WO2009119915A1 - Plant disease resistance inducer - Google Patents

Plant disease resistance inducer Download PDF

Info

Publication number
WO2009119915A1
WO2009119915A1 PCT/JP2009/056922 JP2009056922W WO2009119915A1 WO 2009119915 A1 WO2009119915 A1 WO 2009119915A1 JP 2009056922 W JP2009056922 W JP 2009056922W WO 2009119915 A1 WO2009119915 A1 WO 2009119915A1
Authority
WO
WIPO (PCT)
Prior art keywords
disease resistance
compound
plant
plant disease
activity
Prior art date
Application number
PCT/JP2009/056922
Other languages
French (fr)
Japanese (ja)
Inventor
能年義輝
白須賢
Original Assignee
独立行政法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人理化学研究所 filed Critical 独立行政法人理化学研究所
Publication of WO2009119915A1 publication Critical patent/WO2009119915A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/99Enzyme inactivation by chemical treatment
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/06Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom five-membered rings
    • A01N43/08Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom five-membered rings with oxygen as the ring hetero atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/36Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • A01N43/42Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/561,2-Diazoles; Hydrogenated 1,2-diazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/86Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms six-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system

Definitions

  • the present invention relates to a plant disease resistance inducer obtained by a comprehensive and efficient screening method for plant disease resistance inducers.
  • Non-patent Document 3 When a plant is infected with a pathogen, it synthesizes salicylic acid, which is a plant hormone, to induce a defense gene group to exert disease resistance (Non-patent Document 1).
  • BTH benzo (l, 2, 3) thiadiazole-7-carbothioic acid S-methyl ester
  • INA 2, 6-dichloroi sonicot inic acid
  • Patent Documents 9, 10 NCI (N-cyanomethyl-2-chloroi sonicot inaraide)
  • Non-Patent Document 4 NCI (N-cyanomethyl-2-chloroi sonicot inaraide)
  • CMPA 3-chrolo-l-methyl-lH-pyrazole-5-carboxyl aci'd
  • Patent Document 1 Schurter et al., (1987) EU Patent 0313-512.
  • Patent Document 2 JP-B 49 ⁇ 3 7 1 4 7
  • Patent Document 3 Japanese Patent Publication No. 45 1 1 2 1 5 7
  • Patent Document 4 JP-B 45 ⁇ 3 8 0 8 0
  • Patent Document 5 JP-B 45 ⁇ 3 8 3 5 6
  • Patent Document 6 JP-B 47 ⁇ 3 8 9 6 7
  • Patent Document 7 JP 05-0 0 5 9 0 2 4
  • Patent Document 8 Japanese Patent Laid-Open No. 20-3-1 1 3 1 6 7
  • Patent Document 9 Japanese Patent Application Laid-Open No. 2007-7-9 1 5 9 6
  • Patent Document 10 JP 20 0 7 ⁇ 1 8 6 509
  • Patent Document 1 Japanese Patent Laid-Open No. 08-81 0 1 2 5 10
  • Patent Document 1 Japanese Patent Laid-Open No. 20 0 6 ⁇ 3 2 7 995
  • Patent Document 1 Japanese Patent Laid-Open No. 20 0 2 ⁇ 2 2 3 747
  • Patent Document 14 JP 20 06 1 1 1 7 608
  • Non-Patent Document 1 Metraux et al., (1990) Science, 250: 1004-1006.
  • Non-Patent Document 2 Friedrich et al., (1996) Plant J. 10: 6 to 70,
  • Non-Patent Document 3 Vernooij et al., (1995) Mol. Plant-Microbe Interact. 8: 228-234.
  • Non-patent document 4 Nakashita et al., (2002) Plant Cell Physiol. 43: 823-831 (Non-patent document 5) Yasuda et al., (2003) Biosci. Biotech. Biochem. 67: 2614-2620.
  • an object of the present invention is to establish a comprehensive and efficient screening method for plant disease resistance inducers and to provide a novel plant disease resistance inducer using the screening method. is there.
  • hypersensitive cell death is one of disease resistance responses induced in cultured Arabidopsis cells as a result of infection with tomato bacterial leaf bacilli.
  • plant disease resistance inducers could be screened comprehensively and rapidly, and we established screening methods for plant disease resistance inducers by optimizing the screening conditions. And we succeeded in obtaining a new plant disease resistance inducer using the screening method.
  • the present invention has been completed based on such findings.
  • the present invention includes the following inventions.
  • a plant disease resistance inducer comprising a compound that inhibits the darcosyl salicylate transferase activity of the following protein (a) or (b):
  • ⁇ 1 to! ⁇ 9 are independently a hydrogen atom, a hydroxyl group, a halogen atom, a nitro group
  • An amino group, an alkyl group having 1 to 4 carbon atoms or an alkoxy group, or an alkenyl group having 2 to 4 carbon atoms or an alkynyl group is represented.
  • the plant disease resistance inducer according to (1) which is a compound represented by (II).
  • R 1 Q and R 11 are each independently substituted with a hydrogen atom, an alkylcarbonyl group having 1 to 4 carbon atoms which may be substituted with a halogen atom, or an alkoxy group having 1 to 4 carbon atoms.
  • the benzyl group that may be present, or R 1 G , R 1 ⁇ and the N atom to which they are bonded together represents a phthalimide group.
  • the compound that inhibits salicylate dalcosyltransferase activity is a compound represented by the following formula (la) ⁇ (lb), (Ic) (IIa), (IIb), (lie), or (lid):
  • the plant disease resistance inducer according to (1) is a compound represented by the following formula (la) ⁇ (lb), (Ic) (IIa), (IIb), (lie), or (lid):
  • a plant disease resistance inducer comprising a compound represented by the following formula ( ⁇ ), (IV), or (V):
  • a method for controlling plant diseases comprising using the plant disease resistance inducer according to any one of (1) to (5).
  • a plant cell infected with a tomato spotted bacterial pathogen (Pseudomonas syringae pv. Tomato DC3000 strain) having an AvrRpml protein is cultured with the test compound, and the test compound is hypersensitive cell death in the plant cell.
  • a method of screening a compound for inducing resistance to plant diseases comprising: determining whether or not to enhance hypersensitivity cell death, and selecting a compound determined to enhance hypersensitive cell death.
  • Figure 1 shows the results of examination of the infection index for Pst in cultured Arabidopsis cells.
  • Figure 2 shows the detection results of Evans blue staining of cultured Arabidopsis cells that have undergone hypersensitive cell death due to Pst infection.
  • Figure 3 shows the morphology of Pst-infected Arabidopsis plants.
  • Fig. 4 shows the hypersensitive cell death-inducing activity of cultured Arabidopsis cells for each Pst strain.
  • Figure 5 shows the effect of known cell death inhibitors on hypersensitive cell death of cultured Arabidopsis cells by Pst infection.
  • Figure 6 shows the effect of known plant disease resistance inducers on hypersensitive cell death of cultured Arabidopsis cells by Pst infection.
  • Figure 7 shows the effect of DMS0 concentration on hypersensitive cell death in Arabidopsis cultured cells.
  • FIG. 8 shows the procedure of a screening method for a plant disease resistance-inducing compound.
  • Figure 9 shows how the sample was applied to the microtiter plate used in the screening method.
  • FIG. 10 shows the structure of a plant disease resistance-inducing compound isolated by screening.
  • Figure 11 shows the concentration dependence of the hypersensitive cell death-promoting activity of the isolated plant disease resistance-inducing compound (0, 125, 100, 75, 50, 25, 10, 0 ⁇ ⁇ ).
  • Figure 12 shows the results of PR1 gene expression test in Arabidopsis cultured cells using the isolated plant disease resistance-inducing compound.
  • Fig. 13 shows the results of PR1 gene expression test in Arabidopsis cultured cells with the isolated plant disease resistance-inducing compound.
  • Figure 14 shows the results of investigating the dependency of the PR1 gene expression ability of the isolated plant disease resistance-inducing compound on the salicylic acid synthesis pathway.
  • FIG. 15 shows changes in salicylic acid content of cultured Arabidopsis cells by addition of an isolated plant disease resistance-inducing compound.
  • Figure 16 shows the type and activity of Arabidopsis thaliana salicylate darcosyltransferase.
  • Figure 17 shows the results of thin-layer chromatography detection of the reaction product of salicylic acid dalcosyltransferase derived from Arabidopsis thaliana.
  • Figure 18 shows the effect of isolated plant disease resistance-inducing compounds on salicylate dalcosyltransferase activity.
  • FIG. 19 shows the effect of isolated plant disease resistance-inducing compounds on salicylate dalcosyltransferase activity.
  • Figure 20 shows the structures (A) of CB_8, CB_9 and their similar compounds, and their hypersensitive cell death promoting activity (B) (in each compound, 0, 250, 100, 75, 50 from the left side). , 25, 10, 0 ⁇ ).
  • Figure 21 shows the effect of CB-8, CB_9, CB-11, and similar compounds on salicylate dalcosyltransferase activity.
  • Figure 22 shows the structures (A) of CB_11, CB_12, and their similar compounds, and their hypersensitive cell death-promoting activity (B) (in each compound, 0, 250, 100, 75, 50, 25, 10, 0 / ⁇ ⁇ ).
  • Figure 23 shows the effect of thiazinyl and probenazole on salicylate darcosyltransferase activity.
  • Figure 24 shows changes in the number of plants after administration of a plant disease resistance-inducing compound in Arabidopsis leaves infected with Pst. [From the left, CB_6 (200 ⁇ ), CB_7 (200 ⁇ ⁇ ), CB_8 (100 ⁇ ⁇ ), CB 9 (100 ⁇ ), CB 10 (200 ⁇ ), CB 11 (100 ⁇ ), SA (200; u M)].
  • Figure 25 shows the effects of plant disease resistance-inducing compounds on the growth of Arabidopsis plants.
  • the method for screening a compound for inducing resistance to plant diseases comprises: a plant cell infected with a stalk fungus (£ _seudomona svringae pv. Tomato DC3000 strain) having an AvrRpral protein; And test compound, determining whether or not the test compound enhances hypersensitive cell death in the plant cell, and selecting a compound determined to enhance hypersensitive cell death
  • hypersensitive cell death refers to cell death pre-programmed in the plant itself by the plant's self-protection mechanism against disease. This method [Pseudomonas syringae pv.
  • Tomato DC3000 strain (hereinafter referred to as “Pst”) has the AvrRpml protein in the strongest and most sensitive cell death in a short time. preferably a strain, for example, is Pseudomonas syringae pv. tomato DC3000 avrRpml strain force s preferred (Rere for this.
  • Plant cells to be infected with the above-mentioned diseases include Arabidopsis cultured cell awakening strain (Menges and Murray, (2002) Plant J. 30: 203-212.) And T87 strain (Axelos, et al., (1992) Plant Physiol Biochem. 30: 123-128.) Can be used, but the MMl strain is preferred because it is easier to prepare the medium than the T87 strain and its suspension is high and easy to handle. .
  • test compound there are no particular restrictions on the test compound to be screened. For example, heaven However, single compounds such as compounds, organic compounds, inorganic compounds, proteins, peptides, and compound libraries, gene library expression products, cell extracts, cell culture supernatants, fermented microorganism products, plant extracts, etc. However, it is not limited to these.
  • the plant disease resistance inducer of the present invention contains a compound obtained by the screening method of 1 above as an active ingredient.
  • the compound includes a compound that inhibits darcosyltransferase activity of salicylate, and examples of the compound include compounds represented by the following general formula (I).
  • scales 1 to! ⁇ 9 are each independently a hydrogen atom, a hydroxyl group, a halogen atom, a nitro group, an amino group, Group, an alkyl group having 1 to 4 carbon atoms or an alkoxy group, or an alkyl group having 2 to 4 carbon atoms or an alkynyl group.
  • Examples of the compound that inhibits salicylic acid darcosyltransferase activity also include compounds represented by the following general formula ( ⁇ ).
  • R 1 Q and R 11 are each independently substituted with a hydrogen atom or an alkylcarbonyl group having 1 to 4 carbon atoms which may be substituted with a halogen atom or an alkoxy group having 1 to 4 carbon atoms.
  • the benzyl group which may be bonded, or R 1 Q , scale 11 and the N atom to which they are bonded together represent a phthalimide group.
  • halogen atom is fluorine atom, chlorine atom, bromine atom, iodine atom
  • alkyl group having 1 to 4 carbon atoms is methyl, ethyl, n-propyl , Isopropinole, n-butinole, isobutinole, sec-butyl, tert-butyl
  • alkoxy groups having 1 to 4 carbon atoms include methoxy, ethoxy, propoxy, isopropoxy, butoxy, tert —Butoxy group:
  • Alkenyl group having 2 to 4 carbon atoms includes bur, n-propenyl, isopropeninole, n-buteninole, isobuteninole, sec-buteninole, tert-buteninore; carbon number 2 to 4
  • Alkynyl group includes ethynyl, n-propiel (1
  • salicylic acid dalcosyltransferase refers to Arabidopsis At2g43840 (UGT74Fl) having the activity of transferring glucose to salicylic acid (SA) to produce salicylic acid 2-0-j3-D-darcoside (SAG). It has the amino acid sequence shown in 2.
  • UGT74F1 may be a mutant protein having an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 as long as the enzyme activity is maintained.
  • the number of amino acids that may be deleted, substituted, and / or added is preferably 1 to several.
  • the number of “several” is not particularly limited. For example, it means 20 or less, preferably 10 or less, more preferably 7 or less, and further preferably 5 : or less.
  • the “mutation” here means a mutation artificially introduced mainly by a known mutant protein production method, but may be a similar naturally occurring mutation.
  • Protein The homology search can be performed by using a program such as FASTA or BLAST for the DNA Databank of Japan (DDBJ), for example.
  • TUGT74F1 gene It is possible to confer disease resistance to plants by deleting the function of “TUGT74F1 gene”.
  • methods of loss of function include a method of expressing an antisense sequence of the gene and an RNAi sequence in a plant, a method of controlling the gene with a disease-inducible promoter, and suppressing its expression only at the time of disease infection, etc. Is mentioned.
  • the UGT74F1 gene according to the present invention is a gene encoding salicylate darcosyltransferase having the amino acid sequence shown in SEQ ID NO: 2, and has the base sequence shown in SEQ ID NO: 1.
  • the UGT74F1 gene may be a homologous gene, and as such a homologous gene, it hybridizes with a DNA consisting of a base sequence shown in SEQ ID NO: 1 and a DNA consisting of a complementary base sequence under stringent conditions. And a gene encoding the protein having the enzyme activity described above.
  • the stringent condition means a condition in which a so-called specific hybrid is formed and a non-specific hybrid is not formed.
  • a nucleic acid having high homology i.e., a nucleic acid comprising a nucleotide sequence having a homology of 80% or more, preferably 85% or more, more preferably 90% or more, and most preferably 95% or more with the base sequence shown in SEQ ID NO: 1.
  • the complementary strands of the nucleic acid are hybridized and the phase-trapping strand of the nucleic acid consisting of a base sequence having a lower homology is not hybridized.
  • the sodium salt concentration is 15 to 750 mM, preferably 50 to 750 raM, more preferably 300 to 750 raM
  • the temperature is 25 to 70 ° C, preferably 50 to 70 ° C, more preferably 55.
  • the condition is ⁇ 65 ° C. and the formamide concentration is 0-50%, preferably 20-50%, more preferably 35-45%.
  • the filter washing conditions after hybridization are usually such that the sodium salt concentration is 15-600 mM, preferably 50-600 mM, more preferably 300-600 mM, and the temperature is 50- 70 ° C, preferably 55-70 ° (:, more preferred 60 to 65 ° C.
  • the compound obtained by the above screening method 1 also includes a compound represented by the following formula (III), (IV), or (V).
  • plant disease resistance inducer refers to an agent for inducing resistance to plant diseases and controlling plant diseases.
  • the above-mentioned compounds may be used as they are, but solid carriers, liquid carriers, surfactants, and other formulation aids used for formulating general agricultural chemicals for the above-mentioned compounds.
  • Preparations of various dosage forms may be prepared by mixing agents.
  • any form such as granules, powders, liquids, emulsions, wettable powders, water solvents, oils, aerosols, flowables and the like may be used.
  • carriers used for formulation include talc, bentonite, clay, kaolin, and diatom.
  • Examples thereof include solid carriers such as soil, white carbon, vermiculite, calcium carbonate, slaked lime, silica sand, ammonium sulfate and urea, and liquid carriers such as isopropyl alcohol, xylene, cyclohexane and methylnaphthalene.
  • the content of the above-mentioned compound, which is an active ingredient in the plant disease resistance inducer of the present invention, can be appropriately set as necessary.
  • powders or granules 0.1 to 50% (weight), or emulsion
  • a wettable powder 5 to 80% (weight) can be exemplified.
  • the plant disease resistance inducer of the present invention is intended to prevent diseases, it is preferably applied before the time when the disease occurs.
  • the method for using the plant disease resistance inducer of the present invention may be any of spraying, dusting, dipping, powdering, application, fumigation, smoking, irrigation, and the like. Specific uses include: spraying and applying chemicals to plants, dipping plant seeds in liquids containing chemicals, and chemicals in fields where disease is or is likely to occur The method of spraying, the method of mixing chemicals into soil, etc. are mentioned.
  • the amount used of the plant disease resistance inducer of the present invention may be appropriately set according to the kind of plant, the target plant, the growth stage of the target plant, the type of dosage form, the application method, the application time, etc. However, for example, per 1 000 Om 2 is usually 1 to 5000 g, preferably 5 to 1 000 g, as an active ingredient. When used in the form of a liquid, such as an emulsion or wettable powder, the concentration of the active ingredient is from 0. 1 pm pm to 10.000 p pm, preferably from 10 to 3, OOO p pm.
  • plants targeted by the plant disease resistance inducer of the present invention include all cultivated plants, and may be monocotyledonous plants or dicotyledonous plants.
  • plants targeted by the plant disease resistance inducer of the present invention include all cultivated plants, and may be monocotyledonous plants or dicotyledonous plants.
  • Brassicaceae Brassicaceae
  • the plant disease resistance inducer of the present invention can control plant diseases caused by filamentous fungi, bacteria and viruses by the above-mentioned application form.
  • rice blast fungus can control plant diseases caused by filamentous fungi, bacteria and viruses by the above-mentioned application form.
  • rice blast fungus can control plant diseases caused by filamentous fungi, bacteria and viruses by the above-mentioned application form.
  • rice blast fungus can control plant diseases caused by filamentous fungi, bacteria and viruses by the above-mentioned application form.
  • Fusarium oxysporum f. Sp. Lactucae Fusarium oxysporum f. Sp. Lycopers ici, Vertici ll ium dahl iae, Col letotrichumphomoides), Fusarium oxysporum f.
  • Examples include diseases caused by (Botrytis cinerea), but are not limited thereto.
  • the plant disease resistance inducer of the present invention can be used by mixing with other herbicides, fungicides, insecticides and other agricultural chemicals, fertilizers, plant growth regulators, soil conditioners and the like.
  • Pseudomonas syringae pv. Tomato DC3000 (Pst) to Shironunazuna is best understood as a model experimental system.
  • Pst infection induces a characteristic phenomenon in the disease resistance response as in the case of plants.
  • Phenomena that plant cells induce during pathogen infection include activation of MAP kinase, production of reactive oxygen species, bioluminescence, increase in salicylic acid content, accumulation of force rosin, accumulation of autofluorescent substances, and PR1 gene.
  • hypersensitive cell death is a phenomenon that is positioned at the final stage of the resistance response in infected cells, and the measurement using a microtiter plate reader is used by an inexpensive and easy method called Evans blue staining. From the viewpoint of being able to quantify, it was judged that it is optimal to use hypersensitive cell death as an index (Fig. 1).
  • Tomato DC3000 Pseudomonas syringae pv. Tomato DC3000 avrRpml
  • AvrRpml effector protein Figure 2
  • Arabidopsis thaliana was infected with tomato spotted bacterial disease 3 ⁇ 4 (Pseudomonas syringae DV.
  • TDN thiazinyl
  • SA salicylic acid
  • the final concentration of “Pst” is 0D 6 . . 0.24 VH medium adjusted to a final MES concentration of 14 mM was added to 40.5 1 to a final volume of 100 1. 1 hole does not contain Pst
  • VH medium was added. Tap on the side of the plate, stir, and co-culture for 21 hours in a swirl incubator, then add 5 ⁇ 1 of 1% Evans Blue aqueous solution and stir, occasionally stirring
  • the average Evans blue concentration of the control is 100%, and the value is 120% or more by the addition of the test compound, and the value when Pst is not added does not change from the control. Those that did not induce sensitive cell death) were selected as positive.
  • the compound library used was 10,000 compounds (0.1 mg / 20 / z 1DMS0 dissolved) of DIVERSet (NovaCore NQ612) commercially available from ChemBridge. Screening was repeated three times by the method (1) above. As a result, seven compounds were selected as candidate compounds that reproducibly enhance hypersensitive cell death [5160360 (CB_6), 6297908 (CB_7), 6380249 (CB—8), 7724984 (CB_9), 7725027 (CB — 10), 7732575 (CB—11), 7726438 (CB—12)] were isolated (FIG. 10).
  • Example 3 Examination of the action of a hypersensitivity cell-enhancing compound as a disease resistance inducer Searched in Example 2 ⁇ To investigate the action of the identified candidate compound (hypersensitive cell death-enhancing compound), each compound (Final concentration 50 ⁇ ) was added to Arabidopsis thaliana MM1 cultured cells.
  • PR1, Actin, PDF1.2 RT-PCR experiments were performed using gene-specific primers. As a result, it was confirmed that these compounds induce the expression of PR1, a protective gene, in cultured cells of S. thaliana (Fig.
  • Salicylic acid a plant hormone, plays a major role in plant disease resistance responses. Therefore, each of the Arabidopsis mutants sid2 lacking salicylic acid (mutants of the enzyme that synthesizes isochorismate, a precursor of salicylic acid from chorismate; Wildermuth et al., Nature (2001) 414: 562-565.) The ability of compounds to induce PRl genes was examined. Each compound was treated with Arabidopsis seedlings (wild type and sid2 mutant) at a concentration of ⁇ , and RNA was extracted after 1 and 3 days (PureLink RNA purification kit; Invitrogen).
  • CDNA was synthesized based on each RNA (Superscriptlll first strand synthesis kit; Invitrogen), and RT-PCR experiments were performed using PRl and Actin gene-specific primers.
  • RNA Superscriptlll first strand synthesis kit; Invitrogen
  • RT-PCR experiments were performed using PRl and Actin gene-specific primers.
  • four types of compounds, CB_8, CB_9, CB_10, and CB_11 did not induce PRl gene expression in the sid2 mutant. From these results, it was found that the two effects of CB_6 and CB_7 are not dependent on salicylic acid, and the remaining five are dependent on salicylic acid (Fig. 14).
  • UGT74F1 is SAG
  • UGT75B1 is GS
  • UGT74F2 have activity to produce both SAG and GS (Lira et al., Ibid: Fig. 16).
  • CB_6 and CB_10 did not inhibit UGT74F1 activity (Figure 18).
  • the PR1 gene expression induction experiment using the sid2 mutant ((1) above) revealed that the action does not depend on salicylic acid, so the compound itself has salicylic acid-like activity. Therefore, it can be judged that it has the ability to induce the expression of the defense gene group (bion type).
  • CB_10 is thought to have an effect of activating salicylic acid synthesis (probenazole, thiazinyl type), as clearly shown in Fig. 15.
  • the isolated hypersensitivity cell death promoting compound can induce the expression of PR1, which is one of the disease resistance marker genes, in cultured cells and plants. The following method was used to determine whether disease resistance could be induced.
  • Arabidopsis seedlings were hydroponically cultivated with rock wool (short-day conditions (8 hours l ight / 16 hours dark)). Transfer plants grown for 3 weeks to pots, 100 ⁇ M or
  • the leaves were cut out with a cork borer with a diameter of 6 mm, and the 3 pastures were transferred to a 2 ml tube, 4 grains of zirconia balls ( ⁇ 3 ⁇ ) and 500 MgCl 2 (lOmM) solution were added, and the crusher (QIAGEN TissueLyser) Crush the leaves for 3 minutes.
  • the crusher QIAGEN TissueLyser Crush the leaves for 3 minutes.
  • Prepare 10-fold dilution series with MgCl 2 spot each 10 1 on LB agar medium (50ug / ml kanamycin, 50ug / ml rifampicin), grow at 28 ° C, count the number of colonies, “Number of colonies / cm 2 ” was calculated.
  • the process of counting the colonies on the LB agar medium from the crushing of the leaves was similarly performed 4 days later.
  • Example 8 Effect of CB_6, CB-7, CB_8, CB_9, CB_10, CB-11 on plant growth
  • the effect of the isolated plant disease resistance-inducing compound on plant growth was examined.
  • sterilized Arabidopsis seeds were dispensed into 96-well plates, MS liquid medium in which 100 // M compound was dissolved was added, and cultured under long sunlight conditions to observe its growth.
  • CB_6, CB_7, and CB_10 inhibited the germination and greening of Arabidopsis, and CB_8, CB_9, and CB-11 did not inhibit the growth (Fig. 25).
  • the present invention provides a high-throughput screening method for plant disease resistance inducers.
  • this screening method it is possible to process a large number of samples in a clear and rapid manner.
  • a practical and highly safe plant disease resistance inducer that does not inhibit plant growth and exhibits its effect specifically at the time of infection was obtained.
  • some of the compounds with phytopathogenicity-inducing activity obtained by this screening method were newly discovered to inhibit salicylate darcosyltransferase activity, and the rate of accumulation of salicylic acid specifically during infection The mechanism for imparting resistance was clarified by speeding up the process.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The object aims to establish a comprehensive and efficient screening method for a plant disease resistance inducer, and provide a novel plant disease resistance inducer by employging the screening method. Specifically disclosed is a plant disease resistance inducer comprising a compound capable of inhibiting the salicylic acid glucosyltransferase activity of a protein selected from the following proteins (a) and (b): (a) a protein comprising the amino acid sequence depicted in SEQ ID NO:2; and (b) a protein which comprises an amino acid sequence having the deletion, substitution or addition of one or several amino acid residues in the amino acid sequence depicted in SEQ ID NO:2 and has a salicylic acid glucosyltransferase activity.

