
  • FIG. 7 is a diagram illustrating an example of the partition 7.
  • FIG. 8 is a diagram illustrating an example of the vent plug 8.
  • FIG. 9 is a diagram illustrating an example of an installation state of the vent plug 8.
  • FIG. 1 is a diagram schematically showing the configuration of a plate reactor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the plate reactor of FIG. 1 taken along
  • FIG. 10 is a diagram illustrating an example of the temperature measuring device 9.
  • FIG. 11 is a diagram illustrating an example of the catalyst layer formed in the gap between the heat transfer plates 2.
  • FIG. 12 is a diagram schematically showing another form of the heat transfer plate.
  • FIG. 13 is a diagram schematically showing the configuration of the second embodiment in the plate reactor of the present invention.
  • FIG. 14 is a view showing a cross section of the plate reactor of FIG. 13 taken along line A-A ′.
  • FIG. 15 is a view showing a cross section of the plate reactor of FIG. 13 taken along line B-B ′.
  • FIG. 16 is a view showing adjacent heat transfer plates 2 and partitions 7 provided therebetween.
  • FIG. 17 is a diagram illustrating an example of the partition 7.
  • FIG. 18 is a diagram illustrating another example of the partition 7.
  • FIG. 19 is a diagram illustrating another example of the partition 7.
  • FIG. 20 is a diagram illustrating another example of the partition 7.
  • FIG. 21 is a diagram illustrating another example of the partition 7.
  • FIG. 22 is a diagram illustrating another example of the partition 7.
  • FIG. 23 is a diagram schematically showing the configuration of the third embodiment in the plate reactor of the present invention.
  • FIG. 24 is a view showing a cross section when the plate reactor of FIG. 23 is cut along the line A-A ′.
  • FIG. 25 is a view showing a cross section of the plate reactor of FIG. 23 taken along line B-B ′.
  • FIG. 26 is a diagram showing the partition 7.
  • FIG. 27 is a view showing adjacent heat transfer plates 2 and a partition 7 and a vent plug 8 provided therebetween.
  • FIG. 28 is a perspective view of the vent plug 8.
  • FIG. 29 is a development view of the vent plug 8.
  • FIG. 30 is a view showing a detachable structure between the vent plug 8 and the partition 7.
  • FIG. 31 is a diagram illustrating an example of a tool used for removing the vent plug 8.
  • FIG. 32 is a view showing another detachable structure of the vent plug 8 and the partition 7.
  • FIG. 33 is a view showing another example of a vent plug used in the present invention.
  • FIG. 34 is a view showing another example of a vent plug used in the present invention.
  • FIG. 35 is a view showing another example of a vent plug used in the present invention.
  • FIG. 36 is a view showing another example of a vent plug used in the present invention.
  • FIG. 37 is a view showing another example of a vent plug used in the present invention.
  • FIG. 38 is a view showing another example of a vent plug used in the present invention.
  • FIG. 39 is a diagram showing another example of a vent plug used in the present invention and its detachable fixing configuration.
  • FIG. 40 is a diagram showing another example of a vent plug used in the present invention and its detachable fixing configuration.
  • FIG. 41 shows a longitudinal sectional view of the plate reactor.
  • FIG. 42 shows a longitudinal sectional view of the plate reactor.
  • FIG. 43 shows an enlarged view of the heat transfer plate.
  • the first plate reactor includes a reaction vessel for reacting a gaseous raw material, a plurality of heat transfer plates provided side by side in the reaction vessel, and a heat medium having a desired temperature on the heat transfer plate.
  • a heating medium supply device for supplying.
  • the reaction vessel a vessel in which a gaseous raw material (raw material gas) is supplied, a generated gas is discharged, and a plurality of heat transfer plates are accommodated side by side can be used. Since the plate reactor is generally used for the reaction in an atmosphere under a pressurized condition, the reaction vessel is preferably a pressure-resistant vessel that can withstand an internal pressure of 3,000 kPa (kilopascal).
  • a reaction container for example, a shell in which a cylindrical portion or a part thereof is combined, a shell whose interior is divided by a plate member so as to accommodate a plurality of heat transfer plates, and a plurality of heat transfer plates are accommodated.
  • a container having a housing-like interior surrounded by members constituting the inner surface of the plane can be used.
  • the heat transfer plate includes a plurality of heat transfer tubes connected in the vertical direction at the peripheral edge or edge of the cross-sectional shape.
  • the heat transfer plate is a plate-like body including a plurality of heat transfer tubes arranged in parallel.
  • the heat transfer tubes may be directly connected or indirectly connected through an appropriate member such as a plate or a hinge.
  • the heat transfer plate is formed by joining two steel plates each formed into a shape in which the cross-sectional shape of the heat transfer tube is divided into two or more are directly or indirectly connected to each other. From the viewpoint of obtaining.
  • the interval between the heat transfer plates is set according to a design value, and may be an equal interval or two or more different intervals.
  • the heat transfer plates are arranged such that the heat transfer plate axes are parallel to each other between the heat transfer plates, and the heat transfer tube axes are parallel to each other between the heat transfer plates. Is provided.
  • the heat transfer plate may be provided as described above, or the axis of the heat transfer plate is in the radial direction of the cross section of the reaction vessel. Between them, the axes of the heat transfer tubes may be provided so as to be parallel to each other (that is, radially).
  • the number of heat transfer plates accommodated in the reaction vessel is not particularly limited, and is practically determined from the amount of catalyst necessary for the reaction, and is usually several tens to several hundreds. Further, the number of heat transfer plates accommodated in the reaction vessel is such that the total capacity of the gaps between the heat transfer plates is 3 L (liters) or more from the viewpoint of realizing high productivity in industrial production of reaction products.
  • the number is preferably 100L or more, and more preferably 250L or more.
  • the volume of one section surrounded by the spacer and the heat transfer plate is preferably 1L or more, and more preferably 10L or more.
  • the distance between the axes of the heat transfer plates accommodated in the reaction vessel is 10 to 50 mm from the viewpoint of sufficiently controlling the reaction temperature in the gas phase contact reaction.
  • the axis of the heat transfer plate refers to the heat transfer plate in the cross section when the heat transfer plate is cut along the gas flow direction in the gap when the heat transfer plate is viewed from the gap.
  • the distance between the axes of the heat transfer plate effectively removes the heat associated with the reaction, prevents catalyst deterioration due to hot spots in the catalyst layer (in the case of exothermic reaction), while optimizing the temperature throughout the catalyst layer.
  • the average value is 10 to 50 mm (1.1 to 5 times the sum of the half value of the width of heat transfer tubes in adjacent heat transfer plates) from the viewpoint of obtaining a high reaction rate and high reaction results by controlling the range. Is preferably 10 to 40 mm, more preferably 20 to 35 mm.
  • the distance between the axes of the heat transfer plate is affected by the diameter of the catalyst (usually preferably 1 to 10 mm for industrial catalysts), the reaction activity of the catalyst, and the high temperature resistance of the catalyst.
  • the smaller the distance between the axes of the heat transfer plate the easier the control of the reaction.
  • the distance between the axes of the heat transfer plate is not less than 5-10 times the catalyst diameter, Bridging may occur during filling, and the filling density may be reduced.
  • the heat transfer plate may be arranged in the reaction container so that the convex edges of the surface of the heat transfer plate face each other, or the convex edge of the surface of one heat transfer plate is the surface of the other heat transfer plate. It may be arranged so as to face the concave edge of the surface.
  • the heat transfer tube is generally arranged in a direction in which the shaft of the heat transfer tube intersects the aeration direction in the reaction vessel when the heat transfer plate is accommodated in the reaction vessel.
  • the angle between the axis of the heat transfer tube and the aeration direction in the reaction vessel is not particularly limited as long as the axis of the heat transfer tube intersects the gas aeration direction in the reaction vessel.
  • the heat transfer tube axis is orthogonal to the aeration direction in the reaction vessel, that is, the flow direction of the heat medium flowing through the heat transfer tube is orthogonal to the aeration direction in the reaction vessel. It is more preferable from the viewpoint of controlling the reaction of the raw material by adjusting the temperature of the heat medium in the tube.
  • the heat transfer tube is formed of a material having heat transfer properties in which heat is exchanged between a heat medium in the heat transfer tube and a catalyst layer circumscribing the heat transfer tube.
  • materials include stainless steel and carbon steel, hastelloy, titanium, aluminum, engineering plastic, and copper.
  • Stainless steel is preferably used.
  • 304, 304L, 316, and 316L are preferred.
  • the cross-sectional shape of the heat transfer tube may be a circle, a substantially circular shape such as an elliptical shape or a rugby ball shape, a leaf shape formed by symmetrically connecting arcs, or a polygonal shape such as a rectangle. The shape which combined two or more of these may be sufficient.
  • the peripheral edge in the cross-sectional shape of the heat transfer tube means a peripheral edge in a circular shape
  • the end edge in the cross-sectional shape of the heat transfer tube means an edge of a major axis end in a substantially circular shape or a single edge in a polygon.
  • the diameter of the heat transfer tube in the axial direction of the heat transfer plate is (1) bending (flexure) rigidity in a direction orthogonal to both the axis of the heat transfer plate and the axis of the heat transfer tube, and (2) From the viewpoint of sufficiently ensuring the formability and accuracy of the shape of the heat tube, and (3) the heat transfer area necessary for removing reaction heat, and (4) the appropriate flow distribution of the reaction gas and the heat transfer coefficient of the catalyst layer. (5) From the viewpoint of obtaining an appropriate flow rate and heat transfer coefficient of the heat medium in the heat transfer tube, it is preferably 10 to 100 mm, more preferably 15 to 70 mm, and more preferably 20 to 50 mm. Further preferred.
  • the radius of the heat transfer tube in the direction perpendicular to the axis of the heat transfer plate is 1.5 mm to 25 mm from the viewpoint of sufficiently controlling the reaction temperature in the gas phase contact reaction.
  • the radius of the heat transfer tube is as follows: (1) The distance between adjacent heat transfer plates is controlled in accordance with the reaction heat generated between the heat transfer plates, and the catalyst layer temperature is adjusted.
  • reaction heat (4) Moderately ensuring the heat transfer area required for heat removal of (3) and (3) formability and accuracy of heat transfer tube shape, and (4) disordered flow velocity distribution of the reaction gas and heat transfer of the catalyst layer From the viewpoint of obtaining the coefficient, (5) pressure loss of the reaction gas, and (6) the flow rate and heat transfer coefficient of the heat medium in the heat transfer tube, it is preferably 1.5 to 25 mm, and preferably 3 to 20 mm. Is more preferably 5 to 15 mm.
  • the distance between the heat transfer plates is usually adjusted for the purpose of controlling the temperature of the catalyst layer.
  • the respective radii of the heat transfer tubes in the axial direction of the heat transfer plate and in the direction perpendicular to the axis are also related to the distance between the heat transfer plates and the particle size of the catalyst. It is possible to achieve.
  • shape and size of the cross section of each of the plurality of heat transfer tubes in one heat transfer plate may be constant or different.
  • the length of the heat transfer tube in the axial direction is not particularly limited, but is generally 0.5 to 20 m.
  • the length of the heat transfer tube in the axial direction is preferably 3 to 15 m, more preferably 6 to 10 m, from the viewpoint of mass production of reaction products.
  • the length in the axial direction of the heat transfer plate (that is, the connecting direction of the heat transfer tube in the cross section of the heat transfer tube orthogonal to the axis of the heat transfer tube) is a viewpoint for preventing deformation such as bending of the heat transfer plate accommodated in the reaction vessel. Therefore, it is preferably 5 m or less, more preferably 0.5 to 2 m, and further preferably 0.5 to 1.5 m.
  • the plate width standard and availability of the steel plate used when manufacturing the heat transfer plate are also important for the production of a practical and inexpensive heat transfer plate. In particular, it is 1.5-2 m or less. Therefore, when it exceeds the plate width of the practical size, it is possible to join and use two or more steel plates, but the formability at the joining portion of the steel plates may be reduced.
  • errors caused when forming the steel plate are important.
  • the errors caused when the steel sheet is formed include errors in the axial direction of the heat transfer tubes and errors in the connection direction of the heat transfer tubes, both of which are important.
  • the distance between the surfaces of the heat transfer plates is changed in the flow direction of the reaction gas (usually the connection direction of the heat transfer tubes)
  • the forming accuracy of the shape of the heat transfer tube in the flow direction of the reaction gas is particularly important.
  • the length of the heat transfer plate in the axial direction is preferably 2 m or less.
  • the design value of the distance between the surfaces of the heat transfer plates facing each other is 5 to 50 mm.
  • the distance between the surfaces of the heat transfer plates refers to the distance between the surfaces of the heat transfer plates in the direction perpendicular to the surface that is equidistant from the surface of the heat transfer plate in the gap between the opposed heat transfer plates.
  • the distance between the surfaces of the heat transfer plate is the cross section of the heat transfer plate when the heat transfer plate is cut along the gas flow direction in the gap when the heat transfer plate is viewed from the gap.
  • the heat transfer tube In order to prevent leakage of the heat medium into the reaction vessel and leakage of gas from the reaction vessel to the heat transfer tube and the heat medium supply device when the heat transfer tube and the heat medium supply device are connected, the heat transfer tube is generally used. It is joined to the heat medium supply device by welding. Therefore, in general, the heat transfer plate is irreversibly fixed in the reaction vessel. For this reason, generally the arrangement
  • positioning of the heat-transfer plate in reaction container is predetermined by the design value according to the desired reaction result.
  • the design value can be determined based on the conditions of reaction control and reaction results.
  • the conditions for controlling the reaction can be determined, for example, by the upper limit of the absolute value of the peak temperature of the catalyst layer during the reaction.
  • the reaction results can be determined mainly by the yield of the product in consideration of, for example, the conversion rate of the raw material and the selectivity of the product.
  • the design value of the catalyst layer when satisfying the reaction control conditions and satisfying the reaction performance conditions considering further factors such as the type of catalyst, the composition and flow rate of the raw material gas, and the temperature of the heating medium. It is determined as the thickness, that is, the distance between the surfaces of the heat transfer plate.
  • the peak temperature of the catalyst layer is the maximum temperature of the catalyst layer in the exothermic reaction and the minimum temperature of the catalyst layer in the endothermic reaction.
  • the design value is calculated by a computer simulation, an experiment by a test machine such as a plate type reactor having a simple configuration such as having only one pair of heat transfer plates and a small plate type reactor having a total capacity of about 3L. Alternatively, it can be obtained from an experiment using a tubular reaction tester having a single reaction tube filled with a catalyst and a jacket for circulating a heat medium around the reaction tube.
  • the computer simulation can be performed using software such as CFX of Ansys Corporation, STAR-CD of CD adapco, and gPROMS of PSE.
  • the design value is preferably 5 to 50 mm from the viewpoint of precise control of the reaction, reaction results (reaction yield or selectivity), and productivity of the reaction product per catalyst amount (space time yield). It is more preferably 7 to 30 mm, and further preferably 10 to 25 mm. To achieve high catalyst productivity, the smaller the distance between the surfaces of the heat transfer plate, the easier the temperature control and the precise control of the reaction is possible, but the distance between the surfaces of the heat transfer plate is The particle size of the catalyst to be inserted is also limited. In the industrial catalyst, the particle size of the catalyst is often 1 to 10 mm, and the design value can be preferably determined within the above range from the viewpoint of these conditions.
  • the difference between the measured values with respect to the design value of the distance between the surfaces of the heat transfer plates facing each other is ⁇ 0.6 to +2.0 mm.
  • represents that the actual measurement value is smaller than the design value
  • + represents that the actual measurement value is larger than the design value.
  • the distance between the surfaces of the heat transfer plates may be a distance between any positions on the surfaces of the opposing heat transfer plates as long as the distance is within a range of 5 to 50 mm.
  • the distance between the surfaces of the heat transfer plates is opposite when the heat transfer tube located on the most upstream side in the direction of flow of the raw material gas in the reaction vessel is the heat transfer tube A among the heat transfer tubes included in the heat transfer plate.
  • the distance between the convex edges of the heat transfer tubes A in the pair of heat transfer plates may be, or the concave edge by the connection portion between the heat transfer tubes A in the pair of opposed heat transfer plates and the heat transfer tubes adjacent to the downstream side thereof.
  • the distance between the surfaces of the heat transfer plate can be measured, for example, by inserting a rod having the same thickness as the design value of the distance between the surfaces. Further, the distance between the surfaces of the heat transfer plate is, for example, the length of the design value that is arranged perpendicular to the axis of the insertion rod member at the tip of the insertion rod member and the insertion rod member inserted into the gap. A measuring member having a measuring rod member is inserted into the gap, and the angle and rotation angle of the shaft of the inserting rod member when the end of the measuring rod member contacts the surface of the heat transfer plate in the gap are measured. By doing this, the distance between the surfaces of the heat transfer plate at the portion in contact with the measuring rod member can be obtained from this angle.
  • the difference between the measured value and the design value is larger than +2.0 mm, the reaction cannot be sufficiently controlled, the runaway reaction can be suppressed, the catalyst can be prevented from deteriorating, and the reaction yield cannot be reduced. is there. Further, if the difference between the measured value and the design value is less than ⁇ 0.6 mm, the catalyst feed to the gap between the heat transfer plates may be hindered, or the catalyst feed may be performed without any trouble. In some cases, however, the packing density of the formed catalyst layer is lowered, the catalyst amount is insufficient, and the desired reaction rate may not be achieved.
  • the difference between the measured value and the design value is preferably ⁇ 0.5 to +1.5 mm, more preferably ⁇ 0.5 to +1.0 mm, from the viewpoint of more precise reaction control. More preferably, it is ⁇ 0.3 to +1.0 mm.
  • the difference between the measured value and the design value is most preferably in the range of ⁇ 0.6 to +2.0 mm in the whole plate reactor, but it prevents the runaway reaction and maintains high productivity. From the viewpoint of achieving both, it is preferable that a difference from the design value of 50% or more of all measured values is included in ⁇ 0.6 to +2.0 mm, and 70% or more of all measured values are included. It is more preferable that the difference with respect to the design value is included in ⁇ 0.6 to +2.0 mm, and a difference with respect to the design value of 80% or more is included in ⁇ 0.6 to +2.0 mm. More preferably, a difference from the design value of 90% or more is included in ⁇ 0.6 to +2.0 mm.
  • the measurement point of the actually measured value is preferably 2 to 30, more preferably 5 to 25, and further preferably 10 to 20 in the axial direction of the heat transfer plate.
  • the measurement point of the actual measurement value is preferably 2 to 50, more preferably 5 to 30, and further preferably 10 to 20 in the axial direction of the heat transfer tube in the heat transfer plate.
  • a spacer (partition) may be inserted between the heat transfer plates, but in that case, the spacer has the effect of adjusting the interval between the heat transfer plates. Therefore, in this case, the measured value may be measured at two locations from the center position between the spacers.
  • the installation interval when installing multiple spacers is usually 50 cm to 1 m.
  • a heat transfer plate that uses a highly rigid heat transfer plate and devise side plates and welds that join the heat transfer plates together can be used. If the distance between them can be controlled, the distance between the spacers can be set to 1 m or more.
  • the difference between the measured values and the design values is sufficiently small (for example, the error is ⁇ 0).
  • the error is ⁇ 0).
  • -0.6 to +2 by performing a method of selecting and using a shaped steel plate with high accuracy, and a method of selecting and correcting a shaped steel plate with insufficient accuracy to improve accuracy.
  • 0.0 mm For errors with respect to the design value of the steel sheet forming, for example, by installing a laser displacement meter on both sides of the formed steel sheet, by moving the displacement meter or the steel sheet, measuring the displacement of both sides of the formed steel sheet, The molding accuracy and the error with respect to the design value can be obtained.
  • a heat transfer tube having a length of 10 m or less in the axial direction of the heat transfer tube is effective from the viewpoint of preventing the heat transfer tube and the heat transfer plate from being bent, and the actual measurement with respect to the design value is performed. This is preferable from the viewpoint of setting the difference in value between -0.6 and +2.0 mm.
  • the difference between the measured values with respect to the design value may be a single value, but depending on the expected reaction rate when used in the gas phase catalytic reaction, a plurality of different in the axial direction of the heat transfer plate It may be a value.
  • the difference between the measured values with respect to the design value at the inlet of the raw material gas in the gap between the heat transfer plates where the reaction is particularly intense and the reaction rate of the raw material is low is performed. From the viewpoint of suppressing reaction runaway, making it smaller than that at the outlet, that is, the difference between the measured values with respect to the design value is smaller on the upstream side in the ventilation direction in the gap between the heat transfer plates. preferable.
  • the position where the reaction rate of the raw material has a predetermined value in the axial direction of the heat transfer plate is the cross-sectional shape and size of the heat transfer tube, the temperature of the heat medium flowing through the heat transfer tube, and
  • the flow rate, the distance between the surfaces of the heat transfer plate, the type of catalyst, the composition of the raw material gas and its flow rate, etc. are determined by various conditions relating to the progress of the reaction and the heat transfer. It can be determined from calculation by computer simulation.
  • the heat medium supply device is a device for joining a heat transfer tube at both ends of the heat transfer tube in the heat transfer plate and supplying a heat medium having a desired temperature to the heat transfer tube.
  • a normal device for supplying a heat medium to the heat transfer tube in the plate reactor can be used.
  • the heat medium supply device may be a device that supplies the heat medium in one direction to all of the plurality of heat transfer tubes, or supplies the heat medium in one direction to a part of the plurality of heat transfer tubes, and the plurality of heat transfer tubes The other part may be a device for supplying a heat medium in the reverse direction.
  • the heat medium supply device has a plurality of heat medium circulation chambers that are partitioned in a direction transverse to the axial direction of the heat transfer plate, so that a plurality of reaction zones are provided in the catalyst layer along the axial direction of the heat transfer plate. It is preferable from the viewpoint of formation. Moreover, it is preferable that a heat-medium supply apparatus is an apparatus which circulates a heat medium inside and outside a reaction container via the said heat exchanger tube.
  • the heat medium supply device has a device for adjusting the temperature of the heat medium supplied to the heat transfer tube.
  • a heat exchanger provided in a circulation path of the heat medium
  • a heat medium mixing apparatus for mixing the heat medium of different temperatures with the heat medium in the chamber in the heat medium supply apparatus
  • a heat medium temperature measuring device and a device for adjusting the flow rate of the heat medium.
  • the heat medium mixing device includes, for example, a distribution pipe that protrudes into the heat medium supply device and can distribute and supply the heat medium in the heat medium supply device, a liquid passing plate provided in the heat medium supply device, and A static mixer called a so-called static mixer can be used.
  • the distribution pipe examples include a distribution pipe having a plurality of liquid passage openings such as slits and holes in the pipe wall along the longitudinal direction of the distribution pipe, and a distribution pipe further including a branch pipe having the liquid passage opening.
  • the distribution pipe is preferably provided so as to extend in a direction orthogonal to the flow direction of the heat medium in the heat medium supply device, and the distribution pipe having a branch pipe includes a main pipe and a branch pipe, Are provided so as to extend in a direction perpendicular to the flow direction of the heat medium in the heat medium supply device, and the extension directions of the main pipe and the branch pipe are perpendicular to each other. It is preferable from the viewpoint of improving the efficiency in dispersion of the medium and suppressing pressure loss.
  • the first plate reactor may further include other components other than those described above.
  • other components include a spacer, a vent plug, a temperature measuring device, and a plate clamping unit.
  • the spacer is a member for forming a predetermined interval between the heat transfer plates. It is preferable that the spacer is in contact with the surface of the heat transfer plate and has sufficient rigidity to maintain the space between the heat transfer plates.
  • the spacer is a member that intermittently contacts the surface of the heat transfer plate in the axial direction of the heat transfer plate, so that when the spacer is formed of steel, the amount of steel required for the plate reactor is reduced. It is preferable from the viewpoint.
  • the spacer is preferably a member that continuously contacts the surface of the heat transfer plate in the axial direction of the heat transfer plate from the viewpoint of preventing deformation of the heat transfer plate in the reaction vessel.
  • the spacer is a member that does not allow the passage of the catalyst in the axial direction of the heat transfer tube.
  • the gap between the heat transfer plates can be partitioned into compartments of a predetermined capacity. This is preferable from the viewpoint of easily and accurately filling the gaps between the heat plates with the catalyst.
  • the spacers are arranged at 10 or more locations in the axial direction of the heat transfer tube or at intervals of 100 to 1,000 mm. Examples of the spacer include members in various forms such as a bar, a plate, and a block, and a partition in a second plate reactor described later.
  • the vent plug has air permeability, and in the case of further having a gap of the heat transfer plate or a spacer, the end of the section in the axial direction of the heat transfer plate is detachable so as not to allow passage of the catalyst. It is a member for closing.
  • a vent plug for example, a vent plate that closes a gap between the heat transfer plates in the axial direction of the heat transfer plate or an end of the partition, and the vent plate is provided with the heat transfer plate or the spacer. Examples thereof include a member having a locking member that is detachably locked.
  • the vent plug is preferably a member that is detachably disposed at the end of the compartment from the viewpoint of easily and accurately filling the gap between the heat transfer plates.
  • a vent plug in a second plate reactor described later can be used.
  • the temperature measuring device is a device that measures the temperature of the catalyst layer formed in the gap between the heat transfer plates.
  • a temperature measuring device include a device having a flexible support and a temperature measurement unit supported by the support.
  • a flexible string, band, chain, or tube can be used as the support.
  • the temperature measuring unit include a platinum resistance temperature detector, a thermistor, a thermocouple, and an optical fiber type temperature measuring device.
  • the number of the temperature measuring devices installed per reaction vessel is preferably 2 to 20 from the viewpoint of grasping the temperature of the catalyst layer.
  • the thickness (width) of the support is preferably 0.5 to 5 mm.
  • the temperature measuring unit is preferably provided on one support from 1 to 30 from the viewpoint of reflecting the measurement of the temperature of the catalyst layer in the control of the reaction, and in the case where a plurality of reaction zones are formed in the catalyst layer. 1 to 10 are preferably provided for one reaction zone.
  • the temperature measuring device stretches the support in a straight line at a position equidistant from the adjacent heat transfer plates, and the catalyst is placed in the gap while the support is stretched. By filling, it can arrange
  • the temperature measurement position may be two or more in one catalyst layer. is necessary. From the viewpoint of ease of reaction control, it is preferable that there are many temperature measurement positions.
  • the plate clamping portion is in contact with the heat transfer plates at both ends in the direction in which the heat transfer plates are arranged so as to block the flow of the raw material gas at least along the axial direction of the heat transfer tubes, and the plurality of heat transfer plates It is a member that is sandwiched in the direction in which the heat transfer plates are arranged.
  • the plate clamping part may be provided in the reaction container or may constitute a pair of opposing walls of the reaction container.
  • the plate clamping portion is preferable from the viewpoint of preventing formation of a gas retention portion on the wall of the reaction vessel.
  • a pair of clamping plates that abut the entire heat transfer tube in the extending direction of the heat transfer tube on at least one heat transfer tube of the heat transfer plates at both ends in the direction in which the plurality of heat transfer plates are arranged. And a holding rod for penetrating and holding these clamping plates.
  • the heat transfer plate for holding the holding bar is a member that can connect the holding plate in the opposing direction at a predetermined interval, such as a bar having a screw to which a nut can be screwed at least at the tip. More preferable from the viewpoint of finely adjusting the interval with the catalyst, from the viewpoint of easily installing a scaffold during the filling of the catalyst and the inside of the plate reactor, and from the viewpoint of being divertable to a plate reactor under other conditions .
  • a catalyst is filled in a gap between the heat transfer plates.
  • the said catalyst is selected according to the raw material and reaction product of a gaseous-phase contact reaction.
  • a normal granular catalyst filled in a gap between a tube or a heat transfer plate by a gas phase contact reaction can be used.
  • One or more catalysts may be used.
  • An example of such a catalyst is a catalyst having a particle size (longest diameter) of 1 to 20 mm.
  • the particle size of the catalyst used is more preferably 1 to 10 mm.
  • a shape of a catalyst a well-known thing can be used, for example, spherical shape, cylindrical shape, Raschig ring shape, and saddle shape are mentioned.
  • the first plate reactor has a heat exchange capability, and among the gas phase catalytic reactions in which a raw material gas and a solid catalyst are used, an exothermic reaction or an endothermic reaction that requires a heat exchange function in the reactor. Can be used. That is, the first plate type reactor supplies a gaseous raw material to the reaction vessel and passes it through the catalyst layer, and supplies a heat medium having a predetermined temperature to a plurality of heat transfer tubes constituting the heat transfer plate. And a first reaction method for producing a reaction product that reacts a raw material gas in the presence of the catalyst to produce a gaseous reaction product. Such a production method can be performed in the same manner as the gas phase catalytic reaction using a known plate reactor, or can be performed under the same conditions as the gas phase catalytic reaction using a known multitubular reactor. .
  • Examples of the gas phase catalytic reaction accompanied by the exothermic reaction include: a reaction that produces propane, propylene and oxygen or one or both of acrolein and acrylic acid; and one or both of methacrolein and methacrylic acid produced from isobutylene and oxygen.
  • reaction for producing ethylene oxide from ethylene and oxygen reaction for producing one or both of unsaturated aliphatic aldehyde and unsaturated fatty acid having 3 carbon atoms from hydrocarbon having 3 carbon atoms and oxygen; carbonization having 4 carbon atoms Reaction to produce one or both of unsaturated aliphatic aldehyde having 4 carbon atoms and unsaturated fatty acid from oxygen and / or hydrogen and Tascherbutanol and oxygen; carbon from unsaturated aliphatic aldehyde having 3 or 4 carbon atoms and oxygen Reactions that produce unsaturated fatty acids of number 3 or 4; hydrocarbons having 4 or more carbon atoms such as n-butane and benzene and oxygen And the like; reaction producing butadiene by oxidative dehydrogenation of butene; reaction of producing phthalic acid from xylene and / or naphthalene with oxygen; reaction produces Luo maleic acid.
  • Examples of the gas phase contact reaction accompanied by the endothermic reaction include a reaction of generating styrene by dehydrogenation of ethylbenzene.
  • the first production method of the reaction product is preferably used for the production of one or both of metaacrolein and methacrylic acid, one or both of acrolein and acrylic acid, maleic acid, phthalic acid, ethylene oxide, or butadiene. it can.
  • the first production method of the reaction product for producing one or both of (meth) acrolein (acrolein or methacrolein) and (meth) acrylic acid is that the first plate reactor is used as the reactor.
  • Propane, propylene or isobutylene as described in Japanese Patent Application Laid-Open No. 2003-252807 can be performed by a known method of oxidizing molecular oxygen or a gas containing the same in the presence of a catalyst. it can.
  • the catalyst includes a Mo—V—Te composite oxide catalyst, a Mo—V—Sb composite oxide catalyst, a Mo—Bi composite oxide catalyst, and Mo—
  • a well-known catalyst can be used by a well-known usage in the use in the gas phase catalytic oxidation reaction which produces
  • the first production method of the reaction product can be suitably used in a gas phase contact reaction involving an exothermic reaction as a reaction of the raw material in the raw material gas in the presence of the catalyst.
  • the peak temperature in the temperature distribution in the axial direction of the heat transfer plate of the catalyst layer during the reaction is the peak temperature of the catalyst layer set during the design of the first plate reactor.
  • a heat medium having a set temperature is supplied from the heat medium supply device to the heat transfer tube.
  • Such temperature control of the heat medium can be performed using a known control method such as feedback control based on the design value.
  • the temperature of the heat medium during the reaction is preferably controlled so that the peak temperature of the catalyst layer is ⁇ 20 ° C. with respect to the designed value, and the peak temperature of the catalyst layer is ⁇ 10 with respect to the designed value. More preferably, the reaction is carried out so that the peak temperature of the catalyst layer becomes ⁇ 5 ° C. with respect to the design value.
  • the set value is obtained from an experiment in determining the design value of the plate reactor, or determined in the calculation by the computer simulation.
  • the temperature of the heat medium can be controlled using the heat medium supply device.
  • the heat transfer plate is disposed at an interval where the distance between the surfaces of the opposed heat transfer plates is the design value, and the heat transfer tube and the heat medium supply device are welded or the like. Obtained by bonding.
  • the heat transfer plates can be arranged at intervals corresponding to the design values, for example, by arranging the heat transfer plates via bar members having a thickness equal to the design value.
  • the rod member is extracted from the gap between the heat transfer plates after joining the heat transfer tube and the heat medium supply device.
  • the heat transfer plate may be arranged at an interval corresponding to the design value by alternately and densely arranging the heat transfer plate and the spacer before joining. it can.
  • the first plate reactor has a heat transfer tube 1 as shown in FIGS. 1 to 4, for example, and a plurality of heat transfer plates 2 provided side by side in the reaction vessel, and the heat transfer plates 2 are arranged side by side.
  • a pair of sandwiching plates 3 that are in contact with the heat transfer plates 2 at both ends in the direction at least along the axis of the heat transfer tube 1 and sandwich the plurality of heat transfer plates 2 in the direction in which the heat transfer plates 2 are arranged, and sandwiching these
  • a plurality of holding rods 4 that connect the plates 3, a heat medium supply device 5 that abuts against both ends of the heat transfer tube 1 in the heat transfer plate 2 and supplies a heat medium to the heat transfer tube 1, and a shaft of the heat transfer tube 1.
  • the gas distribution part 6 that covers both ends of the plurality of heat transfer plates 2 and distributes the gas to the gap between the adjacent heat transfer plates 2 and the gap between the adjacent heat transfer plates 2 in the gas ventilation direction
  • the heat transfer tube 1 has, for example, a diameter (long axis, L) in the axial direction of the heat transfer plate 2 of 30 to 50 mm, and a diameter (short axis, H) in the direction orthogonal to the axial direction of the heat transfer plate 2 is 10 to 20 mm.
  • the cross-sectional shape is a tube whose main component is a circular arc, an elliptical arc, a rectangle, and a part of a polygon.
  • the length of the heat transfer tube 1 is usually 0.1 to 20 m, for example 10 m.
  • FIG. 5 shows a heat transfer tube having a leaf shape in cross section with an arc as a component of the cross section.
  • the major axis of the heat transfer tube is represented by L
  • the minor axis is represented by H.
  • the heat transfer plate 2 has a shape in which a plurality of heat transfer tubes 1 are connected by an edge having a cross-sectional shape.
  • the heat transfer plate 2 is formed by joining two steel plates formed so as to form an elliptical arc continuously by welding with convex edges formed at the ends of the arcs of both steel plates.
  • a steel plate having a thickness of 2 mm or less, preferably 1 mm or less is used as the steel plate.
  • the shape of the formed steel plate is precisely inspected. For example, a formed steel plate having an error with respect to the design value of forming within ⁇ 1% is used as it is, and the forming with an error with respect to the design value of forming exceeds ⁇ 5%.
  • the steel sheet thus used is used after being corrected so that the error with respect to the design value of forming is within ⁇ 2%.
  • Adjacent heat transfer plates 2 may be arranged in parallel so that the convex edges of the surfaces face each other, but in the plate reactor of FIG. 1, the convex edges of the surface of one heat transfer plate 2 and The other heat transfer plate 2 is arranged in parallel so as to face the concave edge on the surface.
  • the heat transfer plate 2 may be composed of the same heat transfer tube 1 or may be composed of the heat transfer tubes 1 having different cross-sectional sizes.
  • the upper portion, the middle portion, and the lower portion of the heat transfer plate 2 may be configured by three types of heat transfer tubes having different cross-sectional sizes. More specifically, as shown in FIG. 7, the heat transfer plate 2 is formed so that the major axes of the three types of heat transfer tubes are arranged in a straight line.
  • 20% of the height of the heat transfer plate 2 is composed of the heat transfer tube a having the largest cross section, and the middle part of the heat transfer plate 2 is the second cross section of 30% of the height of the heat transfer plate 2
  • the lower part of the heat transfer plate 2 is constituted by the heat transfer tube c having the smallest cross-sectional area for 40% of the height of the heat transfer plate 2, and the heat transfer plate 2.
  • 10% of the height of the heat transfer plate 2 may be formed by the joining plate portions at the upper end portion and the lower end portion of the heat transfer plate 2.
  • the cross-sectional shape of the heat transfer tube a is, for example, a long diameter (L) of 50 mm and the short diameter (H) is a leaf shape of 20 mm
  • the cross-sectional shape of the heat transfer tube b is, for example, a long diameter (L) of 40 mm and short.
  • the diameter (H) is a leaf shape of 16 mm
  • the cross-sectional shape of the heat transfer tube c is, for example, a leaf shape having a major axis (L) of 30 mm and a minor axis (H) of 10 mm.
  • the length of the heat transfer plate 2 in the axial direction of the heat transfer plate 2 is usually 0.5 to 10 m, preferably 2 m or less. When the length of the heat transfer plate 2 in the axial direction is 2 m or more, the two heat transfer plates 2 can be joined or combined.
  • the sandwiching plate 3 is a pair of plates, for example, a pair of stainless steel plates.
  • the clamping plate 3 is formed larger than the heat transfer plate 2 so that it can be joined by the holding rod 4 at the edge.
  • the holding rod 4 is a plurality of rods that penetrate and connect the pair of clamping plates 3, and is, for example, a stainless rod having screws at both ends.
  • the sandwiching plate 3 is fixed by nuts at both ends of the holding rod 4 at positions where it comes into contact with the outer periphery of the heat transfer tube 1 (the heat transfer tube a) above the heat transfer plate 2.
  • the clamping plate 3 can be fixed by changing the position in the direction of clamping the heat transfer plate 2 within the range of the installation length of the screws of the holding rod 4.
  • the holding bar 4 is arranged at a position overlapping the partition 7 arranged in the gap between the heat transfer plates 2 in the vertical direction.
  • a pair of clamping plates 3 and holding rods 4 constitute the plate clamping portion.
  • the heat medium supply device 5 is a pair of containers that are in contact with both ends of the heat transfer tube 1 of the heat transfer plate 2.
  • the heating medium supply device 5 is airtightly joined to the sandwiching plate 3 at the side edge portion of the sandwiching plate 3 using a normal fixing member such as a screw and a nut and a seal such as a gasket.
  • the inside of the jackets 11 and 12 traverses the axis of the heat transfer plate 2 so that the heat medium flows in one direction or the opposite direction in each predetermined number of heat transfer tubes 1 and the heat medium reciprocates between the jackets 11 and 12. It may be appropriately divided so as to communicate with or cut off along the direction to perform.
  • the heat medium supply device 5 may be a device that causes the heat medium to flow in one direction in all the heat transfer tubes 1 from one jacket 11 to the other jacket 12, as indicated by an arrow Y in FIG. Good.
  • the heat medium supply device 5 is, for example, a heat medium mixed in the jackets 11 and 12 or in any one of the plurality of chambers in the jackets 11 and 12 that are blocked with respect to the axial direction of the heat transfer plate 2.
  • the heat medium mixing device includes a nozzle 16 that communicates with the inside and outside of the jacket, and a nozzle 16 that is connected to the inside of the jacket and extends in a direction perpendicular to the flow direction of the heat medium within the jacket.
  • the distribution pipe 17 is, for example, a pipe having a closed end and a plurality of holes provided over the entire length of the distribution pipe.
  • the gas distribution unit 6 includes, for example, a reaction vessel cover that forms a cover that is separated from the end portions of the plurality of heat transfer plates, and that seals both ends of the side wall of the reaction vessel formed by the heat medium supply device and the plate holding unit.
  • a gas vent nozzle 18
  • covers having various shapes such as a dome shape, a conical shape, a quadrangular shape, a triangular prism shape, and a housing can be used.
  • the said vent hole can use the normal vent hole which has the nozzle opened to a reaction container cover, and the flange formed in the edge part, for example.
  • the reaction vessel cover is usually provided in a pair with respect to the side wall of the reaction vessel, and these may be the same or different.
  • one vent is usually provided in the reaction vessel cover, but a plurality of vents may be provided.
  • a pair of the vents are usually provided in the plate reactor, but these may be the same or different.
  • the gas distribution unit 6 includes an upper end edge of the sandwiching plate 3 and an upper end edge of the jackets 11 and 12, and a lower end edge of the sandwiching plate 3 and the jackets 11 and 12.
  • a pair of members that cover both ends of the plurality of heat transfer plates 2 are hermetically joined to the lower end edges, for example, using the fixing member and a seal.
  • the gas distribution unit 6 is, for example, a kamaboko type stainless steel lid.
  • Each of the gas distribution units 6 includes a nozzle 18 and a manhole 19. The gas is supplied to the gap between the heat transfer plates 2 through the nozzle 18 of one gas distribution unit 6, and the gas is discharged from the gap through the nozzle 18 of the other lid.
  • a reaction vessel is formed by airtightly joining the sandwich plate 3, the heating medium supply device 5, and the gas distribution unit 6.
  • the manhole 19 is an open / close door for an operator to enter and exit the gas distribution unit 6 in a state where the gas distribution unit 6 is installed.
  • the arrangement of the nozzle 18 and the manhole 19 is not particularly limited, but when the gas distribution unit 6 is a kamaboko type lid, for example, as shown in FIG. 1, the nozzle 18 is provided at one end of the lid, and the manhole 19 is a lid. Provided at the other end.
  • the gas distribution unit 6 includes a safety device (not shown) such as a safety valve or a rupture disc as a safety measure in the case of an abnormal sudden rise in pressure or abnormal reaction, and the main body of the gas distribution unit 6 at the inlet and / or outlet. Or the nozzle 18.
  • the partition 7 is provided between the adjacent heat transfer plates 2 along the direction crossing the axis of the heat transfer tube 1, that is, the gas flow direction in the plate reactor.
  • the partition 7 is a plate-like member with sufficient rigidity that comes into contact with the surface of the heat transfer tube 1, for example, and has a window 20 that is a rectangular through-hole at the bottom.
  • the partition 7 is a spacer that maintains the interval between the heat transfer plates 2 at a predetermined interval.
  • the partitions 7 may be provided at the same interval in the whole plate reactor or may be provided at different intervals.
  • the partitions 7 are provided in parallel at the same interval of 400 mm, for example, and form a plurality of compartments having a volume of 12 L in the gaps between the heat transfer plates 2.
  • the vent plug 8 has a rectangular vent plate 21 having the same cross-sectional shape as each section, a first skirt portion 22 provided downward from the short side of the vent plate 21, and the vent plate 21. And a second skirt portion 23 that hangs downward from the long side.
  • the first skirt portion 22 is formed with a rectangular locking window 24 and a locking claw 25 provided adjacent thereto.
  • the ventilation plate 21 is, for example, a plate in which circular holes of 2 mm are formed with an opening rate of 30%.
  • the locking window 24 is formed in a size having a width and a height for accommodating the locking claw 25.
  • the locking claw 25 is formed by bending two parallel cuts from the lower edge of the first skirt portion 22 so as to protrude outward. In the pair of first skirt portions 22 facing each other, one locking window 24 and the other locking claw 25 face each other, and one locking claw 25 and the other locking window 24 face each other.
  • the window 20 of the partition 7 is formed in a size having a width and a height that include the locking window 24 and the locking claw 25 at the same time.
  • the vent plug 8 is inserted into each section from the lower end of each section with the ventilation plate 21 up. At this time, the latching claw 25 is pressed against the partition 7 against the outward bias, but when it reaches the window 20, it is released from the pressing of the partition 7 as shown in FIG. Advancing toward and locking to the window 20.
  • the temperature measuring device 9 is provided in an outermost gap and an arbitrary gap inside the gap among a plurality of gaps formed by the heat transfer plate 2. Further, the temperature measuring device 9 is provided at a plurality of locations including the vicinity of the inlet and the outlet of the heat medium along the axial direction of the heat transfer tube 1, that is, the flow direction of the heat medium, in one gap between the heat transfer plates 2. Provided. The installation position of the temperature measuring device 9 can be determined according to the temperature difference between the upstream heat medium and the downstream heat medium in one heat transfer tube 1 of the heat transfer plate 2.
  • the temperature measuring device 9 has a temperature difference between the upstream heat medium and the downstream heat medium in one heat transfer tube 1 of the heat transfer plate 2. Is provided at a position of 2 ° C. or higher.
  • the temperature measuring device 9 includes a flexible support 26, a plurality of temperature measuring units 27 supported by the support 26, and a horizontal direction extending from the support 26.
  • a plurality of spacer rods 28 in contact with the surface of the heat plate 2, a flange 29 provided at the base end of the support 26, a connector 30 connected to the flange 29, a cable 31 connected to the connector 30, and the support 26 And a fixing flange 32 provided at the front end of the head.
  • the support 26 is a stainless steel tube having an average wall thickness of 0.2 mm. Eleven thermocouples that are temperature measuring units 27 are inserted in the support 26. Each temperature measurement part 27 is arrange
  • the temperature measuring unit 27 is provided in the vicinity of the inlet of the reaction gas in the catalyst layer, in the vicinity of the outlet, and at three locations where the maximum temperature is predicted in each reaction zone of each catalyst layer. More specifically, as shown in FIG. 10, the temperature measuring unit 27 has a central portion of the first reaction zone formed by the heat transfer tube a group, one at the upper end of each gap in the ventilation direction of each gap. Three at the center of the second reaction zone formed by the heat transfer tube b group, three at the top of the third reaction zone formed by the heat transfer tube c, and one at the lower end of each gap. , Respectively.
  • the position where the temperature difference of the heat medium in each heat transfer tube 1 is 2 ° C. or more and the position where the maximum temperature is predicted in each reaction zone of each catalyst layer are the results of experiments using this reactor tester. Or based on the result of computer simulation using software such as CFX of Ansys Corporation, STAR-CD of CD adapco, or gPROMS of PSE.
  • the spacer rod 28 is a stainless steel rod whose base end is fixed to the support 26 and extends in the horizontal direction.
  • the spacer rod 28 has a length corresponding to the position on the support 26, and the tip of the spacer rod 28 contacts the surface of the heat transfer plate 2 when the support 26 is supported by the center surface of each gap.
  • Have a length to Three spacer rods 28 are provided from the center portion to the base end portion of the support 26, and are provided so as to alternately contact each of the opposing heat transfer plates 2.
  • the flange 29 is placed on, for example, a flange support member that supports the flange 29 at a predetermined height in the reaction vessel in order to fix the support 26 to the upper portion of the reaction vessel.
  • the flange support member is, for example, a member that is inserted with a bolt suspended from the upper gas distributor 6 and is maintained at a predetermined height by a nut.
  • a nut For example, two steel wires sandwiching the support 26 and a bolt
  • the fixing flange 32 is a disk or a ring having a diameter larger than the diameter of the hole in the vent plate 21 of the vent plug 8. For example, after the tip of the support 26 is passed through the hole of the vent plate 21, Fixed to the tip.
  • the temperature measuring device 9 shown in FIG. 10 has the tip of the support 26 fixed to the vent plug 8 by the fixing flange 32 at a position equidistant from each heat transfer plate 2 at the lower end of the gap in the vertical direction.
  • the base end of the support 26 is fixed by the flange support member at a position equidistant from each heat transfer plate 2.
  • the heat transfer plates 2 are arranged in parallel at equal intervals, for example, the shortest distance between the outer walls of the heat transfer tubes a is 14 mm (the distance between the axes of the heat transfer plates 2 is 30 mm). is doing.
  • the heat transfer plate 2 is arranged at a desired position by alternately arranging the heat transfer plates 2 and the spacers 7, and both ends of the heat transfer tube 1 are welded and joined to the jackets 10 and 11 at this position.
  • the distance between the surfaces of the heat transfer plate 2 is the gas flow direction (BB in FIG. 1) when the heat transfer plate 2 is viewed from the gap between the heat transfer plates 2 (FIG. 1).
  • the heat transfer plate in a direction perpendicular to the line that is equidistant from the axis of the heat transfer plate 2 in the cross section (FIGS. 3 and 5) of the heat transfer plate 2 when the heat transfer plate 2 is cut along the line ' The distance between the two surfaces.
  • the heat transfer plate 2 is arranged so that the axis of the heat transfer plate 2 is along the vertical direction and the axis of the heat transfer tube 1 is along the horizontal direction, for example, between the surfaces of the heat transfer plate 2
  • the design value of the distance is that in the heat transfer plate 2 arranged so that the axis is in the vertical direction, the distance between the surfaces of the heat transfer plate 2 in the horizontal direction and the convex edge of one heat transfer plate and the other
  • the distance between the concave edges of the heat transfer plate is 20 mm, and the measured value of the distance is 19.5 to 21 mm
  • the difference between the distances between the surfaces of the heat transfer plate 2 at this time is ⁇ 0. 5 to 1.0 mm.
  • Each section of the gap between adjacent heat transfer plates 2 is filled with a catalyst.
  • a catalyst for example, a molybdenum (Mo) -bismuth (Bi) catalyst having a maximum average particle diameter of 5 mm and a ring shape is used.
  • a compartment formed by the heat transfer plate 2 and the partition 7 is filled with a catalyst having a predetermined volume corresponding to the volume of the compartment.
  • FIG. 11 shows a state in which the gap between the heat transfer plates 2 is filled with the catalyst.
  • the heat transfer plate 2 has two thin plates formed into a circular arc, an elliptical arc, a rectangle or a part of a polygon, joined to face each other, and flow paths for three kinds of heat media having different cross-sectional areas. 33, 34, and 35 are formed.
  • the width of the flow path 33 is the largest, and therefore the width of the catalyst layer 36 is the narrowest between the flow paths 33.
  • the widths of the flow paths 34 and 35 are sequentially smaller than that of the flow path 33, and therefore the width of the catalyst layer 36 is gradually increased.
  • the catalyst layer 36 forms three reaction zones 37, 38, 39 according to the flow paths 33, 34, 35.
  • the thickness of the catalyst layer 36 is an average value of the distance between the heat transfer plates 2 in the direction perpendicular to the axis of the heat transfer plate 2
  • the thickness of the catalyst layer 36 in the reaction zone 37 is, for example, 8 to 15 mm.
  • the thickness of the catalyst layer 36 in the reaction zone 38 following the reaction zone 37 is, for example, 10 to 20 mm
  • the thickness of the catalyst layer 36 in the reaction zone 39 following the reaction zone 38 is, for example, 15 to 30 mm.
  • the reaction temperature is controlled by the temperature of the heat medium flowing through the heat transfer tube 1.
  • the temperature of the heating medium varies depending on the types of raw materials, products, and catalysts, but is generally preferably 200 to 600 ° C.
  • An example of the temperature of the heat medium is 300 to 400 ° C. when the reaction raw material gas is a C3 to C4 unsaturated hydrocarbon.
  • the temperature of the heating medium supplied to each reaction zone is independently determined and controlled.
  • the temperature of the heat medium is selected in the range of 250 to 320 ° C.
  • the reaction conversion rate of the reaction raw material gas is important, and the temperature of the heat medium is controlled in order to obtain a desired conversion rate. If the temperature of the catalyst layer is set to an allowable temperature or higher during the operation of the plate reactor, problems such as a decrease in the activity of the catalyst, a decrease in the selectivity, and an increase in the activity and the rate of decrease in the selectivity may occur.
  • the “conversion rate” refers to the ratio of the amount of the raw material gas converted into the product by the reaction with respect to the supply amount of the raw material gas (for example, propylene) supplied to the catalyst layer, and the “selectivity” The ratio of the amount of the raw material gas converted into the target product to the amount of the raw material gas converted by the reaction is said.
  • the temperature of the heating medium is controlled in order to obtain a predetermined conversion rate, but in order to keep the catalyst performance high over a long period of time, it is important that the maximum temperature of the catalyst layer is not more than the maximum allowable temperature of the catalyst used. More preferably, it is important to keep the maximum temperature of the catalyst layer as low as possible within a range where desired reaction results can be obtained.
  • the heat medium is supplied to each of the reaction zones 2 to 5 at a temperature at which the peak temperature of the catalyst layer is within the set value ⁇ 10 ° C., and flows in a direction perpendicular to the reaction gas flow method (cross flow direction).
  • the temperature difference of the heat medium at the inlet and outlet in one heat transfer tube 1 is preferably 0.5 to 10 ° C, more preferably 2 to 5 ° C.
  • the heat medium controlled to a predetermined temperature may flow, for example, for each one of the heat transfer tubes 1 in the flow paths 33 to 35, or all of the heat transfer tubes 1 in the same reaction zone. In some cases, it may flow simultaneously. It is also possible to supply the heat medium supplied to and discharged from the heat transfer tube 1 in a certain reaction zone to the heat transfer tube 1 in the same or another reaction zone.
  • the thickness of the heat transfer tubes a to c that determines the thickness of the catalyst layer 36 (the distance between the surfaces of the heat transfer plate 2). And the distance between the axes of the pair of heat transfer plates 2. If the distance between the axes of the heat transfer plate 2 is constant and the thickness of the heat transfer tube 1 is too thin than the setting, or if the distance between the axes of the heat transfer plate 2 is too larger than the setting, the thickness of the catalyst layer 36 ( The distance between the surfaces of the heat plate 2) is increased, heat transfer is not performed efficiently, and the temperature of the catalyst layer 36 and the reaction raw material cannot be properly maintained.
  • the thickness of the catalyst layer 36 ( The distance between the surfaces of the heat transfer plates becomes smaller and heat transfer becomes efficient, but the set catalyst cannot be charged correctly and the gas phase catalytic reaction may not be maintained correctly.
  • a heat medium of, for example, 345 ° C. is passed through the heat transfer tube 1 as a heat medium, and a gas containing propylene, molecular oxygen, water vapor, and an inert gas is flowed from the upper gas distributor 6 as a raw material gas.
  • a reaction gas containing acrolein and acrylic acid is obtained.
  • the raw material gas is supplied in the supply amount of the raw material gas for obtaining a desired yield of the reaction product determined from the design value, and the heat medium is supplied to the heat transfer tube 1 at the temperature and supply amount of the heat medium determined from the design value.
  • the maximum temperature (peak temperature) A of the catalyst layer 36 is supplied and measured by the temperature measuring device 9.
  • the heat medium is supplied to the heat transfer tube 1 at the set temperature and supply amount of the heat medium.
  • the heat medium is supplied to the heat transfer tube 1 at a temperature lower than the set temperature of the heat medium and the set supply amount of the heat medium.
  • the peak temperature A is lower than the set value ⁇ 10 ° C.
  • the heat medium is supplied to the heat transfer tube 1 at a temperature higher than the set temperature of the heat medium and a set supply amount of the heat medium.
  • the plate type reactor uses the heat transfer plate 2 formed by joining steel plates formed with an error with respect to the design value within ⁇ 1%, the measured value of the peak temperature of the catalyst layer is the peak temperature.
  • the temperature of the heating medium By controlling the temperature of the heating medium so as to be a set value, it is possible to maintain the production of the reaction product under conditions with high productivity.
  • the plate type reactor has the partition 7, it is effective from the viewpoint of arranging the heat transfer plate 2 according to the design value of the distance between the surfaces of the heat transfer plate 2. Further, since the plate reactor has the partition 7, a plurality of sections are formed in the gap between the heat transfer plates 2, and the catalyst is filled in each section. Therefore, the catalyst is uniformly filled in the gap. It is effective from the viewpoint.
  • the plate type reactor has the temperature measuring device 9
  • the temperature of the catalyst layer 36 can be measured, and production with high efficiency is achieved by controlling the temperature of the heating medium according to the peak temperature of the catalyst layer 36. It is effective from the viewpoint of manufacturing a product.
  • the plate type reactor has a heat medium mixing device, it is effective from the viewpoint of controlling the temperature of the heat medium in the heat medium supply device 5 quickly and precisely.
  • the plate type reactor has the vent plug 8, it is possible to extract only the catalyst in an arbitrary section, which is effective from the viewpoint of uniformizing the catalyst layer 36 and improving the efficiency of maintenance and inspection work. It is.
  • the plate reactor has a gas distribution section 6 and a manhole 19, and the holding rod 4 is disposed at a position overlapping the partition 7. Therefore, the scaffold or support for the catalyst filling work and maintenance work is provided.
  • the holding rod 4 can be used as a member, which is effective from the viewpoint of efficiently working inside the plate reactor.
  • the form shown in FIG. 12 is also included.
  • Plate reactors are generally difficult to manufacture with high accuracy.
  • plate heat exchangers with similar configurations generally have an error of 3 to 5 mm or more with respect to the design value for the distance between the surfaces of the heat transfer plates.
  • the first plate reactor it is possible to provide a plate reactor in which the heat transfer plate is arranged within an error range in which the reaction can be controlled by controlling the temperature of the heat medium. The possibilities can be greatly expanded.
  • the first plate type reactor can be used for reactions in which gas phase raw materials are reacted in the presence of a solid phase catalyst.
  • the temperature in the reactor at the time of use and operations for preparation and inspection can be performed.
  • the deterioration of these gases may cause damage to the reactor. This is more effective when the heat of reaction accompanying the reaction of the gas component is remarkably large and the catalyst is likely to be deteriorated by the heat, and the temperature control of the catalyst layer is important.
  • the second plate reactor has a reaction vessel for reacting reaction raw materials, a heat transfer tube, a plurality of heat transfer plates provided in line in the reaction vessel, and supplies a heat medium to the heat transfer tube And a partition that divides a gap between adjacent heat transfer plates into a plurality of compartments containing the filled catalyst along the aeration direction in the reaction vessel.
  • the reaction vessel includes a plurality of heat transfer plates arranged in parallel in the aeration direction in the reaction vessel, and a plurality of catalyst layers arranged in parallel in the aeration direction in the reaction vessel, wherein a catalyst is filled in a gap between adjacent heat transfer plates. Is formed.
  • a casing having a rectangular cross section with respect to the aeration direction or a shell having a circular cross section is used.
  • the reaction vessel is a vessel in which the supplied reaction raw material is discharged through a gap between adjacent heat transfer plates, and usually has a pair of vent holes.
  • One of the pair of vent holes serves as a supply port for the reaction raw material supplied to the reaction vessel, and the other serves as a discharge port for the reaction product generated in the reaction vessel.
  • the form of the vent is not particularly limited as long as the reaction raw material is supplied to the reaction vessel and the reaction product is discharged from the reaction vessel.
  • the pair of vent holes are preferably provided to face each other.
  • a vent for example, a pair of vents provided at both ends of a casing or a shell, or a cylindrical portion formed in a central portion including a central axis of the shell and an inner peripheral portion of the shell, respectively, the crossing of the shell A pair of vents that allow the reaction fluid to vent radially on the surface may be mentioned.
  • the heat transfer plate is formed in a plate shape including a plurality of heat transfer tubes connected in one direction at the peripheral edge or edge in the cross-sectional shape.
  • such a heat transfer plate is formed by forming two corrugated plates in which patterns such as arcs, elliptical arcs, and rectangles are continuously formed at the ends of the patterns of both corrugated plates. Can be formed by joining each other with convex edges.
  • the heat transfer plate can be formed by connecting a plurality of the heat transfer tubes at a peripheral edge or an edge.
  • the heat transfer plate can be formed by stacking a plurality of the heat transfer tubes so as to contact each other at the peripheral edge or the edge in the reaction vessel.
  • the shape of the heat transfer plate is determined according to the shape and size of the reaction vessel, but is generally rectangular.
  • the size of the heat transfer plate is determined according to the shape and size of the reaction vessel.
  • the length that is, the connection height of the heat transfer tubes
  • the width ie, the length of the heat transfer tube
  • the horizontal direction there is usually no limitation in the horizontal direction.
  • Adjacent heat transfer plates in the reaction vessel may be arranged so that the convex edges of the surface of the heat transfer plate face each other, or the convex edges of the surface of one heat transfer plate are the surfaces of the other heat transfer plate. You may arrange so that a concave edge may be opposed.
  • the distance between adjacent heat transfer plates is such that a gap with a width of 3 to 40 mm, more preferably 3 to 15 mm is formed between the heat transfer plates in the transverse direction of the heat transfer tubes.
  • the average distance between the major axes is 15 to 50 mm, more preferably 23 to 50 mm (1.1 to 5 times the sum of the half value of the width of the heat transfer tubes in adjacent heat transfer plates, more preferably 1.1 to 2 Times).
  • the distance between the heat transfer plates is preferably 10 to 50 mm, more preferably 10 to 40 mm in terms of the average distance of the long axis tubes of the heat transfer tube from the viewpoint of obtaining a high reaction rate and high reaction results. More preferably, the thickness is 20 to 35 mm.
  • the heat transfer tube in the heat transfer plate is not formed so as to extend in a direction parallel to the aeration direction in the reaction vessel, but the reaction of the raw material is controlled by adjusting the temperature of the heat medium in the heat transfer tube. It is preferable from the viewpoint, and is formed so as to extend in a direction orthogonal to the aeration direction in the reaction vessel, that is, a direction in which the direction of the heat medium flowing through the heat transfer tube is orthogonal to the aeration direction in the reaction vessel. It is more preferable from the viewpoint of controlling the reaction of the raw material by adjusting the temperature of the heat medium in the heat transfer tube.
  • the heat transfer tube is formed of a material having a heat transfer property in which heat is exchanged between a heat medium in the heat transfer tube and a catalyst layer circumscribing the heat transfer tube.
  • a material include stainless steel and carbon steel.
  • the cross-sectional shape of the heat transfer tube may be a circle, a substantially circular shape such as an elliptical shape or a rugby ball shape, or a rectangular shape.
  • the peripheral edge in the cross-sectional shape of the heat transfer tube means a peripheral edge in a circular shape
  • the end edge in the cross-sectional shape of the heat transfer tube means an edge of a long axis end in a substantially circular shape or a single edge in a rectangle.
  • the shape and size of the cross section of each of the plurality of heat transfer tubes in one heat transfer plate may be constant or different.
  • the size of the cross-sectional shape of the heat transfer tube is, for example, a width of the heat transfer tube of 3 to 50 mm, more preferably 3 to 20 mm or 5 to 50 mm, and a height of the heat transfer tube of 10 to 100 mm, more preferably 10 to 50 mm or 20 to 100 mm.
  • the heat transfer tube width is small per unit time or per unit area of heat transferred by the heat transfer plate, increase the catalyst layer thickness by increasing the catalyst layer thickness and increasing the catalyst layer to increase the reaction rate. From the viewpoint, it is more preferably 3 to 20 mm, and when the amount of heat per unit time or unit area transferred by the heat transfer plate is large, the thickness of the catalyst layer is reduced to improve heat transfer, and the amount of catalyst is reduced. From the viewpoint of reducing the reaction rate, it is more preferably 5 to 50 mm. In addition, when the heat transfer tube has a small amount of heat per unit time or unit area transferred by the heat transfer plate, the catalyst layer is increased by increasing the thickness of the catalyst layer and increasing the catalyst layer to increase the reaction rate.
  • the thickness is 10 to 50 mm.
  • the thickness of the catalyst layer is reduced to improve heat transfer, and the amount of catalyst is reduced. From the viewpoint of reducing the reaction rate by reducing the thickness, it is more preferably 20 to 100 mm.
  • the heat medium supply device may be any device that supplies a heat medium to the heat transfer tube.
  • a heat medium supply device for example, a device that supplies a heat medium in one direction to all of the plurality of heat transfer tubes, or a heat medium that supplies a heat medium in one direction to a part of the plurality of heat transfer tubes.
  • Another part of the heat pipe includes a device for supplying a heat medium in the reverse direction.
  • the heat medium supply device is preferably a device that circulates the heat medium inside and outside the reaction tube via the heat transfer tube.
  • the heat medium supply device preferably has a device for adjusting the temperature of the heat medium from the viewpoint of controlling the reaction in the reaction vessel.
  • the partition is provided in a gap between adjacent heat transfer plates along the aeration direction in the reaction vessel, and forms a plurality of compartments in the gap.
  • the partition may be a member that can hold a catalyst in each compartment when the catalyst is filled in each compartment.
  • the partition is preferably formed of the same material as the heat transfer plate, preferably has heat transfer properties, preferably not reactive to the reaction in the reaction vessel, and the reaction in the reaction vessel is an exothermic reaction. In some cases, it is preferable to have heat resistance.
  • the partition preferably has rigidity from the viewpoint of holding the catalyst filled in each compartment. Examples of such partitions include stainless steel plates, square bars, round bars, nets, glass wool, and ceramic plates.
  • the shape of the partition is not particularly limited as long as the catalyst is held in the partition formed by each partition, and may be a shape in contact with the heat transfer tube or a shape in close contact with the heat transfer tube.
  • the partition preferably has a shape in contact with the surface of the outer wall of each heat transfer tube, from the viewpoint of holding the catalyst filled in each section, and has a shape that closely contacts the surface of the outer wall of the heat transfer tube. More preferred.
  • the said partition is a shape which becomes a square which has the width
  • the partition is preferably provided at an interval of 1 to 100 L from the viewpoint that the volume of the compartment formed by the partition can be accurately and easily filled with the catalyst in one compartment.
  • the volumes of the compartments formed by the partitions may be the same or different, but are preferably the same from the viewpoint of accurate and easy filling of the catalyst into all the compartments.
  • the volume of the one compartment is more preferably 1.5 to 30 L, further preferably 2 to 15 L, still more preferably 3 to 15 L, and still more preferably 5 to 10 L. .
  • the distance between the partitions is preferably 0.1 to 1 m from the same viewpoint.
  • the interval between the partitions is the length of the partition in the axial direction of the heat transfer tube, and the distance between adjacent partitions forming the partition, or the heat transfer tube forming the partition is connected. This is the distance between the inner wall surface of the reaction vessel and the partition.
  • the partition can be provided in the gap between the heat transfer plates as appropriate according to the properties of the partition. For example, a flexible partition or a partition having the shortest distance between the heat transfer plates is inserted into a gap between adjacent heat transfer plates in a plurality of heat transfer plates installed in the reaction vessel in advance. Therefore, it can be provided in the gap between the heat transfer plates.
  • the partition having a shape closely contacting the surface of the heat transfer plate can be provided in the gap between the heat transfer plates by alternately installing the heat transfer plate and the partition. it can.
  • a normal granular catalyst filled in a gap between a tube or a heat transfer plate by a gas phase reaction can be used.
  • One or more catalysts may be used. Examples of such a catalyst include a catalyst having a particle diameter (longest diameter) of 1 to 20 mm, and a catalyst having a particle diameter (longest diameter) of 3 to 20 mm and a specific gravity of 0.7 to 1.5. It is done.
  • a shape of a catalyst a well-known thing can be used, for example, spherical shape, cylindrical shape, Raschig ring shape, and saddle shape are mentioned.
  • the catalyst has a shape with the shortest diameter larger than the gap between the heat transfer plate and the partition. This is preferable from the viewpoint of preventing leakage of the catalyst, and when the partition is formed in a shape that does not adhere to the surface of the heat transfer plate, it is 1.2 to 2 times the maximum value of the gap between the partition and the heat transfer plate. A shape having a minimum diameter is more preferable.
  • the filling of the catalyst into the gap between the adjacent heat transfer plates is performed by filling the catalyst into each section.
  • Each compartment can be filled with a catalyst by filling the same volume of catalyst in a compartment continuously or intermittently.
  • the appropriate filling state of the catalyst is, for example, the comparison of the position of the top surface of the packed catalyst (catalyst layer) between the compartments, the measured value of the top surface in each compartment, and the calculated value of the top surface of each compartment. This can be determined by comparison.
  • the second plate reactor may further have other components other than the components described above.
  • Such other components include, for example, air permeability, provided at the end of the heat transfer plate on the downstream side in the aeration direction in the reaction vessel, and leakage of the packed catalyst from the reaction vessel.
  • Leakage prevention member for example, vent plug
  • locking member at the partition for fixing the partition
  • the vent plug is a member that achieves both the breathability of each section and the retention of the catalyst, and is a member that is detachably fixed to the end of each section in the ventilation direction.
  • the vent plug may be provided at the upstream end portion in the ventilation direction in each compartment or may be provided at the downstream end portion as long as it can prevent leakage of the catalyst from each compartment. These may be provided at both ends.
  • the entire vent plug may have air permeability, or may have air permeability only in the ventilation direction of each section.
  • the aeration generally means that a gas that is one of the states of the reaction raw material or the reaction product passes, but in this specification, the state of the reaction raw material or the reaction product is a fluid other than a gas (for example, in the case of liquid), this means that the fluid passes through.
  • the vent plug preferably has an opening ratio of 10% or more in the ventilation direction of each section from the viewpoint of ensuring air permeability in each section.
  • the opening ratio is more preferably 20% or more, and further preferably 30% or more, from the viewpoint of preventing the occurrence of pressure loss when the vent plug is fixed to the end of the compartment.
  • the vent plug preferably has a hole diameter of 5 mm or less, more preferably 3 mm or less, and even more preferably 1 mm or less.
  • the vent plug can be composed of one or more members having air permeability.
  • a vent plate such as a plate-like net or a perforated plate; a vent cylinder having a shape obtained by forming the vent plate into a cylindrical shape; and a vent plate on a part or all of the periphery of the vent plate
  • the cylinder, the member having the skirt portion, and the breathable double pipe are preferable from the viewpoint of obtaining sufficient strength for holding the catalyst.
  • the member having the skirt portion is more preferable from the viewpoint of easily attaching and detaching the end portion of each section.
  • the vent plate preferably has the same shape as the cross-sectional shape of each section from the viewpoint of preventing catalyst leakage from each section.
  • the skirt portion is provided on a part of the periphery of the ventilation plate, for example, as a pair of skirt portions that are in contact with the opposing partition or heat transfer plate in each section, from the viewpoint of easily detachably fixing the vent plug Preferably, it is provided on the entire periphery of the vent plate from the viewpoint of increasing the strength of the vent plug.
  • the skirt portion may be provided so as to protrude on both sides of the ventilation plate, or may be provided so as to protrude only on one side of the ventilation plate.
  • the vent plug is detachably fixed at the end of each compartment.
  • the structure for detachably fixing the partition side that is, from the viewpoint of easily fixing and removing the vent plug and fixing the vent plug with sufficient strength to hold the catalyst, that is, the heat transfer plate and the partition. It is preferable that it is the 1st latching
  • locking part the nail
  • the vent plug is formed of a material having sufficient rigidity for holding the catalyst. Examples of such materials include metals such as stainless steel and ceramics.
  • the vent plug is preferably formed of the same material as the heat transfer plate from the viewpoint of heat resistance and reaction resistance.
  • the catalyst filled in each compartment can be extracted in units of compartments by removing the vent plug and taking out the catalyst from the end of the compartment.
  • the second plate reactor includes a rectangular casing 44 and a plurality of heat transfer plates 2 that have the heat transfer tubes 1 and are provided facing each other in the casing 44.
  • the casing 44 forms an air passage having a rectangular cross-sectional shape, and corresponds to the reaction vessel.
  • the casing 44 has a pair of opposed vent holes 48, 48 ′ at the upper end and the lower end of the casing 44.
  • the heat transfer tube 1 is, for example, a tube having a major axis of 30 to 50 mm and a minor axis of 10 to 20 mm and an elliptical cross section.
  • the heat transfer plate 2 has a shape in which a plurality of heat transfer tubes 1 are connected by an edge having a cross-sectional shape.
  • the heat transfer plate 2 is formed by joining two corrugated plates each having an elliptical arc formed continuously with a convex edge formed at the ends of the arcs of both corrugated plates.
  • the adjacent heat transfer plates 2 may be arranged in parallel so that the convex edges of the surfaces face each other, but in the plate reactor of FIG. 13, the convex edges of the surface of one heat transfer plate 2 and the other
  • the heat transfer plates 2 are arranged in parallel so as to face the concave edges on the surface.
  • the heat transfer plate 2 includes three types of heat transfer tubes a to c having different cross-sectional sizes in the upper part, the middle part, and the lower part.
  • the heat transfer plate 2 is formed so that the long axes of the heat transfer tubes a to c are arranged in a straight line.
  • the heat transfer tube a forms the heat transfer plate 2 for 20% of the height of the heat transfer plate 2
  • the heat transfer tube b forms the heat transfer plate 2 for 30% of the height of the heat transfer plate 2.
  • the heat transfer tube c forms the heat transfer plate 2 for 40% of the height of the heat transfer plate 2. 10% of the height of the heat transfer plate 2 is formed by the upper and lower joint plate portions of the heat transfer plate 2.
  • the cross-sectional shape of the heat transfer tube a formed on the upper part of the heat transfer plate 2 is an ellipse having a major axis of 50 mm and a minor axis of 20 mm.
  • the cross-sectional shape is an ellipse having a major axis of 40 mm and a minor axis of 16 mm, and the sectional shape of the heat transfer tube c formed at the lower part of the heat transfer plate 2 is a major axis of 30 mm and a minor axis of 10 mm. It is oval.
  • the heat transfer plates 2 may be arranged in parallel at different intervals in the entire reaction vessel, but in the plate reactor of FIG. 13, the same interval (for example, the shortest distance between the outer walls of the heat transfer tube a is 14 mm (each The distance between the major axes of the heat transfer tubes of the heat plate 2 is 30 mm)).
  • the heat medium accommodating portion 45 is a container provided on a pair of opposing walls of the casing 44, and a supply port for supplying a heat medium to each heat transfer tube 1 is formed in the wall.
  • the heat medium is divided into a plurality at a predetermined height so that the heat medium meanders between the heat medium accommodating portions 45 via the heat transfer tubes 1.
  • the partition 7 is provided between the adjacent heat transfer plates 2 along the ventilation direction in the casing 44.
  • the partitions 7 may be provided at different intervals in the entire reaction vessel, but in the plate type reactor of FIG. 13, a partition having a volume of 23 L is formed in parallel at the same interval (for example, 1,000 mm). .
  • the interval between the partitions 7 is preferably 5 cm to 2 m, and more preferably 10 cm to 1 m.
  • the volume of the partition between the heat transfer plate and the partition is preferably 1 to 100 L, and preferably 1.5 to 30 L, from the viewpoint of performing filling of the gap into the gap in units of units and accurately and easily filling the catalyst. It is more preferable.
  • a member that can hold the filled catalyst in each compartment when the catalyst is filled in each compartment is used for the partition 7.
  • the partition 7 for example, as shown in FIGS. 17 to 19, a plate or net having a shape having a side edge that is in close contact with the unevenness on the surface of the heat transfer plate 2 can be used.
  • the partition 7 is in contact with the heat transfer tube a of the adjacent heat transfer plate 2 if the catalyst filled in each partition does not leak from the gap between the partitions 7 to the adjacent partition.
  • a member that does not come into contact with the convex and concave edges of the heat transfer tubes b and c can be used. For example, as shown in FIGS. 20 and 21, a round having the shortest distance diameter or width between adjacent heat transfer plates 2. A stick or a square stick can be used.
  • the partition 7 may be a net having an eye smaller than the size of the catalyst particles to be filled, or if the catalyst filled in each compartment does not leak into the adjacent compartment, As shown in FIG. 19, it may be a mesh having larger eyes than the catalyst particles (for example, 0.8 times or less of the shortest diameter of the catalyst).
  • the partition 7 has a partition as shown in FIG.
  • a zigzag plate or net that protrudes toward the concave edge of the heat transfer plate 2 at the side edge of the partition 7 and is separated from the convex edge of the heat transfer plate 2 can be used.
  • Such a partition 7 has a distance between two heat transfer plates 2 arranged in parallel so that one convex edge faces the other concave edge (an average of distances between major axes of the heat transfer tubes 1 in each heat transfer plate 2).
  • the partition 7 having a shape having a side edge in contact with the unevenness of the surface of the heat transfer plate 2 is used when the heat transfer plate 2 is installed in the casing 44.
  • the partition 7 having the shortest distance diameter or width between the adjacent heat transfer plates 2 as shown in FIGS. 20 and 21 is formed by alternately installing the heat transfer plates 2 and the partitions 7 in contact with the partitions 7. You may provide between the heat-transfer plates 2, and you may provide by inserting between the heat-transfer plates 2 adjacent to the heat-transfer plate 2 already installed.
  • the flexible partition 7 such as a net or a thin steel plate can also be provided by inserting it between the adjacent heat transfer plates 2 of the heat transfer plates 2 already provided.
  • the perforated plates 10 and 46 are plates each having a hole having a diameter of 0.20 to 0.99 times the longest diameter of the catalyst to be filled with an opening ratio of 20 to 99%.
  • the perforated plates 10, 46 are shown in FIG. 15 in order to prevent air from flowing into the gap between the outermost heat transfer plate 2 and the wall of the casing 44. Thus, it is formed so as to close the gap from the edge of the heat transfer plate 2 arranged on the outermost side to the wall of the casing 44.
  • the temperature adjusting device 47 is a device such as a heat exchanger that can control the temperature of the heat medium to a desired temperature.
  • the heat medium storage unit 45, the pump 15, and the temperature adjustment device 47 constitute a heat medium supply device.
  • the filling of the catalyst between the heat transfer plates 2 is performed by filling each compartment with the catalyst. Since all of the compartments formed by the heat transfer plate 2 and the partition 7 have the same volume, the capacity equivalent to the capacity of one compartment (for example, a volume of 95 to 100% with respect to the capacity of one compartment) Of each catalyst is packed into each compartment.
  • the good packing state of the catalyst means comparison between the theoretical value of the height when a predetermined amount of catalyst is filled and the measured value (for example, the error of the measured value with respect to the theoretical value is within 10%), and the catalyst between the compartments. Can be determined by comparison of the filling heights (for example, the difference in filling height between the sections is within 2% of the filling height).
  • the partition 7 has a hook that engages with an engagement portion such as a hole or a ring provided in the hole of the perforated plate 46 or the end of the heat transfer plate 2, and the hook is locked to the engagement portion.
  • an engagement portion such as a hole or a ring provided in the hole of the perforated plate 46 or the end of the heat transfer plate 2
  • the hook is locked to the engagement portion.
  • the catalyst can be uniformly filled in the entire reactor by filling the catalyst in a fixed state in units of compartments. Therefore, compared with the catalyst filling between the heat transfer plates 2 in which such compartments are not formed, the amount of the catalyst is accurately compared to the design value, and the filling state between the compartments (for example, packing density, porosity) Can be more easily performed.
  • the catalyst used for one catalyst filling operation is constant. Therefore, the filling operation of the catalyst can be performed more rapidly than the filling of the catalyst between the heat transfer plates 2 in which such a partition is not formed.
  • the plate type reactor has the partition 7, it is possible to judge the packing state of the catalyst in units of compartments. Therefore, when the catalyst filling state is poor, it is possible to correct the catalyst filling state by refilling only the catalyst in the section determined to be defective. Therefore, the catalyst filling operation can be adjusted more easily than the catalyst filling between the heat transfer plates 2 in which such compartments are not formed.
  • the second plate reactor for example, as shown in FIGS. 23 to 25, except that the perforated plate 46 has a plurality of vent plugs 8 that have air permeability and close the lower end portions of the respective sections. It has the same configuration as the plate reactor of the second form.
  • the casing 44 forms an air passage having a rectangular cross-sectional shape and corresponds to the reaction vessel.
  • the casing 44 has a pair of opposed vent holes 48, 48 ′ at the upper end and the lower end of the casing 44, a casing end portion 49 including the vent port 48, and a casing end portion 49 ′ including the vent port 48 ′.
  • the casing end portions 49 and 49 ' are detachably connected to the casing body.
  • the heat transfer tube 1 is, for example, a tube having a major axis of 20 to 100 mm and a minor axis of 5 to 50 mm and an elliptical cross section.
  • the heat transfer plate 2 has a shape in which a plurality of heat transfer tubes 1 are connected by an edge having a cross-sectional shape.
  • the heat transfer plate 2 is formed by joining two corrugated plates each having an elliptical arc formed continuously with a convex edge formed at the ends of the arcs of both corrugated plates.
  • the adjacent heat transfer plates 2 may be arranged in parallel so that the convex edges of the surfaces face each other, but in the plate reactor of FIG. 23, the convex edges of the surface of one heat transfer plate 2 and the other
  • the heat transfer plates 2 are arranged in parallel so as to face the concave edges on the surface.
  • the heat transfer plate 2 includes three types of heat transfer tubes a to c having different cross-sectional sizes in the upper part, the middle part, and the lower part.
  • the heat transfer plate 2 is formed so that the long axes of the heat transfer tubes a to c are arranged in a straight line.
  • the heat transfer tube a forms the heat transfer plate 2 corresponding to 30% of the height of the heat transfer plate 2
  • the heat transfer tube b corresponds to 25% of the height of the heat transfer plate 2.
  • the heat plate 2 is formed, and the heat transfer tube c forms the heat transfer plate 2 for 45% of the height of the heat transfer plate 2.
  • the cross-sectional shape of the heat transfer tube a formed on the upper part of the heat transfer plate 2 is an ellipse having a major axis of 50 mm and a minor axis of 20 mm.
  • the cross-sectional shape is an ellipse having a major axis of 40 mm and a minor axis of 16 mm, and the sectional shape of the heat transfer tube c formed at the lower part of the heat transfer plate 2 is a major axis of 30 mm and a minor axis of 10 mm. It is oval.
  • the heat transfer plates 2 may be arranged in parallel at different intervals in the entire reaction vessel, but in the plate reactor of FIG. 23, the same interval (for example, the shortest distance between the outer walls of the heat transfer tubes a) is used.
  • the same interval for example, the shortest distance between the outer walls of the heat transfer tubes a
  • the heat medium accommodating part 45 is the same as the heat medium accommodating part 45 in the second embodiment.
  • the partition 7 is provided between the adjacent heat transfer plates 2 along the ventilation direction in the casing 44.
  • the partitions 7 may be provided at different intervals in the entire reaction vessel. However, in the plate reactor of FIG. 23, the partitions 7 are arranged in parallel at the same interval (for example, 500 mm) to form a 25 L volume compartment.
  • the partition 7 is a stainless steel plate having a side edge that is in close contact with the irregularities on the surface of the heat transfer plate 2 as shown in FIG. 26, and has a window 20 at the lower end. Yes.
  • the vent plug 8 is provided at the lower end of each section as shown in FIG.
  • the vent plug 8 includes a rectangular vent plate 21 having the same cross-sectional shape in each section, a first skirt portion 22 suspended downward from the short side of the vent plate 21, and a vent plate 21 and a second skirt portion 23 that hangs downward from the long side.
  • the first skirt portion 22 is formed with a rectangular locking window 24 and a locking claw 50 provided adjacent thereto.
  • the vent plug 8 has a shape in which the ventilation plate 21 and the skirt portions 22 and 23 are developed, and the skirt portion 22 has a notch that becomes a locking window 24 and a locking claw 50.
  • the formed stainless steel plate is bent at the boundary between the ventilation plate 21 and the skirt portions 22 and 23, and the edges of the skirt portions are welded.
  • the ventilation plate 21 is, for example, a plate in which circular holes of 2 mm are formed with an opening rate of 30%.
  • the locking claw 50 is formed by bending two parallel cuts from the lower end edge of the first skirt portion 22 so as to protrude outward.
  • the locking window 24 and the locking claw 50 are provided in the same positional relationship with respect to the ventilation plate 21. Accordingly, in the pair of first skirt portions 22 that face each other, one locking window 24 and the other locking claw 50 face each other, and one locking claw 50 and the other locking window 24 face each other. Yes.
  • the locking window 24 is formed in a size having a width and a height for accommodating the locking claw 50, and the window 20 of the partition 7 includes the locking window 24 and the locking claw 50 at the same time. It is formed in a size having a width and a height.
  • the vent plug 8 is inserted into each section from the lower end of each section with the ventilation plate 21 up.
  • the locking claw 50 is pressed by the partition 7 against the outward bias, but when it reaches the window 20, it is released from the pressing of the partition 7 and reaches the window 20 as shown in FIG. 30.
  • the window 20 corresponds to a first locking portion
  • the locking claw 50 corresponds to a second locking portion.
  • the perforated plate 10 is a plate in which holes having a diameter of 0.3 to 0.8 times the longest diameter of the catalyst to be filled are provided with an opening ratio of 20 to 40%. .
  • the perforated plate 10 is used as shown in FIG. 25 in order to prevent air from flowing into the gap between the outermost heat transfer plate 2 and the wall of the casing 44.
  • the outermost heat transfer plate 2 is formed so as to close the gap from the edge of the heat transfer plate 2 to the wall of the casing 44.
  • the pump 15 and the temperature adjusting device 47 are the same as the pump 15 and the temperature adjusting device 47 in the first embodiment.
  • the heat medium storage unit 45, the pump 15, and the temperature adjustment device 47 constitute a heat medium supply device.
  • the filling of the catalyst between the heat transfer plates 2 is performed by filling each compartment with the catalyst. Since all the sections formed by the heat transfer plate 2 and the partition 7 have the same volume, in this embodiment, for example, a capacity equivalent to the capacity of one section (for example, the capacity of one section) 97 to 103% volume) of catalyst is loaded into each compartment.
  • the good packing state of the catalyst is a comparison between the theoretical value of the catalyst filling height and the actual measurement value (for example, the error of the actual measurement value with respect to the theoretical value is within 3%), It can be determined by comparing the filling height (for example, the difference in filling height between the sections is within 5% of the filling height).
  • the vent plug 8 of the section When the packing state of the catalyst in one section is poor, the vent plug 8 of the section is removed, and only the catalyst filled in the section is extracted from the lower end of the section. Since the window 20 of the partition 7 is formed in a size including the locking window 24 and the locking claw 50 when the vent plug 8 is fixed, the windows 20 are adjacent to each other via the partition 7. It opens to the locking window 24 and the locking claw 50 of the two vent plugs 8. Further, since the locking window 24 is formed in a size including the locking claw 50, one locking window 24 in the two vent plugs 8 adjacent to each other via the partition 7 is connected to the other locking claw 50. The other locking window 24 is open to one locking claw 50.
  • the vent plug 8 uses, for example, a tool having a hook that can be inserted into the locking window 24 at the tip as shown in FIG. 31, and the locking window 24 and the partition 7 of the adjacent ventilation plug 8 through the partition 7.
  • the locking claw 50 can be removed by pushing the locking claw 50 through the window 20 with the scissors and releasing the locking between the locking claw 50 and the window 20.
  • vent plug 8 When the catalyst is extracted, the vent plug 8 is inserted and fixed again from the lower end of the compartment, and the catalyst is filled in the compartment, whereby the catalyst in each compartment can be filled again.
  • the catalyst can be uniformly filled in the entire reactor by filling the catalyst in a fixed state in units of compartments. Therefore, accurate filling of the catalyst can be performed more easily than the filling of the catalyst between the heat transfer plates 2 in which such a partition is not formed.
  • the catalyst used for one catalyst filling operation is constant. Therefore, the filling operation of the catalyst can be performed more rapidly than the filling of the catalyst between the heat transfer plates 2 in which such a partition is not formed.
  • the plate type reactor has the partition 7, it is possible to judge the packing state of the catalyst in units of compartments. Therefore, when the catalyst filling state is poor, it is possible to correct the catalyst filling state by refilling only the catalyst in the section determined to be defective. Therefore, the catalyst filling operation can be adjusted more easily than the catalyst filling between the heat transfer plates 2 in which such compartments are not formed.
  • the plate reactor has the vent plug 8
  • the catalyst can be easily extracted in units of compartments. Therefore, if the packing state of the catalyst is poor, remove the vent plug of the section judged to be defective, remove the catalyst from the section, and refill the section with the catalyst to fill the catalyst in the specific section. The state can be easily corrected. Therefore, the catalyst filling operation can be more easily adjusted as compared with the catalyst filling between the heat transfer plates 2 in which such compartments are not formed.
  • vent plug 8 since the vent plug 8 has the rectangular vent plate 21 and the first and second skirt portions 22 and 23, it is excellent from the viewpoint of obtaining sufficient strength to support the catalyst layer in each section. Moreover, since the vent plug 8 is obtained by stamping, bending, and welding a steel plate, such an excellent vent plug 8 can be easily obtained.
  • the vent plug 8 has a locking window 24 and a locking claw 50 in each of the pair of first skirt portions 22 facing each other, and one locking window is formed in the pair of first skirt portions 22 facing each other. 24 and the other locking claw 50 face each other, and one locking claw 50 and the other locking window 24 face each other.
  • the latching claw 50 protruding from the top does not overlap or come into contact, and is excellent in terms of fixing the vent plug 8 with sufficient strength and easily removing the vent plug 8.
  • the window 20 of the partition 7 is formed in a size including the locking window 24 and the locking claw 50 when the vent plug 8 is fixed, any of the two vent plugs 8 in contact with the partition 7 can be obtained.
  • the locking claw 50 is also detachably locked.
  • the plate reactor is provided with the partition 7 having a single standard window 20, and therefore is excellent in terms of constructing the detachable structure of the vent plug 8 at low cost.
  • the vent plug 8 is fixed by a contact with a small contact area between the locking claw 50 and the window 20 below the ventilation plate 21, so that the temperature is relatively high as in the oxidation reaction. From the viewpoint of preventing seizure between the locking claw 50 and the window 20 when used in the reaction under the above conditions.
  • the window 20 as the second locking portion is provided in the partition 7, but even if such a second locking portion is provided at the lower end of the heat transfer plate 5,
  • a vent plug 8 can be provided in the same manner as in the plate reactor of FIG.
  • a vent plug can be locked also by detachably fixing using the lower end part of the heat-transfer plate 5.
  • partitions for example, various partitions may be used depending on the type and location of the second locking portion, the size of the gap generated between the partition and the heat transfer plate, and the distance between the heat transfer plates. it can.
  • a partition for example, as shown in FIGS. 18 and 19, a net having a side edge that is in close contact with the unevenness of the surface of the heat transfer plate 2, the diameter or width of the shortest distance between adjacent heat transfer plates 2. 20 and 21 and round bars and square bars as shown in FIGS. 20 and 21, as shown in FIG. 22, the side edge of the partition 7 protrudes toward the concave edge of the heat transfer plate 2, and the convexity of the heat transfer plate 2. Examples thereof include a zigzag plate or net spaced from the edge, and a member made of a material having no shape-retaining property such as glass wool.
  • the partition as shown in FIGS. 18 and 19 is, for example, a mesh having a size that prevents the catalyst from leaking (for example, 0.5 times the longest diameter of the catalyst).
  • the following can be suitably used.
  • the size of the mesh used for the partition is preferably 0.8 or less times the minimum diameter of the catalyst.
  • the partition as shown in FIG. 22 is a distance between two heat transfer plates 2 arranged in parallel so that one convex edge faces the other concave edge (the heat transfer tube in each heat transfer plate 2). 1 (the average value of the distances between the major axes) is 0.9 to 1.5 times the sum of the half-values of the maximum short diameters of the heat transfer tubes in each heat transfer plate 2. .
  • any of the above-described partitions can be used.
  • the second locking portion is a window
  • a plate-like member that can provide a window that can support the vent plug can be used.
  • a net-like member having a sufficiently large eye used as the window can be used for the partition.
  • the partition having a shape having a side edge in contact with the unevenness of the surface of the heat transfer plate comes into contact with the heat transfer plate when the heat transfer plate is installed in the casing. It is provided between two heat transfer plates by alternately installing partitions. As shown in FIGS. 20 and 21, the partition having the shortest distance diameter or width between adjacent heat transfer plates is formed by alternately arranging the heat transfer plates and the partitions contacting the heat transfer plates. Or may be provided by inserting between adjacent heat transfer plates of the already installed heat transfer plate. A flexible partition such as a net, cloth, or thin steel plate can be provided by inserting between adjacent heat transfer plates of the already installed heat transfer plate.
  • the partition has a hook that hooks to a further locking portion such as a hole or a ring provided in the hole of the vent plug 8 or the end of the heat transfer plate 2, and the hook is locked to the locking portion. It is also possible to provide a partition between the adjacent heat transfer plates 2 by stretching the partition. Such a configuration is preferable from the viewpoint of using a material having no shape-retaining property such as glass wool for the partition.
  • a vent plug having a locking claw 51 whose tip is in contact with the lower end surface of the window 20 may be used for the vent plug 8 in the plate reactor. It can.
  • a vent plug is even more excellent in terms of firmly fixing the vent plug to each compartment.
  • the vent plug having the locking claw 51 is also effective from the viewpoint of preventing the vent plug from dropping and dropping the catalyst from the gap between the heat transfer plates even during long-term use of the plate reactor.
  • vent plug has an appropriate detachable structure such as the window 20 and the locking claw 50
  • various forms of vent plugs can be used.
  • a vent plug for example, a cylinder formed of a net or a vent plate as shown in FIG. 33, a plate having a vent as shown in FIG. 34, a vent plate or a net as shown in FIGS. Examples include a member having a shape supported by a pair of skirt portions, and a box-shaped member having a surface formed of a net as shown in FIGS.
  • vent plug based on such a form, as shown in FIG. 39, a first vent pipe 52 having air permeability with respect to the ventilation direction of each section, and a ventilation direction of each section. And a double-pipe structure vent plug having a second vent pipe 53 that has air permeability and is slidable inside the first vent pipe 52.
  • the partition 7 is provided with a flange portion 54 that protrudes from the surface of the lower end portion of the partition 7, and the vent plug is extended until it contacts the partition 7 at both ends and is placed on the flange portion 54.
  • the fixing pin 55 includes, for example, a fixed shaft, a ring provided at one end thereof, and a flexible metal thin plate provided at the other end in a direction orthogonal to the extending direction of the fixed shaft. .
  • the fixing pin 55 is inserted from the vent hole on the lower surface of the vent plug, the metal thin plate bends when passing through the vent hole. A state is formed. Further, by pulling the ring of the fixing pin 55, the fixing pin 55 is pulled out by passing through the vent hole while the metal thin plate is bent, and further, the second vent pipe 53 is slid to lower the heat transfer plate. The vent plug can be removed.
  • a first vent pipe 52, a second vent pipe 53, and a second vent pipe 53 project from the first vent pipe 52 as shown in FIG.
  • a vent plug having a biasing member 56 such as a coil spring that biases in the direction may be used.
  • This vent plug is also installed in the lower part of each section by the partition 7 having the flange portion 54.
  • the vent plug is installed at the lower part of each section by shrinking the vent plug against the biasing force of the biasing member 56 and placing it on the flange portion 54. Further, the vent plug can be removed from below the heat transfer plate by contracting the vent plug against the bias of the biasing member 56.
  • the sliding of the fixing pin 55 and the second ventilation pipe 53 can be performed by hooking the tool pin shown in FIG. 31 on the ring of the fixing pin 55 or the ventilation hole at the bottom of the second ventilation pipe 53.
  • the second method for producing a reaction product in the present invention is a method for producing a reaction product using the second plate reactor described above, and supplying a heat medium having a desired temperature to the heat transfer tube. And a step of supplying a reaction raw material to a gap between adjacent heat transfer plates filled with a catalyst to obtain a reaction product discharged from the gap.
  • the reaction raw material is composed of ethylene; at least one selected from the group consisting of hydrocarbons having 3 and 4 carbon atoms and tertiary butanol, or unsaturated aliphatic aldehydes having 3 and 4 carbon atoms.
  • the second plate reactor is applied to the process of fixed bed contact reaction, and among these reaction processes, the reaction process may deteriorate the catalyst due to the high reaction heat or the reaction performance may decrease.
  • the second plate reactor can be applied to a reaction raw material of a fluid that can flow through a catalyst layer filled with a catalyst such as gas or liquid, but it removes heat compared to a liquid state. It can be suitably used when the gas is difficult.
  • the raw material is at least one selected from the group consisting of ethylene, hydrocarbons having 3 and 4 carbon atoms, and tertiary butanol, or the number of carbon atoms.
  • the second plate reactor is applied to a gas phase catalytic oxidation reaction, which is known to easily generate hot spots.
  • the reaction raw material is selected from the group consisting of at least one reaction raw material selected from the group consisting of hydrocarbons having 3 and 4 carbon atoms and tertiary butanol, or the group consisting of unsaturated aliphatic aldehydes having 3 and 4 carbon atoms.
  • a reaction that is at least one of the raw materials can be mentioned.
  • the hydrocarbon having 3 carbon atoms includes propylene and propane.
  • examples of the hydrocarbon having 4 carbon atoms include isobutylene, butenes, and butanes.
  • Examples of the unsaturated aliphatic aldehyde having 3 and 4 carbon atoms include acrolein and methacrolein, and examples of the unsaturated fatty acid having 3 and 4 carbon atoms include acrylic acid and methacrylic acid.
  • a known catalyst used in a conventional catalytic reaction using the reaction raw material for example, a catalytic reaction of the reaction raw material using a multi-tubular reactor, is used as the catalyst.
  • the catalyst may be mixed with inert particles such as mullite balls that are not reactive in the catalytic reaction.
  • the temperature of the heat medium supplied to the heat transfer tube is, for example, the reaction conditions in the conventional contact reaction, for example, the contact reaction of the reaction raw material using a multi-tube reactor. As a reference, it can be obtained from optimization of reaction conditions in the reaction using the second plate reactor.
  • reaction conditions in the second production method of the reaction product can be obtained by optimization using a known technique, for example, similarly to the temperature of the heat medium described above.
  • reaction conditions of the 1st manufacturing method of the reaction product mentioned above and the 3rd manufacturing method of the reaction product mentioned below are applicable to the reaction conditions in the 2nd manufacturing method of a reaction product.
  • the third method for producing the reaction product is as follows: (A) a plate reactor having a catalyst layer formed between heat transfer plates, a group consisting of hydrocarbons having 3 and 4 carbon atoms, and tertiary butanol. A reaction raw material mixture containing at least one reaction raw material selected from the group consisting of molecular oxygen and catalytic gas phase oxidation of the reaction raw material, unsaturated hydrocarbons, and unsaturated fats having 3 and 4 carbon atoms At least one reaction product selected from the group consisting of group aldehydes, or (B) a plate reactor equipped with a catalyst layer formed between heat transfer plates, having 3 and 4 carbon atoms.
  • reaction raw material selected from the group consisting of saturated aliphatic aldehydes and a reaction raw material mixture containing molecular oxygen, catalytic vapor phase oxidation of the reaction raw material, and unsaturated fatty acids having 3 and 4 carbon atoms
  • a method for producing at least one reaction product selected from Ranaru group A method for producing at least one reaction product selected from Ranaru group.
  • the plate reactor is divided into a plurality of reaction zones having different average layer thicknesses of the catalyst layers, and the plurality of reaction zones are independently provided with temperature.
  • the adjusted heat medium is supplied, the heat generated by the oxidation is removed through the heat transfer plate, and the temperature in the catalyst layer is controlled independently.
  • the temperature T (S1) of the heat medium supplied to the reaction zone S1 closest to the inlet of the reaction raw material mixture is adjacent to the reaction zone S1, It is higher than the temperature T (S2) of the heating medium supplied to the reaction zone S2 located downstream of the flow of the mixture.
  • the amount of the reaction material loaded when oxidizing at least one of the reaction materials selected from the group consisting of the hydrocarbons having 3 and 4 carbon atoms and tertiary butanol is oxidized. Is at least 150 liters per hour [converted to the standard state (temperature 0 ° C., 101.325 kPa)] or more, and at least one reaction raw material selected from the group consisting of the above-mentioned unsaturated aliphatic aldehydes having 3 and 4 carbon atoms.
  • the loading amount of the reaction raw material is 160 liters per hour per liter of the catalyst [standard state (temperature 0 ° C., 101.325 kPa) conversion] or more.
  • the reaction raw material used in the third production method of the reaction product is at least one reaction raw material selected from the group consisting of hydrocarbons having 3 and 4 carbon atoms and tertiary butanol, or 3 and 4 carbon atoms. It is at least one reaction raw material selected from the group consisting of unsaturated aliphatic aldehydes.
  • the hydrocarbon having 3 carbon atoms include propylene and propane.
  • the hydrocarbon having 4 carbon atoms include isobutylene, n-butene, isobutene, n-butane, and isobutane.
  • Examples of the unsaturated aliphatic aldehyde having 3 and 4 carbon atoms include acrolein and methacrolein.
  • reaction raw material gas The state of these reaction raw materials is not particularly limited as long as it has fluidity to flow through the catalyst layer, but it can be preferably exemplified as a gas (reaction raw material gas).
  • butadiene is mentioned as an unsaturated hydrocarbon in the unsaturated hydrocarbon which is the reaction product, the unsaturated aliphatic aldehyde having 3 and 4 carbon atoms, and the unsaturated fatty acid having 3 and 4 carbon atoms.
  • the unsaturated aliphatic aldehyde having 3 and 4 include acrolein and methacrolein
  • examples of the unsaturated fatty acid having 3 and 4 carbon atoms include acrylic acid, methacrylic acid, maleic acid, and maleic anhydride.
  • the reason for this is, for example, the basic composition of the catalyst used in the production of butadiene from acrolein, acrolein of 3 carbon atoms, methacrolein from 4 isobutylene, and normal butene (for example, molybdenum (Mo) -bismuth (Bi)).
  • System normal butene
  • production method, and shape are basically the same, and the reaction type and process in the production of the reaction product are industrially the same.
  • the same basic composition for example, molybdenum (Mo) -vanadium (V) system
  • shape is used for unsaturated aliphatic aldehydes such as acrolein to acrylic acid, methacrolein to methacrylic acid, and butenes to maleic anhydride.
  • Mo molybdenum
  • V vanadium
  • the reaction is industrially produced by the same reaction type and process. All of these reactions are catalytic gas phase oxidation with molecular oxygen, and are reactions with a large exotherm, and according to the knowledge of the present inventors, have similar reaction characteristics, and a third production method of a reaction product. Can be applied effectively.
  • the reaction raw material mixture supplied to the plate reactor includes a reaction raw material, molecular oxygen, and, if necessary, a gas inert to the reaction such as nitrogen and water vapor.
  • the reaction raw material may be composed of only one kind, or a mixture (for example, mixed gas) in which two or more kinds are mixed.
  • the composition of the reaction raw material mixture (for example, reaction mixture gas) is appropriately selected according to the purpose.
  • the content of the reaction raw material with respect to the reaction raw material mixture is not particularly limited, but the total amount of the reaction raw material is preferably 5 to 13 mol%. Further, the content of the molecular oxygen with respect to the reaction raw material mixture is preferably 1 to 3 times the total amount of the reaction raw materials.
  • the content of the inert gas with respect to the reaction raw material mixture is a value obtained by removing the total amount of reaction raw materials and the amount of molecular oxygen from the total amount of the reaction raw material mixture.
  • the inert gas may be an inert gas obtained by recirculating exhaust gas discharged from the reaction system.
  • a known catalyst can be used depending on the purpose.
  • the composition of the catalyst include a metal oxide containing molybdenum, tungsten, bismuth, or the like, or a metal oxide containing vanadium or the like.
  • the metal oxide powder having this composition is formed into a spherical shape, a pellet shape, or a ring shape, and calcined at a high temperature to be used as a catalyst.
  • the catalyst can be formed in a known shape such as a spherical shape with a diameter of 1 to 15 mm (millimeters), a pellet shape having an equivalent diameter of 1 to 15 mm with a shape other than an ellipse, or a hole in the center of a cylindrical column.
  • An open ring shape having a circle outer diameter of 4 to 10 mm, a circle inner diameter of 1 to 3 mm, and a height of 2 to 10 mm is preferably used.
  • a catalyst having the above-mentioned diameter, equivalent diameter, circular outer diameter and height of 3 to 5 mm is more preferable.
  • the metal oxide include compounds represented by the following general formula (1).
  • Mo (a) Bi (b) Co (c) Ni (d) Fe (e) X (f) Y (g) Z (h) Q (i) Si (j) O (k) (1) )
  • Mo molybdenum
  • Bi bismuth
  • Co cobalt
  • Ni nickel
  • Fe iron
  • X is at least one element selected from the group consisting of sodium, potassium, rubidium, cesium and thallium
  • Y Is at least one element selected from the group consisting of boron, phosphorus, arsenic and tungsten
  • Z is at least one element selected from the group consisting of magnesium, calcium, zinc, cerium and samarium
  • Q is a halogen element
  • Si silica
  • O oxygen.
  • a, b, c, d, e, f, g, h, i, j and k are Mo, Bi, Co, Ni, Fe, X, Y, Z, Q, Represents the atomic ratio of Si and O, and when molybdenum atom (Mo) is 12, 0.5 ⁇ b ⁇ 7, 0 ⁇ c ⁇ 10, 0 ⁇ d ⁇ 10, 1 ⁇ c + d ⁇ 10, 0.05 ⁇ e ⁇ 3, 0.0005 ⁇ f ⁇ 3, 0 ⁇ g ⁇ 3, 0 ⁇ h ⁇ 1, 0 ⁇ i ⁇ 0.5, 0 ⁇ j ⁇ 40, and k is a value determined by the oxidation state of each element. is there.
  • the metal oxide is preferably exemplified by a compound represented by the following general formula (2).
  • X represents at least one element selected from the group consisting of Nb and W.
  • Y represents at least one element selected from the group consisting of Mg, Ca, Sr, Ba and Zn.
  • Z represents at least one element selected from the group consisting of Fe, Co, Ni, Bi, and Al.
  • Mo, V, Nb, Cu, W, Sb, Mg, Ca, Sr, Ba, Zn, Fe, Co, Ni, Bi, Al, Si, C, and O are element symbols.
  • the shape of the plate reactor used in the third production method of the reaction product is not particularly limited, but is characterized by the following (1) and (2).
  • the catalyst layers formed between the heat transfer plates are divided into a plurality of reaction zones having different average layer thicknesses.
  • a plurality of reaction zones are supplied with temperature-adjusted heat media, and if necessary, supplied with a plurality of independently temperature-adjusted heat media to transfer heat generated by the catalytic gas phase oxidation reaction. Heat is removed across the heat plate, and the temperature in the catalyst layer can be controlled independently.
  • the plate reactor of the present invention described above can be used.
  • the use of the plate reactor of the present invention in the second method means that in the third method for producing a reaction product, the effect of the plate reactor of the present invention and the effect of the third method of producing a reaction product From the viewpoint of obtaining both effects, it is preferable.
  • reaction gas is an aspect of a reaction fluid, which is a general term for a reaction raw material, a reaction raw material mixture, and a mixture of reaction products generated by the reaction.
  • a plate reactor having a channel is mentioned.
  • the reaction zone of the plate reactor can be divided into a plurality of regions, and the thickness of the catalyst layer filled in each reaction zone can be changed by adjusting the distance between the pair of heat transfer plates. It is.
  • the catalyst layer thickness in each region of the reaction zone is preferably increased from the inlet to the outlet of the reaction raw material mixture to be supplied.
  • the outside of the heat transfer plate pair is divided into a plurality of heat medium flow paths, and heat mediums having different temperatures can be supplied to the flow paths.
  • the direction of the reaction gas supplied to the plate reactor flows along the heat transfer plate, and the heat medium is supplied to the outside of the pair of heat transfer plates.
  • the flow direction of the heat medium is not particularly limited, but an industrial scale reaction apparatus usually needs to accommodate a large amount of catalyst, and a large number of heat transfer plate pairs are installed. A direction perpendicular to the flow is convenient.
  • the reaction amount in the normal reaction is the largest at the inlet portion of the reaction gas, the generation of reaction heat accompanying the reaction is the largest, and decreases in the direction of the reaction gas outlet.
  • FIG. 41 shows a first specific example of the plate reactor.
  • a thin heat transfer plate (57) that separates the heat medium flow path (60-1, 60-2, and 60-3) and the catalyst layer (43) is provided from the reaction gas inlet (58) to the outlet (59).
  • the average layer thickness of the catalyst layer is a distance between the plates measured in a direction perpendicular to the flow direction of the reaction gas.
  • the thickness of the catalyst layer (43) formed between the pair of heat transfer plates (57) corresponds to each heat medium flow path (60-1, 60-2, and 60-3), and the reaction Bands (S1, S2, and S3) are formed. (61) is a heat medium supply port.
  • the heat transfer plate (57) can be a flat plate, an embossed one having irregularities, or a corrugated plate formed in a direction perpendicular to the flow of the reaction gas.
  • an uneven plate or corrugated plate shape is preferably used.
  • the [volume of the catalyst layer] refers to a pair of heat transfer plates in which a pair of heat transfer plates on which the catalyst layer is formed are kept perpendicular to the ground and a lid is placed on the bottom (the bottom surface of each reaction zone).
  • a liquid such as water or glass beads having a diameter of 1 mm or less is poured into a space sandwiched between heat plates, the volume of the liquid such as water or glass beads having a diameter of 1 mm or less necessary to fill the space is set. .
  • two corrugated plates shaped into a continuous pattern having a main part of an arc, an elliptical arc, a rectangle or a polygon are faced to each other.
  • a plurality of heat transfer plates in which the convex portions of the plates are joined to each other to form a plurality of heat transfer channels are arranged, and the corrugated convex portions and concave portions of adjacent heat transfer plates face each other at a predetermined interval.
  • a plate reactor in which the catalyst layer is formed.
  • corrugated sheet shaped into a continuous pattern having a circular arc, elliptical arc, rectangle or polygon as a main component means that the wave shape of the corrugated sheet is an arc, elliptical arc, rectangular or multiple It means that the pattern is a continuous pattern (shape) with a part of a square as a main component.
  • the catalyst layer is moved from the inlet to the outlet of the reaction gas supplied to the catalyst layer. It is possible to change the thickness.
  • the plate reactor can divide the reaction zone into a plurality of regions, and the reaction zone divided into the plurality of regions can correspond to the change in the thickness of the catalyst layer. . Further, a plurality of the divided reaction zones are supplied with a heat medium whose temperature is independently adjusted, and the heat generated by the catalytic gas phase oxidation reaction is removed through the heat transfer plate, so that the temperature in the catalyst layer is reduced. It can be controlled independently.
  • the direction of the reaction gas supplied to the plate reactor flows along the outside of the heat transfer plate, and the heat medium is supplied inside the pair of heat transfer plates.
  • the flow direction of the heat medium flows in a direction perpendicular to the flow of the reaction gas, that is, a cross flow direction.
  • the reaction amount in the normal reaction is the largest at the inlet portion of the reaction gas, the generation of reaction heat accompanying the reaction is the largest, and decreases in the direction of the reaction gas outlet.
  • the corrugated shape of the corrugated plate used for one heat transfer plate and the adjacent heat transfer plate is changed, and the gap between the heat transfer plates is adjusted to adjust the catalyst layer. It is preferable to change the average layer thickness. By changing the average layer thickness of the catalyst layer, the reaction can be controlled more precisely, hot spots accompanying the increase in the catalyst layer temperature can be prevented, and damage to the catalyst can be prevented.
  • FIG. 42 shows a second specific example of the plate reactor.
  • the heat transfer plate (57) in the heat transfer plate (57), two thin plates are deformed into a continuous pattern having a circular, elliptical, rectangular or polygonal part as a main component, and are in opposite directions. Facing each other (in a mirror image relationship) to form heat medium flow paths (60-1, 60-2, 60-3).
  • the pair of heat transfer plates (57) are opposed to each other by a distance corresponding to half of the heat medium flow path to form a gap, and the formed gap is filled with a catalyst to form a catalyst layer (43).
  • the pair of heat transfer plates (57) includes a reaction gas inlet (58) for introducing the reaction mixed gas into the catalyst layer (43) and a reaction gas outlet (59) for deriving the reaction gas.
  • the heat medium flow paths have different cross-sectional shapes (cross-sectional areas), and the width of the heat medium flow path (60-1) is the largest.
  • the width of the heat medium flow path (60-1) is the largest, the interval between the adjacent heat transfer plates (57) is constant, so that the corrugated convex surface portion and the concave surface portion of the adjacent heat transfer plates face each other.
  • the distance (A) formed in this way that is, the layer thickness of the catalyst layer (43)
  • the width of the heat medium flow path gradually decreases from the heat medium flow path (60-2) to (60-3), and the thickness of the catalyst layer (43) corresponding to the heat medium flow path increases.
  • the catalyst layers (43) corresponding to the heat medium flow paths (60-1, 60-2, and 60-3) have different average layer thicknesses of the catalyst layers and different average layer thicknesses of the catalyst layers.
  • Multiple reaction zones (S1, S2, and S3) can be formed.
  • the [volume of the catalyst layer] refers to a pair of heat transfer plates in which a pair of heat transfer plates on which the catalyst layer is formed are kept perpendicular to the ground and a lid is placed on the bottom (the bottom surface of each reaction zone).
  • a liquid such as water or glass beads having a diameter of 1 mm or less is poured into a space sandwiched between heat plates, the volume of the liquid such as water or glass beads having a diameter of 1 mm or less necessary to fill the space is set. .
  • reaction zones there are three reaction zones. However, this is merely an example, and the number of reaction zones is not limited in the third method for producing a reaction product.
  • FIG. 43 shows two corrugated sheets deformed into a continuous pattern having a main part of an arc, an elliptical arc, a rectangle or a polygon, and the convex portions of the corrugated sheets are joined to each other.
  • the heat-transfer plate in which the several heat carrier flow path was formed is shown.
  • the size of the heat medium flow path and the average layer thickness of the catalyst layer are defined by the wave period (L) and the wave height (H) of the corrugated plate.
  • the wave period (L) is preferably 10 to 100 mm, and more preferably 20 to 50 mm.
  • the height (H) is preferably 5 to 50 mm, and more preferably 10 to 30 mm.
  • a pair of the heat transfer plates are parallel to each other and are shifted from each other by a distance (L / 2) corresponding to half of the heat medium flow path to form a gap, and the gap is filled with a catalyst to form a catalyst layer.
  • the thickness of the catalyst layer is adjusted by changing the interval (P) between the pair of parallel heat transfer plates and the period (L) and height (H) of the heat medium flow path.
  • the distance P between the pair of heat transfer plates is usually 10 to 50 mm, and more preferably 20 to 50 mm.
  • the shape of the heat transfer plate is drawn as a part of an arc, but the shape may be a continuous pattern whose main component is an elliptical arc, a rectangle, a triangle, or a part of a polygon.
  • the catalyst layer thickness can be accurately controlled by changing the period (L) and the height (H).
  • the catalyst layer thickness is preferably uniform in the length (width) direction (direction perpendicular to the paper surface) of the heat transfer plate.
  • the average layer thickness of the catalyst layer correlates with the interval (x) shown in FIG. 43, and the interval (x) is usually 0.7 to 0.00 mm of the average layer thickness of the catalyst layer defined by the above formula. 9 times.
  • the thickness of the thin plate of the heat transfer plate (57) of each reactor is 2 mm or less, preferably 1 mm or less.
  • the length of the heat transfer plate (57) in the reaction gas flow direction is 0.5 to 10 m (meters), preferably 0.5 to 5 m, and more preferably 0.5 to 3 m. From the size of a normally available thin steel plate, two plates can be joined or combined when the length is 1.5 m or more.
  • the length in the direction perpendicular to the flow direction of the reaction gas is not particularly limited, and is usually 0.1 to 20 m, preferably 3 to 15 m. More preferably, it is 6 to 10 m.
  • the heat transfer plates (57) are stacked in the same manner as in the arrangement shown in FIG. 43, and the number of stacked layers is not limited. In practice, it is determined from the amount of catalyst required for the reaction, but it is from several tens to several hundreds.
  • the average layer thickness of the catalyst layer in each reaction zone is not particularly limited, but is preferably 4 to 50 mm.
  • the average layer thickness of the catalyst layer in each reaction zone also varies depending on the amount of reaction raw material loaded and the catalyst shape (particle size, etc.), but in the plate reactor shown in FIG. 41, the reaction zone (S1 ) Of the catalyst layer is 4 to 18 mm (more preferably 5 to 13 mm), and the average layer thickness of the catalyst layer in the reaction zone (S2) following the reaction zone (S1) is 5 to 23 mm ( More preferably, the average thickness of the catalyst layer in the reaction zone (S3) following the reaction zone (S2) is 8 to 27 mm (more preferably 10 to 22 mm). .
  • the average layer thickness of the catalyst layer in the reaction zone (S1) is 5 to 20 mm (more preferably 7 to 15 mm), and the reaction following the reaction zone (S1).
  • the average layer thickness of the catalyst layer in the zone (S2) is 7 to 25 mm (more preferably 10 to 20 mm), and the average layer thickness of the catalyst layer in the reaction zone (S3) following the reaction zone (S2) is 12 mm. It can be preferably exemplified that it is ⁇ 30 mm (more preferably 15 to 25 mm).
  • the average layer thickness of the catalyst layers in the plurality of reaction zones increases sequentially as it is positioned in the direction from the inlet to the outlet of the reaction gas.
  • the loading amount of the reaction raw material is 150 liters per hour per liter of catalyst [standard state (Temperature 0 ° C., 101.325 kPa) conversion] and / or reaction when oxidizing at least one reaction raw material selected from the group consisting of unsaturated aliphatic aldehydes having 3 and 4 carbon atoms
  • a reaction gas inlet introducing a reaction gas mixture into the catalyst layer (43)
  • the average layer thickness of the catalyst layer in the reaction zone (S1) connected to 58) is 5 to 15 mm (particularly preferably 7 to 12 mm).
  • the average layer thickness of the catalyst layer in the reaction zone (S2) following the reaction zone (S2) is 7 to 17 mm (particularly preferably 10 to 15 mm), and the average layer of the catalyst layer in the reaction zone (S3) following the reaction zone (S2) More preferably, the thickness is 12 to 27 mm (particularly preferably 15 to 20 mm).
  • the minimum layer thickness of the catalyst layer must be larger than the particle size of the catalyst particles.
  • the minimum thickness of the catalyst layer is preferably 1.5 times or more the catalyst particle size. Therefore, the average layer thickness of the catalyst layer in the above example is suitable when the particle size of the catalyst particles is 3 to 5 mm.
  • the average layer thickness of the catalyst layer is larger than the above range, hot spots are likely to occur.
  • a reaction zone near the outlet of the reaction gas for example, a situation in which the temperature in the catalyst layer of the reaction zone (S3) rises and a hot spot phenomenon occurs, or hot where the conversion rate of the reaction raw material becomes too high than the optimum value. If the situation is close to the spot, the reaction results may be reduced, and the yield of the target reaction product may be reduced. When the above situation deteriorates and a hot spot is generated, the catalyst may be damaged. At this time, it is necessary to limit the reaction amount by lowering the temperature of the heat medium to promote the removal of reaction heat, or to reduce the supply amount of the reaction mixed gas and reduce the load of the reaction raw material.
  • the details of the average layer thickness of the catalyst layer vary depending on the amount of reaction, but it may be continuously changed from the inlet to the outlet of the catalyst layer (43) or may be changed stepwise. Rather, considering the unevenness of the reaction activity during the production of the catalyst, the degree of freedom may be secured by changing the average layer thickness of the catalyst layer in stages.
  • the number of divisions of the reaction zone is preferably 2 to 5, and the average layer thickness of the catalyst layer in each reaction zone is preferably increased from the inlet to the outlet of the reaction gas.
  • the length of the reaction gas flow direction of the catalyst layer in each reaction zone is determined in consideration of the conversion rate of the reaction raw material, etc., for example, when the reaction zone is divided into three,
  • the catalyst layer length is 10% to 55% for the reaction zone (S1), 20% to 65% for the reaction zone (S2), and 25% to 70% for the reaction zone (S3) with respect to the catalyst layer length. It is preferable to apply. Moreover, it is preferable to change the catalyst layer length of the reaction zone (S3) portion according to the achievement of the conversion rate of the reaction raw material.
  • the amount of reaction raw material when oxidizing at least one of the reaction raw materials selected from the group consisting of hydrocarbons having 3 and 4 carbon atoms and tertiary butanol 150 liters per hour per liter of catalyst [standard state (temperature 0 ° C., 101.325 kPa) conversion] or more.
  • the loading amount of the reaction raw materials is 170 to 290 liters per liter of catalyst [standard] The state (converted at a temperature of 0 ° C.
  • the conversion rate is particularly preferably 200 to 250 liters per hour per liter of catalyst [converted to a standard state (converted at a temperature of 0 ° C. and 101.325 kPa)]. More than 150 liters per hour [converted to the standard state (temperature 0 ° C., 101.325 kPa)] per 1 liter of catalyst means that the reaction raw material load is higher than the reaction raw material processing load per unit catalyst. To do.
  • the loading amount of the reaction raw materials is 160 liters per hour [standard state (temperature 0 ° C., 101.325 kPa) conversion] or more.
  • the loading amount of the reaction raw material is 180 to 300 liters per liter of catalyst [standard state ( The temperature is preferably 0 ° C.
  • the temperature of the heat medium supplied to the plurality of reaction zones is controlled independently in order to improve the conversion rate of the reaction raw material and the yield of the target reaction product.
  • the temperature unit is the degree of Celsius [° C.].
  • the temperature T (S1) of the heat medium supplied to the reaction zone S1 closest to the inlet of the reaction raw material mixture is adjacent to the reaction zone S1, and the flow of the reaction raw material mixture A temperature higher than the temperature T (S2) of the heat medium supplied to the reaction zone S2 located downstream is important for improving the conversion rate of the reaction raw material and the yield of the target reaction product.
  • T (S1) -T (S2) is more preferably 5 ° C. or more, further preferably 10 ° C. or more, and particularly preferably 15 ° C. or more.
  • T (S1) -T (S2)” is preferably 40 ° C. or lower.
  • the temperature of the heat medium supplied to the reaction zone located downstream of the flow of the reaction raw material mixture in the reaction zone S2 is arbitrary and may be the same as or different from the temperature T (S2). Good. However, a temperature lower than the temperature T (S2) is preferred particularly in a reaction zone including a region where the conversion rate of the reaction raw material is 90% or more.
  • the temperature T (S1) of the heat medium supplied to the reaction zone (S1) is equal to the temperature T of the heat medium supplied to the reaction zone (S2).
  • S2 When higher than (S2), it is possible to improve the conversion rate of the reaction raw material and the yield of the target reaction product.
  • the temperature of the heat medium supplied to the reaction zone closest to the outlet of the reaction raw material mixture is the temperature of the heat medium supplied to the reaction zone adjacent to the reaction zone and upstream of the flow of the reaction raw material mixture.
  • a lower value is preferable in order to further improve the yield of the target reaction product.
  • the absolute value of the temperature difference is more preferably 5 ° C. or higher, and particularly preferably 10 ° C. or higher. In addition, it is preferable that the absolute value of this temperature difference is 30 degrees C or less.
  • T (Sj) is the temperature of the heat medium supplied to any unspecified reaction zone S (j), and the reaction raw material mixture is adjacent to the reaction zone S (j).
  • T (Sj + 1) the temperature of the heat medium supplied to the reaction zone S (j + 1) located downstream of the flow is T (Sj + 1)
  • the T (Sj) and the T (Sj + 1) are T (Sj)> T ( It is more preferable to satisfy the relationship of Sj + 1).
  • the temperature of the heat medium supplied to the reaction zone (S1) is T (S1)
  • the temperature of the heat medium supplied to the reaction zone (S2) is It is preferable to satisfy the relationship of T (S1)> T (S2)> T (S3), where T (S2) and the temperature of the heat medium supplied to the reaction zone (S3) are T (S3). It will be.
  • T (Sj) is the temperature of the heat medium supplied to any unspecified reaction zone S (j), and the reaction raw material mixture is adjacent to the reaction zone S (j).
  • T (Sj) and T (Sj + 1) are T (Sj) ⁇ , where T (Sj + 1) is the temperature of the heat medium supplied to the reaction zone S (j + 1) located downstream of the flow of It is more preferable to satisfy the relationship of T (Sj + 1) ⁇ 5 in order to further improve the yield of the target reaction product.
  • T (Sj) ⁇ T (Sj + 1) ⁇ 10 is more preferable
  • T (Sj) ⁇ T (Sj + 1) ⁇ 15 is particularly preferable.
  • the value of T (Sj) ⁇ T (Sj + 1) is preferably 30 or less.
  • the temperature of the heat medium is adjusted in order to keep the conversion rate of the reaction raw material optimal.
  • the heat medium supplied to the reaction zone located upstream in the flow direction of the reaction raw material mixture Adjust the reaction by raising the temperature.
  • the reaction conversion rate is adjusted by lowering the temperature of the heat medium supplied to the reaction zone located downstream in the flow direction of the reaction raw material mixture.
  • the conversion rate of the reaction raw material at the reaction product outlet of the plate reactor is preferably 90% or more, more preferably 95% or more, and particularly preferably. 97% or more.
  • the heat medium is supplied to each of the reaction zones at an optimum temperature.
  • the direction in which the heat medium flows is preferably orthogonal to the flow direction of the reaction gas.
  • the temperature difference between the inlet temperature and the outlet temperature of the heat medium is preferably 0.5 to 10 ° C, more preferably 2 to 5 ° C.
  • the heat generated by the reaction is removed through the heat transfer plate, and the temperature in the catalyst layer in the reaction zone is more reliably and independently controlled, so that the temperature of the heat medium supplied to the reaction zone is stable. It is important to control the temperature of the heat medium, and it is preferable that the temperature of the heat medium has independent temperature control means. For example, when the heat medium from the reaction zone S (j + 1) is recirculated to the upstream reaction zone S (j), after adjusting the heat medium temperature T (Sj) by the temperature control means, the reaction zone S (j) It is preferable to supply to. It is also possible to adjust the temperature after joining or branching with a heat medium from another reaction zone or a heat medium having a different temperature, and supplying it to the reaction zone S (j).
  • the temperature of the heat medium supplied to the heat medium flow path is preferably 200 to 600 ° C.
  • the reaction raw material is at least one of the reaction raw materials selected from the group consisting of hydrocarbons having 3 and 4 carbon atoms and tertiary butanol, it is preferably supplied to each reaction zone at 250 to 450 ° C. Preferably, it is 300 to 420 ° C.
  • the temperature of the heat medium supplied to the plurality of reaction zones is preferably 250 to 400 ° C, and more preferably 320 to 400 ° C.
  • reaction raw material is at least one reaction raw material selected from the group consisting of unsaturated aliphatic aldehydes having 3 and 4 carbon atoms
  • it is preferably supplied to each reaction zone at 200 to 350 ° C.
  • it is 250 to 330 ° C.
  • the temperature of the heat medium supplied to the plurality of reaction zones is preferably 250 to 320 ° C.
  • the temperature of the heat medium is basically the same, but it is possible to change the temperature within a range where the hot spot phenomenon does not occur.
  • the flow rate of the heat medium supplied to the heat medium flow path is determined from the reaction heat amount and the heat transfer resistance.
  • the heat transfer resistance is less likely to cause a problem because the gas side of the reaction gas is usually larger than the liquid heat medium, but the liquid linear velocity in the heat medium flow path is preferably 0.3 m / s or more.
  • 0.5 to 1.0 m / s is most suitable. If it is too large, the power of the circulation pump of the heat medium becomes large, which is not preferable in terms of economy.
  • the heat medium used can use a well-known thing.
  • the reaction pressure is usually atmospheric pressure to 3,000 kPa (kilopascal), preferably atmospheric pressure to 1,000 kPa (kilopascal), more preferably atmospheric pressure to 300 kPa. .
  • Example 1 Since the first plate reactor can efficiently transfer heat in the catalyst layer, it can be applied to any raw material, catalyst, and reaction as long as the reaction requires heat transfer.
  • a reaction for producing acrolein and acrylic acid by oxidizing propylene with oxygen is shown as an example.
  • the catalyst is disclosed in JP-A 63-54942, JP-B 6-13096, JP-B 6-38918, etc. According to the disclosed method, it was produced as follows.
  • the obtained catalyst A has Mo (12) Bi (5) Ni (3) Co (2) Fe (0.4) Na (0.2) Mg (0.4) B (0.2) K (0 .1)
  • the oxidation reaction of propylene was performed using a plate reactor A having the same configuration as the plate reactor of FIG.
  • the plate reactor A has a heat transfer plate formed by forming a stainless steel plate having a thickness of 1 mm and joining two of the formed plates, and the long diameter (L) of the heat transfer tube 1 is 40 mm.
  • the short diameter (H) of the heat transfer tube is 20 mm
  • the distance (P) between the axes of the heat transfer plate is 26 mm
  • has one reaction zone and accommodates the catalyst A.
  • the shape of the molded plate was measured with a CCD laser displacement meter (manufactured by Keyence Co., Ltd., LK-G152), the error relative to the design value of the molded plate was less than ⁇ 0.2 mm.
  • the heat transfer plate is arranged so that its axis is in the vertical direction.
  • the design value of the distance between the surfaces of the heat transfer plates in the plate reactor A is the distance between the convex edge by the heat transfer tube of one heat transfer plate and the concave edge by the connection portion of the heat transfer tube of the other heat transfer plate. 15 mm.
  • the distance between the surfaces of the heat transfer plates was measured in 7 places along the axial direction of the heat transfer plates and 3 places along the axial direction of the heat transfer tubes in the heat transfer plate, a total of 21 points were measured.
  • the difference between the design value and the actual measurement value was 17 mm or less at 17 points.
  • the distance between the surfaces of the heat transfer plate was set at a position of 30 mm from the tip of a bar member having a length of 50 cm and a diameter of 4 mm, and a measuring bar member having a diameter of 1 mm, lengths of 15.2 mm and 14.8 mm was attached at a right angle.
  • Two types of measurement fittings were inserted into the gaps between the heat transfer plates and measured.
  • the difference between the measured values with respect to the design value in the distance between the surfaces of the heat transfer plates is 0 mm.
  • a molten nitrate salt (nighter) was used as the heating medium.
  • the heat medium was adjusted to a temperature corresponding to the reaction zone and supplied to the heat transfer tube.
  • the heating medium was supplied so that the flow rate of the heating medium was 0.7 m or more per second.
  • a reaction raw material mixed gas having a propylene concentration of 9.5 mol%, a water concentration of 9.5 mol%, an oxygen concentration of 14.2 mol%, and nitrogen of 66.8% at a rate of 6750 liters per hour (standard state) Then, the pressure was supplied to the plate reactor so that the pressure at the inlet of the reactor became 0.07 MPaG (megapascal gauge).
  • Table 1 shows the major axis and minor axis of the heat transfer tube in the plate reactor A, the length of the reaction zone, and the distance (P) between the heat transfer plates.
  • the temperature of the heat medium, the conversion rate of propylene (PP) as a raw material, the selectivity obtained by dividing the total yield of acrolein (ACR) and acrylic acid (AA) as target products by the conversion rate of propylene (PP) Table 2 shows the peak temperature of the catalyst layer.
  • Example 2 First, the reaction was carried out under the same conditions as in Example 1, using a plate reactor B having the same structure as the plate reactor A except that the distance (P) between the axes of the heat transfer plate was 26.5 mm. Carried out.
  • the measured value of the distance between the surfaces of the heat transfer plates in the plate reactor B is the distance between the convex edge of one heat transfer plate and the concave edge of the other heat transfer plate, as in Example 1.
  • the distance was measured and found to be 15.5 ⁇ 0.2 mm at 16 points, which is 76% of the measurement points.
  • the plate reactor B corresponds to the case where the difference between the measured values with respect to the design value is +0.5 mm. In this reaction, the peak temperature of the catalyst layer reached 419 ° C. and further increased, so the reaction was once stopped.
  • Example 2 The reaction was carried out in the same manner as in Example 1 except that the temperature of the heating medium was lowered to 338 ° C. so that the peak temperature of the catalyst layer in the plate reactor B was the same as the peak temperature of the catalyst layer in Example 1. As a result, as shown in Table 2, reaction results equivalent to those of Example 1 were obtained.
  • Example 3 First, the reaction was carried out under the same conditions as in Example 1, using a plate reactor C having the same structure as the plate reactor A except that the distance (P) between the axes of the heat transfer plates was 27.5 mm. Carried out.
  • the measured value of the distance between the surfaces of the heat transfer plates in the plate reactor C is the distance between the convex edge of one heat transfer plate and the concave edge of the other heat transfer plate, as in Example 1. When the distance was measured, it was 16 at 18 points which is 86% of the measurement points. It was 5 ⁇ 0.2 mm.
  • the plate type reactor C corresponds to the case where the difference between the measured value and the design value is +1.5 mm. In this reaction, the peak temperature of the catalyst layer reached 442 ° C. and further increased, so the reaction was once stopped.
  • Example 2 The reaction was carried out in the same manner as in Example 1 except that the temperature of the heating medium was lowered to 330 ° C. so that the peak temperature of the catalyst layer in the plate reactor C was the same as the peak temperature of the catalyst layer in Example 1. As a result, as shown in Table 2, reaction results equivalent to those of Example 1 were obtained.
  • Example 1 First, the reaction was performed under the same conditions as in Example 3 using a plate reactor D having the same structure as the plate reactor A except that the distance (P) between the axes of the heat transfer plates was 28.5 mm. Carried out.
  • the measured value of the distance between the surfaces of the heat transfer plates in the plate reactor D is the distance between the convex edge of one heat transfer plate and the concave edge of the other heat transfer plate, as in Example 1.
  • 17 points were obtained at 19 points which were 90% of the measurement points. It was 5 ⁇ 0.2 mm.
  • the plate reactor D corresponds to the case where the difference between the measured values with respect to the design value is +2.5 mm.
  • Example 4 Propylene oxidation was performed using a plate reactor E having two reaction zones.
  • the first reaction zone has the same structure as the plate reactor B.
  • the second reaction zone following the first reaction zone is a plate in which the short diameter (H) of the heat transfer tube is 16 mm, the length of the reaction zone is 400 mm, and the distance between the axes of the heat transfer plate is 27.5 mm It has the same structure as the type reactor.
  • the design value of the distance between the surfaces of the heat transfer plates is the distance between the convex edge of one heat transfer plate and the concave edge of the other heat transfer plate. It was 5 mm.
  • the first reaction zone corresponds to a case where the difference between the measured values with respect to the average value is +0.5 mm in the distance between the surfaces of the heat transfer plates.
  • the design value of the distance between the surfaces of the heat transfer plates is 18 as the distance between the convex edge of one heat transfer plate and the concave edge of the other heat transfer plate. 0.5 mm.
  • the measured value was 18.5 +/- 0.2mm in 13 places which are 87% of a measurement point.
  • the second reaction zone corresponds to a case where the difference between the measured values with respect to the average value is +1.5 mm in the distance between the surfaces of the heat transfer plates.
  • the temperature of the heating medium in the first reaction zone was set to 330 ° C. so that the peak temperature of the catalyst layer was the same as the peak temperature of the catalyst layer in Example 1, and the heating medium in the second reaction zone was The reaction was carried out under the same conditions as in Example 1 except that the temperature was 328 ° C. As a result, as shown in Table 2, excellent reaction results were obtained in the same manner as in Example 1.
  • Example 2 The reaction was carried out under the same conditions as in Example 1 except that the temperature of the heating medium was the same as in Example 4. As a result, the peak temperature of the catalyst layer exceeded 450 ° C., and a runaway reaction might occur. The reaction was once stopped. The reaction was carried out in the same manner as in Example 1 except that the temperature of the heat medium in the first reaction zone was lowered to 300 ° C., but the conversion did not exceed 50% and the reaction did not proceed.
  • Example 5 A plate reactor shown in FIG. 16 was manufactured for a filling test. Six heat transfer plates were installed. The length in the axial direction of the heat transfer tube in the heat transfer plate (the width of the heat transfer plate) is 5 m. A locking member for a ventilation plate (perforated plate) was installed below the heat transfer plate. The height of the heat transfer plate in the axial direction of the heat transfer plate from the vent plate is 1.88 m, and a straight portion without the heat transfer tube is formed 150 mm upward from the vent plate. Partitions are installed at 50 cm intervals. The partition was of the shape shown in FIG. 17, and the plate thickness was 5 mm.
  • the heat transfer plate is formed by molding a stainless steel (SUS304L) steel plate having a thickness of 1 mm so that the cross-sectional shape thereof is a shape in which an arcuate recess and a protruding edge formed between the recesses are continuous. It was manufactured by welding the protruding edges of two steel plates.
  • the specifications of the heat transfer tube in this heat transfer plate are shown in Table 3 below. In the plate reactor, the distance between the straight portions in adjacent heat transfer plates was 24 mm.
  • a catalyst was packed in a compartment formed by adjacent heat transfer plates and partitions.
  • the catalyst includes Mo (12) Bi (5) Co (3) Ni (2) Fe (0.4) Na (0.4) B (0.2) K (0.08) Si (24) O (A composite metal oxide powder having the composition x) was prepared, molded, molded into a cylindrical shape having an outer diameter of 4 mm ⁇ and a height of 3 mm, and baked.
  • Mo, Bi, Co, Ni, Fe, Na, B, K, Si, and O are atomic symbols
  • (x) of O (x) is a value determined by the oxidation state of each metal oxide.
  • a vibrating feeder having the same width as the partition interval of 50 cm was used.
  • the catalyst was supplied to the compartment at a filling rate of 1 L (liter) / min or less (about 0.8 to 0.9 L / min). More specifically, 11.6 liters of the catalyst was weighed and 33 bags each divided into plastic bags were prepared, and each compartment was filled with the vibration feeder. The calculated theoretical value of the filling height obtained from the volume of each compartment is 182.5 cm.
  • the upper surface of the formed catalyst layer is leveled, the distance from the upper end of the heat transfer plate is measured, and the distance between the distance and the height of the heat transfer plate from the vent plate is measured.
  • the filling height was determined from the difference. This distance was measured at 11 points at intervals of 5 cm in one section.
  • the height of the catalyst layer was within ⁇ 5 cm from the theoretical value.
  • the height of the catalyst layer had a variation of ⁇ 2.7% with respect to the theoretical value. From this result, it was found that in the plate reactor having the partition, the catalyst can be filled very uniformly into the gap by filling the catalyst in each compartment.
  • Example 6 The calculation method of the conversion rate of the reaction raw material, the selectivity of the target reaction product, the yield of the target reaction product, and the loading amount of the reaction raw material used in the present example relating to the third production method of the reaction product Described below.
  • Mo (12) Bi (5) Co (3) Ni (2) Fe () is used as a pre-stage catalyst for converting propylene to acrolein and acrylic acid.
  • a metal oxide powder having a composition of 0.4) Na (0.4) B (0.2) K (0.08) Si (24) O (x) was prepared and molded to obtain an outer diameter of 4 mm ⁇ , A cylindrical pellet catalyst having a height of 3 mm was obtained.
  • a plate reactor having the structure shown in FIG. 42 was used. Two thin corrugated stainless steel plates (thickness 1 mm) were joined to form a heat medium flow path for adjusting the reaction temperature.
  • Table 4 shows the period (L), height (H), and wave number of the waveform shape shown in FIG.
  • a pair of the corrugated heat transfer plates joined to each other was filled with a pre-stage catalyst in a pre-reactor and a post-stage catalyst in a post-reactor to form a catalyst layer.
  • the catalyst layers of the upstream reactor and the downstream reactor are changed to the reaction zone (S1), reaction zone (S2), and reaction zone (S3) from the upstream in the flow direction of the reaction gas as shown in Table 4.
  • a pair of corrugated heat transfer plates were installed in parallel as shown in FIG. 42, and the interval (P shown in FIG. 43) was adjusted to 26 mm. The width of the heat transfer plate was 114 mm.
  • the amount of catalyst shown in Table 4 is the result of volume measurement measured by pouring water from the top with a plate attached to the bottom of the catalyst layer with each reactor vertical. The amount of the catalyst was used for calculating the amount of reaction raw material.
  • reaction mixed gas a reaction raw material mixture (hereinafter referred to as reaction mixed gas) containing 9.5 mol% of propylene was vented from the inlet (reaction zone (S1)) of the preceding reactor.
  • reaction gas mixture contains 15.2 mol% oxygen, 65.9 mol% nitrogen, and 9.4 mol% water vapor.
  • NeoSK-OIL registered trademark 1400 manufactured by Soken Technics Co., Ltd. was used as the heat medium, and the temperature was adjusted and then supplied to the reaction zone (S1) to (S3).
  • the supply amount of the heat medium was such that the flow rate of the heat medium was 0.7 m or more per second.
  • a reaction mixed gas having a propylene concentration of 9.5 mol% was supplied to the inlet of the reactor at a rate of 5,670 liters per hour [standard state (temperature 0 ° C., 101.325 kPa) conversion].
  • the temperature of the heat medium supplied to each reaction zone (S1), (S2), and (S3) was 342 ° C., 329 ° C., and 329 ° C., respectively.
  • the amount of propylene supplied was 539 liters per hour [converted to a standard state (temperature 0 ° C., 101.325 kPa)] (hereinafter also referred to as NL / Hr).
  • the pressure at the inlet of the reactor was 0.109 MPaG (megapascal gauge), and the pressure difference (pressure loss) between the inlet and the outlet of the catalyst layer of the reactor was as small as 14 kPa.
  • Example 7 The reaction was carried out in the same manner as in Example 6 except that the temperature of the heat medium supplied to each reaction zone (S1), (S2), and (S3) was adjusted to 360 ° C, 345 ° C, and 329 ° C, respectively.
  • the outlet gas was analyzed by gas chromatography, the conversion of propylene was 98.3%, and the total yield of acrylic acid and acrolein was 92.7%.
  • Example 8 The supply amount of the reaction gas mixture was increased to 7,817 liters per hour [standard state (temperature 0 ° C., 101.325 kPa) conversion] and supplied to each reaction zone (S1), (S2), and (S3).
  • the reaction was carried out in the same manner as in Example 6 except that the temperature of the heat medium was adjusted to 342 ° C, 335 ° C, and 334 ° C, respectively.
  • the supply rate of propylene was 743 NL / Hr.
  • Example 9 The reactor outlet gas obtained in Example 8 was supplied to the subsequent reactor to oxidize acrolein to produce acrylic acid.
  • air is converted to 2,186 per hour [standard state (temperature 0 ° C., 101.325 kPa) conversion] and nitrogen is 680 liters per hour [standard state (temperature 0 ° C., 101.325 kPa). ) Conversion] was mixed with the upstream reactor outlet gas and fed to the downstream reactor.
  • the temperature of the heat medium supplied to each reaction zone (S1), (S2), and (S3) of the post-stage reactor was 284 ° C, 278 ° C, and 278 ° C, respectively.
  • the supply amount of the heat medium was set such that the flow rate in the heat medium flow path in the reaction zone was 0.4 m / second or more.
  • the pressure at the downstream reactor inlet was 0.097 MPaG ((megapascal gauge)), and the pressure loss in the catalyst layer of the reactor was 29 kPa (kilopascal).
  • Example 10 to 12 and Comparative Examples 3 and 4 The reaction gas mixture used for the reaction is composed of 9.4 mol% propylene, 15.2 mol% oxygen, 65.9 mol% nitrogen, and 9.5 mol% water vapor, and the propylene load is 219 NL / L.
  • the reaction was carried out in the same manner as in Example 6 except that it was supplied with Hr and the temperature of the heat medium supplied to each reaction zone (S1), (S2), and (S3) was adjusted to the temperature shown in Table 2. Carried out.
  • Table 5 shows the analysis results of the outlet gas analyzed by gas chromatography. The reaction was continued for 230 hours or more, but the conversion rate and yield were stable and there was no sign of catalyst deterioration.
  • Example 13 and Comparative Example 5 A plate type reactor having the same period (L), height (H), wave number, and corrugated plate interval P shown in Table 4 but having a heat transfer plate width of 96 mm is used. It was. The heat transfer plate reactor was filled with the latter catalyst. The filling height was 1.8 m, and the catalyst amount was 2.5 L (liter).
  • a stainless steel tube having an inner diameter of 27 mm was used as a reaction tube, and a tubular reactor in which the reaction vessel was filled with a catalyst for a subsequent stage to a filling height of 1.8 m was prepared.
  • the amount of catalyst was 1.0 L.
  • the air flow [NL / L ⁇ Hr] represents the gas supply amount per hour of the catalyst 1 L (liter).
  • the volume of the gas is used in the standard state (0 ° C., 101.325 kPa).
  • the desired reaction result assumed at the time of design may not be obtained in the actual plate reactor because the arrangement of the heat transfer plate deviates from the design value.
  • the first plate reactor and the manufacturing method thereof provide a technique for identifying an allowable error in the arrangement of the heat transfer plate and fixing the heat transfer plate within the range of the error.
  • the technology for achieving the desired reaction results in an actual plate reactor by the first production method of the reaction product that controls the temperature of the heating medium without changing the structure of the plate reactor. It is expected that the possibility of establishing and using a plate reactor for industrial production of reaction products by gas phase catalytic reaction will be greatly expanded. Thus, further development in the field of production of reaction products by gas phase catalytic reaction is expected by the present invention.
  • the reaction may be controlled by adjusting the thickness of the catalyst layer.
  • the second plate reactor makes the proper filling of the catalyst quick, accurate and easy. It is expected that the workability in the installation, maintenance and regular inspection of the plate reactor will be greatly improved.
  • the reaction raw material is supplied to the plate reactor filled with the catalyst and the reaction raw material is reacted to produce the reaction product. It is expected that the reaction results are prevented from lowering due to variations, achieving the desired reaction results according to the performance of the catalyst, and further improving the reaction results with the improved catalyst.
  • the reaction per unit catalyst in the production method of supplying a reaction raw material to a plate reactor filled with a catalyst and reacting the reaction raw material to produce a reaction product, the reaction per unit catalyst
  • the pressure loss of the reaction gas passing through the catalyst is prevented from increasing, and the heat generated by the reaction is controlled appropriately to prevent hot spots and prevent damage to the catalyst. It is possible to improve the yield of the target reaction product. Therefore, the industrial value of the present invention is remarkable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

