WO2009121048A1 - Method of manufacturing a polymeric stent having a circumferential ring configuration - Google Patents

Method of manufacturing a polymeric stent having a circumferential ring configuration Download PDF

Info

Publication number
WO2009121048A1
WO2009121048A1 PCT/US2009/038723 US2009038723W WO2009121048A1 WO 2009121048 A1 WO2009121048 A1 WO 2009121048A1 US 2009038723 W US2009038723 W US 2009038723W WO 2009121048 A1 WO2009121048 A1 WO 2009121048A1
Authority
WO
WIPO (PCT)
Prior art keywords
stent
diameter
polymer
stents
tubing
Prior art date
Application number
PCT/US2009/038723
Other languages
French (fr)
Inventor
Joseph H. Contiliano
Qiang Zhang
Original Assignee
Ethicon, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ethicon, Inc. filed Critical Ethicon, Inc.
Publication of WO2009121048A1 publication Critical patent/WO2009121048A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91575Adjacent bands being connected to each other connected peak to trough

Definitions

  • the present invention relates to a method of manufacturing polymeric intraluminal stents, and more particularly to polymeric intraluminal stents having circumferential ring elements.
  • Intraluminal stents are typically, cylindrically shaped devices that are implanted within a body lumen in an initial configuration having a reduced diameter and then radially expanded with the application of a force to a second configuration having a larger size. The expansion is typically done with a balloon catheter. After expansion, the intraluminal stent acts as a support member by providing an outwardly directed radial force to the vessel walls to maintain patency of the lumen. When expanded, an intraluminal stent should exhibit certain mechanical characteristics.
  • the stent should also possess a certain degree of flexibility to be maneuvered through tortuous vascular pathways and conform to nonlinear vessel walls when expanded.
  • the structure of a stent is typically composed of a cylindrical scaffolding network of interconnected structural elements consisting of struts and bridging elements.
  • the radial support structure of stent is typically provided by the strut elements which are generally arranged or connected to adjacent strut elements in a prescribed geometric pattern or column that circumferentially encircles a section of the stent.
  • This circumferential column of struts typically consists of individual struts connected to one another in hinge regions and defined empty space regions.
  • the geometrical configuration of adjacent struts is typically designed such that the stent can be crimped onto a delivery device at a small diameter and then expanded in situ to a larger diameter.
  • Adjacent circumferential columns of struts are generally connected to one another through one or more bridging elements. The length, geometry, and number of bridge elements connect the struts are largely responsible for the flexibility of the stent structure.
  • Typical balloon expandable stents known in the art are composed of high modulus, high strength metallic alloys such stainless steel or CoCr alloy.
  • Those skilled in the art are aware of a multitude of various geometric strut configurations that have been used to enable radial expansion of stents using these high strength materials, where plastic deformation of the material is generally isolated in the hinge regions between the interconnected structural elements.
  • Such patterns exist where adjacent struts are arranged relative to one another in various undulating or zig-zag patterns, such as sinusoidal, z- shaped, or diamond patterns, without which a stent made of high modulus/strength metal alloy would not be able to expand to full diameter under clinically reasonable radial expansion pressure.
  • Such stent configurations containing a pattern of undulating struts typically contain regions of high strain or stress at the hinges or connections of struts which may then relax to some degree post deployment, contributing to the undesirable phenomenon known as stent recoil.
  • Stents may also be composed of polymeric materials that may be absorbable or nonabsorbable.
  • Polymers typically have lower strength and modulus than metals and thus polymeric stents of similar architecture typically have less radial strength than a similar metal stent.
  • Higher strength polymers typically do not possess sufficient elongation at break or toughness to expand under high strain without cracking.
  • the material of the stent itself may exhibit time dependent creep resulting in potential high overall stent recoil.
  • Utilizing traditional metal stent geometric strut configurations for polymer materials typically requires the polymer stent to have increased wall thickness relative to the comparable metal stent, due to the lower strength and modulus of the polymer material. Increasing wall thickness may be undesirable since it results in additional implant material in the body and may reduce stent flexibility.
  • Polymeric stents that are expanded radially outward through the facilitation of heat applied to the stent are known. By raising the temperature of the stent to above the Tg, or glass transition temperature of the material, molecular orientation is induced in situ (during deployment).
  • the polymer of the stent may have a Tg at or below body temperature.
  • using polymeric materials of lower Tg typically results in a stent material with lower modulus and strength and can exacerbate recoil when used in the body above their Tg.
  • heating the stent in the body to affect deployment is not desirable since it introduces an additional procedural requirement, potential for variability between different surgeons, and poses a risk of thermal damage to adj acent body tissues.
  • known methods of using tubing produced via various means include melt processing and solvent casting methods, orienting the tubing by various means to affect and enhance material properties, and then creating stents from said tubing. Orientation in one direction can enhance material properties in that direction while also compromising material properties in the orthogonal direction.
  • intraluminal stents having sufficient material properties to provide the desired mechanical behavior of the stents under clinically relevant in vivo loading conditions. Therefore, there is a need for novel materials and novel processes for manufacturing intraluminal stents.
  • novel manufacturing processes for intraluminal stents are disclosed.
  • the novel method of the present invention is a method of manufacturing polymeric intraluminal stents having a configuration consisting of circumferential rings devoid of interconnecting strut connections, the rings being connected together via bridge connections.
  • the polymeric intraluminal stents are prepared by providing polymer tubing having an initial or first diameter A.
  • the polymer tubing is then expanded radially to have a second diameter B, which is larger than initial diameter A, thereby inducing molecular orientation in the polymer tubing.
  • the polymer tubing is then processed to obtain a stent having a circumferential ring configuration. Diameter B is less than the final expanded diameter C of the polymeric intraluminal stent upon deployment.
  • the stent is also annealed or stress relieved by exposing the device to elevated temperature for a period of time and then cooled to room temperature to preserve molecular orientation and help maintain product stability.
  • Yet another aspect of the present invention is a polymeric stent having circumferential ring sections, wherein the polymer is oriented.
  • Another aspect of the present invention is a method of maintaining the patency of a blood vessel by inserting a stent of the present invention and expanding the stent in the blood vessel.
  • novel stents of the present invention manufactured from polymeric materials using the novel manufacturing process have many advantages including a stable ring structure having improved radial strength, the ring structure also allows for a reduced wall thickness and therefore less material implanted in the body, and eliminates the strut hinge relaxation component of stent recoil.
  • FIG. 1 illustrates a stent of the present invention having nine circumferential ring sections or members (vertical elements) connected via straight bridge members (horizontal elements).
  • FIG. 2 is a perspective view of a section of the stent of FIG. 1 , showing four circumferential ring sections connected to adjacent ring sections by three bridging elements in an alternating fashion.
  • FIG. 3 is a perspective view of a section of a stent of the present invention showing three circumferential ring sections, each with three strain localization regions per ring, connected to adjacent ring sections by three bridging elements in an alternating fashion.
  • FIG. 4 is a microscopic image of a stent having a configuration as shown in FIG. 2 that has been expanded at body temperature.
  • FIG. 5 is illustrates a stent of the present invention having 9 circumferential ring sections (vertical elements) with a wave configuration connected via straight bridge members
  • FIG. 6 is a perspective view of a section of the stent of FIG. 5 showing six circumferential ring sections with a wave configuration connected to adjacent ring sections by three bridging elements in an alternating fashion.
  • FIG. 7 is a perspective view of a section of a stent of the present invention having a drug well structure.
  • FIG. 8 is a perspective view of a section of a stent of the present invention having an alternate embodiment of a drug well structure.
  • the present invention provides a method of manufacturing polymeric intraluminal stents having a circumferential ring configuration.
  • the polymeric intraluminal stents are prepared by providing a polymer tubing having a first diameter A.
  • the polymer tubing is then expanded radially to a polymer tubing having a second diameter B, wherein diameter B is larger than diameter A, thereby inducing molecular orientation in the polymer tubing.
  • the polymer tubing is then processed using conventional methods, such as laser cutting, to obtain a stent having a circumferential ring configuration.
  • Diameter B is less than the final diameter C of the polymeric intraluminal stent after the stent has been expanded upon deployment, for example in the lumen of a blood vessel.
  • the stent having a diameter B may be subjected to an additional process step by subsequently heat treating or annealing for product stability, and crimped onto a delivery device which may further reduce its diameter.
  • the polymeric intraluminal stents are prepared by providing a polymer tubing having an initial diameter A.
  • the polymer tubing is then expanded both axially and radially, either simultaneously or sequentially, to a second diameter B, inducing biaxial molecular orientation in the polymer tubing.
  • Diameter B may be less than, equal to, or greater than the initial diameter A depending on the amount of orientation provided in both the axial and radial directions.
  • the polymer tubing is then processed to obtain a stent having with the circumferential ring configuration of diameter B.
  • Diameter B is less than the final diameter C of the polymeric intraluminal stent upon deployment.
  • the stent having a diameter B may be subsequently heat-treated or annealed for product stability and crimped onto a delivery device which may further reduce its diameter.
  • the polymer tubing that is provided may be prepared by conventional methods such as extrusion, injection molding, and solvent casting.
  • the desired polymer tubing diameter and wall thickness are dependent on the final diameter of the stent, which is in turn dependent on the diameter of the body lumen in which the stent will be deployed.
  • One of skill in the art will be able to determine the appropriate polymer tubing diameter and wall thickness with the benefit of the invention described herein.
  • the polymer tubing may be prepared from polymeric materials such as conventional biocompatible, bioabsorbable or nonabsorbable polymers.
  • the selection of the polymeric material used to prepare the polymeric tubing according to the invention is selected according to many factors including, for example, the desired absorption times and physical properties of the materials, and the geometry of the intraluminal stent.
  • nonabsorbable polymers include polyolefins, polyamides, polyesters, fluoropolymers, and acrylics.
  • Biocompatible, bioabsorbable and/or biodegradable polymers consist of bulk and surface erodable materials. Surface erosion polymers are typically hydrophobic with water labile linkages. Hydrolysis tends to occur fast on the surface of such surface erosion polymers with no water penetration in bulk. The initial strength of such surface erosion polymers tends to be low however, and often such surface erosion polymers are not readily available commercially.
  • examples of surface erosion polymers include polyanhydrides such as poly (carboxyphenoxy hexane-sebacic acid), poly (fumaric acid-sebacic acid), poly (carboxyphenoxy hexane-sebacic acid), poly (imide-sebacic acid)(50-50), poly (imide- carboxyphenoxy hexane) (33-67), and polyorthoesters (diketene acetal based polymers).
  • polyanhydrides such as poly (carboxyphenoxy hexane-sebacic acid), poly (fumaric acid-sebacic acid), poly (carboxyphenoxy hexane-sebacic acid), poly (imide-sebacic acid)(50-50), poly (imide- carboxyphenoxy hexane) (33-67), and polyorthoesters (diketene acetal based polymers).
  • Bulk erosion polymers are typically hydrophilic with water labile linkages. Hydrolysis of bulk erosion polymers tends to occur at more uniform rates across the polymer matrix of the stent. Bulk erosion polymers exhibit superior initial strength and are readily available commercially.