Description

植物病害抵抗性誘導剤  Plant disease resistance inducer
技術分野 Technical field
本発明は、 植物病害抵抗性誘導剤の網羅的かつ効率的なスクリーニング方法に よって得られた植物病害抵抗性誘導剤に関する。 明  The present invention relates to a plant disease resistance inducer obtained by a comprehensive and efficient screening method for plant disease resistance inducers. Light
背景技術 Background art
 Rice field
植物は病原体に感染すると植物ホルモンであるサリチル酸を合成することによ り防御遺伝子群を誘導して病害抵抗性を発揮する(非特許文献 1 )。 植物に病害抵 抗性応答を誘導する薬剤としては BTH (benzo (l, 2, 3) thiadiazole-7-carbothioic acid S- methyl ester) (非 特許 文献 2 お よ び特許文 献 1 ) や INA (2, 6-dichloroi sonicot inic acid) (非特許文献 3 ) が知られており、 これらはそ のものがサリチル酸様の作用を持つことが知られている。  When a plant is infected with a pathogen, it synthesizes salicylic acid, which is a plant hormone, to induce a defense gene group to exert disease resistance (Non-patent Document 1). BTH (benzo (l, 2, 3) thiadiazole-7-carbothioic acid S-methyl ester) (Non-Patent Document 2 and Patent Document 1) and INA ( 2, 6-dichloroi sonicot inic acid) (Non-patent Document 3) is known, and it is known that these have a salicylic acid-like action.
その他の病害抵抗性誘導剤としては、 ォリゼメート (有効成分名プロべナゾ一 ル;特許文献 2〜6 )、 プロべナゾールの活性本体である BIT (特許文献 7 )、 ブ ィゲット (有効成分名チアジニル) などがある。 これらの薬理作用についてはは つきりしていない。 最近ではィソチアゾール類を含む植物病害抵抗性誘導剤が上 巿段階にある (特許文献 8 )。 さらにこれに類似する化合物としては、 ベンゾイソ チ ア ゾ リ ン 誘 導 体 ( 特 許 文 献 9 、 1 0 ) 、 NCI (N-cyanomethyl-2-chloroi sonicot inaraide) ( 非 特 許 文 献 4 ) 、 CMPA (3-chrolo-l-methyl-lH-pyrazole-5-carboxyl ic aci'd) (特許文献 1 1、 非特許文 献 5 )などが存在する。  Other disease resistance inducers include olizemate (active ingredient name: probenazole; patent documents 2 to 6), probenazole active substance BIT (patent document 7), biget (active ingredient name thiazinyl). ) and so on. These pharmacological actions are not mentioned. Recently, plant disease resistance inducers including isothiazoles are in the upper stage (Patent Document 8). Further similar compounds include benzoisothiazolin derivatives (Patent Documents 9, 10), NCI (N-cyanomethyl-2-chloroi sonicot inaraide) (Non-Patent Document 4), CMPA (3-chrolo-l-methyl-lH-pyrazole-5-carboxyl aci'd) (patent document 11, non-patent document 5) exists.
病害の原因微生物を殺滅する薬剤では抵抗性品種の出現というリスクがあるの に対し、 植物自体の病害抵抗性の活性化を目的とした薬剤は病害防除において有 効であるが、 これらの薬剤の適応範囲は限られており、 新たな薬剤の開発が期待 されている。 しかしながら、 現段階での開発は既存の化合物の改変という手法に とどまっており、 革新的な進展のためには新規な構造を持つ化合物の網羅的な探 索が必須である。 上記の開発手法以外の手法としては、 植物が持つ防御物質を利 用した手法(特許文献 1 2)や植物共生微生物を利用した病害抵抗性付加技術(特 許文献 1 3)などがある。 また、サリチル酸に拮抗的に作用するアブシジン酸の合 成を阻害する薬剤を利用した抵抗性付与技術が報告されている(特許文献 1 4)。 While drugs that kill disease-causing microorganisms have a risk of emergence of resistant varieties, drugs aimed at activating disease resistance of the plant itself are effective in disease control. The range of indications is limited, and the development of new drugs is expected. However, development at this stage is limited to the modification of existing compounds, and for innovative progress, a comprehensive search for compounds with new structures is required. Search is essential. Methods other than the above-mentioned development methods include a method using a protective substance possessed by plants (Patent Document 12) and a disease resistance addition technology using a plant symbiotic microorganism (Patent Document 13). In addition, a resistance imparting technique using a drug that inhibits the synthesis of abscisic acid that acts antagonistically on salicylic acid has been reported (Patent Document 14).
(特許文献 1 ) Schurter et al. , (1987) EU Patent 0313-512. (Patent Document 1) Schurter et al., (1987) EU Patent 0313-512.
(特許文献 2) 特公昭 49 ― 3 7 1 4 7号  (Patent Document 2) JP-B 49 ― 3 7 1 4 7
(特許文献 3) 特公昭 45一 1 2 1 5 7号  (Patent Document 3) Japanese Patent Publication No. 45 1 1 2 1 5 7
(特許文献 4) 特公昭 45 ― 3 8 0 8 0号  (Patent Document 4) JP-B 45 ― 3 8 0 8 0
(特許文献 5) 特公昭 45 ― 3 8 3 5 6号  (Patent Document 5) JP-B 45 ― 3 8 3 5 6
(特許文献 6) 特公昭 47 ― 3 8 9 6 7号  (Patent Document 6) JP-B 47 ― 3 8 9 6 7
(特許文献 7) 特開平 05一 0 5 9 0 2 4号  (Patent Document 7) JP 05-0 0 5 9 0 2 4
(特許文献 8) 特開 20ひ 3 ― 1 1 3 1 6 7号  (Patent Document 8) Japanese Patent Laid-Open No. 20-3-1 1 3 1 6 7
(特許文献 9) 特開 200 7 ― 9 1 5 9 6号  (Patent Document 9) Japanese Patent Application Laid-Open No. 2007-7-9 1 5 9 6
(特許文献 1 0) 特開 20 0 7 ― 1 8 6 509号  (Patent Document 10) JP 20 0 7 ― 1 8 6 509
(特許文献 1 1 ) 特開平 0 8一 0 1 2 5 1 0号  (Patent Document 1 1) Japanese Patent Laid-Open No. 08-81 0 1 2 5 10
(特許文献 1 2) 特開 20 0 6 ― 3 2 7 995号  (Patent Document 1 2) Japanese Patent Laid-Open No. 20 0 6 ― 3 2 7 995
(特許文献 1 3) 特開 20 0 2 ― 2 2 3 747号  (Patent Document 1 3) Japanese Patent Laid-Open No. 20 0 2 ― 2 2 3 747
(特許文献 14) 特開 20 06一 1 1 7 608号  (Patent Document 14) JP 20 06 1 1 1 7 608
(非特許文献 1 ) Metraux et al., (1990) Science, 250:1004-1006.  (Non-Patent Document 1) Metraux et al., (1990) Science, 250: 1004-1006.
(非特許文献 2) Friedrich et al. , (1996) Plant J. 10:6ト 70,  (Non-Patent Document 2) Friedrich et al., (1996) Plant J. 10: 6 to 70,
(非特許文献 3 ) Vernooij et al. , (1995) Mol. Plant-Microbe Interact. 8:228-234.  (Non-Patent Document 3) Vernooij et al., (1995) Mol. Plant-Microbe Interact. 8: 228-234.
(非特許文献 4) Nakashita et al. , (2002) Plant Cell Physiol. 43:823-831 (非特許文献 5 ) Yasuda et al. , (2003) Biosci. Biotech. Biochem . 67:2614-2620. 発明の開示  (Non-patent document 4) Nakashita et al., (2002) Plant Cell Physiol. 43: 823-831 (Non-patent document 5) Yasuda et al., (2003) Biosci. Biotech. Biochem. 67: 2614-2620. Invention Disclosure of
植物の病害抵抗性誘導剤の開発において革新的な進展を期待した場合、 これま でに知られていない新規化合物を単離することが必要である。 従来の方法では植 物体に候補化合物を添加してその耐病性を評価するという手法であるが、 この場 合、 大容量の化合物が必要で、 また多数の候補化合物を評価するために大きな試 験スペースを要し、 効率的な処理が困難であった。 従って、 これまでの概念にな い新規化合物を得るには化合物ライブラリーのスクリ一ユングといった網羅的な 探索手法が有効であるが、 そのためには少量の化合物の使用で多検体を迅速に処 理することができるハイスループッ卜なスクリ一二ン 系が必須となる。 If you expect innovative progress in the development of plant disease resistance inducers, It is necessary to isolate new compounds not known in In the conventional method, a candidate compound is added to a plant and its disease resistance is evaluated. In this case, a large amount of compound is required, and a large test is required to evaluate a large number of candidate compounds. Space was required and efficient processing was difficult. Therefore, an exhaustive search method such as screening of a compound library is effective for obtaining new compounds that do not have the conventional concept, but in order to do so, multiple samples can be processed quickly with the use of a small amount of compounds. A high-throughput screen system that can be used is essential.
従って、 本発明の課題は、 植物病害抵抗性誘導剤の網羅的かつ効率的なスクリ 一二ング方法を確立し、 該スクリーニング方法を用いて新規な植物病害抵抗性誘 導剤を提供することにある。  Accordingly, an object of the present invention is to establish a comprehensive and efficient screening method for plant disease resistance inducers and to provide a novel plant disease resistance inducer using the screening method. is there.
本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、 トマト斑葉細菌病 菌感染によってシロイヌナズナ培養細胞に誘導される病害抵抗性応答の一つであ る過敏感細胞死を指標とすることにより、 網羅的かつ迅速に植物病害抵抗性誘導 剤をスクリーニングできることを見出すとともに、 そのスクリーニング条件を最 適化して植物病害抵抗性誘導剤のためのスクリ一二ング方法を確立した。そして、 当該スクリ一二ング方法を用いて新たな植物病害抵抗性誘導剤を取得することに 成功した。 本発明はかかる知見により完成されたものである。  As a result of intensive studies to solve the above-mentioned problems, the present inventors have used hypersensitive cell death, which is one of disease resistance responses induced in cultured Arabidopsis cells as a result of infection with tomato bacterial leaf bacilli. As a result, we found that plant disease resistance inducers could be screened comprehensively and rapidly, and we established screening methods for plant disease resistance inducers by optimizing the screening conditions. And we succeeded in obtaining a new plant disease resistance inducer using the screening method. The present invention has been completed based on such findings.
即ち、 本発明は以下の発明を包含する。  That is, the present invention includes the following inventions.
(1) 以下の(a)又は(b)のタンパク質のサリチル酸ダルコシルトランスフェラー ゼ活性を阻害する化合物を含む植物病害抵抗性誘導剤。  (1) A plant disease resistance inducer comprising a compound that inhibits the darcosyl salicylate transferase activity of the following protein (a) or (b):
(a) 配列番号 2に示すアミノ酸配列からなるタンパク質  (a) a protein comprising the amino acid sequence shown in SEQ ID NO: 2
(b) 配列番号 2に示すアミノ酸配列において 1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたァミノ酸配列からなり、 かつサリチル酸ダルコシルトラ ンスフヱラーゼ活性を有するタンパク質  (b) a protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 and having salicylate darcosyltransferase activity
(2) サリチル酸ダルコシルトランスフヱラーゼ活性を阻害する化合物が、下記一 般式(I)で示される化合物である、 (1)に記載の植物病害抵抗性誘導剤。  (2) The plant disease resistance inducer according to (1), wherein the compound that inhibits salicylate darcosyltransferase activity is a compound represented by the following general formula (I):
[化 1 ]
Figure imgf000006_0001
[Chemical 1]
Figure imgf000006_0001
(式中、 X— Yは、 一 CH = CH—又は一 CO— Ο—を表し、 !^1〜!^9は、 それ ぞれ独立して、 水素原子、 水酸基、 ハロゲン原子、 ニトロ基、 アミノ基、 炭素数 1〜 4のアルキル基若しくはアルコキシ基、 または炭素数 2〜 4のアルケニル基 若しくはアルキニル基を表す。) (In the formula, X—Y represents one CH = CH— or one CO—Ο—, and! ^ 1 to! ^ 9 are independently a hydrogen atom, a hydroxyl group, a halogen atom, a nitro group, An amino group, an alkyl group having 1 to 4 carbon atoms or an alkoxy group, or an alkenyl group having 2 to 4 carbon atoms or an alkynyl group is represented.)
(3) サリチル酸ダルコシルトランスフェラーゼ活性を阻害する化合物が、一般式 (3) A compound that inhibits salicylate darcosyltransferase activity has the general formula
(II) で示される化合物である、 (1)に記載の植物病害抵抗性誘導剤。 The plant disease resistance inducer according to (1), which is a compound represented by (II).
Figure imgf000006_0002
Figure imgf000006_0002
(式中、 R1 Q、 R11は、 それぞれ独立して、 水素原子、 ハロゲン原子で置換され ていてもよい炭素数 1〜4のアルキルカルボニル基、 炭素数 1〜 4のアルコキシ 基で置換されていてもよいべンジル基、 または、 R1 G、 R1 \ およびそれらが結 合している N原子がいつしょになってフタルイミ ド基を表す。) (In the formula, R 1 Q and R 11 are each independently substituted with a hydrogen atom, an alkylcarbonyl group having 1 to 4 carbon atoms which may be substituted with a halogen atom, or an alkoxy group having 1 to 4 carbon atoms. The benzyl group that may be present, or R 1 G , R 1 \ and the N atom to which they are bonded together represents a phthalimide group.)
(4) サリチル酸ダルコシルトランスフェラーゼ活性を阻害する化合物が、下記式 (la)ヽ (lb), (Ic) (IIa)、 (IIb)、 (lie), または(lid)で示される化合物である、 (1)に記載の植物病害抵抗性誘導剤。 (4) The compound that inhibits salicylate dalcosyltransferase activity is a compound represented by the following formula (la) ヽ (lb), (Ic) (IIa), (IIb), (lie), or (lid): The plant disease resistance inducer according to (1).
[化 3] [Chemical 3]
Figure imgf000007_0001
Figure imgf000007_0001
Figure imgf000007_0002
Figure imgf000007_0002
(5) 下記式(ΙΠ)、 (IV),または(V)で示される化合物を含む植物病害抵抗性誘導 剤。 (5) A plant disease resistance inducer comprising a compound represented by the following formula (式), (IV), or (V):
[化 4] [Chemical 4]
Figure imgf000008_0001
Figure imgf000008_0001
(6) (1)〜(5)のいずれかに記載の植物病害抵抗性誘導剤を用いることを特徴と する、 植物病害防除方法。  (6) A method for controlling plant diseases, comprising using the plant disease resistance inducer according to any one of (1) to (5).
(7) AvrRpmlタンパク質を有するトマト斑葉細菌病菌 (Pseudomonas syringae pv. tomato DC3000 株) を感染させた植物細胞と被検化合物とを培養し、 該被検化合 物が該植物細胞において過敏感細胞死を亢進するか否か判定し、 過敏感細胞死を 亢進すると判定された化合物を選択することを含む、 植物病害抵抗性を誘導する 化合物のスクリ一二ング方法。 図面の簡単な説明  (7) A plant cell infected with a tomato spotted bacterial pathogen (Pseudomonas syringae pv. Tomato DC3000 strain) having an AvrRpml protein is cultured with the test compound, and the test compound is hypersensitive cell death in the plant cell. A method of screening a compound for inducing resistance to plant diseases, comprising: determining whether or not to enhance hypersensitivity cell death, and selecting a compound determined to enhance hypersensitive cell death. Brief Description of Drawings