In a plate type reactor, there are provided a technique for preventing the runaway of a reaction in the manufacture of a reaction product and for manufacturing the reaction product in a high productivity, a technique for filling the clearance between adjoining heat transfer plates in the plate type reactor, at least homogeneously and easily with a catalyst, and a method for suppressing the pressure loss, the occurrence of a hot spot and the loss of the catalyst even in the run under a high-load condition, thereby to manufacture the reaction product in a high efficiency in the plate type reactor. The reaction product is manufactured by arranging the heat transfer plates of the plate type reactor within a specified range of errors from a designed value, by arranging a plurality of partitions for forming a plurality of compartments in the clearances between the heat transfer plates and along the flow direction of a reaction material, by further arranging a plurality of vent plugs for plugging the bottom portions of the individual partitions removably, and by using a specific reaction material under the condition of a specific quantity of load.

Description

プレート式反応器、その製作方法、及びプレート式反応器を用いる反応生成物の製造方法Plate reactor, method for producing the same, and method for producing a reaction product using the plate reactor
 本発明は、触媒を用いた発熱又は吸熱を伴う反応に用いるプレート式反応器、その製作方法、及び前記プレート式反応器を用いる、気相接触反応による反応生成物の製造方法に関する。 The present invention relates to a plate reactor used for a reaction involving heat generation or endotherm using a catalyst, a method for producing the same, and a method for producing a reaction product by a gas phase contact reaction using the plate reactor.
 また、本発明はプレート式反応器、及び、触媒が充填されたプレート式反応器に反応原料を供給し、該反応原料を反応させ反応生成物を製造する製造方法に関する。 The present invention also relates to a plate reactor and a production method for producing a reaction product by supplying a reaction raw material to a plate reactor filled with a catalyst and reacting the reaction raw material.
 固体の触媒の存在下でガス状の原料を反応させてガス状の反応生成物を得る気相接触反応で使用される反応器としては、例えば、反応容器中の反応管に触媒が充填される多管式反応器(例えば、特許文献1参照。)、及び、反応容器中の複数の伝熱プレート間の隙間に触媒が充填されるプレート式反応器(例えば、特許文献2及び3参照。)、が知られている。 As a reactor used in a gas phase catalytic reaction for obtaining a gaseous reaction product by reacting a gaseous raw material in the presence of a solid catalyst, for example, a reaction tube in a reaction vessel is filled with the catalyst. A multi-tubular reactor (see, for example, Patent Document 1) and a plate reactor in which a catalyst is filled in a gap between a plurality of heat transfer plates in a reaction vessel (see, for example, Patent Documents 2 and 3). ,It has been known.
 気相接触反応に用いられるこれらの反応器は、一般に、高い精度で製作されることが要求される。例えば、多管式反応器における反応管やプレート式反応器における伝熱プレートを構成する伝熱管の管径の誤差が大きいと、部分的に除熱の悪い部分ができ、触媒層の一部分で反応が暴走し、局部的に触媒が劣化してしまうことがある。しかしながら、より高い精度で反応器を製作しようとすると、反応器の製作に、多大な手間や多量の鋼材が必要となることがある。 These reactors used for the gas phase contact reaction are generally required to be manufactured with high accuracy. For example, if there is a large error in the tube diameter of the heat transfer tubes that make up the reaction tubes in a multi-tube reactor or a heat transfer plate in a plate reactor, a part of the catalyst layer that is poor in heat removal will react. May run away and the catalyst may deteriorate locally. However, if an attempt is made to produce a reactor with higher accuracy, production of the reactor may require a great deal of labor and a large amount of steel.
 多管式反応器では、精度の高い鋼管を反応管に用いることによって反応器の精度を比較的容易に高めることができる。一方、プレート式反応器における伝熱管は、一般に、伝熱管の断面形状を二分割した形状が複数連なるように鋼板を成形し、成形された鋼板における凸縁同士を溶接することによって製作される。またプレート式反応器では、伝熱管の断面形状や断面の大きさは、一般に、伝熱プレート間の隙間に形成される触媒層の厚さや形態を調整する観点から決められる。したがって、プレート式反応器の製作では、前記鋼板の成形において所期の形状が得られない場合、成形された鋼板に反りが生じている場合、及び、鋼板の溶接によって反りが生じる場合等の、プレート式反応器の精度を低下させる種々の要因によって、高い精度のプレート式反応器を製作することが難しく、それにより反応の制御が十分に行われないことがある。 In a multi-tubular reactor, the accuracy of the reactor can be increased relatively easily by using a highly accurate steel pipe for the reaction tube. On the other hand, a heat transfer tube in a plate reactor is generally manufactured by forming a steel plate so that a plurality of shapes obtained by dividing the cross-sectional shape of the heat transfer tube are continuous, and welding convex edges of the formed steel plate. In the plate reactor, the cross-sectional shape and the cross-sectional size of the heat transfer tube are generally determined from the viewpoint of adjusting the thickness and form of the catalyst layer formed in the gap between the heat transfer plates. Therefore, in the production of the plate-type reactor, when the desired shape is not obtained in the forming of the steel plate, when the formed steel plate is warped, and when the warpage is caused by welding of the steel plate, etc. Due to various factors that reduce the accuracy of the plate reactor, it is difficult to manufacture a plate reactor with high accuracy, and thus the reaction may not be sufficiently controlled.
 このように、プレート式反応器における伝熱プレートの形態及び製造方法が、プレート式反応器の高い精度での製作を主に困難にしている。伝熱管で構成されている伝熱プレートを有する点でプレート式反応器と類似の構造を有するプレート式熱交換器では、通常は、伝熱プレート間の距離の設定値に対する最大誤差は3~5mm程度かそれ以上とされている。 Thus, the form and manufacturing method of the heat transfer plate in the plate reactor makes it difficult to manufacture the plate reactor with high accuracy. In a plate heat exchanger having a structure similar to a plate reactor in that it has a heat transfer plate composed of heat transfer tubes, the maximum error for the set value of the distance between the heat transfer plates is usually 3-5 mm. It is said to be more or less.
 しかしながら、触媒を用いた発熱又は吸熱を伴う気相接触反応では、反応温度を厳密に制御することが重要である。触媒層の温度の制御が不十分であると、触媒の劣化や目的の反応生成物の収率の低下が生じることがある。したがって、プレート式反応器の精度が低いと、例えば、伝熱プレート間の距離の設定値に対する誤差が大きいと、部分的に除熱の悪い部分ができ、触媒層の一部分で反応が暴走し、局部的に触媒が劣化し反応生成物の収率が低下してしまうことがある。一方でプレート式反応器の精度の向上を重視すると、プレート式反応器の製作に多大な手間や多量の鋼材が必要となり、このような反応器を用いる反応生成物の製造における生産性を低下させることがあり、反応生成物の工業的な製造に実用できなくなることがある。 However, it is important to strictly control the reaction temperature in a gas phase catalytic reaction involving exotherm or endotherm using a catalyst. If the temperature of the catalyst layer is insufficiently controlled, the catalyst may deteriorate or the yield of the target reaction product may decrease. Therefore, if the accuracy of the plate reactor is low, for example, if the error with respect to the set value of the distance between the heat transfer plates is large, a part of the heat removal is partially made, and the reaction runs away in a part of the catalyst layer, The catalyst may deteriorate locally and the yield of the reaction product may decrease. On the other hand, if emphasis is placed on improving the accuracy of the plate reactor, a great deal of labor and a large amount of steel are required to produce the plate reactor, which reduces the productivity in the production of reaction products using such a reactor. In some cases, it may become impractical for industrial production of reaction products.
 プロパン、プロピレン、又はアクロレインの気相接触酸化反応のような、発熱又は吸熱を伴い、粒状の固体触媒が用いられる気相反応に用いられる反応器としては、例えば、ガス状の反応原料を反応させるための反応容器と、伝熱管を有し、前記反応容器内に並んで設けられる複数の伝熱プレートと、前記伝熱管に熱媒体を供給する装置と、を有し、前記反応容器は、供給されたガスが、隣り合う伝熱プレート間の隙間を通って排出される容器であり、前記伝熱プレートは、断面形状の周縁又は端縁で連結している複数の前記伝熱管を含み、隣り合う伝熱プレート間の隙間に触媒が充填されるプレート式反応器が知られている(例えば、特許文献3参照)。 As a reactor used in a gas phase reaction in which a granular solid catalyst is used, such as a gas phase catalytic oxidation reaction of propane, propylene, or acrolein, and a granular solid catalyst is used, for example, a gaseous reaction raw material is reacted. A reaction vessel, a plurality of heat transfer plates provided side by side in the reaction vessel, and a device for supplying a heat medium to the heat transfer tube, wherein the reaction vessel is supplied The gas is discharged through a gap between adjacent heat transfer plates, and the heat transfer plate includes a plurality of the heat transfer tubes connected at the peripheral edge or the edge of the cross-sectional shape. There is known a plate reactor in which a catalyst is filled in a gap between matching heat transfer plates (see, for example, Patent Document 3).
 このようなプレート式反応器は、一般に、隣り合う伝熱プレート間の隙間に形成される複数の触媒層を有し、また伝熱プレートと触媒との接触性に優れていることから、前記気相反応による生成物を大量に効率よく製造する観点で優れている。 Such a plate reactor generally has a plurality of catalyst layers formed in the gaps between adjacent heat transfer plates and has excellent contact between the heat transfer plates and the catalyst. It is excellent from the viewpoint of efficiently producing a product by a phase reaction in a large amount.
 一方で前記気相反応では、気相反応を制御する観点から、触媒の充填状態の均一化が望まれている。プレート式反応器では、隣り合う伝熱プレート間の隙間に層状に触媒が充填されることから、前記隙間のそれぞれ及び全てに触媒を一定に充填することが難しく、前記隙間に均一に触媒を充填することができる技術が望まれていた。 On the other hand, in the gas phase reaction, it is desired to make the packing state of the catalyst uniform from the viewpoint of controlling the gas phase reaction. In a plate reactor, the gap between adjacent heat transfer plates is filled with a catalyst in layers, so it is difficult to fill each gap and the catalyst uniformly, and the gap is filled uniformly with the catalyst. A technology that can do this has been desired.
 また、触媒が前記隙間に一定に充填されなかった場合や、前記隙間における一部の触媒が劣化した場合には、その隙間全体の触媒を取り出して再度触媒を充填する必要があった。このため、前記隙間における触媒の充填状態の調整を容易に行うことができる技術が望まれていた。 Further, when the catalyst was not filled in the gap uniformly, or when a part of the catalyst in the gap deteriorated, it was necessary to take out the catalyst in the whole gap and refill the catalyst. For this reason, the technique which can adjust the filling state of the catalyst in the said clearance gap easily was desired.
 現在、接触気相酸化反応を利用し、不飽和脂肪酸等の反応物を製造する製造方法においては、工業的及び実用的な見地から、管式熱交換器形状の多管式反応器が用いられている。該多管式反応器を用いた反応物の製造方法では、多管式反応器の反応管の内側には固体触媒が充填され、反応管の外側には温度制御された熱媒体が循環され、該熱媒体により反応管内側の温度が制御される。 At present, in a production method for producing a reactant such as an unsaturated fatty acid by using a catalytic gas phase oxidation reaction, a multi-tubular reactor having a tubular heat exchanger shape is used from an industrial and practical viewpoint. ing. In the method for producing a reactant using the multitubular reactor, a solid catalyst is filled inside the reaction tube of the multitubular reactor, and a temperature-controlled heat medium is circulated outside the reaction tube. The temperature inside the reaction tube is controlled by the heat medium.
 上記多管式反応器を用いて不飽和脂肪酸等の反応物を製造する場合、反応物の製造量を増加させたいときは、製造量の増加に応じて反応管の数を増加する必要がある。しかしながら、この場合、反応管が数万本に達することもあり、多菅式反応器の製作限界を超えることがある。製作限界を超えた場合は、複数の反応系列を所有せざるを得ないことが現実である。 When producing reactants such as unsaturated fatty acids using the above multi-tubular reactor, it is necessary to increase the number of reaction tubes according to the increase in the production amount when it is desired to increase the production amount of the reactant. . However, in this case, the number of reaction tubes may reach tens of thousands, which may exceed the production limit of multi-stage reactors. When the production limit is exceeded, the reality is that you have to own multiple reaction sequences.
 一方、規定の反応管数あるいは反応器で、単位触媒当たりの処理負荷量を高めて所望の製造量を確保しようとする場合がある。この際には各反応管内で発生する反応熱が増加し、反応管の外側に循環される熱媒体によって反応管内側の温度を適切に制御できない状況が生じる。反応管内側の温度を適切に制御できない場合、反応管内側に保持された触媒の一部の温度が著しく上昇する(以下、ホットスポットともいう)。該触媒の一部の温度が、限界を超えた場合、触媒の一部が損傷し、触媒の耐用期間が短くなる。 On the other hand, there is a case where a desired production amount is secured by increasing the processing load per unit catalyst with a specified number of reaction tubes or reactors. At this time, the reaction heat generated in each reaction tube increases, and a situation occurs in which the temperature inside the reaction tube cannot be appropriately controlled by the heat medium circulated outside the reaction tube. When the temperature inside the reaction tube cannot be appropriately controlled, the temperature of a part of the catalyst held inside the reaction tube rises remarkably (hereinafter also referred to as a hot spot). If the temperature of a part of the catalyst exceeds the limit, a part of the catalyst is damaged and the useful life of the catalyst is shortened.
 触媒の一部が損傷した場合には、該反応器を用いた反応物の生産を停止し、触媒交換が必要となる。すなわち、触媒を交換する間は反応物の生産が停止し、所望の製造量の確保が困難になる等の重大問題が発生することとなる。また、触媒交換に至らなくても、ホットスポットの発生により、適切な反応条件の維持が困難となり、触媒の反応成績が悪化し目的反応物の収量が低下する等の問題が発生する。 When a part of the catalyst is damaged, production of the reactant using the reactor is stopped, and the catalyst needs to be replaced. That is, while the catalyst is exchanged, production of reactants is stopped, and serious problems such as difficulty in securing a desired production amount occur. Even if the catalyst is not replaced, the occurrence of hot spots makes it difficult to maintain appropriate reaction conditions, resulting in problems such as a deterioration in the reaction performance of the catalyst and a decrease in the yield of the target reactant.
 また、特許文献4及び5には、上記多管式反応器を用いて反応原料であるプロピレンやアクロレインを単位触媒当たりの処理負荷量を高めた状態で接触気相酸化反応する方法が提案されている。しかしながら、多管式反応器に用いられる反応管は半径が20~30ミリメートルのパイプで、反応流体(反応原料混合物や反応生成物の混合物等の総称)の入口から出口まで同じ径の反応管を用いているため、反応流体の単位触媒当たりの処理負荷量が高い条件下では、反応流体の圧力損失が大きく、反応器での圧力が上昇し、結果、目的反応物の収量が低下する欠点がある。更には、反応器内圧の上昇に伴い、反応流体等を供給するための圧縮機のエネルギーが大きくなり、目的反応物の収量以外にも、コスト的にも不利である。 Patent Documents 4 and 5 propose a method in which a catalytic gas phase oxidation reaction of propylene and acrolein, which are reaction raw materials, is carried out with an increased processing load per unit catalyst using the multi-tubular reactor. Yes. However, the reaction tube used in the multi-tube reactor is a pipe having a radius of 20 to 30 millimeters, and a reaction tube having the same diameter from the inlet to the outlet of the reaction fluid (a general term for a reaction raw material mixture and a reaction product mixture). Therefore, under conditions where the processing load per unit catalyst of the reaction fluid is high, the pressure loss of the reaction fluid is large, the pressure in the reactor rises, and as a result, the yield of the target reactant decreases. is there. Further, as the internal pressure of the reactor increases, the energy of the compressor for supplying the reaction fluid and the like increases, which is disadvantageous in terms of cost in addition to the yield of the target reactant.
 上記問題点を解決する一つの方法として、プレート式熱交換器の構造を有する接触気相酸化用の反応器が提案されている。例えば、特許文献2では、2枚の伝熱プレート間に触媒を充填し、伝熱プレートの外側に熱媒体が供給されるプレート型触媒反応装置が提案されている。また、特許文献3では、円弧或いは楕円弧に賦形された波板の2枚を対面させ、当該両波板の凸面部を互いに接合して複数の熱媒体流路を形成された伝熱プレートを、複数配列してなりかつ隣り合った伝熱プレートの波板凸面部と凹面部とが対面して所定間隔の触媒層を形成したプレート式触媒反応器が提案されている。 As one method for solving the above problems, a reactor for catalytic gas phase oxidation having a plate heat exchanger structure has been proposed. For example, Patent Document 2 proposes a plate-type catalytic reaction apparatus in which a catalyst is filled between two heat transfer plates and a heat medium is supplied to the outside of the heat transfer plate. Further, in Patent Document 3, a heat transfer plate in which a plurality of corrugated plates formed into an arc or an elliptical arc face each other and the convex portions of the corrugated plates are joined to each other to form a plurality of heat medium channels is provided. A plate-type catalytic reactor in which a plurality of arrayed and adjacent corrugated convex portions and concave portions of adjacent heat transfer plates face each other to form a catalyst layer at a predetermined interval has been proposed.
 上記提案には、プレート式反応器の構造とその接触気相酸化反応への応用については記述されているが、反応によって生じる熱を適切に制御しホットスポットを防ぎつつ、目的反応物の収量を向上させる方法については何ら言及されていない。特に、単位触媒当たりの処理負荷量を高めたときに、反応によって生じる熱を適切に制御しホットスポットを防ぎ、触媒の損傷を防止し、かつ、目的反応物の収量及び製造量を向上させる方法については何ら言及されていない。 The above proposal describes the structure of the plate reactor and its application to the catalytic gas phase oxidation reaction. However, the yield of the target reactant is reduced while appropriately controlling the heat generated by the reaction to prevent hot spots. There is no mention of how to improve. In particular, when the processing load per unit catalyst is increased, heat generated by the reaction is appropriately controlled to prevent hot spots, damage to the catalyst, and the yield and production amount of the target reactant are improved. There is no mention about.
日本国特開2004-000944号公報Japanese Unexamined Patent Publication No. 2004-000944 日本国特開2004-167448号公報Japanese Unexamined Patent Publication No. 2004-167448 日本国特開2004-202430号公報Japanese Unexamined Patent Publication No. 2004-202430 日本国特表2003-514788号公報Japanese National Table 2003-514788 日本国特表2002-539103号公報Japan Special Table 2002-539103 Publication
 本発明は、反応生成物の製造における反応の暴走を防止することができ、かつ高い生産性での反応生成物の製造に用いることができるプレート式反応器を提供する。 The present invention provides a plate reactor that can prevent reaction runaway in the production of a reaction product and can be used for production of a reaction product with high productivity.
 また、本発明は、プレート式反応器を用いる反応生成物の製造において、反応の暴走を防止し、かつ高い生産性で反応生成物を製作する方法を提供する。 In addition, the present invention provides a method for preventing reaction runaway and producing a reaction product with high productivity in the production of a reaction product using a plate reactor.
 また、本発明は、隣り合う伝熱プレート間の隙間に均一かつ容易に触媒を充填することができるプレート式反応器を提供する。 The present invention also provides a plate reactor that can uniformly and easily fill the gaps between adjacent heat transfer plates.
 また、本発明は、隣り合う伝熱プレート間の隙間に均一かつ容易に触媒を充填することができ、かつ前記隙間における触媒の充填状態を容易に調整することができるプレート式反応器を提供する。 The present invention also provides a plate reactor in which the gap between adjacent heat transfer plates can be uniformly and easily filled with the catalyst, and the filling state of the catalyst in the gap can be easily adjusted. .
 さらに、本発明は、触媒が充填されたプレート式反応器に反応原料を供給し、該反応原料を反応させ反応生成物を製造する製造方法において、単位触媒当たりの反応原料の処理負荷量を高めたときであっても、触媒を通過する反応ガスの圧力損失の増大を防止し、かつ、反応によって生じる熱を適切に制御することでホットスポットを防ぎ、触媒の損傷を防止しつつ目的反応生成物の収率を向上させる新規な方法を提供することにある。 Furthermore, the present invention increases the processing load of a reaction raw material per unit catalyst in a production method in which a reaction raw material is supplied to a plate reactor filled with a catalyst and the reaction raw material is reacted to produce a reaction product. Even if it is, the target reaction can be generated while preventing an increase in the pressure loss of the reaction gas passing through the catalyst and preventing the hot spot by properly controlling the heat generated by the reaction, preventing the catalyst from being damaged. The object is to provide a novel method for improving the yield of the product.
 本発明は、伝熱プレートの表面間の距離の設計値に対して許容される誤差の範囲を-0.6~+2.0mmに設定することによって、プレート式反応器の温度の制御に支障をきたさず、低活性の触媒の使用や触媒の希釈に頼らず、プレート式反応器の製作費用を安価に維持しつつ、工業的に有利な方法で有価物を製造する技術を提供する。 In the present invention, the temperature range of the plate reactor is controlled by setting the allowable error range to -0.6 to +2.0 mm with respect to the design value of the distance between the surfaces of the heat transfer plates. The present invention provides a technology for producing a valuable material by an industrially advantageous method while maintaining the production cost of a plate reactor at a low cost without depending on the use of a low activity catalyst or dilution of the catalyst.
 すなわち本発明は、ガス状の原料を反応させるための反応容器と、前記反応容器に並んで設けられる複数の伝熱プレートと、前記伝熱プレートに所望の温度の熱媒を供給するための熱媒供給装置と、を有し、前記伝熱プレートは、断面形状の周縁又は端縁で連結している複数の伝熱管を含み、前記熱媒供給装置は、反応容器に収容された伝熱プレートの伝熱管に熱媒を供給する装置であるプレート式反応器において、対向する前記伝熱プレート間の隙間において、前記伝熱プレートの軸からなる面から等距離にある面に直交する方向における伝熱プレートの表面間の距離の設計値が5~50mmであり、前記設計値に対する前記表面間の距離の実測値の差が-0.6~+2.0mmであるプレート式反応器(以下、「第一のプレート式反応器」とも言う)を提供する。 That is, the present invention provides a reaction vessel for reacting a gaseous raw material, a plurality of heat transfer plates provided side by side in the reaction vessel, and a heat for supplying a heat medium at a desired temperature to the heat transfer plate. The heat transfer plate includes a plurality of heat transfer tubes connected at a peripheral edge or an edge of a cross-sectional shape, and the heat medium supply device is a heat transfer plate accommodated in a reaction vessel In the plate reactor that is a device for supplying a heat transfer medium to the heat transfer tube, a gap between the heat transfer plates facing each other is transferred in a direction perpendicular to a surface that is equidistant from the surface formed by the axis of the heat transfer plate. The design value of the distance between the surfaces of the heat plate is 5 to 50 mm, and the difference of the measured value of the distance between the surfaces with respect to the design value is −0.6 to +2.0 mm (hereinafter, “ First plate reaction Also referred to) to provide a ".
 また本発明は、前記伝熱プレートの軸方向の長さが好ましくは5m以下、更に好ましくは2m以下である第一のプレート式反応器を提供する。 The present invention also provides a first plate reactor in which the heat transfer plate has an axial length of preferably 5 m or less, more preferably 2 m or less.
 また本発明は、好ましくは、前記伝熱プレートの間に所定の間隔を形成するためのスペーサをさらに有する第一のプレート式反応器を提供する。 Also, the present invention preferably provides a first plate reactor that further includes a spacer for forming a predetermined interval between the heat transfer plates.
 また本発明は、好ましくは、前記伝熱プレートが、前記伝熱管の断面形状を伝熱プレートの軸で二分割した形状が複数連なるように成形された二枚の鋼板を接合してなる第一のプレート式反応器を提供する。 In the present invention, it is preferable that the heat transfer plate is formed by joining two steel plates formed so that a plurality of shapes obtained by dividing the cross-sectional shape of the heat transfer tube into two by the shaft of the heat transfer plate are continuous. A plate reactor is provided.
 また本発明は、好ましくは、前記設計値に対する前記表面間の距離の実測値の差が、伝熱プレート間の隙間における原料ガスの通気方向の上流側でより小さい第一のプレート式反応器を提供する。 In the present invention, it is preferable that the first plate reactor in which the difference in the measured value of the distance between the surfaces with respect to the design value is smaller on the upstream side in the flow direction of the raw material gas in the gap between the heat transfer plates is smaller. provide.
 また本発明は、好ましくは、前記原料ガスにおける原料の反応率が70%以下となる位置における前記設計値に対する前記表面間の距離の実測値の差が、前記反応率が70%より大きくなる位置における前記設計値に対する前記表面間の距離の実測値の差よりも小さい第一のプレート式反応器を提供する。 In the present invention, it is preferable that the difference in the measured value of the distance between the surfaces with respect to the design value at a position where the reaction rate of the raw material in the raw material gas is 70% or less is a position where the reaction rate is greater than 70%. The first plate reactor is smaller than the difference between the measured values of the distance between the surfaces with respect to the design value at.
 また本発明は、好ましくは、前記隙間の全容積が3L以上である第一のプレート式反応器を提供する。 Also, the present invention preferably provides a first plate reactor in which the total volume of the gap is 3 L or more.
 また本発明は、好ましくは、前記隙間に触媒が充填されてなる触媒層の2箇所以上の位置の温度を測定するための温度測定装置をさらに有する第一のプレート式反応器を提供する。 In addition, the present invention preferably provides a first plate reactor that further includes a temperature measuring device for measuring temperatures at two or more positions of the catalyst layer in which the gap is filled with a catalyst.
 また本発明は、反応容器に複数の伝熱プレートが並んで設けられ、伝熱プレート間の隙間に触媒が充填されて触媒層が形成されるプレート式反応器を用い、前記反応容器にガス状の原料を供給して前記触媒層に通す工程と、前記伝熱プレートを構成する複数の伝熱管に所定の温度の熱媒を供給する工程とを含む、前記触媒の存在下で原料ガスを反応させてガス状の反応生成物を生成する反応生成物の製造方法において、前記プレート式反応器に本発明のプレート式反応器を用い、前記触媒層のピーク温度をプレート式反応器の設計時に設定された触媒層のピーク温度の設定値にする温度の熱媒を、伝熱管に供給する反応生成物の製造方法(以下、「反応生成物の第一の製造方法」とも言う)を提供する。 Further, the present invention uses a plate reactor in which a plurality of heat transfer plates are provided side by side in a reaction vessel, and a catalyst layer is formed by filling a catalyst between gaps between the heat transfer plates. The raw material gas is reacted in the presence of the catalyst, including a step of supplying the raw material and passing through the catalyst layer, and a step of supplying a heat medium having a predetermined temperature to the plurality of heat transfer tubes constituting the heat transfer plate. In the method for producing a reaction product that generates a gaseous reaction product, the plate reactor of the present invention is used for the plate reactor, and the peak temperature of the catalyst layer is set when the plate reactor is designed. Provided is a method for producing a reaction product (hereinafter, also referred to as “first production method for reaction product”) in which a heat medium having a temperature set to the peak temperature of the catalyst layer is supplied to the heat transfer tube.
 また本発明は、好ましくは、触媒の存在下における原料ガス中の原料の反応が発熱反応である反応生成物の第一の製造方法を提供する。 In addition, the present invention preferably provides a first method for producing a reaction product in which the reaction of the raw material in the raw material gas in the presence of a catalyst is an exothermic reaction.
 また本発明は、好ましくは、前記反応生成物が、アクロレイン及びアクリル酸の一方又は両方、メタクロレイン及びメタクリル酸の一方又は両方、マレイン酸、フタル酸、酸化エチレン、パラフィン、アルコール、アセトン及びフェノール、又はブタジエンである反応生成物の第一の製造方法を提供する。 In the present invention, it is preferable that the reaction product is one or both of acrolein and acrylic acid, one or both of methacrolein and methacrylic acid, maleic acid, phthalic acid, ethylene oxide, paraffin, alcohol, acetone and phenol, Alternatively, a first method for producing a reaction product that is butadiene is provided.
 さらに本発明は、ガス状の原料を反応させるための反応容器と、前記反応容器に並んで設けられる複数の伝熱プレートと、前記伝熱プレートに所望の温度の熱媒を供給する熱媒供給装置と、を有し、前記伝熱プレートは、断面形状の周縁又は端縁で連結している複数の伝熱管を含み、前記熱媒供給装置は、反応容器に収容された伝熱プレートの伝熱管に熱媒を供給する装置であるプレート式反応器を製作する方法において、対向する伝熱プレート間の隙間における前記伝熱プレートの軸からなる面から等距離にある面に直交する方向における伝熱プレートの表面間の距離が設計値となる間隔で伝熱プレートを配置して伝熱管と熱媒供給装置とを接合する工程を含むプレート式反応器の製作方法を提供する。 Furthermore, the present invention provides a reaction vessel for reacting a gaseous raw material, a plurality of heat transfer plates provided side by side in the reaction vessel, and a heat medium supply for supplying a heat medium of a desired temperature to the heat transfer plate And the heat transfer plate includes a plurality of heat transfer tubes connected at a peripheral edge or an edge of a cross-sectional shape, and the heat medium supply device includes a heat transfer plate accommodated in a reaction vessel. In a method of manufacturing a plate reactor that is a device for supplying a heat medium to a heat pipe, the heat transfer in a direction perpendicular to a surface that is equidistant from the surface formed by the axis of the heat transfer plate in the gap between the opposed heat transfer plates. Provided is a plate reactor manufacturing method including a step of arranging a heat transfer plate at an interval where a distance between surfaces of a heat plate is a design value and joining a heat transfer tube and a heat medium supply device.
 また本発明は、好ましくは、前記伝熱プレートには、前記伝熱管の断面形状を伝熱プレートの軸で二分割した形状が複数連なるように成形された二枚の鋼板を接合してなる伝熱プレートを用い、成形された前記鋼板には、鋼板の成形の設計値に対する誤差が±0.5mm以内である、成形された鋼板を用いる前記プレート式反応器の製作方法を提供する。 In the present invention, it is preferable that the heat transfer plate is formed by joining two steel plates formed such that a plurality of shapes obtained by dividing the cross-sectional shape of the heat transfer tube into two by the shaft of the heat transfer plate are continuous. Provided is a method for producing the plate reactor using a formed steel plate, wherein the steel plate formed using a hot plate has an error of ± 0.5 mm or less with respect to a design value for forming the steel plate.
 又は本発明は、好ましくは、前記伝熱プレートには、前記伝熱プレートの軸方向の長さが5m以下、好ましくは2m以下である伝熱プレートを用いる前記プレート式反応器の製作方法を提供する。 Alternatively, the present invention preferably provides a method for producing the plate reactor, wherein the heat transfer plate is a heat transfer plate having an axial length of 5 m or less, preferably 2 m or less. To do.
 また本発明は、好ましくは、前記伝熱プレートの表面間の距離が設計値となる間隔を伝熱プレート間に形成するスペーサを介して、熱媒供給装置との接合前に反応容器内に伝熱プレートを配置する工程をさらに含む前記プレート式反応器の製作方法を提供する。 In the present invention, it is preferable that the distance between the surfaces of the heat transfer plates is transferred to the reaction container before joining with the heat transfer medium supply device via a spacer that forms an interval between the heat transfer plates. A method for manufacturing the plate reactor is further provided, further comprising the step of arranging a hot plate.
 また、本発明は、好ましくは、プレート式反応器における隣り合う伝熱プレート間の隙間に、反応原料の流通方向に沿って、触媒を収容することができる複数の区画を形成し、各区画に触媒を一定に充填することが可能なプレート式反応器を提供する。 In the present invention, preferably, a plurality of compartments capable of accommodating the catalyst are formed in the gaps between adjacent heat transfer plates in the plate reactor along the flow direction of the reaction raw material, Provided is a plate reactor that can be packed uniformly with a catalyst.
 また、本発明は、好ましくは、プレート式反応器における隣り合う伝熱プレート間の隙間に、反応原料の流通方向に沿って、触媒を収容することができる複数の区画を形成し、さらに各区画で独立して触媒の充填と抜き出しとを行うことが可能なプレート式反応器を提供する。 In the present invention, preferably, a plurality of compartments capable of accommodating the catalyst are formed in the gap between adjacent heat transfer plates in the plate reactor along the flow direction of the reaction raw material. A plate reactor capable of charging and discharging the catalyst independently.
 すなわち本発明は、反応原料を反応させるための反応容器と、伝熱管を有し、前記反応容器内に並んで設けられる複数の伝熱プレートと、前記伝熱管に熱媒体を供給する装置と、を有し、前記反応容器は、供給された反応原料が、隣り合う伝熱プレート間の隙間を通って排出される容器であり、前記伝熱プレートは、断面形状の周縁又は端縁で連結している複数の前記伝熱管を含み、隣り合う伝熱プレート間の隙間に触媒が充填されるプレート式反応器において、隣り合う伝熱プレート間の隙間を、反応容器内の通気方向に沿って、充填された触媒を収容する複数の区画に仕切る仕切りをさらに有するプレート式反応器(以下、「第二のプレート式反応器」とも言う)を提供する。 That is, the present invention comprises a reaction vessel for reacting reaction raw materials, a heat transfer tube, a plurality of heat transfer plates provided side by side in the reaction vessel, a device for supplying a heat medium to the heat transfer tube, The reaction vessel is a vessel in which the supplied reaction raw material is discharged through a gap between adjacent heat transfer plates, and the heat transfer plate is connected at a peripheral edge or an edge of a cross-sectional shape. In the plate reactor in which the catalyst is filled in the gap between the adjacent heat transfer plates, the gap between the adjacent heat transfer plates is arranged along the ventilation direction in the reaction vessel. Provided is a plate reactor (hereinafter, also referred to as “second plate reactor”) further having a partition for dividing a packed catalyst into a plurality of compartments.
 また本発明は、好ましくは、前記複数の区画のそれぞれの容積が同じである第二のプレート式反応器を提供する。 The present invention preferably also provides a second plate reactor in which the volumes of the plurality of compartments are the same.
 また本発明は、好ましくは、前記複数の区画のそれぞれの容積が1~100Lである第二のプレート式反応器を提供する。 In addition, the present invention preferably provides a second plate reactor in which the volume of each of the plurality of compartments is 1 to 100 L.
 また本発明は、好ましくは、前記複数の区画のそれぞれの容積が2~25Lである第二のプレート式反応器を提供する。 In addition, the present invention preferably provides a second plate reactor in which the volume of each of the plurality of compartments is 2 to 25 L.
 また本発明は、好ましくは、通気性を有し、各区画の端部に着脱自在に固定され、各区画に収容された触媒を保持するように各区画の端部を塞ぐ複数の通気栓をさらに有する第二のプレート式反応器を提供する。 Further, the present invention preferably includes a plurality of vent plugs that are breathable, are detachably fixed to the end portions of the respective compartments, and block the end portions of the respective compartments so as to hold the catalyst accommodated in the respective compartments. A second plate reactor is further provided.
 また本発明は、好ましくは、前記仕切り及び伝熱プレートの一方又は両方は、前記通気栓を係止するための第一の係止部を有し、前記通気栓は、通気性を有すると共に触媒を通さない通気板と、通気板の周縁の一部又は全部に通気板に対して垂直に設けられるスカート部と、前記スカート部に設けられて前記第一の係止部と着脱自在に係止する第二の係止部とを有する第二のプレート式反応器を提供する。 In the present invention, it is preferable that one or both of the partition and the heat transfer plate have a first locking portion for locking the vent plug, and the vent plug has air permeability and a catalyst. A ventilation plate that does not pass through, a skirt portion that is provided perpendicularly to the ventilation plate at a part or all of the periphery of the ventilation plate, and a detachable engagement with the first locking portion provided in the skirt portion A second plate reactor having a second locking portion.
 また本発明は、好ましくは、前記複数の仕切りの間隔が0.1~1mである第二のプレート式反応器を提供する。 Also, the present invention preferably provides a second plate reactor in which the interval between the plurality of partitions is 0.1 to 1 m.
 また本発明は、好ましくは、第二のプレート式反応器を用いて反応生成物を製造する方法であって、
 前記伝熱管に所望の温度の熱媒体を供給する工程と、触媒が充填された隣り合う伝熱プレート間の隙間に反応原料を供給して前記隙間から排出される反応生成物を得る工程と、を含み、
 前記反応原料が、エチレン;炭素数3及び4の炭化水素、並びにターシャリーブタノールからなる群から選ばれる少なくとも1種、又は炭素数3及び4の不飽和脂肪族アルデヒドからなる群から選ばれる少なくとも1種;炭素数4以上の炭化水素;キシレン及び/又はナフタレン;オレフィン;カルボニル化合物;クメンハイドロパーオキサイド;ブテン;又はエチルベンゼン;であり、
 前記反応生成物が、酸化エチレン;炭素数3及び4の不飽和脂肪族アルデヒド及び炭素数3及び4の不飽和脂肪酸の少なくとも一方;マレイン酸;フタル酸;パラフィン;アルコール;アセトン及びフェノール;ブタジエン;又はスチレン;である方法(以下、「反応生成物の第二の製造方法」とも言う。)を提供する。
The present invention is preferably a method for producing a reaction product using a second plate reactor,
Supplying a heat medium having a desired temperature to the heat transfer tube, supplying a reaction raw material to a gap between adjacent heat transfer plates filled with a catalyst, and obtaining a reaction product discharged from the gap; Including
The reaction raw material is at least one selected from the group consisting of ethylene; hydrocarbons having 3 and 4 carbon atoms and tertiary butanol, or at least 1 selected from the group consisting of unsaturated aliphatic aldehydes having 3 and 4 carbon atoms. Species; hydrocarbons having 4 or more carbon atoms; xylene and / or naphthalene; olefins; carbonyl compounds; cumene hydroperoxide; butenes;
The reaction product is ethylene oxide; at least one of unsaturated aliphatic aldehydes having 3 and 4 carbon atoms and unsaturated fatty acids having 3 and 4 carbon atoms; maleic acid; phthalic acid; paraffin; alcohol; acetone and phenol; Or styrene (hereinafter, also referred to as “second production method of reaction product”).
 さらに、本発明者らは、上記課題を解決するために鋭意検討を行い、伝熱プレートの間に形成された触媒層の平均層厚さが異なる複数の反応帯域に分割されているプレート式反応器に、反応原料を供給し、該反応原料を接触気相酸化し、目的反応生成物を製造する製造方法において、上記複数の反応帯域に供給される熱媒体の温度に着目し、本発明を完成するに至った。すなわち、本発明の要旨は以下の通りである。 Furthermore, the present inventors have intensively studied to solve the above problems, and the plate-type reaction is divided into a plurality of reaction zones in which the average layer thickness of the catalyst layer formed between the heat transfer plates is different. In the production method of supplying a reaction raw material to a reactor, catalytic vapor phase oxidation of the reaction raw material, and producing a target reaction product, paying attention to the temperature of the heat medium supplied to the plurality of reaction zones, the present invention It came to be completed. That is, the gist of the present invention is as follows.
 すなわち本発明は、
 (A)伝熱プレートの間に形成された触媒層を備えたプレート式反応器に、炭素数3及び4の炭化水素、並びにターシャリーブタノールからなる群から選ばれる反応原料の少なくとも1種、並びに、分子状酸素を含む反応原料混合物を供給し、前記反応原料を接触気相酸化し、不飽和炭化水素、並びに、炭素数3及び4の不飽和脂肪族アルデヒドからなる群から選ばれる少なくとも一種の反応生成物を製造する、又は、
 (B)伝熱プレートの間に形成された触媒層を備えたプレート式反応器を用いる製造方法であって、炭素数3及び4の不飽和脂肪族アルデヒドからなる群から選ばれる反応原料の少なくとも1種、並びに、分子状酸素を含む反応原料混合物を供給し、前記反応原料を接触気相酸化し、炭素数3及び4の不飽和脂肪酸からなる群から選ばれる少なくとも一種の反応生成物を製造する方法において、
 前記プレート式反応器は、触媒層の平均層厚さが異なる複数の反応帯域に分割されており、前記複数の反応帯域には、独立して温度調整された熱媒体が供給され、前記酸化により生じる熱を、前記伝熱プレートを隔てて除熱し、前記触媒層内の温度が独立して制御され、
 前記反応原料混合物の入口に最も近接する反応帯域S1に供給される前記熱媒体の温度T(S1)は、前記反応帯域S1に隣接し、前記反応原料混合物の流れの下流に位置する反応帯域S2に供給される前記熱媒体の温度T(S2)より高く、
 前記炭素数3及び4の炭化水素、並びにターシャリーブタノールからなる群から選ばれる反応原料の少なくとも1種を酸化するときの、前記反応原料の負荷量が、触媒1リットル当たり150リットル毎時[標準状態(温度0℃、101.325kPa)換算]以上であり、
 前記炭素数3及び4の不飽和脂肪族アルデヒドからなる群から選ばれる反応原料の少なくとも1種を酸化するときの、前記反応原料の負荷量が、触媒1リットル当たり160リットル毎時[標準状態(温度0℃、101.325kPa)換算]以上である、不飽和炭化水素、炭素数3及び4の不飽和脂肪族アルデヒド、並びに炭素数3及び4の不飽和脂肪酸からなる群から選ばれる一種以上の反応生成物を製造する製造方法(以下、「反応生成物の第三の製造方法」とも言う。)を提供する。
That is, the present invention
(A) a plate reactor having a catalyst layer formed between heat transfer plates, at least one reaction raw material selected from the group consisting of hydrocarbons having 3 and 4 carbon atoms and tertiary butanol; and Supplying a reaction raw material mixture containing molecular oxygen, catalytic vapor phase oxidation of the reaction raw material, and at least one selected from the group consisting of unsaturated hydrocarbons and unsaturated aliphatic aldehydes having 3 and 4 carbon atoms Producing a reaction product, or
(B) A production method using a plate reactor provided with a catalyst layer formed between heat transfer plates, wherein at least a reaction raw material selected from the group consisting of unsaturated aliphatic aldehydes having 3 and 4 carbon atoms A reaction raw material mixture containing one kind and molecular oxygen is supplied, and the reaction raw material is subjected to catalytic gas phase oxidation to produce at least one reaction product selected from the group consisting of unsaturated fatty acids having 3 and 4 carbon atoms. In the way to
The plate reactor is divided into a plurality of reaction zones having different average layer thicknesses of the catalyst layers, and a heat medium whose temperature is independently adjusted is supplied to the plurality of reaction zones. The heat generated is removed through the heat transfer plate, and the temperature in the catalyst layer is independently controlled,
The temperature T (S1) of the heating medium supplied to the reaction zone S1 closest to the inlet of the reaction raw material mixture is adjacent to the reaction zone S1 and is located downstream of the flow of the reaction raw material mixture. Higher than the temperature T (S2) of the heat medium supplied to
The load of the reaction raw material when oxidizing at least one of the reaction raw materials selected from the group consisting of the hydrocarbons having 3 and 4 carbon atoms and tertiary butanol is 150 liters per hour per liter of catalyst [standard state (Temperature 0 ° C., 101.325 kPa) conversion]
When oxidizing at least one kind of the reaction raw material selected from the group consisting of the unsaturated aliphatic aldehydes having 3 and 4 carbon atoms, the loading amount of the reaction raw material is 160 liters per hour per 1 liter of catalyst [standard state (temperature One or more reactions selected from the group consisting of unsaturated hydrocarbons, unsaturated aliphatic aldehydes having 3 and 4 carbon atoms, and unsaturated fatty acids having 3 and 4 carbon atoms. A production method for producing a product (hereinafter also referred to as “third production method of a reaction product”) is provided.
 また本発明は、好ましくは、特定されない任意の反応帯域S(j)に供給される熱媒体の温度をT(Sj)とし、前記反応帯域S(j)に隣接し、反応原料混合物の流れの下流に位置する反応帯域S(j+1)に供給される前記熱媒体の温度をT(Sj+1)としたときに、前記T(Sj)と前記T(Sj+1)が、T(Sj)-T(Sj+1)≧5、の関係を満たす反応生成物の第三の製造方法を提供する。 In the present invention, preferably, the temperature of the heat medium supplied to any unspecified reaction zone S (j) is T (Sj), adjacent to the reaction zone S (j), and the flow of the reaction raw material mixture When the temperature of the heat medium supplied to the reaction zone S (j + 1) located downstream is T (Sj + 1), T (Sj) and T (Sj + 1) are T (Sj) −T (Sj + 1) )> 5, a third method for producing a reaction product is provided.
 また本発明は、好ましくは、前記反応帯域の数が2~5であり、反応原料混合物の入口から出口に向かって、各反応帯域の触媒層の平均層厚さが増大する、反応生成物の第三の製造方法を提供する。 In the present invention, preferably, the number of the reaction zones is 2 to 5, and the average layer thickness of the catalyst layer in each reaction zone increases from the reaction raw material mixture inlet to the outlet. A third manufacturing method is provided.
 また本発明は、好ましくは、前記炭素数3及び4の炭化水素、並びにターシャリーブタノールからなる群から選ばれる反応原料の少なくとも1種を酸化するときの、前記反応原料の負荷量が、触媒1リットル当たり170~290リットル毎時[標準状態(温度0℃、101.325kPa)換算]である、反応生成物の第三の製造方法を提供する。 In the present invention, preferably, the amount of the reaction raw material loaded when oxidizing at least one of the reaction raw materials selected from the group consisting of the hydrocarbons having 3 and 4 carbon atoms and tertiary butanol is the catalyst 1 A third method for producing a reaction product is provided which is 170 to 290 liters per liter per hour [converted to a standard state (temperature 0 ° C., 101.325 kPa)].
 また本発明は、好ましくは、前記炭素数3及び4の不飽和脂肪族アルデヒドからなる群から選ばれる反応原料の少なくとも1種を酸化するときの、前記反応原料の負荷量が、触媒1リットル当たり180~300リットル毎時[標準状態(温度0℃、101.325kPa)換算]である、反応生成物の第三の製造方法を提供する。 In the present invention, it is preferable that the amount of the reaction raw material loaded per liter of the catalyst when oxidizing at least one of the reaction raw materials selected from the group consisting of the above-mentioned unsaturated aliphatic aldehydes having 3 and 4 carbon atoms. A third method for producing a reaction product, which is 180 to 300 liters per hour [converted to a standard state (temperature 0 ° C., 101.325 kPa)], is provided.
 また本発明は、好ましくは、前記プレート式反応器の反応生成物出口での反応原料の転化率が、90%以上である、反応生成物の第三の製造方法を提供する。 Also, the present invention preferably provides a third method for producing a reaction product, wherein the conversion rate of the reaction raw material at the reaction product outlet of the plate reactor is 90% or more.
 また本発明は、好ましくは、前記反応原料がプロピレンであり、前記複数の反応帯域に供給される熱媒体の温度が320~400℃である、又は、前記反応原料がアクロレインであり、前記複数の反応帯域に供給される熱媒体の温度が250~320℃である、反応生成物の第三の製造方法を提供する。 In the present invention, preferably, the reaction raw material is propylene, and the temperature of the heat medium supplied to the plurality of reaction zones is 320 to 400 ° C., or the reaction raw material is acrolein, A third method for producing a reaction product is provided, wherein the temperature of the heat medium supplied to the reaction zone is 250 to 320 ° C.
 第一のプレート式反応器では、プレート式反応器における伝熱プレートの表面間の距離の実測値が、その設計値に対して前述した特定の範囲に含まれることから、熱媒の温度の制御によって反応を暴走させずに制御でき、さらにこのような制御が可能なプレート式反応器を、多大な手間や多量の鋼材を使用しなくても製作でき、工業的な実用により一層好適なプレート式反応器を得ることができる。 In the first plate reactor, the measured value of the distance between the surfaces of the heat transfer plate in the plate reactor is included in the specific range described above with respect to the design value. It is possible to control without causing the reaction to runaway, and a plate reactor capable of such control can be manufactured without much labor and use of a large amount of steel. A reactor can be obtained.
 また第一のプレート式反応器では、前記伝熱プレートの軸方向の長さが5m以下、好ましくは2m以下であることが、伝熱プレートの表面間の距離の設計値に対する実測値の差が小さなプレート式反応器を得る観点からより一層効果的である。 In the first plate reactor, the length of the heat transfer plate in the axial direction is 5 m or less, preferably 2 m or less. It is more effective from the viewpoint of obtaining a small plate reactor.
 また第一のプレート式反応器では、前記伝熱プレートの間に所定の間隔を形成するためのスペーサをさらに有することが、伝熱プレートの表面間の距離の設計値に対する実測値の差が小さなプレート式反応器を得る観点からより一層効果的である。 The first plate reactor further includes a spacer for forming a predetermined interval between the heat transfer plates, so that the difference between the measured values with respect to the design value of the distance between the surfaces of the heat transfer plates is small. It is much more effective from the viewpoint of obtaining a plate reactor.
 また第一のプレート式反応器では、前記伝熱プレートが、前記伝熱管の断面形状を伝熱プレートの軸で二分割した形状が複数連なるように成形された二枚の鋼板を接合してなることが、伝熱プレートの表面間の距離の設計値に対する実測値の差を小さくする観点からより一層効果的である。 In the first plate reactor, the heat transfer plate is formed by joining two steel plates formed so that a plurality of shapes obtained by dividing the cross-sectional shape of the heat transfer tube into two by the shaft of the heat transfer plate are continuous. This is even more effective from the viewpoint of reducing the difference between the measured values with respect to the design value of the distance between the surfaces of the heat transfer plates.
 また第一のプレート式反応器では、前記設計値に対する前記表面間の距離の実測値の差が、伝熱プレート間の隙間における原料ガスの通気方向の上流側でより小さいことが、反応の制御の精度を高める観点からより効果的であり、前記原料ガスにおける原料の反応率が70%以下となる位置における前記設計値に対する前記表面間の距離の実測値の差が、前記反応率が70%より大きくなる位置における前記設計値に対する前記表面間の距離の実測値の差よりも小さいことがより一層効果的である。 Further, in the first plate reactor, the difference in the measured value of the distance between the surfaces with respect to the design value is smaller on the upstream side in the flow direction of the raw material gas in the gap between the heat transfer plates. The difference in the measured value of the distance between the surfaces with respect to the design value at a position where the reaction rate of the raw material in the raw material gas is 70% or less is more effective from the viewpoint of increasing the accuracy of the reaction gas. It is even more effective that it is smaller than the difference of the measured value of the distance between the surfaces with respect to the design value at a larger position.
 また第一のプレート式反応器では、前記伝熱プレート間の隙間の全容積が3L以上であることが、反応生成物を高い生産性で製造する観点からより一層効果的である。 In the first plate reactor, the total volume of the gaps between the heat transfer plates is 3 L or more, which is more effective from the viewpoint of producing the reaction product with high productivity.
 また第一のプレート式反応器は、前記伝熱プレート間の隙間に触媒が充填されてなる触媒層の2箇所以上の位置の温度を測定するための温度測定装置をさらに有することが、反応の制御の精度を高める観点からより一層効果的である。 The first plate reactor further includes a temperature measuring device for measuring temperatures at two or more positions of the catalyst layer in which a catalyst is filled in a gap between the heat transfer plates. This is even more effective from the viewpoint of increasing control accuracy.
 また反応生成物の第一の製造方法では、触媒の存在下における原料ガス中の原料の反応が発熱反応であることが、本発明の効果が顕著に得られる観点からより効果的であり、前記反応生成物が、アクロレイン及びアクリル酸の一方又は両方、メタクロレイン及びメタクリル酸の一方又は両方、マレイン酸、フタル酸、酸化エチレン、パラフィン、アルコール、アセトン及びフェノール、又はブタジエンであることがより一層効果的である。 Further, in the first production method of the reaction product, the reaction of the raw material in the raw material gas in the presence of the catalyst is an exothermic reaction, which is more effective from the viewpoint that the effect of the present invention is remarkably obtained. It is even more effective that the reaction product is one or both of acrolein and acrylic acid, one or both of methacrolein and methacrylic acid, maleic acid, phthalic acid, ethylene oxide, paraffin, alcohol, acetone and phenol, or butadiene. Is.
 また第一のプレート式反応器の製作方法では、前記伝熱プレートにおいて、鋼板の成形の設計値に対する誤差が±0.5mm以内である、成形された鋼板を用いることが、前記設計値に対する実測値の差を小さくする観点からより一層効果的である。 Further, in the first plate reactor production method, in the heat transfer plate, using a formed steel sheet having an error with respect to a design value of forming the steel sheet within ± 0.5 mm is actually measured with respect to the design value. This is even more effective from the viewpoint of reducing the difference in values.
 また第一のプレート式反応器の製作方法では、対向する伝熱プレートの表面間の距離が設計値となる間隔を伝熱プレート間に形成するスペーサを介して接合前の伝熱プレートを配置することが、前記設計値に対する実測値の差を小さくする観点からより一層効果的である。 In the first plate reactor manufacturing method, the heat transfer plates before joining are arranged through spacers that form a distance between the heat transfer plates so that the distance between the surfaces of the opposite heat transfer plates is a design value. This is more effective from the viewpoint of reducing the difference between the measured values and the design values.
 第二のプレート式反応器では、前記仕切りを有することから、仕切りによって形成される各区画の容量に応じた量の触媒を充填することができ、各区画において触媒の充填状態を一定にすることによって、プレート式反応器における隣り合う伝熱プレート間の隙間全体に触媒を均一に充填することができる。このように、本発明のプレート式反応器では、従来のプレート式反応器に比べて、隣り合う伝熱プレート間の隙間に均一かつ容易に触媒を充填することができる。 Since the second plate reactor has the partition, it can be filled with an amount of catalyst corresponding to the capacity of each section formed by the partition, and the packing state of the catalyst is made constant in each section. Thus, the catalyst can be uniformly filled in the entire gap between adjacent heat transfer plates in the plate reactor. Thus, in the plate reactor of the present invention, the catalyst can be uniformly and easily filled in the gaps between the adjacent heat transfer plates as compared with the conventional plate reactor.
 また第二のプレート式反応器では、前記複数の区画のそれぞれの容積が同じであることが、各区画における触媒の充填状態を容易に一定にする観点からより一層効果的である。 In the second plate reactor, it is more effective that the volume of each of the plurality of compartments is the same from the viewpoint of easily keeping the packed state of the catalyst in each compartment.
 また第二のプレート式反応器では、前記複数の区画のそれぞれの容積が1~100Lであることが、各区画における触媒の充填作業を容易にする観点からより一層効果的である。 In the second plate reactor, the volume of each of the plurality of compartments is 1 to 100 L, which is more effective from the viewpoint of facilitating the catalyst filling operation in each compartment.
 また第二のプレート式反応器では、前記複数の区画のそれぞれの容積が2~25Lであることが、各区画における触媒の充填作業を容易にする観点からより一層効果的である。 In the second plate reactor, the volume of each of the plurality of compartments is 2 to 25 L, which is more effective from the viewpoint of facilitating the catalyst filling operation in each compartment.
 また第二のプレート式反応器では、前記通気栓をさらに有することが、隣り合う伝熱プレート間の隙間に充填された触媒を区画単位で取り出し、隣り合う伝熱プレート間の隙間に均一かつ容易に触媒を充填し、かつ前記隙間における触媒の充填状態を容易に調整する観点からより一層効果的である。 Further, in the second plate reactor, it is possible to further include the vent plug so that the catalyst filled in the gap between the adjacent heat transfer plates can be taken out in a unit of unit, and the gap between the adjacent heat transfer plates can be uniformly and easily. It is more effective from the viewpoint of easily filling the catalyst with the catalyst and easily adjusting the filling state of the catalyst in the gap.
 また第二のプレート式反応器では、前記第一の係止部と前記通気板と前記スカート部と前記第二の係止部とを有することが、各区画の端部へ通気栓を十分な強度で固定すると共に通気栓の着脱操作を容易に行う観点からより一層効果的である。 In the second plate reactor, the first locking portion, the vent plate, the skirt portion, and the second locking portion have sufficient vent plugs at the end of each section. This is more effective from the viewpoint of fixing with strength and easy attachment / detachment of the vent plug.
 また第二のプレート式反応器では、前記複数の仕切りの間隔が0.1~1mであることが、各区画における触媒の充填作業を容易にする観点からより一層効果的である。 In the second plate reactor, the interval between the plurality of partitions is 0.1 to 1 m, which is more effective from the viewpoint of facilitating the catalyst filling operation in each section.
 近年、化学製品は大規模設備において、大量生産されることが多く、製造設備内に設置される反応器は大型化され、挿入される触媒量も大量となっていて、大型反応器に触媒を均一に、効率よく充填することは非常に重要である。特に、反応熱が発生或いは吸収され、反応熱による温度上昇或いは下降が、反応速度や反応成績、更には触媒の劣化程度に影響する反応の場合には、ガス及び液等の反応原料と触媒を均一に接触させることが、より良い反応器を設計する上で、重大問題である。 In recent years, chemical products are often mass-produced in large-scale facilities, the reactors installed in the production facilities have become larger, and the amount of catalyst to be inserted has become large. Uniform and efficient filling is very important. In particular, in the case of a reaction where heat of reaction is generated or absorbed, and the temperature rise or drop due to the heat of reaction affects the reaction rate, reaction performance, and further the degree of deterioration of the catalyst, reaction raw materials such as gas and liquid and the catalyst are removed. Uniform contact is a critical issue in designing a better reactor.
 反応生成物の第二の製造方法では、前記原料が、エチレン;炭素数3及び4の炭化水素、並びにターシャリーブタノールからなる群から選ばれる少なくとも1種、又は炭素数3及び4の不飽和脂肪族アルデヒドからなる群から選ばれる少なくとも1種;炭素数4以上の炭化水素;キシレン及び/又はナフタレン;オレフィン;カルボニル化合物;クメンハイドロパーオキサイド;ブテン;又はエチルベンゼン;であり、得られる前記反応生成物が、酸化エチレン;炭素数3及び4の不飽和脂肪族アルデヒド及び炭素数3及び4の不飽和脂肪酸の少なくとも一方;マレイン酸;フタル酸;パラフィン;アルコール;アセトン及びフェノール;ブタジエン;又はスチレン;である方法において、前記プレート式反応器を用いることから、前記反応原料が伝熱プレート間に均一に充填された触媒によって処理されるので、このような接触反応における反応熱の除熱或いは加熱方法を改善する観点からより一層効果的である。 In the second production method of the reaction product, the raw material is at least one selected from the group consisting of ethylene; hydrocarbons having 3 and 4 carbon atoms and tertiary butanol, or unsaturated fat having 3 and 4 carbon atoms. At least one selected from the group consisting of a group aldehyde; hydrocarbon having 4 or more carbon atoms; xylene and / or naphthalene; olefin; carbonyl compound; cumene hydroperoxide; butene; or ethylbenzene; At least one of C3 and C4 unsaturated aliphatic aldehyde and C3 and C4 unsaturated fatty acid; maleic acid; phthalic acid; paraffin; alcohol; acetone and phenol; butadiene; In some methods, using the plate reactor, Since the raw material is processed by uniformly filled catalyst between the heat transfer plates, it is more effective from the viewpoint of improving the heat removal or the heating method of the heat of reaction in such catalytic reaction.
 また反応生成物の第三の製造方法では、触媒が充填されたプレート式反応器に反応原料を供給し、該反応原料を反応させ反応物を製造する製造方法において、単位触媒当たりの反応原料の処理負荷量を高めたときに、触媒を通過する反応流体の圧力損失の増大を防止し、かつ、反応によって生じる熱を適切に制御することでホットスポットを防ぎ、触媒の損傷を防止しつつ目的反応生成物の収率を向上させることが可能である。 In the third production method of the reaction product, a reaction raw material is supplied to a plate reactor filled with a catalyst, and the reaction raw material is reacted to produce a reaction product. The purpose is to prevent an increase in the pressure loss of the reaction fluid that passes through the catalyst when the processing load is increased, and to prevent hot spots by appropriately controlling the heat generated by the reaction, thereby preventing damage to the catalyst. It is possible to improve the yield of the reaction product.
図1は、本発明の一実施の形態におけるプレート式反応器の構成を概略的に示す図である。FIG. 1 is a diagram schematically showing the configuration of a plate reactor according to an embodiment of the present invention. 図2は、図1のプレート式反応器をA-A’線で切断したときの断面図である。FIG. 2 is a cross-sectional view of the plate reactor of FIG. 1 taken along line A-A ′. 図3は、図1のプレート式反応器をB-B’線で切断したときの断面図である。FIG. 3 is a cross-sectional view of the plate reactor of FIG. 1 taken along line B-B ′. 図4は、図1のプレート式反応器の外観の一例を示す図である。FIG. 4 is a diagram showing an example of the appearance of the plate reactor of FIG. 図5は、伝熱管1の寸法を示す図である。FIG. 5 is a view showing dimensions of the heat transfer tube 1. 図6は、熱媒混合装置の一例を示す図である。FIG. 6 is a diagram illustrating an example of a heat medium mixing apparatus. 図7は、仕切り7の一例を示す図である。FIG. 7 is a diagram illustrating an example of the partition 7. 図8は、通気栓8の一例を示す図である。FIG. 8 is a diagram illustrating an example of the vent plug 8. 図9は、通気栓8の設置状態の一例を示す図である。FIG. 9 is a diagram illustrating an example of an installation state of the vent plug 8. 図10は、温度測定装置9の一例を示す図である。FIG. 10 is a diagram illustrating an example of the temperature measuring device 9. 図11は、伝熱プレート2間の隙間に形成された触媒層の一例を示す図である。FIG. 11 is a diagram illustrating an example of the catalyst layer formed in the gap between the heat transfer plates 2. 図12は、伝熱プレートの他の形態を概略的に示す図である。FIG. 12 is a diagram schematically showing another form of the heat transfer plate. 図13は、本発明のプレート式反応器における第二の実施形態の構成を概略的に示す図である。FIG. 13 is a diagram schematically showing the configuration of the second embodiment in the plate reactor of the present invention. 図14は、図13のプレート式反応器をA-A’線に沿って切断したときの断面を示す図である。FIG. 14 is a view showing a cross section of the plate reactor of FIG. 13 taken along line A-A ′. 図15は、図13のプレート式反応器をB-B’線に沿って切断したときの断面を示す図である。FIG. 15 is a view showing a cross section of the plate reactor of FIG. 13 taken along line B-B ′. 図16は、隣り合う伝熱プレート2とその間に設けられる仕切り7を示す図である。FIG. 16 is a view showing adjacent heat transfer plates 2 and partitions 7 provided therebetween. 図17は、仕切り7の一例を示す図である。FIG. 17 is a diagram illustrating an example of the partition 7. 図18は、仕切り7の他の例を示す図である。FIG. 18 is a diagram illustrating another example of the partition 7. 図19は、仕切り7の他の例を示す図である。FIG. 19 is a diagram illustrating another example of the partition 7. 図20は、仕切り7の他の例を示す図である。FIG. 20 is a diagram illustrating another example of the partition 7. 図21は、仕切り7の他の例を示す図である。FIG. 21 is a diagram illustrating another example of the partition 7. 図22は、仕切り7の他の例を示す図である。FIG. 22 is a diagram illustrating another example of the partition 7. 図23は、本発明のプレート式反応器における第三の実施形態の構成を概略的に示す図である。FIG. 23 is a diagram schematically showing the configuration of the third embodiment in the plate reactor of the present invention. 図24は、図23のプレート式反応器をA-A’線に沿って切断したときの断面を示す図である。FIG. 24 is a view showing a cross section when the plate reactor of FIG. 23 is cut along the line A-A ′. 図25は、図23のプレート式反応器をB-B’線に沿って切断したときの断面を示す図である。FIG. 25 is a view showing a cross section of the plate reactor of FIG. 23 taken along line B-B ′. 図26は、仕切り7を示す図である。FIG. 26 is a diagram showing the partition 7. 図27は、隣り合う伝熱プレート2とその間に設けられる仕切り7及び通気栓8を示す図である。FIG. 27 is a view showing adjacent heat transfer plates 2 and a partition 7 and a vent plug 8 provided therebetween. 図28は、通気栓8の斜視図である。FIG. 28 is a perspective view of the vent plug 8. 図29は、通気栓8の展開図である。FIG. 29 is a development view of the vent plug 8. 図30は、通気栓8と仕切り7との着脱自在構造を示す図である。FIG. 30 is a view showing a detachable structure between the vent plug 8 and the partition 7. 図31は、通気栓8の取り外しに用いられる工具の一例を示す図である。FIG. 31 is a diagram illustrating an example of a tool used for removing the vent plug 8. 図32は、通気栓8と仕切り7との他の着脱自在構造を示す図である。FIG. 32 is a view showing another detachable structure of the vent plug 8 and the partition 7. 図33は、本発明に用いられる通気栓の他の例を示す図である。FIG. 33 is a view showing another example of a vent plug used in the present invention. 図34は、本発明に用いられる通気栓の他の例を示す図である。FIG. 34 is a view showing another example of a vent plug used in the present invention. 図35は、本発明に用いられる通気栓の他の例を示す図である。FIG. 35 is a view showing another example of a vent plug used in the present invention. 図36は、本発明に用いられる通気栓の他の例を示す図である。FIG. 36 is a view showing another example of a vent plug used in the present invention. 図37は、本発明に用いられる通気栓の他の例を示す図である。FIG. 37 is a view showing another example of a vent plug used in the present invention. 図38は、本発明に用いられる通気栓の他の例を示す図である。FIG. 38 is a view showing another example of a vent plug used in the present invention. 図39は、本発明に用いられる通気栓の他の例とその着脱固定構成とを示す図である。FIG. 39 is a diagram showing another example of a vent plug used in the present invention and its detachable fixing configuration. 図40は、本発明に用いられる通気栓の他の例とその着脱固定構成とを示す図である。FIG. 40 is a diagram showing another example of a vent plug used in the present invention and its detachable fixing configuration. 図41は、プレート式反応器の縦断面図を示す。FIG. 41 shows a longitudinal sectional view of the plate reactor. 図42は、プレート式反応器の縦断面図を示す。FIG. 42 shows a longitudinal sectional view of the plate reactor. 図43は、伝熱プレートの拡大図を示す。FIG. 43 shows an enlarged view of the heat transfer plate.
符号の説明Explanation of symbols
1、a~c 伝熱管
2、57 伝熱プレート
3 挟持板
4 保持棒
5 熱媒供給装置
6 ガス分配部
7 仕切り
8 通気栓
9 温度測定装置
10、46 穴あき板
11、12 ジャケット
13、16、18 ノズル
14 熱交換器
15 ポンプ
17 分配管
19 マンホール
20 窓
21 通気板
22 第一のスカート部
23 第二のスカート部
24 係止窓
25、50、51 係止爪
26 支持体
27 温度測定部
28 スペーサロッド
29 フランジ
30 コネクタ
31 ケーブル
32 固定用フランジ
33~35 流路
36、43 触媒層
37~39、40~42 反応帯域
44 ケーシング
45 熱媒体収容部
47 温度調整装置
48、48’ 通気口
49、49’ ケーシング端部
52 第一の通気管
53 第二の通気管
54 フランジ部
55 固定ピン
56 付勢部材
58 反応ガス入口
59 反応ガス出口
60-1 熱媒体流路
60-2 熱媒体流路
60-3 熱媒体流路
61 熱媒体供給口
P 一対の伝熱プレートの間隔
L 波の周期
H 波の高さ
Y 熱媒が流れる方向を示す矢印
x 間隔
1, a to c Heat transfer tubes 2 and 57 Heat transfer plate 3 Holding plate 4 Holding rod 5 Heat medium supply device 6 Gas distribution section 7 Partition 8 Vent plug 9 Temperature measuring device 10, 46 Perforated plate 11, 12 Jacket 13, 16 , 18 Nozzle 14 Heat exchanger 15 Pump 17 Distribution pipe 19 Manhole 20 Window 21 Ventilation plate 22 First skirt part 23 Second skirt part 24 Locking window 25, 50, 51 Locking claw 26 Support body 27 Temperature measurement part 28 Spacer rod 29 Flange 30 Connector 31 Cable 32 Fixing flange 33-35 Flow path 36, 43 Catalyst layer 37-39, 40-42 Reaction zone 44 Casing 45 Heat medium accommodating portion 47 Temperature adjusting device 48, 48 'Vent 49 49 ′ Casing end 52 First vent pipe 53 Second vent pipe 54 Flange portion 55 Fixing pin 56 Energizing member 58 Reaction gas inlet 59 Reaction gas outlet 60-1 Heat medium flow path 60-2 Heat medium flow path 60-3 Heat medium flow path 61 Heat medium supply port P Distance between a pair of heat transfer plates L Wave period H Wave height Y Arrow x indicating the direction of flow
<第一のプレート式反応器>
 第一のプレート式反応器は、ガス状の原料を反応させるための反応容器と、前記反応容器内に並んで設けられる複数の伝熱プレートと、前記伝熱プレートに所望の温度の熱媒を供給するための熱媒供給装置と、を有する。
<First plate reactor>
The first plate reactor includes a reaction vessel for reacting a gaseous raw material, a plurality of heat transfer plates provided side by side in the reaction vessel, and a heat medium having a desired temperature on the heat transfer plate. A heating medium supply device for supplying.
 前記反応容器には、ガス状の原料(原料ガス)が供給され、生成ガスが排出され、かつ複数の伝熱プレートが並んで収容される容器を用いることができる。プレート式反応器は一般に加圧条件下の雰囲気での反応に用いられることから、前記反応容器は3,000kPa(キロパスカル)の内圧に耐えられる耐圧性の容器であることが好ましい。このような反応容器としては、例えば円筒部またはその一部を組み合わせたシェル、複数の伝熱プレートが収容されるように板部材によって内部が区切られたシェル、及び、複数の伝熱プレートが収容されるように平面の内面を構成する部材によって囲まれてなる筐体状の内部を有する容器等が挙げられる。 As the reaction vessel, a vessel in which a gaseous raw material (raw material gas) is supplied, a generated gas is discharged, and a plurality of heat transfer plates are accommodated side by side can be used. Since the plate reactor is generally used for the reaction in an atmosphere under a pressurized condition, the reaction vessel is preferably a pressure-resistant vessel that can withstand an internal pressure of 3,000 kPa (kilopascal). As such a reaction container, for example, a shell in which a cylindrical portion or a part thereof is combined, a shell whose interior is divided by a plate member so as to accommodate a plurality of heat transfer plates, and a plurality of heat transfer plates are accommodated. As described above, a container having a housing-like interior surrounded by members constituting the inner surface of the plane can be used.
 前記伝熱プレートは、断面形状の周縁又は端縁で鉛直方向に連結している複数の伝熱管を含む。このように伝熱プレートは、並列する複数の伝熱管を含む板状体である。伝熱プレートにおいて、伝熱管は直接連結されていてもよいし、プレートやヒンジ等の適当な部材を介して間接的に連結されていてもよい。伝熱プレートは、伝熱管の断面形状を二分割した形状が直接又は間接的に複数連なる形状にそれぞれ成形された二枚の鋼板を接合することによって形成されることが、安価に伝熱プレートを得る観点から好ましい。 The heat transfer plate includes a plurality of heat transfer tubes connected in the vertical direction at the peripheral edge or edge of the cross-sectional shape. Thus, the heat transfer plate is a plate-like body including a plurality of heat transfer tubes arranged in parallel. In the heat transfer plate, the heat transfer tubes may be directly connected or indirectly connected through an appropriate member such as a plate or a hinge. The heat transfer plate is formed by joining two steel plates each formed into a shape in which the cross-sectional shape of the heat transfer tube is divided into two or more are directly or indirectly connected to each other. From the viewpoint of obtaining.
 前記伝熱プレートの間隔は、設計値に応じて設定され、等間隔であってもよいし、二以上の異なる間隔であってもよい。例えば反応容器の内部の形状が矩形である場合では、伝熱プレートは、伝熱プレート間において伝熱プレートの軸が互いに平行になり、伝熱プレート間において伝熱管の軸が互いに平行になるように設けられる。また例えば反応容器の内部が円筒状である場合では、伝熱プレートは、前述のように設けられてもよいし、伝熱プレートの軸が反応容器の横断面の半径方向になり、伝熱プレート間において伝熱管の軸が互いに平行になるように(すなわち放射状に)設けられてもよい。 The interval between the heat transfer plates is set according to a design value, and may be an equal interval or two or more different intervals. For example, when the internal shape of the reaction vessel is rectangular, the heat transfer plates are arranged such that the heat transfer plate axes are parallel to each other between the heat transfer plates, and the heat transfer tube axes are parallel to each other between the heat transfer plates. Is provided. For example, when the inside of the reaction vessel is cylindrical, the heat transfer plate may be provided as described above, or the axis of the heat transfer plate is in the radial direction of the cross section of the reaction vessel. Between them, the axes of the heat transfer tubes may be provided so as to be parallel to each other (that is, radially).
 前記反応容器内に収容される伝熱プレートの数は、特に制限されず、実用的には反応に必要な触媒量から決定され、通常、数十枚から数百枚である。また、前記反応容器内に収容される伝熱プレートの数は、反応生成物の工業的な生産における高い生産性を実現する観点から、伝熱プレート間の隙間の全容量が3L(リットル)以上となる数であることが好ましく、100L以上となる数であることがより好ましく、250L以上となる数であることがさらに好ましい。伝熱プレート間の隙間にスペーサが挿入されている場合は、スペーサと伝熱プレートで囲まれた一区画の容積が1L以上であることが好ましく、10L以上であることがより好ましい。 The number of heat transfer plates accommodated in the reaction vessel is not particularly limited, and is practically determined from the amount of catalyst necessary for the reaction, and is usually several tens to several hundreds. Further, the number of heat transfer plates accommodated in the reaction vessel is such that the total capacity of the gaps between the heat transfer plates is 3 L (liters) or more from the viewpoint of realizing high productivity in industrial production of reaction products. The number is preferably 100L or more, and more preferably 250L or more. When the spacer is inserted in the gap between the heat transfer plates, the volume of one section surrounded by the spacer and the heat transfer plate is preferably 1L or more, and more preferably 10L or more.
 反応容器に収容されている前記伝熱プレートの軸間の距離は、気相接触反応において反応温度を十分に制御する観点から、10~50mmである。なお、伝熱プレートの軸とは、前記隙間から前記伝熱プレートを見たときに、前記隙間におけるガスの通気方向に沿って伝熱プレートを切断したときの伝熱プレートの断面において、伝熱プレートにおいて全ての伝熱管が一直線上で連結している場合はこの直線を言い、全ての伝熱管の連結部が一直線上にない場合は、全ての連結部を挟む二本の平行線の間の中点を通る直線を言う。 The distance between the axes of the heat transfer plates accommodated in the reaction vessel is 10 to 50 mm from the viewpoint of sufficiently controlling the reaction temperature in the gas phase contact reaction. The axis of the heat transfer plate refers to the heat transfer plate in the cross section when the heat transfer plate is cut along the gas flow direction in the gap when the heat transfer plate is viewed from the gap. When all the heat transfer tubes are connected in a straight line on the plate, this straight line is said. When all the heat transfer tube connections are not in a straight line, between the two parallel lines sandwiching all the connection portions. A straight line passing through the midpoint.
 前記伝熱プレートの軸間の距離は、反応に伴う熱を有効に除去し、触媒層のホットスポットによる(発熱反応の場合)触媒の劣化を防ぎ、一方触媒層全層に亘る温度を最適な範囲に制御して、高い反応率と高い反応成績を得る観点から、平均値で10~50mm(隣り合う伝熱プレートにおける伝熱管の幅の半値の和の1.1~5倍)であることが好ましく、10~40mmであることがより好ましく、20~35mmであることがさらに好ましい。 The distance between the axes of the heat transfer plate effectively removes the heat associated with the reaction, prevents catalyst deterioration due to hot spots in the catalyst layer (in the case of exothermic reaction), while optimizing the temperature throughout the catalyst layer. The average value is 10 to 50 mm (1.1 to 5 times the sum of the half value of the width of heat transfer tubes in adjacent heat transfer plates) from the viewpoint of obtaining a high reaction rate and high reaction results by controlling the range. Is preferably 10 to 40 mm, more preferably 20 to 35 mm.
 前記伝熱プレートの軸間の距離は、触媒の直径(通常、好ましくは工業触媒では、1~10mm)や触媒の反応活性、更には触媒の耐高温性能にも影響される。反応熱の除熱に対しては、伝熱プレートの軸間距離が小さいほど反応の制御は容易であるが、触媒の直径の5~10倍以上の伝熱プレートの軸間距離でないと、触媒充填時にブリッジングを起こし、充填密度が低下することがある。 The distance between the axes of the heat transfer plate is affected by the diameter of the catalyst (usually preferably 1 to 10 mm for industrial catalysts), the reaction activity of the catalyst, and the high temperature resistance of the catalyst. For heat removal from the reaction heat, the smaller the distance between the axes of the heat transfer plate, the easier the control of the reaction. However, if the distance between the axes of the heat transfer plate is not less than 5-10 times the catalyst diameter, Bridging may occur during filling, and the filling density may be reduced.