  • Examples of bulk erosion polymers include poly ( ⁇ -hydroxy esters) such as poly (lactide), poly (glycolide), poly (caprolactone), poly (p-dioxanone), poly (trimethylene carbonate), poly (oxaesters), poly (oxaamides), and their co-polymers and blends. "Poly(glycolide)” is understood to include poly(glycolic acid).
  • Poly(lactide) is understood to include polymers of L- lactide, D-lactide, meso-lactide, blends thereof, and lactic acid polymers.
  • Some commercially readily available bulk erosion polymers and their commonly associated medical applications include poly (dioxanone) [PDS® suture available from Ethicon, Inc., Somerville, NJ], poly (glycolide) [Dexon® sutures available from United States Surgical Corporation, North Haven, CT], poly (lactide)-PLLA [bone repair], poly (lactide/glycolide) [Vicryl® (10/90) and Panacryl® (95/5) sutures available from Ethicon, Inc., Somerville, NJ], poly (glycolide/caprolactone (75/25) [Monocryl® sutures available from Ethicon, Inc., Somerville, NJ], and poly (glycolide/trimethylene carbonate) [Maxon® sutures available from United States Surgical Corporation, North Haven, CT].
  • Other bulk erosion polymers are tyrosine derived poly amino acid [examples: poly (DTH carbonates), poly (arylates), and poly (imino-carbonates)], phosphorous containing polymers [examples: poly (phosphoesters) and poly (phosphazenes)], poly (ethylene glycol) [PEG] based block co-polymers [PEG-PLA, PEG-poly (propylene glycol), PEG-poly (butylene terephthalate)], poly ( ⁇ -malic acid), poly (ester amide), and polyalkanoates [examples: poly (hydroxybutyrate (HB) and poly (hydroxy valerate) (HV) co-polymers].
  • the polymer tubing may be made from combinations of surface and bulk erosion polymers in order to achieve desired physical properties and to control the degradation mechanism.
  • two or more polymers may be blended in order to achieve desired physical properties and stent degradation rate.
  • the polymer tubing may be made from a bulk erosion polymer that is coated with a surface erosion polymer.
  • the polymeric tubing provided may be comprised of blends of polymeric materials, blends of polymeric materials and plasticizers, blends of polymeric materials and therapeutic agents, blends of polymeric materials and radiopaque agents, blends of polymeric materials with both therapeutic and radiopaque agents, blends of polymeric materials with plasticizers and therapeutic agents, blends of polymeric materials with plasticizers and radiopaque agents, blends of polymeric materials with plasticizers, therapeutic agents and radiopaque agents, and/or any combination thereof.
  • a resultant material may have the beneficial characteristics of each independent material. For example, stiff and brittle materials may be blended with soft and elastomeric materials to create a stiff and tough material.
  • therapeutic agents and radiopaque agents together with the other materials higher concentrations of these materials may be achieved as well as a more homogeneous dispersion.
  • Various methods for producing these blends include solvent and melt processing techniques.
  • Polymers have two thermal transitions; namely, the crystal-liquid transition (i.e. melting point temperature, T m ) and the glass-liquid transition (i.e. glass transition temperature, T g ). In the temperature range between these two transitions there may be a mixture of orderly arranged crystals and chaotic amorphous polymer domains.
  • the glass transition temperature, Tg is the temperature at atmospheric pressure at which the amorphous domains of a polymer change from a brittle vitreous state to a solid deformable or ductile state. At temperatures above the Tg segmental motion of the polymer chains occur. It is desirable to maintain high strength and limit creep or recoil of the specific stents disclosed herein for proper function. For this purpose it is desirable to use polymers with a Tg greater than body temperature.
  • Molecular orientation of the polymer chains can be achieved through mechanical drawing by heating the material above it's Tg but not higher than its Tm (melting temperature), expanding the tube through a variety of means and then cooling the material to below its Tg in this configuration.
  • Tm melting temperature
  • Those skilled in the art are aware of a variety of means to affect expansion such as mandrels, balloon, or pressurized fluids, etc.
  • such orientation induces predominantly circumferential molecular orientation enabling the material to possess the elongation to break and toughness required to expand at body temperature (37°C) without the aid of strut unfolding as is typical with traditional metal or more brittle polymers.
  • Molecular orientation may be obtained in the following manner:
  • the polymer tubing having diameter A is heated above the T g of the polymer, preferably about 10 -
  • a radial expansion device such as a balloon catheter, expanding pins, tapered mandrels and the like.
  • Any known means of heating may be used including but not limited to a heated water bath, heated inert gas, such as nitrogen, and heated air.
  • the tubing is then radially expanded to a diameter B. Radial expansion can be performed while constrained within a mold to maintain the desired diameter B of the tubing, or the tubing can be expanded while unconstrained. Diameter B is less than the final diameter C upon implantation or deployment of the stent into the body lumen.
  • the tubing is then cooled to below the Tg of the polymer through any known means (ice bath, cooled N2 or air, etc.).
  • Molecular orientation of the stent prior to device packaging enables the toughness required for circumferential ring configurations to radially expand during deployment.
  • the polymer tubing having diameter B is then processed to provide a stent having a circumferential ring configuration.
  • the polymer tubing is processed by cutting the tubing to the desired length and then machining to obtain the desired circumferential ring configuration. Machining of the stent may be accomplished by conventional methods such as laser cutting, mechanical cutting, and the like.
  • secondary means such as annealing, and/or crimping which may result in a further reduced interim diameter prior to insertion into the body and expansion to Diameter C.
  • the polymer stent is expanded via a balloon catheter (or other known radial expansion means) to larger size diameter C upon deployment.
  • the circumferential ring sections of the stents of the present invention have a longitudinal arrangement of closed circumferential rings that are substantially tubular cross-sections that are connected together by at least one bridging element.
  • a stent 10 of the present invention is seen having circumferential rings or ring members 40 connected by bridging elements or members 70.
  • Each circumferential ring member 40 is devoid of interconnecting strut geometries and is devoid of spaces within the band to help afford material deformation.
  • the stent 10 is seen to have longitudinal axis 11, diameter 14 and longitudinal passage 17.
  • a circumferential ring member 40 of the stents of the present invention is distinct from a helical ring or band that also may encircle around the longitudinal axis of the stent but does not fully enclose to form a closed ring at a cross section of the stent.
  • the circumferential ring members 40 provide a mechanically stable support for a body lumen into which stent 10 is inserted and expanded.
  • Each circumferential ring member 40 has two lateral opposed sides 42 and 44, respectively, defining the width of the ring member 40.
  • the ring members 40 are separated by spaces 60.
  • the lateral sides 42 and 44 are generally parallel with one another and span the circumference 12 of the stent 10 as a closed ring.
  • the lateral sides 42 and 44 may be generally or substantially straight or may have a wave-like pattern as illustrated in FIG. 5 wherein the stent 110 is seen to have ring members 140 with opposed sides 142 and 144, or the lateral sides may have other material protrusion so long as at least one cross sectional plane within the ring member is a continuous closed ring.
  • the circumferential ring configuration of the stents of the present invention does not have any hinge points that can relax and contribute to stent recoil.
  • a wavy circumferential ring member 140 effectively provides increased material in the circumferential ring member 140 without increasing the diameter of the device.
  • the increased material in the ring member 140 allows the ring member 140 to be deformed to a larger diameter before the ring member 140 is fully plastically deformed.
  • the larger diameter increases the hoop stresses in the material thereby allowing lower radial pressures to be used, thus facilitating expansion in a body lumen without needing to increase the overall diameter of the device itself.
  • the circumferential ring members 40 may have necked down regions or sections 48 to further localization strain by reducing the width of the ring in certain areas. As seen in FIGS.
  • the stents of the present invention having circumferential ring members may be equipped with reservoirs in low strain regions of the stent which are generally in the bridge regions or perhaps in extra material protruding from either side of a circumferential ring where deformation may be minimal.
  • the stent 10 is seen to have bridge members 70 having openings or cavities 78 for receiving and holding drugs in a reservoir.
  • the openings or cavities 78 may continue completely through the bridge members 70 or may have bottoms.
  • the stent 210 as seen in FIG. 8 is seen to have bridge members 270 connecting ring member 240, wherein the bridge member 270 have protuberances 275 containing cavities or openings 278 for receiving and holding drugs in a reservoir.
  • the openings or cavities 278 may continue completely through the bridge members 270 or may have bottoms.
  • the reservoirs may consist of a cup-like structure molded onto and extending from a surface of the bridge members or the ring members.
  • adjacent circumferential rings 40 are connected together by at least one bridging element or member 70.
  • the bridging elements 70 may be substantially straight or maybe wave-like in configuration. Those skilled in the art are aware of many known bridge geometries that may be used without straying from the scope of this invention.
  • the number and location of the bridging elements 70 contributes toward the stent 10 flexibility.
  • the number and width of the spaces 60 between adjacent circumferential rings members 40 helps control the amount of axial and longitudinal flexibility desired. Generally more ring members and larger spacing between circumferential ring members would lend itself to a more flexible configuration.
  • FIGS. 2 show an embodiment of a stent 10 of the present invention wherein three straight bridging elements or members 70 are used to connect adjacent circumferential ring members 4O.
  • the bridge elements 70 are seen to be equispaced in their attachment points 72 to the ring member 40 with adjacent bridge members 70 alternating by 60 degrees around the circumference of the ring member 40.
  • the outside diameter ("OD") will equal about .041
  • the inner diameter ("ID) will equal about .025"
  • the width of the strut members 70 will equal about .008
  • the width of the spaces 60 will equal about .030", with 3 connectors between adjacent rings.
  • the dimensions of the stents of the present invention may be varied in accordance with manufacturing considerations, material considerations, and surgical procedure considerations including the location of the vessel to be stented along with the type and size of the vessel. Bridge element locations in subsequent ring sections alternate to provide for improved axial flexibility.
  • the number of rings, thickness and width of rings can vary depending on the radial strength and flexibility desired without straying from the scope of the invention.
  • Those skilled in the art will also recognize other bridging element geometries (other than straight connections) and variable numbers of elements and spacings can also be devised without straying from the scope of the invention.
  • the circumferential rings of the stents of the present invention are generally solid, alternate embodiments of the stents of the present invention may have reservoirs in regions of low strain or deformation within the ring, in material protruding from the side of a ring or in the bridging elements as seen in FIGS 7 and 8. As seen if
  • the reservoirs or cavities 78 and 278 are useful to house agents, including but not limited to therapeutic agents, radiopaque agents, and the like.
  • Either or both parallel sides of a ring can have attached protrusions or waviness incorporated (extended into the space between adjacent rings) that also may contain reservoirs. Such a location may be desirable to avoid deformation of the reservoir during expansion of the stent.
  • the bridge elements in the stents of the present invention may have various geometries, a straight bridging element being the simplest geometry.
  • the stents of the present invention having circumferential ring members are inherently strong and stiff compared to traditional undulating strut and hinge configurations.
  • the circumferential ring members are devoid of strut unfolding and are thus a more compact longitudinal arrangement of circumferential rings can be achieved compared to traditional columns of undulating strut geometries.