図 1は、 シロイヌナズナ培養細胞の Pstに対する感染指標の検討結果を示す。 図 2は、 Pst 感染により過敏感細胞死を起こしたシロイヌナズナ培養細胞のェ バンスブルー染色による検出結果を示す。  Figure 1 shows the results of examination of the infection index for Pst in cultured Arabidopsis cells. Figure 2 shows the detection results of Evans blue staining of cultured Arabidopsis cells that have undergone hypersensitive cell death due to Pst infection.
図 3は、 Pst感染したシロイヌナズナ植物体の形態を示す。  Figure 3 shows the morphology of Pst-infected Arabidopsis plants.
図 4は、 Pst 株ごとのシロイヌナズナ培養細胞に対する過敏感細胞死誘導活性 を示す。  Fig. 4 shows the hypersensitive cell death-inducing activity of cultured Arabidopsis cells for each Pst strain.
図 5は、 Pst 感染によるシロイヌナズナ培養細胞の過敏感細胞死に対する既知 細胞死阻害剤の影響を示す。 図 6は、 Pst 感染によるシロイヌナズナ培養細胞の過敏感細胞死に対する既知 植物病害抵抗性誘導剤の影響を示す。 Figure 5 shows the effect of known cell death inhibitors on hypersensitive cell death of cultured Arabidopsis cells by Pst infection. Figure 6 shows the effect of known plant disease resistance inducers on hypersensitive cell death of cultured Arabidopsis cells by Pst infection.
図 7は、シロイヌナズナ培養細胞の過敏感細胞死に対する DMS0濃度の影響を示 す。  Figure 7 shows the effect of DMS0 concentration on hypersensitive cell death in Arabidopsis cultured cells.
図 8は、 植物病害抵抗性誘導化合物のスクリーニング方法の手順を示す。 図 9は、 スクリ一ニング方法に用いたマイクロタイタ一プレートへのサンプル のアプライ方法を示す。  FIG. 8 shows the procedure of a screening method for a plant disease resistance-inducing compound. Figure 9 shows how the sample was applied to the microtiter plate used in the screening method.
図 1 0は、 スクリーニングにより単離された植物病害抵抗性誘導化合物の構造 を示す。  FIG. 10 shows the structure of a plant disease resistance-inducing compound isolated by screening.
図 1 1は、 単離された植物病害抵抗性誘導化合物の過敏感細胞死亢進活性の濃 度依存性を示す (各化合物において左側より 0, 125, 100, 75, 50, 25, 10, 0 μ Μ)。  Figure 11 shows the concentration dependence of the hypersensitive cell death-promoting activity of the isolated plant disease resistance-inducing compound (0, 125, 100, 75, 50, 25, 10, 0 μ Μ).
図 1 2は、 単離された植物病害抵抗性誘導化合物によるシロイヌナズナ培養細 胞における PR1遺伝子発現試験結果を示す。  Figure 12 shows the results of PR1 gene expression test in Arabidopsis cultured cells using the isolated plant disease resistance-inducing compound.
図 1 3は、 単離された植物病害抵抗性誘導化合物によるシロイヌナズナ培養細 胞における PR1遺伝子発現試験結果を示す。  Fig. 13 shows the results of PR1 gene expression test in Arabidopsis cultured cells with the isolated plant disease resistance-inducing compound.
図 1 4は、 単離された植物病害抵抗性誘導化合物の PR1遺伝子発現能のサリチ ル酸合成経路依存性を調べた結果を示す。  Figure 14 shows the results of investigating the dependency of the PR1 gene expression ability of the isolated plant disease resistance-inducing compound on the salicylic acid synthesis pathway.
図 1 5は、 単離された植物病害抵抗性誘導化合物の添加によるシロイヌナズナ 培養細胞のサリチル酸含量の変化を示す。  FIG. 15 shows changes in salicylic acid content of cultured Arabidopsis cells by addition of an isolated plant disease resistance-inducing compound.
図 1 6は、 シロイヌナズナ由来サリチル酸ダルコシルトランスフェラーゼの種 類および活性を示す。  Figure 16 shows the type and activity of Arabidopsis thaliana salicylate darcosyltransferase.
図 1 7は、 シロイヌナズナ由来サリチル酸ダルコシルトランスフェラーゼとサ リチル酸との反応産物の薄層クロマトグラフィ一による検出結果を示す。  Figure 17 shows the results of thin-layer chromatography detection of the reaction product of salicylic acid dalcosyltransferase derived from Arabidopsis thaliana.
図 1 8は、 単離された植物病害抵抗性誘導化合物のサリチル酸ダルコシルトラ ンスフヱラーゼ活性に対する影響を示す。  Figure 18 shows the effect of isolated plant disease resistance-inducing compounds on salicylate dalcosyltransferase activity.
図 1 9は、 単離された植物病害抵抗性誘導化合物のサリチル酸ダルコシルトラ ンスフヱラーゼ活性に対する影響を示す。 図 2 0は、 CB_8、 CB_9、 およびそれらの類似化合物の構造 (A)、 ならびにそれ らの過敏感細胞死亢進活性(B ) を示す(各化合物において左側より 0, 250, 100, 75, 50, 25, 10, 0 μ Μ)。 FIG. 19 shows the effect of isolated plant disease resistance-inducing compounds on salicylate dalcosyltransferase activity. Figure 20 shows the structures (A) of CB_8, CB_9 and their similar compounds, and their hypersensitive cell death promoting activity (B) (in each compound, 0, 250, 100, 75, 50 from the left side). , 25, 10, 0 μΜ).
図 2 1は、 CB— 8、 CB_9、 CB— 11、 およびそれらの類似化合物のサリチル酸ダルコ シルトランスフェラーゼ活性に対する影響を示す。  Figure 21 shows the effect of CB-8, CB_9, CB-11, and similar compounds on salicylate dalcosyltransferase activity.
図 2 2は、 CB_11、 CB_12、 およびそれらの類似化合物の構造 (A)、 ならびにそ れらの過敏感細胞死亢進活性(B )を示す(各化合物において左側より 0, 250, 100, 75, 50, 25, 10, 0 /ζ Μ)。  Figure 22 shows the structures (A) of CB_11, CB_12, and their similar compounds, and their hypersensitive cell death-promoting activity (B) (in each compound, 0, 250, 100, 75, 50, 25, 10, 0 / ζ Μ).
図 2 3は、 チアジニルとプロべナゾールのサリチル酸ダルコシルトランスフエ ラーゼ活性に対する影響を示す。  Figure 23 shows the effect of thiazinyl and probenazole on salicylate darcosyltransferase activity.
図 2 4は、 Pst を感染させたシロイヌナズナ葉における植物病害抵抗性誘導化 合物投与後の菌数変化を示す [左側より CB_6 (200 Μ) , CB_7 (200 μ Μ) , CB_8 (100 μ Μ), CB一 9 (100 μ Μ) , CB一 10 (200 μ Μ), CB一 11 (100 μ Μ), SA (200 ;u M) ]。  Figure 24 shows changes in the number of plants after administration of a plant disease resistance-inducing compound in Arabidopsis leaves infected with Pst. [From the left, CB_6 (200 Μ), CB_7 (200 μ Μ), CB_8 (100 μ Μ ), CB 9 (100 μΜ), CB 10 (200 μΜ), CB 11 (100 μΜ), SA (200; u M)].
図 2 5は、 植物病害抵抗性誘導化合物投与によるシロイヌナズナ植物体の生育 に及ぼす影響を示す。 本願は、 2008年 3月 28 Sに出願された日本国特許出願 2008- 088491号の優先 権を主張するものであり、 該特許出願の明細書に記載される内容を包含する。 発明を実施するための最良の形態  Figure 25 shows the effects of plant disease resistance-inducing compounds on the growth of Arabidopsis plants. This application claims priority of Japanese Patent Application No. 2008-088491 filed on Mar. 28, 2008, and includes the contents described in the specification of the patent application. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
1 . 植物病害抵抗性を誘導する化合物のスクリーニング方法 1. Screening method for compounds that induce plant disease resistance
本発明の植物病害抵抗性を誘導する化合物のスクリーニング方法は、 AvrRpral タンノヽク質を有 "^る トマ ト斑葉糸田菌柄菌 (£_seudomona svringae pv. tomato DC3000株) を感染させた植物細胞と被検化合物とを培養し、 該被検化合物が該植 物細胞において過敏感細胞死を亢進するか否か判定し、 過敏感細胞死を亢進する と判定された化合物を選択することを含む。 ここで、 過敏感細胞死とは、 病害に 対する植物の有する自己防御機構で植物自身に予めプログラムされた細胞死をい う。 本方法【こ用レヽる トマ卜斑葉細菌病菌(Pseudomonas syringae pv. tomato DC3000 株) (以下、 「Pst」 という) は、 短時間で最も強く過敏感細胞死を誘導できる上で AvrRpml タンパク質を有する株であることが好ましく、 たとえば、 Pseudomonas syringae pv. tomato DC3000 avrRpml株力 s好適(こ用レヽられる。 The method for screening a compound for inducing resistance to plant diseases according to the present invention comprises: a plant cell infected with a stalk fungus (£ _seudomona svringae pv. Tomato DC3000 strain) having an AvrRpral protein; And test compound, determining whether or not the test compound enhances hypersensitive cell death in the plant cell, and selecting a compound determined to enhance hypersensitive cell death Here, hypersensitive cell death refers to cell death pre-programmed in the plant itself by the plant's self-protection mechanism against disease. This method [Pseudomonas syringae pv. Tomato DC3000 strain] (hereinafter referred to as “Pst”) has the AvrRpml protein in the strongest and most sensitive cell death in a short time. preferably a strain, for example, is Pseudomonas syringae pv. tomato DC3000 avrRpml strain force s preferred (Rere for this.
上記病害菌を感染させる植物細胞としては、 シロイヌナズナ培養細胞 醒 1 株 (Menges and Murray, (2002) Plant J. 30 : 203-212. ) および T87株 (Axelos, et al. , (1992) Plant Physiol. Biochem. 30 : 123- 128. ) を用いることができるが、 MMl株は T87株と比較して培地調製が容易であることと、 懸濁度が高く扱い易い という点で腿 1株が好ましい。  Plant cells to be infected with the above-mentioned diseases include Arabidopsis cultured cell awakening strain (Menges and Murray, (2002) Plant J. 30: 203-212.) And T87 strain (Axelos, et al., (1992) Plant Physiol Biochem. 30: 123-128.) Can be used, but the MMl strain is preferred because it is easier to prepare the medium than the T87 strain and its suspension is high and easy to handle. .
具体的な手順としては、例えば 96穴マイクロタイタープレート上で植物細胞と Pstを被検化合物の存在または不存在下で培養した後、 Pst感染による植物細胞の 過敏感細胞死をエバンスブル一染色により検出する。 エバンスブルー染色による 色の変化は、 目視にて観察してもよいが、 マイクロタイタープレートリーダーで 吸光度測定することにより過敏感細胞死に与える被検化合物の影響を定量化でき る。 また、 被検化合物の溶媒には、 ジメチルスルホキド (DMS0)が用いられている が、 0. 25〜 1. 0%終濃度で用いることが好ましい。  As a specific procedure, for example, plant cells and Pst were cultured in a 96-well microtiter plate in the presence or absence of a test compound, and then hypersensitive cell death of plant cells due to Pst infection was detected by Evans Blue staining. To detect. The color change due to Evans Blue staining may be observed visually, but the effect of the test compound on hypersensitive cell death can be quantified by measuring the absorbance with a microtiter plate reader. Further, dimethyl sulfoxide (DMS0) is used as a solvent for the test compound, but it is preferably used at a final concentration of 0.25 to 1.0%.
上記培養後のエバンスブルー染色においては、 被検化合物が植物細胞に対して 毒性を有する場合に陽性として検出されてしまう場合がある。 そこで、 本スク リ 一二ング方法ではこの擬陽性を排除するために、 pst を添加せずに被検化合物の みを添加した実験を同時平行的に実施する。 この操作により、 被検化合物のみで 過敏感細胞死を引き起こしてしまうものを除外することが可能となる。 In the Evans blue staining after the above culture, when the test compound is toxic to plant cells, it may be detected as positive. Therefore, in this disk re-learning methods to eliminate this false positive, simultaneous parallel manner conducted experiments with the addition of only the test compound without addition of p s t. By this operation, it becomes possible to exclude those that cause hypersensitive cell death only with the test compound.
エバンスブルー染色による定量化を行う際には、 96穴深型プレート、 96穴チュ 一ブラック、 電気泳動用ゲル作製板などを組み合わせた簡易装置を用いることが できる。 エバンスブル一染色では、 染色後の過剰な色素を洗浄によって取り除く 必要があるが、 本装置では、 電動ピペッ トが届く下限を設定することで、 沈降し た染色後の培養細胞を取り除くことなく、 一定量の洗浄上清を採取することが可 能となる。 本行程はラボラ トリーロボッ ト (Biomek (ベックマン ' コールター社) など) を利用した自動化も可能である。  When performing quantification by Evans Blue staining, a simple device combining a 96-well deep plate, a 96-well Chu Black, a gel preparation plate for electrophoresis, and the like can be used. In Evans Blue Staining, it is necessary to remove the excess dye after washing by washing, but in this device, by setting the lower limit to reach the electric pipette, without removing the settled cultured cells after staining, A certain amount of washing supernatant can be collected. This process can also be automated using laboratory robots (such as Biomek (Beckman Coulter)).
スク リーニング対象となる被検化合物としては、 特に制限はない。 例えば、 天 然化合物、 有機化合物、 無機化合物、 タンパク質、 ペプチドなどの単一化合物、 並びに、 化合物ライブラリー、 遺伝子ライブラリーの発現産物、 細胞抽出物、 細 胞培養上清、 発酵微生物産生物、 植物抽出物等が挙げられるが、 これらに限定さ れない。 There are no particular restrictions on the test compound to be screened. For example, heaven However, single compounds such as compounds, organic compounds, inorganic compounds, proteins, peptides, and compound libraries, gene library expression products, cell extracts, cell culture supernatants, fermented microorganism products, plant extracts, etc. However, it is not limited to these.
2 . 植物病害抵抗性誘導剤および植物病害防除方法 2. Plant disease resistance inducer and plant disease control method
本発明の植物病害抵抗性誘導剤は、 上記 1のスクリーニング方法によって得ら れる化合物を有効成分として含有する。  The plant disease resistance inducer of the present invention contains a compound obtained by the screening method of 1 above as an active ingredient.
前記化合物には、 サリチル酸ダルコシルトランスフエラーゼ活性を阻害する化 合物が包含され、かかる化合物として下記一般式(I)で示される化合物が挙げられ る。  The compound includes a compound that inhibits darcosyltransferase activity of salicylate, and examples of the compound include compounds represented by the following general formula (I).
[化 5 ]  [Chemical 5]
Figure imgf000012_0001
Figure imgf000012_0001
(式中、 X— Yは、 一 C H = C H—又は一 C O— O—を表し、 尺1〜!^ 9は、 それ ぞれ独立して、 水素原子、 水酸基、 ハロゲン原子、 ニトロ基、 アミノ基、 炭素数 1〜4のアルキル基若しくはアルコキシ基、 または炭素数 2〜4のァルケ-ル基 若しくはアルキニル基を表す。) (Where X—Y represents one CH = CH— or one CO—O—, and scales 1 to! ^ 9 are each independently a hydrogen atom, a hydroxyl group, a halogen atom, a nitro group, an amino group, Group, an alkyl group having 1 to 4 carbon atoms or an alkoxy group, or an alkyl group having 2 to 4 carbon atoms or an alkynyl group.)