 前記伝熱プレートは、前記反応容器内において、伝熱プレートの表面の凸縁が互いに対向するように並べられてもよいし、一方の伝熱プレートの表面の凸縁が他方の伝熱プレートの表面の凹縁に対向するように並べられてもよい。 The heat transfer plate may be arranged in the reaction container so that the convex edges of the surface of the heat transfer plate face each other, or the convex edge of the surface of one heat transfer plate is the surface of the other heat transfer plate. It may be arranged so as to face the concave edge of the surface.
 前記伝熱管は、前記伝熱プレートが反応容器内に収容されたときに、伝熱管の軸が反応容器内の通気方向に対して横断する方向に一般に配置される。このとき、伝熱管の軸と反応容器内の通気方向との角度は、反応容器内において伝熱管の軸がガスの通気方向に対して横断していれば特に限定されない。伝熱管は、反応容器内の通気方向に対して伝熱管の軸が直交すること、すなわち伝熱管を流れる熱媒の流れ方向が反応容器内の通気方向に対して直交すること、が、伝熱管内の熱媒の温度の調整によって原料の反応を制御する観点からより好ましい。 The heat transfer tube is generally arranged in a direction in which the shaft of the heat transfer tube intersects the aeration direction in the reaction vessel when the heat transfer plate is accommodated in the reaction vessel. At this time, the angle between the axis of the heat transfer tube and the aeration direction in the reaction vessel is not particularly limited as long as the axis of the heat transfer tube intersects the gas aeration direction in the reaction vessel. In the heat transfer tube, the heat transfer tube axis is orthogonal to the aeration direction in the reaction vessel, that is, the flow direction of the heat medium flowing through the heat transfer tube is orthogonal to the aeration direction in the reaction vessel. It is more preferable from the viewpoint of controlling the reaction of the raw material by adjusting the temperature of the heat medium in the tube.
 前記伝熱管は、伝熱管内の熱媒と伝熱管に外接する触媒層との間で熱が交換される伝熱性を有する材料で形成される。このような材料としては、例えばステンレス及びカーボンスチール、ハステロイ、チタン、アルミニウム、エンジニアリングプラスチック及び銅が挙げられる。好ましくはステンレスが用いられる。ステンレスでは、304、304L、316、及び316Lが好ましい。伝熱管の断面形状は、円形でもよいし、楕円形やラグビーボール型等の略円形でもよいし、円弧を対称に接続してなる葉形でもよいし、矩形等の多角形でもよいし、これらの複数を組み合わせた形状であってもよい。伝熱管の断面形状における周縁とは、円形における周縁を意味し、伝熱管の断面形状における端縁とは、略円形における長軸端の縁や、多角形における一角の縁を意味する。 The heat transfer tube is formed of a material having heat transfer properties in which heat is exchanged between a heat medium in the heat transfer tube and a catalyst layer circumscribing the heat transfer tube. Examples of such materials include stainless steel and carbon steel, hastelloy, titanium, aluminum, engineering plastic, and copper. Stainless steel is preferably used. For stainless steel, 304, 304L, 316, and 316L are preferred. The cross-sectional shape of the heat transfer tube may be a circle, a substantially circular shape such as an elliptical shape or a rugby ball shape, a leaf shape formed by symmetrically connecting arcs, or a polygonal shape such as a rectangle. The shape which combined two or more of these may be sufficient. The peripheral edge in the cross-sectional shape of the heat transfer tube means a peripheral edge in a circular shape, and the end edge in the cross-sectional shape of the heat transfer tube means an edge of a major axis end in a substantially circular shape or a single edge in a polygon.
 各伝熱プレートにおいて、伝熱プレートの軸方向における前記伝熱管の直径は、(1)伝熱プレートの軸及び伝熱管の軸の両方と直交する方向の曲げ(撓み)剛性、(2)伝熱管の形状の成形性と成形精度、(3)反応熱の除去に必要な伝熱面積、を十分に確保する観点から、また(4)適度な反応ガスの流れ分布と触媒層の伝熱係数、(5)伝熱管内の適度な熱媒の流速と伝熱係数、を得る観点から、10~100mmであることが好ましく、15~70mmであることがより好ましく、20~50mmであることがさらに好ましい。 In each heat transfer plate, the diameter of the heat transfer tube in the axial direction of the heat transfer plate is (1) bending (flexure) rigidity in a direction orthogonal to both the axis of the heat transfer plate and the axis of the heat transfer tube, and (2) From the viewpoint of sufficiently ensuring the formability and accuracy of the shape of the heat tube, and (3) the heat transfer area necessary for removing reaction heat, and (4) the appropriate flow distribution of the reaction gas and the heat transfer coefficient of the catalyst layer. (5) From the viewpoint of obtaining an appropriate flow rate and heat transfer coefficient of the heat medium in the heat transfer tube, it is preferably 10 to 100 mm, more preferably 15 to 70 mm, and more preferably 20 to 50 mm. Further preferred.
 また各伝熱プレートにおいて、伝熱プレートの軸に直交する方向における前記伝熱管の半径は、気相接触反応において反応温度を十分に制御する観点から、1.5 ~25mmである。前記伝熱管の半径は、(1)隣り合う伝熱プレート間の距離を、この伝熱プレート間で発生する反応熱に対応して制御し、触媒層温度を調整する観点、(2)反応熱の除熱に必要な伝熱面積、及び(3)伝熱管の形状の成形性と成形精度、を十分に確保する観点、適度な(4)反応ガスの流速分布の乱れと触媒層の伝熱係数、(5)反応ガスの圧力損失、及び(6)伝熱管内の熱媒の流速と伝熱係数、を得る観点から、1.5~25mmであることが好ましく、3~20mmであることがより好ましく、5~15mmであることがさらに好ましい。 In each heat transfer plate, the radius of the heat transfer tube in the direction perpendicular to the axis of the heat transfer plate is 1.5 mm to 25 mm from the viewpoint of sufficiently controlling the reaction temperature in the gas phase contact reaction. The radius of the heat transfer tube is as follows: (1) The distance between adjacent heat transfer plates is controlled in accordance with the reaction heat generated between the heat transfer plates, and the catalyst layer temperature is adjusted. (2) Reaction heat (4) Moderately ensuring the heat transfer area required for heat removal of (3) and (3) formability and accuracy of heat transfer tube shape, and (4) disordered flow velocity distribution of the reaction gas and heat transfer of the catalyst layer From the viewpoint of obtaining the coefficient, (5) pressure loss of the reaction gas, and (6) the flow rate and heat transfer coefficient of the heat medium in the heat transfer tube, it is preferably 1.5 to 25 mm, and preferably 3 to 20 mm. Is more preferably 5 to 15 mm.
 プレート式反応器においては、伝熱プレート間の距離は、通常、触媒層の温度を制御することを目的として調整される。前述した伝熱プレートの軸方向、及び軸に直交する方向における伝熱管のそれぞれの半径は、伝熱プレート間の距離及び触媒の粒径とも関連し、前述の記載の範囲内で上記の目的を達成することが可能である。 In a plate reactor, the distance between the heat transfer plates is usually adjusted for the purpose of controlling the temperature of the catalyst layer. The respective radii of the heat transfer tubes in the axial direction of the heat transfer plate and in the direction perpendicular to the axis are also related to the distance between the heat transfer plates and the particle size of the catalyst. It is possible to achieve.
 なお、一枚の伝熱プレート中の複数の伝熱管のそれぞれにおける断面の形状及び大きさは、一定であってもよいし異なっていてもよい。 In addition, the shape and size of the cross section of each of the plurality of heat transfer tubes in one heat transfer plate may be constant or different.
 また伝熱管の軸方向における長さは、特に制限されないが、一般に0.5~20mである。伝熱管の軸方向における長さは、反応生成物の大量生産の観点から、3~15mであることが好ましく、6~10mであることがより好ましい。 The length of the heat transfer tube in the axial direction is not particularly limited, but is generally 0.5 to 20 m. The length of the heat transfer tube in the axial direction is preferably 3 to 15 m, more preferably 6 to 10 m, from the viewpoint of mass production of reaction products.
 伝熱プレートの軸方向(即ち、伝熱管の軸と直交する伝熱管の断面における伝熱管の連結方向)における長さは、反応容器内に収容した伝熱プレートの撓み等の変形を防止する観点から、5m以下であることが好ましく、0.5~2mであることがより好ましく、0.5~1.5mであることがさらに好ましい。 The length in the axial direction of the heat transfer plate (that is, the connecting direction of the heat transfer tube in the cross section of the heat transfer tube orthogonal to the axis of the heat transfer tube) is a viewpoint for preventing deformation such as bending of the heat transfer plate accommodated in the reaction vessel. Therefore, it is preferably 5 m or less, more preferably 0.5 to 2 m, and further preferably 0.5 to 1.5 m.
 伝熱プレートを製作する際に用いる鋼板の板幅規格及び入手し易さも、実用的な、かつ安価な伝熱プレートの製作には重要であり、通常、入手可能な鋼板の大きさは、国際的にも1.5~2mかそれ以下である。従って、上記実用サイズの板幅を超える場合は、2枚以上の鋼板を接合して用いることも可能であるが、鋼板の接合部での成形性については、成形精度が低下する場合がある。 The plate width standard and availability of the steel plate used when manufacturing the heat transfer plate are also important for the production of a practical and inexpensive heat transfer plate. In particular, it is 1.5-2 m or less. Therefore, when it exceeds the plate width of the practical size, it is possible to join and use two or more steel plates, but the formability at the joining portion of the steel plates may be reduced.
 伝熱プレートの表面間の距離の設計値の実現では、鋼板の成形時に起因する誤差が重要である。鋼板の成形時に起因する誤差には、伝熱管の軸方向の誤差と伝熱管の連結方向の誤差とがあり、どちらも重要である。特に反応ガスの流れ方向(通常は伝熱管の連結方向)に伝熱プレート間の表面間の距離を変更するときは、反応ガスの流れ方向における伝熱管の形状の成形精度が特に重要になる。これらの誤差を所望の値以下に抑える観点から、伝熱プレートの軸方向の長さは、2m以下が好ましい。 In order to realize the design value of the distance between the surfaces of the heat transfer plate, errors caused when forming the steel plate are important. The errors caused when the steel sheet is formed include errors in the axial direction of the heat transfer tubes and errors in the connection direction of the heat transfer tubes, both of which are important. Particularly when the distance between the surfaces of the heat transfer plates is changed in the flow direction of the reaction gas (usually the connection direction of the heat transfer tubes), the forming accuracy of the shape of the heat transfer tube in the flow direction of the reaction gas is particularly important. From the viewpoint of suppressing these errors to a desired value or less, the length of the heat transfer plate in the axial direction is preferably 2 m or less.
 対向する前記伝熱プレートの表面間の距離の設計値は5~50mmである。ここで伝熱プレートの表面間の距離とは、対向する伝熱プレート間の隙間において、前記伝熱プレートの軸からなる面から等距離にある面に直交する方向における伝熱プレートの表面間の距離を言う。又は、伝熱プレートの表面間の距離とは、前記隙間から前記伝熱プレートを見たときに、前記隙間におけるガスの通気方向に沿って伝熱プレートを切断したときの伝熱プレートの断面において、前記伝熱プレートの軸から等距離にある線に直交する方向における伝熱プレートの表面間の距離を言う。伝熱管と熱媒供給装置とが接続されるにあたり、反応容器内への熱媒の漏出、及び反応容器から伝熱管や熱媒供給装置へのガスの漏出を防止するために、伝熱管は一般に溶接によって熱媒供給装置に接合される。したがって、一般に、反応容器内において、伝熱プレートは不可逆的に固定される。このため、反応容器内の伝熱プレートの配置は、一般に、所望の反応成績に応じた設計値で予め決められている。 The design value of the distance between the surfaces of the heat transfer plates facing each other is 5 to 50 mm. Here, the distance between the surfaces of the heat transfer plates refers to the distance between the surfaces of the heat transfer plates in the direction perpendicular to the surface that is equidistant from the surface of the heat transfer plate in the gap between the opposed heat transfer plates. Say distance. Or, the distance between the surfaces of the heat transfer plate is the cross section of the heat transfer plate when the heat transfer plate is cut along the gas flow direction in the gap when the heat transfer plate is viewed from the gap. The distance between the surfaces of the heat transfer plates in a direction perpendicular to a line that is equidistant from the axis of the heat transfer plate. In order to prevent leakage of the heat medium into the reaction vessel and leakage of gas from the reaction vessel to the heat transfer tube and the heat medium supply device when the heat transfer tube and the heat medium supply device are connected, the heat transfer tube is generally used. It is joined to the heat medium supply device by welding. Therefore, in general, the heat transfer plate is irreversibly fixed in the reaction vessel. For this reason, generally the arrangement | positioning of the heat-transfer plate in reaction container is predetermined by the design value according to the desired reaction result.
 前記設計値は、反応の制御と反応成績との条件に基づいて決めることができる。反応の制御の条件は、例えば、反応時における触媒層のピーク温度の絶対値の上限値によって決めることができる。反応成績は、例えば、原料の転化率及び生成物の選択率を考慮して、主に生成物の収量によって決めることができる。前記設計値は、触媒の種類、原料ガスの組成及び流量、及び熱媒の温度等のさらなる因子を考慮して、反応の制御の条件を満たし、かつ反応成績の条件を満たすときの触媒層の厚さ、すなわち伝熱プレートの表面間の距離、として求められる。なお、触媒層のピーク温度は、発熱反応では触媒層の最高温度、吸熱反応では触媒層の最低温度である。 The design value can be determined based on the conditions of reaction control and reaction results. The conditions for controlling the reaction can be determined, for example, by the upper limit of the absolute value of the peak temperature of the catalyst layer during the reaction. The reaction results can be determined mainly by the yield of the product in consideration of, for example, the conversion rate of the raw material and the selectivity of the product. The design value of the catalyst layer when satisfying the reaction control conditions and satisfying the reaction performance conditions, considering further factors such as the type of catalyst, the composition and flow rate of the raw material gas, and the temperature of the heating medium. It is determined as the thickness, that is, the distance between the surfaces of the heat transfer plate. The peak temperature of the catalyst layer is the maximum temperature of the catalyst layer in the exothermic reaction and the minimum temperature of the catalyst layer in the endothermic reaction.
 前記設計値は、コンピュータシミュレーションによる計算、伝熱プレートを一対のみ有する等の簡素な構成を有するプレート式反応器及び触媒の総収容量が3L程度の小型のプレート式反応器等の試験機による実験、又は、触媒が充填される一本の反応管と反応管の周囲に熱媒を循環させるジャケットとを有する管式の反応試験機による実験から求めることができる。コンピュータシミュレーションは、例えばアンシス株式会社のCFX、CD adapco社のSTAR-CD、PSE社のgPROMS等のソフトを用いて行うことができる。 The design value is calculated by a computer simulation, an experiment by a test machine such as a plate type reactor having a simple configuration such as having only one pair of heat transfer plates and a small plate type reactor having a total capacity of about 3L. Alternatively, it can be obtained from an experiment using a tubular reaction tester having a single reaction tube filled with a catalyst and a jacket for circulating a heat medium around the reaction tube. The computer simulation can be performed using software such as CFX of Ansys Corporation, STAR-CD of CD adapco, and gPROMS of PSE.
 前記設計値は、反応の精密な制御及び反応成績(反応収率或いは選択率)、触媒量当たりの反応生成物の生産性(空時収率)の観点から5~50mmであることが好ましく、7~30mmであることがより好ましく、10~25mmであることがさらに好ましい。触媒の高い生産性を達成するためには、伝熱プレートの表面間の距離は狭い方が温度制御が容易で、反応の精密な制御が可能であるが、伝熱プレートの表面間の距離は挿入する触媒の粒径でも制約される。工業触媒では、触媒の粒径は1~10mmが多く採用され、前記設計値はこれらの条件の観点からも上記の範囲内において好ましくは決めることができる。 The design value is preferably 5 to 50 mm from the viewpoint of precise control of the reaction, reaction results (reaction yield or selectivity), and productivity of the reaction product per catalyst amount (space time yield). It is more preferably 7 to 30 mm, and further preferably 10 to 25 mm. To achieve high catalyst productivity, the smaller the distance between the surfaces of the heat transfer plate, the easier the temperature control and the precise control of the reaction is possible, but the distance between the surfaces of the heat transfer plate is The particle size of the catalyst to be inserted is also limited. In the industrial catalyst, the particle size of the catalyst is often 1 to 10 mm, and the design value can be preferably determined within the above range from the viewpoint of these conditions.
 対向する前記伝熱プレートの表面間の距離の設計値に対する実測値の差(設計値-実測値)は-0.6~+2.0mmである。ここで「-」は、前記実測値が前記設計値に対して小さいことを表し、「+」は、前記実測値が前記設計値に対して大きいことを表す。 The difference between the measured values with respect to the design value of the distance between the surfaces of the heat transfer plates facing each other (design value−measured value) is −0.6 to +2.0 mm. Here, “−” represents that the actual measurement value is smaller than the design value, and “+” represents that the actual measurement value is larger than the design value.
 前記伝熱プレートの表面間の距離は、5~50mmの範囲内であれば、対向する伝熱プレートの表面の如何なる位置の間の距離であってもよい。例えば、伝熱プレートの表面間の距離は、伝熱プレートに含まれる伝熱管のうち、反応容器における原料ガスの通気方向において最も上流側に位置する伝熱管を伝熱管Aとしたときに、対向する一対の伝熱プレートにおける伝熱管Aによる凸縁間の距離であってもよいし、対向する一対の伝熱プレートにおける伝熱管Aとその下流側に隣接する伝熱管との接続部による凹縁間の距離であってもよいし、対向する一対の伝熱プレートにおける一方又は他方の伝熱プレートにおける伝熱管Aとその下流側に隣接する伝熱管との接続部による凹縁と他方又は一方の伝熱プレートにおける伝熱管Aによる凸縁と間の距離であってもよい。 The distance between the surfaces of the heat transfer plates may be a distance between any positions on the surfaces of the opposing heat transfer plates as long as the distance is within a range of 5 to 50 mm. For example, the distance between the surfaces of the heat transfer plates is opposite when the heat transfer tube located on the most upstream side in the direction of flow of the raw material gas in the reaction vessel is the heat transfer tube A among the heat transfer tubes included in the heat transfer plate. The distance between the convex edges of the heat transfer tubes A in the pair of heat transfer plates may be, or the concave edge by the connection portion between the heat transfer tubes A in the pair of opposed heat transfer plates and the heat transfer tubes adjacent to the downstream side thereof. May be a distance between the concave edge and the other or one of the connection portions of the heat transfer tube A and the heat transfer tube adjacent to the downstream side of one or the other heat transfer plate of the pair of opposed heat transfer plates. The distance between the heat transfer plate and the convex edge by the heat transfer tube A may be used.
 前記伝熱プレートの表面間の距離は、例えば、この表面間の距離の設計値と同じ太さを有する棒を挿入することによって測定することができる。また前記伝熱プレートの表面間の距離は、例えば、前記隙間に挿入される挿入棒部材と、挿入棒部材の先端に、挿入棒部材の軸に直交して配置される前記設計値の長さを有する測定棒部材とを有する測定部材を前記隙間に挿入し、測定棒部材の端部と前記隙間における伝熱プレートの表面とが接触したときの挿入棒部材の軸の角度や回転角度を測定することによって、この角度から測定棒部材に接触した部分の伝熱プレートの表面間の距離を求めることができる。 The distance between the surfaces of the heat transfer plate can be measured, for example, by inserting a rod having the same thickness as the design value of the distance between the surfaces. Further, the distance between the surfaces of the heat transfer plate is, for example, the length of the design value that is arranged perpendicular to the axis of the insertion rod member at the tip of the insertion rod member and the insertion rod member inserted into the gap. A measuring member having a measuring rod member is inserted into the gap, and the angle and rotation angle of the shaft of the inserting rod member when the end of the measuring rod member contacts the surface of the heat transfer plate in the gap are measured. By doing this, the distance between the surfaces of the heat transfer plate at the portion in contact with the measuring rod member can be obtained from this angle.
 前記設計値に対する前記実測値の差が+2.0mmより大きいと、反応の十分な制御、暴走反応の抑止、触媒の劣化の防止、及び反応の収率の低下の防止を行うことができないことがある。また、前記設計値に対する前記実測値の差が-0.6mm未満であると、伝熱プレート間の隙間への触媒のフィードに支障を来たすことがあり、又は触媒のフィードが支障なく行われたとしても、形成された触媒層の充填密度が低下し触媒量が足らずに所期の反応率が達成されないことがある。前記設計値に対する前記実測値の差は、より精密な反応の制御の観点から、-0.5~+1.5mmであることが好ましく、-0.5~+1.0mmであることがより好ましく、-0.3~+1.0mmであることがさらに好ましい。 If the difference between the measured value and the design value is larger than +2.0 mm, the reaction cannot be sufficiently controlled, the runaway reaction can be suppressed, the catalyst can be prevented from deteriorating, and the reaction yield cannot be reduced. is there. Further, if the difference between the measured value and the design value is less than −0.6 mm, the catalyst feed to the gap between the heat transfer plates may be hindered, or the catalyst feed may be performed without any trouble. In some cases, however, the packing density of the formed catalyst layer is lowered, the catalyst amount is insufficient, and the desired reaction rate may not be achieved. The difference between the measured value and the design value is preferably −0.5 to +1.5 mm, more preferably −0.5 to +1.0 mm, from the viewpoint of more precise reaction control. More preferably, it is −0.3 to +1.0 mm.
 なお、前記設計値に対する前記実測値の差は、プレート式反応器全体において-0.6~+2.0mmの範囲内にあることが最も望ましいが、反応の暴走の防止と高い生産性の維持とを両立する観点から、全ての実測値のうちの50%以上の前記設計値に対する差が-0.6~+2.0mmに含まれていることが好ましく、全ての実測値のうちの70%以上の前記設計値に対する差が-0.6~+2.0mmに含まれていることがより好ましく、80%以上の前記設計値に対する差が-0.6~+2.0mmに含まれていることがさらに好ましく、90%以上の前記設計値に対する差が-0.6~+2.0mmに含まれていることがより一層好ましい。 The difference between the measured value and the design value is most preferably in the range of −0.6 to +2.0 mm in the whole plate reactor, but it prevents the runaway reaction and maintains high productivity. From the viewpoint of achieving both, it is preferable that a difference from the design value of 50% or more of all measured values is included in −0.6 to +2.0 mm, and 70% or more of all measured values are included. It is more preferable that the difference with respect to the design value is included in −0.6 to +2.0 mm, and a difference with respect to the design value of 80% or more is included in −0.6 to +2.0 mm. More preferably, a difference from the design value of 90% or more is included in −0.6 to +2.0 mm.
 前記実測値の測定点は、伝熱プレートの軸方向において2~30であることが好ましく、5~25であることがより好ましく、10~20であることがさらに好ましい。また、前記実測値の測定点は、伝熱プレートにおける伝熱管の軸方向において2~50であることが好ましく、5~30であることがより好ましく、10~20であることがさらに好ましい。 The measurement point of the actually measured value is preferably 2 to 30, more preferably 5 to 25, and further preferably 10 to 20 in the axial direction of the heat transfer plate. The measurement point of the actual measurement value is preferably 2 to 50, more preferably 5 to 30, and further preferably 10 to 20 in the axial direction of the heat transfer tube in the heat transfer plate.
 後述するように、隣り合う伝熱プレートの間隔を制御するため、伝熱プレート間にスペーサ(仕切り)を挿入することがあるが、その場合にはスペーサが伝熱プレートの間隔を調整する効果を有するので、この場合では、前記実測値は、スペーサ間の中央の位置から2箇所を測定すればよい。スペーサを複数枚設置するときの設置間隔は、通常、50cm~1mであるが、剛性の高い伝熱プレートを使用し、伝熱プレート同士を接合する側板及び溶接を工夫することで、伝熱プレート間の距離を制御できれば、スペーサ間の距離を1m以上とする事も可能である。 As will be described later, in order to control the interval between adjacent heat transfer plates, a spacer (partition) may be inserted between the heat transfer plates, but in that case, the spacer has the effect of adjusting the interval between the heat transfer plates. Therefore, in this case, the measured value may be measured at two locations from the center position between the spacers. The installation interval when installing multiple spacers is usually 50 cm to 1 m. However, a heat transfer plate that uses a highly rigid heat transfer plate and devise side plates and welds that join the heat transfer plates together can be used. If the distance between them can be controlled, the distance between the spacers can be set to 1 m or more.
 前記設計値に対する前記実測値の差は、例えば、伝熱プレートを二枚の成形された鋼板の接合によって形成する場合に、鋼板の成形の設計値に対する誤差が十分に小さな(例えば誤差が±0.5mm以下である)、精度の高い成形鋼板を選んで用いる方法、及び、精度が十分でない成形鋼板を選別し、修正して精度を高めて用いる方法、を行うことによって-0.6~+2.0mmにすることができる。鋼板の成形の設計値に対する誤差については、例えばレーザー式変位計を成形鋼板の両面に設置し、変位計又は鋼板を移動させることによって、成形鋼板の両面の変位を測定し、成形鋼板の形状、その成形精度、及び前記設計値に対する誤差を求めることができる。 For example, when the heat transfer plate is formed by joining two formed steel plates, the difference between the measured values and the design values is sufficiently small (for example, the error is ± 0). -0.6 to +2 by performing a method of selecting and using a shaped steel plate with high accuracy, and a method of selecting and correcting a shaped steel plate with insufficient accuracy to improve accuracy. 0.0 mm. For errors with respect to the design value of the steel sheet forming, for example, by installing a laser displacement meter on both sides of the formed steel sheet, by moving the displacement meter or the steel sheet, measuring the displacement of both sides of the formed steel sheet, The molding accuracy and the error with respect to the design value can be obtained.
 さらに、前記伝熱管に、伝熱管の軸方向における長さが10m以下である伝熱管を用いることは、伝熱管や伝熱プレートの撓みを防止する観点から有効であり、前記設計値に対する前記実測値の差を-0.6~+2.0mmにする観点から好ましい。 Furthermore, using a heat transfer tube having a length of 10 m or less in the axial direction of the heat transfer tube as the heat transfer tube is effective from the viewpoint of preventing the heat transfer tube and the heat transfer plate from being bent, and the actual measurement with respect to the design value is performed. This is preferable from the viewpoint of setting the difference in value between -0.6 and +2.0 mm.
 前記設計値に対する前記実測値の差は、単一の値であってもよいが、気相接触反応に用いたときの予想される反応率に応じて、伝熱プレートの軸方向において異なる複数の値であってもよい。例えば、気相接触反応において、特に反応の激しい、原料の反応率が小さい反応が行われる伝熱プレート間の隙間における原料ガスの入口部で、前記設計値に対する前記実測値の差を原料ガスの出口部のそれと比べてより小さくすること、すなわち前記設計値に対する前記実測値の差が、伝熱プレート間の隙間における通気方向において上流側でより小さいこと、が、反応の暴走を抑止する観点から好ましい。 The difference between the measured values with respect to the design value may be a single value, but depending on the expected reaction rate when used in the gas phase catalytic reaction, a plurality of different in the axial direction of the heat transfer plate It may be a value. For example, in the gas-phase contact reaction, the difference between the measured values with respect to the design value at the inlet of the raw material gas in the gap between the heat transfer plates where the reaction is particularly intense and the reaction rate of the raw material is low is performed. From the viewpoint of suppressing reaction runaway, making it smaller than that at the outlet, that is, the difference between the measured values with respect to the design value is smaller on the upstream side in the ventilation direction in the gap between the heat transfer plates. preferable.
 このような観点から、原料の反応率が70%以下となる位置における前記設計値に対する前記実測値の差をより小さくすることが好ましく、原料の反応率が60%以下となる位置における前記設計値に対する前記実測値の差をより小さくすることがより好ましく、原料の反応率が50%以下となる位置における前記設計値に対する前記実測値の差をより小さくすることがさらに好ましい。また、前述の観点から、前記の位置における前記設計値に対する前記実測値の差は、他の位置における前記設計値に対する前記実測値の差に比べて、絶対値で0.2mm以上小さいことが好ましく、絶対値で0.5mm以上小さいことがより好ましい。 From this point of view, it is preferable to reduce the difference between the measured values with respect to the design value at a position where the reaction rate of the raw material is 70% or less, and the design value at a position where the reaction rate of the raw material is 60% or less. It is more preferable to make the difference between the measured values with respect to the value smaller, and it is more preferable to make the difference between the measured values with respect to the design value at a position where the reaction rate of the raw material is 50% or less. Further, from the above viewpoint, it is preferable that the difference of the actual measurement value with respect to the design value at the position is smaller by 0.2 mm or more in absolute value than the difference of the actual measurement value with respect to the design value at another position. More preferably, the absolute value is 0.5 mm or smaller.
 前記伝熱プレート間の隙間における、前記伝熱プレートの軸方向において原料の反応率が所定の値となる位置は、伝熱管の断面形状及びその大きさ、伝熱管を流れる熱媒の温度及びその流量、伝熱プレートの表面間の距離、触媒の種類、及び原料ガスの組成とその流量等の、反応の進行と伝熱に係る諸条件によって決められ、例えば前述した試験機による実験や前述したコンピュータシミュレーションによる計算から決めることができる。 In the gap between the heat transfer plates, the position where the reaction rate of the raw material has a predetermined value in the axial direction of the heat transfer plate is the cross-sectional shape and size of the heat transfer tube, the temperature of the heat medium flowing through the heat transfer tube, and The flow rate, the distance between the surfaces of the heat transfer plate, the type of catalyst, the composition of the raw material gas and its flow rate, etc. are determined by various conditions relating to the progress of the reaction and the heat transfer. It can be determined from calculation by computer simulation.
 前記熱媒供給装置は、前記伝熱プレートにおける前記伝熱管の両端において伝熱管と接合し、所望の温度の熱媒を伝熱管に供給するための装置である。前記熱媒供給装置には、プレート式反応器において、前記伝熱管に熱媒を供給するための通常の装置を利用することができる。熱媒供給装置は、複数の伝熱管の全てに一方向に熱媒を供給する装置であってもよいし、複数の伝熱管の一部に一方向に熱媒を供給し、複数の伝熱管の他の一部には逆方向に熱媒を供給する装置であってもよい。 The heat medium supply device is a device for joining a heat transfer tube at both ends of the heat transfer tube in the heat transfer plate and supplying a heat medium having a desired temperature to the heat transfer tube. As the heat medium supply device, a normal device for supplying a heat medium to the heat transfer tube in the plate reactor can be used. The heat medium supply device may be a device that supplies the heat medium in one direction to all of the plurality of heat transfer tubes, or supplies the heat medium in one direction to a part of the plurality of heat transfer tubes, and the plurality of heat transfer tubes The other part may be a device for supplying a heat medium in the reverse direction.
 また熱媒供給装置は、伝熱プレートの軸方向を横断する方向に区切られてなる複数の熱媒循環室を有することが、伝熱プレートの軸方向に沿って触媒層に複数の反応帯域を形成する観点から好ましい。また熱媒供給装置は、前記伝熱管を介して反応容器の内外で熱媒を循環させる装置であることが好ましい。 Further, the heat medium supply device has a plurality of heat medium circulation chambers that are partitioned in a direction transverse to the axial direction of the heat transfer plate, so that a plurality of reaction zones are provided in the catalyst layer along the axial direction of the heat transfer plate. It is preferable from the viewpoint of formation. Moreover, it is preferable that a heat-medium supply apparatus is an apparatus which circulates a heat medium inside and outside a reaction container via the said heat exchanger tube.
 さらに熱媒供給装置は、伝熱管に供給する熱媒の温度を調整する装置を有する。このような装置としては、例えば、熱媒の循環流路中に設けられる熱交換器、及び熱媒供給装置における前記室の熱媒に、異なる温度の熱媒を混合するための熱媒混合装置、熱媒の温度測定装置、熱媒の流量を調節する為の装置が挙げられる。前記熱媒混合装置には、例えば熱媒供給装置内に突出し、熱媒供給装置内に熱媒を分散して供給することができる分配管、熱媒供給装置内に設けられる通液板、及び通称スタティックミキサーと呼ばれる静止型混合器を用いることができる。 Furthermore, the heat medium supply device has a device for adjusting the temperature of the heat medium supplied to the heat transfer tube. As such an apparatus, for example, a heat exchanger provided in a circulation path of the heat medium, and a heat medium mixing apparatus for mixing the heat medium of different temperatures with the heat medium in the chamber in the heat medium supply apparatus , A heat medium temperature measuring device, and a device for adjusting the flow rate of the heat medium. The heat medium mixing device includes, for example, a distribution pipe that protrudes into the heat medium supply device and can distribute and supply the heat medium in the heat medium supply device, a liquid passing plate provided in the heat medium supply device, and A static mixer called a so-called static mixer can be used.
 前記分配管としては、例えば分配管の長手方向に沿って管壁にスリットや孔のような複数の通液口を有する分配管、及び通液口を有する枝管をさらに有する分配管が挙げられる。前記分配管は、熱媒供給装置内における熱媒の流れ方向に対して直交する方向に延出して設けられることが好ましく、枝管を有する分配管は、主管と枝管とを有し、これらが共に熱媒供給装置内における熱媒の流れ方向に対して直交する方向に延出して設けられ、かつ主管と枝管の延出方向が互いに直交するように設けられることが、異なる温度の熱媒の分散における効率の向上及び圧力損失の抑制の観点から好ましい。 Examples of the distribution pipe include a distribution pipe having a plurality of liquid passage openings such as slits and holes in the pipe wall along the longitudinal direction of the distribution pipe, and a distribution pipe further including a branch pipe having the liquid passage opening. . The distribution pipe is preferably provided so as to extend in a direction orthogonal to the flow direction of the heat medium in the heat medium supply device, and the distribution pipe having a branch pipe includes a main pipe and a branch pipe, Are provided so as to extend in a direction perpendicular to the flow direction of the heat medium in the heat medium supply device, and the extension directions of the main pipe and the branch pipe are perpendicular to each other. It is preferable from the viewpoint of improving the efficiency in dispersion of the medium and suppressing pressure loss.
 第一のプレート式反応器は、前述した以外の他の構成要素をさらに有していてもよい。このような他の構成要素としては、例えば、スペーサ、通気栓、温度測定装置、及びプレート挟持部が挙げられる。 The first plate reactor may further include other components other than those described above. Examples of such other components include a spacer, a vent plug, a temperature measuring device, and a plate clamping unit.
 前記スペーサ(仕切り)は、前記伝熱プレートの間に所定の間隔を形成するための部材である。前記スペーサは、伝熱プレートの表面に当接し、伝熱プレートの間隔を保つのに十分な剛性を有することが好ましい。また前記スペーサは、伝熱プレートの軸方向において伝熱プレートの表面に断続的に当接する部材であることが、スペーサを鋼材で形成する場合に、プレート式反応器に要する鋼材の量を削減する観点から好ましい。また前記スペーサは、伝熱プレートの軸方向において伝熱プレートの表面に連続して当接する部材であることが、反応容器内における伝熱プレートの撓み等の変形を防止する観点から好ましい。さらに前記スペーサは、伝熱管の軸方向における触媒の通過を許容しない部材であることが、触媒の充填の観点から、前記伝熱プレート間の隙間を所定の容量の区画に仕切ることができ、伝熱プレート間の隙間に触媒を容易かつ正確に充填する観点から好ましい。スペーサは、伝熱管の軸方向において、10箇所以上配置されることが、又は100~1,000mmの間隔で配置されることが、反応容器内における伝熱プレートの変形を防止する観点から好ましい。前記スペーサとしては、例えば、棒、板、ブロック等の種々の形態の部材、及び後述する第二のプレート式反応器における仕切りが挙げられる。 The spacer (partition) is a member for forming a predetermined interval between the heat transfer plates. It is preferable that the spacer is in contact with the surface of the heat transfer plate and has sufficient rigidity to maintain the space between the heat transfer plates. The spacer is a member that intermittently contacts the surface of the heat transfer plate in the axial direction of the heat transfer plate, so that when the spacer is formed of steel, the amount of steel required for the plate reactor is reduced. It is preferable from the viewpoint. In addition, the spacer is preferably a member that continuously contacts the surface of the heat transfer plate in the axial direction of the heat transfer plate from the viewpoint of preventing deformation of the heat transfer plate in the reaction vessel. Furthermore, the spacer is a member that does not allow the passage of the catalyst in the axial direction of the heat transfer tube. From the viewpoint of filling the catalyst, the gap between the heat transfer plates can be partitioned into compartments of a predetermined capacity. This is preferable from the viewpoint of easily and accurately filling the gaps between the heat plates with the catalyst. It is preferable from the viewpoint of preventing deformation of the heat transfer plate in the reaction vessel that the spacers are arranged at 10 or more locations in the axial direction of the heat transfer tube or at intervals of 100 to 1,000 mm. Examples of the spacer include members in various forms such as a bar, a plate, and a block, and a partition in a second plate reactor described later.
 前記通気栓は、通気性を有し、伝熱プレートの隙間、又はスペーサをさらに有する場合では前記区画の、伝熱プレートの軸方向における端部を、触媒の通過を許容しないように着脱自在に塞ぐための部材である。このような通気栓としては、例えば、伝熱プレートの軸方向における伝熱プレート間の隙間又は前記区画の端部を塞ぐ通気板と、この通気板に設けられ、前記伝熱プレート又は前記スペーサと着脱自在に係止する係止部材とを有する部材が挙げられる。前記通気栓は、前記区画の端部に着脱自在に配置される部材であることが、伝熱プレート間の隙間に触媒を容易かつ正確に充填する観点から好ましい。前記通気栓には、後述する第二のプレート式反応器における通気栓を用いることができる。 The vent plug has air permeability, and in the case of further having a gap of the heat transfer plate or a spacer, the end of the section in the axial direction of the heat transfer plate is detachable so as not to allow passage of the catalyst. It is a member for closing. As such a vent plug, for example, a vent plate that closes a gap between the heat transfer plates in the axial direction of the heat transfer plate or an end of the partition, and the vent plate is provided with the heat transfer plate or the spacer. Examples thereof include a member having a locking member that is detachably locked. The vent plug is preferably a member that is detachably disposed at the end of the compartment from the viewpoint of easily and accurately filling the gap between the heat transfer plates. As the vent plug, a vent plug in a second plate reactor described later can be used.
 前記温度測定装置は、前記伝熱プレート間の隙間に形成された触媒層の温度を測定する装置である。このような温度測定装置としては、可撓性を有する支持体とこの支持体に支持される温度測定部とを有する装置が挙げられる。前記支持体としては、可撓性を有する紐、帯、鎖、管を用いることができる。また前記温度測定部としては、例えば、白金測温抵抗体、サーミスタ、熱電対、及び光ファイバ型温度測定器が挙げられる。 The temperature measuring device is a device that measures the temperature of the catalyst layer formed in the gap between the heat transfer plates. Examples of such a temperature measuring device include a device having a flexible support and a temperature measurement unit supported by the support. As the support, a flexible string, band, chain, or tube can be used. Examples of the temperature measuring unit include a platinum resistance temperature detector, a thermistor, a thermocouple, and an optical fiber type temperature measuring device.
 一反応容器当たりの前記温度測定装置の設置数は、触媒層の温度を把握する観点から、2~20であることが好ましい。また支持体の太さ(幅)は0.5~5mmであることが好ましい。さらに温度測定部は、触媒層の温度の測定を反応の制御に反映させる観点から、一本の支持体に1~30設けられることが好ましく、触媒層に複数の反応帯域が形成される場合では、一反応帯域に対して1~10設けられることが好ましい。前記温度測定装置は、前記伝熱プレート間の隙間において、隣り合う伝熱プレートから等距離の位置に直線状に前記支持体を張り、前記支持体が張られている状態で前記隙間に触媒を充填することによって、前記隙間に適切に配置することができる。伝熱プレートの変形、伝熱菅の形状誤差による部分的な反応異常や触媒層の温度分布異常への影響をチェックする目的では、温度測定位置は、一触媒層において2箇所以上であることが必要である。反応制御の容易さの観点では、温度測定位置は多い方が好ましい。 The number of the temperature measuring devices installed per reaction vessel is preferably 2 to 20 from the viewpoint of grasping the temperature of the catalyst layer. The thickness (width) of the support is preferably 0.5 to 5 mm. Further, the temperature measuring unit is preferably provided on one support from 1 to 30 from the viewpoint of reflecting the measurement of the temperature of the catalyst layer in the control of the reaction, and in the case where a plurality of reaction zones are formed in the catalyst layer. 1 to 10 are preferably provided for one reaction zone. In the gap between the heat transfer plates, the temperature measuring device stretches the support in a straight line at a position equidistant from the adjacent heat transfer plates, and the catalyst is placed in the gap while the support is stretched. By filling, it can arrange | position appropriately in the said clearance gap. For the purpose of checking the influence of deformation of the heat transfer plate, partial reaction abnormality due to the shape error of the heat transfer rod and temperature distribution abnormality of the catalyst layer, the temperature measurement position may be two or more in one catalyst layer. is necessary. From the viewpoint of ease of reaction control, it is preferable that there are many temperature measurement positions.
 前記プレート挟持部は、前記伝熱プレートが並ぶ方向における両端の伝熱プレートに、少なくとも伝熱管の軸方向に沿って原料ガスの通気を遮断するように当接して、前記複数の伝熱プレートを伝熱プレートが並ぶ方向に挟持する部材である。プレート挟持部は、反応容器内に設けられていてもよいし、反応容器の対向する一対の壁を構成してもよい。プレート挟持部は、反応容器の壁におけるガスの滞留部の形成を防止する観点から好ましい。このようなプレート挟持部としては、前記複数の伝熱プレートが並ぶ方向における両端の伝熱プレートの少なくとも一本の伝熱管に、伝熱管の延出方向において伝熱管全体に当接する一対の挟持板と、これらの挟持板を貫通して保持する保持棒とが挙げられる。 The plate clamping portion is in contact with the heat transfer plates at both ends in the direction in which the heat transfer plates are arranged so as to block the flow of the raw material gas at least along the axial direction of the heat transfer tubes, and the plurality of heat transfer plates It is a member that is sandwiched in the direction in which the heat transfer plates are arranged. The plate clamping part may be provided in the reaction container or may constitute a pair of opposing walls of the reaction container. The plate clamping portion is preferable from the viewpoint of preventing formation of a gas retention portion on the wall of the reaction vessel. As such a plate clamping portion, a pair of clamping plates that abut the entire heat transfer tube in the extending direction of the heat transfer tube on at least one heat transfer tube of the heat transfer plates at both ends in the direction in which the plurality of heat transfer plates are arranged. And a holding rod for penetrating and holding these clamping plates.
 さらに保持棒が、例えば少なくとも先端部にナットが螺着可能なネジを有する棒のような、所定の間隔で挟持板を対向方向に連結することができる部材であることが、挟持する伝熱プレートとの間隔を微調整する観点、触媒の充填やプレート式反応器内部の点検時における足場を容易に設置する観点、及び他の条件のプレート式反応器への転用が可能である観点からより好ましい。 Further, the heat transfer plate for holding the holding bar is a member that can connect the holding plate in the opposing direction at a predetermined interval, such as a bar having a screw to which a nut can be screwed at least at the tip. More preferable from the viewpoint of finely adjusting the interval with the catalyst, from the viewpoint of easily installing a scaffold during the filling of the catalyst and the inside of the plate reactor, and from the viewpoint of being divertable to a plate reactor under other conditions .
 第一のプレート式反応器では、このプレート式反応器を気相接触反応に用いる場合に、前記伝熱プレート間の隙間に触媒が充填される。前記触媒は、気相接触反応の原料及び反応生成物に応じて選ばれる。前記触媒には、気相接触反応で管又は伝熱プレート間の隙間に充填される通常の粒状の触媒を用いることができる。触媒は一種でも二種以上でもよい。このような触媒としては、例えば粒径(最長径)が1~20mmである触媒が挙げられる。用いられる触媒の粒径は1~10mmであることがより好ましい。また触媒の形状としては、公知のものが使用でき、例えば球状、円柱状、ラシヒリング状、サドル状が挙げられる。 In the first plate reactor, when this plate reactor is used for a gas phase catalytic reaction, a catalyst is filled in a gap between the heat transfer plates. The said catalyst is selected according to the raw material and reaction product of a gaseous-phase contact reaction. As the catalyst, a normal granular catalyst filled in a gap between a tube or a heat transfer plate by a gas phase contact reaction can be used. One or more catalysts may be used. An example of such a catalyst is a catalyst having a particle size (longest diameter) of 1 to 20 mm. The particle size of the catalyst used is more preferably 1 to 10 mm. Moreover, as a shape of a catalyst, a well-known thing can be used, for example, spherical shape, cylindrical shape, Raschig ring shape, and saddle shape are mentioned.
<反応生成物の第一の製造方法>
 第一のプレート式反応器は、熱交換能を有しており、原料ガスと固体の触媒とが用いられる気相接触反応のうち、反応器に熱交換機能を必要とする発熱反応又は吸熱反応に用いることができる。すなわち第一プレート式反応器は、前記反応容器にガス状の原料を供給して前記触媒層に通す工程と、前記伝熱プレートを構成する複数の伝熱管に所定の温度の熱媒を供給する工程とを含む、前記触媒の存在下で原料ガスを反応させてガス状の反応生成物を生成する反応生成物の第一の製造方法に用いることができる。このような製造方法は、公知のプレート式反応器を用いる気相接触反応と同様に行うことができ、又は公知の多管式反応器を用いる気相接触反応と同様の条件で行うことができる。
<First production method of reaction product>
The first plate reactor has a heat exchange capability, and among the gas phase catalytic reactions in which a raw material gas and a solid catalyst are used, an exothermic reaction or an endothermic reaction that requires a heat exchange function in the reactor. Can be used. That is, the first plate type reactor supplies a gaseous raw material to the reaction vessel and passes it through the catalyst layer, and supplies a heat medium having a predetermined temperature to a plurality of heat transfer tubes constituting the heat transfer plate. And a first reaction method for producing a reaction product that reacts a raw material gas in the presence of the catalyst to produce a gaseous reaction product. Such a production method can be performed in the same manner as the gas phase catalytic reaction using a known plate reactor, or can be performed under the same conditions as the gas phase catalytic reaction using a known multitubular reactor. .
 前記発熱反応を伴う気相接触反応としては、例えば:プロパン、プロピレンと酸素から又はアクロレイン及びアクリル酸の一方又は両方を生成する反応;イソブチレンと酸素からメタクロレイン及びメタクリル酸の一方又は両方を生成する反応;エチレンと酸素から酸化エチレンを生成する反応;炭素数3の炭化水素と酸素から、炭素数3の不飽和脂肪族アルデヒド及び不飽和脂肪酸の一方又は両方を生成する反応;炭素数4の炭化水素及びターシャーブタノールの一方又は両方と酸素から、炭素数4の不飽和脂肪族アルデヒド及び不飽和脂肪酸の一方又は両方を生成する反応;炭素数3又は4の不飽和脂肪族アルデヒドと酸素から炭素数3又は4の不飽和脂肪酸を生成する反応;n-ブタンやベンゼン等の炭素数4以上の炭化水素と酸素からマレイン酸を生成する反応;キシレン及び/又はナフタレンと酸素からフタル酸を生成する反応;ブテンの酸化脱水素によりブタジエンを生成する反応;が挙げられる。 Examples of the gas phase catalytic reaction accompanied by the exothermic reaction include: a reaction that produces propane, propylene and oxygen or one or both of acrolein and acrylic acid; and one or both of methacrolein and methacrylic acid produced from isobutylene and oxygen. Reaction; reaction for producing ethylene oxide from ethylene and oxygen; reaction for producing one or both of unsaturated aliphatic aldehyde and unsaturated fatty acid having 3 carbon atoms from hydrocarbon having 3 carbon atoms and oxygen; carbonization having 4 carbon atoms Reaction to produce one or both of unsaturated aliphatic aldehyde having 4 carbon atoms and unsaturated fatty acid from oxygen and / or hydrogen and Tascherbutanol and oxygen; carbon from unsaturated aliphatic aldehyde having 3 or 4 carbon atoms and oxygen Reactions that produce unsaturated fatty acids of number 3 or 4; hydrocarbons having 4 or more carbon atoms such as n-butane and benzene and oxygen And the like; reaction producing butadiene by oxidative dehydrogenation of butene; reaction of producing phthalic acid from xylene and / or naphthalene with oxygen; reaction produces Luo maleic acid.
 前記吸熱反応を伴う気相接触反応としては、例えば、エチルベンゼンの脱水素によりスチレンを生成する反応が挙げられる。 Examples of the gas phase contact reaction accompanied by the endothermic reaction include a reaction of generating styrene by dehydrogenation of ethylbenzene.
 反応生成物の第一の製造方法は、メタアクロレイン及びメタアクリル酸の一方又は両方、アクロレイン及びアクリル酸の一方又は両方、マレイン酸、フタル酸、酸化エチレン、又はブタジエンの製造に好適に用いることができる。 The first production method of the reaction product is preferably used for the production of one or both of metaacrolein and methacrylic acid, one or both of acrolein and acrylic acid, maleic acid, phthalic acid, ethylene oxide, or butadiene. it can.
 例えば、(メタ)アクロレイン(アクロレイン又はメタクロレイン)及び(メタ)アクリル酸の一方又は両方を製造する反応生成物の第一の製造方法は、反応器として第一のプレート式反応器を用いる以外は、日本国特開2003-252807号公報に記載されているような、プロパン、プロピレン又はイソブチレンを触媒の存在下で分子状酸素又はそれを含有するガスを用いて酸化する公知の方法によって行うことができる。また前記触媒には、同公報に記載されているような、Mo-V-Te系複合酸化物触媒、Mo-V-Sb系複合酸化物触媒、Mo-Bi系複合酸化物触媒、及びMo-V系複合酸化物触媒等の、(メタ)アクリル酸を生成する気相接触酸化反応での使用において公知の触媒を公知の用法で用いることができる。 For example, the first production method of the reaction product for producing one or both of (meth) acrolein (acrolein or methacrolein) and (meth) acrylic acid is that the first plate reactor is used as the reactor. , Propane, propylene or isobutylene as described in Japanese Patent Application Laid-Open No. 2003-252807 can be performed by a known method of oxidizing molecular oxygen or a gas containing the same in the presence of a catalyst. it can. The catalyst includes a Mo—V—Te composite oxide catalyst, a Mo—V—Sb composite oxide catalyst, a Mo—Bi composite oxide catalyst, and Mo— A well-known catalyst can be used by a well-known usage in the use in the gas phase catalytic oxidation reaction which produces | generates (meth) acrylic acid, such as a V type complex oxide catalyst.
 また反応生成物の第一の製造方法は、触媒の存在下における原料ガス中の原料の反応としての発熱反応を伴う気相接触反応において、好適に用いることができる。 Further, the first production method of the reaction product can be suitably used in a gas phase contact reaction involving an exothermic reaction as a reaction of the raw material in the raw material gas in the presence of the catalyst.
 反応生成物の第一の製造方法では、反応時における触媒層の伝熱プレート軸方向の温度分布中のピーク温度を、第一のプレート式反応器の設計時に設定された触媒層のピーク温度の設定値にする温度の熱媒を、熱媒供給装置から伝熱管に供給する。このような熱媒の温度の制御は、例えば前記設計値に基づくフィードバック制御等の公知の制御方法を利用して行うことができる。反応時における熱媒の温度の制御は、触媒層のピーク温度が前記設計値に対して±20℃となるように行われることが好ましく、触媒層のピーク温度が前記設計値に対して±10℃となるように行われることがより好ましく、触媒層のピーク温度が前記設計値に対して±5℃となるように行われることがさらに好ましい。前記設定値は、プレート式反応器の前記設計値を決める際の実験から求められ、又は前記のコンピュータシミュレーションによる計算において決められる。また熱媒の温度の制御は、前記熱媒供給装置を利用して行うことができる。 In the first production method of the reaction product, the peak temperature in the temperature distribution in the axial direction of the heat transfer plate of the catalyst layer during the reaction is the peak temperature of the catalyst layer set during the design of the first plate reactor. A heat medium having a set temperature is supplied from the heat medium supply device to the heat transfer tube. Such temperature control of the heat medium can be performed using a known control method such as feedback control based on the design value. The temperature of the heat medium during the reaction is preferably controlled so that the peak temperature of the catalyst layer is ± 20 ° C. with respect to the designed value, and the peak temperature of the catalyst layer is ± 10 with respect to the designed value. More preferably, the reaction is carried out so that the peak temperature of the catalyst layer becomes ± 5 ° C. with respect to the design value. The set value is obtained from an experiment in determining the design value of the plate reactor, or determined in the calculation by the computer simulation. The temperature of the heat medium can be controlled using the heat medium supply device.
<第一のプレート式反応器の製作方法>
 第一のプレート式反応器は、対向する前記伝熱プレートの表面間の距離が前記設計値となる間隔で前記伝熱プレートを配置して前記伝熱管と前記熱媒供給装置とを溶接等により接合することによって得られる。前記伝熱プレートは、例えば前記設計値に等しい太さを有する棒部材を介して伝熱プレートを並べることによって、前記設計値となる間隔で配置することができる。前記棒部材は、伝熱管と熱媒供給装置との接合の後に伝熱プレート間の隙間から抜き出される。
<Production method of first plate reactor>
In the first plate reactor, the heat transfer plate is disposed at an interval where the distance between the surfaces of the opposed heat transfer plates is the design value, and the heat transfer tube and the heat medium supply device are welded or the like. Obtained by bonding. The heat transfer plates can be arranged at intervals corresponding to the design values, for example, by arranging the heat transfer plates via bar members having a thickness equal to the design value. The rod member is extracted from the gap between the heat transfer plates after joining the heat transfer tube and the heat medium supply device.
 又は、前記伝熱プレートは、プレート式反応器が前記スペーサを有する場合は、接合前の伝熱プレートとスペーサとを交互に密に配置することによって、前記設計値となる間隔で配置することができる。 Alternatively, when the plate-type reactor has the spacer, the heat transfer plate may be arranged at an interval corresponding to the design value by alternately and densely arranging the heat transfer plate and the spacer before joining. it can.
 以下、本発明の実施形態を、図面を用いてより具体的に説明する。 Hereinafter, embodiments of the present invention will be described more specifically with reference to the drawings.
<第一の実施の形態>
 第一のプレート式反応器は、例えば図1~4に示されるように、伝熱管1を有し、前記反応容器内に並んで設けられる複数の伝熱プレート2と、伝熱プレート2が並ぶ方向における両端の伝熱プレート2に、少なくとも伝熱管1の軸に沿って当接して、複数の伝熱プレート2を伝熱プレート2が並ぶ方向に挟持する一対の挟持板3と、これらの挟持板3を連結する複数の保持棒4と、伝熱プレート2における伝熱管1の両端に当接して伝熱管1に熱媒を供給する熱媒供給装置5と、伝熱管1の軸を横断する方向において、複数の伝熱プレート2における両端を覆い、隣り合う伝熱プレート2間の隙間にガスを流通させるガス分配部6と、隣り合う伝熱プレート2間の隙間を、ガスの通気方向に沿って、充填された触媒を収容する複数の区画に仕切る仕切り7と、各区画の下端を塞ぐ通気栓8と、所定の区画の中央部に、伝熱管1の軸を横断する方向へ張設されている温度測定装置9と、複数の伝熱プレート2の上方を覆うように設けられる穴あき板10とを有する。
<First embodiment>
The first plate reactor has a heat transfer tube 1 as shown in FIGS. 1 to 4, for example, and a plurality of heat transfer plates 2 provided side by side in the reaction vessel, and the heat transfer plates 2 are arranged side by side. A pair of sandwiching plates 3 that are in contact with the heat transfer plates 2 at both ends in the direction at least along the axis of the heat transfer tube 1 and sandwich the plurality of heat transfer plates 2 in the direction in which the heat transfer plates 2 are arranged, and sandwiching these A plurality of holding rods 4 that connect the plates 3, a heat medium supply device 5 that abuts against both ends of the heat transfer tube 1 in the heat transfer plate 2 and supplies a heat medium to the heat transfer tube 1, and a shaft of the heat transfer tube 1. In the direction, the gas distribution part 6 that covers both ends of the plurality of heat transfer plates 2 and distributes the gas to the gap between the adjacent heat transfer plates 2 and the gap between the adjacent heat transfer plates 2 in the gas ventilation direction Along multiple compartments containing the packed catalyst A partition 7 for cutting, a vent plug 8 for closing the lower end of each section, a temperature measuring device 9 stretched in a direction crossing the axis of the heat transfer tube 1 at the center of the predetermined section, and a plurality of heat transfer plates 2 and a perforated plate 10 provided so as to cover the upper side of 2.
 伝熱管1は、例えば伝熱プレート2の軸方向における直径(長径、L)が30~50mmであり、伝熱プレート2の軸方向に直交する方向における直径(短径、H)が10~20mmである、断面形状が円弧、楕円弧、矩形及び多角形の一部を主構成要素とする形状である管である。伝熱管1の長さは通常0.1~20mであり、例えば10mである。図5には、円弧を断面形状の構成要素とする、断面形状が葉形の伝熱管を示している。図5中、伝熱管の長径をL、短径をHで表す。 The heat transfer tube 1 has, for example, a diameter (long axis, L) in the axial direction of the heat transfer plate 2 of 30 to 50 mm, and a diameter (short axis, H) in the direction orthogonal to the axial direction of the heat transfer plate 2 is 10 to 20 mm. The cross-sectional shape is a tube whose main component is a circular arc, an elliptical arc, a rectangle, and a part of a polygon. The length of the heat transfer tube 1 is usually 0.1 to 20 m, for example 10 m. FIG. 5 shows a heat transfer tube having a leaf shape in cross section with an arc as a component of the cross section. In FIG. 5, the major axis of the heat transfer tube is represented by L, and the minor axis is represented by H.
 伝熱プレート2は、複数の伝熱管1が断面形状の端縁で連結した形状を有している。伝熱プレート2は、楕円弧が連続して形成するように成形された二枚の鋼板を、両鋼板における弧の端に形成される凸縁で溶接により互いに接合することによって形成されている。前記鋼板には、厚さ2mm以下、好適には1mm以下の鋼板が用いられる。成形された前記鋼板の形状は精密に検査され、例えば、成形の設計値に対する誤差が±1%以内である成形された鋼板はそのまま用いられ、成形の設計値に対する誤差が±5%を超える成形された鋼板は、成形の設計値に対する誤差が±2%以内になるように修正された後に用いられている。 The heat transfer plate 2 has a shape in which a plurality of heat transfer tubes 1 are connected by an edge having a cross-sectional shape. The heat transfer plate 2 is formed by joining two steel plates formed so as to form an elliptical arc continuously by welding with convex edges formed at the ends of the arcs of both steel plates. As the steel plate, a steel plate having a thickness of 2 mm or less, preferably 1 mm or less is used. The shape of the formed steel plate is precisely inspected. For example, a formed steel plate having an error with respect to the design value of forming within ± 1% is used as it is, and the forming with an error with respect to the design value of forming exceeds ± 5%. The steel sheet thus used is used after being corrected so that the error with respect to the design value of forming is within ± 2%.
 なお、隣り合う伝熱プレート2は、表面の凸縁同士が対向するように並列していてもよいが、図1のプレート式反応器では、一方の伝熱プレート2の表面の凸縁と、他方の伝熱プレート2の表面の凹縁とが対向するように並列している。 Adjacent heat transfer plates 2 may be arranged in parallel so that the convex edges of the surfaces face each other, but in the plate reactor of FIG. 1, the convex edges of the surface of one heat transfer plate 2 and The other heat transfer plate 2 is arranged in parallel so as to face the concave edge on the surface.
 伝熱プレート2は、全て同じ伝熱管1で構成してもよいし、断面の大きさが異なる伝熱管1によって構成してもよい。例えば伝熱プレート2は、断面の大きさが異なる三種の伝熱管のそれぞれによって、伝熱プレート2の上部、中部、及び下部が構成されていてもよい。より具体的には、伝熱プレート2は、図7に示すように、三種の伝熱管のそれぞれの長軸が一直線上に配置されるように形成され、例えば、伝熱プレート2の上部は、伝熱プレート2の高さの20%分が最も断面の大きさが大きい伝熱管aで構成され、伝熱プレート2の中部は、伝熱プレート2の高さの30%分が二番目に断面の大きさが大きい伝熱管bで構成され、伝熱プレート2の下部は、伝熱プレート2の高さの40%分が最も断面の大きさの小さい伝熱管cで構成され、伝熱プレート2の高さの10%分は、伝熱プレート2の上端部及び下端部の接合板部で形成されていてもよい。伝熱管aの断面形状は、例えば長径(L)が50mmであり、短径(H)が20mmの葉形であり、伝熱管bの断面形状は、例えば長径(L)が40mmであり、短径(H)が16mmの葉形であり、伝熱管cの断面形状は、例えば長径(L)が30mmであり、短径(H)が10mmの葉形である。 The heat transfer plate 2 may be composed of the same heat transfer tube 1 or may be composed of the heat transfer tubes 1 having different cross-sectional sizes. For example, in the heat transfer plate 2, the upper portion, the middle portion, and the lower portion of the heat transfer plate 2 may be configured by three types of heat transfer tubes having different cross-sectional sizes. More specifically, as shown in FIG. 7, the heat transfer plate 2 is formed so that the major axes of the three types of heat transfer tubes are arranged in a straight line. 20% of the height of the heat transfer plate 2 is composed of the heat transfer tube a having the largest cross section, and the middle part of the heat transfer plate 2 is the second cross section of 30% of the height of the heat transfer plate 2 The lower part of the heat transfer plate 2 is constituted by the heat transfer tube c having the smallest cross-sectional area for 40% of the height of the heat transfer plate 2, and the heat transfer plate 2. 10% of the height of the heat transfer plate 2 may be formed by the joining plate portions at the upper end portion and the lower end portion of the heat transfer plate 2. The cross-sectional shape of the heat transfer tube a is, for example, a long diameter (L) of 50 mm and the short diameter (H) is a leaf shape of 20 mm, and the cross-sectional shape of the heat transfer tube b is, for example, a long diameter (L) of 40 mm and short. The diameter (H) is a leaf shape of 16 mm, and the cross-sectional shape of the heat transfer tube c is, for example, a leaf shape having a major axis (L) of 30 mm and a minor axis (H) of 10 mm.
 伝熱プレート2は、伝熱プレート2の軸方向における長さは通常0.5~10mであり、好ましくは2m以下である。伝熱プレート2の軸方向における長さが2m以上の場合は、2枚の伝熱プレート2を接合するか、組み合わせて用いることもできる。 The length of the heat transfer plate 2 in the axial direction of the heat transfer plate 2 is usually 0.5 to 10 m, preferably 2 m or less. When the length of the heat transfer plate 2 in the axial direction is 2 m or more, the two heat transfer plates 2 can be joined or combined.
 挟持板3は、図2及び図3に示すように、一対の板であり、例えばステンレス製の一対の板である。挟持板3は、縁部で保持棒4によって結合することができるように、伝熱プレート2よりも大きく形成されている。 As shown in FIGS. 2 and 3, the sandwiching plate 3 is a pair of plates, for example, a pair of stainless steel plates. The clamping plate 3 is formed larger than the heat transfer plate 2 so that it can be joined by the holding rod 4 at the edge.
 保持棒4は、図3に示すように、一対の挟持板3を貫通して連結する複数の棒であり、例えば両端部にネジを有するステンレス製の棒である。挟持板3は、図2~図4に示すように、保持棒4の両端部において、伝熱プレート2の上部の伝熱管1(前記伝熱管a)の外周に接する位置に、ナットによって固定される。挟持板3は、保持棒4のネジの設置長さの範囲で、伝熱プレート2を挟持する方向において位置を変えて固定することができる。また保持棒4は、上下方向において、伝熱プレート2間の隙間に配置される仕切り7と重なる位置に配置されている。一対の挟持板3及び保持棒4は前記プレート挟持部を構成している。 As shown in FIG. 3, the holding rod 4 is a plurality of rods that penetrate and connect the pair of clamping plates 3, and is, for example, a stainless rod having screws at both ends. As shown in FIGS. 2 to 4, the sandwiching plate 3 is fixed by nuts at both ends of the holding rod 4 at positions where it comes into contact with the outer periphery of the heat transfer tube 1 (the heat transfer tube a) above the heat transfer plate 2. The The clamping plate 3 can be fixed by changing the position in the direction of clamping the heat transfer plate 2 within the range of the installation length of the screws of the holding rod 4. Further, the holding bar 4 is arranged at a position overlapping the partition 7 arranged in the gap between the heat transfer plates 2 in the vertical direction. A pair of clamping plates 3 and holding rods 4 constitute the plate clamping portion.
 熱媒供給装置5は、図1及び図2に示すように、伝熱プレート2の伝熱管1の両端に接する一対の容器であり、例えば接する伝熱管1に対応する開口部を有するステンレス製の一対のジャケット11、12と、ジャケットに設けられ、熱媒の供給と排出に用いられるノズル13と、ジャケット11から排出された熱媒の温度を調整するための熱交換器14と、ジャケット11と熱交換器14との間で熱媒を循環させるためのポンプ15とを有する。熱媒供給装置5は、ネジ及びナット等の通常の固定部材と、ガスケット等のシールとを用いて、挟持板3の側縁部において、挟持板3と互いに気密に接合している。 As shown in FIGS. 1 and 2, the heat medium supply device 5 is a pair of containers that are in contact with both ends of the heat transfer tube 1 of the heat transfer plate 2. A pair of jackets 11, 12, a nozzle 13 provided in the jacket and used for supplying and discharging the heat medium; a heat exchanger 14 for adjusting the temperature of the heat medium discharged from the jacket 11; And a pump 15 for circulating a heat medium to and from the heat exchanger 14. The heating medium supply device 5 is airtightly joined to the sandwiching plate 3 at the side edge portion of the sandwiching plate 3 using a normal fixing member such as a screw and a nut and a seal such as a gasket.
 ジャケット11、12の内部は、所定の本数の伝熱管1ごとにおいて熱媒が一方向又は逆方向に流れて熱媒がジャケット11、12間を往復するように、伝熱プレート2の軸を横断する方向に沿って、連通又は遮断するように適宜に区切られていてもよい。 The inside of the jackets 11 and 12 traverses the axis of the heat transfer plate 2 so that the heat medium flows in one direction or the opposite direction in each predetermined number of heat transfer tubes 1 and the heat medium reciprocates between the jackets 11 and 12. It may be appropriately divided so as to communicate with or cut off along the direction to perform.
 なお、熱媒供給装置5は、例えば図2中の矢印Yで示されるように、一方のジャケット11から他方のジャケット12へ熱媒を全ての伝熱管1において一方向に流す装置であってもよい。 Note that the heat medium supply device 5 may be a device that causes the heat medium to flow in one direction in all the heat transfer tubes 1 from one jacket 11 to the other jacket 12, as indicated by an arrow Y in FIG. Good.
 さらに熱媒供給装置5は、例えばジャケット11、12に、又はジャケット11、12における、伝熱プレート2の軸方向に対して遮断されてなる複数の室のうちの任意の室に、熱媒混合装置を有している。熱媒混合装置は、図6に示すように、ジャケット内外を連通するノズル16と、ジャケット内部においてノズル16に連結し、ジャケット内の熱媒の流れ方向に対して直交する方向に延出する分配管17とを有している。分配管17は、例えば先端が塞がれており、分配管の長手方向の全体にわたって複数の孔が設けられている管である。 Furthermore, the heat medium supply device 5 is, for example, a heat medium mixed in the jackets 11 and 12 or in any one of the plurality of chambers in the jackets 11 and 12 that are blocked with respect to the axial direction of the heat transfer plate 2. I have a device. As shown in FIG. 6, the heat medium mixing device includes a nozzle 16 that communicates with the inside and outside of the jacket, and a nozzle 16 that is connected to the inside of the jacket and extends in a direction perpendicular to the flow direction of the heat medium within the jacket. And a pipe 17. The distribution pipe 17 is, for example, a pipe having a closed end and a plurality of holes provided over the entire length of the distribution pipe.
 ガス分配部6は、例えば、前記複数の伝熱プレートの端部に離間する覆いを形成し、前記熱媒供給装置及びプレート挟持部が形成する反応容器の側壁の両端を密閉する反応容器カバーと、原料ガスが供給され、又は反応生成ガスが排出されるガスの通気口(ノズル18)とから構成することができる。前記反応容器カバーには、ドーム形状、円錐形状、四角垂形状、三角柱形状、筐体等の種々の形状のカバーを用いることができる。また前記通気口には、例えば反応容器カバーに開口するノズルとその端部に形成されるフランジとを有する通常の通気口を用いることができる。前記反応容器カバーは、前記反応容器の側壁に対して通常は一対が設けられ、これらは同一であってもよいし異なっていてもよい。また前記通気口は、反応容器カバーに通常は一つ設けられるが、複数設けられていてもよい。さらに前記通気口は、プレート式反応器において通常は一対設けられるが、これらは同一であってもよいし異なっていてもよい。 The gas distribution unit 6 includes, for example, a reaction vessel cover that forms a cover that is separated from the end portions of the plurality of heat transfer plates, and that seals both ends of the side wall of the reaction vessel formed by the heat medium supply device and the plate holding unit. In addition, a gas vent (nozzle 18) through which a source gas is supplied or a reaction product gas is discharged can be used. As the reaction vessel cover, covers having various shapes such as a dome shape, a conical shape, a quadrangular shape, a triangular prism shape, and a housing can be used. Moreover, the said vent hole can use the normal vent hole which has the nozzle opened to a reaction container cover, and the flange formed in the edge part, for example. The reaction vessel cover is usually provided in a pair with respect to the side wall of the reaction vessel, and these may be the same or different. In addition, one vent is usually provided in the reaction vessel cover, but a plurality of vents may be provided. Further, a pair of the vents are usually provided in the plate reactor, but these may be the same or different.
 より具体的には、ガス分配部6は、図1及び図3に示すように、挟持板3の上端縁とジャケット11、12の上端縁、及び挟持板3の下端縁とジャケット11、12の下端縁、のそれぞれに、例えば前記固定部材とシールとを用いて気密に接合して複数の伝熱プレート2の両端を覆う一対の部材である。ガス分配部6は、例えば、かまぼこ型のステンレス製の蓋である。ガス分配部6は、それぞれ、ノズル18とマンホール19とを有する。一方のガス分配部6のノズル18を介して、ガスが伝熱プレート2間の隙間に向けて供給され、また前記隙間から他方の蓋のノズル18を介してガスが排出される。前記プレート式反応器では、挟持板3、熱媒供給装置5、及びガス分配部6が気密に接合することによって反応容器が形成されている。 More specifically, as shown in FIGS. 1 and 3, the gas distribution unit 6 includes an upper end edge of the sandwiching plate 3 and an upper end edge of the jackets 11 and 12, and a lower end edge of the sandwiching plate 3 and the jackets 11 and 12. A pair of members that cover both ends of the plurality of heat transfer plates 2 are hermetically joined to the lower end edges, for example, using the fixing member and a seal. The gas distribution unit 6 is, for example, a kamaboko type stainless steel lid. Each of the gas distribution units 6 includes a nozzle 18 and a manhole 19. The gas is supplied to the gap between the heat transfer plates 2 through the nozzle 18 of one gas distribution unit 6, and the gas is discharged from the gap through the nozzle 18 of the other lid. In the plate reactor, a reaction vessel is formed by airtightly joining the sandwich plate 3, the heating medium supply device 5, and the gas distribution unit 6.
 マンホール19は、ガス分配部6が設置された状態でガス分配部6に対して作業員が出入りするための開閉扉である。ノズル18及びマンホール19の配置は特に限定されないが、ガス分配部6がかまぼこ型の蓋である場合では、例えば図1に示すように、ノズル18は蓋の一端部に設けられ、マンホール19は蓋の他端部に設けられる。さらにガス分配部6には、圧力の異常な急上昇時や異常反応時の安全対策として、安全弁や破裂板等の不図示の安全装置が、入口部及び/或いは出口部のガス分配部6の本体やノズル18に設置される。また、反応器出口側のガス分配部6及びマンホール19については、反応生成物を含有するガスが滞留することによって発生する目的物の分解や副生成物の蓄積が発生する場合には、滞留部を少なくする為の構造や付加物を設置することが望ましい。 The manhole 19 is an open / close door for an operator to enter and exit the gas distribution unit 6 in a state where the gas distribution unit 6 is installed. The arrangement of the nozzle 18 and the manhole 19 is not particularly limited, but when the gas distribution unit 6 is a kamaboko type lid, for example, as shown in FIG. 1, the nozzle 18 is provided at one end of the lid, and the manhole 19 is a lid. Provided at the other end. Further, the gas distribution unit 6 includes a safety device (not shown) such as a safety valve or a rupture disc as a safety measure in the case of an abnormal sudden rise in pressure or abnormal reaction, and the main body of the gas distribution unit 6 at the inlet and / or outlet. Or the nozzle 18. The gas outlet 6 and the manhole 19 on the outlet side of the reactor, in the case where decomposition of the target product and accumulation of by-products generated by the retention of the gas containing the reaction product occur, It is desirable to install structures and additions to reduce
 仕切り7は、隣り合う伝熱プレート2の間を、伝熱管1の軸を横断する方向、すなわちプレート式反応器におけるガスの通気方向、に沿って設けられている。仕切り7は、図7に示すように、例えば伝熱管1の表面に当接する、十分な剛性を有する板状の部材であり、下部に矩形の貫通孔である窓20を有している。仕切り7は、伝熱プレート2の間隔を所定の間隔に維持するスペーサとなっている。仕切り7は、プレート式反応器全体において同じ間隔で設けられていてもよいし、異なる間隔で設けられていてもよい。仕切り7は、例えば400mmの同じ間隔で並列して設けられ、伝熱プレート2間の隙間に12Lの容積の複数の区画を形成している。 The partition 7 is provided between the adjacent heat transfer plates 2 along the direction crossing the axis of the heat transfer tube 1, that is, the gas flow direction in the plate reactor. As shown in FIG. 7, the partition 7 is a plate-like member with sufficient rigidity that comes into contact with the surface of the heat transfer tube 1, for example, and has a window 20 that is a rectangular through-hole at the bottom. The partition 7 is a spacer that maintains the interval between the heat transfer plates 2 at a predetermined interval. The partitions 7 may be provided at the same interval in the whole plate reactor or may be provided at different intervals. The partitions 7 are provided in parallel at the same interval of 400 mm, for example, and form a plurality of compartments having a volume of 12 L in the gaps between the heat transfer plates 2.
 通気栓8は、図8に示すように、各区画の断面形状と同じ矩形の通気板21と、通気板21の短辺から下方に垂設される第一のスカート部22と、通気板21の長辺から下方に垂設される第二のスカート部23とを有している。第一のスカート部22には、矩形の係止窓24と、その隣に併設される係止爪25とが形成されている。 As shown in FIG. 8, the vent plug 8 has a rectangular vent plate 21 having the same cross-sectional shape as each section, a first skirt portion 22 provided downward from the short side of the vent plate 21, and the vent plate 21. And a second skirt portion 23 that hangs downward from the long side. The first skirt portion 22 is formed with a rectangular locking window 24 and a locking claw 25 provided adjacent thereto.
 通気板21は例えば2mmの円形の孔が開口率30%で形成された板である。係止窓24は、係止爪25を収容する幅と高さを有する大きさで形成されている。また係止爪25は、第一のスカート部22の下端縁からの平行な二本の切り込みを外側に凸に折り曲げて形成されている。対向する一対の第一のスカート部22において、一方の係止窓24と他方の係止爪25とが対向し、一方の係止爪25と他方の係止窓24とが対向している。仕切り7の窓20は、係止窓24と係止爪25とが同時に含まれる幅及び高さを有する大きさで形成されている。 The ventilation plate 21 is, for example, a plate in which circular holes of 2 mm are formed with an opening rate of 30%. The locking window 24 is formed in a size having a width and a height for accommodating the locking claw 25. The locking claw 25 is formed by bending two parallel cuts from the lower edge of the first skirt portion 22 so as to protrude outward. In the pair of first skirt portions 22 facing each other, one locking window 24 and the other locking claw 25 face each other, and one locking claw 25 and the other locking window 24 face each other. The window 20 of the partition 7 is formed in a size having a width and a height that include the locking window 24 and the locking claw 25 at the same time.