  • the solid ring members are inherently strong due to their continuous geometry but more circumferential ring members per unit length of the stent can be achieved compared to traditional stent configurations having unfolding struts which contribute greatly to the overall radial strength of the stent in resisting external loads.
  • the stents Due to the improved strength per unit length of the stent of the present invention, the stents can be made thinner which is beneficial for improved blood flow and less material in the body. A further advantage is that component of recoil due to the mechanical relaxation of unfolding struts in traditional stent configurations with hinges is thus eliminated. Any resultant recoil would be limited to that of material relaxing from its plastically deformed shape.
  • the following are non-limiting embodiments of circumferential ring configurations.
  • the stent 10 has a plurality of circumferential ring members 40 spaced apart in relationship along a longitudinal axis 12. Each circumferential ring member 40 is formed from a continuous tubular section devoid of individual struts in geometric relation to one another.
  • FIG.. 4 is a microscopic image of a deployed polymeric stent of the present invention having an exemplary circumferential ring configuration as shown in FIG. 2. The stent was laser cut from .049" OD polymer tubing with a wall thickness of roughly .012".
  • the laser cut stent was then radially expanded to a larger diameter (while above the Tg of the material) to induce circumferential orientation in the stent.
  • the stent was then mounted on a 3.5 mm balloon catheter, heated for 1 minute in a 37°C water bath and deployed to size a 10 atm pressure.
  • a stent 10 of the present invention is seen to have a plurality of circumferential rings or ring members 40 spaced apart in relationship along a longitudinal axis 11.
  • Each circumferential ring 40 is formed from a continuous tubular section devoid of individual struts in geometric relation to one another.
  • Within each ring member 40 can be one or more narrowed down or strain localization regions 48 where deformation is designed to occur. Confining strain to certain regions of the ring members 40 may be advantageous in reducing stent recoil post deployment.
  • At least one substantially straight bridging element or member 70 connects adjacent circumferential ring sections 40.
  • the stent 110 has a plurality of circumferential rings or members 140 spaced apart in relationship along a longitudinal axis.
  • Each circumferential ring member 140 is formed from a continuous tubular section devoid of individual struts in geometric relation to one another.
  • Each tubular section although generally cylindrical can be also contain protrusions on either longitudinal side of the circumferential ring members 140. Being that such protrusions 145 or extra material extend on either side 142 or 144 of the ring members 140, they are regions of relatively lower strain and stress and can be used to house reservoirs with minimal risk of deforming during deployment.
  • At least one substantially straight bridging element or member 170 connects adjacent circumferential ring members 140.
  • the bridging elements 170 which lie generally longitudinally, can also contain reservoirs since the bridging elements 170 are regions of relatively low stress and strain during deployment.
  • the novel method of manufacturing the stents of the present invention described herein enables the applicability of an inherently strong and flexible stent configuration for use with polymeric materials whose toughness has been provided through means of molecular orientation. More particularly, the molecular orientation designed into the polymer facilitates the use of stent configurations that typically cannot be obtained with traditional metal stents (too stiff to deform with strut geometries) or unoriented polymers with a Tg higher than body temperature (too brittle and weak to avoid cracking during deployment). Such a method enables the use of a stent configuration that would otherwise be impractical with traditional high modulus and high strength metallic alloys within practical radial pressures used for deployment.
  • Polymeric stents of said invention possess high scaffolding strength in a thin walled configuration that would otherwise not be possible with current technologies.
  • the intraluminal stents prepared by the methods of the invention herein described may be utilized for any number of medical applications, including vessel patency devices, such as vascular stents, biliary stents, ureter stents, vessel occlusion devices such as atrial septal and ventricular septal occluders, patent foramen ovale occluders and orthopedic devices such as fixation devices.
  • vessel patency devices such as vascular stents, biliary stents, ureter stents, vessel occlusion devices such as atrial septal and ventricular septal occluders, patent foramen ovale occluders and orthopedic devices such as fixation devices.
  • the stent may be used for the controlled release of therapeutic agents and/or radioopaque agent.
  • Plasticizers suitable for use in the polymeric compositions used to make the stents of the present invention may be selected from a variety of materials including organic plasticizers and those like water that do not contain organic compounds.
  • Organic plasticizers include but not limited to, phthalate derivatives such as dimethyl, diethyl and dibutyl phthalate; polyethylene glycols with molecular weights preferably from about 200 to 6,000, glycerol, glycols such as polypropylene, propylene, polyethylene and ethylene glycol; citrate esters such as tributyl, triethyl, triacetyl, acetyl triethyl, and acetyl tributyl citrates, surfactants such as sodium dodecyl sulfate and polyoxymethylene (20) sorbitan and polyoxyethylene (20) sorbitan monooleate, organic solvents such as 1 ,4-dioxane, chloroform, ethanol and isopropyl alcohol
  • Therapeutic agent or agents may be optionally combined with the polymeric intaluminal stent.
  • therapeutic agents include but are not limited to: antiproliferative/antimitotic agents including natural products such as vinca alkaloids (i.e. vinblastine, vincristine, and vinorelbine), paclitaxel, epidipodophyllotoxins (i.e.
  • antibiotics dactinomycin (actinomycin D) daunorubicin, doxorubicin and idarubicin
  • anthracyclines mitoxantrone, bleomycins, plicamycin (mithramycin) and mitomycin
  • enzymes L-asparaginase which systemically metabolizes L-asparagine and deprives cells which do not have the capacity to synthesize their own asparagines
  • antiplatelet agents such as G(GP) llb/lll a inhibitors and vitronectin receptor antagonists
  • anti-proliferative/antimitotic alkylating agents such as nitrogen mustards (mechlorethamine, cyclophosphamide and analogs, melphalan, chlorambucil), ethylenimines and methylmelamines (hexamethylmelamine and thiotepa), alkyl sulfonates-busulfan,
  • anti-coagulants heparin, synthetic heparin salts and other inhibitors of thrombin
  • fibrinolytic agents such as tissue plasminogen activator, streptokinase and urokinase), aspirin, dipyridamole, ticlopidine, clopidogrel, abciximab
  • antimigratory antisecretory (breveldin)
  • anti-inflammatory such as adrenocortical steroids (Cortisol, cortisone, fludrocortisone, prednisone, prednisolone, 6 ⁇ -methylprednisolone, triamcinolone, betamethasone, and dexamethasone), non-steroidal agents (salicylic acid derivatives i.e.
  • vascular endothelial growth factor vascular endothelial growth factor (VEGF)
  • VEGF vascular endothelial growth factor
  • para-aminophenol derivatives i.e. acetaminophen; indole and indene acetic acids (indomethacin, sulindac, and etodalec), heteroaryl acetic acids (tolmetin, diclofenac, and ketorolac), arylpropionic acids (ibuprofen and derivatives), anthranilic acids (mefenamic acid, and meclofenamic acid), enolic acids (piroxicam, tenoxicam, phenylbutazone, and oxyphenthatrazone), nabumetone, gold compounds (auranofin, aurothioglucose, gold sodium thiomalate); immunosuppressives: (cyclosporine, tacrolimus (FK-506), sirolimus (rapamycin), everolimus
  • the therapeutic agents may be incorporated into the stent in different ways.
  • the therapeutic agents may be coated onto the stent, after the stent has been formed, wherein the coating is comprised of polymeric materials into which therapeutic agents are incorporated.
  • the coating is comprised of polymeric materials into which therapeutic agents are incorporated.
  • Some of the commonly used methods include spray coating; dip coating; electrostatic coating; fluidized bed coating; and supercritical fluid coatings.
  • the therapeutic agents may be incorporated into the polymeric materials comprising the tubing.
  • the therapeutic agent can be housed in reservoirs or wells in or on the stent..
  • Radiopaque agents may be optionally combined with the polymeric intraluminal stents of the present invention. Because visualization of the stent as it is implanted in the patient is important to the medical practitioner for locating the stent, radiopaque agents may be added to the stent, which as described herein is a polymeric intraluminal stent. The radiopaque agents may be added directly to the polymeric agents comprising the stent during processing thereof resulting in fairly uniform incorporation of the radiopaque agents throughout the stent.
  • the radiopaque agent can be housed in reservoirs or wells in or on the stent.
  • the radiopaque agents may be added to the stent in the form of a layer, a coating, a band or powder at designconfigurationated portions of the stent depending on the geometry of the stent and the process used to form the stent.
  • Coatings may be applied to the stent in a variety of processes known in the art such as, for example, chemical vapor deposition (CVD), physical vapor deposition (PVD), electroplating, high-vacuum deposition process, microfusion, spray coating, dip coating, electrostatic coating, or other surface coating or modification techniques.
  • the radiopaque material does not add significant stiffness to the stent so that the stent may readily traverse the anatomy within which it is deployed.
  • the radiopaque material should be biocompatible with the tissue within which the stent is deployed. Such biocompatibility minimizes the likelihood of undesirable tissue reactions with the stent
  • the radiopaque agents may include inorganic fillers, such as barium sulfate, bismuth subcarbonate, bismuth oxides and/or iodine compounds.
  • the radiopaque additives may instead include metal powders such as tantalum, tungsten or gold, or metal alloys having gold, platinum, iridium, palladium, rhodium, a combination thereof, or other agents known in the art.
  • the radiopaque agents adhere well to the stent such that peeling or delamination of the radiopaque material from the stent is minimized, or ideally does not occur.
  • the metal bands may be crimped at designated sections of the stent.
  • designated sections of the stent may be coated with a radiopaque metal powder, whereas other portions of the stent are free from the metal powder.
  • the particle size of the radiopaque agents may range from nanometers to microns, preferably from less than or equal to 1 micron to about 5 microns, and the amount of radiopaque agents may range from 0-99 percent (wt percent).
  • Purac International, Netherlands is extruded into tubing having an outside diameter (OD) of 0.036" and an inside diameter (ID) of 0.0275".
  • the mold is heated above the Tg (to 70C) for approximately 30 seconds at which time N2 gas under 300 psi is introduced into the tubing.
  • the tubing is held at temperature for approximately 10 seconds and cooled to room temperature.
  • the resultant 0.057" tubing having circumferentially oriented polymer chains is then laser cut using a low energy laser into a circumferential ring configuration, such as those depicted in FIG. 1 and FIG. 2.
  • the laser cut stent is mounted on a 3.0 mm x 18.0 mm balloon catheter, heated in a 37C water bath and subsequently expanded under 10 atm of catheter pressure to its deployed diameter.
  • Endovascular stent surgery is performed in a cardiac catheterization laboratory equipped with a fluoroscope, a special x-ray machine and an x-ray monitor that looks like a regular television screen.
  • the patient is prepared in a conventional manner for surgery. For example, the patient is placed on an x-ray table and covered with a sterile sheet. An area on the inside of the upper leg is washed and treated with an antibacterial solution to prepare for the insertion of a catheter. The patient is given local anesthesia to numb the insertion site and usually remains awake during the procedure.
  • a polymer stent of the present invention having a circumferential ring configuration and an outside diameter of approximately 1.3 - 1.5 mm and a wall thickness of approximately 100 microns is mounted onto a traditional 3.0 mm balloon dilatation catheter.
  • the catheter is threaded through an incision in the groin up into the affected blood vessel on a catheter with a deflated balloon at its tip and inside the stent.
  • the surgeon views the entire procedure with a fluoroscope.
  • the surgeon guides the balloon catheter to the blocked area and inflates the balloon, usually with saline to about 10 atm or according to instructions for use of the catheter, causing the stent to expand and press against the vessel walls.
  • the balloon is then deflated and taken out of the vessel.
  • the entire procedure takes from an hour to 90 minutes to complete.
  • the stent remains in the vessel to hold the vessel wall open and allow blood to pass freely as in a normally functioning healthy artery. Cells and tissue will begin to grow over the stent until its inner surface is covered.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Physics & Mathematics (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