また、サリチル酸ダルコシルトランスフェラーゼ活性を阻害する化合物として、 下記一般式 (Π)で示される化合物もまた挙げられる。  Examples of the compound that inhibits salicylic acid darcosyltransferase activity also include compounds represented by the following general formula (式).
[化 6 ]
Figure imgf000013_0001
[Chemical 6]
Figure imgf000013_0001
(式中、 R1 Q、 R 1 1は、 それぞれ独立して、 水素原子、 ハロゲン原子で置換され ていてもよい炭素数 1〜4のアルキルカルボニル基、 炭素数 1〜 4のアルコキシ 基で置換されていてもよいべンジル基、 または、 R1 Q、 尺 1 1、 およびそれらが結 合している N原子がいっしょになってフタルイミ ド基を表す。) (In the formula, R 1 Q and R 11 are each independently substituted with a hydrogen atom or an alkylcarbonyl group having 1 to 4 carbon atoms which may be substituted with a halogen atom or an alkoxy group having 1 to 4 carbon atoms. The benzyl group which may be bonded, or R 1 Q , scale 11 and the N atom to which they are bonded together represent a phthalimide group.)
上記一般式の各記号の定義において、 「ハロゲン原子」 としては、 フッ素原子、 塩素原子、 臭素原子、 ヨウ素原子;炭素数 1〜4の 「アルキル基」 としては、 メ チル、 ェチル、 n—プロピル、 イソプロピノレ、 n—ブチノレ、 イソブチノレ、 sec—ブ チル、 tert—プチル;炭素数 1〜4の 「アルコキシ基」 としてはメ トキシ基、 ェ トキシ基、 プロポキシ基、 イソプロポキシ基、 ブトキシ基、 t e r t—ブトキシ 基;炭素数 2〜4の 「アルケニル基」 としては、 ビュル、 n—プロぺニル、 イソ プロぺニノレ、 n—ブテニノレ、 イソブテニノレ、 sec—ブテニノレ、 tert—ブテニノレ ;炭 素数 2〜4の 「アルキニル基」 としては、 ェチニル、 n—プロピエル (1—プロ -ピニル)、 イソプロピニル (2—プロピニル)、 n—ブチニル、 イソブチュル、 sec —ブチニル、 tert—ブチュルが挙げられる。  In the definition of each symbol in the above general formula, “halogen atom” is fluorine atom, chlorine atom, bromine atom, iodine atom; “alkyl group” having 1 to 4 carbon atoms is methyl, ethyl, n-propyl , Isopropinole, n-butinole, isobutinole, sec-butyl, tert-butyl; “alkoxy groups” having 1 to 4 carbon atoms include methoxy, ethoxy, propoxy, isopropoxy, butoxy, tert —Butoxy group: “Alkenyl group” having 2 to 4 carbon atoms includes bur, n-propenyl, isopropeninole, n-buteninole, isobuteninole, sec-buteninole, tert-buteninore; carbon number 2 to 4 “Alkynyl group” includes ethynyl, n-propiel (1-propynyl), isopropynyl (2-propynyl), n-butynyl, isobu Interview Le, sec - butynyl, tert- Buchuru.
特に、 上記一般式 (1)、 (II)で示される化合物のなかで、 下記式(la)、 (Ib)、 (Ic)、 (I la), (lib), (lie), または(lid)で示される化合物が好ましい。  In particular, among the compounds represented by the general formulas (1) and (II), the following formulas (la), (Ib), (Ic), (I la), (lib), (lie), or (lid ) Is preferred.
[化 7]  [Chemical 7]
Figure imgf000013_0002
Figure imgf000013_0002
Figure imgf000014_0001
Figure imgf000014_0001
Figure imgf000014_0002
ここで、 サリチル酸ダルコシルトランスフェラーゼとは、 サリチル酸(SA)にグ ルコースを転移させサリチル酸 2- 0- j3 - D-ダルコシド(SAG) を生成する活性を有 するシロイヌナズナ At2g43840 (UGT74Fl)をいい、配列番号 2に示されるアミノ酸 配列を有する。
Figure imgf000014_0002
Here, salicylic acid dalcosyltransferase refers to Arabidopsis At2g43840 (UGT74Fl) having the activity of transferring glucose to salicylic acid (SA) to produce salicylic acid 2-0-j3-D-darcoside (SAG). It has the amino acid sequence shown in 2.
UGT74F1 は、 上記酵素活性を保持する限り、 配列番号 2に示すアミノ酸配列に おいて 1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列 を有する変異タンパク質であってもよい。 ここで、 欠失、 置換、 および/または 付加されてもよいアミノ酸の数としては、 好ましくは、 1個から数個である。 「数 個」 の数は特には限定されないが、 例えば 20個以下、 好ましくは 10個以下、 よ り好ましくは 7個以下、 さらに好ましくは 5:個以下程度を意味する。 また、 ここ にいう 「変異」 は、 主には公知の変異タンパク質作製法により人為的に導入され た変異を意味するが、 天然に存在する同様の変異であってもよい。 タンパク質の ホモロジ一検索は、例えば、 日本 DNAデータバンク (DNA Databank of JAPAN (DDBJ) 等を対象に、 FASTAや BLASTなどのプログラムを用いて行うことができる。 UGT74F1 may be a mutant protein having an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 as long as the enzyme activity is maintained. Here, the number of amino acids that may be deleted, substituted, and / or added is preferably 1 to several. The number of “several” is not particularly limited. For example, it means 20 or less, preferably 10 or less, more preferably 7 or less, and further preferably 5 : or less. The “mutation” here means a mutation artificially introduced mainly by a known mutant protein production method, but may be a similar naturally occurring mutation. Protein The homology search can be performed by using a program such as FASTA or BLAST for the DNA Databank of Japan (DDBJ), for example.
上記式(la)、 (lb) , (Ic)、 (IIa)、 (lib) , (lie) , または(lid)で示される化合 物により誘導される病害抵抗性は、 サリチル酸ダルコシルトランスフェラ一ゼ The disease resistance induced by the compounds represented by the above formulas (la), (lb), (Ic), (IIa), (lib), (lie), or (lid) is dalcosyl salicylate. ZE
(UGT74F1) の酵素活性阻害という新たな作用機序に基づくものである。 従って、 サリチル酸ダルコシルトランスフェラーゼ(UGT74F1)をコードする遺伝子(以下、This is based on a new mechanism of action of inhibiting the enzyme activity of (UGT74F1). Therefore, a gene encoding salicylate darcosyltransferase (UGT74F1) (hereinafter,
TUGT74F1 遺伝子」 という) の機能を欠失させることによって植物に病害抵抗性 を付与することができる。 機能欠失の方法としては、 例えば、 当該遺伝子のアン チセンス配列、 RNAi用配列を植物体において発現させる方法、 当該遺伝子を病害 誘導性プロモーターで制御し、 病害感染時にのみその発現を抑制する方法などが 挙げられる。 It is possible to confer disease resistance to plants by deleting the function of “TUGT74F1 gene”. Examples of methods of loss of function include a method of expressing an antisense sequence of the gene and an RNAi sequence in a plant, a method of controlling the gene with a disease-inducible promoter, and suppressing its expression only at the time of disease infection, etc. Is mentioned.
本発明に係る UGT74F1遺伝子は、 配列番号 2に示すアミノ酸配列を有するサリ チル酸ダルコシルトランスフヱラーゼをコ一ドする遺伝子であり、 配列番号 1に 示す塩基配列を有する。 UGT74F1 遺伝子はそのホモログ遺伝子であってもよく、 そのようなホモ口グ遺伝子としては、 配列番号 1に示す塩基配列からなる DNAと 相補的な塩基配列からなる DNAとストリンジェントな条件下でハイブリダィズし、 かつ上記の酵素活性を有するタンパク質をコ一ドする遺伝子が挙げられる。  The UGT74F1 gene according to the present invention is a gene encoding salicylate darcosyltransferase having the amino acid sequence shown in SEQ ID NO: 2, and has the base sequence shown in SEQ ID NO: 1. The UGT74F1 gene may be a homologous gene, and as such a homologous gene, it hybridizes with a DNA consisting of a base sequence shown in SEQ ID NO: 1 and a DNA consisting of a complementary base sequence under stringent conditions. And a gene encoding the protein having the enzyme activity described above.
ここで、 ストリンジェントな条件とは、 いわゆる特異的なハイブリッドが形成 され、 非特異的なハイブリッドが形成されない条件をいう。 例えば、 相同性が高 い核酸、 すなわち配列番号 1に示す塩基配列と 80%以上、 好ましくは 85%以上、 より好ましくは 90%以上、最も好ましく 95%以上の相同性を有する塩基配列から なる核酸の相補鎖がハイブリダィズし、 それより相同性が低い塩基配列からなる 核酸の相捕鎖がハイブリダィズしない条件が挙げられる。 より具体的には、 ナト リ ゥム塩濃度が 15〜750mM、好ましくは 50〜750raM、より好ましくは 300〜750raM、 温度が 25〜70°C、 好ましくは 50〜70°C、 より好ましくは 55〜65°C、 ホルムアミ ド濃度が 0〜50%、 好ましくは 20〜50%、 より好ましくは 35〜45%での条件をい う。 さらに、 ス トリンジェントな条件では、 ハイブリダィゼーシヨン後のフィル ターの洗浄条件が、通常はナトリゥム塩濃度が 15〜600mM、好ましくは 50〜600mM、 より好ましくは 300〜600mM、 温度が 50〜70°C、 好ましくは 55〜70° (:、 より好ま しくは 60〜65°Cである。 Here, the stringent condition means a condition in which a so-called specific hybrid is formed and a non-specific hybrid is not formed. For example, a nucleic acid having high homology, i.e., a nucleic acid comprising a nucleotide sequence having a homology of 80% or more, preferably 85% or more, more preferably 90% or more, and most preferably 95% or more with the base sequence shown in SEQ ID NO: 1. In which the complementary strands of the nucleic acid are hybridized and the phase-trapping strand of the nucleic acid consisting of a base sequence having a lower homology is not hybridized. More specifically, the sodium salt concentration is 15 to 750 mM, preferably 50 to 750 raM, more preferably 300 to 750 raM, the temperature is 25 to 70 ° C, preferably 50 to 70 ° C, more preferably 55. The condition is ˜65 ° C. and the formamide concentration is 0-50%, preferably 20-50%, more preferably 35-45%. Furthermore, under stringent conditions, the filter washing conditions after hybridization are usually such that the sodium salt concentration is 15-600 mM, preferably 50-600 mM, more preferably 300-600 mM, and the temperature is 50- 70 ° C, preferably 55-70 ° (:, more preferred 60 to 65 ° C.
当業者であれば、 Molecular Cloning ( Sambrook, J. et al. , olecular Cloning : a Laboratory Manual 2nd ed. , Cold Spring Harbor Laboratory Press, 10 Skyl ine Drive Plainview, NY (1989) ) 等を参照することにより、 こうしたホ モログ遺伝子を容易に取得することができる。また、上記の塩基配列の相同性は、 同様に、 FASTA検索や BLAST検索により決定することができる。  Those skilled in the art can refer to Molecular Cloning (Sambrook, J. et al., Olecular Cloning: a Laboratory Manual 2nd ed., Cold Spring Harbor Laboratory Press, 10 Skyline Drive Plainview, NY (1989)), etc. Such homologous genes can be easily obtained. Similarly, the homology of the above base sequences can be determined by FASTA search or BLAST search.
上記 1のスクリーニング方法によって得られる化合物には、下記式(III)、 (IV)、 または(V)で示される化合物もまた包含される。  The compound obtained by the above screening method 1 also includes a compound represented by the following formula (III), (IV), or (V).
[化 8 ]  [Chemical 8]
Figure imgf000016_0001
Figure imgf000016_0001
本発明において 「植物病害抵抗性誘導剤」 とは、 植物の病害に対する抵抗性を 誘導し、 植物の病害を防除するための薬剤をいう。  In the present invention, the “plant disease resistance inducer” refers to an agent for inducing resistance to plant diseases and controlling plant diseases.
本発明の植物病害抵抗性誘導剤は、 上記化合物をそのまま使用してもよいが、 上記化合物に一般の農薬の製剤化に使用される固体担体、液体担体、界面活性剤、 その他の製剤用補助剤を混合して、 各種の剤型の製剤を調製してもよい。 薬剤の 剤型の種類としては、 例えば、 粒剤、 粉剤、 液剤、 乳剤、 水和剤、 水溶剤、 油剤、 エアゾール、 フロアブル剤等のいずれの形態であってもよい。 製剤化に際して用 いられる担体としては、 例えばタルク、 ベントナイ ト、 クレー、 カオリン、 珪藻 土、 ホワイ トカーボン、 バーミキユラィ ト、 炭酸カルシウム、 消石灰、 珪砂、 硫 安、 尿素等の固体担体、 イソプロピルアルコール、 キシレン、 シクロへキサン、 メチルナフタレン等の液体担体等があげられる。 As the plant disease resistance inducer of the present invention, the above-mentioned compounds may be used as they are, but solid carriers, liquid carriers, surfactants, and other formulation aids used for formulating general agricultural chemicals for the above-mentioned compounds. Preparations of various dosage forms may be prepared by mixing agents. As the types of drug forms, for example, any form such as granules, powders, liquids, emulsions, wettable powders, water solvents, oils, aerosols, flowables and the like may be used. Examples of carriers used for formulation include talc, bentonite, clay, kaolin, and diatom. Examples thereof include solid carriers such as soil, white carbon, vermiculite, calcium carbonate, slaked lime, silica sand, ammonium sulfate and urea, and liquid carriers such as isopropyl alcohol, xylene, cyclohexane and methylnaphthalene.
本発明の植物病害抵抗性誘導剤における有効成分である上記化合物の含有量は、 必要に応じ適宜設定できるが、 粉剤や粒剤とする場合は 0. 1〜50% (重量)、 また、 乳剤や水和剤とする場合は 5〜80% (重量) が例示できる。  The content of the above-mentioned compound, which is an active ingredient in the plant disease resistance inducer of the present invention, can be appropriately set as necessary. However, in the case of powders or granules, 0.1 to 50% (weight), or emulsion In the case of a wettable powder, 5 to 80% (weight) can be exemplified.
本発明の植物病害抵抗性誘導剤は、 病害の予防を目的としているため、 病害が 発生する時期前に施用することが好ましい。 本発明の植物病害抵抗性誘導剤の使 用方法としては、 散布、 散粉、 浸漬、 粉衣、 塗布、 くん蒸、 くん煙、 灌注等のい ずれであってもよい。 具体的な使用態様としては、 植物体へ薬剤を散布 ·塗布す る方法、 薬剤を含む液に植物の種子を浸漬する方法、 病害が発生している圃場又 は発生するおそれのある圃場に薬剤を散布する方法、土壌へ薬剤を混合する方法、 などが挙げられる。  Since the plant disease resistance inducer of the present invention is intended to prevent diseases, it is preferably applied before the time when the disease occurs. The method for using the plant disease resistance inducer of the present invention may be any of spraying, dusting, dipping, powdering, application, fumigation, smoking, irrigation, and the like. Specific uses include: spraying and applying chemicals to plants, dipping plant seeds in liquids containing chemicals, and chemicals in fields where disease is or is likely to occur The method of spraying, the method of mixing chemicals into soil, etc. are mentioned.