 通気栓8は、各区画の下端から通気板21を上に各区画に挿入される。このとき係止爪25は、外側への付勢に抗して仕切り7に押さえられるが、窓20に到達したときに、図9に示すように、仕切り7の押さえつけから開放されて窓20に向けて進出し、窓20に係止する。 The vent plug 8 is inserted into each section from the lower end of each section with the ventilation plate 21 up. At this time, the latching claw 25 is pressed against the partition 7 against the outward bias, but when it reaches the window 20, it is released from the pressing of the partition 7 as shown in FIG. Advancing toward and locking to the window 20.
 温度測定装置9は、例えば図2に示すように、伝熱プレート2が形成する複数の隙間のうち、最も外側の隙間と、それより内側の任意の隙間とに設けられる。また温度測定装置9は、伝熱プレート2間の一つの隙間において、伝熱管1の軸方向、すなわち熱媒の流れ方向、に沿って、熱媒の入口近傍と出口近傍とを含む複数箇所に設けられる。温度測定装置9の設置位置は、伝熱プレート2の一本の伝熱管1における上流側の熱媒と下流側の熱媒との温度差に応じて決めることができる。例えば熱媒の温度を0.5℃単位で制御する場合では、温度測定装置9は、伝熱プレート2の一本の伝熱管1における上流側の熱媒と下流側の熱媒との温度差が2℃以上になる位置に設けられる。 As shown in FIG. 2, for example, the temperature measuring device 9 is provided in an outermost gap and an arbitrary gap inside the gap among a plurality of gaps formed by the heat transfer plate 2. Further, the temperature measuring device 9 is provided at a plurality of locations including the vicinity of the inlet and the outlet of the heat medium along the axial direction of the heat transfer tube 1, that is, the flow direction of the heat medium, in one gap between the heat transfer plates 2. Provided. The installation position of the temperature measuring device 9 can be determined according to the temperature difference between the upstream heat medium and the downstream heat medium in one heat transfer tube 1 of the heat transfer plate 2. For example, in the case where the temperature of the heat medium is controlled in units of 0.5 ° C., the temperature measuring device 9 has a temperature difference between the upstream heat medium and the downstream heat medium in one heat transfer tube 1 of the heat transfer plate 2. Is provided at a position of 2 ° C. or higher.
 温度測定装置9は、図10に示すように、可撓性を有する支持体26と、支持体26に支持されている複数の温度測定部27と、支持体26から水平方向に延出し、伝熱プレート2の表面に接する複数のスペーサロッド28と、支持体26の基端に設けられるフランジ29と、フランジ29に接続されるコネクタ30と、コネクタ30に接続されるケーブル31と、支持体26の先端に設けられる固定用フランジ32とを有している。 As shown in FIG. 10, the temperature measuring device 9 includes a flexible support 26, a plurality of temperature measuring units 27 supported by the support 26, and a horizontal direction extending from the support 26. A plurality of spacer rods 28 in contact with the surface of the heat plate 2, a flange 29 provided at the base end of the support 26, a connector 30 connected to the flange 29, a cable 31 connected to the connector 30, and the support 26 And a fixing flange 32 provided at the front end of the head.
 支持体26は管壁の平均厚さが0.2mmであるステンレス製の管である。支持体26内には、温度測定部27である11本の熱電対が挿入されている。各温度測定部27は、各触媒層における温度変化に応じて配置される。例えば温度測定部27は、触媒層における反応ガスの入口近傍と、出口近傍と、各触媒層の各反応帯域においてそれぞれ最大温度になると予測される三箇所とに設けられる。より具体的には温度測定部27は、図10に示すように、各隙間の通気方向において、各隙間の上端部に一つ、伝熱管a群によって形成される第一の反応帯域の中央部に三つ、伝熱管b群によって形成される第二の反応帯域の中央部に三つ、伝熱管cによって形成される第三の反応帯域の上部に三つ、各隙間の下端部に一つが、それぞれ設けられる。 The support 26 is a stainless steel tube having an average wall thickness of 0.2 mm. Eleven thermocouples that are temperature measuring units 27 are inserted in the support 26. Each temperature measurement part 27 is arrange | positioned according to the temperature change in each catalyst layer. For example, the temperature measuring unit 27 is provided in the vicinity of the inlet of the reaction gas in the catalyst layer, in the vicinity of the outlet, and at three locations where the maximum temperature is predicted in each reaction zone of each catalyst layer. More specifically, as shown in FIG. 10, the temperature measuring unit 27 has a central portion of the first reaction zone formed by the heat transfer tube a group, one at the upper end of each gap in the ventilation direction of each gap. Three at the center of the second reaction zone formed by the heat transfer tube b group, three at the top of the third reaction zone formed by the heat transfer tube c, and one at the lower end of each gap. , Respectively.
 なお、各伝熱管1において熱媒の温度差が2℃以上になる位置や、各触媒層の各反応帯域において最大温度になると予測される位置は、この反応器の試験機を用いた実験結果に基づいて、又はアンシス株式会社のCFX、CD adapco社のSTAR-CD、PSE社のgPROMS等のソフトを用いるコンピュータシミュレーションの結果に基づいて決めることができる。 In addition, the position where the temperature difference of the heat medium in each heat transfer tube 1 is 2 ° C. or more and the position where the maximum temperature is predicted in each reaction zone of each catalyst layer are the results of experiments using this reactor tester. Or based on the result of computer simulation using software such as CFX of Ansys Corporation, STAR-CD of CD adapco, or gPROMS of PSE.
 スペーサロッド28は、支持体26に基端が固定され水平方向に延出するステンレス製の棒材である。スペーサロッド28は、支持体26における位置に応じた長さを有しており、支持体26が各隙間の中心面に支持されたときに伝熱プレート2の表面にスペーサロッド28の先端が接触する長さを有している。スペーサロッド28は、支持体26の中央部から基端部にかけて三本設けられており、対向する伝熱プレート2のそれぞれに交互に接触するように設けられている。 The spacer rod 28 is a stainless steel rod whose base end is fixed to the support 26 and extends in the horizontal direction. The spacer rod 28 has a length corresponding to the position on the support 26, and the tip of the spacer rod 28 contacts the surface of the heat transfer plate 2 when the support 26 is supported by the center surface of each gap. Have a length to Three spacer rods 28 are provided from the center portion to the base end portion of the support 26, and are provided so as to alternately contact each of the opposing heat transfer plates 2.
 フランジ29は、反応容器の上部に支持体26を固定するために、例えばフランジ29を反応容器内の所定の高さに支持するフランジ支持部材に載せられている。フランジ支持部材は、例えば上側のガス分配部6から垂設するボルトが挿通され、ナットによって所定の高さに保たれる部材であり、例えば支持体26を挟む二本の鋼線と、ボルト用の孔を有し二本の鋼線を支持する鋼線支持部材と、ボルト用の孔に前記ボルトが挿入された鋼線支持部材を下から締め上げるナットとによって構成される。固定用フランジ32は、通気栓8の通気板21における孔の直径よりも大きな直径を有する円板又は輪であり、例えば支持体26の先端を通気板21の前記孔に通した後に支持体の先端に固定される。 The flange 29 is placed on, for example, a flange support member that supports the flange 29 at a predetermined height in the reaction vessel in order to fix the support 26 to the upper portion of the reaction vessel. The flange support member is, for example, a member that is inserted with a bolt suspended from the upper gas distributor 6 and is maintained at a predetermined height by a nut. For example, two steel wires sandwiching the support 26 and a bolt A steel wire support member that supports two steel wires and a nut that tightens the steel wire support member in which the bolt is inserted into the bolt hole from below. The fixing flange 32 is a disk or a ring having a diameter larger than the diameter of the hole in the vent plate 21 of the vent plug 8. For example, after the tip of the support 26 is passed through the hole of the vent plate 21, Fixed to the tip.
 図10の温度測定装置9は、垂直方向において、前記隙間の下端部では、各伝熱プレート2から等距離の位置で、支持体26の先端が固定用フランジ32によって通気栓8に固定されており、前記隙間の上端部では、各伝熱プレート2から等距離の位置で、支持体26の基端が前記フランジ支持部材によって固定されている。フランジ支持部材のナットを締め付けることにより、ナットが上方に移動し、支持体26はフランジ支持部材によって上方に張られ、それぞれのスペーサロッド28が伝熱プレート2の表面に接触した状態で直線状になる。 The temperature measuring device 9 shown in FIG. 10 has the tip of the support 26 fixed to the vent plug 8 by the fixing flange 32 at a position equidistant from each heat transfer plate 2 at the lower end of the gap in the vertical direction. At the upper end of the gap, the base end of the support 26 is fixed by the flange support member at a position equidistant from each heat transfer plate 2. By tightening the nut of the flange support member, the nut moves upward, the support body 26 is stretched upward by the flange support member, and each spacer rod 28 is in a straight line with the surface of the heat transfer plate 2 being in contact with it. Become.
 前記プレート式反応器では、前述した構成によって、伝熱プレート2は、例えば、伝熱管aの外壁間の最短距離が14mm(各伝熱プレート2の軸間の距離が30mm)の等間隔で並列している。 In the plate reactor, due to the above-described configuration, the heat transfer plates 2 are arranged in parallel at equal intervals, for example, the shortest distance between the outer walls of the heat transfer tubes a is 14 mm (the distance between the axes of the heat transfer plates 2 is 30 mm). is doing.
 伝熱プレート2は、伝熱プレート2とスペーサ7とを交互に配置することによって所望の位置に配置され、この位置で伝熱管1の両端がジャケット10、11と溶接されて接合している。ここで伝熱プレート2の表面間の距離は、伝熱プレート2間の隙間から伝熱プレート2を見たとき(図1)に、前記隙間におけるガスの通気方向(図1中のB-B’線)に沿って伝熱プレート2を切断したときの伝熱プレート2の断面(図3及び図5)において、伝熱プレート2の軸から等距離にある線に直交する方向における伝熱プレート2の表面間の距離である。伝熱プレート2は、伝熱プレート2の軸が鉛直方向に沿うように、また伝熱管1の軸が水平方向に沿うように配置されていることから、例えば、伝熱プレート2の表面間の距離の設計値は、軸が鉛直方向となるように配置されている伝熱プレート2において、水平方向における伝熱プレート2の表面間の距離のうち、一方の伝熱プレートの凸縁と他方の伝熱プレートの凹縁間の距離で20mmであり、前記距離の実測値は19.5~21mmであるとき、このときの伝熱プレート2の表面間の距離の設計値に対する差は-0.5~1.0mmとなる。 The heat transfer plate 2 is arranged at a desired position by alternately arranging the heat transfer plates 2 and the spacers 7, and both ends of the heat transfer tube 1 are welded and joined to the jackets 10 and 11 at this position. Here, the distance between the surfaces of the heat transfer plate 2 is the gas flow direction (BB in FIG. 1) when the heat transfer plate 2 is viewed from the gap between the heat transfer plates 2 (FIG. 1). The heat transfer plate in a direction perpendicular to the line that is equidistant from the axis of the heat transfer plate 2 in the cross section (FIGS. 3 and 5) of the heat transfer plate 2 when the heat transfer plate 2 is cut along the line ' The distance between the two surfaces. Since the heat transfer plate 2 is arranged so that the axis of the heat transfer plate 2 is along the vertical direction and the axis of the heat transfer tube 1 is along the horizontal direction, for example, between the surfaces of the heat transfer plate 2 The design value of the distance is that in the heat transfer plate 2 arranged so that the axis is in the vertical direction, the distance between the surfaces of the heat transfer plate 2 in the horizontal direction and the convex edge of one heat transfer plate and the other When the distance between the concave edges of the heat transfer plate is 20 mm, and the measured value of the distance is 19.5 to 21 mm, the difference between the distances between the surfaces of the heat transfer plate 2 at this time is −0. 5 to 1.0 mm.
 隣り合う伝熱プレート2間の隙間の各区画には触媒が充填される。触媒には、例えば、最大平均粒径が5mmであり、形状がリングであるモリブデン(Mo)-ビスマス(Bi)系触媒が用いられる。伝熱プレート2と仕切り7とによって形成される区画に、この区画の容積に応じた所定の容積の触媒が充填される。 Each section of the gap between adjacent heat transfer plates 2 is filled with a catalyst. As the catalyst, for example, a molybdenum (Mo) -bismuth (Bi) catalyst having a maximum average particle diameter of 5 mm and a ring shape is used. A compartment formed by the heat transfer plate 2 and the partition 7 is filled with a catalyst having a predetermined volume corresponding to the volume of the compartment.
 伝熱プレート2間の隙間に触媒が充填された状態を図11に示す。図11に示すように、伝熱プレート2は、2枚の薄板が円弧や楕円弧、矩形或いは多角形の一部に成型され、互いに向き合って接合され、断面積の異なる三種の熱媒の流路33、34、35を形成している。流路33の幅はもっとも大きく、従って触媒層36の幅は流路33の間でもっとも狭くなっている。流路34、35は、流路33に比べて流路の幅は順次小さくなっており、従って触媒層36の幅は、順次広くなっている。 FIG. 11 shows a state in which the gap between the heat transfer plates 2 is filled with the catalyst. As shown in FIG. 11, the heat transfer plate 2 has two thin plates formed into a circular arc, an elliptical arc, a rectangle or a part of a polygon, joined to face each other, and flow paths for three kinds of heat media having different cross-sectional areas. 33, 34, and 35 are formed. The width of the flow path 33 is the largest, and therefore the width of the catalyst layer 36 is the narrowest between the flow paths 33. The widths of the flow paths 34 and 35 are sequentially smaller than that of the flow path 33, and therefore the width of the catalyst layer 36 is gradually increased.
 触媒層36は、流路33、34、35に応じて三つの反応帯域37、38、39を形成している。触媒層36の厚さを、伝熱プレート2の軸に直角な方向の伝熱プレート2間の距離の平均値とすると、反応帯域37における触媒層36の厚さは例えば8~15mmであり、反応帯域37に続く反応帯域38における触媒層36の厚さは例えば10~20mmであり、反応帯域38に続く反応帯域39における触媒層36の厚さは例えば15~30mmである。 The catalyst layer 36 forms three reaction zones 37, 38, 39 according to the flow paths 33, 34, 35. When the thickness of the catalyst layer 36 is an average value of the distance between the heat transfer plates 2 in the direction perpendicular to the axis of the heat transfer plate 2, the thickness of the catalyst layer 36 in the reaction zone 37 is, for example, 8 to 15 mm. The thickness of the catalyst layer 36 in the reaction zone 38 following the reaction zone 37 is, for example, 10 to 20 mm, and the thickness of the catalyst layer 36 in the reaction zone 39 following the reaction zone 38 is, for example, 15 to 30 mm.
 前記プレート式反応器を用いて気相接触反応を行う場合、反応温度は伝熱管1を流れる熱媒の温度によって制御される。熱媒の温度は、原料、生成物、触媒の種類によって異なるが、一般に200~600℃であることが好ましい。熱媒の温度の一例としては、反応原料ガスがC3~C4不飽和炭化水素のとき、300~400℃である。各反応帯域に供給される熱媒の温度は、それぞれ独立に決定され、制御される。反応原料ガスが(メタ)アクロレインのときは、250~320℃の範囲で熱媒の温度が選択される。 When performing the gas phase contact reaction using the plate reactor, the reaction temperature is controlled by the temperature of the heat medium flowing through the heat transfer tube 1. The temperature of the heating medium varies depending on the types of raw materials, products, and catalysts, but is generally preferably 200 to 600 ° C. An example of the temperature of the heat medium is 300 to 400 ° C. when the reaction raw material gas is a C3 to C4 unsaturated hydrocarbon. The temperature of the heating medium supplied to each reaction zone is independently determined and controlled. When the reaction raw material gas is (meth) acrolein, the temperature of the heat medium is selected in the range of 250 to 320 ° C.
 特に反応原料ガスの反応転化率が重要であり、所望の転化率を得るために熱媒の温度が制御される。プレート式反応器の運転時に触媒層の温度を許容温度以上にすると、触媒の活性の低下、選択率の低下、活性や選択率の低下速度の増大等の問題を生じることがある。ここで「転化率」とは、触媒層に供給された原料ガス(例えばプロピレン)の供給量に対する、反応によって生成物へ転化された原料ガスの量の比率を言い、「選択率」とは、反応によって転化した原料ガスの量に対する、目的とする生成物に変換された原料ガスの量の比率を言う。 Particularly, the reaction conversion rate of the reaction raw material gas is important, and the temperature of the heat medium is controlled in order to obtain a desired conversion rate. If the temperature of the catalyst layer is set to an allowable temperature or higher during the operation of the plate reactor, problems such as a decrease in the activity of the catalyst, a decrease in the selectivity, and an increase in the activity and the rate of decrease in the selectivity may occur. Here, the “conversion rate” refers to the ratio of the amount of the raw material gas converted into the product by the reaction with respect to the supply amount of the raw material gas (for example, propylene) supplied to the catalyst layer, and the “selectivity” The ratio of the amount of the raw material gas converted into the target product to the amount of the raw material gas converted by the reaction is said.
 所定の転化率を得るために、熱媒の温度を制御するが、触媒の性能を長期間にわたり高く保つ為には、触媒層の最大温度が使用する触媒の最大許容温度以下であることが重要であり、より好ましくは、所望の反応成績を得られる範囲で可能な限り触媒層の最大温度を低く保つ事が重要である。 The temperature of the heating medium is controlled in order to obtain a predetermined conversion rate, but in order to keep the catalyst performance high over a long period of time, it is important that the maximum temperature of the catalyst layer is not more than the maximum allowable temperature of the catalyst used. More preferably, it is important to keep the maximum temperature of the catalyst layer as low as possible within a range where desired reaction results can be obtained.
 熱媒は、2~5の反応帯域にそれぞれ、触媒層のピーク温度を前記設定値±10℃以内とする温度で供給され、反応ガスの流れ方法と直角な方向(十字流方向)に流れる。一本の伝熱管1における入口と出口とにおける熱媒の温度差は0.5~10℃であることが好ましく、2~5℃であることがより好ましい。図11に示す形態において、所定の温度に制御された熱媒は、例えば流路33~35における伝熱管1のそれぞれ一本毎に流される場合があり、また同じ反応帯域の伝熱管1の全てに同時に流す場合もある。また、ある反応帯域の伝熱管1に供給され排出された熱媒を同じあるいは別の反応帯域の伝熱管1に供給することも可能である。 The heat medium is supplied to each of the reaction zones 2 to 5 at a temperature at which the peak temperature of the catalyst layer is within the set value ± 10 ° C., and flows in a direction perpendicular to the reaction gas flow method (cross flow direction). The temperature difference of the heat medium at the inlet and outlet in one heat transfer tube 1 is preferably 0.5 to 10 ° C, more preferably 2 to 5 ° C. In the form shown in FIG. 11, the heat medium controlled to a predetermined temperature may flow, for example, for each one of the heat transfer tubes 1 in the flow paths 33 to 35, or all of the heat transfer tubes 1 in the same reaction zone. In some cases, it may flow simultaneously. It is also possible to supply the heat medium supplied to and discharged from the heat transfer tube 1 in a certain reaction zone to the heat transfer tube 1 in the same or another reaction zone.
 反応成績に関連する可能性が高く、プレート式反応器の注目すべき製作の精度としては、触媒層36の厚み(伝熱プレート2の表面間の距離)を決定する伝熱管a~cの厚み及び1対の伝熱プレート2の軸間の距離である。伝熱プレート2の軸間の距離が一定で伝熱管1の厚みが設定よりも薄すぎる場合、あるいは伝熱プレート2の軸間の距離が設定よりも大きすぎると、触媒層36の厚み(伝熱プレート2の表面間の距離)が大きくなり、熱の授受が効率的に行われず、触媒層36や反応原料の温度を正しく維持できなくなることがある。 There is a high possibility of being related to the reaction results, and as a notable production accuracy of the plate reactor, the thickness of the heat transfer tubes a to c that determines the thickness of the catalyst layer 36 (the distance between the surfaces of the heat transfer plate 2). And the distance between the axes of the pair of heat transfer plates 2. If the distance between the axes of the heat transfer plate 2 is constant and the thickness of the heat transfer tube 1 is too thin than the setting, or if the distance between the axes of the heat transfer plate 2 is too larger than the setting, the thickness of the catalyst layer 36 ( The distance between the surfaces of the heat plate 2) is increased, heat transfer is not performed efficiently, and the temperature of the catalyst layer 36 and the reaction raw material cannot be properly maintained.
 伝熱プレート2の軸間の距離が一定で熱媒流路の厚みが設定よりも大きすぎる場合、あるいは伝熱プレート2の軸間の距離が設定よりも小さすぎると、触媒層36の厚み(伝熱プレートの表面間の距離)が小さくなり、熱の授受は効率的になるが、設定した触媒が正しく充填できず、気相接触反応を正しく維持できなくなることがある。 If the distance between the axes of the heat transfer plate 2 is constant and the thickness of the heat medium flow path is too larger than the setting, or if the distance between the axes of the heat transfer plate 2 is too smaller than the setting, the thickness of the catalyst layer 36 ( The distance between the surfaces of the heat transfer plates becomes smaller and heat transfer becomes efficient, but the set catalyst cannot be charged correctly and the gas phase catalytic reaction may not be maintained correctly.
 前記プレート式反応器において、熱媒に、例えば345℃の熱媒を伝熱管1に流し、原料ガスとしてプロピレン、分子状酸素、水蒸気及び不活性ガスを含むガスを上側のガス分配部6から流すことによって、アクロレインとアクリル酸とを含む反応ガスが得られる。前記設計値から決められる所望の収量の反応生成物を得るための原料ガスの供給量で原料ガスが供給され、前記設計値から決められる熱媒の温度及び供給量で熱媒が伝熱管1に供給され、触媒層36の最大温度(ピーク温度)Aが温度測定装置9によって測定される。 In the plate reactor, a heat medium of, for example, 345 ° C. is passed through the heat transfer tube 1 as a heat medium, and a gas containing propylene, molecular oxygen, water vapor, and an inert gas is flowed from the upper gas distributor 6 as a raw material gas. Thus, a reaction gas containing acrolein and acrylic acid is obtained. The raw material gas is supplied in the supply amount of the raw material gas for obtaining a desired yield of the reaction product determined from the design value, and the heat medium is supplied to the heat transfer tube 1 at the temperature and supply amount of the heat medium determined from the design value. The maximum temperature (peak temperature) A of the catalyst layer 36 is supplied and measured by the temperature measuring device 9.
 ピーク温度Aが前記設定値±10℃以内である場合には、熱媒は熱媒の設定された温度及び供給量で伝熱管1に供給される。ピーク温度Aが前記設定値+10℃より高い場合には、熱媒は熱媒の設定された温度より低い温度及び熱媒の設定された供給量で伝熱管1に供給される。ピーク温度Aが前記設定値-10℃より低い場合には、熱媒は熱媒の設定された温度より高い温度及び熱媒の設定された供給量で伝熱管1に供給される。このように触媒層36のピーク温度に応じて熱媒の温度を制御することによって、原料ガスの供給量を変えることなく、また反応の収量を下げることなく反応生成物を製造し続けることができる。 When the peak temperature A is within the set value ± 10 ° C., the heat medium is supplied to the heat transfer tube 1 at the set temperature and supply amount of the heat medium. When the peak temperature A is higher than the set value + 10 ° C., the heat medium is supplied to the heat transfer tube 1 at a temperature lower than the set temperature of the heat medium and the set supply amount of the heat medium. When the peak temperature A is lower than the set value −10 ° C., the heat medium is supplied to the heat transfer tube 1 at a temperature higher than the set temperature of the heat medium and a set supply amount of the heat medium. Thus, by controlling the temperature of the heating medium according to the peak temperature of the catalyst layer 36, it is possible to continue producing the reaction product without changing the supply amount of the raw material gas and without reducing the reaction yield. .
 前記プレート式反応器は、設計値に対する誤差が±1%以内に成形された鋼板を接合して形成された伝熱プレート2を用いることから、触媒層のピーク温度の実測値が該ピーク温度の設定値となるように熱媒の温度を制御することによって、生産性の高い条件での反応生成物の製造を維持することができる。 Since the plate type reactor uses the heat transfer plate 2 formed by joining steel plates formed with an error with respect to the design value within ± 1%, the measured value of the peak temperature of the catalyst layer is the peak temperature. By controlling the temperature of the heating medium so as to be a set value, it is possible to maintain the production of the reaction product under conditions with high productivity.
 また前記プレート式反応器は、仕切り7を有することから、伝熱プレート2を、伝熱プレート2の表面間の距離の設計値の通りに配置する観点から効果的である。さらに前記プレート式反応器は、仕切り7を有することから、伝熱プレート2間の隙間に複数の区画が形成され、区画ごとに触媒が充填されることから、前記隙間に均一に触媒を充填する観点から効果的である。 In addition, since the plate type reactor has the partition 7, it is effective from the viewpoint of arranging the heat transfer plate 2 according to the design value of the distance between the surfaces of the heat transfer plate 2. Further, since the plate reactor has the partition 7, a plurality of sections are formed in the gap between the heat transfer plates 2, and the catalyst is filled in each section. Therefore, the catalyst is uniformly filled in the gap. It is effective from the viewpoint.
 また前記プレート式反応器は、温度測定装置9を有することから、触媒層36の温度を測定することができ、触媒層36のピーク温度に応じた熱媒の温度の制御による高い効率での生成物の製造を行う観点から効果的である。 Further, since the plate type reactor has the temperature measuring device 9, the temperature of the catalyst layer 36 can be measured, and production with high efficiency is achieved by controlling the temperature of the heating medium according to the peak temperature of the catalyst layer 36. It is effective from the viewpoint of manufacturing a product.
 また前記プレート式反応器は、熱媒混合装置を有することから、熱媒供給装置5における熱媒の温度を迅速かつ精密に制御する観点から効果的である。 Further, since the plate type reactor has a heat medium mixing device, it is effective from the viewpoint of controlling the temperature of the heat medium in the heat medium supply device 5 quickly and precisely.
 また前記プレート式反応器は、通気栓8を有することから、任意の区画の触媒のみを抜出すことが可能であり、触媒層36の均一化及び保守点検作業の高効率化の観点から効果的である。 Further, since the plate type reactor has the vent plug 8, it is possible to extract only the catalyst in an arbitrary section, which is effective from the viewpoint of uniformizing the catalyst layer 36 and improving the efficiency of maintenance and inspection work. It is.
 また前記プレート式反応器は、ガス分配部6及びマンホール19を有し、さらに保持棒4が仕切り7と重なる位置に配置されていることから、触媒の充填作業や保守点検作業における足場又はその支持部材として保持棒4を利用することができ、プレート式反応器内部で効率よく作業する観点から効果的である。 The plate reactor has a gas distribution section 6 and a manhole 19, and the holding rod 4 is disposed at a position overlapping the partition 7. Therefore, the scaffold or support for the catalyst filling work and maintenance work is provided. The holding rod 4 can be used as a member, which is effective from the viewpoint of efficiently working inside the plate reactor.
 なお、第一のプレート式反応器には、特許文献2に開示されているような、原料ガスの流れ方向に沿って形成される三つの反応帯域40、41、42毎に触媒層43の幅が拡大する、図12に示す形態も含まれる。 In the first plate reactor, the width of the catalyst layer 43 for each of the three reaction zones 40, 41, 42 formed along the flow direction of the raw material gas as disclosed in Patent Document 2. The form shown in FIG. 12 is also included.
 プレート式反応器は 一般に精度良く製作することが難しく、例えば同様の構成を有するプレート式熱交換器は、一般に、伝熱プレートの表面間の距離は設計値に対して3~5mm以上の誤差を有する。第一のプレート式反応器では、熱媒の温度の制御によって反応を制御できる誤差範囲内に伝熱プレートが配置されたプレート反応器を提供することができ、プレート式反応器の工業的な利用の可能性を大幅に拡大することができる。 Plate reactors are generally difficult to manufacture with high accuracy. For example, plate heat exchangers with similar configurations generally have an error of 3 to 5 mm or more with respect to the design value for the distance between the surfaces of the heat transfer plates. Have. In the first plate reactor, it is possible to provide a plate reactor in which the heat transfer plate is arranged within an error range in which the reaction can be controlled by controlling the temperature of the heat medium. The possibilities can be greatly expanded.
 第一のプレート式反応器は、固相の触媒の存在下で気相の原料を反応させる反応に用いることができ、特に、使用時の反応器内の温度と準備や点検のための作業が行われる常温との差が大きい条件での使用や、原料ガスや生成ガスが使用時の条件に長期に晒されることによるこれらのガスの変質が反応器の損傷を生じ得る条件で用いる場合、原料ガス成分の反応に伴う反応熱が著しく大きくて熱によって触媒の劣化が起こりやすく、触媒層の温度管理が重要な場合に、より顕著に効果を奏する。 The first plate type reactor can be used for reactions in which gas phase raw materials are reacted in the presence of a solid phase catalyst. In particular, the temperature in the reactor at the time of use and operations for preparation and inspection can be performed. When used under conditions where the difference from room temperature is large, or when the source gas or product gas is exposed to the conditions at the time of use for a long time, the deterioration of these gases may cause damage to the reactor. This is more effective when the heat of reaction accompanying the reaction of the gas component is remarkably large and the catalyst is likely to be deteriorated by the heat, and the temperature control of the catalyst layer is important.
<第二のプレート式反応器>
 第二のプレート式反応器は、反応原料を反応させるための反応容器と、伝熱管を有し、前記反応容器内に並んで設けられる複数の伝熱プレートと、前記伝熱管に熱媒体を供給する熱媒体供給装置と、隣り合う伝熱プレート間の隙間を、反応容器内の通気方向に沿って、充填された触媒を収容する複数の区画に仕切る仕切りとを有する。
<Second plate reactor>
The second plate reactor has a reaction vessel for reacting reaction raw materials, a heat transfer tube, a plurality of heat transfer plates provided in line in the reaction vessel, and supplies a heat medium to the heat transfer tube And a partition that divides a gap between adjacent heat transfer plates into a plurality of compartments containing the filled catalyst along the aeration direction in the reaction vessel.
 前記反応容器には、反応容器における通気方向に並列する複数の伝熱プレートと、隣り合う伝熱プレート間の隙間に触媒が充填されてなる、反応容器における通気方向に並列する複数の触媒層とが形成される。反応容器には、例えば、通気方向に対する横断面の形状が矩形であるケーシングや、前記横断面の形状が円形であるシェルが用いられる。 The reaction vessel includes a plurality of heat transfer plates arranged in parallel in the aeration direction in the reaction vessel, and a plurality of catalyst layers arranged in parallel in the aeration direction in the reaction vessel, wherein a catalyst is filled in a gap between adjacent heat transfer plates. Is formed. For the reaction vessel, for example, a casing having a rectangular cross section with respect to the aeration direction or a shell having a circular cross section is used.
 前記反応容器は、供給された反応原料が隣り合う伝熱プレート間の隙間を通って排出される容器であり、通常、一対の通気口を有する。前記一対の通気口は、一方が反応容器に供給される反応原料の供給口となり、他方が反応容器で生成した反応生成物の排出口となる。通気口の形態は、反応容器への反応原料の供給と反応容器からの反応生成物の排出とが行われる形状であれば特に限定されない。一対の通気口は、対向して設けられていることが好ましい。このような通気口としては、例えば、ケーシングやシェルの両端に設けられる一対の通気口や、シェルの中心軸を含む中心部とシェルの内周部とにそれぞれ円筒状に形成され、シェルの横断面において放射状に反応流体を通気させる一対の通気口が挙げられる。 The reaction vessel is a vessel in which the supplied reaction raw material is discharged through a gap between adjacent heat transfer plates, and usually has a pair of vent holes. One of the pair of vent holes serves as a supply port for the reaction raw material supplied to the reaction vessel, and the other serves as a discharge port for the reaction product generated in the reaction vessel. The form of the vent is not particularly limited as long as the reaction raw material is supplied to the reaction vessel and the reaction product is discharged from the reaction vessel. The pair of vent holes are preferably provided to face each other. As such a vent, for example, a pair of vents provided at both ends of a casing or a shell, or a cylindrical portion formed in a central portion including a central axis of the shell and an inner peripheral portion of the shell, respectively, the crossing of the shell A pair of vents that allow the reaction fluid to vent radially on the surface may be mentioned.
 前記伝熱プレートは、断面形状における周縁又は端縁で一方向に連結している複数の伝熱管を含む板状に形成される。 The heat transfer plate is formed in a plate shape including a plurality of heat transfer tubes connected in one direction at the peripheral edge or edge in the cross-sectional shape.
 このような伝熱プレートは、特許文献1に開示されているように、円弧、楕円弧、矩形等のパターンが連続して形成された二枚の波板を、両波板のパターンの端に形成される凸縁で互いに接合することによって形成することができる。又は伝熱プレートは、複数の前記伝熱管を周縁又は端縁で連結して形成することができる。又は伝熱プレートは、複数の前記伝熱管を反応容器において周縁又は端縁で接するように積み重ねて形成することができる。 As disclosed in Patent Document 1, such a heat transfer plate is formed by forming two corrugated plates in which patterns such as arcs, elliptical arcs, and rectangles are continuously formed at the ends of the patterns of both corrugated plates. Can be formed by joining each other with convex edges. Alternatively, the heat transfer plate can be formed by connecting a plurality of the heat transfer tubes at a peripheral edge or an edge. Alternatively, the heat transfer plate can be formed by stacking a plurality of the heat transfer tubes so as to contact each other at the peripheral edge or the edge in the reaction vessel.
 伝熱プレートの形状は、反応容器の形状や大きさに応じて決められるが、一般に矩形である。また伝熱プレートの大きさは、反応容器の形状や大きさに応じて決められるが、例えば矩形の伝熱プレートである場合には、縦(すなわち伝熱管の連結高さ)が0.5~5m、より好ましくは1~3mであり、横(すなわち伝熱管の長さ)が0.05~10m、より好ましくは1~10mであるが、通常の場合、横方向の制限はない。 The shape of the heat transfer plate is determined according to the shape and size of the reaction vessel, but is generally rectangular. The size of the heat transfer plate is determined according to the shape and size of the reaction vessel. For example, in the case of a rectangular heat transfer plate, the length (that is, the connection height of the heat transfer tubes) is 0.5 to It is 5 m, more preferably 1 to 3 m, and the width (ie, the length of the heat transfer tube) is 0.05 to 10 m, more preferably 1 to 10 m. However, there is usually no limitation in the horizontal direction.
 反応容器において隣り合う伝熱プレートは、伝熱プレートの表面の凸縁が互いに対向するように並べられてもよいし、一方の伝熱プレートの表面の凸縁が他方の伝熱プレートの表面の凹縁に対向するように並べられてもよい。隣り合う伝熱プレート間の距離は、伝熱管の横断方向において伝熱プレート間に3~40mm、より好ましくは3~15mmの幅の隙間が形成されるように、各伝熱プレートにおける伝熱管の長軸間の距離の平均値で15~50mm、より好ましくは23~50mm(隣り合う伝熱プレートにおける伝熱管の幅の半値の和の1.1~5倍、より好ましくは1.1~2倍)の範囲で設定することができる。伝熱プレート間の距離は、高い反応率と高い反応成績を得る観点から、伝熱管の長軸管の距離の平均値で10~50mmであることが好ましく、10~40mmであることがより好ましく、20~35mmであることがさらに好ましい。 Adjacent heat transfer plates in the reaction vessel may be arranged so that the convex edges of the surface of the heat transfer plate face each other, or the convex edges of the surface of one heat transfer plate are the surfaces of the other heat transfer plate. You may arrange so that a concave edge may be opposed. The distance between adjacent heat transfer plates is such that a gap with a width of 3 to 40 mm, more preferably 3 to 15 mm is formed between the heat transfer plates in the transverse direction of the heat transfer tubes. The average distance between the major axes is 15 to 50 mm, more preferably 23 to 50 mm (1.1 to 5 times the sum of the half value of the width of the heat transfer tubes in adjacent heat transfer plates, more preferably 1.1 to 2 Times). The distance between the heat transfer plates is preferably 10 to 50 mm, more preferably 10 to 40 mm in terms of the average distance of the long axis tubes of the heat transfer tube from the viewpoint of obtaining a high reaction rate and high reaction results. More preferably, the thickness is 20 to 35 mm.
 伝熱プレートにおける伝熱管は、反応容器内の通気方向に対して平行な方向に延出するように形成されていないことが、伝熱管中の熱媒体の温度の調整によって原料の反応を制御する観点から好ましく、反応容器内の通気方向に対して直交する方向に延出するように形成されていること、すなわち伝熱管を流れる熱媒体の方向が反応容器内の通気方向に対して直交する方向であること、が、伝熱管中の熱媒体の温度の調整によって原料の反応を制御する観点からより好ましい。 The heat transfer tube in the heat transfer plate is not formed so as to extend in a direction parallel to the aeration direction in the reaction vessel, but the reaction of the raw material is controlled by adjusting the temperature of the heat medium in the heat transfer tube. It is preferable from the viewpoint, and is formed so as to extend in a direction orthogonal to the aeration direction in the reaction vessel, that is, a direction in which the direction of the heat medium flowing through the heat transfer tube is orthogonal to the aeration direction in the reaction vessel. It is more preferable from the viewpoint of controlling the reaction of the raw material by adjusting the temperature of the heat medium in the heat transfer tube.
 前記伝熱管は、伝熱管内の熱媒体と伝熱管に外接する触媒層との間で熱が交換される伝熱性を有する材料で形成される。このような材料としては、例えばステンレス及びカーボンスチールが挙げられる。伝熱管の断面形状は、円形でもよいし、楕円形やラグビーボール型等の略円形でもよいし、矩形でもよい。伝熱管の断面形状における周縁とは、円形における周縁を意味し、伝熱管の断面形状における端縁とは、略円形における長軸端の縁や、矩形における一角の縁を意味する。 The heat transfer tube is formed of a material having a heat transfer property in which heat is exchanged between a heat medium in the heat transfer tube and a catalyst layer circumscribing the heat transfer tube. Examples of such a material include stainless steel and carbon steel. The cross-sectional shape of the heat transfer tube may be a circle, a substantially circular shape such as an elliptical shape or a rugby ball shape, or a rectangular shape. The peripheral edge in the cross-sectional shape of the heat transfer tube means a peripheral edge in a circular shape, and the end edge in the cross-sectional shape of the heat transfer tube means an edge of a long axis end in a substantially circular shape or a single edge in a rectangle.
 一枚の伝熱プレート中の複数の伝熱管のそれぞれにおける断面の形状及び大きさは、一定であってもよいし異なっていてもよい。伝熱管の断面形状の大きさは、例えば伝熱管の幅が3~50mm、より好ましくは3~20mm又は5~50mmであり、伝熱管の高さが10~100mm、より好ましくは10~50mm又は20~100mmである。 The shape and size of the cross section of each of the plurality of heat transfer tubes in one heat transfer plate may be constant or different. The size of the cross-sectional shape of the heat transfer tube is, for example, a width of the heat transfer tube of 3 to 50 mm, more preferably 3 to 20 mm or 5 to 50 mm, and a height of the heat transfer tube of 10 to 100 mm, more preferably 10 to 50 mm or 20 to 100 mm.
 伝熱管の幅は、伝熱プレートで授受する単位時間当たり又は単位面積当たりの熱量が小さい場合は、触媒層の厚みを厚くし触媒層の厚みを大きく取って触媒を増やし、反応速度を高くする観点から、3~20mmであることがより好ましく、伝熱プレートで授受する単位時間当たり又は単位面積当たりの熱量が大きい場合は、触媒層の厚みを薄くし伝熱を良くし、触媒量を減らして反応速度を低減する観点から、5~50mmであることがより好ましい。また伝熱管の高さは、伝熱プレートで授受する単位時間当たり又は単位面積当たりの熱量が小さい場合は、触媒層の厚みを厚くし触媒層の厚みを大きく取って触媒を増やし反応速度を高くする観点から、10~50mmであることがより好ましく、伝熱プレートで授受する単位時間当たり又は単位面積当たりの熱量が大きい場合は、触媒層の厚みを薄くし伝熱を良くし、触媒量を減らして反応速度を低減する観点から20~100mmであることがより好ましい。 If the heat transfer tube width is small per unit time or per unit area of heat transferred by the heat transfer plate, increase the catalyst layer thickness by increasing the catalyst layer thickness and increasing the catalyst layer to increase the reaction rate. From the viewpoint, it is more preferably 3 to 20 mm, and when the amount of heat per unit time or unit area transferred by the heat transfer plate is large, the thickness of the catalyst layer is reduced to improve heat transfer, and the amount of catalyst is reduced. From the viewpoint of reducing the reaction rate, it is more preferably 5 to 50 mm. In addition, when the heat transfer tube has a small amount of heat per unit time or unit area transferred by the heat transfer plate, the catalyst layer is increased by increasing the thickness of the catalyst layer and increasing the catalyst layer to increase the reaction rate. In view of the above, it is more preferable that the thickness is 10 to 50 mm. When the amount of heat per unit time or unit area transferred by the heat transfer plate is large, the thickness of the catalyst layer is reduced to improve heat transfer, and the amount of catalyst is reduced. From the viewpoint of reducing the reaction rate by reducing the thickness, it is more preferably 20 to 100 mm.
 前記熱媒体供給装置は、前記伝熱管に熱媒体を供給する装置であればよい。このような熱媒体供給装置としては、例えば、複数の伝熱管の全てに一方向に熱媒体を供給する装置や、複数の伝熱管の一部に一方向に熱媒体を供給し、複数の伝熱管の他の一部には逆方向に熱媒体を供給する装置が挙げられる。熱媒体供給装置は、前記伝熱管を介して反応管内外で熱媒体を循環させる装置であることが好ましい。前記熱媒体供給装置は、熱媒体の温度を調整する装置を有することが、反応容器における反応を制御する観点から好ましい。 The heat medium supply device may be any device that supplies a heat medium to the heat transfer tube. As such a heat medium supply device, for example, a device that supplies a heat medium in one direction to all of the plurality of heat transfer tubes, or a heat medium that supplies a heat medium in one direction to a part of the plurality of heat transfer tubes. Another part of the heat pipe includes a device for supplying a heat medium in the reverse direction. The heat medium supply device is preferably a device that circulates the heat medium inside and outside the reaction tube via the heat transfer tube. The heat medium supply device preferably has a device for adjusting the temperature of the heat medium from the viewpoint of controlling the reaction in the reaction vessel.
 前記仕切りは、隣り合う伝熱プレート間の隙間に、反応容器内の通気方向に沿って設けられ、前記隙間に複数の区画を形成する。前記仕切りは、各区画に触媒が充填されたときに、各区画に触媒を保持することができる部材であればよい。前記仕切りは、伝熱プレートと同じ材料で形成されることが好ましく、伝熱性を有することが好ましく、反応容器における反応に対する反応性を有さないことが好ましく、反応容器における反応が発熱反応である場合には耐熱性を有することが好ましい。また前記仕切りは、各区画内に充填された触媒を保持する観点から、剛性を有することが好ましい。このような仕切りとしては、例えば、ステンレス製の板、角棒、丸棒、網、グラスウール、及びセラミック板が挙げられる。 The partition is provided in a gap between adjacent heat transfer plates along the aeration direction in the reaction vessel, and forms a plurality of compartments in the gap. The partition may be a member that can hold a catalyst in each compartment when the catalyst is filled in each compartment. The partition is preferably formed of the same material as the heat transfer plate, preferably has heat transfer properties, preferably not reactive to the reaction in the reaction vessel, and the reaction in the reaction vessel is an exothermic reaction. In some cases, it is preferable to have heat resistance. The partition preferably has rigidity from the viewpoint of holding the catalyst filled in each compartment. Examples of such partitions include stainless steel plates, square bars, round bars, nets, glass wool, and ceramic plates.
 前記仕切りの形状は、各仕切りによって形成される区画に触媒が保持される形状であればよく、伝熱管と接する形状であってもよいし、密着する形状であってもよい。さらに前記仕切りは、それぞれの伝熱管の外壁の表面に接する形状であることが、各区画内に充填された触媒を保持する観点から好ましく、伝熱管の外壁の表面に密着する形状であることがより好ましい。また前記仕切りは、正面図が隣り合う伝熱プレート間の最短距離の幅を有する四角形となる形状であることが、仕切りを容易に設置する観点から好ましい。 The shape of the partition is not particularly limited as long as the catalyst is held in the partition formed by each partition, and may be a shape in contact with the heat transfer tube or a shape in close contact with the heat transfer tube. Further, the partition preferably has a shape in contact with the surface of the outer wall of each heat transfer tube, from the viewpoint of holding the catalyst filled in each section, and has a shape that closely contacts the surface of the outer wall of the heat transfer tube. More preferred. Moreover, it is preferable that the said partition is a shape which becomes a square which has the width | variety of the shortest distance between the heat exchanger plates which a front view adjoins from a viewpoint which installs a partition easily.
 前記仕切りは、仕切りによって形成される区画の容積が、一区画への触媒の充填を正確かつ容易に行うことができる観点から、1~100Lとなる間隔で設けられることが好ましい。仕切りによって形成される区画のそれぞれの容積は、同一であってもよいし異なっていてもよいが、全区画への触媒の正確かつ容易な充填の観点から同一であることが好ましい。前記一区画の容積は、1.5~30Lであることがより好ましく、2~15Lであることがさらに好ましく、3~15Lであることがより一層好ましく、5~10Lであることがさらに一層好ましい。また、仕切り間の距離(仕切りの間隔)は、同様の観点から0.1~1mであることが好ましい。なお仕切りの間隔は、前記伝熱管の軸方向における前記区画の長さであり、前記区画を形成している隣り合う仕切り間の距離、又は前記区画を形成している、伝熱管が接続している反応容器の内壁面と仕切りとの距離である。 The partition is preferably provided at an interval of 1 to 100 L from the viewpoint that the volume of the compartment formed by the partition can be accurately and easily filled with the catalyst in one compartment. The volumes of the compartments formed by the partitions may be the same or different, but are preferably the same from the viewpoint of accurate and easy filling of the catalyst into all the compartments. The volume of the one compartment is more preferably 1.5 to 30 L, further preferably 2 to 15 L, still more preferably 3 to 15 L, and still more preferably 5 to 10 L. . Further, the distance between the partitions (the interval between the partitions) is preferably 0.1 to 1 m from the same viewpoint. The interval between the partitions is the length of the partition in the axial direction of the heat transfer tube, and the distance between adjacent partitions forming the partition, or the heat transfer tube forming the partition is connected. This is the distance between the inner wall surface of the reaction vessel and the partition.
 前記仕切りは、仕切りの性状に応じて適宜に伝熱プレート間の隙間に設けることができる。例えば可撓性を有する仕切りや、伝熱プレート間の最短距離の幅を有する形状の仕切りは、予め反応容器に設置されている複数の伝熱プレートにおける隣り合う伝熱プレート間の隙間に挿入することによって伝熱プレート間の隙間に設けることができる。また、伝熱プレートの表面に密着する形状の仕切りは、反応容器に伝熱プレートを設置する際に、伝熱プレートと仕切りとを交互に設置することによって伝熱プレート間の隙間に設けることができる。 The partition can be provided in the gap between the heat transfer plates as appropriate according to the properties of the partition. For example, a flexible partition or a partition having the shortest distance between the heat transfer plates is inserted into a gap between adjacent heat transfer plates in a plurality of heat transfer plates installed in the reaction vessel in advance. Therefore, it can be provided in the gap between the heat transfer plates. In addition, when the heat transfer plate is installed in the reaction vessel, the partition having a shape closely contacting the surface of the heat transfer plate can be provided in the gap between the heat transfer plates by alternately installing the heat transfer plate and the partition. it can.
 前記区画へ充填される触媒には、気相反応で管又は伝熱プレート間の隙間に充填される通常の粒状の触媒を用いることができる。触媒は一種でも二種以上でもよい。このような触媒としては、例えば粒径(最長径)が1~20mmである触媒、及び粒径(最長径)が3~20mmであり、比重が0.7~1.5である触媒が挙げられる。また触媒の形状としては、公知のものが使用でき、例えば球状、円柱状、ラシヒリング状、サドル状が挙げられる。触媒の形状は、前記仕切りが伝熱プレートの表面に密着しない形状に形成されている場合では、伝熱プレートと仕切りとの隙間よりも触媒の最短径が大きい形状であることが、前記区画からの触媒の漏洩を防止する観点から好ましく、前記仕切りが伝熱プレートの表面に密着しない形状に形成されている場合では、仕切りと伝熱プレートとの隙間の最大値の1.2~2倍の最小径を有する形状であることがより好ましい。 As the catalyst filled in the compartment, a normal granular catalyst filled in a gap between a tube or a heat transfer plate by a gas phase reaction can be used. One or more catalysts may be used. Examples of such a catalyst include a catalyst having a particle diameter (longest diameter) of 1 to 20 mm, and a catalyst having a particle diameter (longest diameter) of 3 to 20 mm and a specific gravity of 0.7 to 1.5. It is done. Moreover, as a shape of a catalyst, a well-known thing can be used, for example, spherical shape, cylindrical shape, Raschig ring shape, and saddle shape are mentioned. In the case where the shape of the catalyst is formed so that the partition is not in close contact with the surface of the heat transfer plate, the catalyst has a shape with the shortest diameter larger than the gap between the heat transfer plate and the partition. This is preferable from the viewpoint of preventing leakage of the catalyst, and when the partition is formed in a shape that does not adhere to the surface of the heat transfer plate, it is 1.2 to 2 times the maximum value of the gap between the partition and the heat transfer plate. A shape having a minimum diameter is more preferable.
 隣り合う伝熱プレート間の隙間への触媒の充填は、各区画への触媒の充填によって行われる。各区画には、一区画の容量と同量の触媒を一区画に連続して又は断続的に充填することによって、触媒を充填することができる。触媒の適切な充填状態は、例えば区画間における充填された触媒(触媒層)の天面の位置の対比や、各区画における前記天面の実測値と各区画の前記天面の計算値との比較によって判断することができる。 The filling of the catalyst into the gap between the adjacent heat transfer plates is performed by filling the catalyst into each section. Each compartment can be filled with a catalyst by filling the same volume of catalyst in a compartment continuously or intermittently. The appropriate filling state of the catalyst is, for example, the comparison of the position of the top surface of the packed catalyst (catalyst layer) between the compartments, the measured value of the top surface in each compartment, and the calculated value of the top surface of each compartment. This can be determined by comparison.
 第二のプレート式反応器は、前述した構成要素以外の他の構成要素をさらに有していてもよい。このような他の構成要素としては、例えば、通気性を有し、前記反応容器内の通気方向における下流側の伝熱プレートの端部に設けられ、充填された触媒の反応容器からの漏洩を防止するための漏洩防止部材(例えば通気栓)、及び、前記仕切りの一端部に設けられ、前記漏洩防止部材又は伝熱プレートに掛け止めるための係止部材(前記仕切りを固定するための仕切り用係止部)が挙げられる。 The second plate reactor may further have other components other than the components described above. Such other components include, for example, air permeability, provided at the end of the heat transfer plate on the downstream side in the aeration direction in the reaction vessel, and leakage of the packed catalyst from the reaction vessel. Leakage prevention member (for example, vent plug) for preventing, and locking member (at the partition for fixing the partition) provided at one end of the partition and latched on the leakage prevention member or heat transfer plate Locking part).
 前記通気栓は、各区画の通気性と触媒の保持とを両立する部材であって、各区画の通気方向における端部に着脱自在に固定される部材である。通気栓は、各区画からの触媒の漏れを防止することが可能であれば、各区画における通気方向の上流側の端部に設けてもよいし、下流側の端部に設けてもよいし、両端部に設けてもよい。また通気栓は、全体が通気性を有していてもよいし、各区画の通気方向に対してのみ通気性を有していてもよい。なお、通気とは、一般に、反応原料や反応生成物の状態の一つである気体が通ることを意味するが、本明細書においては、反応原料や反応生成物の状態が気体以外の流体(例えば液体)である場合では、この流体が通ることをも意味する。 The vent plug is a member that achieves both the breathability of each section and the retention of the catalyst, and is a member that is detachably fixed to the end of each section in the ventilation direction. The vent plug may be provided at the upstream end portion in the ventilation direction in each compartment or may be provided at the downstream end portion as long as it can prevent leakage of the catalyst from each compartment. These may be provided at both ends. In addition, the entire vent plug may have air permeability, or may have air permeability only in the ventilation direction of each section. Note that the aeration generally means that a gas that is one of the states of the reaction raw material or the reaction product passes, but in this specification, the state of the reaction raw material or the reaction product is a fluid other than a gas ( For example, in the case of liquid), this means that the fluid passes through.
 前記通気栓は、各区画における通気性を確保する観点から、各区画の通気方向に対する開口率が10%以上であることが好ましい。前記開口率は、さらに、通気栓を区画の端部に固定したときの圧力損失の発生を防止する観点から、20%以上であることがより好ましく、30%以上であることがさらに好ましい。 The vent plug preferably has an opening ratio of 10% or more in the ventilation direction of each section from the viewpoint of ensuring air permeability in each section. The opening ratio is more preferably 20% or more, and further preferably 30% or more, from the viewpoint of preventing the occurrence of pressure loss when the vent plug is fixed to the end of the compartment.
 また前記通気栓は、各区画に触媒を保持する観点から、各区画の通気方向に対する孔径が5mm以下であることが好ましく、3mm以下であることがより好ましく、1mm以下であることがさらに好ましい。 In addition, from the viewpoint of holding the catalyst in each compartment, the vent plug preferably has a hole diameter of 5 mm or less, more preferably 3 mm or less, and even more preferably 1 mm or less.
 前記通気栓は、通気性を有する一以上の部材によって構成することができる。前記通気栓としては、例えば、板状の網や多孔板等の通気板;この通気板を筒状に成形した形状の通気筒;前記通気板と、その周縁の一部又は全部に通気板に対して垂直に設けられるスカート部とを有する部材;及び、断面形状が円形又は矩形の第一の通気筒と、第一の通気筒の内側に収容され、かつ摺動自在な第二の通気筒とを有する通気性二重管;が挙げられる。前記通気筒、スカート部を有する部材、及び通気性二重管は、触媒を保持するための十分な強度を得る観点から好ましい。前記スカート部を有する部材は、各区画の端部における着脱を容易に行う観点からさらに好ましい。 The vent plug can be composed of one or more members having air permeability. As the vent plug, for example, a vent plate such as a plate-like net or a perforated plate; a vent cylinder having a shape obtained by forming the vent plate into a cylindrical shape; and a vent plate on a part or all of the periphery of the vent plate A member having a skirt portion provided perpendicularly to the first section; a first through-cylinder having a circular or rectangular cross-sectional shape; and a second through-cylinder housed inside the first through-cylinder and slidable A breathable double tube having: The cylinder, the member having the skirt portion, and the breathable double pipe are preferable from the viewpoint of obtaining sufficient strength for holding the catalyst. The member having the skirt portion is more preferable from the viewpoint of easily attaching and detaching the end portion of each section.
 前記スカート部を有する部材において、前記通気板は、各区画からの触媒の漏れを防止する観点から、各区画の断面形状と同じ形状であることが好ましい。前記スカート部は、通気板の周縁の一部に、例えば各区画において対向する仕切り又は伝熱プレートに接する一対のスカート部として設けられることが、通気栓の着脱自在な固定を容易に行う観点から好ましく、通気板の周縁の全部に設けられることが、通気栓の強度を高める観点から好ましい。また、スカート部は、通気板の両面側に突出するように設けられてもよいし、通気板の片面側のみに突出するように設けられてもよい。 In the member having the skirt portion, the vent plate preferably has the same shape as the cross-sectional shape of each section from the viewpoint of preventing catalyst leakage from each section. The skirt portion is provided on a part of the periphery of the ventilation plate, for example, as a pair of skirt portions that are in contact with the opposing partition or heat transfer plate in each section, from the viewpoint of easily detachably fixing the vent plug Preferably, it is provided on the entire periphery of the vent plate from the viewpoint of increasing the strength of the vent plug. In addition, the skirt portion may be provided so as to protrude on both sides of the ventilation plate, or may be provided so as to protrude only on one side of the ventilation plate.
 前記通気栓は、各区画の端部において着脱自在に固定される。着脱自在に固定するための構成は、通気栓の固定及び取り外しを容易に行う観点、及び触媒を保持するのに十分な強度で通気栓を固定する観点から、区画側、すなわち伝熱プレート及び仕切りの一方又は両方に設けられる第一の係止部と、この第一の係止部と着脱自在に係止する、通気栓に設けられる第二の係止部とであることが好ましい。第一及び第二の係止部としては、例えば孔とこの孔に進出する方向に付勢されている爪、及び、孔とボルト及びナット、等が挙げられる。第一及び第二の係止部は、反応容器の温度が比較的高い場合での焼き付きを防止する観点から、前記の孔と爪のような簡易な構成であることが好ましい。 The vent plug is detachably fixed at the end of each compartment. The structure for detachably fixing the partition side, that is, from the viewpoint of easily fixing and removing the vent plug and fixing the vent plug with sufficient strength to hold the catalyst, that is, the heat transfer plate and the partition. It is preferable that it is the 1st latching | locking part provided in one or both of this, and the 2nd latching | locking part provided in a vent plug detachably latched with this 1st latching | locking part. As a 1st and 2nd latching | locking part, the nail | claw currently urged | biased in the direction which advances to a hole and this hole, a hole, a volt | bolt, a nut, etc. are mentioned, for example. From the viewpoint of preventing seizure when the temperature of the reaction vessel is relatively high, it is preferable that the first and second engaging portions have a simple configuration such as the hole and the claw.
 前記通気栓は、触媒の保持に十分な剛性を有する材料で形成される。このような材料としては、例えばステンレス等の金属及びセラミックが挙げられる。通気栓は、耐熱性や耐反応性の観点から、伝熱プレートと同じ材料で形成されることが好ましい。 The vent plug is formed of a material having sufficient rigidity for holding the catalyst. Examples of such materials include metals such as stainless steel and ceramics. The vent plug is preferably formed of the same material as the heat transfer plate from the viewpoint of heat resistance and reaction resistance.
 また各区画に充填された触媒は、通気栓を取り外して区画の端部から触媒を取り出すことによって、区画単位で抜き出すことができる。
 以下、本発明のプレート式反応器を、図面を用いてより具体的に説明する。
Further, the catalyst filled in each compartment can be extracted in units of compartments by removing the vent plug and taking out the catalyst from the end of the compartment.
Hereinafter, the plate reactor of the present invention will be described more specifically with reference to the drawings.
<第二の実施の形態>
 第二のプレート式反応器は、例えば図13~15に示すように、矩形のケーシング44と、伝熱管1を有し、ケーシング44内に対向して並んで設けられる複数の伝熱プレート2と、伝熱管1に供給される熱媒体を収容する熱媒体収容部45と、隣り合う伝熱プレート2間の隙間をケーシング44内の通気方向に沿って、触媒が充填され保持される複数の区画に仕切る複数の仕切り7と、伝熱プレート2の上部及び下部に設けられる穴あき板10、46と、熱媒体収容部45の熱媒体を循環させるためのポンプ15と、循環する熱媒体の温度を調整するための温度調整装置47とを有する。
<Second Embodiment>
For example, as shown in FIGS. 13 to 15, the second plate reactor includes a rectangular casing 44 and a plurality of heat transfer plates 2 that have the heat transfer tubes 1 and are provided facing each other in the casing 44. A plurality of compartments in which the catalyst is filled and held along the air flow direction in the casing 44 in the gap between the heat medium accommodating portion 45 for accommodating the heat medium supplied to the heat transfer tube 1 and the adjacent heat transfer plates 2. A plurality of partitions 7, perforated plates 10, 46 provided at the upper and lower portions of the heat transfer plate 2, a pump 15 for circulating the heat medium in the heat medium accommodating portion 45, and the temperature of the circulating heat medium And a temperature adjusting device 47 for adjusting.
 ケーシング44は、断面形状が矩形の通気路を形成しており、前記反応容器に相当する。ケーシング44は、ケーシング44の上端及び下端に、対向する一対の通気口48、48’を有している。伝熱管1は、例えば長径が30~50mmであり短径が10~20mmの断面形状が楕円形の管である。 The casing 44 forms an air passage having a rectangular cross-sectional shape, and corresponds to the reaction vessel. The casing 44 has a pair of opposed vent holes 48, 48 ′ at the upper end and the lower end of the casing 44. The heat transfer tube 1 is, for example, a tube having a major axis of 30 to 50 mm and a minor axis of 10 to 20 mm and an elliptical cross section.
 伝熱プレート2は、複数の伝熱管1が断面形状の端縁で連結した形状を有している。伝熱プレート2は、楕円弧が連続して形成された二枚の波板を両波板の弧の端に形成される凸縁で互いに接合することによって形成されている。隣り合う伝熱プレート2は、表面の凸縁同士が対向するように並列していてもよいが、図13のプレート式反応器では、一方の伝熱プレート2の表面の凸縁と、他方の伝熱プレート2の表面の凹縁とが対向するように並列している。 The heat transfer plate 2 has a shape in which a plurality of heat transfer tubes 1 are connected by an edge having a cross-sectional shape. The heat transfer plate 2 is formed by joining two corrugated plates each having an elliptical arc formed continuously with a convex edge formed at the ends of the arcs of both corrugated plates. The adjacent heat transfer plates 2 may be arranged in parallel so that the convex edges of the surfaces face each other, but in the plate reactor of FIG. 13, the convex edges of the surface of one heat transfer plate 2 and the other The heat transfer plates 2 are arranged in parallel so as to face the concave edges on the surface.
 伝熱プレート2は、例えば図16に示すように、断面の大きさが異なる三種の伝熱管a~cを上部、中部、及び下部のそれぞれにおいて含んでいる。伝熱プレート2は、伝熱管a~cの長軸が一直線上に配置されるように形成されている。また例えば、伝熱管aは、伝熱プレート2の高さの20%分の伝熱プレート2を形成し、伝熱管bは伝熱プレート2の高さの30%分の伝熱プレート2を形成し、伝熱管cは伝熱プレート2の高さの40%分の伝熱プレート2を形成している。伝熱プレート2の高さの10%分は、伝熱プレート2の上端部及び下端部の接合板部で形成されている。 As shown in FIG. 16, for example, the heat transfer plate 2 includes three types of heat transfer tubes a to c having different cross-sectional sizes in the upper part, the middle part, and the lower part. The heat transfer plate 2 is formed so that the long axes of the heat transfer tubes a to c are arranged in a straight line. Further, for example, the heat transfer tube a forms the heat transfer plate 2 for 20% of the height of the heat transfer plate 2, and the heat transfer tube b forms the heat transfer plate 2 for 30% of the height of the heat transfer plate 2. The heat transfer tube c forms the heat transfer plate 2 for 40% of the height of the heat transfer plate 2. 10% of the height of the heat transfer plate 2 is formed by the upper and lower joint plate portions of the heat transfer plate 2.
 伝熱プレート2の上部に形成されている伝熱管aの断面形状は、長径が50mmであり、短径が20mmの楕円形であり、伝熱プレート2の中部に形成されている伝熱管bの断面形状は、長径が40mmであり、短径が16mmの楕円形であり、伝熱プレート2の下部に形成されている伝熱管cの断面形状は、長径が30mmであり、短径が10mmの楕円形である。 The cross-sectional shape of the heat transfer tube a formed on the upper part of the heat transfer plate 2 is an ellipse having a major axis of 50 mm and a minor axis of 20 mm. The cross-sectional shape is an ellipse having a major axis of 40 mm and a minor axis of 16 mm, and the sectional shape of the heat transfer tube c formed at the lower part of the heat transfer plate 2 is a major axis of 30 mm and a minor axis of 10 mm. It is oval.
 なお、伝熱プレート2は、反応容器全体において異なる間隔で並列していてもよいが、図13のプレート式反応器では、同じ間隔(例えば伝熱管aの外壁間の最短距離が14mm(各伝熱プレート2の伝熱管の長軸間の距離が30mm))で並列している。 The heat transfer plates 2 may be arranged in parallel at different intervals in the entire reaction vessel, but in the plate reactor of FIG. 13, the same interval (for example, the shortest distance between the outer walls of the heat transfer tube a is 14 mm (each The distance between the major axes of the heat transfer tubes of the heat plate 2 is 30 mm)).
 熱媒体収容部45は、ケーシング44の対向する一対の壁に設けられる容器であり、各伝熱管1に熱媒体を供給するための供給口が前記壁に形成されており、例えば反応容器全体において、熱媒体が伝熱管1を介して熱媒体収容部45間を蛇行するように、所定の高さにおいて複数に区切られている。 The heat medium accommodating portion 45 is a container provided on a pair of opposing walls of the casing 44, and a supply port for supplying a heat medium to each heat transfer tube 1 is formed in the wall. The heat medium is divided into a plurality at a predetermined height so that the heat medium meanders between the heat medium accommodating portions 45 via the heat transfer tubes 1.
 仕切り7は、隣り合う伝熱プレート2の間を、ケーシング44内の通気方向に沿って設けられている。仕切り7は、反応容器全体において異なる間隔で設けられていてもよいが、図13のプレート式反応器では、同じ間隔(例えば1,000mm)で並列し、23Lの容積の区画を形成している。仕切り7の設置間隔は5cm~2mであることが好ましく、10cm~1mであることがより好ましい。伝熱プレートと仕切り間の区画の容積は、隙間への充填物の充填を区画単位で行い、触媒の正確かつ容易な充填を行う観点から、1~100Lが好ましく、1.5~30Lであることがより好ましい。 The partition 7 is provided between the adjacent heat transfer plates 2 along the ventilation direction in the casing 44. The partitions 7 may be provided at different intervals in the entire reaction vessel, but in the plate type reactor of FIG. 13, a partition having a volume of 23 L is formed in parallel at the same interval (for example, 1,000 mm). . The interval between the partitions 7 is preferably 5 cm to 2 m, and more preferably 10 cm to 1 m. The volume of the partition between the heat transfer plate and the partition is preferably 1 to 100 L, and preferably 1.5 to 30 L, from the viewpoint of performing filling of the gap into the gap in units of units and accurately and easily filling the catalyst. It is more preferable.
 仕切り7には、各区画に触媒が充填されたときに、充填された触媒を各区画に保持することができる部材が用いられる。仕切り7には、例えば図17~19に示すように、伝熱プレート2の表面の凹凸に密着する側縁を有する形状の板や網を用いることができる。 A member that can hold the filled catalyst in each compartment when the catalyst is filled in each compartment is used for the partition 7. As the partition 7, for example, as shown in FIGS. 17 to 19, a plate or net having a shape having a side edge that is in close contact with the unevenness on the surface of the heat transfer plate 2 can be used.
 また仕切り7には、各区画に充填された触媒が仕切り7との間の隙間から隣り合う区画に漏れなければ、隣り合う伝熱プレート2の伝熱管aに接し、伝熱プレート2における他の伝熱管b及びcの凸縁及び凹縁には当接しない部材を用いることができ、例えば図20及び21に示すように、隣り合う伝熱プレート2間の最短距離の直径又は幅を有する丸棒や角棒を用いることができる。 In addition, the partition 7 is in contact with the heat transfer tube a of the adjacent heat transfer plate 2 if the catalyst filled in each partition does not leak from the gap between the partitions 7 to the adjacent partition. A member that does not come into contact with the convex and concave edges of the heat transfer tubes b and c can be used. For example, as shown in FIGS. 20 and 21, a round having the shortest distance diameter or width between adjacent heat transfer plates 2. A stick or a square stick can be used.
 さらに仕切り7は、図18に示すように、充填される触媒の粒の大きさよりも小さな目を有する網であってもよいし、各区画に充填された触媒が隣り合う区画に漏れなければ、図19に示すように、触媒の粒より大きな目(例えば触媒の最短径の0.8倍以下)を有する網であってもよい。 Furthermore, as shown in FIG. 18, the partition 7 may be a net having an eye smaller than the size of the catalyst particles to be filled, or if the catalyst filled in each compartment does not leak into the adjacent compartment, As shown in FIG. 19, it may be a mesh having larger eyes than the catalyst particles (for example, 0.8 times or less of the shortest diameter of the catalyst).
 隣り合う二枚の伝熱プレート2が、一方の伝熱プレート2の凸縁に他方の伝熱プレート2の凹縁が対向するように並列する場合では、仕切り7には、図22に示すように、仕切り7の側縁が、伝熱プレート2の凹縁に向けて突出し、伝熱プレート2の凸縁から離間するジグザグ型の板や網を用いることができる。このような仕切り7は、一方の凸縁に他方の凹縁が対向するように並列する二枚の伝熱プレート2の距離(各伝熱プレート2における伝熱管1の長軸間の距離の平均値)が、各伝熱プレート2における伝熱管の最大の短径の半値の和の0.9~1.5倍であるときに、好適に用いることができる。 In the case where two adjacent heat transfer plates 2 are arranged in parallel so that the convex edge of one heat transfer plate 2 faces the concave edge of the other heat transfer plate 2, the partition 7 has a partition as shown in FIG. In addition, a zigzag plate or net that protrudes toward the concave edge of the heat transfer plate 2 at the side edge of the partition 7 and is separated from the convex edge of the heat transfer plate 2 can be used. Such a partition 7 has a distance between two heat transfer plates 2 arranged in parallel so that one convex edge faces the other concave edge (an average of distances between major axes of the heat transfer tubes 1 in each heat transfer plate 2). Can be suitably used when the value is 0.9 to 1.5 times the sum of the half-values of the maximum short diameters of the heat transfer tubes in each heat transfer plate 2.
 図17~19及び22に示すような、伝熱プレート2の表面の凹凸に接する側縁を有する形状の仕切り7は、伝熱プレート2をケーシング44に設置する際に、伝熱プレート2とそれに当接する仕切り7とを交互に設置することによって二枚の伝熱プレート2間に設けられる。図20及び21に示すような、隣り合う伝熱プレート2間の最短距離の直径又は幅を有する仕切り7は、伝熱プレート2とそれに当接する仕切り7とを交互に設置することによって二枚の伝熱プレート2間に設けてもよいし、既に併設されている伝熱プレート2の隣り合う伝熱プレート2の間に挿入することによって設けてもよい。網又は薄い鋼板のように可撓性を有する仕切り7は、既に併設されている伝熱プレート2の隣り合う伝熱プレート2の間に挿入することによって設けることも可能である。 17 to 19 and 22, the partition 7 having a shape having a side edge in contact with the unevenness of the surface of the heat transfer plate 2 is used when the heat transfer plate 2 is installed in the casing 44. By alternately installing the abutment partitions 7, they are provided between the two heat transfer plates 2. The partition 7 having the shortest distance diameter or width between the adjacent heat transfer plates 2 as shown in FIGS. 20 and 21 is formed by alternately installing the heat transfer plates 2 and the partitions 7 in contact with the partitions 7. You may provide between the heat-transfer plates 2, and you may provide by inserting between the heat-transfer plates 2 adjacent to the heat-transfer plate 2 already installed. The flexible partition 7 such as a net or a thin steel plate can also be provided by inserting it between the adjacent heat transfer plates 2 of the heat transfer plates 2 already provided.
 穴あき板10、46は、それぞれ、充填される触媒の最長径に対して0.20~0.99倍の径を有する孔が20~99%の開口率で設けられている板である。図13のプレート式反応器では、穴あき板10、46は、最も外側に配置される伝熱プレート2とケーシング44の壁との間の隙間への通気を防止するために、図15に示すように、最も外側に配置されている伝熱プレート2の端縁からケーシング44の壁までの隙間を塞ぐように形成されている。 The perforated plates 10 and 46 are plates each having a hole having a diameter of 0.20 to 0.99 times the longest diameter of the catalyst to be filled with an opening ratio of 20 to 99%. In the plate reactor of FIG. 13, the perforated plates 10, 46 are shown in FIG. 15 in order to prevent air from flowing into the gap between the outermost heat transfer plate 2 and the wall of the casing 44. Thus, it is formed so as to close the gap from the edge of the heat transfer plate 2 arranged on the outermost side to the wall of the casing 44.
 ポンプ15には、所望の温度の熱媒体を移送することができる装置が用いられる。また、温度調整装置47には、熱媒体の温度を所望の温度に制御することができる熱交換器等の装置が用いられる。熱媒体収容部45、ポンプ15、及び温度調整装置47は熱媒体供給装置を構成している。 A device capable of transferring a heat medium having a desired temperature is used for the pump 15. The temperature adjusting device 47 is a device such as a heat exchanger that can control the temperature of the heat medium to a desired temperature. The heat medium storage unit 45, the pump 15, and the temperature adjustment device 47 constitute a heat medium supply device.
 伝熱プレート2間への触媒の充填は、各区画へ触媒の充填することによって行われる。伝熱プレート2と仕切り7とによって形成されている区画は全て同じ容積を有していることから、一区画の容量と同等の容量(例えば一区画の容量に対して95~100%の体積)の触媒が各区画に充填される。 The filling of the catalyst between the heat transfer plates 2 is performed by filling each compartment with the catalyst. Since all of the compartments formed by the heat transfer plate 2 and the partition 7 have the same volume, the capacity equivalent to the capacity of one compartment (for example, a volume of 95 to 100% with respect to the capacity of one compartment) Of each catalyst is packed into each compartment.
 触媒の良好な充填状態は、所定量の触媒を充填した時の高さの理論値と実測値との比較(例えば理論値に対する実測値の誤差が10%以内)や、各区画間での触媒の充填高さの比較(例えば各区画間の充填高さの差が充填高さの2%以内)によって判断することができる。 The good packing state of the catalyst means comparison between the theoretical value of the height when a predetermined amount of catalyst is filled and the measured value (for example, the error of the measured value with respect to the theoretical value is within 10%), and the catalyst between the compartments. Can be determined by comparison of the filling heights (for example, the difference in filling height between the sections is within 2% of the filling height).
 なお、仕切り7は、穴あき板46の孔又は伝熱プレート2の端部に設けられた孔や輪のような係合部に掛かるフックを有し、このフックを係合部に係止することによって仕切り7を張設することによって、隣り合う伝熱プレート2間の隙間に設けることも可能である。このような構成によれば、グラスウール等の保形性を有さない材料を仕切り7に用いることが可能となる。 The partition 7 has a hook that engages with an engagement portion such as a hole or a ring provided in the hole of the perforated plate 46 or the end of the heat transfer plate 2, and the hook is locked to the engagement portion. By extending the partition 7 by this, it is also possible to provide in the gap between the adjacent heat transfer plates 2. According to such a structure, it becomes possible to use for the partition 7 the material which does not have shape retention property, such as glass wool.
 前記プレート式反応器は、仕切り7を有することから、区画単位で触媒を一定の状態で充填することによって、触媒を反応器全体で均一に充填することができる。したがって、このような区画が形成されない伝熱プレート2間への触媒の充填に比べて、触媒の量を設計値に対して正確に、各区画間の充填状態(例えば、充填密度、空隙率)を均質にできる充填をより容易に行うことができる。 Since the plate type reactor has the partition 7, the catalyst can be uniformly filled in the entire reactor by filling the catalyst in a fixed state in units of compartments. Therefore, compared with the catalyst filling between the heat transfer plates 2 in which such compartments are not formed, the amount of the catalyst is accurately compared to the design value, and the filling state between the compartments (for example, packing density, porosity) Can be more easily performed.
 また前記プレート式反応器は、伝熱プレート2と仕切り7とによって形成される全区画が同じ容量を有することから、一回の触媒の充填作業に用いられる触媒が一定である。したがって、このような区画が形成されない伝熱プレート2間への触媒の充填に比べて、触媒の充填作業をより迅速に行うことができる。 In the plate type reactor, since all the sections formed by the heat transfer plate 2 and the partition 7 have the same capacity, the catalyst used for one catalyst filling operation is constant. Therefore, the filling operation of the catalyst can be performed more rapidly than the filling of the catalyst between the heat transfer plates 2 in which such a partition is not formed.
 さらに前記プレート式反応器は、仕切り7を有することから、触媒の充填状態を区画単位で判断することができる。したがって、触媒の充填状態が不良である場合には、不良と判断された区画の触媒のみを充填し直すことによって、触媒の充填状態を修正することができる。したがって、このような区画が形成されない伝熱プレート2間への触媒の充填に比べて、触媒の充填作業の調整をより容易に行うことができる。 Furthermore, since the plate type reactor has the partition 7, it is possible to judge the packing state of the catalyst in units of compartments. Therefore, when the catalyst filling state is poor, it is possible to correct the catalyst filling state by refilling only the catalyst in the section determined to be defective. Therefore, the catalyst filling operation can be adjusted more easily than the catalyst filling between the heat transfer plates 2 in which such compartments are not formed.
<第三の実施の形態>