Methods of manufacturing polymeric intraluminal stents and intraluminal stent are disclosed. A method of manufacturing polymer stents comprising the steps of : a. providing a polymer tubing having a first diameter A; b. radially expanding the polymer tubing to a second diameter B, thereby inducing molecular orientation in the polymer tubing; and c. cutting the polymer tubin having diameter B to form a stent comprising a plurality of ring members connected by bridge members.

Description

METHOD OF MANUFACTURING A POLYMERIC STENT HAVING A CIRCUMFERENTIAL RING CONFIGURATION
FIELD OF THE INVENTION
The present invention relates to a method of manufacturing polymeric intraluminal stents, and more particularly to polymeric intraluminal stents having circumferential ring elements.
BACKGROUND OF THE INVENTION
Intraluminal stents are typically, cylindrically shaped devices that are implanted within a body lumen in an initial configuration having a reduced diameter and then radially expanded with the application of a force to a second configuration having a larger size. The expansion is typically done with a balloon catheter. After expansion, the intraluminal stent acts as a support member by providing an outwardly directed radial force to the vessel walls to maintain patency of the lumen. When expanded, an intraluminal stent should exhibit certain mechanical characteristics. These characteristics include maintaining vessel patency through an acute and/or chronic outward force that will help to remodel the vessel to its intended luminal diameter, preventing excessive radial recoil upon deployment, exhibiting sufficient fatigue resistance, and exhibiting sufficient ductility so as to provide adequate coverage over the full range of intended expansion diameters. The stent should also possess a certain degree of flexibility to be maneuvered through tortuous vascular pathways and conform to nonlinear vessel walls when expanded.
The structure of a stent is typically composed of a cylindrical scaffolding network of interconnected structural elements consisting of struts and bridging elements. The radial support structure of stent is typically provided by the strut elements which are generally arranged or connected to adjacent strut elements in a prescribed geometric pattern or column that circumferentially encircles a section of the stent. This circumferential column of struts typically consists of individual struts connected to one another in hinge regions and defined empty space regions. The geometrical configuration of adjacent struts is typically designed such that the stent can be crimped onto a delivery device at a small diameter and then expanded in situ to a larger diameter. Adjacent circumferential columns of struts are generally connected to one another through one or more bridging elements. The length, geometry, and number of bridge elements connect the struts are largely responsible for the flexibility of the stent structure.
Typical balloon expandable stents known in the art are composed of high modulus, high strength metallic alloys such stainless steel or CoCr alloy. Those skilled in the art are aware of a multitude of various geometric strut configurations that have been used to enable radial expansion of stents using these high strength materials, where plastic deformation of the material is generally isolated in the hinge regions between the interconnected structural elements. Such patterns exist where adjacent struts are arranged relative to one another in various undulating or zig-zag patterns, such as sinusoidal, z- shaped, or diamond patterns, without which a stent made of high modulus/strength metal alloy would not be able to expand to full diameter under clinically reasonable radial expansion pressure. Such stent configurations containing a pattern of undulating struts typically contain regions of high strain or stress at the hinges or connections of struts which may then relax to some degree post deployment, contributing to the undesirable phenomenon known as stent recoil.
Stents may also be composed of polymeric materials that may be absorbable or nonabsorbable. Polymers typically have lower strength and modulus than metals and thus polymeric stents of similar architecture typically have less radial strength than a similar metal stent. Higher strength polymers typically do not possess sufficient elongation at break or toughness to expand under high strain without cracking. In addition to some relaxation between adjacent expanded struts, the material of the stent itself may exhibit time dependent creep resulting in potential high overall stent recoil. Utilizing traditional metal stent geometric strut configurations for polymer materials typically requires the polymer stent to have increased wall thickness relative to the comparable metal stent, due to the lower strength and modulus of the polymer material. Increasing wall thickness may be undesirable since it results in additional implant material in the body and may reduce stent flexibility.
Polymeric stents that are expanded radially outward through the facilitation of heat applied to the stent are known. By raising the temperature of the stent to above the Tg, or glass transition temperature of the material, molecular orientation is induced in situ (during deployment). In some embodiments, the polymer of the stent may have a Tg at or below body temperature. However, using polymeric materials of lower Tg typically results in a stent material with lower modulus and strength and can exacerbate recoil when used in the body above their Tg. In addition heating the stent in the body to affect deployment is not desirable since it introduces an additional procedural requirement, potential for variability between different surgeons, and poses a risk of thermal damage to adj acent body tissues.
Various methods of using axial, radial, and biaxial oriented tubing to create stents with enhanced material properties are known in this art. For example, known methods of using tubing produced via various means include melt processing and solvent casting methods, orienting the tubing by various means to affect and enhance material properties, and then creating stents from said tubing. Orientation in one direction can enhance material properties in that direction while also compromising material properties in the orthogonal direction.
There is a continuing need in this art for intraluminal stents having sufficient material properties to provide the desired mechanical behavior of the stents under clinically relevant in vivo loading conditions. Therefore, there is a need for novel materials and novel processes for manufacturing intraluminal stents.
SUMMARY OF THE INVENTION Accordingly, novel manufacturing processes for intraluminal stents are disclosed. The novel method of the present invention is a method of manufacturing polymeric intraluminal stents having a configuration consisting of circumferential rings devoid of interconnecting strut connections, the rings being connected together via bridge connections. The polymeric intraluminal stents are prepared by providing polymer tubing having an initial or first diameter A. The polymer tubing is then expanded radially to have a second diameter B, which is larger than initial diameter A, thereby inducing molecular orientation in the polymer tubing. The polymer tubing is then processed to obtain a stent having a circumferential ring configuration. Diameter B is less than the final expanded diameter C of the polymeric intraluminal stent upon deployment.
In another aspect of the present invention, using the above-described process, the stent is also annealed or stress relieved by exposing the device to elevated temperature for a period of time and then cooled to room temperature to preserve molecular orientation and help maintain product stability.
Yet another aspect of the present invention is a polymeric stent having circumferential ring sections, wherein the polymer is oriented.
Another aspect of the present invention is a method of maintaining the patency of a blood vessel by inserting a stent of the present invention and expanding the stent in the blood vessel.
The novel stents of the present invention manufactured from polymeric materials using the novel manufacturing process have many advantages including a stable ring structure having improved radial strength, the ring structure also allows for a reduced wall thickness and therefore less material implanted in the body, and eliminates the strut hinge relaxation component of stent recoil.
The foregoing and other features, aspects and advantages of the invention will become more apparent from the following description and accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a stent of the present invention having nine circumferential ring sections or members (vertical elements) connected via straight bridge members (horizontal elements).
FIG. 2 is a perspective view of a section of the stent of FIG. 1 , showing four circumferential ring sections connected to adjacent ring sections by three bridging elements in an alternating fashion.
FIG. 3 is a perspective view of a section of a stent of the present invention showing three circumferential ring sections, each with three strain localization regions per ring, connected to adjacent ring sections by three bridging elements in an alternating fashion.
FIG. 4 is a microscopic image of a stent having a configuration as shown in FIG. 2 that has been expanded at body temperature.
FIG. 5 is illustrates a stent of the present invention having 9 circumferential ring sections (vertical elements) with a wave configuration connected via straight bridge members
(horizontal elements).
FIG. 6 is a perspective view of a section of the stent of FIG. 5 showing six circumferential ring sections with a wave configuration connected to adjacent ring sections by three bridging elements in an alternating fashion.
FIG. 7 is a perspective view of a section of a stent of the present invention having a drug well structure.
FIG. 8 is a perspective view of a section of a stent of the present invention having an alternate embodiment of a drug well structure. DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a method of manufacturing polymeric intraluminal stents having a circumferential ring configuration. In one embodiment, the polymeric intraluminal stents are prepared by providing a polymer tubing having a first diameter A. The polymer tubing is then expanded radially to a polymer tubing having a second diameter B, wherein diameter B is larger than diameter A, thereby inducing molecular orientation in the polymer tubing. The polymer tubing is then processed using conventional methods, such as laser cutting, to obtain a stent having a circumferential ring configuration. Diameter B is less than the final diameter C of the polymeric intraluminal stent after the stent has been expanded upon deployment, for example in the lumen of a blood vessel. Optionally, the stent having a diameter B may be subjected to an additional process step by subsequently heat treating or annealing for product stability, and crimped onto a delivery device which may further reduce its diameter.
In another embodiment of the present invention, the polymeric intraluminal stents are prepared by providing a polymer tubing having an initial diameter A. The polymer tubing is then expanded both axially and radially, either simultaneously or sequentially, to a second diameter B, inducing biaxial molecular orientation in the polymer tubing.