本発明の植物病害抵抗性誘導剤の使用量は植物の種類、 対象植物、 対象植物の 生育段階、 剤型の種類、 施用方法、 施用時期などにより適宜設定すればよく、 特 に限定されるものではないが、 例えば、 1 000 Om2あたり、 有効成分と,して通 常 l〜5000 g、 好ましくは 5〜 1 000 gである。 乳剤や水和剤のように液 状で使用する場合には、 有効成分の濃度が 0. l p pm〜 1 0, 000 p pm、 好ましくは 1 0〜3, O O O p pmである。 The amount used of the plant disease resistance inducer of the present invention may be appropriately set according to the kind of plant, the target plant, the growth stage of the target plant, the type of dosage form, the application method, the application time, etc. However, for example, per 1 000 Om 2 is usually 1 to 5000 g, preferably 5 to 1 000 g, as an active ingredient. When used in the form of a liquid, such as an emulsion or wettable powder, the concentration of the active ingredient is from 0. 1 pm pm to 10.000 p pm, preferably from 10 to 3, OOO p pm.
本発明の植物病害抵抗性誘導剤の対象となる植物は、 栽培植物すべてが挙げら れ、 単子葉植物または双子葉植物のいずれであってもよい。 例えば、 アブラナ科 Examples of plants targeted by the plant disease resistance inducer of the present invention include all cultivated plants, and may be monocotyledonous plants or dicotyledonous plants. For example, Brassicaceae
(シロイヌナズナ、 キャベツ、 ナタネ等)、 イネ科 (イネ、 トウモロコシ、 ォォム ギ、 コムギ、 等)、 ナス科 (トマト、 ナス、 ジャガイモ、 タバコ等)、 ゥリ科植物(Arabidopsis, cabbage, rape, etc.), Gramineae (rice, corn, barley, wheat, etc.), Solanaceae (tomato, eggplant, potato, tobacco, etc.), Cucurbitaceae
(キユウリ、 メロン、カボチヤなど)、マメ科(ダイズ、ェンドウ、ィンゲンマメ、 アルフアルファ、 ラッカセィ等)、 アブラナ科植物 (ダイコン、 ハクサイ、 キヤべ ッなど)、 バラ科植物 (イチゴ、 リンゴ、 ナシなど)、 クヮ科 (クヮなど)、 ァオイ 科 (ヮタなど)、 セリ科 (ニンジン、 パセリ、 セロリ一など)、 キク科 (ゴボウ、 ヒマヮリ、 キク、 レタスなど)、 ブドウ科 (ブドウなど) 等に属する植物が挙げら れるが、 これらの植物に限定はされない。 本発明の植物病害抵抗性誘導剤は、 上記の施用形態により、 糸状菌、 細菌及び ウィルスに起因する植物の病害を防除できる。 例えば、 イネいもち病菌(Such as cucumbers, melons, cabotillas), legumes (soybean, gendo, bean beans, alfa alfa, laccasei, etc.), cruciferous plants (radish, Chinese cabbage, cabbage, etc.), Rosaceae (strawberry, apple, pear, etc.) , Cucumber family (such as cucumber), cereal family (such as moth), celery family (carrot, parsley, celery etc.), asteraceae (burdock, sunflower, chrysanthemum, lettuce, etc.) Plants are included, but are not limited to these plants. The plant disease resistance inducer of the present invention can control plant diseases caused by filamentous fungi, bacteria and viruses by the above-mentioned application form. For example, rice blast fungus
(Magnaporthe gri sea 、 イネ 糸田 ¾丙 (Burkholderia plantari i イネ こま葉枯柄菌 (Cochl iobolus miyabeanus)、ィネ紋枯柄菌 (Rhizoctonia solani 、 イネ白葉枯病菌 (Xanthomonas oryzae) , ジャガイモ粉状そう力病菌(Spongospora subterranea) , ンャガイモ¾柄菌 (Phytophthorainf estans)、 シャカ モ黒あざ病 菌 (Rhizoctonia solani)、 ンャガイモそつ (Streptomycesscabies)、 ォォ ムギう どんこ炳菌 ( Eryshiphe gramini s f. sp. hordei )、 ムャ ¾1赤力 び ί丙困- (Gibberel la zeae)、 ムギ類雪腐大粒菌核病菌(Sclerotinia boreal i s)、 コムギ赤 さび;/丙菌 (Puccinia recondita)、 コム = つどんこ;!丙 (Erysiphe gramini s)、 グ ィズべと 3丙菌 (Peronospora manshurica)、グィズ紫斑;/丙囷- (Cercospora kikuchn)、 エンドゥ掲紋病菌 (Mycosphaerel lapinodes) , 卜クモロコシ黑穂病菌 (Ust i lago maydi s)、 サッマづモつる害1 J病菌 (Fusarium oxysporum f . sp. batatas)、 メ ロンつる害 ij病菌 ( Fusarium oxysporum f . sp. meloni s )、 レタス根腐病菌(Magnaporthe gri sea, Rice ¾ 丙 (Burkholderia plantari i) (Spongospora subterranea), Phytophthorainf estans, Rhizoctonia solani, Streptomycesscabies, Eryshiphe gramini s f. Sp. Hordei ¾1 Red power and ί 丙 丙-(Gibberel la zeae), wheat, Sclerotinia boreal is, wheat red rust; / Puccinia recondita, com = Tsudonko; s), Peridospora manshurica, Guiz purpura; / n- (Cercospora kikuchn), Mycosphaerel lapinodes, Ust i lago maydi s, Satsuma vine damage 1 J fungus (Fusarium oxysporum f .sp. batatas), melon vine harm ij fungus (Fusarium oxysporum f. sp. meloni s), lettuce root rot fungus
(Fusarium oxysporum f. sp. lactucae)、 卜マ卜萎调病菌 (Fusarium oxysporum f. sp. lycopers ici) , 卜マ卜半身萎凋病菌 (Vertici l l ium dahl iae) , 卜マ卜炭 そ 3丙菌(Col letotrichumphomoides)、 ホウレンソゥ麥调病 ή (Fusarium oxysporum f . sp. spinac iae)、 アブフナ科根こ ;/丙菌 (Plasmodiophora brass icaeノ、 キュ ゥ 苗立枯病菌 (Pythium debaryanum)、 ィチゴ灰色力び病菌 (Botryti s cinerea) による病害などが挙げられるが、 これらに限定はされない。 (Fusarium oxysporum f. Sp. Lactucae), Fusarium oxysporum f. Sp. Lycopers ici, Vertici ll ium dahl iae, Col letotrichumphomoides), Fusarium oxysporum f. Examples include diseases caused by (Botrytis cinerea), but are not limited thereto.
本発明の植物病害抵抗性誘導剤は、 他の除草剤、 殺菌剤、 殺虫剤等の農薬や、 肥料、 植物生長調節剤、 土壌改良剤等と混合して利用することも可能である。 以下、 実施例によって本発明を更に具体的に説明するが、 これらの実施例は本 発明を限定するものでない。  The plant disease resistance inducer of the present invention can be used by mixing with other herbicides, fungicides, insecticides and other agricultural chemicals, fertilizers, plant growth regulators, soil conditioners and the like. EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but these examples do not limit the present invention.
(実施例 1 ) スク リーニング条件の検討 '  (Example 1) Examination of screening conditions ''
(1) シロイヌナズナ培養細胞の Pstに対する感染指標の検討  (1) Examination of infection index for Pst in Arabidopsis cultured cells
卜マ卜] 糸田菌病菌 (Pseudomonas syringae pv. tomato DC3000; Pst) のシロ ィヌナズナヘの感染機構はモデル実験系として最も良く理解されているもののひ とつである(Belkhadir et al. , (2004) Curr. Op in. Plant Biol. 7 : 391-399. )。 シロイヌナズナ培養細胞は植物体の場合と同様に、 Pst 感染によって病害抵抗性 応答に特徴的な現象を誘導する。 植物細胞が病原体感染時に誘導する現象として は、 MAPキナーゼの活性化、 活性酸素種の産生、 生物発光、 サリチル酸量の増加、 力ロースの蓄積、 自家蛍光物質の蓄積、 PR1 遺伝子をはじめとする様々な防御遺 伝子群の発現誘導、 過敏感細胞死等が挙げられる。 これらの現象の中から植物の 病害抵抗性反応を定量化するための指標としていずれが適しているか検討した。 その結果、 過敏感細胞死が感染細胞における抵抗性応答の最終段階に位置する現 象であること、 エバンスブルー染色という安価で容易な方法によってマイクロタ イタ一プレートリーダ一での計測'を利用して定量化できることなどの点から、 過 敏感細胞死を指標とすることが最適であると判断された (図 1 )。 卜 マ 卜] The mechanism of the infection of Pseudomonas syringae pv. Tomato DC3000 (Pst) to Shironunazuna is best understood as a model experimental system. (Belkhadir et al., (2004) Curr. Op in. Plant Biol. 7: 391-399.). In Arabidopsis cultured cells, Pst infection induces a characteristic phenomenon in the disease resistance response as in the case of plants. Phenomena that plant cells induce during pathogen infection include activation of MAP kinase, production of reactive oxygen species, bioluminescence, increase in salicylic acid content, accumulation of force rosin, accumulation of autofluorescent substances, and PR1 gene. Induction of the expression of various defense genes, hypersensitive cell death, and the like. Among these phenomena, we examined which one is suitable as an index for quantifying the disease resistance response of plants. As a result, hypersensitive cell death is a phenomenon that is positioned at the final stage of the resistance response in infected cells, and the measurement using a microtiter plate reader is used by an inexpensive and easy method called Evans blue staining. From the viewpoint of being able to quantify, it was judged that it is optimal to use hypersensitive cell death as an index (Fig. 1).
(2) トマト斑葉細菌病菌株の種類の検討  (2) Examination of types of tomato spotted bacterial disease strains
シロイヌナズナ培養細胞 MM1 株 (Menges and Murray, (2002) Plant J. 30 : 203—212. ) および T87株 (Axelos, et al. , (1992) Plant Physiol. Biochem. 30 : 123-128. ) を卜マ卜斑葉細菌病菌 (Pseudomonas syringae pv. tomato DC3000, Pseudomonas syringae pv. tomato DC3000 avrRpml)と共培養して感染させエノくン スブルー染色した。 AvrRpml エフェクタータンパク質を保持する細菌株において 特異的に細胞死が観察された (図 2 )。 また、 シロイヌナズナにトマト斑葉細菌病 ¾ (Pseudomonas syringae DV. tomato Dし 3000, Pseudomonas svringae pv. tomato DC3000 avrRpml)を感染させると AvrRpmlエフェクターを保持する細菌株において 特異的に細胞死が誘導され葉の萎縮として観察された (図 3 )。 一方、 AvrRpmlを 持たない細菌株では細胞死は起こらず葉の中で細菌の増殖が続いた。  Seed Arabidopsis cultured cells MM1 strain (Menges and Murray, (2002) Plant J. 30: 203-212.) And T87 strain (Axelos, et al., (1992) Plant Physiol. Biochem. 30: 123-128.) Tomato DC3000, Pseudomonas syringae pv. Tomato DC3000 avrRpml) was co-cultured and infected, and stained with eno blue. Cell death was observed specifically in bacterial strains carrying the AvrRpml effector protein (Figure 2). Moreover, when Arabidopsis thaliana was infected with tomato spotted bacterial disease ¾ (Pseudomonas syringae DV. Tomato D and 3000, Pseudomonas svringae pv. Tomato DC3000 avrRpml), cell death was specifically induced in the bacterial strain carrying the AvrRpml effector. Observed as atrophy (Figure 3). On the other hand, bacterial strains without AvrRpml did not cause cell death and continued bacterial growth in the leaves.
Pstの系統には数種類存在するカ 、 avrRpml, avrRpt2, avrRps4, avrPphBの 4 種類を比較したところ、 avrRpml株が短時間(約 20時間)で最も強く過敏感細胞死 を誘導することもまた確認できた(図 4 )。 この応答の強さは植物体のそれと同様 の傾向であった。  A comparison of four types of Pst strains, avrRpml, avrRpt2, avrRps4, and avrPphB, confirms that the avrRpml strain induces the strongest hypersensitive cell death in a short time (about 20 hours). (Fig. 4). The intensity of this response was similar to that of plants.
(3) 過敏感細胞死を Pst感染の指標とすることの有効性の検証  (3) Verification of the effectiveness of using hypersensitive cell death as an indicator of Pst infection
実際にシロイヌナズナ培養細胞 MM1と Pstとの相互作用による過敏感細胞死が、 既知の細胞死阻害剤によって阻害されるかどうかを調べた。 既知の細胞死阻害剤 として、 リン酸化酵素阻害剤スタウロスポリン及ぴ K252a、 脱リン酸化酵素阻害 剤オカダ酸、 NADPH 酸化酵素阻害剤ジフエ-レンョードニゥム (DPI)を用いて実 験を行ったところ、 MM1力 S Pst感染に対して示す過敏感細胞死がいずれの化合物 によっても濃度依存的に阻害されることを確認した (図 5 )。 また、 既知の植物抵 抗性誘導剤であるチアジニル(TDN)及び内生の抵抗性誘導ホルモンであるサリチ ル酸(SA)について、 MM1力 S Pst感染に対して誘導する過敏感細胞死への影響を検 討したところ、 両化合物が過敏感細胞死を亢進することを確認した (図 6 )。 (4) 溶媒濃度の検討 We investigated whether hypersensitive cell death caused by the interaction between MM1 and Pst in Arabidopsis cultured cells was actually inhibited by known cell death inhibitors. Known cell death inhibitors As a result of experiments using phosphatase inhibitors staurosporine and K252a, phosphatase inhibitor okadaic acid, NADPH oxidase inhibitor diphenol-lendonium (DPI), MM1 force S Pst infection On the other hand, it was confirmed that hypersensitive cell death was inhibited by any compound in a concentration-dependent manner (Fig. 5). In addition, thiazinyl (TDN), a known plant resistance inducer, and salicylic acid (SA), an endogenous resistance-inducing hormone, are used to induce hypersensitive cell death induced by MM1 force S Pst infection. When the effect was examined, it was confirmed that both compounds enhance hypersensitive cell death (Fig. 6). (4) Examination of solvent concentration
化合物の溶媒である DMS0が MM1培養細胞に与える影響を調べ、 1%までは細胞が 示す過敏感細胞死に大きな影響がないことを確認した (図 7 )。  The effect of DMS0, a compound solvent, on cultured MM1 cells was examined, and up to 1% was confirmed to have no significant effect on hypersensitive cell death (Fig. 7).
(実施例 2 ) 植物病害抵抗性誘導剤の候補化合物の探索と同定 (Example 2) Search and identification of candidate compounds for plant disease resistance inducers
(1)スク リーニング方法 (1) Screening method
植物病害抵抗性誘導剤のスク リーニングは、 以下の手順により行った (図 8 )。 シロイヌナズナ培養細胞を VH培地で旋回培養した (光条件は 16時間 l ight/8時 間 dark; Maor et al. , (2007) Molecular & Cel lular Proteoraics 6 : 60ト 610. )。 一週間後、 培養細胞を 58. 5 μ 1 ずつ 1ml 容 96 穴深型タイタープレー ト (nunc260252)に 8連ピぺットで分注した (チップの先を切る)。 同タイタープレー トに、被検化合物 0· 5 μ 1をそれぞれ 2穴ずつ添加しプレートの横を叩いて撹拌し た。 プレートの 2 レーンはコントロ一ノレとして使用し DMS0のみを添加した。 1時 間後、 卜マ卜 細 (Pseudomonas syringae pv. tomato DC3000株 (以下 Screening of plant disease resistance inducers was carried out according to the following procedure (Fig. 8). Arabidopsis cultured cells were swirled in VH medium (light conditions were 16 hours light / 8 hours dark; Maor et al., (2007) Molecular & Cellular Proteoraics 6: 60 to 610.). One week later, the cultured cells were dispensed into 1ml-volume 96-well deep-titer plates (nunc260252) in 58.5 μl units using an eight-pipetette (cut the tip of the tip). To the same titer plate, 2 wells of each test compound (0.5 · 1 μl) were added, and the plate was struck by the side and stirred. Two lanes of the plate were used as control lines and only DMS0 was added. After 1 hour, Pseudomonas syringae pv.
「Pst」 という) の最終濃度が 0D6。。0. 2、 MES最終濃度が 14mMになるように調整し た VH培地を 40. 5 1添加し、 最終容量 100 1 とした。 1穴には Pstを含まないThe final concentration of “Pst” is 0D 6 . . 0.24 VH medium adjusted to a final MES concentration of 14 mM was added to 40.5 1 to a final volume of 100 1. 1 hole does not contain Pst