 第二のプレート式反応器は、例えば図23~25に示すように、穴あき板46に代えて、通気性を有し各区画の下端部を塞ぐ複数の通気栓8を有する以外は、前記第二の形態のプレート式反応器と同様の構成を有する。
<Third embodiment>
The second plate reactor, for example, as shown in FIGS. 23 to 25, except that the perforated plate 46 has a plurality of vent plugs 8 that have air permeability and close the lower end portions of the respective sections. It has the same configuration as the plate reactor of the second form.
 本実施形態において、ケーシング44は、断面形状が矩形の通気路を形成しており、前記反応容器に相当する。ケーシング44は、ケーシング44の上端及び下端に、対向する一対の通気口48、48’を有しており、通気口48を含むケーシング端部49と、通気口48’を含むケーシング端部49’と、伝熱プレート2が収容されるケーシング本体とから構成されている。ケーシング端部49、49’は、ケーシング本体に対して着脱自在にそれぞれ接続されている。伝熱管1は、例えば長径が20~100mmであり短径が5~50mmの断面形状が楕円形の管である。 In the present embodiment, the casing 44 forms an air passage having a rectangular cross-sectional shape and corresponds to the reaction vessel. The casing 44 has a pair of opposed vent holes 48, 48 ′ at the upper end and the lower end of the casing 44, a casing end portion 49 including the vent port 48, and a casing end portion 49 ′ including the vent port 48 ′. And a casing body in which the heat transfer plate 2 is accommodated. The casing end portions 49 and 49 'are detachably connected to the casing body. The heat transfer tube 1 is, for example, a tube having a major axis of 20 to 100 mm and a minor axis of 5 to 50 mm and an elliptical cross section.
 伝熱プレート2は、複数の伝熱管1が断面形状の端縁で連結した形状を有している。伝熱プレート2は、楕円弧が連続して形成された二枚の波板を両波板の弧の端に形成される凸縁で互いに接合することによって形成されている。隣り合う伝熱プレート2は、表面の凸縁同士が対向するように並列していてもよいが、図23のプレート式反応器では、一方の伝熱プレート2の表面の凸縁と、他方の伝熱プレート2の表面の凹縁とが対向するように並列している。 The heat transfer plate 2 has a shape in which a plurality of heat transfer tubes 1 are connected by an edge having a cross-sectional shape. The heat transfer plate 2 is formed by joining two corrugated plates each having an elliptical arc formed continuously with a convex edge formed at the ends of the arcs of both corrugated plates. The adjacent heat transfer plates 2 may be arranged in parallel so that the convex edges of the surfaces face each other, but in the plate reactor of FIG. 23, the convex edges of the surface of one heat transfer plate 2 and the other The heat transfer plates 2 are arranged in parallel so as to face the concave edges on the surface.
 伝熱プレート2は、例えば図16に示すように、断面の大きさが異なる三種の伝熱管a~cを上部、中部、及び下部のそれぞれにおいて含んでいる。伝熱プレート2は、伝熱管a~cの長軸が一直線上に配置されるように形成されている。また本実施形態において、例えば、伝熱管aは、伝熱プレート2の高さの30%分の伝熱プレート2を形成し、伝熱管bは伝熱プレート2の高さの25%分の伝熱プレート2を形成し、伝熱管cは伝熱プレート2の高さの45%分の伝熱プレート2を形成している。 As shown in FIG. 16, for example, the heat transfer plate 2 includes three types of heat transfer tubes a to c having different cross-sectional sizes in the upper part, the middle part, and the lower part. The heat transfer plate 2 is formed so that the long axes of the heat transfer tubes a to c are arranged in a straight line. In this embodiment, for example, the heat transfer tube a forms the heat transfer plate 2 corresponding to 30% of the height of the heat transfer plate 2, and the heat transfer tube b corresponds to 25% of the height of the heat transfer plate 2. The heat plate 2 is formed, and the heat transfer tube c forms the heat transfer plate 2 for 45% of the height of the heat transfer plate 2.
 伝熱プレート2の上部に形成されている伝熱管aの断面形状は、長径が50mmであり、短径が20mmの楕円形であり、伝熱プレート2の中部に形成されている伝熱管bの断面形状は、長径が40mmであり、短径が16mmの楕円形であり、伝熱プレート2の下部に形成されている伝熱管cの断面形状は、長径が30mmであり、短径が10mmの楕円形である。 The cross-sectional shape of the heat transfer tube a formed on the upper part of the heat transfer plate 2 is an ellipse having a major axis of 50 mm and a minor axis of 20 mm. The cross-sectional shape is an ellipse having a major axis of 40 mm and a minor axis of 16 mm, and the sectional shape of the heat transfer tube c formed at the lower part of the heat transfer plate 2 is a major axis of 30 mm and a minor axis of 10 mm. It is oval.
 なお、伝熱プレート2は、本実施形態において、反応容器全体において異なる間隔で並列していてもよいが、図23のプレート式反応器では、同じ間隔(例えば伝熱管aの外壁間の最短距離が5mm(各伝熱プレート2の伝熱管の長軸間の距離が25mm))で並列している。 In the present embodiment, the heat transfer plates 2 may be arranged in parallel at different intervals in the entire reaction vessel, but in the plate reactor of FIG. 23, the same interval (for example, the shortest distance between the outer walls of the heat transfer tubes a) is used. Are parallel to each other at 5 mm (the distance between the major axes of the heat transfer tubes of each heat transfer plate 2 is 25 mm).
 熱媒体収容部45は、前記第二の形態における熱媒体収容部45と同じである。 The heat medium accommodating part 45 is the same as the heat medium accommodating part 45 in the second embodiment.
 仕切り7は、隣り合う伝熱プレート2の間を、ケーシング44内の通気方向に沿って設けられている。仕切り7は、反応容器全体において異なる間隔で設けられていてもよいが、図23のプレート式反応器では、同じ間隔(例えば500mm)で並列し、25Lの容積の区画を形成している。本実施形態において、例えば仕切り7は、図26に示すような、伝熱プレート2の表面の凹凸に密着する側縁を有する形状のステンレス製の板であり、下端部に窓20を有している。 The partition 7 is provided between the adjacent heat transfer plates 2 along the ventilation direction in the casing 44. The partitions 7 may be provided at different intervals in the entire reaction vessel. However, in the plate reactor of FIG. 23, the partitions 7 are arranged in parallel at the same interval (for example, 500 mm) to form a 25 L volume compartment. In the present embodiment, for example, the partition 7 is a stainless steel plate having a side edge that is in close contact with the irregularities on the surface of the heat transfer plate 2 as shown in FIG. 26, and has a window 20 at the lower end. Yes.
 通気栓8は、図27に示すように、各区画の下端部に設けられる。通気栓8は、例えば図28に示すように、各区画の断面形状の同じ矩形の通気板21と、通気板21の短辺から下方に垂設される第一のスカート部22と、通気板21の長辺から下方に垂設される第二のスカート部23とを有している。第一のスカート部22には、図28に示すように、矩形の係止窓24と、その隣に併設される係止爪50とが形成されている。 The vent plug 8 is provided at the lower end of each section as shown in FIG. For example, as shown in FIG. 28, the vent plug 8 includes a rectangular vent plate 21 having the same cross-sectional shape in each section, a first skirt portion 22 suspended downward from the short side of the vent plate 21, and a vent plate 21 and a second skirt portion 23 that hangs downward from the long side. As shown in FIG. 28, the first skirt portion 22 is formed with a rectangular locking window 24 and a locking claw 50 provided adjacent thereto.
 通気栓8は、図29に示すように、通気板21と各スカート部22及び23とを展開した形状であって、スカート部22には係止窓24と係止爪50となる切り込みとが形成されているステンレス製の板を、通気板21と各スカート部22、23との境界で折り曲げ、各スカート部の縁を溶接することによって形成されている。通気板21は例えば2mmの円形の孔が開口率30%で形成された板である。 As shown in FIG. 29, the vent plug 8 has a shape in which the ventilation plate 21 and the skirt portions 22 and 23 are developed, and the skirt portion 22 has a notch that becomes a locking window 24 and a locking claw 50. The formed stainless steel plate is bent at the boundary between the ventilation plate 21 and the skirt portions 22 and 23, and the edges of the skirt portions are welded. The ventilation plate 21 is, for example, a plate in which circular holes of 2 mm are formed with an opening rate of 30%.
 第一のスカート部22において、係止爪50は、第一のスカート部22の下端縁からの平行な二本の切り込みを外側に凸に折り曲げて形成されている。それぞれの第一のスカート部22において、係止窓24及び係止爪50は、通気板21に対する位置関係がそれぞれにおいて同じに設けられている。したがって、対向する一対の第一のスカート部22において、一方の係止窓24と他方の係止爪50とが対向し、一方の係止爪50と他方の係止窓24とが対向している。なお、係止窓24は、係止爪50を収容する幅と高さを有する大きさで形成されており、仕切り7の窓20は、係止窓24と係止爪50とが同時に含まれる幅及び高さを有する大きさで形成されている。 In the first skirt portion 22, the locking claw 50 is formed by bending two parallel cuts from the lower end edge of the first skirt portion 22 so as to protrude outward. In each of the first skirt portions 22, the locking window 24 and the locking claw 50 are provided in the same positional relationship with respect to the ventilation plate 21. Accordingly, in the pair of first skirt portions 22 that face each other, one locking window 24 and the other locking claw 50 face each other, and one locking claw 50 and the other locking window 24 face each other. Yes. The locking window 24 is formed in a size having a width and a height for accommodating the locking claw 50, and the window 20 of the partition 7 includes the locking window 24 and the locking claw 50 at the same time. It is formed in a size having a width and a height.
 通気栓8は、各区画の下端から通気板21を上に各区画に挿入される。このとき係止爪50は、外側への付勢に抗して仕切り7に押さえられるが、窓20に到達したときに、図30に示すように、仕切り7の押さえつけから開放されて窓20に向けて進出し、窓20に係止する。窓20は第一係止部に相当し、係止爪50は第二の係止部に相当している。 The vent plug 8 is inserted into each section from the lower end of each section with the ventilation plate 21 up. At this time, the locking claw 50 is pressed by the partition 7 against the outward bias, but when it reaches the window 20, it is released from the pressing of the partition 7 and reaches the window 20 as shown in FIG. 30. Advancing toward and locking to the window 20. The window 20 corresponds to a first locking portion, and the locking claw 50 corresponds to a second locking portion.
 穴あき板10は、本実施形態では、充填される触媒の最長径に対して0.3~0.8倍の径を有する孔が20~40%の開口率で設けられている板である。図23のプレート式反応器では、穴あき板10は、最も外側に配置される伝熱プレート2とケーシング44の壁との間の隙間への通気を防止するために、図25に示すように、最も外側に配置されている伝熱プレート2の端縁からケーシング44の壁までの隙間を塞ぐように形成されている。 In this embodiment, the perforated plate 10 is a plate in which holes having a diameter of 0.3 to 0.8 times the longest diameter of the catalyst to be filled are provided with an opening ratio of 20 to 40%. . In the plate reactor shown in FIG. 23, the perforated plate 10 is used as shown in FIG. 25 in order to prevent air from flowing into the gap between the outermost heat transfer plate 2 and the wall of the casing 44. The outermost heat transfer plate 2 is formed so as to close the gap from the edge of the heat transfer plate 2 to the wall of the casing 44.
 ポンプ15及び温度調整装置47は、前記第一の形態におけるポンプ15及び温度調整装置47と同じである。熱媒体収容部45、ポンプ15、及び温度調整装置47は熱媒体供給装置を構成している。 The pump 15 and the temperature adjusting device 47 are the same as the pump 15 and the temperature adjusting device 47 in the first embodiment. The heat medium storage unit 45, the pump 15, and the temperature adjustment device 47 constitute a heat medium supply device.
 伝熱プレート2間への触媒の充填は、各区画へ触媒の充填することによって行われる。伝熱プレート2と仕切り7とによって形成されている区画は全て同じ容積を有していることから、本実施形態では、例えば、一区画の容量と同等の容量(例えば一区画の容量に対して97~103%の体積)の触媒が各区画に充填される。 The filling of the catalyst between the heat transfer plates 2 is performed by filling each compartment with the catalyst. Since all the sections formed by the heat transfer plate 2 and the partition 7 have the same volume, in this embodiment, for example, a capacity equivalent to the capacity of one section (for example, the capacity of one section) 97 to 103% volume) of catalyst is loaded into each compartment.
 触媒の良好な充填状態は、本実施形態では、触媒の充填高さの理論値と実測値との比較(例えば理論値に対する実測値の誤差が3%以内)や、各区画間での触媒の充填高さの比較(例えば各区画間の充填高さの差が充填高さの5%以内)によって判断することができる。 In this embodiment, the good packing state of the catalyst is a comparison between the theoretical value of the catalyst filling height and the actual measurement value (for example, the error of the actual measurement value with respect to the theoretical value is within 3%), It can be determined by comparing the filling height (for example, the difference in filling height between the sections is within 5% of the filling height).
 一区画における触媒の充填状態が不良であった場合には、その区画の通気栓8が外され、その区画の下端からその区画に充填された触媒のみが抜き出される。仕切り7の窓20は、通気栓8が固定されるときに係止窓24と係止爪50とを含む大きさに形成されていることから、窓20は、仕切り7を介して隣り合う二つの通気栓8の係止窓24及び係止爪50に対して開口している。さらに、係止窓24は係止爪50を含む大きさに形成されていることから、仕切り7を介して隣り合う二つの通気栓8における一方の係止窓24は他方の係止爪50に対して開口し、他方の係止窓24は一方の係止爪50に対して開口している。このように、係止している係止爪50は、通気板21の下側の空間に対して、隣の通気栓8によって遮られないことから、通気板21の下側の空間において、係止爪50を直接押すことができる。したがって通気栓8は、例えば図31に示すような、係止窓24に挿入可能な鉤を先端に有する工具を用い、仕切り7を介して隣り合う通気栓8の係止窓24及び仕切り7の窓20を通して、前記の鉤で係止爪50を押し、係止爪50と窓20との係止を解除することによって外すことができる。 When the packing state of the catalyst in one section is poor, the vent plug 8 of the section is removed, and only the catalyst filled in the section is extracted from the lower end of the section. Since the window 20 of the partition 7 is formed in a size including the locking window 24 and the locking claw 50 when the vent plug 8 is fixed, the windows 20 are adjacent to each other via the partition 7. It opens to the locking window 24 and the locking claw 50 of the two vent plugs 8. Further, since the locking window 24 is formed in a size including the locking claw 50, one locking window 24 in the two vent plugs 8 adjacent to each other via the partition 7 is connected to the other locking claw 50. The other locking window 24 is open to one locking claw 50. In this way, the locking claw 50 that is locked is not blocked by the adjacent vent plug 8 with respect to the lower space of the ventilation plate 21, so that the engagement claw 50 is engaged in the lower space of the ventilation plate 21. The pawl 50 can be pushed directly. Therefore, the vent plug 8 uses, for example, a tool having a hook that can be inserted into the locking window 24 at the tip as shown in FIG. 31, and the locking window 24 and the partition 7 of the adjacent ventilation plug 8 through the partition 7. The locking claw 50 can be removed by pushing the locking claw 50 through the window 20 with the scissors and releasing the locking between the locking claw 50 and the window 20.
 触媒を抜き出したら再び通気栓8をその区画の下端から挿入して固定し、その区画に触媒を充填することにより、各区画における触媒の充填をやり直すことができる。 When the catalyst is extracted, the vent plug 8 is inserted and fixed again from the lower end of the compartment, and the catalyst is filled in the compartment, whereby the catalyst in each compartment can be filled again.
 前記プレート式反応器は、仕切り7を有することから、区画単位で触媒を一定の状態で充填することによって、触媒を反応器全体で均一に充填することができる。したがって、このような区画が形成されない伝熱プレート2間への触媒の充填に比べて、触媒の正確な充填をより容易に行うことができる。 Since the plate type reactor has the partition 7, the catalyst can be uniformly filled in the entire reactor by filling the catalyst in a fixed state in units of compartments. Therefore, accurate filling of the catalyst can be performed more easily than the filling of the catalyst between the heat transfer plates 2 in which such a partition is not formed.
 また前記プレート式反応器は、伝熱プレート2と仕切り7とによって形成される全区画が同じ容量を有することから、一回の触媒の充填作業に用いられる触媒が一定である。したがって、このような区画が形成されない伝熱プレート2間への触媒の充填に比べて、触媒の充填作業をより迅速に行うことができる。 In the plate type reactor, since all the sections formed by the heat transfer plate 2 and the partition 7 have the same capacity, the catalyst used for one catalyst filling operation is constant. Therefore, the filling operation of the catalyst can be performed more rapidly than the filling of the catalyst between the heat transfer plates 2 in which such a partition is not formed.
 さらに前記プレート式反応器は、仕切り7を有することから、触媒の充填状態を区画単位で判断することができる。したがって、触媒の充填状態が不良である場合には、不良と判断された区画の触媒のみを充填し直すことによって、触媒の充填状態を修正することができる。したがって、このような区画が形成されない伝熱プレート2間への触媒の充填に比べて、触媒の充填作業の調整をより容易に行うことができる。 Furthermore, since the plate type reactor has the partition 7, it is possible to judge the packing state of the catalyst in units of compartments. Therefore, when the catalyst filling state is poor, it is possible to correct the catalyst filling state by refilling only the catalyst in the section determined to be defective. Therefore, the catalyst filling operation can be adjusted more easily than the catalyst filling between the heat transfer plates 2 in which such compartments are not formed.
 また前記プレート式反応器は、通気栓8を有することから、区画単位で触媒を容易に抜き出すことができる。したがって、触媒の充填状態が不良である場合には、不良と判断された区画の通気栓を取り外して触媒を区画から抜き出し、その区画へ触媒を充填し直すことによって、特定の区画の触媒の充填状態を容易に修正することができる。したがって、このような区画が形成されない伝熱プレート2間への触媒の充填に比べて、触媒の充填作業の調整をより一層容易に行うことができる。 Further, since the plate reactor has the vent plug 8, the catalyst can be easily extracted in units of compartments. Therefore, if the packing state of the catalyst is poor, remove the vent plug of the section judged to be defective, remove the catalyst from the section, and refill the section with the catalyst to fill the catalyst in the specific section. The state can be easily corrected. Therefore, the catalyst filling operation can be more easily adjusted as compared with the catalyst filling between the heat transfer plates 2 in which such compartments are not formed.
 また通気栓8は、矩形の通気板21と第一及び第二のスカート部22、23とを有することから、各区画の触媒層を支える十分な強度を得る観点で優れている。また、通気栓8は、鋼板の打ち抜き、折り曲げ、及び溶接によって得られることから、このような優れた通気栓8を容易に得ることができる。 Further, since the vent plug 8 has the rectangular vent plate 21 and the first and second skirt portions 22 and 23, it is excellent from the viewpoint of obtaining sufficient strength to support the catalyst layer in each section. Moreover, since the vent plug 8 is obtained by stamping, bending, and welding a steel plate, such an excellent vent plug 8 can be easily obtained.
 また通気栓8は、対向する一対の第一のスカート部22のそれぞれに係止窓24と係止爪50とを有し、対向する一対の第一のスカート部22において、一方の係止窓24と他方の係止爪50とが対向し、一方の係止爪50と他方の係止窓24とが対向することから、仕切り7を介して隣り合う通気栓8において、それぞれの通気栓8から突出する係止爪50が重なり又は当接することがなく、通気栓8を十分な強度で固定し、また通気栓8の取り外しを容易に行う観点において優れている。 The vent plug 8 has a locking window 24 and a locking claw 50 in each of the pair of first skirt portions 22 facing each other, and one locking window is formed in the pair of first skirt portions 22 facing each other. 24 and the other locking claw 50 face each other, and one locking claw 50 and the other locking window 24 face each other. The latching claw 50 protruding from the top does not overlap or come into contact, and is excellent in terms of fixing the vent plug 8 with sufficient strength and easily removing the vent plug 8.
 さらに仕切り7の窓20が、通気栓8が固定されるときに係止窓24と係止爪50とを含む大きさに形成されていることから、仕切り7に接する二つの通気栓8のいずれの係止爪50とも着脱自在に係止する。このように前記プレート式反応器は、単一の規格の窓20を有する仕切り7が設けられることから、通気栓8の着脱自在な構成を安価に構成する観点において優れている。 Further, since the window 20 of the partition 7 is formed in a size including the locking window 24 and the locking claw 50 when the vent plug 8 is fixed, any of the two vent plugs 8 in contact with the partition 7 can be obtained. The locking claw 50 is also detachably locked. As described above, the plate reactor is provided with the partition 7 having a single standard window 20, and therefore is excellent in terms of constructing the detachable structure of the vent plug 8 at low cost.
 また前記プレート式反応器は、通気板21の下方で係止爪50と窓20との係止という接触面積の小さな接触によって通気栓8が固定されることから、酸化反応のような比較的高温の条件の反応に用いられたときの係止爪50と窓20との焼き付きを防止する観点から優れている。 In the plate type reactor, the vent plug 8 is fixed by a contact with a small contact area between the locking claw 50 and the window 20 below the ventilation plate 21, so that the temperature is relatively high as in the oxidation reaction. From the viewpoint of preventing seizure between the locking claw 50 and the window 20 when used in the reaction under the above conditions.
 なお、前記プレート式反応器では、第二の係止部としての窓20を仕切り7に設けているが、このような第二の係止部を伝熱プレート5の下端部に設けても、図23のプレート式反応器と同様に通気栓8を設けることができる。このように、通気栓は、仕切りがなくとも伝熱プレート5の下端部を利用して着脱自在に固定することによっても係止させることができる。さらには第二の係止部を仕切り7の下端部と伝熱プレート5の下端部の両方に設けてもよく、この場合では通気栓の固定強度を高める観点から効果的である。 In the plate reactor, the window 20 as the second locking portion is provided in the partition 7, but even if such a second locking portion is provided at the lower end of the heat transfer plate 5, A vent plug 8 can be provided in the same manner as in the plate reactor of FIG. Thus, even if there is no partition, a vent plug can be locked also by detachably fixing using the lower end part of the heat-transfer plate 5. FIG. Furthermore, you may provide a 2nd latching | locking part in both the lower end part of the partition 7, and the lower end part of the heat-transfer plate 5, and it is effective from a viewpoint of raising the fixing strength of a vent plug in this case.
 また仕切りには、例えば、第二の係止部の種類や設置場所、仕切りと伝熱プレートとの間に生じる隙間の大きさ、伝熱プレート間の距離に応じて種々の仕切りを用いることができる。このような仕切りとしては、例えば図18及び19に示すように、伝熱プレート2の表面の凹凸に密着する側縁を有する形状の網、隣り合う伝熱プレート2間の最短距離の直径又は幅を有する板や図20及び21に示すような丸棒や角棒、図22に示すように、仕切り7の側縁が、伝熱プレート2の凹縁に向けて突出し、伝熱プレート2の凸縁から離間するジグザグ型の板や網、及び、グラスウール等の保形性を有さない材料による部材が挙げられる。 In addition, for the partition, for example, various partitions may be used depending on the type and location of the second locking portion, the size of the gap generated between the partition and the heat transfer plate, and the distance between the heat transfer plates. it can. As such a partition, for example, as shown in FIGS. 18 and 19, a net having a side edge that is in close contact with the unevenness of the surface of the heat transfer plate 2, the diameter or width of the shortest distance between adjacent heat transfer plates 2. 20 and 21 and round bars and square bars as shown in FIGS. 20 and 21, as shown in FIG. 22, the side edge of the partition 7 protrudes toward the concave edge of the heat transfer plate 2, and the convexity of the heat transfer plate 2. Examples thereof include a zigzag plate or net spaced from the edge, and a member made of a material having no shape-retaining property such as glass wool.
 図18及び19に示すような仕切りは、本実施形態では、例えば、この仕切りに用いられている網が、触媒が漏れ出ない程度の大きさの目(例えば触媒の最長径の0.5倍以下)を有する場合に好適に用いることができる。仕切りに用いる網の目の大きさは、触媒の最小径の0.8倍以下の目開きであることが好ましい。 In this embodiment, the partition as shown in FIGS. 18 and 19 is, for example, a mesh having a size that prevents the catalyst from leaking (for example, 0.5 times the longest diameter of the catalyst). The following can be suitably used. The size of the mesh used for the partition is preferably 0.8 or less times the minimum diameter of the catalyst.
 また、図20及び21に示すような仕切りは、本実施形態では、伝熱プレートと仕切りとの間に、触媒が漏れ出るほどの幅の隙間が形成されない場合に、好適に用いることができる。また、図22に示すような仕切りは、本実施形態では、一方の凸縁に他方の凹縁が対向するように並列する二枚の伝熱プレート2の距離(各伝熱プレート2における伝熱管1の長軸間の距離の平均値)が、各伝熱プレート2における伝熱管の最大の短径の半値の和の0.9~1.5倍であるときに、好適に用いることができる。 20 and 21 can be suitably used in the present embodiment when a gap with such a width that the catalyst leaks is not formed between the heat transfer plate and the partition. Further, in the present embodiment, the partition as shown in FIG. 22 is a distance between two heat transfer plates 2 arranged in parallel so that one convex edge faces the other concave edge (the heat transfer tube in each heat transfer plate 2). 1 (the average value of the distances between the major axes) is 0.9 to 1.5 times the sum of the half-values of the maximum short diameters of the heat transfer tubes in each heat transfer plate 2. .
 仕切りには、例えば第二の係止部を仕切りに設けない場合では、前述のいずれの仕切りをも用いることができる。また例えば第二の係止部が窓である場合には、通気栓を支えることが可能な窓を設けることができる板状の部材を用いることができる。また例えば第二の係止部が窓である場合には、仕切りには、前記窓として用いられる十分な大きさの目を有する網状の部材を用いることができる。 For the partition, for example, when the second locking portion is not provided in the partition, any of the above-described partitions can be used. For example, when the second locking portion is a window, a plate-like member that can provide a window that can support the vent plug can be used. For example, when the second locking portion is a window, a net-like member having a sufficiently large eye used as the window can be used for the partition.
 図26、18、19、及び22に示すような、伝熱プレートの表面の凹凸に接する側縁を有する形状の仕切りは、伝熱プレートをケーシングに設置する際に、伝熱プレートとそれに当接する仕切りとを交互に設置することによって二枚の伝熱プレート間に設けられる。図20及び21に示すような、隣り合う伝熱プレート間の最短距離の直径又は幅を有する仕切りは、伝熱プレートとそれに当接する仕切りとを交互に設置することによって二枚の伝熱プレート間に設けてもよいし、既に併設されている伝熱プレートの隣り合う伝熱プレートの間に挿入することによって設けてもよい。網や布、又は薄い鋼板のように可撓性を有する仕切りは、既に併設されている伝熱プレートの隣り合う伝熱プレートの間に挿入することによって設けることも可能である。 As shown in FIGS. 26, 18, 19, and 22, the partition having a shape having a side edge in contact with the unevenness of the surface of the heat transfer plate comes into contact with the heat transfer plate when the heat transfer plate is installed in the casing. It is provided between two heat transfer plates by alternately installing partitions. As shown in FIGS. 20 and 21, the partition having the shortest distance diameter or width between adjacent heat transfer plates is formed by alternately arranging the heat transfer plates and the partitions contacting the heat transfer plates. Or may be provided by inserting between adjacent heat transfer plates of the already installed heat transfer plate. A flexible partition such as a net, cloth, or thin steel plate can be provided by inserting between adjacent heat transfer plates of the already installed heat transfer plate.
 なお、仕切りは、通気栓8の孔又は伝熱プレート2の端部に設けられた孔や輪のようなさらなる係止部に掛かるフックを有し、このフックを係止部に係止することによって仕切りを張設することによって、隣り合う伝熱プレート2間の隙間に設けることも可能である。このような構成は、グラスウール等の保形性を有さない材料を仕切りに用いる観点から好ましい。 The partition has a hook that hooks to a further locking portion such as a hole or a ring provided in the hole of the vent plug 8 or the end of the heat transfer plate 2, and the hook is locked to the locking portion. It is also possible to provide a partition between the adjacent heat transfer plates 2 by stretching the partition. Such a configuration is preferable from the viewpoint of using a material having no shape-retaining property such as glass wool for the partition.
 また、前記プレート式反応器における通気栓8には、図32に示すように、係止爪50に代えて、先端が窓20の下端面に接する係止爪51を有する通気栓を用いることもできる。このような通気栓は、通気栓を各区画に強く固定する観点においてより一層優れている。また係止爪51を有する通気栓は、プレート式反応器の長期の使用の際にも通気栓が落下して触媒が伝熱プレート間の隙間から脱落するのを防ぐ観点からも有効である。 In addition, as shown in FIG. 32, a vent plug having a locking claw 51 whose tip is in contact with the lower end surface of the window 20 may be used for the vent plug 8 in the plate reactor. it can. Such a vent plug is even more excellent in terms of firmly fixing the vent plug to each compartment. The vent plug having the locking claw 51 is also effective from the viewpoint of preventing the vent plug from dropping and dropping the catalyst from the gap between the heat transfer plates even during long-term use of the plate reactor.
 また通気栓には、窓20と係止爪50のような適切な着脱自在構造を有すれば、様々な形態の通気栓を用いることができる。このような通気栓としては、例えば図33に示すような網又は通気板で形成される円筒、図34に示すような通気孔を有する板、図35及び36に示すような通気板又は網を一対のスカート部で支持する形状の部材、図37及び38に示すような表面が網で構成される箱状の部材が挙げられる。 Also, if the vent plug has an appropriate detachable structure such as the window 20 and the locking claw 50, various forms of vent plugs can be used. As such a vent plug, for example, a cylinder formed of a net or a vent plate as shown in FIG. 33, a plate having a vent as shown in FIG. 34, a vent plate or a net as shown in FIGS. Examples include a member having a shape supported by a pair of skirt portions, and a box-shaped member having a surface formed of a net as shown in FIGS.
 さらにこのような形態に基づく他の形態の通気栓には、図39に示すような、各区画の通気方向に対して通気性を有する第一の通気管52と、各区画の通気方向に対して通気性を有し、第一の通気管52の内部を摺動自在な第二の通気管53とを有する二重管構造の通気栓が挙げられる。このような通気栓を用いる場合には、例えば仕切り7には、仕切り7の下端部の表面から突出するフランジ部54を設け、両端の仕切り7に接するまで通気栓を伸ばしてフランジ部54に載せ、通気栓の摺動方向への伸縮を固定ピン55によって固定することによって、前記通気栓が各区画の下部に設置される。 Furthermore, in another form of vent plug based on such a form, as shown in FIG. 39, a first vent pipe 52 having air permeability with respect to the ventilation direction of each section, and a ventilation direction of each section. And a double-pipe structure vent plug having a second vent pipe 53 that has air permeability and is slidable inside the first vent pipe 52. When such a vent plug is used, for example, the partition 7 is provided with a flange portion 54 that protrudes from the surface of the lower end portion of the partition 7, and the vent plug is extended until it contacts the partition 7 at both ends and is placed on the flange portion 54. By fixing the expansion and contraction of the vent plug in the sliding direction by the fixing pin 55, the vent plug is installed at the lower part of each section.
 固定ピン55は、例えば、固定軸と、その一端に設けられる輪と、その他端に、固定軸の延出方向に対して直交する方向に設けられる可撓性を有する金属薄板とから構成される。固定ピン55を通気栓の下面の通気孔から挿入すると、通気孔の通過時には金属薄板が撓み、通気孔を通過した後には金属薄板の撓みが解除されて、固定ピン55が通気栓から吊り下がっている状態が形成される。また、固定ピン55の輪を引くことにより、金属薄板が撓みながら通気孔を通過することで固定ピン55が引き抜かれ、さらに第二の通気管53を摺動させることによって、伝熱プレートの下方から前記通気栓を取り外すことができる。 The fixing pin 55 includes, for example, a fixed shaft, a ring provided at one end thereof, and a flexible metal thin plate provided at the other end in a direction orthogonal to the extending direction of the fixed shaft. . When the fixing pin 55 is inserted from the vent hole on the lower surface of the vent plug, the metal thin plate bends when passing through the vent hole. A state is formed. Further, by pulling the ring of the fixing pin 55, the fixing pin 55 is pulled out by passing through the vent hole while the metal thin plate is bent, and further, the second vent pipe 53 is slid to lower the heat transfer plate. The vent plug can be removed.
 又は、前記他の形態の通気栓には、図40に示すような、第一の通気管52、第二の通気管53、及び第二の通気管53を第一の通気管52から突出する方向に付勢するコイルばねのような付勢部材56とを有する通気栓が挙げられる。この通気栓も、フランジ部54を有する仕切り7によって各区画の下部に設置される。この通気栓は、付勢部材56の付勢に抗して通気栓を縮めてフランジ部54の上に載せることによって、各区画の下部に設置される。また、付勢部材56の付勢に抗して通気栓を縮めることによって、伝熱プレートの下方から前記通気栓を取り外すことができる。固定ピン55及び第二の通気管53の摺動は、固定ピン55の輪又は第二の通気管53の下部の通気孔に、図31に示す工具の鉤を掛けて行うことができる。 Alternatively, in the other embodiment of the vent plug, a first vent pipe 52, a second vent pipe 53, and a second vent pipe 53 project from the first vent pipe 52 as shown in FIG. A vent plug having a biasing member 56 such as a coil spring that biases in the direction may be used. This vent plug is also installed in the lower part of each section by the partition 7 having the flange portion 54. The vent plug is installed at the lower part of each section by shrinking the vent plug against the biasing force of the biasing member 56 and placing it on the flange portion 54. Further, the vent plug can be removed from below the heat transfer plate by contracting the vent plug against the bias of the biasing member 56. The sliding of the fixing pin 55 and the second ventilation pipe 53 can be performed by hooking the tool pin shown in FIG. 31 on the ring of the fixing pin 55 or the ventilation hole at the bottom of the second ventilation pipe 53.
<反応生成物の第二の製造方法>
 本発明における反応生成物の第二の製造方法は、前述した第二のプレート式反応器を用いて反応生成物を製造する方法であって、前記伝熱管に所望の温度の熱媒体を供給する工程と、触媒が充填された隣り合う伝熱プレート間の隙間に反応原料を供給して前記隙間から排出される反応生成物を得る工程と、を含む。第一の方法において、前記反応原料は、エチレン;炭素数3及び4の炭化水素、並びにターシャリーブタノールからなる群から選ばれる少なくとも1種、又は炭素数3及び4の不飽和脂肪族アルデヒドからなる群から選ばれる少なくとも1種;炭素数4以上の炭化水素;キシレン及び/又はナフタレン;オレフィン;カルボニル化合物;クメンハイドロパーオキサイド;ブテン;又はエチルベンゼン;であり、前記反応生成物は、酸化エチレン;炭素数3及び4の不飽和脂肪族アルデヒド及び炭素数3及び4の不飽和脂肪酸の少なくとも一方;マレイン酸;フタル酸;パラフィン;アルコール;アセトン及びフェノール;ブタジエン;又はスチレン;である。
<Second production method of reaction product>
The second method for producing a reaction product in the present invention is a method for producing a reaction product using the second plate reactor described above, and supplying a heat medium having a desired temperature to the heat transfer tube. And a step of supplying a reaction raw material to a gap between adjacent heat transfer plates filled with a catalyst to obtain a reaction product discharged from the gap. In the first method, the reaction raw material is composed of ethylene; at least one selected from the group consisting of hydrocarbons having 3 and 4 carbon atoms and tertiary butanol, or unsaturated aliphatic aldehydes having 3 and 4 carbon atoms. At least one selected from the group; hydrocarbons having 4 or more carbon atoms; xylene and / or naphthalene; olefins; carbonyl compounds; cumene hydroperoxides; butenes; or ethylbenzenes, and the reaction product is ethylene oxide; At least one of unsaturated aliphatic aldehydes of number 3 and 4 and unsaturated fatty acids of number 3 and 4; maleic acid; phthalic acid; paraffin; alcohol; acetone and phenol; butadiene;
 第二のプレート式反応器は、固定床接触反応の工程に適用され、このような反応工程の中でも特に、高い反応熱のために触媒が劣化したり、反応成績が低下することがある反応工程に適用される。特に第二のプレート式反応器は、ガスや液等の、触媒が充填されてなる触媒層を流通可能な流体の反応原料に適用可能であるが、液状態ある場合に比べて除熱のしにくいガスである場合に好適に用いることができる。 The second plate reactor is applied to the process of fixed bed contact reaction, and among these reaction processes, the reaction process may deteriorate the catalyst due to the high reaction heat or the reaction performance may decrease. Applies to In particular, the second plate reactor can be applied to a reaction raw material of a fluid that can flow through a catalyst layer filled with a catalyst such as gas or liquid, but it removes heat compared to a liquid state. It can be suitably used when the gas is difficult.
 例えば、第二のプレート式反応器が有効に適用される反応は、前記原料が、エチレン;炭素数3及び4の炭化水素、並びにターシャリーブタノールからなる群から選ばれる少なくとも1種、又は炭素数3及び4の不飽和脂肪族アルデヒドからなる群から選ばれる少なくとも1種;n-ブタンやベンゼン等の炭素数4以上の炭化水素;キシレン及び/又はナフタレン;オレフィン;カルボニル化合物;クメンハイドロパーオキサイド;ブテン;又はエチルベンゼン;であり、得られる前記反応生成物が、酸化エチレン;炭素数3及び4の不飽和脂肪族アルデヒド及び炭素数3及び4の不飽和脂肪酸の少なくとも一方;マレイン酸;フタル酸;パラフィン;アルコール;アセトン及びフェノール;ブタジエン;又はスチレン;である反応である。 For example, in the reaction to which the second plate reactor is effectively applied, the raw material is at least one selected from the group consisting of ethylene, hydrocarbons having 3 and 4 carbon atoms, and tertiary butanol, or the number of carbon atoms. At least one selected from the group consisting of 3 and 4 unsaturated aliphatic aldehydes; hydrocarbons having 4 or more carbon atoms such as n-butane and benzene; xylene and / or naphthalene; olefins; carbonyl compounds; cumene hydroperoxide; Butene; or ethylbenzene; and the resulting reaction product is ethylene oxide; at least one of unsaturated aliphatic aldehydes having 3 and 4 carbon atoms and unsaturated fatty acids having 3 and 4 carbon atoms; maleic acid; phthalic acid; A reaction that is paraffin; alcohol; acetone and phenol; butadiene; or styrene.
 特に好ましくは、第二のプレート式反応器は、ホットスポットが発生しやすいことが知られている、気相接触酸化反応に適用される。反応原料が、炭素数3及び4の炭化水素、並びにターシャリーブタノールからなる群から選ばれる反応原料の少なくとも1種、又は、炭素数3及び4の不飽和脂肪族アルデヒドからなる群から選ばれる反応原料の少なくとも1種である反応が挙げられる。 Particularly preferably, the second plate reactor is applied to a gas phase catalytic oxidation reaction, which is known to easily generate hot spots. The reaction raw material is selected from the group consisting of at least one reaction raw material selected from the group consisting of hydrocarbons having 3 and 4 carbon atoms and tertiary butanol, or the group consisting of unsaturated aliphatic aldehydes having 3 and 4 carbon atoms. A reaction that is at least one of the raw materials can be mentioned.
 具体的には、上記炭素数3の炭化水素としては、プロピレン、プロパンが挙げられる。上記炭素数4の炭化水素としては、イソブチレン、ブテン類、ブタン類が挙げられる。また、上記炭素数3及び4の不飽和脂肪族アルデヒドとしては、アクロレイン、メタクロレインが挙げられ、炭素数3及び4の不飽和脂肪酸としては、アクリル酸、メタクリル酸が挙げられる。 Specifically, the hydrocarbon having 3 carbon atoms includes propylene and propane. Examples of the hydrocarbon having 4 carbon atoms include isobutylene, butenes, and butanes. Examples of the unsaturated aliphatic aldehyde having 3 and 4 carbon atoms include acrolein and methacrolein, and examples of the unsaturated fatty acid having 3 and 4 carbon atoms include acrylic acid and methacrylic acid.
 反応生成物の第二の製造方法において、触媒には、前記の反応原料を用いる従来の接触反応、例えば多管式反応器を用いる前記反応原料の接触反応、で用いられる公知の触媒を利用することができる。触媒には、前記接触反応において反応性を有さない、ムライトボール等の不活性粒子を混合してもよい。また、反応生成物の第二の製造方法において、伝熱管に供給される熱媒体の温度は、例えば従来の接触反応、例えば多管式反応器を用いる前記反応原料の接触反応、における反応条件を基準として、第二のプレート式反応器を用いる反応における反応条件の最適化から求めることができる。さらに反応生成物の第二の製造方法におけるその他の反応条件は、例えば前述の熱媒体の温度と同様に、公知技術を利用した最適化によって求めることができる。又は反応生成物の第二の製造方法における反応条件には、前述した反応生成物の第一の製造方法や、後述する反応生成物の第三の製造方法の反応条件を適用することができる。 In the second production method of the reaction product, a known catalyst used in a conventional catalytic reaction using the reaction raw material, for example, a catalytic reaction of the reaction raw material using a multi-tubular reactor, is used as the catalyst. be able to. The catalyst may be mixed with inert particles such as mullite balls that are not reactive in the catalytic reaction. In the second production method of the reaction product, the temperature of the heat medium supplied to the heat transfer tube is, for example, the reaction conditions in the conventional contact reaction, for example, the contact reaction of the reaction raw material using a multi-tube reactor. As a reference, it can be obtained from optimization of reaction conditions in the reaction using the second plate reactor. Furthermore, other reaction conditions in the second production method of the reaction product can be obtained by optimization using a known technique, for example, similarly to the temperature of the heat medium described above. Or the reaction conditions of the 1st manufacturing method of the reaction product mentioned above and the 3rd manufacturing method of the reaction product mentioned below are applicable to the reaction conditions in the 2nd manufacturing method of a reaction product.
<反応生成物の第三の製造方法>
 反応生成物の第三の製造方法は、(A)伝熱プレートの間に形成された触媒層を備えたプレート式反応器に、炭素数3及び4の炭化水素、並びにターシャリーブタノールからなる群から選ばれる反応原料の少なくとも1種、並びに、分子状酸素を含む反応原料混合物を供給し、前記反応原料を接触気相酸化し、不飽和炭化水素、並びに、炭素数3及び4の不飽和脂肪族アルデヒドからなる群から選ばれる少なくとも一種の反応生成物を製造する、又は、(B)伝熱プレートの間に形成された触媒層を備えたプレート式反応器に、炭素数3及び4の不飽和脂肪族アルデヒドからなる群から選ばれる反応原料の少なくとも1種、並びに、分子状酸素を含む反応原料混合物を供給し、前記反応原料を接触気相酸化し、炭素数3及び4の不飽和脂肪酸からなる群から選ばれる少なくとも一種の反応生成物を製造する方法である。
<Third production method of reaction product>
The third method for producing the reaction product is as follows: (A) a plate reactor having a catalyst layer formed between heat transfer plates, a group consisting of hydrocarbons having 3 and 4 carbon atoms, and tertiary butanol. A reaction raw material mixture containing at least one reaction raw material selected from the group consisting of molecular oxygen and catalytic gas phase oxidation of the reaction raw material, unsaturated hydrocarbons, and unsaturated fats having 3 and 4 carbon atoms At least one reaction product selected from the group consisting of group aldehydes, or (B) a plate reactor equipped with a catalyst layer formed between heat transfer plates, having 3 and 4 carbon atoms. Supplying at least one reaction raw material selected from the group consisting of saturated aliphatic aldehydes and a reaction raw material mixture containing molecular oxygen, catalytic vapor phase oxidation of the reaction raw material, and unsaturated fatty acids having 3 and 4 carbon atoms A method for producing at least one reaction product selected from Ranaru group.
 さらに反応生成物の第三の製造方法では、前記プレート式反応器は、触媒層の平均層厚さが異なる複数の反応帯域に分割されており、前記複数の反応帯域には、独立して温度調整された熱媒体が供給され、前記酸化により生じる熱を、前記伝熱プレートを隔てて除熱し、前記触媒層内の温度が独立して制御される。 Furthermore, in the third production method of the reaction product, the plate reactor is divided into a plurality of reaction zones having different average layer thicknesses of the catalyst layers, and the plurality of reaction zones are independently provided with temperature. The adjusted heat medium is supplied, the heat generated by the oxidation is removed through the heat transfer plate, and the temperature in the catalyst layer is controlled independently.
 さらに反応生成物の第三の製造方法では、前記反応原料混合物の入口に最も近接する反応帯域S1に供給される前記熱媒体の温度T(S1)は、前記反応帯域S1に隣接し、反応原料混合物の流れの下流に位置する反応帯域S2に供給される前記熱媒体の温度T(S2)より高い。 Furthermore, in the third production method of the reaction product, the temperature T (S1) of the heat medium supplied to the reaction zone S1 closest to the inlet of the reaction raw material mixture is adjacent to the reaction zone S1, It is higher than the temperature T (S2) of the heating medium supplied to the reaction zone S2 located downstream of the flow of the mixture.
 さらに反応生成物の第三の製造方法では、前記炭素数3及び4の炭化水素、並びにターシャリーブタノールからなる群から選ばれる反応原料の少なくとも1種を酸化するときの、前記反応原料の負荷量が、触媒1リットル当たり150リットル毎時[標準状態(温度0℃、101.325kPa)換算]以上であり、前記炭素数3及び4の不飽和脂肪族アルデヒドからなる群から選ばれる反応原料の少なくとも1種を酸化するときの、前記反応原料の負荷量が、触媒1リットル当たり160リットル毎時[標準状態(温度0℃、101.325kPa)換算]以上である。 Furthermore, in the third production method of the reaction product, the amount of the reaction material loaded when oxidizing at least one of the reaction materials selected from the group consisting of the hydrocarbons having 3 and 4 carbon atoms and tertiary butanol is oxidized. Is at least 150 liters per hour [converted to the standard state (temperature 0 ° C., 101.325 kPa)] or more, and at least one reaction raw material selected from the group consisting of the above-mentioned unsaturated aliphatic aldehydes having 3 and 4 carbon atoms. When the seed is oxidized, the loading amount of the reaction raw material is 160 liters per hour per liter of the catalyst [standard state (temperature 0 ° C., 101.325 kPa) conversion] or more.
 反応生成物の第三の製造方法に用いられる反応原料は、炭素数3及び4の炭化水素、並びにターシャリーブタノールからなる群から選ばれる反応原料の少なくとも1種、又は、炭素数3及び4の不飽和脂肪族アルデヒドからなる群から選ばれる反応原料の少なくとも1種である。上記炭素数3の炭化水素としては、プロピレン、プロパンが挙げられる。上記炭素数4の炭化水素としては、イソブチレン、n-ブテン、イソブテン、n-ブタン、イソブタンが挙げられる。上記炭素数3及び4の不飽和脂肪族アルデヒドとしては、アクロレイン、メタクロレインが挙げられる。 The reaction raw material used in the third production method of the reaction product is at least one reaction raw material selected from the group consisting of hydrocarbons having 3 and 4 carbon atoms and tertiary butanol, or 3 and 4 carbon atoms. It is at least one reaction raw material selected from the group consisting of unsaturated aliphatic aldehydes. Examples of the hydrocarbon having 3 carbon atoms include propylene and propane. Examples of the hydrocarbon having 4 carbon atoms include isobutylene, n-butene, isobutene, n-butane, and isobutane. Examples of the unsaturated aliphatic aldehyde having 3 and 4 carbon atoms include acrolein and methacrolein.
 これら反応原料の状態は、前記触媒層を流通する流動性を有していれば特に限定されないが、ガス(反応原料ガス)の状態であることが好適に例示できる。 The state of these reaction raw materials is not particularly limited as long as it has fluidity to flow through the catalyst layer, but it can be preferably exemplified as a gas (reaction raw material gas).
 また、上記反応生成物である不飽和炭化水素、炭素数3及び4の不飽和脂肪族アルデヒド、並びに炭素数3及び4の不飽和脂肪酸における、不飽和炭化水素としては、ブタジエンが挙げられ、炭素数3及び4の不飽和脂肪族アルデヒドとしては、アクロレイン、メタクロレインが挙げられ、炭素数3及び4の不飽和脂肪酸としては、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸が挙げられる。 Moreover, butadiene is mentioned as an unsaturated hydrocarbon in the unsaturated hydrocarbon which is the reaction product, the unsaturated aliphatic aldehyde having 3 and 4 carbon atoms, and the unsaturated fatty acid having 3 and 4 carbon atoms. Examples of the unsaturated aliphatic aldehyde having 3 and 4 include acrolein and methacrolein, and examples of the unsaturated fatty acid having 3 and 4 carbon atoms include acrylic acid, methacrylic acid, maleic acid, and maleic anhydride.
 ここで、反応生成物の第三の製造方法が、上記反応生成物すべてにおいて適用が可能であると考える理由は以下の通りである。 Here, the reason why the third production method of the reaction product is considered to be applicable to all the above reaction products is as follows.
 上記の理由としては、例えば、炭素数3のプロピレンからアクロレイン、炭素数4のイソブチレンからメタクロレイン、及びノルマルブテンからブタジエンの製造に用いられる触媒の基本組成(例えばモリブデン(Mo)-ビスマス(Bi)系)、製法、及び形状は、基本的に同じであること、また、当該反応生成物の製造における反応形式、プロセスが工業的に同一であることが挙げられる。更には、不飽和脂肪族アルデヒドであるアクロレインからアクリル酸、メタクロレインからメタクリル酸、及びブテン類から無水マレイン酸においても、同様の基本組成(例えばモリブデン(Mo)-バナジュウム(V)系)、形状の触媒を用い、同じ反応形式、プロセスによって工業的に反応製造されることが挙げられる。これらの反応はいずれも分子状酸素による接触気相酸化であり、大きな発熱を伴う反応で、本発明者らの知見では同様な反応特性を有しており、反応生成物の第三の製造方法を効果的に適用できると考えている。 The reason for this is, for example, the basic composition of the catalyst used in the production of butadiene from acrolein, acrolein of 3 carbon atoms, methacrolein from 4 isobutylene, and normal butene (for example, molybdenum (Mo) -bismuth (Bi)). System), production method, and shape are basically the same, and the reaction type and process in the production of the reaction product are industrially the same. Furthermore, the same basic composition (for example, molybdenum (Mo) -vanadium (V) system), shape is used for unsaturated aliphatic aldehydes such as acrolein to acrylic acid, methacrolein to methacrylic acid, and butenes to maleic anhydride. It is mentioned that the reaction is industrially produced by the same reaction type and process. All of these reactions are catalytic gas phase oxidation with molecular oxygen, and are reactions with a large exotherm, and according to the knowledge of the present inventors, have similar reaction characteristics, and a third production method of a reaction product. Can be applied effectively.
 上記プレート式反応器に供給される上記反応原料混合物は、反応原料、分子状酸素、及び必要に応じて窒素や水蒸気等の反応に不活性なガスを含む。上記反応原料は、1種のみの構成としてもよく、また2種以上を混合した混合物(例えば、混合ガス)としてもよい。上記反応原料混合物(例えば、反応混合ガス)の組成は、目的に応じて適宜選択される。 The reaction raw material mixture supplied to the plate reactor includes a reaction raw material, molecular oxygen, and, if necessary, a gas inert to the reaction such as nitrogen and water vapor. The reaction raw material may be composed of only one kind, or a mixture (for example, mixed gas) in which two or more kinds are mixed. The composition of the reaction raw material mixture (for example, reaction mixture gas) is appropriately selected according to the purpose.
 上記反応原料の、上記反応原料混合物に対する含有量は、特に限定されないが、反応原料の総量として、5~13モル%であることが好ましい。また、上記分子状酸素の、上記反応原料混合物に対する含有量は、反応原料の総量の1~3倍量であることが好ましい。 The content of the reaction raw material with respect to the reaction raw material mixture is not particularly limited, but the total amount of the reaction raw material is preferably 5 to 13 mol%. Further, the content of the molecular oxygen with respect to the reaction raw material mixture is preferably 1 to 3 times the total amount of the reaction raw materials.
 上記不活性なガスの、上記反応原料混合物に対する含有量は、上記反応原料混合物全量から反応原料の総量と分子状酸素量を除いた値となる。なお、上記不活性なガスは、反応系から排出される排気ガスを再循環した不活性ガスを用いてもよい。 The content of the inert gas with respect to the reaction raw material mixture is a value obtained by removing the total amount of reaction raw materials and the amount of molecular oxygen from the total amount of the reaction raw material mixture. The inert gas may be an inert gas obtained by recirculating exhaust gas discharged from the reaction system.
 反応生成物の第三の製造方法には、目的に応じて、公知の触媒を用いることが可能である。触媒の組成としては、モリブデン、タングステン、ビスマス等を含む金属酸化物、又は、バナジウム等を含む金属酸化物が挙げられる。該組成の金属酸化物粉末を、球状、ペレット状、又はリング状に成型し、高温で焼成して触媒として用いる。また、触媒の形状は、公知の形状が採用でき、直径が1~15mm(ミリメートル)の球状、又は楕円形以外の形状で1~15mmの相当直径を有するペレット状、あるいは円柱の円柱中心に穴の開いたリング状の形状のもので、円外径が4~10mm、円内径が1~3mm、高さが2~10mmの形状が好適に用いられる。上記直径、相当直径、円外径及び高さが、3~5mmの触媒がより好ましい。 In the third production method of the reaction product, a known catalyst can be used depending on the purpose. Examples of the composition of the catalyst include a metal oxide containing molybdenum, tungsten, bismuth, or the like, or a metal oxide containing vanadium or the like. The metal oxide powder having this composition is formed into a spherical shape, a pellet shape, or a ring shape, and calcined at a high temperature to be used as a catalyst. The catalyst can be formed in a known shape such as a spherical shape with a diameter of 1 to 15 mm (millimeters), a pellet shape having an equivalent diameter of 1 to 15 mm with a shape other than an ellipse, or a hole in the center of a cylindrical column. An open ring shape having a circle outer diameter of 4 to 10 mm, a circle inner diameter of 1 to 3 mm, and a height of 2 to 10 mm is preferably used. A catalyst having the above-mentioned diameter, equivalent diameter, circular outer diameter and height of 3 to 5 mm is more preferable.
 反応原料がプロピレンの場合、上記金属酸化物として、下記一般式(1)で表される化合物が好適に例示される。
 Mo(a)Bi(b)Co(c)Ni(d)Fe(e)X(f)Y(g)Z(h)Q(i)Si(j)O(k)・・・式(1)
When the reaction raw material is propylene, preferred examples of the metal oxide include compounds represented by the following general formula (1).
Mo (a) Bi (b) Co (c) Ni (d) Fe (e) X (f) Y (g) Z (h) Q (i) Si (j) O (k) (1) )
 上記式(1)中、Moはモリブデン、Biはビスマス、Coはコバルト、Niはニッケル、Feは鉄、Xはナトリウム、カリウム、ルビジュウム、セシウム及びタリウムからなる群から選ばれる少なくとも一種の元素、Yはほう素、りん、砒素及びタングステンからなる群から選ばれる少なくとも一種の元素、Zはマグネシウム、カルシウム、亜鉛、セリウム及びサマリウムからなる群から選ばれる少なくとも一種の元素、Qはハロゲン元素、Siはシリカ、Oは酸素を表す。 In the above formula (1), Mo is molybdenum, Bi is bismuth, Co is cobalt, Ni is nickel, Fe is iron, X is at least one element selected from the group consisting of sodium, potassium, rubidium, cesium and thallium, Y Is at least one element selected from the group consisting of boron, phosphorus, arsenic and tungsten, Z is at least one element selected from the group consisting of magnesium, calcium, zinc, cerium and samarium, Q is a halogen element, and Si is silica , O represents oxygen.
 また上記式(1)中、a、b、c、d、e、f、g、h、i、j及びkは、それぞれMo、Bi、Co、Ni、Fe、X、Y、Z、Q、Si及びOの原子比を表し、モリブデン原子(Mo)が12のとき、0.5≦b≦7、0≦c≦10、0≦d≦10、1≦c+d≦10、0.05≦e≦3、0.0005≦f≦3、0≦g≦3、0≦h≦1、0≦i≦0.5、0≦j≦40であり、kは各元素の酸化状態によって決まる値である。 In the above formula (1), a, b, c, d, e, f, g, h, i, j and k are Mo, Bi, Co, Ni, Fe, X, Y, Z, Q, Represents the atomic ratio of Si and O, and when molybdenum atom (Mo) is 12, 0.5 ≦ b ≦ 7, 0 ≦ c ≦ 10, 0 ≦ d ≦ 10, 1 ≦ c + d ≦ 10, 0.05 ≦ e ≦ 3, 0.0005 ≦ f ≦ 3, 0 ≦ g ≦ 3, 0 ≦ h ≦ 1, 0 ≦ i ≦ 0.5, 0 ≦ j ≦ 40, and k is a value determined by the oxidation state of each element. is there.
 一方、反応原料がアクロレインの場合、上記金属酸化物として、下記一般式(2)で表される化合物が好適に例示される。
Mo(12)V(a)X(b)Cu(c)Y(d)Sb(e)Z(f)Si(g)C(h)O(i)・・・式(2)
On the other hand, when the reaction raw material is acrolein, the metal oxide is preferably exemplified by a compound represented by the following general formula (2).
Mo (12) V (a) X (b) Cu (c) Y (d) Sb (e) Z (f) Si (g) C (h) O (i) (2)
 上記式(2)中、XはNb及びWからなる群から選ばれる少なくとも一種の元素を示す。YはMg、Ca、Sr、Ba及びZnからなる群から選ばれる少なくとも一種の元素を示す。ZはFe、Co、Ni、Bi、Alからなる群から選ばれる少なくとも一種の元素を示す。但し、Mo、V、Nb、Cu、W、Sb、Mg、Ca、Sr、Ba、Zn、Fe、Co、Ni、Bi、Al、Si、C及びOは元素記号である。 In the above formula (2), X represents at least one element selected from the group consisting of Nb and W. Y represents at least one element selected from the group consisting of Mg, Ca, Sr, Ba and Zn. Z represents at least one element selected from the group consisting of Fe, Co, Ni, Bi, and Al. However, Mo, V, Nb, Cu, W, Sb, Mg, Ca, Sr, Ba, Zn, Fe, Co, Ni, Bi, Al, Si, C, and O are element symbols.
 また上記式(2)中、a、b、c、d、e、f、g、h及びiは各元素の原子比を表し、モリブデン原子(Mo)12に対して、0<a≦12、0≦b≦12、0≦c≦12、0≦d≦8、0≦e≦500、0≦f≦500、0≦g≦500、0≦h≦500であり、iは前記各成分のうちCを除いた各成分の酸化度によって決まる値である。 Moreover, in said formula (2), a, b, c, d, e, f, g, h, and i represent the atomic ratio of each element, 0 <a <= 12 with respect to molybdenum atom (Mo) 12, 0 ≦ b ≦ 12, 0 ≦ c ≦ 12, 0 ≦ d ≦ 8, 0 ≦ e ≦ 500, 0 ≦ f ≦ 500, 0 ≦ g ≦ 500, 0 ≦ h ≦ 500, and i is the value of each component The value is determined by the degree of oxidation of each component excluding C.
 実用的な反応器に於いては、単位触媒当たりの反応原料の処理負荷量を高めて、目的反応生成物の生産性を増加させることが要求される。しかしながら、単位触媒当たりの反応原料の処理負荷量を高めた場合、反応によって生じる熱を適切に制御しホットスポットを防ぎ、触媒の損傷を防止し、かつ、反応原料の転化率及び目的反応生成物の収率を向上させるための方策が必要となる。 In a practical reactor, it is required to increase the processing load of the reaction raw material per unit catalyst and increase the productivity of the target reaction product. However, when the processing load of the reaction raw material per unit catalyst is increased, the heat generated by the reaction is appropriately controlled to prevent hot spots, prevent damage to the catalyst, and the conversion rate of the reaction raw material and the target reaction product Measures are required to improve the yield.
 これに対応するために、反応生成物の第三の製造方法に用いられるプレート式反応器は、その形状等は特に限定されないが、下記(1)及び(2)を特徴とする。
(1)伝熱プレートの間に形成された触媒層の平均層厚さが異なる複数の反応帯域に分割されていること。
(2)複数の反応帯域には、温度調整された熱媒体が供給され、必要に応じ、複数の独立して温度調整された熱媒体が供給され、接触気相酸化反応により生じる熱を、伝熱プレートを隔てて除熱し、触媒層内の温度が独立して制御できること。
In order to cope with this, the shape of the plate reactor used in the third production method of the reaction product is not particularly limited, but is characterized by the following (1) and (2).
(1) The catalyst layers formed between the heat transfer plates are divided into a plurality of reaction zones having different average layer thicknesses.
(2) A plurality of reaction zones are supplied with temperature-adjusted heat media, and if necessary, supplied with a plurality of independently temperature-adjusted heat media to transfer heat generated by the catalytic gas phase oxidation reaction. Heat is removed across the heat plate, and the temperature in the catalyst layer can be controlled independently.
 このようなプレート式反応器として、前述した本発明のプレート式反応器を利用することができる。本発明のプレート式反応器を第二の方法において用いることは、反応生成物の第三の製造方法において、本発明のプレート式反応器の効果と反応生成物の第三の製造方法の効果との両方の効果を得られる観点から好ましい。 As such a plate reactor, the plate reactor of the present invention described above can be used. The use of the plate reactor of the present invention in the second method means that in the third method for producing a reaction product, the effect of the plate reactor of the present invention and the effect of the third method of producing a reaction product From the viewpoint of obtaining both effects, it is preferable.
 以下、反応生成物の第三の製造方法に用いられる上記プレート式反応器の実施態様について記載する。なお、以下の記載では、便宜上、反応原料、反応原料混合物、及び反応によって生じる反応生成物の混合物等の総称である反応流体の一態様である「反応ガス」を用いて説明する場合がある。 Hereinafter, embodiments of the plate reactor used in the third production method of the reaction product will be described. In the following description, for the sake of convenience, description may be made using “reaction gas” which is an aspect of a reaction fluid, which is a general term for a reaction raw material, a reaction raw material mixture, and a mixture of reaction products generated by the reaction.
 プレート式反応器の第1の態様としては、一対の伝熱プレートに挟まれた空間内に触媒を充填して反応帯域が形成され、伝熱プレートの外側に熱媒体が供給される熱媒体流路を有するプレート式反応器が挙げられる。 As a first aspect of the plate reactor, a heat medium flow in which a catalyst is filled in a space between a pair of heat transfer plates to form a reaction zone, and a heat medium is supplied to the outside of the heat transfer plate. A plate reactor having a channel is mentioned.
 上記プレート式反応器の反応帯域は複数の領域に分割することが可能であり、一対の伝熱プレートの間隔を調整することで各反応帯域に充填された触媒層厚さを変化させることが可能である。特に、供給される反応原料混合物の入口から出口に向かって、反応帯域の各領域の触媒層厚さが増大する構造であることが好ましい。また、伝熱プレート対の外側が複数の熱媒体流路に分割され、各々異なった温度を有する熱媒体を該流路に供給することが可能である。 The reaction zone of the plate reactor can be divided into a plurality of regions, and the thickness of the catalyst layer filled in each reaction zone can be changed by adjusting the distance between the pair of heat transfer plates. It is. In particular, the catalyst layer thickness in each region of the reaction zone is preferably increased from the inlet to the outlet of the reaction raw material mixture to be supplied. In addition, the outside of the heat transfer plate pair is divided into a plurality of heat medium flow paths, and heat mediums having different temperatures can be supplied to the flow paths.
 上記プレート式反応器に供給される反応ガスの方向は伝熱プレートに沿って流れ、熱媒体は一対の伝熱プレートの外側に供給される。当該熱媒体の流れ方向は、特に制限は無いが、工業的規模での反応装置には通常、多量の触媒を収容する必要があり、多数の伝熱プレート対が設置されるので、反応ガスの流れと直角方向が都合よい。 The direction of the reaction gas supplied to the plate reactor flows along the heat transfer plate, and the heat medium is supplied to the outside of the pair of heat transfer plates. The flow direction of the heat medium is not particularly limited, but an industrial scale reaction apparatus usually needs to accommodate a large amount of catalyst, and a large number of heat transfer plate pairs are installed. A direction perpendicular to the flow is convenient.
 通常の反応に於ける反応量は、反応ガスの入口部分が最も大きく、反応に伴う反応熱の発生は最大で、反応ガスの出口方向に減少する。伝熱プレートの間隔を調整して触媒層の平均層厚さを変えることによって反応及び反応によって生じる熱をより精密に制御でき、触媒層温度の上昇に伴う、ホットスポットを防ぎ、触媒の損傷を防止することができる。 The reaction amount in the normal reaction is the largest at the inlet portion of the reaction gas, the generation of reaction heat accompanying the reaction is the largest, and decreases in the direction of the reaction gas outlet. By adjusting the distance between the heat transfer plates and changing the average layer thickness of the catalyst layer, the reaction and the heat generated by the reaction can be controlled more precisely, preventing hot spots as the catalyst layer temperature rises, and damaging the catalyst. Can be prevented.
 また、上記プレート式反応器を用いることで、多管式反応器にみられた、反応ガスの単位触媒当たりの処理負荷量が高い条件下における、反応ガスの圧力損失の増大、及びこれに伴う目的反応生成物の収率が低下を解消することが可能である。更には、反応器内圧の上昇に伴う、反応ガス等の供給用圧縮機のエネルギーコストが削減可能である。 In addition, by using the above plate reactor, an increase in the pressure loss of the reaction gas under the condition that the processing load per unit catalyst of the reaction gas is high as seen in the multi-tube reactor, and accompanying this It is possible to eliminate the decrease in the yield of the target reaction product. Furthermore, the energy cost of the compressor for supplying the reaction gas and the like accompanying the increase in the reactor internal pressure can be reduced.
 図41に上記プレート式反応器の第1の具体例を示す。
 熱媒体流路(60-1、60-2、及び60-3)と触媒層(43)とを隔離する薄板の伝熱プレート(57)は反応ガス入口(58)から出口(59)への流れに沿って、触媒層(43)の厚さを変えるために変形している。ここで、触媒層の平均層厚さは反応ガスの流れ方向と直角方向に測ったプレート間の距離のことである。
FIG. 41 shows a first specific example of the plate reactor.
A thin heat transfer plate (57) that separates the heat medium flow path (60-1, 60-2, and 60-3) and the catalyst layer (43) is provided from the reaction gas inlet (58) to the outlet (59). In order to change the thickness of the catalyst layer (43) along the flow, it is deformed. Here, the average layer thickness of the catalyst layer is a distance between the plates measured in a direction perpendicular to the flow direction of the reaction gas.
 一対の伝熱プレート(57)の間に形成された触媒層(43)の厚さは、各熱媒体流路(60-1、60-2、及び60-3)に対応し、其々反応帯域(S1、S2、及びS3)を形成する。(61)は熱媒体供給口である。なお、上記において、反応帯域を3つとしているが、これは例示であり、反応帯域の数は限定されない。 The thickness of the catalyst layer (43) formed between the pair of heat transfer plates (57) corresponds to each heat medium flow path (60-1, 60-2, and 60-3), and the reaction Bands (S1, S2, and S3) are formed. (61) is a heat medium supply port. In the above, there are three reaction zones, but this is an example, and the number of reaction zones is not limited.
 また、伝熱プレート(57)には、平板、凹凸を有するようにエンボス加工されたもの、又は反応ガスの流れと直角方向に成形された波板の使用が可能である。反応ガスと熱媒体との伝熱効率を考慮すれば、凹凸板又は波板形状が好適に用いられる。ここで、第1の具体例において、伝熱プレート(57)にエンボス加工、又は波板が使用された場合の触媒層の平均層厚さは以下に示す式で規定した。
(式)[触媒層の平均層厚さ]=[触媒層の体積]÷[伝熱プレートの長さ(幅)(図41における紙面に垂直方向の長さ)]÷[伝熱プレートの反応ガスの流れ方向の長さ]
Further, the heat transfer plate (57) can be a flat plate, an embossed one having irregularities, or a corrugated plate formed in a direction perpendicular to the flow of the reaction gas. In consideration of the heat transfer efficiency between the reaction gas and the heat medium, an uneven plate or corrugated plate shape is preferably used. Here, in the first specific example, the average layer thickness of the catalyst layer when embossing or corrugated plate was used for the heat transfer plate (57) was defined by the following equation.
(Formula) [Average thickness of catalyst layer] = [Volume of catalyst layer] / [Length (width) of heat transfer plate (length perpendicular to the paper surface in FIG. 41)] / [Reaction of heat transfer plate] Gas flow direction length]
 ここで、[触媒層の体積]は、触媒層が形成される一対の伝熱プレートを地面に対し垂直に保ち、かつ底(各反応帯域の最も下面)に蓋を設置して、一対の伝熱プレートに挟まれた空間内に水等の液体又は直径1mm以下のガラスビーズを注ぎ入れたときに、該空間を満たすのに必要な水等の液体又は直径1mm以下のガラスビーズの体積とする。 Here, the [volume of the catalyst layer] refers to a pair of heat transfer plates in which a pair of heat transfer plates on which the catalyst layer is formed are kept perpendicular to the ground and a lid is placed on the bottom (the bottom surface of each reaction zone). When a liquid such as water or glass beads having a diameter of 1 mm or less is poured into a space sandwiched between heat plates, the volume of the liquid such as water or glass beads having a diameter of 1 mm or less necessary to fill the space is set. .
 前記プレート式反応器の第二の態様としては、円弧、楕円弧、矩形或いは多角形の一部を主構成要素とした連続したパターンに賦形された波板の2枚を対面させ、当該両波板の凸面部を互いに接合して複数の熱媒体流路を形成した伝熱プレートを、複数配列してなりかつ隣り合った伝熱プレートの波板凸面部と凹面部とが対面して所定間隔の触媒層を形成したプレート式反応器が挙げられる。ここで、上記「円弧、楕円弧、矩形或いは多角形の一部を主構成要素とした連続したパターンに賦形された波板」とは、波板の波の形状が円弧、楕円弧、矩形或いは多角形の一部を主構成要素とした連続したパターン(形状)であることを意味する。 As a second aspect of the plate reactor, two corrugated plates shaped into a continuous pattern having a main part of an arc, an elliptical arc, a rectangle or a polygon are faced to each other. A plurality of heat transfer plates in which the convex portions of the plates are joined to each other to form a plurality of heat transfer channels are arranged, and the corrugated convex portions and concave portions of adjacent heat transfer plates face each other at a predetermined interval. And a plate reactor in which the catalyst layer is formed. Here, the above-mentioned “corrugated sheet shaped into a continuous pattern having a circular arc, elliptical arc, rectangle or polygon as a main component” means that the wave shape of the corrugated sheet is an arc, elliptical arc, rectangular or multiple It means that the pattern is a continuous pattern (shape) with a part of a square as a main component.
 上記プレート式反応器において、波板に賦形された円弧、楕円弧、矩形或いは多角形の一部の形状を変えることにより、触媒層に供給される反応ガスの入口から出口に向かって触媒層の厚さを変化させることが可能である。また、上記プレート式反応器は、反応帯域を複数の領域に分割することが可能であり、複数の領域に分割された反応帯域を上記触媒層の厚さの変化に対応させることが可能である。さらに、分割された複数の反応帯域には、独立して温度調整された熱媒体が供給され、接触気相酸化反応により生じる熱を、伝熱プレートを隔てて除熱し、触媒層内の温度を独立して制御することが可能である。 In the plate reactor, by changing the shape of a part of the arc, elliptical arc, rectangle, or polygon formed on the corrugated plate, the catalyst layer is moved from the inlet to the outlet of the reaction gas supplied to the catalyst layer. It is possible to change the thickness. The plate reactor can divide the reaction zone into a plurality of regions, and the reaction zone divided into the plurality of regions can correspond to the change in the thickness of the catalyst layer. . Further, a plurality of the divided reaction zones are supplied with a heat medium whose temperature is independently adjusted, and the heat generated by the catalytic gas phase oxidation reaction is removed through the heat transfer plate, so that the temperature in the catalyst layer is reduced. It can be controlled independently.
 上記プレート式反応器に供給される反応ガスの方向は伝熱プレートの外側に沿って流れ、熱媒体は一対の伝熱プレートの内側に供給される。当該熱媒体の流れ方向は、反応ガスの流れに対して直角方向、即ち十字流の方向に流れる。 The direction of the reaction gas supplied to the plate reactor flows along the outside of the heat transfer plate, and the heat medium is supplied inside the pair of heat transfer plates. The flow direction of the heat medium flows in a direction perpendicular to the flow of the reaction gas, that is, a cross flow direction.
 通常の反応に於ける反応量は、反応ガスの入口部分が最も大きく、反応に伴う反応熱の発生は最大で、反応ガスの出口方向に減少する。この反応熱の除熱を効率よくするために、一の伝熱プレートと隣り合う伝熱プレートとに使用される波板の凹凸形状を変え、両伝熱プレートの間隙を調整して触媒層の平均層厚さを変化させることが好ましい。触媒層の平均層厚さを変化させることにより、反応をより精密に制御することができ、触媒層温度の上昇に伴う、ホットスポットを防ぎ、触媒の損傷を防止することができる。 The reaction amount in the normal reaction is the largest at the inlet portion of the reaction gas, the generation of reaction heat accompanying the reaction is the largest, and decreases in the direction of the reaction gas outlet. In order to efficiently remove the reaction heat, the corrugated shape of the corrugated plate used for one heat transfer plate and the adjacent heat transfer plate is changed, and the gap between the heat transfer plates is adjusted to adjust the catalyst layer. It is preferable to change the average layer thickness. By changing the average layer thickness of the catalyst layer, the reaction can be controlled more precisely, hot spots accompanying the increase in the catalyst layer temperature can be prevented, and damage to the catalyst can be prevented.
 図42に上記プレート式反応器の第2の具体例を示す。
 図42に示されたように、伝熱プレート(57)は、2枚の薄板が円形、楕円形、矩形或いは多角形の一部を主構成要素とした連続したパターンに変形され、互いに反対方向に向き合って(鏡像関係に)接合され、熱媒体流路(60-1、60-2、60-3)を形成する。また、一対の伝熱プレート(57)が互いに熱媒体流路の半分に相当する距離だけずれて向かい合い間隙を形成し、形成された間隙に触媒が充填され、触媒層(43)が形成される。さらに、一対の伝熱プレート(57)は、触媒層(43)へ反応混合ガスを導入する反応ガス入口(58)と反応ガスを導出する反応ガス出口(59)を具備する。
FIG. 42 shows a second specific example of the plate reactor.
As shown in FIG. 42, in the heat transfer plate (57), two thin plates are deformed into a continuous pattern having a circular, elliptical, rectangular or polygonal part as a main component, and are in opposite directions. Facing each other (in a mirror image relationship) to form heat medium flow paths (60-1, 60-2, 60-3). In addition, the pair of heat transfer plates (57) are opposed to each other by a distance corresponding to half of the heat medium flow path to form a gap, and the formed gap is filled with a catalyst to form a catalyst layer (43). . Further, the pair of heat transfer plates (57) includes a reaction gas inlet (58) for introducing the reaction mixed gas into the catalyst layer (43) and a reaction gas outlet (59) for deriving the reaction gas.
 上記熱媒体流路はそれぞれ流路の断面形状(断面積)が異なり、熱媒体流路(60-1)の幅はもっとも大きくなる。熱媒体流路(60-1)の幅がもっとも大きい場合、隣り合った上記伝熱プレート(57)の間隔は一定なので、隣り合った伝熱プレートの波板凸面部と凹面部とが対面して形成される間隔(A)(すなわち、触媒層(43)の層厚)はもっとも狭くなる。熱媒体流路(60-2)から(60-3)へと熱媒体流路の幅が、順次小さくなり、この熱媒体流路に対応する触媒層(43)の厚さは増大する。従って、熱媒体流路(60-1、60-2、及び60-3)に対応する触媒層(43)は、それぞれ触媒層の平均層厚さが異なり、触媒層の平均層厚さが異なる複数の反応帯域(S1、S2、及びS3)を形成することができる。 The heat medium flow paths have different cross-sectional shapes (cross-sectional areas), and the width of the heat medium flow path (60-1) is the largest. When the width of the heat medium flow path (60-1) is the largest, the interval between the adjacent heat transfer plates (57) is constant, so that the corrugated convex surface portion and the concave surface portion of the adjacent heat transfer plates face each other. The distance (A) formed in this way (that is, the layer thickness of the catalyst layer (43)) is the narrowest. The width of the heat medium flow path gradually decreases from the heat medium flow path (60-2) to (60-3), and the thickness of the catalyst layer (43) corresponding to the heat medium flow path increases. Therefore, the catalyst layers (43) corresponding to the heat medium flow paths (60-1, 60-2, and 60-3) have different average layer thicknesses of the catalyst layers and different average layer thicknesses of the catalyst layers. Multiple reaction zones (S1, S2, and S3) can be formed.
 ここで、触媒層の平均層厚さとは、各反応帯域(S1、S2、及びS3)の各触媒層において、反応ガスの流れ方向と直角方向に測定された上記間隔(A)の平均値を意味する。第2の具体例においては、以下に示す計算式を用いて規定した。
(式)[触媒層の平均層厚さ]=[触媒層の体積]÷[伝熱プレートの長さ(幅)(図42における紙面に垂直方向の長さ)]÷[伝熱プレートの反応ガスの流れ方向の長さ]
Here, the average layer thickness of the catalyst layer is the average value of the distance (A) measured in the direction perpendicular to the flow direction of the reaction gas in each catalyst layer of each reaction zone (S1, S2, and S3). means. In the second specific example, it is defined using the following calculation formula.
(Expression) [Average thickness of catalyst layer] = [Volume of catalyst layer] / [Length (width) of heat transfer plate (length perpendicular to the paper surface in FIG. 42)] / [Reaction of heat transfer plate] Gas flow direction length]
 ここで、[触媒層の体積]は、触媒層が形成される一対の伝熱プレートを地面に対し垂直に保ち、かつ底(各反応帯域の最も下面)に蓋を設置して、一対の伝熱プレートに挟まれた空間内に水等の液体又は直径1mm以下のガラスビーズを注ぎ入れたときに、該空間を満たすのに必要な水等の液体又は直径1mm以下のガラスビーズの体積とする。 Here, the [volume of the catalyst layer] refers to a pair of heat transfer plates in which a pair of heat transfer plates on which the catalyst layer is formed are kept perpendicular to the ground and a lid is placed on the bottom (the bottom surface of each reaction zone). When a liquid such as water or glass beads having a diameter of 1 mm or less is poured into a space sandwiched between heat plates, the volume of the liquid such as water or glass beads having a diameter of 1 mm or less necessary to fill the space is set. .
 なお、上記において、反応帯域を3つとしているが、これは例示であり、反応生成物の第三の製造方法において反応帯域の数は限定されない。 In the above, there are three reaction zones. However, this is merely an example, and the number of reaction zones is not limited in the third method for producing a reaction product.
 図43によって上記プレート式反応器の第2の具体例で用いられる伝熱プレート(57)の構成を更に詳しく説明する。図43は、円弧、楕円弧、矩形又は多角形の一部を主構成要素とした連続したパターンに変形された波板の2枚を対面させ、該両波板の凸部を互いに接合して、複数の熱媒体流路が形成された伝熱プレートを示す。 43, the configuration of the heat transfer plate (57) used in the second specific example of the plate reactor will be described in more detail. FIG. 43 shows two corrugated sheets deformed into a continuous pattern having a main part of an arc, an elliptical arc, a rectangle or a polygon, and the convex portions of the corrugated sheets are joined to each other. The heat-transfer plate in which the several heat carrier flow path was formed is shown.