Diameter B may be less than, equal to, or greater than the initial diameter A depending on the amount of orientation provided in both the axial and radial directions. The polymer tubing is then processed to obtain a stent having with the circumferential ring configuration of diameter B. Diameter B is less than the final diameter C of the polymeric intraluminal stent upon deployment. Optionally, the stent having a diameter B may be subsequently heat-treated or annealed for product stability and crimped onto a delivery device which may further reduce its diameter.
The polymer tubing that is provided may be prepared by conventional methods such as extrusion, injection molding, and solvent casting. The desired polymer tubing diameter and wall thickness are dependent on the final diameter of the stent, which is in turn dependent on the diameter of the body lumen in which the stent will be deployed. One of skill in the art will be able to determine the appropriate polymer tubing diameter and wall thickness with the benefit of the invention described herein.
The polymer tubing may be prepared from polymeric materials such as conventional biocompatible, bioabsorbable or nonabsorbable polymers. The selection of the polymeric material used to prepare the polymeric tubing according to the invention is selected according to many factors including, for example, the desired absorption times and physical properties of the materials, and the geometry of the intraluminal stent. Examples of nonabsorbable polymers include polyolefins, polyamides, polyesters, fluoropolymers, and acrylics. Biocompatible, bioabsorbable and/or biodegradable polymers consist of bulk and surface erodable materials. Surface erosion polymers are typically hydrophobic with water labile linkages. Hydrolysis tends to occur fast on the surface of such surface erosion polymers with no water penetration in bulk. The initial strength of such surface erosion polymers tends to be low however, and often such surface erosion polymers are not readily available commercially.
Nevertheless, examples of surface erosion polymers include polyanhydrides such as poly (carboxyphenoxy hexane-sebacic acid), poly (fumaric acid-sebacic acid), poly (carboxyphenoxy hexane-sebacic acid), poly (imide-sebacic acid)(50-50), poly (imide- carboxyphenoxy hexane) (33-67), and polyorthoesters (diketene acetal based polymers).
Bulk erosion polymers, on the other hand, are typically hydrophilic with water labile linkages. Hydrolysis of bulk erosion polymers tends to occur at more uniform rates across the polymer matrix of the stent. Bulk erosion polymers exhibit superior initial strength and are readily available commercially. Examples of bulk erosion polymers include poly (α-hydroxy esters) such as poly (lactide), poly (glycolide), poly (caprolactone), poly (p-dioxanone), poly (trimethylene carbonate), poly (oxaesters), poly (oxaamides), and their co-polymers and blends. "Poly(glycolide)" is understood to include poly(glycolic acid). "Poly(lactide)" is understood to include polymers of L- lactide, D-lactide, meso-lactide, blends thereof, and lactic acid polymers. Some commercially readily available bulk erosion polymers and their commonly associated medical applications include poly (dioxanone) [PDS® suture available from Ethicon, Inc., Somerville, NJ], poly (glycolide) [Dexon® sutures available from United States Surgical Corporation, North Haven, CT], poly (lactide)-PLLA [bone repair], poly (lactide/glycolide) [Vicryl® (10/90) and Panacryl® (95/5) sutures available from Ethicon, Inc., Somerville, NJ], poly (glycolide/caprolactone (75/25) [Monocryl® sutures available from Ethicon, Inc., Somerville, NJ], and poly (glycolide/trimethylene carbonate) [Maxon® sutures available from United States Surgical Corporation, North Haven, CT].
Other bulk erosion polymers are tyrosine derived poly amino acid [examples: poly (DTH carbonates), poly (arylates), and poly (imino-carbonates)], phosphorous containing polymers [examples: poly (phosphoesters) and poly (phosphazenes)], poly (ethylene glycol) [PEG] based block co-polymers [PEG-PLA, PEG-poly (propylene glycol), PEG-poly (butylene terephthalate)], poly (α -malic acid), poly (ester amide), and polyalkanoates [examples: poly (hydroxybutyrate (HB) and poly (hydroxy valerate) (HV) co-polymers].
Of course, the polymer tubing may be made from combinations of surface and bulk erosion polymers in order to achieve desired physical properties and to control the degradation mechanism. For example, two or more polymers may be blended in order to achieve desired physical properties and stent degradation rate. Alternately, the polymer tubing may be made from a bulk erosion polymer that is coated with a surface erosion polymer.
In some embodiments, the polymeric tubing provided may be comprised of blends of polymeric materials, blends of polymeric materials and plasticizers, blends of polymeric materials and therapeutic agents, blends of polymeric materials and radiopaque agents, blends of polymeric materials with both therapeutic and radiopaque agents, blends of polymeric materials with plasticizers and therapeutic agents, blends of polymeric materials with plasticizers and radiopaque agents, blends of polymeric materials with plasticizers, therapeutic agents and radiopaque agents, and/or any combination thereof. By blending materials with different properties, a resultant material may have the beneficial characteristics of each independent material. For example, stiff and brittle materials may be blended with soft and elastomeric materials to create a stiff and tough material. In addition, by blending either or both therapeutic agents and radiopaque agents together with the other materials, higher concentrations of these materials may be achieved as well as a more homogeneous dispersion. Various methods for producing these blends include solvent and melt processing techniques.
Polymers have two thermal transitions; namely, the crystal-liquid transition (i.e. melting point temperature, Tm) and the glass-liquid transition (i.e. glass transition temperature, Tg). In the temperature range between these two transitions there may be a mixture of orderly arranged crystals and chaotic amorphous polymer domains. The glass transition temperature, Tg, is the temperature at atmospheric pressure at which the amorphous domains of a polymer change from a brittle vitreous state to a solid deformable or ductile state. At temperatures above the Tg segmental motion of the polymer chains occur. It is desirable to maintain high strength and limit creep or recoil of the specific stents disclosed herein for proper function. For this purpose it is desirable to use polymers with a Tg greater than body temperature.
Molecular orientation of the polymer chains can be achieved through mechanical drawing by heating the material above it's Tg but not higher than its Tm (melting temperature), expanding the tube through a variety of means and then cooling the material to below its Tg in this configuration. Those skilled in the art are aware of a variety of means to affect expansion such as mandrels, balloon, or pressurized fluids, etc. In the case of the circumferential ring configuration described above, such orientation induces predominantly circumferential molecular orientation enabling the material to possess the elongation to break and toughness required to expand at body temperature (37°C) without the aid of strut unfolding as is typical with traditional metal or more brittle polymers.
Molecular orientation may be obtained in the following manner: The polymer tubing having diameter A is heated above the Tg of the polymer, preferably about 10 -
200C above the Tg for approximately 10 seconds while mounted on a radial expansion device, such as a balloon catheter, expanding pins, tapered mandrels and the like. Any known means of heating may be used including but not limited to a heated water bath, heated inert gas, such as nitrogen, and heated air. The tubing is then radially expanded to a diameter B. Radial expansion can be performed while constrained within a mold to maintain the desired diameter B of the tubing, or the tubing can be expanded while unconstrained. Diameter B is less than the final diameter C upon implantation or deployment of the stent into the body lumen. The tubing is then cooled to below the Tg of the polymer through any known means (ice bath, cooled N2 or air, etc.). Molecular orientation of the stent prior to device packaging enables the toughness required for circumferential ring configurations to radially expand during deployment.
The polymer tubing having diameter B is then processed to provide a stent having a circumferential ring configuration. The polymer tubing is processed by cutting the tubing to the desired length and then machining to obtain the desired circumferential ring configuration. Machining of the stent may be accomplished by conventional methods such as laser cutting, mechanical cutting, and the like. When placing the stent on a delivery apparatus for insertion into the body, it may be desirable for the stent to be further processed through secondary means such as annealing, and/or crimping which may result in a further reduced interim diameter prior to insertion into the body and expansion to Diameter C. Upon implantation in the body the polymer stent is expanded via a balloon catheter (or other known radial expansion means) to larger size diameter C upon deployment.
In general, as illustrated in FIGS. 1-8, the circumferential ring sections of the stents of the present invention have a longitudinal arrangement of closed circumferential rings that are substantially tubular cross-sections that are connected together by at least one bridging element. Referring to FIGS. 1-4, a stent 10 of the present invention is seen having circumferential rings or ring members 40 connected by bridging elements or members 70. Each circumferential ring member 40 is devoid of interconnecting strut geometries and is devoid of spaces within the band to help afford material deformation. The stent 10 is seen to have longitudinal axis 11, diameter 14 and longitudinal passage 17. A circumferential ring member 40 of the stents of the present invention is distinct from a helical ring or band that also may encircle around the longitudinal axis of the stent but does not fully enclose to form a closed ring at a cross section of the stent. The circumferential ring members 40 provide a mechanically stable support for a body lumen into which stent 10 is inserted and expanded. Each circumferential ring member 40 has two lateral opposed sides 42 and 44, respectively, defining the width of the ring member 40. The ring members 40 are separated by spaces 60. The lateral sides 42 and 44 are generally parallel with one another and span the circumference 12 of the stent 10 as a closed ring. The lateral sides 42 and 44 may be generally or substantially straight or may have a wave-like pattern as illustrated in FIG. 5 wherein the stent 110 is seen to have ring members 140 with opposed sides 142 and 144, or the lateral sides may have other material protrusion so long as at least one cross sectional plane within the ring member is a continuous closed ring. The circumferential ring configuration of the stents of the present invention does not have any hinge points that can relax and contribute to stent recoil. A