VH培地を添加した。 プレートの横を叩いて撹拌し、 旋回培養器にて 21時間共培 養した後、 1%エバンスブルー水溶液 5 μ 1 を添加して撹拌し、 時折撹拌しながらVH medium was added. Tap on the side of the plate, stir, and co-culture for 21 hours in a swirl incubator, then add 5 μ 1 of 1% Evans Blue aqueous solution and stir, occasionally stirring
30分静置した (図 9 )。 It was left to stand for 30 minutes (Fig. 9).
次に、 lmlの水を 8連電動ピぺッ トで加えて 10分静置し、培養細胞を沈殿させ、 上清を lml吸い上げた。この水洗操作を 3回繰り返した。溶出液(50%メタノール、 Next, lml of water was added with 8 electric pipettes and allowed to stand for 10 minutes to precipitate cultured cells, and lml of the supernatant was sucked up. This washing operation was repeated three times. Eluent (50% methanol,
0. 1%SDS) 400 μ 1をカロえ、 55°Cの湯浴に 20分浮かべて死細胞に取り込まれたエバ ンスブルー色素を溶出させた。 溶出液 160 μ 1を入れた 96穴マイクロタイタープ レートに各検体の上清を 40 // 1加えて (5倍希釈) マイクロプレートリーダーで 0D595の吸収を測定した。 (0. 1% SDS) 400 μ 1 was taken, floated in a 55 ° C water bath for 20 minutes, and taken into dead cells Blues dye was eluted. The absorption was measured 0D 595 with supernatant of each sample into a 96-well microtiter tarp rate The eluate 160 mu 1 40 // added 1 (5-fold dilution) microplate reader.
コントロールのエバンスブルー濃度の平均を 100%とし、被検化合物の添加によ り 120%以上になったもので、かつ Pstを添加しない場合の値がコントロールと変 わらないもの (Pst 無添加時に過敏感細胞死が誘導されないもの) を陽性として 選抜した。  The average Evans blue concentration of the control is 100%, and the value is 120% or more by the addition of the test compound, and the value when Pst is not added does not change from the control. Those that did not induce sensitive cell death) were selected as positive.
(2)過敏感細胞死を亢進する化合物の探索と同定  (2) Search and identification of compounds that enhance hypersensitive cell death
化合物ライブラリ一は ChemBridge 社から市販されている DIVERSet (NovaCore NQ612)の 10, 000化合物 (0. lmg/20 /z 1DMS0溶解) を使用した。 上記 (1 ) の方法 にてスクリーニングを 3回繰り返し行った。 その結果、 再現性をもって過敏感細 胞死を増強する候補化合物と して 7種の化合物を [5160360 (CB_6)、 6297908 (CB_7)、 6380249 (CB— 8)、 7724984 (CB_9)、 7725027 (CB— 10)、 7732575 (CB— 11)、 7726438 (CB— 12) ]を単離した (図 1 0 )。  The compound library used was 10,000 compounds (0.1 mg / 20 / z 1DMS0 dissolved) of DIVERSet (NovaCore NQ612) commercially available from ChemBridge. Screening was repeated three times by the method (1) above. As a result, seven compounds were selected as candidate compounds that reproducibly enhance hypersensitive cell death [5160360 (CB_6), 6297908 (CB_7), 6380249 (CB—8), 7724984 (CB_9), 7725027 (CB — 10), 7732575 (CB—11), 7726438 (CB—12)] were isolated (FIG. 10).
これらの候補化合物について各 125, 100, 75, 50, 25, 10 // Mの濃度における Pst 誘導過敏感細胞死への影響を調べたところ、 濃度依存性が観察された (図 1 1 )。 CB_11 と CB_12はその構造の類似性から同様の作用機作を持つものと予想さ れ、 また CB_11が油状であることから以降の実験には CB_11のみを使用すること とした。  When these candidate compounds were examined for their effects on Pst-induced hypersensitive cell death at concentrations of 125, 100, 75, 50, 25, 10 // M, respectively, concentration dependence was observed (Fig. 11). CB_11 and CB_12 are expected to have the same mechanism of action due to their structural similarity, and since CB_11 is oily, only CB_11 was used in the subsequent experiments.
(実施例 3 ) 過敏感細胞亢進化合物の病害抵抗性誘導剤としての作用の検討 実施例 2で探索 · 同定した候補化合物 (過敏感細胞死亢進化合物) の作用を調 ベるために、 各化合物(終濃度 50 μ Μ)をシロイヌナズナ MM1培養細胞に添加して(Example 3) Examination of the action of a hypersensitivity cell-enhancing compound as a disease resistance inducer Searched in Example 2 · To investigate the action of the identified candidate compound (hypersensitive cell death-enhancing compound), each compound (Final concentration 50 μΜ) was added to Arabidopsis thaliana MM1 cultured cells.
24時間後の RNAを抽出した(PureLink RNA purification kit; Invitrogen)。 各After 24 hours, RNA was extracted (PureLink RNA purification kit; Invitrogen). each
RNA を元に cDNA を合成し (Superscriptlll first strand synthesi s kit ;Synthesis of cDNA based on RNA (Superscriptlll first strand synthesis kit;
Invitrogen)、 各種マーカー (PR1、 Actin、 PDF1. 2) 遺伝子特異的プライマーを用 いて RT-PCR実験を行った。その結果、 これらの化合物はその添加によってシロイ ヌナズナ培養細胞に防御遺伝子である PR1を発現誘導することが確認された (図Invitrogen), various markers (PR1, Actin, PDF1.2) RT-PCR experiments were performed using gene-specific primers. As a result, it was confirmed that these compounds induce the expression of PR1, a protective gene, in cultured cells of S. thaliana (Fig.
1 2 )。一方、傷害誘導性の遺伝子である PDF1. 2の発現に変化は見られなかった。 さらに各化合物が植物体に作用するかどうかを確認する目的で、 ΙΟΟ μ Μの各化 合物にシロイヌナズナ幼苗を浸し、 1及び 3日後の RNAを抽出した(PureLink RNA purification kit; Invitrogen) Q ¾- RNA ¾r元に cDNAを合成し (Superscriptlll first strand synthesis kit; Invitrogen) , PRl及び Actin遺伝子特異的プライ マーを用いて RT-PCR実験を行った。 その結果、全ての化合物がすべてシロイヌナ ズナ植物体に抵抗性反応のマーカー遺伝子である PR1 遺伝子の発現を誘導した (図 1 3 )。 これらの結果は、 各化合物は、 病原体に作用するのではなく、 シロイ ヌナズナの病害抵抗性反応を誘導することで細胞死活性化作用を発揮しており、 各化合物が植物病害抵抗性誘導活性を有することを意味している。 1 2). On the other hand, there was no change in the expression of PDF1.2, an injury-inducing gene. Furthermore, for the purpose of confirming whether each compound acts on the plant body, Arabidopsis seedlings were soaked in each compound of ΙΟΟμΜ, and RNA after 1 and 3 days was extracted (PureLink RNA purification kit; Invitrogen) Q ¾ -CDNA was synthesized from RNA ¾r (Superscriptlll first strand synthesis kit; Invitrogen), and RT-PCR experiments were performed using PRl and Actin gene-specific primers. As a result, all the compounds induced the expression of the PR1 gene, which is a marker gene of resistance reaction, in Arabidopsis plants (FIG. 13). These results show that each compound does not act on pathogens but induces cell death activation by inducing the disease resistance response of Shiro nunazuna, and each compound exhibits plant disease resistance inducing activity. It means to have.
(実施例 4 ) 過敏感細胞亢進化合物の作用点の検討 (Example 4) Examination of the action point of a hypersensitive cell enhancing compound
(1) サリチル酸依存性  (1) Salicylic acid dependence
植物の病害抵抗性応答には植物ホルモンのひとつであるサリチル酸が主要な役 割を担っている。 そこで、 サリチル酸を欠失したシロイヌナズナ変異体 sid2 (コ リスミ酸からサリチル酸前駆体であるィソコリスミ酸を合成する酵素の変異体; Wi ldermuth et al. , Nature (2001) 414 : 562-565. ) における各化合物の PRl遺伝 子誘導能を調べた。 各化合物を ΙΟΟ μ Μ の濃度でシロイヌナズナ幼苗 (野生型と sid2 変異体) に処理して、 1 及び 3 日後の RNA を抽出した(PureLink RNA purification kit ; Invitrogen)。 各 RNAを元に cDNAを合成し (Superscriptlll first strand synthesis kit ; Invitrogen) , PRl及び Actin遺伝子特異的プライ マーを用いて RT- PCR実験を行った。 その結果、 CB_8, CB_9, CB_10, CB_11 の 4 種類の化合物は sid2変異体においては PRl遺伝子の発現誘導が見られなくなった。 これより、 CB_6と CB_7の 2種類の作用はサリチル酸に依存しておらず、残りの 5 種類はサリチル酸に依存していることがわかった (図 1 4 )。  Salicylic acid, a plant hormone, plays a major role in plant disease resistance responses. Therefore, each of the Arabidopsis mutants sid2 lacking salicylic acid (mutants of the enzyme that synthesizes isochorismate, a precursor of salicylic acid from chorismate; Wildermuth et al., Nature (2001) 414: 562-565.) The ability of compounds to induce PRl genes was examined. Each compound was treated with Arabidopsis seedlings (wild type and sid2 mutant) at a concentration of ΙΟΟμΜ, and RNA was extracted after 1 and 3 days (PureLink RNA purification kit; Invitrogen). CDNA was synthesized based on each RNA (Superscriptlll first strand synthesis kit; Invitrogen), and RT-PCR experiments were performed using PRl and Actin gene-specific primers. As a result, four types of compounds, CB_8, CB_9, CB_10, and CB_11, did not induce PRl gene expression in the sid2 mutant. From these results, it was found that the two effects of CB_6 and CB_7 are not dependent on salicylic acid, and the remaining five are dependent on salicylic acid (Fig. 14).
(2)サリチル酸量増大作用  (2) Salicylic acid amount increasing action
各化合物の添加によってサリチル酸含量が変化するかどうかを検討した。 各化 合物をシロイヌナズナ培養細胞 MM1に lOO w Mの濃度で添加し、 24時間後のサリ チル酸含量を LC-MSによって定量した。 その結果、 CB_8, CB_10, CB— 11の 3種類 がサリチル酸含量を有意に増加させることがわかった (図 1 5 )。 (3)サリチル酸量を増大させる化合物の作用機作の発見 It was examined whether the salicylic acid content was changed by the addition of each compound. Each compound was added to Arabidopsis thaliana cultured cell MM1 at a concentration of lOO w M, and the salicylic acid content after 24 hours was quantified by LC-MS. As a result, it was found that CB_8, CB_10, and CB-11 significantly increased salicylic acid content (Fig. 15). (3) Discovery of the mechanism of action of compounds that increase the amount of salicylic acid
各化合物の添加によってサリチル酸量が増加するメカニズムとして各化合物が サリチル酸不活性化酵素を阻害するという仮説を立て、 その立証実験を行った。 サリチル酸の不活性化機構としてはダルコシル化が挙げられ、 サリチル酸を基質 とすることができるダルコシルトランスフェラーゼは At2g43840(UGT74Fl), At2 g43820(UGT74F2), Atlg05560 (UGT75B1)の 3種類が報告されている(Lim et al. , JBC (2002) 277:586-592.)。 不活性型の配糖化サリチル酸はその糖転移部位の違 いによりサリチル酸 2-0- J3-D-ダルコシド (SAG) とダルコシルサリチル酸 (GS) の 2種類が存在し、 UGT74F1は SAGを、 UGT75B1は GSを 、 そして UGT74F2は SAG 及び GS の両方を産生する活性を持つ (Lira et al., 同上:図 1 6)。  The hypothesis that each compound inhibits salicylic acid-inactivating enzyme as a mechanism for increasing the amount of salicylic acid by the addition of each compound was conducted and a verification experiment was conducted. The inactivation mechanism of salicylic acid is dalcosylation, and three types of darcosyltransferases that can use salicylic acid as a substrate have been reported: At2g43840 (UGT74Fl), At2 g43820 (UGT74F2), Atlg05560 (UGT75B1) ( Lim et al., JBC (2002) 277: 586-592.). There are two types of inactive glycosylated salicylic acid, salicylic acid 2-0- J3-D-darcoside (SAG) and darcosylsalicylic acid (GS), depending on the sugar transfer site. UGT74F1 is SAG, UGT75B1 is GS and UGT74F2 have activity to produce both SAG and GS (Lira et al., Ibid: Fig. 16).
これら 3種類のダルコシルトランスフヱラーゼ遺伝子をクローニングし、 大腸 菌によって発現させたタンパク質を使った酵素活性検出実験を実施した。 まず、 A t2g43840 (UGT74F1), At2g43820 (UGT74F2) , Atlg05560 (UGT75B1)の 3遺伝子の cDN Aをクローニングし、 pET28ベクターに組み込み、 ヒスチジンタグを付加したタン パク質を大腸菌で発現 ·精製した。 次に、 精製タンパク質 (1.6, 3.2, 8.0, 16. 0/xg)、 50mM Tris - HCl(pH7.0)、 14raM 2-メルカプトエタノール、 5raM UDP -ダルコ ース、 ΙΟΟμΜ サリチル酸 (7- "C標識: American Radiolabeled Chemicals Inc. ) を加えた 200 1の反応溶液で 30°C、 30分間反応させた。 反応液に 25 1 の 5raM サリチル酸 (エタノール溶解液) を加えて反応を止めた。 反応溶液を 5分間遠心 し、 上清 10/ 1を薄層クロマトグラフィーにて展開した (Whatman LK6F (4866-82 0)、 展開溶媒: 1-ブタノール/酢酸/水 =4: 1:1)。 その後、 薄層クロマトグラフィー プレートを風乾後、 イメージングプレートとイメージングアナライザー(FLA- 700 0)で "C標識サリチル酸を検出した。 薄層クロマトグラフィ一による配糖化サリ チル酸の検出法は文献 (Lee and Raskin, Phytopathology (1998) 692-697· ) に 従った o  We cloned these three types of darcosyltransferase genes and performed an enzyme activity detection experiment using proteins expressed by Escherichia coli. First, cDNA of 3 genes, At2g43840 (UGT74F1), At2g43820 (UGT74F2) and Atlg05560 (UGT75B1) was cloned, incorporated into pET28 vector, and a protein with histidine tag was expressed and purified in E. coli. Next, purified protein (1.6, 3.2, 8.0, 16.0 / xg), 50 mM Tris-HCl (pH 7.0), 14raM 2-mercaptoethanol, 5raM UDP-Darcose, ΙΟΟμΜ salicylic acid (7- "C-labeled : American Radiolabeled Chemicals Inc.) was added to the reaction solution of 200 1 for 30 minutes at 30 ° C. 25 1 of 5raM salicylic acid (ethanol solution) was added to the reaction solution to stop the reaction. After centrifugation for 5 minutes, the supernatant 10/1 was developed by thin layer chromatography (Whatman LK6F (4866-820), developing solvent: 1-butanol / acetic acid / water = 4: 1: 1). After the layer chromatography plate was air-dried, “C-labeled salicylic acid was detected with an imaging plate and an imaging analyzer (FLA-70000). The detection method of glycosylated salicylic acid by thin-layer chromatography was according to the literature (Lee and Raskin, Phytopathology (1998) 692-697).
その結果、 UGT74F1の SAG産生活性が最も強く検出され (図 1 7)、 これは文献 As a result, the SAG production activity of UGT74F1 was detected most strongly (Fig. 17).
(Lira et al. , JBC (2002) 277:586-592. ) の結果と一致した。 植物体における(Lira et al., JBC (2002) 277: 586-592.). In the plant