 熱媒体流路の大きさ、及び触媒層の平均層厚さは、波板の波の周期にあたる(L)と、波の高さ(H)で規定される。このとき、波の周期(L)は10~100mmであることが好ましく、20~50mmであることがより好ましい。一方、高さ(H)は、5~50mmであることが好ましく、10~30mmであることがより好ましい。 The size of the heat medium flow path and the average layer thickness of the catalyst layer are defined by the wave period (L) and the wave height (H) of the corrugated plate. At this time, the wave period (L) is preferably 10 to 100 mm, and more preferably 20 to 50 mm. On the other hand, the height (H) is preferably 5 to 50 mm, and more preferably 10 to 30 mm.
 該伝熱プレートが一対で平行、かつ互いに熱媒体流路の半分に相当する距離(L/2)だけずれて向かい合い間隙を形成し、その間隙に触媒が充填され、触媒層が形成される。 A pair of the heat transfer plates are parallel to each other and are shifted from each other by a distance (L / 2) corresponding to half of the heat medium flow path to form a gap, and the gap is filled with a catalyst to form a catalyst layer.
 この平行な一対の伝熱プレートの間隔(P)と熱媒体流路の周期(L)及び高さ(H)を変えることにより、触媒層の厚さが調節される。一対の伝熱プレートの間隔Pは通常、10~50mmであり、20~50mmであることがより好ましい。 The thickness of the catalyst layer is adjusted by changing the interval (P) between the pair of parallel heat transfer plates and the period (L) and height (H) of the heat medium flow path. The distance P between the pair of heat transfer plates is usually 10 to 50 mm, and more preferably 20 to 50 mm.
 図43では、伝熱プレートの形状が円弧の一部で描かれているが、形状は楕円弧、矩形、三角形又は多角形の一部を主構成要素とする連続したパターンであってもよい。上記周期(L)と高さ(H)を変えることで触媒層厚さを精度良く制御できる。なお、触媒層厚さは、伝熱プレートの長さ(幅)方向(紙面に垂直な方向)において均一であることが好ましい。 In FIG. 43, the shape of the heat transfer plate is drawn as a part of an arc, but the shape may be a continuous pattern whose main component is an elliptical arc, a rectangle, a triangle, or a part of a polygon. The catalyst layer thickness can be accurately controlled by changing the period (L) and the height (H). The catalyst layer thickness is preferably uniform in the length (width) direction (direction perpendicular to the paper surface) of the heat transfer plate.
 また、上記触媒層の平均層厚さは、図43に示す間隔(x)と相関し、当該間隔(x)は上記式で規定した触媒層の平均層厚さの通常0.7~0.9倍である。 Further, the average layer thickness of the catalyst layer correlates with the interval (x) shown in FIG. 43, and the interval (x) is usually 0.7 to 0.00 mm of the average layer thickness of the catalyst layer defined by the above formula. 9 times.
 各反応器の伝熱プレート(57)の薄板の板厚は2mm以下、好適には1mm以下の鋼板が用いられる。 The thickness of the thin plate of the heat transfer plate (57) of each reactor is 2 mm or less, preferably 1 mm or less.
 伝熱プレート(57)の反応ガス流れ方向の長さは0.5~10m(メートル)であり好ましくは0.5~5m、さらに好ましくは0.5~3mである。通常入手できる薄板鋼板のサイズから、1.5m以上の時は2枚のプレートを接合するか、組み合わせて用いることもできる。 The length of the heat transfer plate (57) in the reaction gas flow direction is 0.5 to 10 m (meters), preferably 0.5 to 5 m, and more preferably 0.5 to 3 m. From the size of a normally available thin steel plate, two plates can be joined or combined when the length is 1.5 m or more.
 反応ガスの流れ方向と直角の方向(図41及び42では紙面に垂直方向の奥行き)の長さは特に制限はなく、通常0.1~20mが用いられ、好ましくは3~15mが用いられる。より好ましくは6~10mである。伝熱プレート(57)は図43に示した配置と同様に積層され、積層される枚数には制限は無い。実際的には、反応に必要な触媒量から決定されるが、数十枚から数百枚である。 The length in the direction perpendicular to the flow direction of the reaction gas (in FIGS. 41 and 42, the depth perpendicular to the paper surface) is not particularly limited, and is usually 0.1 to 20 m, preferably 3 to 15 m. More preferably, it is 6 to 10 m. The heat transfer plates (57) are stacked in the same manner as in the arrangement shown in FIG. 43, and the number of stacked layers is not limited. In practice, it is determined from the amount of catalyst required for the reaction, but it is from several tens to several hundreds.
 上記各反応帯域の触媒層の平均層厚さは、特に限定されないが、4~50mmであることが好ましい。また、上記各反応帯域の触媒層の平均層厚さは、反応原料の負荷量及び触媒の形状(粒径等)によっても異なるが、図41に示すプレート式反応器においては、反応帯域(S1)の触媒層の平均層厚さは4~18mm(より好ましくは5~13mm)であり、該反応帯域(S1)に続く反応帯域(S2)の触媒層の平均層厚さは5~23mm(より好ましくは7~17mm)であり、該反応帯域(S2)に続く反応帯域(S3)の触媒層の平均層厚さは8~27mm(より好ましくは10~22mm)であることが好ましく例示できる。 The average layer thickness of the catalyst layer in each reaction zone is not particularly limited, but is preferably 4 to 50 mm. The average layer thickness of the catalyst layer in each reaction zone also varies depending on the amount of reaction raw material loaded and the catalyst shape (particle size, etc.), but in the plate reactor shown in FIG. 41, the reaction zone (S1 ) Of the catalyst layer is 4 to 18 mm (more preferably 5 to 13 mm), and the average layer thickness of the catalyst layer in the reaction zone (S2) following the reaction zone (S1) is 5 to 23 mm ( More preferably, the average thickness of the catalyst layer in the reaction zone (S3) following the reaction zone (S2) is 8 to 27 mm (more preferably 10 to 22 mm). .
 一方、図42に示すプレート式反応器においては、反応帯域(S1)の触媒層の平均層厚さは5~20mm(より好ましくは7~15mm)であり、該反応帯域(S1)に続く反応帯域(S2)の触媒層の平均層厚さは7~25mm(より好ましくは10~20mm)であり、該反応帯域(S2)に続く反応帯域(S3)の触媒層の平均層厚さは12~30mm(より好ましくは15~25mm)であることが好ましく例示できる。 On the other hand, in the plate reactor shown in FIG. 42, the average layer thickness of the catalyst layer in the reaction zone (S1) is 5 to 20 mm (more preferably 7 to 15 mm), and the reaction following the reaction zone (S1). The average layer thickness of the catalyst layer in the zone (S2) is 7 to 25 mm (more preferably 10 to 20 mm), and the average layer thickness of the catalyst layer in the reaction zone (S3) following the reaction zone (S2) is 12 mm. It can be preferably exemplified that it is ˜30 mm (more preferably 15 to 25 mm).
 なお、該複数の反応帯域の触媒層の平均層厚さは、反応ガスの入口から出口の方向に位置するに従って、順次増加することが好ましい。 In addition, it is preferable that the average layer thickness of the catalyst layers in the plurality of reaction zones increases sequentially as it is positioned in the direction from the inlet to the outlet of the reaction gas.
 特に、炭素数3及び4の炭化水素、並びにターシャリーブタノールからなる群から選ばれる反応原料の少なくとも1種を酸化するときの、反応原料の負荷量が、触媒1リットル当たり150リットル毎時[標準状態(温度0℃、101.325kPa)換算]以上である場合、及び/又は、炭素数3及び4の不飽和脂肪族アルデヒドからなる群から選ばれる反応原料の少なくとも1種を酸化するときの、反応原料の負荷量が、触媒1リットル当たり160リットル毎時[標準状態(温度0℃、101.325kPa)換算]以上である場合は、上記触媒層(43)へ反応混合ガスを導入する反応ガス入口(58)に連結される反応帯域(S1)の触媒層の平均層厚さは5~15mm(特に好ましくは7~12mm)であり、該反応帯域(S1)に続く反応帯域(S2)の触媒層の平均層厚さは7~17mm(特に好ましくは10~15mm)であり、該反応帯域(S2)に続く反応帯域(S3)の触媒層の平均層厚さは12~27mm(特に好ましくは15~20mm)であることがより好ましい。 In particular, when oxidizing at least one reaction raw material selected from the group consisting of hydrocarbons having 3 and 4 carbon atoms and tertiary butanol, the loading amount of the reaction raw material is 150 liters per hour per liter of catalyst [standard state (Temperature 0 ° C., 101.325 kPa) conversion] and / or reaction when oxidizing at least one reaction raw material selected from the group consisting of unsaturated aliphatic aldehydes having 3 and 4 carbon atoms When the load of the raw material is 160 liters per hour per liter of the catalyst [converted to a standard state (temperature 0 ° C., 101.325 kPa)] or more, a reaction gas inlet (introducing a reaction gas mixture into the catalyst layer (43)) ( 58) The average layer thickness of the catalyst layer in the reaction zone (S1) connected to 58) is 5 to 15 mm (particularly preferably 7 to 12 mm). The average layer thickness of the catalyst layer in the reaction zone (S2) following the reaction zone (S2) is 7 to 17 mm (particularly preferably 10 to 15 mm), and the average layer of the catalyst layer in the reaction zone (S3) following the reaction zone (S2) More preferably, the thickness is 12 to 27 mm (particularly preferably 15 to 20 mm).
 上記触媒層の平均層厚さが上記範囲より小さい場合、上記反応帯域S1へ触媒を充填するときに、触媒粒子が触媒層内でブリッジを起こし、充填時間が長くなる等の困難が伴うことがある。当然ながら触媒層の最小の層厚さは、触媒粒子の粒径より大きくなければならない。通常、触媒層の最小厚さは触媒粒径の1.5倍以上が好ましい。従って、上記例示での触媒層の平均層厚さは触媒粒子の粒径が、3~5mmの時に好適である。 When the average layer thickness of the catalyst layer is smaller than the above range, when the catalyst is filled into the reaction zone S1, it may be difficult to cause the catalyst particles to bridge in the catalyst layer and to increase the filling time. is there. Of course, the minimum layer thickness of the catalyst layer must be larger than the particle size of the catalyst particles. Usually, the minimum thickness of the catalyst layer is preferably 1.5 times or more the catalyst particle size. Therefore, the average layer thickness of the catalyst layer in the above example is suitable when the particle size of the catalyst particles is 3 to 5 mm.
 一方、触媒層の平均層厚さが上記範囲より大きい場合、ホットスポット発生の原因となり易い。特に反応ガスの出口付近の反応帯域、例えば、反応帯域(S3)の触媒層内の温度が上昇し、ホットスポット現象が生じる状況、又は反応原料の転化率が最適値より高くなりすぎるようなホットスポットに近い状況になれば、反応成績が低下し、目的反応生成物の収率が低下する場合がある。上記状況が悪化し、ホットスポットが発生した場合には、触媒が損傷することもある。この際には、熱媒体の温度を下げて反応量を制限し、反応熱の除去を促進したり、反応混合ガスの供給量を下げ、反応原料の負荷量を低下させたりする必要がある。 On the other hand, when the average layer thickness of the catalyst layer is larger than the above range, hot spots are likely to occur. In particular, a reaction zone near the outlet of the reaction gas, for example, a situation in which the temperature in the catalyst layer of the reaction zone (S3) rises and a hot spot phenomenon occurs, or hot where the conversion rate of the reaction raw material becomes too high than the optimum value. If the situation is close to the spot, the reaction results may be reduced, and the yield of the target reaction product may be reduced. When the above situation deteriorates and a hot spot is generated, the catalyst may be damaged. At this time, it is necessary to limit the reaction amount by lowering the temperature of the heat medium to promote the removal of reaction heat, or to reduce the supply amount of the reaction mixed gas and reduce the load of the reaction raw material.
 上記触媒層の平均層厚さの詳細は、反応量の変化によって異なるが、触媒層(43)の入口から出口まで連続的に変化させても良いし、段階的に変化させても良い。寧ろ、触媒を製造する際の反応活性の不揃いを考慮すれば、段階的に上記触媒層の平均層厚さを変化させた方が自由度を確保できて良い。 The details of the average layer thickness of the catalyst layer vary depending on the amount of reaction, but it may be continuously changed from the inlet to the outlet of the catalyst layer (43) or may be changed stepwise. Rather, considering the unevenness of the reaction activity during the production of the catalyst, the degree of freedom may be secured by changing the average layer thickness of the catalyst layer in stages.
 また、上記反応帯域の分割数は2~5が好ましく、反応ガスの入口から出口に向かって、各反応帯域の触媒層の平均層厚さが増大することが好ましい。 Further, the number of divisions of the reaction zone is preferably 2 to 5, and the average layer thickness of the catalyst layer in each reaction zone is preferably increased from the inlet to the outlet of the reaction gas.
 さらに、各反応帯域における触媒層の反応ガスの流れ方向の長さは、反応原料の転化率等を考慮して決定されるが、例えば、上記反応帯域が3つに分割された場合では、全触媒層長さに対して、反応帯域(S1)部分が10%~55%、反応帯域(S2)部分が20%~65%、反応帯域(S3)部分が25%~70%の触媒層長さを適用することが好ましい。また、反応帯域(S3)部分の触媒層長さは反応原料の転化率の達成度によって変化させることが好ましい。 Furthermore, the length of the reaction gas flow direction of the catalyst layer in each reaction zone is determined in consideration of the conversion rate of the reaction raw material, etc., for example, when the reaction zone is divided into three, The catalyst layer length is 10% to 55% for the reaction zone (S1), 20% to 65% for the reaction zone (S2), and 25% to 70% for the reaction zone (S3) with respect to the catalyst layer length. It is preferable to apply. Moreover, it is preferable to change the catalyst layer length of the reaction zone (S3) portion according to the achievement of the conversion rate of the reaction raw material.
 上述のように、実用的な反応器に於いては、単位触媒当たりの反応原料の処理負荷量を高めた場合でも、反応によって生じる熱を適切に制御しホットスポットを防ぎ、触媒の損傷を防止し、かつ、反応原料の転化率及び目的反応生成物の収率を向上させることが必要となる。 As mentioned above, in a practical reactor, even when the processing load of the reaction raw material per unit catalyst is increased, the heat generated by the reaction is appropriately controlled to prevent hot spots and prevent damage to the catalyst. In addition, it is necessary to improve the conversion rate of the reaction raw materials and the yield of the target reaction product.
 反応生成物の第三の製造方法においては、炭素数3及び4の炭化水素、並びにターシャリーブタノールからなる群から選ばれる反応原料の少なくとも1種を酸化するときの、反応原料の負荷量が、触媒1リットル当たり150リットル毎時[標準状態(温度0℃、101.325kPa)換算]以上である。上記炭素数3及び4の炭化水素、並びにターシャリーブタノールからなる群から選ばれる反応原料の少なくとも1種を酸化するときの、反応原料の負荷量は、触媒1リットル当たり170~290リットル毎時[標準状態(温度0℃、101.325kPa)換算]であることが好ましく、触媒1リットル当たり200~250リットル毎時[標準状態(温度0℃、101.325kPa)換算]であることが特に好ましい。上記反応原料の負荷量が、触媒1リットル当たり150リットル毎時[標準状態(温度0℃、101.325kPa)換算]以上とは、上記単位触媒当たりの反応原料の処理負荷量を高めた状態を意味する。 In the third production method of the reaction product, the amount of reaction raw material when oxidizing at least one of the reaction raw materials selected from the group consisting of hydrocarbons having 3 and 4 carbon atoms and tertiary butanol, 150 liters per hour per liter of catalyst [standard state (temperature 0 ° C., 101.325 kPa) conversion] or more. When oxidizing at least one of the reaction raw materials selected from the group consisting of the above hydrocarbons having 3 and 4 carbon atoms and tertiary butanol, the loading amount of the reaction raw materials is 170 to 290 liters per liter of catalyst [standard] The state (converted at a temperature of 0 ° C. and 101.325 kPa) is preferable, and the conversion rate is particularly preferably 200 to 250 liters per hour per liter of catalyst [converted to a standard state (converted at a temperature of 0 ° C. and 101.325 kPa)]. More than 150 liters per hour [converted to the standard state (temperature 0 ° C., 101.325 kPa)] per 1 liter of catalyst means that the reaction raw material load is higher than the reaction raw material processing load per unit catalyst. To do.
 また、炭素数3及び4の不飽和脂肪族アルデヒドからなる群から選ばれる反応原料の少なくとも1種を酸化するときの、反応原料の負荷量が、触媒1リットル当たり160リットル毎時[標準状態(温度0℃、101.325kPa)換算]以上である。上記炭素数3及び4の不飽和脂肪族アルデヒドからなる群から選ばれる反応原料の少なくとも1種を酸化するときの、反応原料の負荷量が、触媒1リットル当たり180~300リットル毎時[標準状態(温度0℃、101.325kPa)換算]であることが好ましく、触媒1リットル当たり200~250リットル毎時[標準状態(温度0℃、101.325kPa)換算]であることが特に好ましい。上記反応原料の負荷量が、触媒1リットル当たり160リットル毎時[標準状態(温度0℃、101.325kPa)換算]以上とは、上記単位触媒当たりの反応原料の処理負荷量を高めた状態を意味する。 In addition, when oxidizing at least one of the reaction raw materials selected from the group consisting of unsaturated aliphatic aldehydes having 3 and 4 carbon atoms, the loading amount of the reaction raw materials is 160 liters per hour [standard state (temperature 0 ° C., 101.325 kPa) conversion] or more. When oxidizing at least one reaction raw material selected from the group consisting of the above-mentioned unsaturated aliphatic aldehydes having 3 and 4 carbon atoms, the loading amount of the reaction raw material is 180 to 300 liters per liter of catalyst [standard state ( The temperature is preferably 0 ° C. and 101.325 kPa), and particularly preferably 200 to 250 liters per hour per 1 liter of catalyst [standard state (temperature 0 ° C., 101.325 kPa) equivalent]. More than 160 liters per hour [converted to the standard state (temperature 0 ° C., 101.325 kPa)] per liter of catalyst means that the reaction raw material is loaded with a higher processing load of the reaction raw material per unit catalyst. To do.
 反応生成物の第三の製造方法においては、反応原料の転化率及び目的反応生成物の収率を向上させるために、複数の反応帯域に供給される熱媒体温度を独立して制御する。なお、反応生成物の第三の製造方法において温度の単位はセルシウス度[℃]である。 In the third production method of the reaction product, the temperature of the heat medium supplied to the plurality of reaction zones is controlled independently in order to improve the conversion rate of the reaction raw material and the yield of the target reaction product. In the third method for producing a reaction product, the temperature unit is the degree of Celsius [° C.].
 反応生成物の第三の製造方法において、反応原料混合物の入口に最も近接する反応帯域S1に供給される熱媒体の温度T(S1)は、反応帯域S1に隣接し、反応原料混合物の流れの下流に位置する反応帯域S2に供給される熱媒体の温度T(S2)より高いことが、反応原料の転化率及び目的反応生成物の収率を向上させるために重要である。 In the third production method of the reaction product, the temperature T (S1) of the heat medium supplied to the reaction zone S1 closest to the inlet of the reaction raw material mixture is adjacent to the reaction zone S1, and the flow of the reaction raw material mixture A temperature higher than the temperature T (S2) of the heat medium supplied to the reaction zone S2 located downstream is important for improving the conversion rate of the reaction raw material and the yield of the target reaction product.
 また、「T(S1)-T(S2)」は5℃以上であることがより好ましく、10℃以上であることがさらに好ましく、15℃以上であることが特に好ましい。なお、「T(S1)-T(S2)」は40℃以下であることが好ましい。 Further, “T (S1) -T (S2)” is more preferably 5 ° C. or more, further preferably 10 ° C. or more, and particularly preferably 15 ° C. or more. “T (S1) -T (S2)” is preferably 40 ° C. or lower.
 なお、上記反応帯域S2の、反応原料混合物の流れの下流に位置する反応帯域に供給される熱媒体の温度は、任意であり、温度T(S2)と同じであっても、異なっていてもよい。しかし、特に反応原料の転化率が90%以上の領域を含む反応帯域では温度T(S2)より、低い温度が好ましい。 The temperature of the heat medium supplied to the reaction zone located downstream of the flow of the reaction raw material mixture in the reaction zone S2 is arbitrary and may be the same as or different from the temperature T (S2). Good. However, a temperature lower than the temperature T (S2) is preferred particularly in a reaction zone including a region where the conversion rate of the reaction raw material is 90% or more.
 上記図41及び42に記載されたプレート式反応器の例では、反応帯域(S1)に供給される熱媒体の温度T(S1)は、反応帯域(S2)に供給される熱媒体の温度T(S2)より高い場合に、反応原料の転化率及び目的反応生成物の収率を向上させることが可能となる。 41 and 42, the temperature T (S1) of the heat medium supplied to the reaction zone (S1) is equal to the temperature T of the heat medium supplied to the reaction zone (S2). When higher than (S2), it is possible to improve the conversion rate of the reaction raw material and the yield of the target reaction product.
 また、反応原料混合物の出口に最も近接する反応帯域に供給される熱媒体の温度は、該反応帯域に隣接し、反応原料混合物の流れの上流に位置する反応帯域に供給される熱媒体の温度より低いことが、目的反応生成物の収率をより向上させるために、好ましい。また、該温度差の絶対値は5℃以上であることがより好ましく、10℃以上であることが特に好ましい。なお、該温度差の絶対値は30℃以下であることが好ましい。 The temperature of the heat medium supplied to the reaction zone closest to the outlet of the reaction raw material mixture is the temperature of the heat medium supplied to the reaction zone adjacent to the reaction zone and upstream of the flow of the reaction raw material mixture. A lower value is preferable in order to further improve the yield of the target reaction product. The absolute value of the temperature difference is more preferably 5 ° C. or higher, and particularly preferably 10 ° C. or higher. In addition, it is preferable that the absolute value of this temperature difference is 30 degrees C or less.
 反応生成物の第三の製造方法において、特定されない任意の反応帯域S(j)に供給される熱媒体の温度をT(Sj)とし、反応帯域S(j)に隣接し、反応原料混合物の流れの下流に位置する反応帯域S(j+1)に供給される熱媒体の温度をT(Sj+1)としたときに、前記T(Sj)と前記T(Sj+1)が、T(Sj)>T(Sj+1)、の関係を満たすことがより好ましい。 In the third production method of the reaction product, T (Sj) is the temperature of the heat medium supplied to any unspecified reaction zone S (j), and the reaction raw material mixture is adjacent to the reaction zone S (j). When the temperature of the heat medium supplied to the reaction zone S (j + 1) located downstream of the flow is T (Sj + 1), the T (Sj) and the T (Sj + 1) are T (Sj)> T ( It is more preferable to satisfy the relationship of Sj + 1).
 上記図41及び42に記載されたプレート式反応器の例では、反応帯域(S1)に供給される熱媒体の温度をT(S1)、反応帯域(S2)に供給される熱媒体の温度をT(S2)、反応帯域(S3)に供給される熱媒体の温度をT(S3)としたときに、T(S1)>T(S2)>T(S3)、の関係を満たすことが好ましいこととなる。 In the example of the plate reactor described in FIGS. 41 and 42, the temperature of the heat medium supplied to the reaction zone (S1) is T (S1), and the temperature of the heat medium supplied to the reaction zone (S2) is It is preferable to satisfy the relationship of T (S1)> T (S2)> T (S3), where T (S2) and the temperature of the heat medium supplied to the reaction zone (S3) are T (S3). It will be.
 反応生成物の第三の製造方法において、特定されない任意の反応帯域S(j)に供給される熱媒体の温度をT(Sj)とし、前記反応帯域S(j)に隣接し、反応原料混合物の流れの下流に位置する反応帯域S(j+1)に供給される前記熱媒体の温度をT(Sj+1)としたときに、前記T(Sj)と前記T(Sj+1)が、T(Sj)-T(Sj+1)≧5、の関係を満たすことが、目的反応生成物の収率をより向上させるために、より好ましい。また、T(Sj)-T(Sj+1)≧10であることがさらに好ましく、T(Sj)-T(Sj+1)≧15であることが特に好ましい。なお、T(Sj)-T(Sj+1)の値は、30以下であることが好ましい。 In the third production method of the reaction product, T (Sj) is the temperature of the heat medium supplied to any unspecified reaction zone S (j), and the reaction raw material mixture is adjacent to the reaction zone S (j). T (Sj) and T (Sj + 1) are T (Sj) −, where T (Sj + 1) is the temperature of the heat medium supplied to the reaction zone S (j + 1) located downstream of the flow of It is more preferable to satisfy the relationship of T (Sj + 1) ≧ 5 in order to further improve the yield of the target reaction product. Furthermore, T (Sj) −T (Sj + 1) ≧ 10 is more preferable, and T (Sj) −T (Sj + 1) ≧ 15 is particularly preferable. Note that the value of T (Sj) −T (Sj + 1) is preferably 30 or less.
 上述のように反応原料の転化率を最適に保つために、熱媒体の温度が調節される。反応生成物の第三の製造方法においては、反応の進行を促進して反応原料の転化率の向上を図りたいときには、反応原料混合物の流れ方向の上流に位置する反応帯域へ供給される熱媒体の温度を上げて反応を調節する。逆に、行過ぎた転化率を下げたいときには、先ず第1に、反応原料混合物の流れ方向の下流に位置する反応帯域に供給される熱媒体の温度を下げて反応転化率を調節する。 As described above, the temperature of the heat medium is adjusted in order to keep the conversion rate of the reaction raw material optimal. In the third production method of the reaction product, when it is desired to promote the progress of the reaction and improve the conversion rate of the reaction raw material, the heat medium supplied to the reaction zone located upstream in the flow direction of the reaction raw material mixture Adjust the reaction by raising the temperature. Conversely, when it is desired to lower the over-conversion rate, first, the reaction conversion rate is adjusted by lowering the temperature of the heat medium supplied to the reaction zone located downstream in the flow direction of the reaction raw material mixture.
 反応生成物の第三の製造方法において、プレート式反応器の反応生成物出口での反応原料の転化率は、90%以上であることが好ましく、より好ましくは95%以上であり、特に好ましくは97%以上である。 In the third production method of the reaction product, the conversion rate of the reaction raw material at the reaction product outlet of the plate reactor is preferably 90% or more, more preferably 95% or more, and particularly preferably. 97% or more.
 熱媒体は、複数の反応帯域にそれぞれ最適な温度で供給される。このとき、熱媒体を流す方向は、反応ガスの流れ方向と直交させることが好ましい。 The heat medium is supplied to each of the reaction zones at an optimum temperature. At this time, the direction in which the heat medium flows is preferably orthogonal to the flow direction of the reaction gas.
 また、熱媒体の入口温度と出口温度の温度差は0.5~10℃であることが好ましく、2~5℃であることがより好ましい。 Also, the temperature difference between the inlet temperature and the outlet temperature of the heat medium is preferably 0.5 to 10 ° C, more preferably 2 to 5 ° C.
 図42に示すプレート式反応器の場合は、熱媒体流路(60-1、60-2、60-3)のそれぞれにおいて、1~複数の流路毎に、熱媒体の流量、温度、及び流す方向を変えることも可能である。また、一つの反応帯域においても、1~複数の流路毎に、独立して同温の熱媒体を同じ方向に流す場合も、逆の方向に流す場合もある。また、ある反応帯域の熱媒体流路に供給され排出された熱媒体を同じあるいは別の反応帯域の熱媒体流路に供給することも可能である。 In the case of the plate reactor shown in FIG. 42, in each of the heat medium flow paths (60-1, 60-2, 60-3), the flow rate of the heat medium, temperature, and It is also possible to change the flow direction. Further, even in one reaction zone, the heat medium having the same temperature may flow independently in the same direction or flow in the opposite direction for each of one to a plurality of flow paths. It is also possible to supply the heat medium supplied to and discharged from the heat medium flow path in a certain reaction zone to the heat medium flow path in the same or another reaction zone.
 反応によって生じる熱を、前記伝熱プレートを隔てて除熱し、反応帯域内の触媒層内の温度を、より確実に独立して制御するため、反応帯域に供給される熱媒体の温度を安定的に制御することが肝要であり、熱媒体の温度はそれぞれ独立した温度制御手段を有することが好ましい。例えば、反応帯域S(j+1)からでた熱媒体を上流の反応帯域S(j)に還流するときも、温度制御手段で熱媒体温度T(Sj)を調整したあと、反応帯域S(j)に供給することが好ましい。また、他の反応帯域からの熱媒体や異なる温度の熱媒体と合流し、或いは分岐したあとで温度調整をし、反応帯域S(j)へ供給することも可能である。 The heat generated by the reaction is removed through the heat transfer plate, and the temperature in the catalyst layer in the reaction zone is more reliably and independently controlled, so that the temperature of the heat medium supplied to the reaction zone is stable. It is important to control the temperature of the heat medium, and it is preferable that the temperature of the heat medium has independent temperature control means. For example, when the heat medium from the reaction zone S (j + 1) is recirculated to the upstream reaction zone S (j), after adjusting the heat medium temperature T (Sj) by the temperature control means, the reaction zone S (j) It is preferable to supply to. It is also possible to adjust the temperature after joining or branching with a heat medium from another reaction zone or a heat medium having a different temperature, and supplying it to the reaction zone S (j).
 熱媒体流路に供給される熱媒体の温度は、200~600℃で供給されることが好ましい。反応原料が、炭素数3及び4の炭化水素、並びにターシャリーブタノールからなる群から選ばれる反応原料の少なくとも1種のときは、250~450℃で各反応帯域に供給されることが好ましく、より好ましくは、300~420℃である。該反応原料が、プロピレンの場合は、複数の反応帯域に供給される熱媒体の温度が250~400℃であることが好ましく、320~400℃であることがより好ましい。 The temperature of the heat medium supplied to the heat medium flow path is preferably 200 to 600 ° C. When the reaction raw material is at least one of the reaction raw materials selected from the group consisting of hydrocarbons having 3 and 4 carbon atoms and tertiary butanol, it is preferably supplied to each reaction zone at 250 to 450 ° C. Preferably, it is 300 to 420 ° C. When the reaction raw material is propylene, the temperature of the heat medium supplied to the plurality of reaction zones is preferably 250 to 400 ° C, and more preferably 320 to 400 ° C.
 一方、反応原料が、炭素数3及び4の不飽和脂肪族アルデヒドからなる群から選ばれる反応原料の少なくとも1種のときは、200~350℃で各反応帯域に供給されることが好ましく、より好ましくは、250~330℃である。該反応原料がアクロレインの場合は、複数の反応帯域に供給される熱媒体の温度が250~320℃であることが好ましい。 On the other hand, when the reaction raw material is at least one reaction raw material selected from the group consisting of unsaturated aliphatic aldehydes having 3 and 4 carbon atoms, it is preferably supplied to each reaction zone at 200 to 350 ° C. Preferably, it is 250 to 330 ° C. When the reaction raw material is acrolein, the temperature of the heat medium supplied to the plurality of reaction zones is preferably 250 to 320 ° C.
 同じ反応帯域では、熱媒体の温度は基本的に同じであることが好ましいが、ホットスポット現象が発生しない範囲で変化させることは可能である。 In the same reaction zone, it is preferable that the temperature of the heat medium is basically the same, but it is possible to change the temperature within a range where the hot spot phenomenon does not occur.
 熱媒体流路に供給される熱媒体の流量は反応熱量と伝熱抵抗から決定される。しかし、伝熱抵抗は、通常、液体である熱媒体より反応ガスの気体側が大きいので問題になることは少ないが、熱媒体流路内の液線速度は好適には0.3m/s以上が採用される。反応ガス側伝熱抵抗に比較し、熱媒体側の抵抗が小さく問題にならない値とするには、0.5~1.0m/sが最も適当である。大きすぎると熱媒体の循環ポンプの動力が大きくなって経済面で好ましくない。なお、用いられる熱媒体は、公知のものを使用することが可能である。 The flow rate of the heat medium supplied to the heat medium flow path is determined from the reaction heat amount and the heat transfer resistance. However, the heat transfer resistance is less likely to cause a problem because the gas side of the reaction gas is usually larger than the liquid heat medium, but the liquid linear velocity in the heat medium flow path is preferably 0.3 m / s or more. Adopted. In order to make the resistance on the heat medium side small and not cause a problem compared to the reaction gas side heat transfer resistance, 0.5 to 1.0 m / s is most suitable. If it is too large, the power of the circulation pump of the heat medium becomes large, which is not preferable in terms of economy. In addition, the heat medium used can use a well-known thing.
 反応生成物の第三の製造方法において、反応圧力は、通常、常圧~3,000kPa(キロパスカル)、好ましくは常圧~1,000kPa(キロパスカル)、より好ましくは常圧~300kPaである。 In the third production method of the reaction product, the reaction pressure is usually atmospheric pressure to 3,000 kPa (kilopascal), preferably atmospheric pressure to 1,000 kPa (kilopascal), more preferably atmospheric pressure to 300 kPa. .
 次に実施例を用いて、具体的に説明するが、本発明は何ら実施例に限定されるものではない。 Next, although it demonstrates concretely using an Example, this invention is not limited to an Example at all.
(実施例1)
 第一のプレート式反応器は触媒層での熱の授受が効率的にできるので、熱の授受を必要とする反応であれば、いずれの原料、触媒、反応に対しても適用可能であるが、ここではプロピレンを酸素で酸化して、アクロレイン、アクリル酸を製造する反応を実施例として示す。
Example 1
Since the first plate reactor can efficiently transfer heat in the catalyst layer, it can be applied to any raw material, catalyst, and reaction as long as the reaction requires heat transfer. Here, a reaction for producing acrolein and acrylic acid by oxidizing propylene with oxygen is shown as an example.
 プロピレンを分子状酸素により酸化してアクロレインを製造するに当たり、触媒を、日本国特開昭63-54942号公報、日本国特公平6-13096号公報、日本国特公平6-38918号公報等に開示される方法により、以下のように製造した。 In the production of acrolein by oxidizing propylene with molecular oxygen, the catalyst is disclosed in JP-A 63-54942, JP-B 6-13096, JP-B 6-38918, etc. According to the disclosed method, it was produced as follows.
(触媒の製造)
 パラモリブテン酸アンモン94重量部を純水400重量部に加熱溶解した。一方、硝酸第二鉄7.2重量部、硝酸コバルト25重量部及び硝酸ニッケル38重量部を純水60重量部に加熱溶解させた。これらの溶液を十分に攪拌しながら混合し、スラリー状の溶液を得た。
(Manufacture of catalyst)
94 parts by weight of paramolybdate ammon was heated and dissolved in 400 parts by weight of pure water. On the other hand, 7.2 parts by weight of ferric nitrate, 25 parts by weight of cobalt nitrate and 38 parts by weight of nickel nitrate were dissolved by heating in 60 parts by weight of pure water. These solutions were mixed with sufficient stirring to obtain a slurry-like solution.
 次に、純水40重量部にホウ砂0.85重量部及び硝酸カリウム0.36重量部を加熱下で溶解させ、上記スラリーに加えた。次に粒状シリカ64重量部を加えて攪拌した。次に予めMgを0.8重量%複合した次炭酸ビスマス58重量部を加えて攪拌混合し、このスラリーを加熱乾燥した後、空気雰囲気で300℃、1時間熱処理し、得られた粒状固体を、成型機を用いて直径4mm、高さ3mmの錠剤に打錠成型し、次に500℃、4時間の焼成を行って触媒Aを得た。 Next, 0.85 parts by weight of borax and 0.36 parts by weight of potassium nitrate were dissolved in 40 parts by weight of pure water under heating and added to the slurry. Next, 64 parts by weight of granular silica was added and stirred. Next, 58 parts by weight of bismuth carbonate mixed with 0.8% by weight of Mg in advance was added and mixed by stirring. After the slurry was heated and dried, it was heat-treated at 300 ° C. for 1 hour in an air atmosphere. Using a molding machine, tablets were molded into tablets having a diameter of 4 mm and a height of 3 mm, and then calcined at 500 ° C. for 4 hours to obtain catalyst A.
 得られた触媒Aは、Mo(12)Bi(5)Ni(3)Co(2)Fe(0.4)Na(0.2)Mg(0.4)B(0.2)K(0.1)Si(24)O(x)(酸素の組成xは各金属の酸化状態によって定まる値である)の組成比を有する複合酸化物であった。 The obtained catalyst A has Mo (12) Bi (5) Ni (3) Co (2) Fe (0.4) Na (0.2) Mg (0.4) B (0.2) K (0 .1) A composite oxide having a composition ratio of Si (24) O (x) (the oxygen composition x is a value determined by the oxidation state of each metal).
 図1のプレート式反応器と同様の構成を有するプレート式反応器Aを用いてプロピレンの酸化反応を行った。プレート式反応器Aは、厚さ1mmのステンレスプレートを成形し、成形されたプレートの2枚を接合して形成された伝熱プレートを有し、伝熱管1の長径(L)は40mmであり、伝熱管の短径(H)は20mmであり、伝熱プレートの軸間の距離(P)は26mmであり、反応帯域を一つ有し、触媒Aを収容している。成形されたプレートの形状を、CCDレーザー変位計((株)キーエンス社製 LK-G152)によって測定したところ、成形されたプレートにおける成形の設計値に対する誤差は±0.2mm未満であった。プレート式反応器Aにおいて、伝熱プレートは、その軸が鉛直方向となるように配置されている。 The oxidation reaction of propylene was performed using a plate reactor A having the same configuration as the plate reactor of FIG. The plate reactor A has a heat transfer plate formed by forming a stainless steel plate having a thickness of 1 mm and joining two of the formed plates, and the long diameter (L) of the heat transfer tube 1 is 40 mm. The short diameter (H) of the heat transfer tube is 20 mm, the distance (P) between the axes of the heat transfer plate is 26 mm, has one reaction zone, and accommodates the catalyst A. When the shape of the molded plate was measured with a CCD laser displacement meter (manufactured by Keyence Co., Ltd., LK-G152), the error relative to the design value of the molded plate was less than ± 0.2 mm. In the plate reactor A, the heat transfer plate is arranged so that its axis is in the vertical direction.
 プレート式反応器Aにおける伝熱プレートの表面間の距離の設計値は、一方の伝熱プレートの伝熱管による凸縁と他方の伝熱プレートの伝熱管の連結部による凹縁との間の距離で15mmであった。前記伝熱プレートの表面間の距離を、伝熱プレートの軸方向に沿って7箇所、伝熱プレートにおける伝熱管の軸方向に沿って3箇所、合計で21箇所測定したところ、測定点の81%である17箇所で、前記設計値と実測値との差が0.2mm以内であった。なお、伝熱プレートの表面間の距離は、長さ50cm、直径4mmの棒部材の先端から30mmの位置に、直径1mm、長さ15.2mmと14.8mmの測定棒部材を直角に取り付けた2種類の測定用金具を、伝熱プレートの隙間に挿入して測定した。プレート式反応器Aは、伝熱プレートの表面間の距離における設計値に対する実測値の差が0mmである場合とする。 The design value of the distance between the surfaces of the heat transfer plates in the plate reactor A is the distance between the convex edge by the heat transfer tube of one heat transfer plate and the concave edge by the connection portion of the heat transfer tube of the other heat transfer plate. 15 mm. When the distance between the surfaces of the heat transfer plates was measured in 7 places along the axial direction of the heat transfer plates and 3 places along the axial direction of the heat transfer tubes in the heat transfer plate, a total of 21 points were measured. The difference between the design value and the actual measurement value was 17 mm or less at 17 points. In addition, the distance between the surfaces of the heat transfer plate was set at a position of 30 mm from the tip of a bar member having a length of 50 cm and a diameter of 4 mm, and a measuring bar member having a diameter of 1 mm, lengths of 15.2 mm and 14.8 mm was attached at a right angle. Two types of measurement fittings were inserted into the gaps between the heat transfer plates and measured. In the plate reactor A, the difference between the measured values with respect to the design value in the distance between the surfaces of the heat transfer plates is 0 mm.
 熱媒には硝酸塩類混合物溶融塩(ナイター)を用いた。熱媒を、反応帯域に応じた温度に調整し、伝熱管に供給した。熱媒は熱媒の流速が毎秒0.7m以上となるように供給した。 A molten nitrate salt (nighter) was used as the heating medium. The heat medium was adjusted to a temperature corresponding to the reaction zone and supplied to the heat transfer tube. The heating medium was supplied so that the flow rate of the heating medium was 0.7 m or more per second.
 原料ガスとして、プロピレン濃度が9.5モル%、水濃度9.5モル%、酸素濃度14.2モル%、窒素66.8%である反応原料混合ガスを毎時6750リットル(標準状態)の割合で、反応器入口の圧力が0.07MPaG(メガパスカルゲージ)となるようにプレート式反応器に供給した。 As a raw material gas, a reaction raw material mixed gas having a propylene concentration of 9.5 mol%, a water concentration of 9.5 mol%, an oxygen concentration of 14.2 mol%, and nitrogen of 66.8% at a rate of 6750 liters per hour (standard state) Then, the pressure was supplied to the plate reactor so that the pressure at the inlet of the reactor became 0.07 MPaG (megapascal gauge).
 プレート式反応器Aにおける伝熱管の長径、短径、反応帯域の長さ、及び伝熱プレート間の距離(P)を表1に示す。また熱媒の温度、原料であるプロピレン(PP)の転化率、目的物であるアクロレイン(ACR)とアクリル酸(AA)の合計収率をプロピレン(PP)転化率で割って得られる選択率、及び触媒層のピーク温度を表2に示す。 Table 1 shows the major axis and minor axis of the heat transfer tube in the plate reactor A, the length of the reaction zone, and the distance (P) between the heat transfer plates. The temperature of the heat medium, the conversion rate of propylene (PP) as a raw material, the selectivity obtained by dividing the total yield of acrolein (ACR) and acrylic acid (AA) as target products by the conversion rate of propylene (PP), Table 2 shows the peak temperature of the catalyst layer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例2)
 伝熱プレートの軸間の距離(P)が26.5mmである以外はプレート式反応器Aと同じ構造を有するプレート式反応器Bを用い、まず、実施例1と同様の条件にて反応を実施した。プレート式反応器Bにおける、伝熱プレートの表面間の距離の実測値は、一方の伝熱プレートの凸縁と他方の伝熱プレートの凹縁との間の距離で、実施例1と同様に前記距離を測定したところ、測定点の76%である16箇所で15.5±0.2mmであった。プレート式反応器Bは、前記設計値に対する実測値の差が+0.5mmである場合に相当する。この反応において、触媒層のピーク温度は419℃となり、さらに増大したので、一旦反応を停止した。
(Example 2)
First, the reaction was carried out under the same conditions as in Example 1, using a plate reactor B having the same structure as the plate reactor A except that the distance (P) between the axes of the heat transfer plate was 26.5 mm. Carried out. The measured value of the distance between the surfaces of the heat transfer plates in the plate reactor B is the distance between the convex edge of one heat transfer plate and the concave edge of the other heat transfer plate, as in Example 1. The distance was measured and found to be 15.5 ± 0.2 mm at 16 points, which is 76% of the measurement points. The plate reactor B corresponds to the case where the difference between the measured values with respect to the design value is +0.5 mm. In this reaction, the peak temperature of the catalyst layer reached 419 ° C. and further increased, so the reaction was once stopped.
 プレート式反応器Bの触媒層のピーク温度が、実施例1における触媒層のピーク温度と同じになるように、熱媒の温度を338℃に下げた以外は実施例1と同様に反応を実施したところ、表2に示すように、実施例1と同等の反応成績が得られた。 The reaction was carried out in the same manner as in Example 1 except that the temperature of the heating medium was lowered to 338 ° C. so that the peak temperature of the catalyst layer in the plate reactor B was the same as the peak temperature of the catalyst layer in Example 1. As a result, as shown in Table 2, reaction results equivalent to those of Example 1 were obtained.
(実施例3)
 伝熱プレートの軸間の距離(P)が27.5mmである以外はプレート式反応器Aと同じ構造を有するプレート式反応器Cを用い、まず、実施例1と同様の条件にて反応を実施した。プレート式反応器Cにおける、伝熱プレートの表面間の距離の実測値は、一方の伝熱プレートの凸縁と他方の伝熱プレートの凹縁との間の距離で、実施例1と同様に前記距離を測定したところ、測定点の86%である18箇所で16 .5±0.2mmであった。プレート式反応器Cは、前記設計値に対する実測値の差が+1.5mmである場合に相当する。この反応において、触媒層のピーク温度は442℃となり、さらに増大したので、一旦反応を停止した。
(Example 3)
First, the reaction was carried out under the same conditions as in Example 1, using a plate reactor C having the same structure as the plate reactor A except that the distance (P) between the axes of the heat transfer plates was 27.5 mm. Carried out. The measured value of the distance between the surfaces of the heat transfer plates in the plate reactor C is the distance between the convex edge of one heat transfer plate and the concave edge of the other heat transfer plate, as in Example 1. When the distance was measured, it was 16 at 18 points which is 86% of the measurement points. It was 5 ± 0.2 mm. The plate type reactor C corresponds to the case where the difference between the measured value and the design value is +1.5 mm. In this reaction, the peak temperature of the catalyst layer reached 442 ° C. and further increased, so the reaction was once stopped.
 プレート式反応器Cの触媒層のピーク温度が、実施例1における触媒層のピーク温度と同じになるように、熱媒の温度を330℃に下げた以外は実施例1と同様に反応を実施したところ、表2に示すように、実施例1と同等の反応成績が得られた。 The reaction was carried out in the same manner as in Example 1 except that the temperature of the heating medium was lowered to 330 ° C. so that the peak temperature of the catalyst layer in the plate reactor C was the same as the peak temperature of the catalyst layer in Example 1. As a result, as shown in Table 2, reaction results equivalent to those of Example 1 were obtained.
(比較例1)
 伝熱プレートの軸間の距離(P)が28.5mmである以外はプレート式反応器Aと同じ構造を有するプレート式反応器Dを用い、まず、実施例3と同様の条件にて反応を実施した。プレート式反応器Dにおける、伝熱プレートの表面間の距離の実測値は、一方の伝熱プレートの凸縁と他方の伝熱プレートの凹縁との間の距離で、実施例1と同様に前記距離を測定したところ、測定点の90%である19箇所で17 .5±0.2mmであった。プレート式反応器Dは、前記設計値に対する実測値の差が+2.5mmである場合に相当する。この反応において、触媒層のピーク温度は450℃を超え、暴走反応が起こる可能性があることから一旦反応を停止した。熱媒の温度を300℃に下げた以外は実施例1と同様に反応を実施したが、転化率が50%を超えず、反応が進まなかった。
(Comparative Example 1)
First, the reaction was performed under the same conditions as in Example 3 using a plate reactor D having the same structure as the plate reactor A except that the distance (P) between the axes of the heat transfer plates was 28.5 mm. Carried out. The measured value of the distance between the surfaces of the heat transfer plates in the plate reactor D is the distance between the convex edge of one heat transfer plate and the concave edge of the other heat transfer plate, as in Example 1. When the distance was measured, 17 points were obtained at 19 points which were 90% of the measurement points. It was 5 ± 0.2 mm. The plate reactor D corresponds to the case where the difference between the measured values with respect to the design value is +2.5 mm. In this reaction, the peak temperature of the catalyst layer exceeded 450 ° C., and since the runaway reaction might occur, the reaction was once stopped. The reaction was carried out in the same manner as in Example 1 except that the temperature of the heat medium was lowered to 300 ° C. However, the conversion did not exceed 50% and the reaction did not proceed.
(実施例4)
 二つの反応帯域を有するプレート式反応器Eを用いてプロピレンの酸化を行った。プレート式反応器Eにおいて、第一反応帯域は、プレート式反応器Bと同じ構造である。第一反応帯域に続く第二反応帯域は、伝熱管の短径(H)が16mmであり、反応帯域の長さが400mmであり、伝熱プレートの軸間の距離が27.5mmであるプレート式反応器と同じ構造である。
Example 4
Propylene oxidation was performed using a plate reactor E having two reaction zones. In the plate reactor E, the first reaction zone has the same structure as the plate reactor B. The second reaction zone following the first reaction zone is a plate in which the short diameter (H) of the heat transfer tube is 16 mm, the length of the reaction zone is 400 mm, and the distance between the axes of the heat transfer plate is 27.5 mm It has the same structure as the type reactor.
 プレート式反応器Eにおける第一反応帯域では、伝熱プレートの表面間の距離の設計値は、一方の伝熱プレートの凸縁と他方の伝熱プレートの凹縁との間の距離で15.5mmであった。第一反応帯域は、伝熱プレートの表面間の距離において平均値に対する実測値の差が+0.5mmである場合に相当する。またプレート式反応器Eにおける第二反応帯域では、伝熱プレートの表面間の距離の設計値は、一方の伝熱プレートの凸縁と他方の伝熱プレートの凹縁との間の距離で18.5mmであった。また、実施例1と同様に前記距離を測定したところ、測定点の87%である13箇所で、実測値が18.5±0.2mmであった。第二反応帯域は、伝熱プレートの表面間の距離において平均値に対する実測値の差が+1.5mmである場合に相当する。 In the first reaction zone in the plate reactor E, the design value of the distance between the surfaces of the heat transfer plates is the distance between the convex edge of one heat transfer plate and the concave edge of the other heat transfer plate. It was 5 mm. The first reaction zone corresponds to a case where the difference between the measured values with respect to the average value is +0.5 mm in the distance between the surfaces of the heat transfer plates. In the second reaction zone in the plate reactor E, the design value of the distance between the surfaces of the heat transfer plates is 18 as the distance between the convex edge of one heat transfer plate and the concave edge of the other heat transfer plate. 0.5 mm. Moreover, when the said distance was measured similarly to Example 1, the measured value was 18.5 +/- 0.2mm in 13 places which are 87% of a measurement point. The second reaction zone corresponds to a case where the difference between the measured values with respect to the average value is +1.5 mm in the distance between the surfaces of the heat transfer plates.
 各反応帯域において、触媒層のピーク温度が実施例1における触媒層のピーク温度と同じになるように、第一の反応帯域における熱媒の温度を330℃とし、第二の反応帯域の熱媒の温度を328℃とした以外は、実施例1と同様の条件にて反応を実施した。その結果、表2に示すように、実施例1と同様に優れた反応成績が得られた。 In each reaction zone, the temperature of the heating medium in the first reaction zone was set to 330 ° C. so that the peak temperature of the catalyst layer was the same as the peak temperature of the catalyst layer in Example 1, and the heating medium in the second reaction zone was The reaction was carried out under the same conditions as in Example 1 except that the temperature was 328 ° C. As a result, as shown in Table 2, excellent reaction results were obtained in the same manner as in Example 1.
(比較例2)
 二つの反応帯域を有するプレート式反応器Fを用いてプロピレンの酸化を行った。プレート式反応器Fにおいて、第一反応帯域は、プレート式反応器Dと同じ構造であり、第二反応帯域は、実施例4における第二反応帯域と同じである。プレート式反応器Fにおける第一反応帯域は、前記設計値に対する実測値の差が+2.5mmである場合に相当し、プレート式反応器Fにおける第二反応帯域は、実施例4と同様に前記設計値に対する実測値の差が+1.5mmである場合に相当する。
(Comparative Example 2)
Propylene oxidation was performed using a plate reactor F having two reaction zones. In the plate reactor F, the first reaction zone has the same structure as the plate reactor D, and the second reaction zone is the same as the second reaction zone in Example 4. The first reaction zone in the plate reactor F corresponds to the case where the difference between the measured values with respect to the design value is +2.5 mm, and the second reaction zone in the plate reactor F is the same as in Example 4. This corresponds to the case where the difference between the measured value and the design value is +1.5 mm.
 実施例4と同じ熱媒の温度とした以外は実施例1と同様の条件で反応を実施した、その結果、触媒層のピーク温度が450℃を超え、暴走反応が起こる可能性があることから、一旦反応を停止した。第一の反応帯域における熱媒の温度を300℃に下げた以外は実施例1と同様に反応を実施したが、転化率が50%を超えず、反応が進まなかった。 The reaction was carried out under the same conditions as in Example 1 except that the temperature of the heating medium was the same as in Example 4. As a result, the peak temperature of the catalyst layer exceeded 450 ° C., and a runaway reaction might occur. The reaction was once stopped. The reaction was carried out in the same manner as in Example 1 except that the temperature of the heat medium in the first reaction zone was lowered to 300 ° C., but the conversion did not exceed 50% and the reaction did not proceed.
(実施例5)
 プレート式反応器として、充填テスト用に図16に示すものを製作した。伝熱プレートは6枚設置した。伝熱プレートにおける伝熱管の軸方向における長さ(伝熱プレートの幅)は5mである。伝熱プレートの下部には通気板(多孔板)の係止部材を設置した。この通気板からの伝熱プレートの軸方向における伝熱プレートの高さは、1.88mで、伝熱管の無い直線部が前記通気板から上方に150mm形成されている。仕切りは50cm間隔で設置されている。仕切りは、図17に示す形状のもので、その板厚は5mmであった。
(Example 5)
A plate reactor shown in FIG. 16 was manufactured for a filling test. Six heat transfer plates were installed. The length in the axial direction of the heat transfer tube in the heat transfer plate (the width of the heat transfer plate) is 5 m. A locking member for a ventilation plate (perforated plate) was installed below the heat transfer plate. The height of the heat transfer plate in the axial direction of the heat transfer plate from the vent plate is 1.88 m, and a straight portion without the heat transfer tube is formed 150 mm upward from the vent plate. Partitions are installed at 50 cm intervals. The partition was of the shape shown in FIG. 17, and the plate thickness was 5 mm.
 伝熱プレートは、板厚が1mmのステンレス(SUS304L)製鋼板を、その断面形状が、円弧状の凹部と凹部間に形成される突縁とが連続する形状となるように成形し、成形された二枚の鋼板における前記突縁同士を溶接することによって製作した。この伝熱プレートにおける伝熱管の仕様を以下の表3に示す。なお、前記プレート式反応器において、隣り合う伝熱プレートにおける前記直線部間距離は24mmであった。 The heat transfer plate is formed by molding a stainless steel (SUS304L) steel plate having a thickness of 1 mm so that the cross-sectional shape thereof is a shape in which an arcuate recess and a protruding edge formed between the recesses are continuous. It was manufactured by welding the protruding edges of two steel plates. The specifications of the heat transfer tube in this heat transfer plate are shown in Table 3 below. In the plate reactor, the distance between the straight portions in adjacent heat transfer plates was 24 mm.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 前記プレート式反応器において、隣り合う伝熱プレートと仕切りとによって形成された区画に触媒を充填した。触媒には、Mo(12)Bi(5)Co(3)Ni(2)Fe(0.4)Na(0.4)B(0.2)K(0.08)Si(24)O(x)の組成の複合金属酸化物粉末を調製し、これを成型して外径4mmφ、高さ3mmの円柱状に成形し、焼成してなる触媒を用いた。ここで、Mo、Bi、Co、Ni、Fe、Na、B、K、Si、Oは原子記号であり、O(x)の(x)は各金属酸化物の酸化状態によって定まる値である。 In the plate reactor, a catalyst was packed in a compartment formed by adjacent heat transfer plates and partitions. The catalyst includes Mo (12) Bi (5) Co (3) Ni (2) Fe (0.4) Na (0.4) B (0.2) K (0.08) Si (24) O ( A composite metal oxide powder having the composition x) was prepared, molded, molded into a cylindrical shape having an outer diameter of 4 mmφ and a height of 3 mm, and baked. Here, Mo, Bi, Co, Ni, Fe, Na, B, K, Si, and O are atomic symbols, and (x) of O (x) is a value determined by the oxidation state of each metal oxide.
 触媒の充填には、仕切りの間隔50cmと同じ幅を有する振動フィーダを用いた。1L(リットル)/毎分以下(約0.8~0.9L/min)の充填速度で前記区画に触媒を供給した。より詳しくは、触媒を11.6リットル計量し、それぞれビニール袋に小分けしたもの33袋を準備し、前記振動フィーダで各区画に充填した。各区画の容積から求めた充填高さの計算理論値は182.5cmである。 For the catalyst filling, a vibrating feeder having the same width as the partition interval of 50 cm was used. The catalyst was supplied to the compartment at a filling rate of 1 L (liter) / min or less (about 0.8 to 0.9 L / min). More specifically, 11.6 liters of the catalyst was weighed and 33 bags each divided into plastic bags were prepared, and each compartment was filled with the vibration feeder. The calculated theoretical value of the filling height obtained from the volume of each compartment is 182.5 cm.
 その後、充填層高さを測定するため、形成された触媒層の上面をならして、伝熱プレートの上端との距離を測定し、この距離と前記通気板からの伝熱プレートの高さとの差から充填高さを決定した。この距離の測定は、一区画において、5cmの間隔で11箇所行った。振動フィーダによる触媒供給速度のバラつきがあり、一時的に供給速度が大きくなるときもあった。極端に供給速度が振れたときは、触媒層高さが大きくなり、時にはブリッジングが発生し、伝熱プレート間区画から溢れることもあったが、その時は、区画下部に取り付けられた係止部材を外し、通気板を取り外して、触媒を抜き出し、再度充填を行った。再充填は、充填作業の総数300回中、合計で3回実施すれば十分であった。 Thereafter, in order to measure the height of the packed bed, the upper surface of the formed catalyst layer is leveled, the distance from the upper end of the heat transfer plate is measured, and the distance between the distance and the height of the heat transfer plate from the vent plate is measured. The filling height was determined from the difference. This distance was measured at 11 points at intervals of 5 cm in one section. There was a variation in the catalyst supply speed by the vibration feeder, and the supply speed sometimes increased temporarily. When the supply speed fluctuates extremely, the catalyst layer height increases, sometimes bridging occurs, and sometimes overflows from the section between the heat transfer plates, but at that time, the locking member attached to the lower part of the section , The vent plate was removed, the catalyst was extracted and refilled. It was sufficient to carry out refilling three times in total, out of a total of 300 filling operations.
 充填層高の測定結果から、触媒層の層高は、理論値から±5cm以内であった。触媒層の高さは、前記理論値に対して±2.7%のバラつきを有していた。この結果から、前記仕切りを有するプレート式反応器では、前記区画毎に触媒を充填することによって、前記隙間に非常に均一に触媒を充填することができることがわかった。 From the measurement result of the packed bed height, the height of the catalyst layer was within ± 5 cm from the theoretical value. The height of the catalyst layer had a variation of ± 2.7% with respect to the theoretical value. From this result, it was found that in the plate reactor having the partition, the catalyst can be filled very uniformly into the gap by filling the catalyst in each compartment.
(実施例6)
 反応生成物の第三の製造方法に係る本実施例において用いられる、反応原料の転化率、目的反応生成物の選択率、目的反応生成物の収率、及び反応原料の負荷量の計算方法を下記に記す。
<1> 反応原料(プロピレン、アクロレイン等)の転化率[%] =
(反応器で他物質に転化した反応原料のモル数)/(反応器に供給された反応原料のモル数)×100
<2>目的反応生成物の選択率[%] =(反応器出口における目的反応生成物のモル数)/(反応器で他物質に転化した反応原料のモル数)×100
<3>目的反応生成物の収率[%] =
(反応器出口における目的反応生成物のモル数)/(反応器に供給された反応原料のモル数)×100
<4>反応原料の負荷量[NL/L・hr] =
反応原料の毎時供給量L[リットル][標準状態換算]/反応に供される触媒量L[リットル]
 ここで、標準状態とは、温度0℃、101.325kPa(絶対圧)におかれた状態をいう。
(Example 6)
The calculation method of the conversion rate of the reaction raw material, the selectivity of the target reaction product, the yield of the target reaction product, and the loading amount of the reaction raw material used in the present example relating to the third production method of the reaction product Described below.
<1> Conversion rate of reaction raw materials (propylene, acrolein, etc.) [%] =
(Mole number of reaction raw material converted to other substance in reactor) / (Mole number of reaction raw material supplied to reactor) × 100
<2> Selectivity of target reaction product [%] = (number of moles of target reaction product at reactor outlet) / (number of moles of reaction raw material converted to other substances in reactor) x 100
<3> Yield of target reaction product [%] =
(Mole number of target reaction product at reactor outlet) / (Mole number of reaction raw material supplied to reactor) × 100
<4> Load of reaction raw material [NL / L · hr] =
Hourly supply amount of reaction raw material L [liter] [converted to standard state] / catalyst amount provided for reaction L [liter]
Here, the standard state refers to a state at a temperature of 0 ° C. and 101.325 kPa (absolute pressure).
 プロピレンを分子状酸素により接触気相酸化し、アクリル酸を製造するに当たり、プロピレンからアクロレイン及びアクリル酸に転換する前段用触媒としてMo(12)Bi(5)Co(3)Ni(2)Fe(0.4)Na(0.4)B(0.2)K(0.08)Si(24)O(x)の組成の金属酸化物粉末を調製し、これを成型して外径4mmφ、高さ3mmの円筒状ペレット触媒を得た。更にアクロレインをアクリル酸に転換する後段用触媒として、Mo(12)V(2.4)Ni(15)Nb(1)Cu(1)Sb(59)Si(7)O(x)の組成の金属酸化物粉末を調製し、この粉末を成型して、外径5mmφ、内径2mmφ、及び高さ3mmのリング形状の触媒を得た。ここで、O(x)の(x)は各金属酸化物の酸化状態によって定まる値である。 In the production of acrylic acid by catalytic vapor phase oxidation of propylene with molecular oxygen, Mo (12) Bi (5) Co (3) Ni (2) Fe () is used as a pre-stage catalyst for converting propylene to acrolein and acrylic acid. A metal oxide powder having a composition of 0.4) Na (0.4) B (0.2) K (0.08) Si (24) O (x) was prepared and molded to obtain an outer diameter of 4 mmφ, A cylindrical pellet catalyst having a height of 3 mm was obtained. Furthermore, as a catalyst for the latter stage for converting acrolein to acrylic acid, the composition of Mo (12) V (2.4) Ni (15) Nb (1) Cu (1) Sb (59) Si (7) O (x) A metal oxide powder was prepared, and this powder was molded to obtain a ring-shaped catalyst having an outer diameter of 5 mmφ, an inner diameter of 2 mmφ, and a height of 3 mm. Here, (x) of O (x) is a value determined by the oxidation state of each metal oxide.
 プレート式反応器には図42に示す構造のものを用いた。波形形状の薄いステンレスプレート(板厚1mm)を2枚接合して反応温度調節用の熱媒体流路を形成した。図43に示す波形形状の周期(L)、高さ(H)及び波数を表4に示す。 A plate reactor having the structure shown in FIG. 42 was used. Two thin corrugated stainless steel plates (thickness 1 mm) were joined to form a heat medium flow path for adjusting the reaction temperature. Table 4 shows the period (L), height (H), and wave number of the waveform shape shown in FIG.
 該接合された波形伝熱プレートの一対に、前段反応器には前段用触媒を、後段反応器には後段用触媒を、それぞれ充填して触媒層を形成した。前段反応器及び後段反応器とも触媒層は波形形状の仕様によって、表4に示すように、反応ガスの流れ方向の上流から反応帯域(S1)、反応帯域(S2)及び反応帯域(S3)に分割した。1対の波形伝熱プレートは図42に示すように平行に設置し、その間隔(図43に示すP)を26mmに調整した。伝熱プレートの幅は114mmであった。 A pair of the corrugated heat transfer plates joined to each other was filled with a pre-stage catalyst in a pre-reactor and a post-stage catalyst in a post-reactor to form a catalyst layer. As shown in Table 4, the catalyst layers of the upstream reactor and the downstream reactor are changed to the reaction zone (S1), reaction zone (S2), and reaction zone (S3) from the upstream in the flow direction of the reaction gas as shown in Table 4. Divided. A pair of corrugated heat transfer plates were installed in parallel as shown in FIG. 42, and the interval (P shown in FIG. 43) was adjusted to 26 mm. The width of the heat transfer plate was 114 mm.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示す触媒量は各反応器を垂直にし、触媒層最下部に板を取り付けて上部より水を注いで測った体積測定の結果である。該触媒量を反応原料の負荷量の計算に用いた。 The amount of catalyst shown in Table 4 is the result of volume measurement measured by pouring water from the top with a plate attached to the bottom of the catalyst layer with each reactor vertical. The amount of the catalyst was used for calculating the amount of reaction raw material.
 反応原料として、前段反応器の入口(反応帯域(S1))からプロピレンを9.5モル%含有する反応原料混合物(以下、反応混合ガス)を通気した。反応混合ガスは、プロピレン以外に、酸素15.2モル%、窒素65.9モル%及び水蒸気9.4モル%を含む。 As a reaction raw material, a reaction raw material mixture (hereinafter referred to as reaction mixed gas) containing 9.5 mol% of propylene was vented from the inlet (reaction zone (S1)) of the preceding reactor. In addition to propylene, the reaction gas mixture contains 15.2 mol% oxygen, 65.9 mol% nitrogen, and 9.4 mol% water vapor.
 表4に示す前段反応器に上記前段触媒を充填し、プロピレンの酸化反応を行った。熱媒体には綜研テクニクス(株)社製のNeoSK-OIL(登録商標)1400を用いそれぞれ温度を調節した後、反応帯域(S1)~反応帯域(S3)へ供給した。熱媒体の供給量は熱媒体の流速が毎秒0.7m以上となるようにした。 The above-mentioned pre-stage catalyst was filled in the pre-stage reactor shown in Table 4, and propylene oxidation reaction was performed. NeoSK-OIL (registered trademark) 1400 manufactured by Soken Technics Co., Ltd. was used as the heat medium, and the temperature was adjusted and then supplied to the reaction zone (S1) to (S3). The supply amount of the heat medium was such that the flow rate of the heat medium was 0.7 m or more per second.
 プロピレン濃度が9.5モル%である反応混合ガスを5,670リットル毎時[標準状態(温度0℃、101.325kPa)換算]の割合で反応器の入口に供給した。また、各反応帯域(S1)、(S2)、及び(S3)へ供給された熱媒体の温度はそれぞれ342℃、329℃、及び329℃とした。プロピレンの供給量は539リットル毎時[標準状態(温度0℃、101.325kPa)換算](以下、NL/Hrともいう)であった。反応器入口の圧力は0.109MPaG(メガパスカルゲージ)で、反応器の触媒層の入口と出口の圧力差(圧力損失)は14kPaと非常に小さかった。 A reaction mixed gas having a propylene concentration of 9.5 mol% was supplied to the inlet of the reactor at a rate of 5,670 liters per hour [standard state (temperature 0 ° C., 101.325 kPa) conversion]. The temperature of the heat medium supplied to each reaction zone (S1), (S2), and (S3) was 342 ° C., 329 ° C., and 329 ° C., respectively. The amount of propylene supplied was 539 liters per hour [converted to a standard state (temperature 0 ° C., 101.325 kPa)] (hereinafter also referred to as NL / Hr). The pressure at the inlet of the reactor was 0.109 MPaG (megapascal gauge), and the pressure difference (pressure loss) between the inlet and the outlet of the catalyst layer of the reactor was as small as 14 kPa.
 出口ガスをガスクロマトグラフィで分析したところ、プロピレンの転化率は97.2%、アクリル酸の収率は10.1%、アクロレインの収率は81.7%であった。プロピレンの負荷量は167リットル毎時[標準状態(温度0℃、101.325kPa)換算](以下、NL/L・Hrともいう)であった。 When the outlet gas was analyzed by gas chromatography, the conversion of propylene was 97.2%, the yield of acrylic acid was 10.1%, and the yield of acrolein was 81.7%. The amount of propylene loaded was 167 liters per hour [converted to a standard state (temperature 0 ° C., 101.325 kPa)] (hereinafter also referred to as NL / L · Hr).
(実施例7)
 各反応帯域(S1)、(S2)、及び(S3)に供給した熱媒体の温度をそれぞれ360℃、345℃、及び329℃に調節したこと以外は実施例6と同様に反応を実施した。出口ガスをガスクロマトグラフィで分析したところ、プロピレンの転化率は98.3%、アクリル酸とアクロレインの収率の合計は92.7%であった。
(Example 7)
The reaction was carried out in the same manner as in Example 6 except that the temperature of the heat medium supplied to each reaction zone (S1), (S2), and (S3) was adjusted to 360 ° C, 345 ° C, and 329 ° C, respectively. When the outlet gas was analyzed by gas chromatography, the conversion of propylene was 98.3%, and the total yield of acrylic acid and acrolein was 92.7%.
(実施例8)
 反応混合ガスの供給量を7,817リットル毎時[標準状態(温度0℃、101.325kPa)換算]に増加したこと、並びに各反応帯域(S1)、(S2)、及び(S3)に供給した熱媒体の温度をそれぞれ342℃、335℃、及び334℃に調節したこと以外は実施例6と同様に反応を実施した。プロピレンの供給速度は743NL/Hrであった。
(Example 8)
The supply amount of the reaction gas mixture was increased to 7,817 liters per hour [standard state (temperature 0 ° C., 101.325 kPa) conversion] and supplied to each reaction zone (S1), (S2), and (S3). The reaction was carried out in the same manner as in Example 6 except that the temperature of the heat medium was adjusted to 342 ° C, 335 ° C, and 334 ° C, respectively. The supply rate of propylene was 743 NL / Hr.
 出口ガスをガスクロマトグラフィで分析したところ、プロピレンの転化率は95.4%、アクリル酸の収率は11.5%、アクロレインの収率は79.2%であった。プロピレンの負荷量は、231NL/L・Hrであった。反応器入口の圧力は、0.134MPaG(メガパスカルゲージ)であり、反応器の触媒層の圧力損失は、30kPa(キロパスカル)であった。 When the outlet gas was analyzed by gas chromatography, the conversion of propylene was 95.4%, the yield of acrylic acid was 11.5%, and the yield of acrolein was 79.2%. The amount of propylene loaded was 231 NL / L · Hr. The pressure at the reactor inlet was 0.134 MPaG (megapascal gauge), and the pressure loss of the catalyst layer of the reactor was 30 kPa (kilopascal).
(実施例9)
 実施例8で得られた反応器出口ガスを後段反応器に供給して、アクロレインを酸化し、アクリル酸を製造した。酸化反応のための分子状酸素の供給源として、空気を2,186毎時[標準状態(温度0℃、101.325kPa)換算]と窒素を680リットル毎時[標準状態(温度0℃、101.325kPa)換算]を、前段反応器出口ガスと混合して後段反応器に供給した。
Example 9
The reactor outlet gas obtained in Example 8 was supplied to the subsequent reactor to oxidize acrolein to produce acrylic acid. As a source of molecular oxygen for the oxidation reaction, air is converted to 2,186 per hour [standard state (temperature 0 ° C., 101.325 kPa) conversion] and nitrogen is 680 liters per hour [standard state (temperature 0 ° C., 101.325 kPa). ) Conversion] was mixed with the upstream reactor outlet gas and fed to the downstream reactor.
 後段反応器の各反応帯域(S1)、(S2)、及び(S3)に供給された熱媒体の温度は、それぞれ284℃、278℃及び278℃であった。熱媒体の供給量は、それぞれ反応帯域の熱媒体流路内での流速が毎秒0.4m以上となるようにした。後段反応器入口の圧力は、0.097MPaG((メガパスカルゲージ)で、反応器の触媒層の圧力損失は、29kPa(キロパスカル)であった。 The temperature of the heat medium supplied to each reaction zone (S1), (S2), and (S3) of the post-stage reactor was 284 ° C, 278 ° C, and 278 ° C, respectively. The supply amount of the heat medium was set such that the flow rate in the heat medium flow path in the reaction zone was 0.4 m / second or more. The pressure at the downstream reactor inlet was 0.097 MPaG ((megapascal gauge)), and the pressure loss in the catalyst layer of the reactor was 29 kPa (kilopascal).
 出口ガスをガスクロマトグラフィで分析したところ、アクロレインの転化率は99.4%、前段反応器に供給されたプロピレンに対するアクリル酸収率は、86.3%であった。アクロレインの負荷量は201NL/L・Hrであった。 When the outlet gas was analyzed by gas chromatography, the conversion of acrolein was 99.4%, and the yield of acrylic acid relative to propylene supplied to the preceding reactor was 86.3%. The load of acrolein was 201 NL / L · Hr.
(実施例10~12、並びに比較例3及び4)
 反応に用いた反応混合ガスを、プロピレン9.4モル%、酸素15.2モル%、窒素65.9モル%及び水蒸気9.5モル%の組成にすること、プロピレンの負荷量を219NL/L・Hrで供給すること、並びに、各反応帯域(S1)、(S2)、及び(S3)に供給した熱媒体の温度を表2に示す温度に調整したこと以外は実施例6と同様に反応を実施した。ガスクロマトグラフィで分析した出口ガスの分析結果を表5に示す。続けて反応を230時間以上行ったが、転化率や収率は安定していて、触媒の劣化を示す兆候は無かった。
(Examples 10 to 12 and Comparative Examples 3 and 4)
The reaction gas mixture used for the reaction is composed of 9.4 mol% propylene, 15.2 mol% oxygen, 65.9 mol% nitrogen, and 9.5 mol% water vapor, and the propylene load is 219 NL / L. The reaction was carried out in the same manner as in Example 6 except that it was supplied with Hr and the temperature of the heat medium supplied to each reaction zone (S1), (S2), and (S3) was adjusted to the temperature shown in Table 2. Carried out. Table 5 shows the analysis results of the outlet gas analyzed by gas chromatography. The reaction was continued for 230 hours or more, but the conversion rate and yield were stable and there was no sign of catalyst deterioration.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(実施例13及び比較例5)
 上記前段反応器であって、表4に示す周期(L)、高さ(H)、波数及び波板間隔Pが同じであるが、伝熱プレートの幅が96mmであるプレート式反応器を用いた。当該伝熱プレート式反応器に上記後段用触媒を充填した。充填高さは1.8mで、触媒量は2.5L(リットル)であった。
(Example 13 and Comparative Example 5)
A plate type reactor having the same period (L), height (H), wave number, and corrugated plate interval P shown in Table 4 but having a heat transfer plate width of 96 mm is used. It was. The heat transfer plate reactor was filled with the latter catalyst. The filling height was 1.8 m, and the catalyst amount was 2.5 L (liter).
 比較例5として、反応管として内径27mmのステンレス製管を用い、該反応菅に後段用触媒を充填高さ1.8mまで充填した管型反応器を準備した。触媒量は1.0Lであった。 As a comparative example 5, a stainless steel tube having an inner diameter of 27 mm was used as a reaction tube, and a tubular reactor in which the reaction vessel was filled with a catalyst for a subsequent stage to a filling height of 1.8 m was prepared. The amount of catalyst was 1.0 L.
 上記のプレート式反応器と管型反応器を垂直に固定し、上部より室温の空気を供給し、入口圧力と出口圧力を測定して、触媒層の圧力損失を求めた。結果を表6に示す。 The above plate reactor and tube reactor were fixed vertically, air at room temperature was supplied from above, the inlet pressure and the outlet pressure were measured, and the pressure loss of the catalyst layer was determined. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 ここで通気量[NL/L・Hr]は、触媒1L(リットル)、1時間当たりのガス供給量を表す。なお、ガスの容積は標準状態(0℃、101.325kPa)換算での容積を用いる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2008年3月31日出願の日本特許出願(特願2008-091298)、2008年3月31日出願の日本特許出願(特願2008-091705)、2008年3月31日出願の日本特許出願(特願2008-091818)、及び2008年12月24日出願の日本特許出願(特願2008-327973)に基づくものであり、その内容はここに参照として取り込まれる。
Here, the air flow [NL / L · Hr] represents the gas supply amount per hour of the catalyst 1 L (liter). In addition, the volume of the gas is used in the standard state (0 ° C., 101.325 kPa).
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application includes Japanese patent applications filed on March 31, 2008 (Japanese Patent Application No. 2008-091298), Japanese patent applications filed on March 31, 2008 (Japanese Patent Application No. 2008-091705), and applications filed on March 31, 2008. This is based on a Japanese patent application (Japanese Patent Application No. 2008-091818) and a Japanese patent application filed on December 24, 2008 (Japanese Patent Application No. 2008-327973), the contents of which are incorporated herein by reference.
 プレート式反応器は、その製作において、伝熱プレートの配置が設計値から外れたことにより、設計時に想定した所望の反応成績が実際のプレート式反応器では得られないことがあった。しかしながら、第一のプレート式反応器及びその製作方法は、伝熱プレートの配置の許容される誤差を特定し、その誤差の範囲で伝熱プレートを固定する技術を提供する。これにより、プレート式反応器の構造の変更を伴わずに熱媒の温度を制御する反応生成物の第一の製造方法によって、実際のプレート式反応器で所期の反応成績を達成する技術が確立し、気相接触反応による反応生成物の工業生産へのプレート式反応器の利用の可能性が大幅に拡大することが期待される。このように、本発明によって、気相接触反応による反応生成物の製造の分野のさらなる発展が期待される。 In the production of the plate reactor, the desired reaction result assumed at the time of design may not be obtained in the actual plate reactor because the arrangement of the heat transfer plate deviates from the design value. However, the first plate reactor and the manufacturing method thereof provide a technique for identifying an allowable error in the arrangement of the heat transfer plate and fixing the heat transfer plate within the range of the error. As a result, the technology for achieving the desired reaction results in an actual plate reactor by the first production method of the reaction product that controls the temperature of the heating medium without changing the structure of the plate reactor. It is expected that the possibility of establishing and using a plate reactor for industrial production of reaction products by gas phase catalytic reaction will be greatly expanded. Thus, further development in the field of production of reaction products by gas phase catalytic reaction is expected by the present invention.
 また、プレート式反応器では、触媒層の厚さを調整することによって反応を制御することが行われることがある。このようなプレート式反応器では、反応器全体において触媒を均一に充填することがより一層困難であるが、第二のプレート式反応器は、触媒の適切な充填を迅速、正確、かつ容易に行うことができ、プレート式反応器の設置、保守管理、及び定期点検における作業性の格段の向上が期待される。 In a plate reactor, the reaction may be controlled by adjusting the thickness of the catalyst layer. In such a plate reactor, it is much more difficult to charge the catalyst uniformly throughout the reactor, but the second plate reactor makes the proper filling of the catalyst quick, accurate and easy. It is expected that the workability in the installation, maintenance and regular inspection of the plate reactor will be greatly improved.
 また反応生成物の第二の製造方法によれば、触媒が充填されたプレート式反応器に反応原料を供給し、該反応原料を反応させ反応物を製造する製造方法において、触媒の充填状態のバラつきによる反応成績の低下が防止され、触媒の性能に応じた所期の反応成績の達成、及び改良された触媒によるさらなる反応成績の向上が期待される。 Further, according to the second production method of the reaction product, in the production method in which the reaction raw material is supplied to the plate reactor filled with the catalyst and the reaction raw material is reacted to produce the reaction product, It is expected that the reaction results are prevented from lowering due to variations, achieving the desired reaction results according to the performance of the catalyst, and further improving the reaction results with the improved catalyst.
 また反応生成物の第三の製造方法によれば、触媒が充填されたプレート式反応器に反応原料を供給し、該反応原料を反応させ反応物を製造する製造方法において、単位触媒当たりの反応原料の処理負荷量を高めたときに、触媒を通過する反応ガスの圧力損失の増大を防止し、かつ、反応によって生じる熱を適切に制御することでホットスポットを防ぎ、触媒の損傷を防止しつつ目的反応生成物の収率を向上させることが可能である。
 よって、本発明の工業的価値は顕著である。
Further, according to the third production method of the reaction product, in the production method of supplying a reaction raw material to a plate reactor filled with a catalyst and reacting the reaction raw material to produce a reaction product, the reaction per unit catalyst When the raw material processing load is increased, the pressure loss of the reaction gas passing through the catalyst is prevented from increasing, and the heat generated by the reaction is controlled appropriately to prevent hot spots and prevent damage to the catalyst. It is possible to improve the yield of the target reaction product.
Therefore, the industrial value of the present invention is remarkable.