wavy circumferential ring member 140 effectively provides increased material in the circumferential ring member 140 without increasing the diameter of the device. The increased material in the ring member 140, allows the ring member 140 to be deformed to a larger diameter before the ring member 140 is fully plastically deformed. The larger diameter increases the hoop stresses in the material thereby allowing lower radial pressures to be used, thus facilitating expansion in a body lumen without needing to increase the overall diameter of the device itself. As seen in FIG. 3, the circumferential ring members 40 may have necked down regions or sections 48 to further localization strain by reducing the width of the ring in certain areas. As seen in FIGS. 7 and 8, the stents of the present invention having circumferential ring members may be equipped with reservoirs in low strain regions of the stent which are generally in the bridge regions or perhaps in extra material protruding from either side of a circumferential ring where deformation may be minimal. Referring first to FIG 7, the stent 10 is seen to have bridge members 70 having openings or cavities 78 for receiving and holding drugs in a reservoir. The openings or cavities 78 may continue completely through the bridge members 70 or may have bottoms. The stent 210 as seen in FIG. 8 is seen to have bridge members 270 connecting ring member 240, wherein the bridge member 270 have protuberances 275 containing cavities or openings 278 for receiving and holding drugs in a reservoir. Similarly, the openings or cavities 278 may continue completely through the bridge members 270 or may have bottoms. Although not illustrated the reservoirs may consist of a cup-like structure molded onto and extending from a surface of the bridge members or the ring members.
Referring once again to FIGS. 1-4, adjacent circumferential rings 40 are connected together by at least one bridging element or member 70. The bridging elements 70 may be substantially straight or maybe wave-like in configuration. Those skilled in the art are aware of many known bridge geometries that may be used without straying from the scope of this invention. The number and location of the bridging elements 70 contributes toward the stent 10 flexibility. The number and width of the spaces 60 between adjacent circumferential rings members 40 helps control the amount of axial and longitudinal flexibility desired. Generally more ring members and larger spacing between circumferential ring members would lend itself to a more flexible configuration. FIG. 1 and FIG. 2 show an embodiment of a stent 10 of the present invention wherein three straight bridging elements or members 70 are used to connect adjacent circumferential ring members 4O.The bridge elements 70 are seen to be equispaced in their attachment points 72 to the ring member 40 with adjacent bridge members 70 alternating by 60 degrees around the circumference of the ring member 40. In a preferred embodiment of a stent 10 of the present invention, the outside diameter (" OD") will equal about .041", the inner diameter ("ID") will equal about .025", and the width of the strut members 70 will equal about .008", and the width of the spaces 60 will equal about .030", with 3 connectors between adjacent rings.; however, the dimensions of the stents of the present invention may be varied in accordance with manufacturing considerations, material considerations, and surgical procedure considerations including the location of the vessel to be stented along with the type and size of the vessel. Bridge element locations in subsequent ring sections alternate to provide for improved axial flexibility. Those skilled in the art will soon recognize that the number of rings, thickness and width of rings can vary depending on the radial strength and flexibility desired without straying from the scope of the invention. Those skilled in the art will also recognize other bridging element geometries (other than straight connections) and variable numbers of elements and spacings can also be devised without straying from the scope of the invention. Although the circumferential rings of the stents of the present invention are generally solid, alternate embodiments of the stents of the present invention may have reservoirs in regions of low strain or deformation within the ring, in material protruding from the side of a ring or in the bridging elements as seen in FIGS 7 and 8. As seen if
FIGS. 7 and 8 , the reservoirs or cavities 78 and 278 are useful to house agents, including but not limited to therapeutic agents, radiopaque agents, and the like. Either or both parallel sides of a ring can have attached protrusions or waviness incorporated (extended into the space between adjacent rings) that also may contain reservoirs. Such a location may be desirable to avoid deformation of the reservoir during expansion of the stent. There can be localized strain regions 48 in the ring members 40 as seen in the stent 10 in FIG. 3 (necked down geometry) along the circumference of the ring members 40 to focus stress and strain in confined region in an effort to minimize stent recoil. The bridge elements in the stents of the present invention may have various geometries, a straight bridging element being the simplest geometry.
The stents of the present invention having circumferential ring members are inherently strong and stiff compared to traditional undulating strut and hinge configurations. The circumferential ring members are devoid of strut unfolding and are thus a more compact longitudinal arrangement of circumferential rings can be achieved compared to traditional columns of undulating strut geometries. Not only are the solid ring members inherently strong due to their continuous geometry but more circumferential ring members per unit length of the stent can be achieved compared to traditional stent configurations having unfolding struts which contribute greatly to the overall radial strength of the stent in resisting external loads. Due to the improved strength per unit length of the stent of the present invention, the stents can be made thinner which is beneficial for improved blood flow and less material in the body. A further advantage is that component of recoil due to the mechanical relaxation of unfolding struts in traditional stent configurations with hinges is thus eliminated. Any resultant recoil would be limited to that of material relaxing from its plastically deformed shape. The following are non-limiting embodiments of circumferential ring configurations. In one embodiment as illustrated in FIGS. 1-4, the stent 10 has a plurality of circumferential ring members 40 spaced apart in relationship along a longitudinal axis 12. Each circumferential ring member 40 is formed from a continuous tubular section devoid of individual struts in geometric relation to one another. At least one substantially straight bridging element or member 70 connects adjacent circumferential ring members 40 such that the members 40 are separated by spaces 60. Such a configuration which lacks strut geometries that unfold would experience polymer orientation throughout the ring sections as opposed to hinged strut geometries which may see orientation only in the hinge regions, illustrating the benefit of the disclosed method. FIG.. 4 is a microscopic image of a deployed polymeric stent of the present invention having an exemplary circumferential ring configuration as shown in FIG. 2. The stent was laser cut from .049" OD polymer tubing with a wall thickness of roughly .012". The laser cut stent was then radially expanded to a larger diameter (while above the Tg of the material) to induce circumferential orientation in the stent. The stent was then mounted on a 3.5 mm balloon catheter, heated for 1 minute in a 37°C water bath and deployed to size a 10 atm pressure.
Referring again to FIG. 3, a stent 10 of the present invention is seen to have a plurality of circumferential rings or ring members 40 spaced apart in relationship along a longitudinal axis 11. Each circumferential ring 40 is formed from a continuous tubular section devoid of individual struts in geometric relation to one another. Within each ring member 40 can be one or more narrowed down or strain localization regions 48 where deformation is designed to occur. Confining strain to certain regions of the ring members 40 may be advantageous in reducing stent recoil post deployment. At least one substantially straight bridging element or member 70 connects adjacent circumferential ring sections 40.
In another embodiment illustrated in FIG. 5, the stent 110 has a plurality of circumferential rings or members 140 spaced apart in relationship along a longitudinal axis. Each circumferential ring member 140 is formed from a continuous tubular section devoid of individual struts in geometric relation to one another. Each tubular section, although generally cylindrical can be also contain protrusions on either longitudinal side of the circumferential ring members 140. Being that such protrusions 145 or extra material extend on either side 142 or 144 of the ring members 140, they are regions of relatively lower strain and stress and can be used to house reservoirs with minimal risk of deforming during deployment. At least one substantially straight bridging element or member 170 connects adjacent circumferential ring members 140. The bridging elements 170 which lie generally longitudinally, can also contain reservoirs since the bridging elements 170 are regions of relatively low stress and strain during deployment.
The novel method of manufacturing the stents of the present invention described herein enables the applicability of an inherently strong and flexible stent configuration for use with polymeric materials whose toughness has been provided through means of molecular orientation. More particularly, the molecular orientation designed into the polymer facilitates the use of stent configurations that typically cannot be obtained with traditional metal stents (too stiff to deform with strut geometries) or unoriented polymers with a Tg higher than body temperature (too brittle and weak to avoid cracking during deployment). Such a method enables the use of a stent configuration that would otherwise be impractical with traditional high modulus and high strength metallic alloys within practical radial pressures used for deployment.
Polymeric stents of said invention possess high scaffolding strength in a thin walled configuration that would otherwise not be possible with current technologies.
The intraluminal stents prepared by the methods of the invention herein described may be utilized for any number of medical applications, including vessel patency devices, such as vascular stents, biliary stents, ureter stents, vessel occlusion devices such as atrial septal and ventricular septal occluders, patent foramen ovale occluders and orthopedic devices such as fixation devices. The stent may be used for the controlled release of therapeutic agents and/or radioopaque agent.