GSの存在量が少ないことと病原体感染時には SAの増加と共に SAG量が急速に増 加することから (Lee and Raskin, 同上)、 SAの主要な不活性型は SAGであると 考えた。 また UGT74F2はアントラ-ル酸を基質とするという報告があることから (Quiel and Bender, JBC (2003) 278 : 6275-6281. )、 サリチル酸の不活性化を担 う主要な酵素は UGT74F1であると結論づけた。 Since the amount of GS is small and the amount of SAG increases rapidly with SA when the pathogen is infected (Lee and Raskin, ibid.), The main inactive form of SA is SAG. Thought. In addition, UGT74F2 has been reported to use anthralic acid as a substrate (Quiel and Bender, JBC (2003) 278: 6275-6281.), And the main enzyme responsible for inactivation of salicylic acid is UGT74F1. I concluded.
次に、 最も強い活性を示す UGT74F1を用い、 各化合物を上記反応液に高濃度で 添加した場合の酵素活性に対する影響を調べた。 その結果、 UGT74F1 のサリチル 酸ダルコシルトランスフェラーゼ活性は CB_8, CB_9, CB_11によって少なくとも 500 / Mにおいて阻害された (図 1 8 )。 一方、 ァセチルサリチル酸 (SANa)によつ ては阻害されないことから、 基質特異性が評価できていることが示されている。 また、 UGT74F1のサリチル酸ダルコシルトランスフエラーゼ活性は、 CB_8, CB_9, CB_11によって 50 μ Μにおいても阻害された (図 1 9 )。 また、 当該酵素活性を阻 害する有効濃度が植物培養細胞の過敏感細胞死を亢進させる有効濃度と一致した ことから (図 1 9 )、 CB_8, CB_9, CB_11の薬理作用は UGT74F1の阻害によるもの であり、 病原体感染に伴って産生される SAを不活性化できないために活性型 SA の蓄積が早く起こることによると結論づけた。  Next, using UGT74F1, which shows the strongest activity, the effect on enzyme activity when each compound was added to the above reaction solution at a high concentration was examined. As a result, the salicylate darcosyltransferase activity of UGT74F1 was inhibited at least at 500 / M by CB_8, CB_9, and CB_11 (FIG. 18). On the other hand, since it is not inhibited by acetyl salicylic acid (SANa), it has been shown that the substrate specificity can be evaluated. UGT74F1 activity of darcosyl salicylate transferase was also inhibited by CB_8, CB_9, and CB_11 even at 50 μΜ (Figure 19). In addition, since the effective concentration that inhibits the enzyme activity coincided with the effective concentration that promotes hypersensitive cell death of plant cultured cells (Figure 19), the pharmacological actions of CB_8, CB_9, and CB_11 are due to the inhibition of UGT74F1. It was concluded that the accumulation of active SA occurred early because SA produced by pathogen infection could not be inactivated.
一方、 CB_6, CB_10 は UGT74F1 活性を阻害しなかった (図 1 8 )。 CB_6, CB— 7 については sid2変異体を用いた PR1遺伝子発現誘導実験(前記 (1) )からその作 用がサリチル酸に依存しないことが明らかになっているので、 化合物それ自身が サリチル酸様の活性を保持しており防御遺伝子群の発現誘導能があると判断でき る (バイオン型)。 また、 CB_10については図 1 5でも明らかなようにサリチル酸 合成を活性化させる作用があると考えられる (プロべナゾール、 チアジニル型)。  On the other hand, CB_6 and CB_10 did not inhibit UGT74F1 activity (Figure 18). For CB_6 and CB-7, the PR1 gene expression induction experiment using the sid2 mutant ((1) above) revealed that the action does not depend on salicylic acid, so the compound itself has salicylic acid-like activity. Therefore, it can be judged that it has the ability to induce the expression of the defense gene group (bion type). In addition, CB_10 is thought to have an effect of activating salicylic acid synthesis (probenazole, thiazinyl type), as clearly shown in Fig. 15.
(実施例 5 ) CB_8, CB— 9, CB_11, CB— 12の構造活性相関 (Example 5) Structure-activity relationship of CB_8, CB-9, CB_11, CB-12
(1) CB_8及び CB_9 (1) CB_8 and CB_9
CB_8と CB_9は構造に類似性が認められたので、 CheraCupidデータべ一ス (ナミ キ商事) からその共通構造を持つ化合物を検索した。 検索結果から得た NS- 00227 Since CB_8 and CB_9 were similar in structure, we searched for compounds with the common structure from the CheraCupid database (Namiki Shoji). NS- 00227 obtained from search results
354 (Pharmeks社)について、 その過敏感細胞死への影響を調べた。 その結果、 NS-354 (Pharmeks) was examined for its effects on hypersensitive cell death. As a result, NS-
00227354は、 CB_8, CB_9と同様に過敏感細胞死を亢進する作用があることがわか つた (図 2 0 )。 また、 この化合物が CB— 8, CB_9同様にサリチル酸ダルコシルト ランスフェラーゼ活性を阻害することも確認した (図 2 1 )。 (2) CB_11及び CB_12 00227354, like CB_8 and CB_9, was found to enhance hypersensitive cell death (FIG. 20). It was also confirmed that this compound, like CB-8 and CB_9, inhibited salicylate darcosyltransferase activity (Fig. 21). (2) CB_11 and CB_12
CB_11 と CB_12についても構造類似性が認められたので、 ChemCupidデータべ一 ス (ナミキ商事) からその共通構造を持つ化合物を検索した。 検索結果から得た 化合物 NS- 02286103 (Pharmeks社)と NS- 00023475 (Pharmeks)について、 その過敏 感細胞死への影響を調べた。 その結果、 これらの化合物も過敏感細胞死亢進活性 を有することを確認した(図 2 2 )。また少なくとも NS-0002347については CB_11 と同様にサリチル酸ダルコシルトランスフヱラーゼ活性を阻害することを確認し た (図 2 1 )。  Since structural similarities were also found for CB_11 and CB_12, compounds with the common structure were searched from the ChemCupid database (Namiki Corporation). The compounds NS-02286103 (Pharmeks) and NS-020023475 (Pharmeks) obtained from the search results were examined for their effects on hypersensitive cell death. As a result, it was confirmed that these compounds also have hypersensitive cell death promoting activity (FIG. 22). In addition, at least NS-0002347 was confirmed to inhibit salicylic acid darcosyltransferase activity as in CB_11 (FIG. 21).
(実施例 6 )既知植物病害抵抗性誘導剤のサリチル酸ダルコシルトランスフ ラー ゼ活性に対する影響 (Example 6) Effects of known plant disease resistance inducers on darcosyl salicylate transferase activity
既に市販されているプロべナゾールとチアジ-ルについて、 サリチル酸ダルコ シルトランスフェラーゼ活性に対する効果を検証した。 その結果、 チアジニルと その活性本体である SV-03 とプロべナゾールおよびその活性本体である BIT (benzisothiazole)はそれぞれの過敏感細胞死の亢進に対する有効濃度において サリチル酸ダルコシルトランスフェラーゼ活性を阻害しないことが明らかとなつ た (図 2 3 )。 このことは CB_8, CB_9, CB_11の薬理作用が抵抗性誘導機構として 新規なものであることを示している。  The effects of commercially available probenazole and thiazyl on salicylate dalcosyltransferase activity were examined. As a result, thiazinyl, its active substance SV-03 and probenazole, and its active substance BIT (benzisothiazole) do not inhibit salicylic acid darcosyltransferase activity at effective concentrations for each hypersensitivity cell death enhancement. It became clear (Fig. 23). This indicates that the pharmacological action of CB_8, CB_9, and CB_11 is a novel mechanism for inducing resistance.
(実施例 7 ) CB_6, CB_7, CB_8, CB— 9, CB_10, CB— 11 の植物病害抵抗性誘導能の 実証 (Example 7) Demonstration of plant disease resistance inducing ability of CB_6, CB_7, CB_8, CB—9, CB_10, CB—11
単離された過敏感細胞死亢進化合物が培養細胞、 及び植物体において病害抵抗 性のマーカー遺伝子の一つである PR1の発現を誘導しうることは示したが、 実際 に植物体への投与により病害抵抗性を誘導しうるかどうかを下記の方法によって 検討した。  Although it has been shown that the isolated hypersensitivity cell death promoting compound can induce the expression of PR1, which is one of the disease resistance marker genes, in cultured cells and plants. The following method was used to determine whether disease resistance could be induced.
シロイヌナズナ幼苗をロック ウールで水耕栽培した (短日条件 ( 8時間 l ight/16時間 dark) )。 3週間生育させた植物体をポットに移し、 100 μ Mまたは Arabidopsis seedlings were hydroponically cultivated with rock wool (short-day conditions (8 hours l ight / 16 hours dark)). Transfer plants grown for 3 weeks to pots, 100 μM or
200 μ Μの各化合物懸濁溶液に浸した。 対照実験は化合物の溶媒である DMS0のみ を加えた溶液に植物体を浸した。 4日後に 0D6。。=0. 0002の濃度の Pst懸濁液(10mM MgCl2)を葉の裏側から針のない 1mlシリンジを用いてアポプラスト内に注入した。 直後に直径 6mmのコルクボーラ一にて葉をく り抜き、 3牧を 2mlチューブに移し、 ジルコニァボール (φ 3ιηπι) 4粒と 500 の MgCl2 (lOmM)溶液を加えて破砕機 (QIAGEN TissueLyser) で葉を 3分間粉砕した。 MgCl2で 10倍ごとの希釈系列を 作製し、 それぞれ 10 1づっを LB寒天培地 (50ug/mlカナマイシン、 50ug/ml リ ファンピシン) にスポットし、 28°Cで生育させてコロニー数を計測し、 「コロニー 数/ cm2」 を算出した。 上記の葉の破砕から LB寒天培地上でのコロニーの計測のェ 程を 4日後に同様に行った。 Immerse in 200 μΜ of each compound suspension. In the control experiment, the plant was immersed in a solution containing only DMS0, which is a solvent for the compound. 0D 6 after 4 days. . = 0.0002 concentration of Pst suspension (10 mM MgCl 2 ) was injected into the apoplast from the back of the leaf using a 1 ml syringe without a needle. Immediately afterwards, the leaves were cut out with a cork borer with a diameter of 6 mm, and the 3 pastures were transferred to a 2 ml tube, 4 grains of zirconia balls (φ 3ιηπι) and 500 MgCl 2 (lOmM) solution were added, and the crusher (QIAGEN TissueLyser) Crush the leaves for 3 minutes. Prepare 10-fold dilution series with MgCl 2 , spot each 10 1 on LB agar medium (50ug / ml kanamycin, 50ug / ml rifampicin), grow at 28 ° C, count the number of colonies, “Number of colonies / cm 2 ” was calculated. The process of counting the colonies on the LB agar medium from the crushing of the leaves was similarly performed 4 days later.
植物の葉における Pst の増殖速度を比較した結果、 CB_6, CB_7, CB_8, CB_9, CB_10, CB_11 を添加したシロイヌナズナにおいては Pstの増殖が抑制されてい ることが明らかとなった (図 2 4 )。  As a result of comparing the Pst growth rate in plant leaves, it was found that the growth of Pst was suppressed in Arabidopsis to which CB_6, CB_7, CB_8, CB_9, CB_10, and CB_11 were added (Fig. 24).
(実施例 8 ) CB_6, CB— 7, CB_8, CB_9, CB_10, CB— 11が植物の生育に与える影響 単離された植物病害抵抗性誘導化合物が植物の生育に与える影響を調べた。 方 法としては、 滅菌したシロイヌナズナ種子を 96穴プレートに分注し、 100 // Mの 化合物を溶解した MS液体培地を添加して、長日光条件下で培養してその生育を観 察した。 その結果、 CB_6, CB_7, CB_10 はシロイヌナズナの発芽及ぴ緑化を抑制 し、 CB_8, CB_9, CB— 11は生育を抑制しなかった (図 2 5 )。 生育抑制はサリチル 酸の蓄積もしくはシグナル伝達経路の活性化によるサリチル酸誘導性遺伝子群の 発現誘導の結果として引き起こされるが、 上記結果により、 CB_8, CB_9, CB_11 の添加によって増幅するサリチル酸量は生育を阻害するほどには至らないことが 明らかとなった。 CB— 8, CB_9, CB_11 が生育を阻害しない現象はその薬理作用と 一致する。 サリチル酸は病害刺激が加わって初めて大量に合成されるので、 CB_8, CB_9, CB_11 は感染時に増加するサリチル酸が不活性化されるのを阻害して活性 型サリチル酸の蓄積速度を増加させることで抵抗性反応の誘導を早める働きがあ ると考えられる。 本明細書で引用した全ての刊行物、 特許及び特許出願をそのまま参考として本 明細書に組み入れるものとする。 産業上の利用可能性 (Example 8) Effect of CB_6, CB-7, CB_8, CB_9, CB_10, CB-11 on plant growth The effect of the isolated plant disease resistance-inducing compound on plant growth was examined. As a method, sterilized Arabidopsis seeds were dispensed into 96-well plates, MS liquid medium in which 100 // M compound was dissolved was added, and cultured under long sunlight conditions to observe its growth. As a result, CB_6, CB_7, and CB_10 inhibited the germination and greening of Arabidopsis, and CB_8, CB_9, and CB-11 did not inhibit the growth (Fig. 25). Growth suppression occurs as a result of the induction of salicylic acid-inducible gene group expression by the accumulation of salicylic acid or activation of the signal transduction pathway, but the above results indicate that the amount of salicylic acid that is amplified by the addition of CB_8, CB_9, and CB_11 inhibits growth. It became clear that it was not so much. The phenomenon that CB—8, CB_9, and CB_11 do not inhibit growth is consistent with its pharmacological action. Since salicylic acid is synthesized in large quantities only after disease stimuli are added, CB_8, CB_9, and CB_11 are resistant by increasing the rate of accumulation of active salicylic acid by inhibiting the inactivation of salicylic acid that increases during infection. It is thought that it works to accelerate the induction of the reaction. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety. Industrial applicability
本発明によれば、 植物病害抵抗性誘導剤のハイスループッ トなスクリーニング 方法が提供される。 本スクリ一二ング方法を用いることにより多検体について網 羅的かつ迅速な処理が可能となる。 また、 本スクリーニング方法を用いることに よって、 植物の生育を阻害せず、 かつ感染時特異的にその効果を発揮する実用的 かつ安全性の高い新規の植物病害抵抗性誘導剤が得られた。 また、 本スクリー二 ング方法で得られた植物病原抵抗性誘導活性のある化合物の幾つかは、 サリチル 酸ダルコシルトランスフェラーゼ活性を阻害することが新たに発見され、 感染時 特異的にサリチル酸の蓄積速度を早めることで抵抗性を付与する機構を明らかに できた。 これらの知見により、 このサリチル酸ダルコシルトランスフェラーゼ遺 伝子を人為的に制御することによって植物に病害抵抗性を付与できる可能性が示 唆される。  The present invention provides a high-throughput screening method for plant disease resistance inducers. By using this screening method, it is possible to process a large number of samples in a clear and rapid manner. In addition, by using this screening method, a practical and highly safe plant disease resistance inducer that does not inhibit plant growth and exhibits its effect specifically at the time of infection was obtained. In addition, some of the compounds with phytopathogenicity-inducing activity obtained by this screening method were newly discovered to inhibit salicylate darcosyltransferase activity, and the rate of accumulation of salicylic acid specifically during infection The mechanism for imparting resistance was clarified by speeding up the process. These findings suggest the possibility that disease resistance can be imparted to plants by artificially controlling this salicylic acid dalcosyltransferase gene.