Claims (31)

  1.  ガス状の原料を反応させるための反応容器と、前記反応容器に並んで設けられる複数の伝熱プレートと、前記伝熱プレートに所望の温度の熱媒を供給するための熱媒供給装置と、を有し、
     前記伝熱プレートは、断面形状の周縁又は端縁で連結している複数の伝熱管を含み、
     前記熱媒供給装置は、反応容器に収容された伝熱プレートの伝熱管に熱媒を供給する装置であるプレート式反応器において、
     対向する前記伝熱プレート間の隙間において、前記伝熱プレートの軸からなる面から等距離にある面に直交する方向における伝熱プレートの表面間の距離の設計値が5~50mmであり、前記設計値に対する前記表面間の距離の実測値の差が-0.6~+2.0mmであることを特徴とするプレート式反応器。
    A reaction vessel for reacting a gaseous raw material, a plurality of heat transfer plates provided side by side in the reaction vessel, a heat medium supply device for supplying a heat medium of a desired temperature to the heat transfer plate, Have
    The heat transfer plate includes a plurality of heat transfer tubes connected at a peripheral edge or an edge of a cross-sectional shape,
    In the plate reactor which is a device for supplying a heat medium to a heat transfer tube of a heat transfer plate housed in a reaction vessel, the heat medium supply device,
    In the gap between the heat transfer plates facing each other, the design value of the distance between the surfaces of the heat transfer plates in the direction orthogonal to the surface equidistant from the surface formed by the axis of the heat transfer plate is 5 to 50 mm, A plate reactor characterized in that the difference between the measured values of the distance between the surfaces with respect to the design value is -0.6 to +2.0 mm.
  2.  前記伝熱プレートの軸方向の長さが5m以下であることを特徴とする請求項1記載のプレート式反応器。 The plate reactor according to claim 1, wherein the heat transfer plate has an axial length of 5 m or less.
  3.  前記伝熱プレートの間に所定の間隔を形成するためのスペーサをさらに有することを特徴とする請求項1又は2に記載のプレート式反応器。 The plate reactor according to claim 1 or 2, further comprising a spacer for forming a predetermined interval between the heat transfer plates.
  4.  前記伝熱プレートは、前記伝熱管の断面形状を伝熱プレートの軸で二分割した形状が複数連なるように成形された二枚の鋼板を接合してなることを特徴とする請求項1~3のいずれか一項に記載のプレート式反応器。 The heat transfer plate is formed by joining two steel plates formed so that a plurality of shapes obtained by dividing the cross-sectional shape of the heat transfer tube into two by the shaft of the heat transfer plate are connected. The plate reactor according to any one of the above.
  5.  前記設計値に対する前記表面間の距離の実測値の差が、前記隙間における原料ガスの通気方向の上流側でより小さいことを特徴とする請求項1~4のいずれか一項に記載のプレート式反応器。 The plate type according to any one of claims 1 to 4, wherein a difference in an actual measurement value of the distance between the surfaces with respect to the design value is smaller on the upstream side in the direction of flow of the raw material gas in the gap. Reactor.
  6.  前記原料ガスにおける原料の反応率が70%以下となる位置における前記設計値に対する前記表面間の距離の実測値の差が、前記反応率が70%より大きくなる位置における前記設計値に対する前記表面間の距離の実測値の差よりも小さいことを特徴とする請求項5に記載のプレート式反応器。 The difference between the measured values of the distance between the surfaces with respect to the design value at a position where the reaction rate of the raw material in the raw material gas is 70% or less is between the surfaces with respect to the design value at a position where the reaction rate is greater than 70%. The plate reactor according to claim 5, wherein the plate reactor is smaller than a difference in measured values of the distance.
  7.  前記隙間の全容積が3L以上であることを特徴とする請求項1~6のいずれか一項に記載のプレート式反応器。 The plate reactor according to any one of claims 1 to 6, wherein the total volume of the gap is 3L or more.
  8.  前記隙間に触媒が充填されてなる触媒層の2箇所以上の位置の温度を測定するための温度測定装置をさらに有することを特徴とする請求項1~7のいずれか一項に記載のプレート式反応器。 The plate type according to any one of claims 1 to 7, further comprising a temperature measuring device for measuring temperatures at two or more positions of the catalyst layer in which the catalyst is filled in the gap. Reactor.
  9.  反応容器に複数の伝熱プレートが並んで設けられ、伝熱プレート間の隙間に触媒が充填されて触媒層が形成されるプレート式反応器を用い、前記反応容器にガス状の原料を供給して前記触媒層に通す工程と、前記伝熱プレートを構成する複数の伝熱管に所定の温度の熱媒を供給する工程とを含む、前記触媒の存在下で原料ガスを反応させてガス状の反応生成物を生成する反応生成物の製造方法において、
     前記プレート式反応器に、請求項1~8のいずれか一項に記載のプレート式反応器を用い、
     前記触媒層のピーク温度を、プレート式反応器の設計時に設定された触媒層のピーク温度の設定値にする温度の熱媒を、伝熱管に供給することを特徴とする反応生成物の製造方法。
    A reaction vessel is provided with a plurality of heat transfer plates arranged side by side, and a catalyst is formed by filling a gap between the heat transfer plates with a catalyst to form a catalyst layer. And a step of supplying a heat medium at a predetermined temperature to a plurality of heat transfer tubes constituting the heat transfer plate, by reacting the raw material gas in the presence of the catalyst, In the method for producing a reaction product for producing a reaction product,
    The plate reactor according to any one of claims 1 to 8, which is used as the plate reactor,
    A method for producing a reaction product, characterized in that a heat medium having a temperature at which the peak temperature of the catalyst layer is set to a set value of the peak temperature of the catalyst layer set at the time of designing the plate reactor is supplied to the heat transfer tube. .
  10.  触媒の存在下における原料ガス中の原料の反応が発熱反応であることを特徴とする請求項9に記載の反応生成物の製造方法。 The method for producing a reaction product according to claim 9, wherein the reaction of the raw material in the raw material gas in the presence of a catalyst is an exothermic reaction.
  11.  前記反応生成物が、アクロレイン及びアクリル酸の一方又は両方、メタクロレイン及びメタクリル酸の一方又は両方、マレイン酸、フタル酸、酸化エチレン、パラフィン、アルコール、アセトン及びフェノール、又はブタジエンであることを特徴とする請求項10に記載の反応生成物の製造方法。 The reaction product is one or both of acrolein and acrylic acid, one or both of methacrolein and methacrylic acid, maleic acid, phthalic acid, ethylene oxide, paraffin, alcohol, acetone and phenol, or butadiene, The method for producing a reaction product according to claim 10.
  12.  ガス状の原料を反応させるための反応容器と、前記反応容器に並んで設けられる複数の伝熱プレートと、前記伝熱プレートに所望の温度の熱媒を供給する熱媒供給装置と、を有し、
     前記伝熱プレートは、断面形状の周縁又は端縁で連結している複数の伝熱管を含み、
     前記熱媒供給装置は、反応容器に収容された伝熱プレートの伝熱管に熱媒を供給する装置であるプレート式反応器を製作する方法において、
     対向する伝熱プレート間の隙間における前記伝熱プレートの軸からなる面から等距離にある面に直交する方向における伝熱プレートの表面間の距離が設計値となる間隔で伝熱プレートを配置して伝熱管と熱媒供給装置とを接合する工程を含むことを特徴とするプレート式反応器の製作方法。
    A reaction vessel for reacting gaseous raw materials, a plurality of heat transfer plates provided in line with the reaction vessel, and a heat medium supply device for supplying a heat medium of a desired temperature to the heat transfer plate. And
    The heat transfer plate includes a plurality of heat transfer tubes connected at a peripheral edge or an edge of a cross-sectional shape,
    In the method of manufacturing a plate reactor, the heating medium supply device is a device for supplying a heating medium to a heat transfer tube of a heat transfer plate housed in a reaction vessel.
    The heat transfer plates are arranged at intervals such that the distance between the surfaces of the heat transfer plates in the direction perpendicular to the surface that is equidistant from the surface of the heat transfer plate in the gap between the opposing heat transfer plates is the design value. And a method of manufacturing a plate reactor, comprising the step of joining the heat transfer tube and the heat medium supply device.
  13.  前記伝熱プレートには、前記伝熱管の断面形状を伝熱プレートの軸で二分割した形状が複数連なるように成形された二枚の鋼板を接合してなる伝熱プレートを用い、
     成形された前記鋼板には、鋼板の成形の設計値に対する誤差が±0.5mm以内である、成形された鋼板を用いることを特徴とする請求項12に記載のプレート式反応器の製作方法。
    For the heat transfer plate, a heat transfer plate formed by joining two steel plates formed so that a plurality of shapes obtained by dividing the cross-sectional shape of the heat transfer tube into two by the shaft of the heat transfer plate is used,
    13. The method for manufacturing a plate reactor according to claim 12, wherein the formed steel plate is a formed steel plate having an error with respect to a design value of forming the steel plate within ± 0.5 mm.
  14.  前記伝熱プレートには、前記伝熱プレートの軸方向の長さが5m以下である伝熱プレートを用いることを特徴とする請求項12に記載のプレート式反応器の製作方法。 The method for manufacturing a plate reactor according to claim 12, wherein a heat transfer plate having an axial length of 5 m or less is used as the heat transfer plate.
  15.  前記伝熱プレートの表面間の距離が設計値となる間隔を伝熱プレート間に形成するスペーサを介して、熱媒供給装置との接合前に反応容器内に伝熱プレートを配置する工程をさらに含むことを特徴とする請求項12~14のいずれか一項に記載のプレート式反応器の製作方法。 A step of arranging the heat transfer plate in the reaction vessel before joining with the heat medium supply device via a spacer that forms an interval between the heat transfer plates so that the distance between the surfaces of the heat transfer plates is a design value; The method for manufacturing a plate reactor according to any one of claims 12 to 14, wherein the plate reactor is included.
  16.  反応原料を反応させるための反応容器と、伝熱管を有し、前記反応容器内に並んで設けられる複数の伝熱プレートと、前記伝熱管に熱媒体を供給する装置と、を有し、
     前記反応容器は、供給された反応原料が、隣り合う伝熱プレート間の隙間を通って排出される容器であり、
     前記伝熱プレートは、断面形状の周縁又は端縁で連結している複数の前記伝熱管を含み、
     隣り合う伝熱プレート間の隙間に触媒が充填されるプレート式反応器において、
     隣り合う伝熱プレート間の隙間を、反応容器内の通気方向に沿って、充填された触媒を収容する複数の区画に仕切る仕切りをさらに有することを特徴とするプレート式反応器。
    A reaction vessel for reacting reaction raw materials, a heat transfer tube, a plurality of heat transfer plates provided in line in the reaction vessel, and a device for supplying a heat medium to the heat transfer tube,
    The reaction vessel is a vessel in which the supplied reaction raw material is discharged through a gap between adjacent heat transfer plates,
    The heat transfer plate includes a plurality of the heat transfer tubes connected at a peripheral edge or an edge of a cross-sectional shape,
    In a plate reactor in which a catalyst is filled in a gap between adjacent heat transfer plates,
    A plate reactor, further comprising a partition that partitions a gap between adjacent heat transfer plates into a plurality of compartments containing a packed catalyst along a ventilation direction in the reaction vessel.
  17.  前記複数の区画のそれぞれの容積が同じであることを特徴とする請求項16記載のプレート式反応器。 The plate reactor according to claim 16, wherein the plurality of compartments have the same volume.
  18.  前記複数の区画のそれぞれの容積が1~100Lであることを特徴とする請求項16又は17に記載のプレート式反応器。 The plate reactor according to claim 16 or 17, wherein each of the plurality of compartments has a volume of 1 to 100L.
  19.  前記複数の区画のそれぞれの容積が2~25Lであることを特徴とする請求項16~18のいずれか一項に記載のプレート式反応器。 The plate reactor according to any one of claims 16 to 18, wherein each of the plurality of compartments has a volume of 2 to 25L.
  20.  通気性を有し、各区画の端部に着脱自在に固定され、各区画に収容された触媒を保持するように各区画の端部を塞ぐ複数の通気栓をさらに有することを特徴とする請求項16~19のいずれか一項に記載のプレート式反応器。 A plurality of vent plugs which have air permeability, are detachably fixed to the end portions of the respective compartments, and close the end portions of the respective compartments so as to hold the catalyst accommodated in the respective compartments. Item 20. The plate reactor according to any one of Items 16 to 19.
  21.  前記仕切り及び伝熱プレートの一方又は両方は、前記通気栓を係止するための第一の係止部を有し、
     前記通気栓は、通気性を有すると共に触媒を通さない通気板と、通気板の周縁の一部又は全部に通気板に対して垂直に設けられるスカート部と、前記スカート部に設けられて前記第一の係止部と着脱自在に係止する第二の係止部とを有することを特徴とする請求項20に記載のプレート式反応器。
    One or both of the partition and the heat transfer plate have a first locking portion for locking the vent plug,
    The vent plug has a vent plate that is breathable and impervious to the catalyst, a skirt portion that is provided perpendicularly to the vent plate at a part or all of the periphery of the vent plate, and provided in the skirt portion. 21. The plate reactor according to claim 20, further comprising a first locking portion and a second locking portion that is detachably locked.
  22.  前記複数の仕切りの間隔が0.1~1mであることを特徴とする請求項16~21のいずれか一項に記載のプレート式反応器。 The plate reactor according to any one of claims 16 to 21, wherein an interval between the plurality of partitions is 0.1 to 1 m.
  23.  請求項16~22のいずれか一項に記載のプレート式反応器を用いて反応生成物を製造する方法であって、
     前記伝熱管に所望の温度の熱媒体を供給する工程と、触媒が充填された隣り合う伝熱プレート間の隙間に反応原料を供給して前記隙間から排出される反応生成物を得る工程と、を含み、
     前記反応原料が、エチレン;炭素数3及び4の炭化水素、並びにターシャリーブタノールからなる群から選ばれる少なくとも1種、又は炭素数3及び4の不飽和脂肪族アルデヒドからなる群から選ばれる少なくとも1種;炭素数4以上の炭化水素;キシレン及び/又はナフタレン;オレフィン;カルボニル化合物;クメンハイドロパーオキサイド;ブテン;又はエチルベンゼン;であり、
     前記反応生成物が、酸化エチレン;炭素数3及び4の不飽和脂肪族アルデヒド及び炭素数3及び4の不飽和脂肪酸の少なくとも一方;マレイン酸;フタル酸;パラフィン;アルコール;アセトン及びフェノール;ブタジエン;又はスチレン;である方法。
    A method for producing a reaction product using the plate reactor according to any one of claims 16 to 22,
    Supplying a heat medium having a desired temperature to the heat transfer tube, supplying a reaction raw material to a gap between adjacent heat transfer plates filled with a catalyst, and obtaining a reaction product discharged from the gap; Including
    The reaction raw material is at least one selected from the group consisting of ethylene; hydrocarbons having 3 and 4 carbon atoms and tertiary butanol, or at least 1 selected from the group consisting of unsaturated aliphatic aldehydes having 3 and 4 carbon atoms. Species; hydrocarbons having 4 or more carbon atoms; xylene and / or naphthalene; olefins; carbonyl compounds; cumene hydroperoxide; butenes;
    The reaction product is ethylene oxide; at least one of unsaturated aliphatic aldehydes having 3 and 4 carbon atoms and unsaturated fatty acids having 3 and 4 carbon atoms; maleic acid; phthalic acid; paraffin; alcohol; acetone and phenol; Or styrene.
  24.  (A)伝熱プレートの間に形成された触媒層を備えたプレート式反応器に、炭素数3及び4の炭化水素、並びにターシャリーブタノールからなる群から選ばれる反応原料の少なくとも1種、並びに、分子状酸素を含む反応原料混合物を供給し、前記反応原料を接触気相酸化し、不飽和炭化水素、並びに、炭素数3及び4の不飽和脂肪族アルデヒドからなる群から選ばれる少なくとも一種の反応生成物を製造する、又は、
     (B)伝熱プレートの間に形成された触媒層を備えたプレート式反応器に、製造方法であって、炭素数3及び4の不飽和脂肪族アルデヒドからなる群から選ばれる反応原料の少なくとも1種、並びに、分子状酸素を含む反応原料混合物を供給し、前記反応原料を接触気相酸化し、炭素数3及び4の不飽和脂肪酸からなる群から選ばれる少なくとも一種の反応生成物を製造する方法において、
     前記プレート式反応器は、触媒層の平均層厚さが異なる複数の反応帯域に分割されており、前記複数の反応帯域には、独立して温度調整された熱媒体が供給され、前記酸化により生じる熱を、前記伝熱プレートを隔てて除熱し、前記触媒層内の温度が独立して制御され、
     前記反応原料混合物の入口に最も近接する反応帯域S1に供給される前記熱媒体の温度T(S1)は、前記反応帯域S1に隣接し、前記反応原料混合物の流れの下流に位置する反応帯域S2に供給される前記熱媒体の温度T(S2)より高く、
     前記炭素数3及び4の炭化水素、並びにターシャリーブタノールからなる群から選ばれる反応原料の少なくとも1種を酸化するときの、前記反応原料の負荷量が、触媒1リットル当たり150リットル毎時[標準状態(温度0℃、101.325kPa)換算]以上であり、
     前記炭素数3及び4の不飽和脂肪族アルデヒドからなる群から選ばれる反応原料の少なくとも1種を酸化するときの、前記反応原料の負荷量が、触媒1リットル当たり160リットル毎時[標準状態(温度0℃、101.325kPa)換算]以上であることを特徴とする、不飽和炭化水素、炭素数3及び4の不飽和脂肪族アルデヒド、並びに炭素数3及び4の不飽和脂肪酸からなる群から選ばれる一種以上の反応生成物を製造する製造方法。
    (A) a plate reactor having a catalyst layer formed between heat transfer plates, at least one reaction raw material selected from the group consisting of hydrocarbons having 3 and 4 carbon atoms and tertiary butanol; and Supplying a reaction raw material mixture containing molecular oxygen, catalytic vapor phase oxidation of the reaction raw material, and at least one selected from the group consisting of unsaturated hydrocarbons and unsaturated aliphatic aldehydes having 3 and 4 carbon atoms Producing a reaction product, or
    (B) A plate-type reactor provided with a catalyst layer formed between heat transfer plates, which is a production method, comprising at least a reaction raw material selected from the group consisting of unsaturated aliphatic aldehydes having 3 and 4 carbon atoms A reaction raw material mixture containing one kind and molecular oxygen is supplied, and the reaction raw material is subjected to catalytic gas phase oxidation to produce at least one reaction product selected from the group consisting of unsaturated fatty acids having 3 and 4 carbon atoms. In the way to
    The plate reactor is divided into a plurality of reaction zones having different average layer thicknesses of the catalyst layers, and a heat medium whose temperature is independently adjusted is supplied to the plurality of reaction zones. The heat generated is removed through the heat transfer plate, and the temperature in the catalyst layer is independently controlled,
    The temperature T (S1) of the heating medium supplied to the reaction zone S1 closest to the inlet of the reaction raw material mixture is adjacent to the reaction zone S1 and is located downstream of the flow of the reaction raw material mixture. Higher than the temperature T (S2) of the heat medium supplied to
    The load of the reaction raw material when oxidizing at least one of the reaction raw materials selected from the group consisting of the hydrocarbons having 3 and 4 carbon atoms and tertiary butanol is 150 liters per hour per liter of catalyst [standard state (Temperature 0 ° C., 101.325 kPa) conversion]
    When oxidizing at least one kind of the reaction raw material selected from the group consisting of the unsaturated aliphatic aldehydes having 3 and 4 carbon atoms, the loading amount of the reaction raw material is 160 liters per hour per 1 liter of catalyst [standard state (temperature Selected from the group consisting of unsaturated hydrocarbons, unsaturated aliphatic aldehydes having 3 and 4 carbon atoms, and unsaturated fatty acids having 3 and 4 carbon atoms, characterized in that A production method for producing one or more reaction products.
  25.  特定されない任意の反応帯域S(j)に供給される熱媒体の温度をT(Sj)とし、前記反応帯域S(j)に隣接し、反応原料混合物の流れの下流に位置する反応帯域S(j+1)に供給される前記熱媒体の温度をT(Sj+1)としたときに、前記T(Sj)と前記T(Sj+1)が、T(Sj)-T(Sj+1)≧5、の関係を満たすことを特徴とする、請求項24に記載の製造方法。 The temperature of the heat medium supplied to any unspecified reaction zone S (j) is T (Sj), and the reaction zone S (adjacent to the reaction zone S (j) and positioned downstream of the flow of the reaction raw material mixture ( When the temperature of the heat medium supplied to j + 1) is T (Sj + 1), T (Sj) and T (Sj + 1) satisfy the relationship T (Sj) −T (Sj + 1) ≧ 5 25. The manufacturing method according to claim 24, wherein:
  26.  前記反応帯域の数が2~5であり、反応原料混合物の入口から出口に向かって、各反応帯域の触媒層の平均層厚さが増大することを特徴とする、請求項24又は25に記載の製造方法。 The number of the reaction zones is 2 to 5, and the average layer thickness of the catalyst layer in each reaction zone increases from the inlet to the outlet of the reaction raw material mixture. Manufacturing method.
  27.  前記炭素数3及び4の炭化水素、並びにターシャリーブタノールからなる群から選ばれる反応原料の少なくとも1種を酸化するときの、前記反応原料の負荷量が、触媒1リットル当たり170~290リットル毎時[標準状態(温度0℃、101.325kPa)換算]であることを特徴とする、請求項24~26のいずれか一項に記載の製造方法。 When oxidizing at least one of the reaction raw materials selected from the group consisting of the hydrocarbons having 3 and 4 carbon atoms and tertiary butanol, the loading amount of the reaction raw materials is 170 to 290 liters per liter of catalyst per hour [ The production method according to any one of claims 24 to 26, which is in a standard state (converted at a temperature of 0 ° C and 101.325 kPa).
  28.  前記炭素数3及び4の不飽和脂肪族アルデヒドからなる群から選ばれる反応原料の少なくとも1種を酸化するときの、前記反応原料の負荷量が、触媒1リットル当たり180~300リットル毎時[標準状態(温度0℃、101.325kPa)換算]であることを特徴とする、請求項24~27のいずれか一項に記載の製造方法。 When oxidizing at least one reaction raw material selected from the group consisting of the unsaturated aliphatic aldehydes having 3 and 4 carbon atoms, the loading amount of the reaction raw material is 180 to 300 liters per liter of catalyst [standard state] The production method according to any one of claims 24 to 27, wherein the temperature is (converted at a temperature of 0 ° C and 101.325 kPa).
  29.  前記プレート式反応器の反応生成物出口での反応原料の転化率が、90%以上であることを特徴とする、請求項24~28のいずれかに記載の製造方法。 The production method according to any one of claims 24 to 28, wherein the conversion rate of the reaction raw material at the reaction product outlet of the plate reactor is 90% or more.
  30.  前記反応原料がプロピレンであり、前記複数の反応帯域に供給される熱媒体の温度が320~400℃であることを特徴とする、請求項24~29のいずれかに記載の製造方法。 The production method according to any one of claims 24 to 29, wherein the reaction raw material is propylene, and the temperature of the heat medium supplied to the plurality of reaction zones is 320 to 400 ° C.
  31. 前記反応原料がアクロレインであり、前記複数の反応帯域に供給される熱媒体の温度が250~320℃であることを特徴とする、請求項24~29のいずれかに記載の製造方法。 The production method according to any one of claims 24 to 29, wherein the reaction raw material is acrolein, and the temperature of the heat medium supplied to the plurality of reaction zones is 250 to 320 ° C.
PCT/JP2009/056567 2008-03-31 2009-03-30 Plate type reactor, manufacturing method therefor, and reaction product manufacturing method using the plate type reactor WO2009123151A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801103159A CN101977678A (en) 2008-03-31 2009-03-30 Plate type reactor, manufacturing method therefor, and reaction product manufacturing method using the plate type reactor
RU2010144507/05A RU2489203C2 (en) 2008-03-31 2009-03-30 Plate-type reactors, methods of their production and method of producing reaction product using plate-type reactor

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2008-091818 2008-03-31
JP2008-091298 2008-03-31
JP2008091818 2008-03-31
JP2008-091705 2008-03-31
JP2008091705 2008-03-31
JP2008091298 2008-03-31
JP2008-327973 2008-12-24
JP2008327973A JP6088120B2 (en) 2008-12-24 2008-12-24 Plate type reactor, method for producing the same, and method for producing a reaction product using the reactor

Publications (1)

Publication Number Publication Date
WO2009123151A1 true WO2009123151A1 (en) 2009-10-08

Family

ID=41135525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056567 WO2009123151A1 (en) 2008-03-31 2009-03-30 Plate type reactor, manufacturing method therefor, and reaction product manufacturing method using the plate type reactor

Country Status (3)

Country Link
CN (3) CN104707540A (en)
RU (1) RU2489203C2 (en)
WO (1) WO2009123151A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117556274A (en) * 2024-01-11 2024-02-13 北京英沣特能源技术有限公司 Temperature data anomaly analysis method for heat pipe backboard

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2975922B1 (en) * 2011-06-06 2013-05-31 Arkema France PLATE REACTOR WITH INJECTION IN SITU
CN102688725B (en) * 2012-07-02 2014-04-09 西南石油大学 Hot plate type reactor
DE102015122129A1 (en) * 2015-12-17 2017-06-22 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Reactor for carrying out exo- or endothermic reactions
JP6728781B2 (en) 2016-03-03 2020-07-22 株式会社Ihi Reactor
FR3053452B1 (en) * 2016-07-01 2018-07-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude HEAT EXCHANGER COMPRISING A DEVICE FOR DISPENSING A LIQUID / GAS MIXTURE
RU201548U1 (en) * 2020-06-16 2020-12-21 Дмитрий Валерьевич Хачатуров Plate heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2824755A1 (en) * 2001-05-15 2002-11-22 Physiques Et Chimiques Modular reactor for an exothermic reaction with reaction and heat-extracting plates alternating in a sandwich, with channels for catalyst and reaction, and for exchange fluid respectively
JP2004167448A (en) * 2002-11-22 2004-06-17 Mitsubishi Chemical Engineering Corp Plate type catalytic reactor
JP2006000707A (en) * 2004-06-15 2006-01-05 Mitsubishi Chemical Engineering Corp Catalytic reactor
JP2007522104A (en) * 2003-12-23 2007-08-09 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing (meth) acrolein and / or (meth) acrylic acid by heterogeneous catalytic partial oxidation of C3 and / or C4-precursor compound

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2285690C2 (en) * 2000-06-20 2006-10-20 Басф Акциенгезельшафт Method for preparing acrolein and/or acrylic acid
DE10361456A1 (en) * 2003-12-23 2005-07-28 Basf Ag Preparation of (meth)acrolein and (meth)acrylic acid by catalytic oxidation of hydrocarbon precursors, using reactor divided by vertical thermal plates and fitted with sensors to monitor temperature

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2824755A1 (en) * 2001-05-15 2002-11-22 Physiques Et Chimiques Modular reactor for an exothermic reaction with reaction and heat-extracting plates alternating in a sandwich, with channels for catalyst and reaction, and for exchange fluid respectively
JP2004167448A (en) * 2002-11-22 2004-06-17 Mitsubishi Chemical Engineering Corp Plate type catalytic reactor
JP2007522104A (en) * 2003-12-23 2007-08-09 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing (meth) acrolein and / or (meth) acrylic acid by heterogeneous catalytic partial oxidation of C3 and / or C4-precursor compound
JP2006000707A (en) * 2004-06-15 2006-01-05 Mitsubishi Chemical Engineering Corp Catalytic reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117556274A (en) * 2024-01-11 2024-02-13 北京英沣特能源技术有限公司 Temperature data anomaly analysis method for heat pipe backboard
CN117556274B (en) * 2024-01-11 2024-03-15 北京英沣特能源技术有限公司 Temperature data anomaly analysis method for heat pipe backboard

Also Published As

Publication number Publication date
RU2489203C2 (en) 2013-08-10
RU2010144507A (en) 2012-05-10
CN104707540A (en) 2015-06-17
CN101977678A (en) 2011-02-16
CN104803834A (en) 2015-07-29

Similar Documents

Publication Publication Date Title
WO2009123151A1 (en) Plate type reactor, manufacturing method therefor, and reaction product manufacturing method using the plate type reactor
US5821390A (en) Catalytic gas-phase oxidation of propene to acrolein
JP6254974B2 (en) Reactor panel for catalytic process
EP2173469B1 (en) Process for performing an endothermic reaction
WO2014123152A1 (en) Reactor
EP2249954B1 (en) Catalytic reactor
JP5821977B2 (en) Production method for producing at least one reactant selected from the group consisting of unsaturated aliphatic aldehydes, unsaturated hydrocarbons and unsaturated fatty acids, using a fixed bed reactor equipped with a catalyst containing molybdenum
JP5239667B2 (en) Plate reactor and method for producing reaction product using the same
JP6088120B2 (en) Plate type reactor, method for producing the same, and method for producing a reaction product using the reactor
JP5617213B2 (en) Plate reactor and reaction product production method
WO2010061690A1 (en) Reaction method using heat-exchange type reactor, and method for charging fillers in plate reactor
JP2011072937A (en) Method for manufacturing reaction product prepared by using plate-type reactor
US20110060149A1 (en) Process for preparing ethylene oxide
JP5633112B2 (en) Method for producing at least one reaction product selected from the group consisting of unsaturated hydrocarbons, unsaturated aliphatic aldehydes and unsaturated fatty acids using a plate reactor
JP2010042339A (en) Plate-type reactor
JP5272657B2 (en) Method for producing reaction product using plate reactor
JP2009262137A (en) Method of manufacturing reaction product using plate type reactor
JP5532652B2 (en) Plate reactor and reaction product production method
JP2010069344A (en) Plate-type reactor
JP2010167406A (en) Method for charging fillers in plate reactor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980110315.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727206

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1937/MUMNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010144507

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 09727206

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0909494

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100917