Plasticizers suitable for use in the polymeric compositions used to make the stents of the present invention may be selected from a variety of materials including organic plasticizers and those like water that do not contain organic compounds. Organic plasticizers include but not limited to, phthalate derivatives such as dimethyl, diethyl and dibutyl phthalate; polyethylene glycols with molecular weights preferably from about 200 to 6,000, glycerol, glycols such as polypropylene, propylene, polyethylene and ethylene glycol; citrate esters such as tributyl, triethyl, triacetyl, acetyl triethyl, and acetyl tributyl citrates, surfactants such as sodium dodecyl sulfate and polyoxymethylene (20) sorbitan and polyoxyethylene (20) sorbitan monooleate, organic solvents such as 1 ,4-dioxane, chloroform, ethanol and isopropyl alcohol and their mixtures with other solvents such as acetone and ethyl acetate, organic acids such as acetic acid and lactic acids and their alkyl esters, bulk sweeteners such as sorbitol, mannitol, xylitol and lycasin, fats/oils such as vegetable oil, seed oil and castor oil, acetylated monoglyceride, triacetin, sucrose esters, or mixtures thereof. Preferred organic plasticizers include citrate esters; polyethylene glycols and dioxane.
Therapeutic agent or agents may be optionally combined with the polymeric intaluminal stent. Examples of therapeutic agents include but are not limited to: antiproliferative/antimitotic agents including natural products such as vinca alkaloids (i.e. vinblastine, vincristine, and vinorelbine), paclitaxel, epidipodophyllotoxins (i.e. etoposide, teniposide), antibiotics (dactinomycin (actinomycin D) daunorubicin, doxorubicin and idarubicin), anthracyclines, mitoxantrone, bleomycins, plicamycin (mithramycin) and mitomycin, enzymes (L-asparaginase which systemically metabolizes L-asparagine and deprives cells which do not have the capacity to synthesize their own asparagines); antiplatelet agents such as G(GP) llb/llla inhibitors and vitronectin receptor antagonists; anti-proliferative/antimitotic alkylating agents such as nitrogen mustards (mechlorethamine, cyclophosphamide and analogs, melphalan, chlorambucil), ethylenimines and methylmelamines (hexamethylmelamine and thiotepa), alkyl sulfonates-busulfan, nirtosoureas (carmustine (BCNU) and analogs, streptozocin), trazenes - dacarbazinine (DTIC); anti-proliferative/antimitotic antimetabolites such as folic acid analogs (methotrexate), pyrimidine analogs (fluorouracil, floxuridine and cytarabine) purine analogs and related inhibitors (mercaptopurine, thioguanine, pentostatin and 2-chlorodeoxyadenosine {cladribine}); platinum coordination complexes (cisplatin, carboplatin), procarbazine, hydroxyurea, mitotane, aminoglutethimide; hormones (i.e. estrogen); anti-coagulants (heparin, synthetic heparin salts and other inhibitors of thrombin); fibrinolytic agents (such as tissue plasminogen activator, streptokinase and urokinase), aspirin, dipyridamole, ticlopidine, clopidogrel, abciximab; antimigratory; antisecretory (breveldin); anti-inflammatory; such as adrenocortical steroids (Cortisol, cortisone, fludrocortisone, prednisone, prednisolone, 6α-methylprednisolone, triamcinolone, betamethasone, and dexamethasone), non-steroidal agents (salicylic acid derivatives i.e. aspirin; para-aminophenol derivatives i.e. acetaminophen; indole and indene acetic acids (indomethacin, sulindac, and etodalec), heteroaryl acetic acids (tolmetin, diclofenac, and ketorolac), arylpropionic acids (ibuprofen and derivatives), anthranilic acids (mefenamic acid, and meclofenamic acid), enolic acids (piroxicam, tenoxicam, phenylbutazone, and oxyphenthatrazone), nabumetone, gold compounds (auranofin, aurothioglucose, gold sodium thiomalate); immunosuppressives: (cyclosporine, tacrolimus (FK-506), sirolimus (rapamycin), everolimus, azathioprine, mycophenolate mofetil); angiogenic agents: vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF); angiotensin receptor blockers; nitric oxide donors, antisense oligionucleotides and combinations thereof; cell cycle inhibitors, mTOR inhibitors, and growth factor receptor signal transduction kinase inhibitors; retenoids; cyclin/CDK inhibitors; HMG co-enzyme reductase inhibitors (statins); and protease inhibitors.
The therapeutic agents may be incorporated into the stent in different ways. For example, the therapeutic agents may be coated onto the stent, after the stent has been formed, wherein the coating is comprised of polymeric materials into which therapeutic agents are incorporated. There are several ways to coat the stents that are disclosed in the prior art. Some of the commonly used methods include spray coating; dip coating; electrostatic coating; fluidized bed coating; and supercritical fluid coatings. Alternately, the therapeutic agents may be incorporated into the polymeric materials comprising the tubing. The therapeutic agent can be housed in reservoirs or wells in or on the stent.. These various techniques of incorporating therapeutic agents into, or onto, the stent may also be combined to optimize performance of the stent, and to help control the release of the therapeutic agents from the stent. Radiopaque agents may be optionally combined with the polymeric intraluminal stents of the present invention. Because visualization of the stent as it is implanted in the patient is important to the medical practitioner for locating the stent, radiopaque agents may be added to the stent, which as described herein is a polymeric intraluminal stent. The radiopaque agents may be added directly to the polymeric agents comprising the stent during processing thereof resulting in fairly uniform incorporation of the radiopaque agents throughout the stent. The radiopaque agent can be housed in reservoirs or wells in or on the stent.. Alternately, the radiopaque agents may be added to the stent in the form of a layer, a coating, a band or powder at designconfigurationated portions of the stent depending on the geometry of the stent and the process used to form the stent. Coatings may be applied to the stent in a variety of processes known in the art such as, for example, chemical vapor deposition (CVD), physical vapor deposition (PVD), electroplating, high-vacuum deposition process, microfusion, spray coating, dip coating, electrostatic coating, or other surface coating or modification techniques. Such coatings sometimes have less negative impact on the physical characteristics (e.g., size, weight, stiffness, flexibility) and performance of the stent than do other techniques. Preferably, the radiopaque material does not add significant stiffness to the stent so that the stent may readily traverse the anatomy within which it is deployed. The radiopaque material should be biocompatible with the tissue within which the stent is deployed. Such biocompatibility minimizes the likelihood of undesirable tissue reactions with the stent The radiopaque agents may include inorganic fillers, such as barium sulfate, bismuth subcarbonate, bismuth oxides and/or iodine compounds. The radiopaque additives may instead include metal powders such as tantalum, tungsten or gold, or metal alloys having gold, platinum, iridium, palladium, rhodium, a combination thereof, or other agents known in the art.
Preferably, the radiopaque agents adhere well to the stent such that peeling or delamination of the radiopaque material from the stent is minimized, or ideally does not occur. Where the radiopaque agents are added to the stent as metal bands, the metal bands may be crimped at designated sections of the stent. Alternately, designated sections of the stent may be coated with a radiopaque metal powder, whereas other portions of the stent are free from the metal powder. The particle size of the radiopaque agents may range from nanometers to microns, preferably from less than or equal to 1 micron to about 5 microns, and the amount of radiopaque agents may range from 0-99 percent (wt percent).
The following examples are illustrative of the principles and practice of this invention, although not limited thereto. Numerous additional embodiments within the scope and spirit of the invention will become apparent to those skilled in the art once having the benefit of this disclosure.
Example 1 An 85/15 (mol/mol) poly(lactide-co-glycolide) (PLGA) copolymer (IV=3.3dL/g from
Purac International, Netherlands) is extruded into tubing having an outside diameter (OD) of 0.036" and an inside diameter (ID) of 0.0275". The tubing is radially expanded by sealing the tube at one end and placing the tube in a cylindrical mold having an ID = 0.057". The mold is heated above the Tg (to 70C) for approximately 30 seconds at which time N2 gas under 300 psi is introduced into the tubing. The tubing is held at temperature for approximately 10 seconds and cooled to room temperature. The resultant 0.057" tubing having circumferentially oriented polymer chains is then laser cut using a low energy laser into a circumferential ring configuration, such as those depicted in FIG. 1 and FIG. 2. The laser cut stent is mounted on a 3.0 mm x 18.0 mm balloon catheter, heated in a 37C water bath and subsequently expanded under 10 atm of catheter pressure to its deployed diameter.
Example 2
Endovascular stent surgery is performed in a cardiac catheterization laboratory equipped with a fluoroscope, a special x-ray machine and an x-ray monitor that looks like a regular television screen. The patient is prepared in a conventional manner for surgery. For example, the patient is placed on an x-ray table and covered with a sterile sheet. An area on the inside of the upper leg is washed and treated with an antibacterial solution to prepare for the insertion of a catheter. The patient is given local anesthesia to numb the insertion site and usually remains awake during the procedure. A polymer stent of the present invention having a circumferential ring configuration and an outside diameter of approximately 1.3 - 1.5 mm and a wall thickness of approximately 100 microns is mounted onto a traditional 3.0 mm balloon dilatation catheter. To implant a stent in the artery, the catheter is threaded through an incision in the groin up into the affected blood vessel on a catheter with a deflated balloon at its tip and inside the stent. The surgeon views the entire procedure with a fluoroscope. The surgeon guides the balloon catheter to the blocked area and inflates the balloon, usually with saline to about 10 atm or according to instructions for use of the catheter, causing the stent to expand and press against the vessel walls. The balloon is then deflated and taken out of the vessel. The entire procedure takes from an hour to 90 minutes to complete. The stent remains in the vessel to hold the vessel wall open and allow blood to pass freely as in a normally functioning healthy artery. Cells and tissue will begin to grow over the stent until its inner surface is covered.
The above description is merely illustrative and should not be construed to capture all consideration in decisions regarding the optimization of the configuration and material orientation. It is important to note that although specific configurations are illustrated and described, the principles described are equally applicable to many already known stent configurations. Although shown and described is what is believed to be the most practical and preferred embodiments, it is apparent that departures from specific configurations and methods described and shown will suggest themselves to those skilled in the art and may be used without departing from the spirit and scope of the invention. The present invention is not restricted to the particular constructions described and illustrated, but should be constructed to cohere with all modifications that may fall within the scope for the appended claims.

Claims

What is claimed is:
1. A method of manufacturing polymer stents comprising the steps of: a. providing a polymer tubing having a first diameter A; b. radially expanding the polymer tubing to a second diameter B, thereby inducing molecular orientation in the polymer tubing; and c. cutting the polymer tubing having diameter B to form a stent comprising a plurality of ring members connected by bridge members.
PCT/US2009/038723 2008-03-28 2009-03-30 Method of manufacturing a polymeric stent having a circumferential ring configuration WO2009121048A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US4018208P 2008-03-28 2008-03-28
US61/040,182 2008-03-28

Publications (1)

Publication Number Publication Date
WO2009121048A1 true WO2009121048A1 (en) 2009-10-01

Family

ID=40627259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/038723 WO2009121048A1 (en) 2008-03-28 2009-03-30 Method of manufacturing a polymeric stent having a circumferential ring configuration

Country Status (1)

Country Link
WO (1) WO2009121048A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110811A1 (en) * 2009-03-24 2010-09-30 Ethicon, Inc. Method of manufacturing a polymeric stent having improved toughness
EP2752172A1 (en) * 2010-01-30 2014-07-09 Abbott Cardiovascular Systems, Inc. Crush recoverable polymer stents
EP2752173A1 (en) * 2010-01-30 2014-07-09 Abbott Cardiovascular Systems, Inc. Crush recoverable polymer stents
US9038260B2 (en) 2006-05-26 2015-05-26 Abbott Cardiovascular Systems Inc. Stent with radiopaque markers
US9827119B2 (en) 2010-01-30 2017-11-28 Abbott Cardiovascular Systems Inc. Polymer scaffolds having a low crossing profile
US10307274B2 (en) 2011-07-29 2019-06-04 Abbott Cardiovascular Systems Inc. Methods for uniform crimping and deployment of a polymer scaffold

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060076708A1 (en) * 2004-09-30 2006-04-13 Bin Huang Method of fabricating a biaxially oriented implantable medical device
EP1859823A2 (en) * 2006-05-25 2007-11-28 Cordis Corporation Polymeric stent having modified molecular structures in the flexible connectors and the radial arcs of the hoops
WO2007146354A2 (en) * 2006-06-15 2007-12-21 Abbott Cardiovascular Systems Inc. Methods of fabricating stents with enhanced fracture toughness
WO2007149457A1 (en) * 2006-06-19 2007-12-27 Abbott Cardiovascular Systems Inc. Fabricating a stent with selected properties in the radial and axial directions
WO2008137821A1 (en) * 2007-05-04 2008-11-13 Abbott Cardiovascular System Inc. Stents with high radial strength and methods of manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060076708A1 (en) * 2004-09-30 2006-04-13 Bin Huang Method of fabricating a biaxially oriented implantable medical device
EP1859823A2 (en) * 2006-05-25 2007-11-28 Cordis Corporation Polymeric stent having modified molecular structures in the flexible connectors and the radial arcs of the hoops
WO2007146354A2 (en) * 2006-06-15 2007-12-21 Abbott Cardiovascular Systems Inc. Methods of fabricating stents with enhanced fracture toughness
WO2007149457A1 (en) * 2006-06-19 2007-12-27 Abbott Cardiovascular Systems Inc. Fabricating a stent with selected properties in the radial and axial directions
WO2008137821A1 (en) * 2007-05-04 2008-11-13 Abbott Cardiovascular System Inc. Stents with high radial strength and methods of manufacturing same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9694116B2 (en) 2006-05-26 2017-07-04 Abbott Cardiovascular Systems Inc. Stents with radiopaque markers
US9358325B2 (en) 2006-05-26 2016-06-07 Abbott Cardiovascular Systems Inc. Stents with radiopaque markers
US9038260B2 (en) 2006-05-26 2015-05-26 Abbott Cardiovascular Systems Inc. Stent with radiopaque markers
WO2010110811A1 (en) * 2009-03-24 2010-09-30 Ethicon, Inc. Method of manufacturing a polymeric stent having improved toughness
JP2015128610A (en) * 2010-01-30 2015-07-16 アボット カーディオヴァスキュラー システムズ インコーポレイテッド Crush recoverable polymer scaffolds
US9198785B2 (en) 2010-01-30 2015-12-01 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
EP2752173A1 (en) * 2010-01-30 2014-07-09 Abbott Cardiovascular Systems, Inc. Crush recoverable polymer stents
JP2017080442A (en) * 2010-01-30 2017-05-18 アボット カーディオヴァスキュラー システムズ インコーポレイテッド Crush recoverable polymer scaffolds
EP2752172A1 (en) * 2010-01-30 2014-07-09 Abbott Cardiovascular Systems, Inc. Crush recoverable polymer stents
US9763818B2 (en) 2010-01-30 2017-09-19 Abbott Cardiovascular Systems Inc. Method of crimping stent on catheter delivery assembly
US9770351B2 (en) 2010-01-30 2017-09-26 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US9827119B2 (en) 2010-01-30 2017-11-28 Abbott Cardiovascular Systems Inc. Polymer scaffolds having a low crossing profile
US9867728B2 (en) 2010-01-30 2018-01-16 Abbott Cardiovascular Systems Inc. Method of making a stent
EP3300701A1 (en) * 2010-01-30 2018-04-04 Abbott Cardiovascular Systems Inc. Method of crimping polymer stents
US10123894B2 (en) 2010-01-30 2018-11-13 Abbott Cardiovascular Systems Inc. Method of crimping stent on catheter delivery assembly
US11324614B2 (en) 2010-01-30 2022-05-10 Abbott Cardiovascular Systems Inc. Balloon expanded polymer stent
US10307274B2 (en) 2011-07-29 2019-06-04 Abbott Cardiovascular Systems Inc. Methods for uniform crimping and deployment of a polymer scaffold

Similar Documents

Publication Publication Date Title
US20090287295A1 (en) Method of Manufacturing a Polymeric Stent with a Hybrid Support Structure
EP1608416B1 (en) Medical devices having drug eluting properties and methods of manufacture thereof
US20080097580A1 (en) Morphological structures for polymeric drug delivery devices
AU2005274097B2 (en) Bioabsorbable self-expanding endolumenal devices
US20100244305A1 (en) Method of manufacturing a polymeric stent having improved toughness
EP2020967B1 (en) Baloon expandable bioabsorbable drug eluting stent
US20080051866A1 (en) Drug delivery devices and methods
US11931484B2 (en) Composite stent having multi-axial flexibility and method of manufacture thereof
EP1872808A1 (en) Polymeric stent having modified molecular structures in selected regions of the hoops and method for increasing elongation at break
EP1859823A2 (en) Polymeric stent having modified molecular structures in the flexible connectors and the radial arcs of the hoops
WO2012044453A1 (en) Soft crowns
EP1859822A2 (en) Polymeric stent having modified molecular structures in selected regions of the hoops and method for making the same
EP1859825A2 (en) Polymeric stent having modified molecular structures in selected regions of the flexible connectors
US20080169582A1 (en) Method and apparatus for making polymeric drug delivery devices having differing morphological structures
WO2014091438A2 (en) An improved bioresorbable polymeric vascular stent device
WO2009121048A1 (en) Method of manufacturing a polymeric stent having a circumferential ring configuration
US20170246243A1 (en) Bioresorbable scaffold for treatment of bifurcation lesion
EP1825870A2 (en) Implantable device formed from polymer and plasticizer blends having modified molecular structures
US20100244334A1 (en) Method of manufacturing a polymeric stent having a circumferential ring configuration
US20120059451A1 (en) Method of Manufacturing a Polymeric Stent Having Reduced Recoil
EP1859824A2 (en) Polymeric stent having modified molecular structures in both the hoops and selected segments of the flexible connectors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09725329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09725329

Country of ref document: EP

Kind code of ref document: A1