Claims

求 の 範 Range of requests
1 . 以下の(a)又は(b)のタンパク質のサリチル酸ダルコシルトランスフェラー ゼ活性を阻害する化合物を含む植物病害抵抗性誘導剤。 1. A plant disease resistance inducer comprising a compound that inhibits darcosyl salicylate transferase activity of the following protein (a) or (b):
(a) 配列番号 2に示すアミノ酸配列からなるタンパク質  (a) a protein comprising the amino acid sequence shown in SEQ ID NO: 2
(b) 配列番号 2に示すアミノ酸配列において 1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列からなり、 かつサリチル酸ダルコシルトラ ンスフェラーゼ活性を有するタンパク質  (b) a protein consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 and having salicylate dalcosyltransferase activity
2 . サリチル酸ダルコシルトランスフェラーゼ活性を阻害する化合物が、 下記 一般式(I)で示される化合物である、 請求項 1に記載の植物病害抵抗性誘導剤。  2. The plant disease resistance inducer according to claim 1, wherein the compound that inhibits salicylate darcosyltransferase activity is a compound represented by the following general formula (I):
[化 1 ] [Chemical 1]
Figure imgf000028_0001
Figure imgf000028_0001
(式中、 X— Yは、 一C H = C H—又は一 C O— O—を表し、 R i R 9は、 それ ぞれ独立して、 水素原子、 水酸基、 ハロゲン原子、 ニトロ基、 アミノ基、 炭素数 1〜4のアルキル基若しくはアルコキシ基、 または炭素数 2〜4のアルケニル基 若しくはアルキニル基を表す。) (Wherein X—Y represents one CH═CH— or one CO—O—, and R i R 9 each independently represents a hydrogen atom, a hydroxyl group, a halogen atom, a nitro group, an amino group, Represents an alkyl or alkoxy group having 1 to 4 carbon atoms, or an alkenyl or alkynyl group having 2 to 4 carbon atoms.)
3 . サリチル酸ダルコシルトランスフヱラーゼ活性を阻害する化合物が、 下記 一般式(Π)で示される化合物である、請求項 1に記載の植物病害抵抗性誘導剤。  3. The plant disease resistance inducer according to claim 1, wherein the compound that inhibits salicylic acid darcosyltransferase activity is a compound represented by the following general formula (Π).
[化 2 ]
Figure imgf000029_0001
[Chemical 2]
Figure imgf000029_0001
(式中、 R1 Q、 R11は、 それぞれ独立して、 水素原子、 ハロゲン原子で置換され ていてもよい炭素数 1〜4のアルキルカルボニル基、 炭素数 1〜4のアルコキシ 基で置換されていてもよいべンジル基、 または、 R1 ()、 R1 \ およびそれらが結 合している N原子がいっしょになってフタルイミ ド基を表す。) (In the formula, R 1 Q and R 11 are each independently substituted with a hydrogen atom, an alkylcarbonyl group having 1 to 4 carbon atoms which may be substituted with a halogen atom, or an alkoxy group having 1 to 4 carbon atoms. The benzyl group which may be, or R 1 () , R 1 \ and the N atom to which they are bonded together represent a phthalimide group.)
4. サリチル酸ダルコシルトランスフェラーゼ活性を阻害する化合物が、 下記 式(Ia)、 (lb), (Ic)、 (IIa)、 (lib)、 (lie), または(lid)で示される化合物であ る、 請求項 1に記載の植物病害抵抗性誘導剤。  4. The compound that inhibits salicylate darcosyltransferase activity is a compound represented by the following formula (Ia), (lb), (Ic), (IIa), (lib), (lie), or (lid) The plant disease resistance inducer according to claim 1.
[化 3] [Chemical 3]
Figure imgf000029_0002
Figure imgf000029_0002
Figure imgf000030_0001
Figure imgf000030_0001
5 . 下記式(III)、 (IV)、 または(V)で示される化合物を含む植物病害抵抗性誘 導剤。  5. A plant disease resistance inducer comprising a compound represented by the following formula (III), (IV), or (V):
[化 4 ] [Chemical 4]
Figure imgf000030_0002
Figure imgf000030_0002
6 . 請求項 1〜 5のいずれかに記載の植物病害抵抗性誘導剤を用いることを特 徴とする、 植物病害防除方法。 6. A method for controlling plant diseases, comprising using the plant disease resistance inducer according to any one of claims 1 to 5.
7 . AvrRpralタンパク質を有するトマト斑葉細菌病菌(Pseudomonas syringae v. tomato DC3000 株) を感染させた植物細胞と被検化合物とを培養し、 該被検化合 物が該植物細胞において過敏感細胞死を亢進するか否か判定し、 逼敏感細胞死を 亢進すると判定された化合物を選択することを含む、 植物病害抵抗性を誘導する 化合物のスクリ一二ング方法。 7. A plant cell infected with a tomato spotted bacterial bacterium (Pseudomonas syringae v. Tomato DC3000 strain) having AvrRpral protein is cultured with the test compound, and the test compound causes hypersensitive cell death in the plant cell. A method for screening a compound that induces plant disease resistance, comprising determining whether or not to enhance and selecting a compound that has been determined to enhance 逼 -sensitive cell death.
PCT/JP2009/056922 2008-03-28 2009-03-27 Plant disease resistance inducer WO2009119915A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-088491 2008-03-28
JP2008088491 2008-03-28

Publications (1)

Publication Number Publication Date
WO2009119915A1 true WO2009119915A1 (en) 2009-10-01

Family

ID=41114089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056922 WO2009119915A1 (en) 2008-03-28 2009-03-27 Plant disease resistance inducer

Country Status (1)

Country Link
WO (1) WO2009119915A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036889A (en) * 2011-08-09 2013-02-21 Hamamatsu Photonics Kk Pathogen infection diagnosis device of plant body, pathogen infection diagnosis method of plant body
JP2013124241A (en) * 2011-12-15 2013-06-24 Yokohama National Univ Resistance inducer for plant, method of inducing resistance of plant and method of prevention of plant disease

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106688A1 (en) * 2002-06-18 2003-12-24 The University Of York Glucosyltransferases which clucosylate salicylic acid
JP2006117608A (en) * 2004-10-25 2006-05-11 Institute Of Physical & Chemical Research Agent for protecting rice from disease injury

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106688A1 (en) * 2002-06-18 2003-12-24 The University Of York Glucosyltransferases which clucosylate salicylic acid
JP2006117608A (en) * 2004-10-25 2006-05-11 Institute Of Physical & Chemical Research Agent for protecting rice from disease injury

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ENG-KIAT LIM ET AL.: "The Activity of Arabidopsis Glycosyltransferase toward Salicylic Acid, 4-Hydoroxybenzoic Acid, and Other Benzoates", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 277, no. 1, 2002, pages 586 - 592 *
HYUNG-IL LEE ET AL.: "Biosynthesis and metabolism of salicylic acid", PROCEEDINGS OF NATIONAL ACADEMY OF SCIENCES OF UNITED STATES OF AMERICA, vol. 92, 1995, pages 4076 - 4079 *
S.MAYAMA ET AL., PHYSIOLOGICAL PLANT PATHOLOGY, vol. 20, 1982, pages 305 - 312 *
YOSHITERU NOTOSHI ET AL.: "Chemical Biology ni yoru Shiroinunazuna Kabinkan Saiboshi Seigyo Kiko no Kaimei", DAI 49 KAI NIPPON SHOKUBUTSU SEIRI GAKKAI NENKAI YOSHISHU, DAI 49 KAI NIPPON SHOKUBUTSU SEIRI GAKKAI NENKAI IINKAI, 15 March 2008 (2008-03-15), pages 335 *
YOSHITERU NOTOSHI, ET AL.: "Chemical Genomics ni yoru Shiroinunazuna Kabinkan Saiboshi Seigyo Kiko no Kaimei", DAI 48 KAI NIPPON SHOKUBUTSU SEIRI GAKKAI NENKAI YOSHISHU, DAI 48 KAI NIPPON SHOKUBUTSU SEIRI GAKKAI NENKAI IINKAI, 15 March 2007 (2007-03-15), pages 324 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036889A (en) * 2011-08-09 2013-02-21 Hamamatsu Photonics Kk Pathogen infection diagnosis device of plant body, pathogen infection diagnosis method of plant body
JP2013124241A (en) * 2011-12-15 2013-06-24 Yokohama National Univ Resistance inducer for plant, method of inducing resistance of plant and method of prevention of plant disease

Similar Documents

Publication Publication Date Title
Varma Penmetsa et al. The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations
AU2013240193B2 (en) Synthetic compounds for vegetative ABA responses
Godoy et al. Expression of a Solanum tuberosum cyclophilin gene is regulated by fungal infection and abiotic stress conditions
Singh et al. Arabidopsis thaliana FLOWERING LOCUS D is required for systemic acquired resistance
Mammarella et al. Apoplastic peroxidases are required for salicylic acid-mediated defense against Pseudomonas syringae
Kitahata et al. A 9-cis-epoxycarotenoid dioxygenase inhibitor for use in the elucidation of abscisic acid action mechanisms
Hou et al. Molecular and biological characterization of Sclerotinia sclerotiorum resistant to the anilinopyrimidine fungicide cyprodinil
Müller et al. Multiple resistance to DMI, QoI and SDHI fungicides in field isolates of Phakopsora pachyrhizi
Zhang et al. Wheat TabZIP8, 9, 13 participate in ABA biosynthesis in NaCl-stressed roots regulated by TaCDPK9-1
Tsitsigiannis et al. Aspergillus infection inhibits the expression of peanut 13 S-HPODE-forming seed lipoxygenases
Mittag et al. Physcomitrella patens auxin conjugate synthetase (GH3) double knockout mutants are more resistant to Pythium infection than wild type
Gowda et al. NRSA‐1: a resistance gene homolog expressed in roots of non‐host plants following parasitism by Striga asiatica (witchweed)
Eslahi et al. Influence of recombinant Trichoderma strains on growth of bean (Phaseolus vulgaris L) by increased root colonization and induction of root growth related genes
Wang et al. A novel guanine elicitor stimulates immunity in Arabidopsis and rice by ethylene and jasmonic acid signaling pathways
Wen et al. Biological and molecular characterizations of field fludioxonil-resistant isolates of Fusarium graminearum
Laborda et al. ACC deaminase from Lysobacter gummosus OH17 can promote root growth in Oryza sativa Nipponbare plants
Koul et al. Nitric oxide metabolism and indole acetic acid biosynthesis cross-talk in Azospirillum brasilense SM
Wang et al. Metabolomic analysis reveals the relationship between AZI1 and sugar signaling in systemic acquired resistance of Arabidopsis
Waters From little things big things grow: karrikins and new directions in plant development
Ji et al. Proteomic analysis of the interaction between Plasmodiophora brassicae and Chinese cabbage (Brassica rapa L. ssp. Pekinensis) at the initial infection stage
Yin et al. A multiplex allele-specific PCR method for the detection of carbendazim-resistant Sclerotinia sclerotiorum
JP2008523791A (en) Use of methionine synthase inhibitors for the treatment of fungal diseases in crops
Hasan et al. Glutathione contributes to plant defence against parasitic cyst nematodes
Peng et al. Seedling Petri-dish inoculation method: A robust, easy-to-use and reliable assay for studying plant–Ralstonia solanacearum interactions
WO2009119915A1 (en) Plant disease resistance inducer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09726189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP