WO2009119649A1 - Kit for producing o-glycosylated protein in plant and use thereof - Google Patents

Kit for producing o-glycosylated protein in plant and use thereof Download PDF

Info

Publication number
WO2009119649A1
WO2009119649A1 PCT/JP2009/055927 JP2009055927W WO2009119649A1 WO 2009119649 A1 WO2009119649 A1 WO 2009119649A1 JP 2009055927 W JP2009055927 W JP 2009055927W WO 2009119649 A1 WO2009119649 A1 WO 2009119649A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
gene
ppgalnact
plants
sugar chain
Prior art date
Application number
PCT/JP2009/055927
Other languages
French (fr)
Japanese (ja)
Inventor
和仁 藤山
正之 森
浩二 土肥
Original Assignee
独立行政法人科学技術振興機構
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構, 国立大学法人大阪大学 filed Critical 独立行政法人科学技術振興機構
Publication of WO2009119649A1 publication Critical patent/WO2009119649A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/005Glycopeptides, glycoproteins

Definitions

  • the present invention relates to a kit for producing an O-type sugar chain binding protein in a plant and its use.
  • Patent Document 1 discloses a method for producing a human-type N-type sugar chain binding protein using plant cells.
  • plants do not have a modification mechanism for O-type sugar chains. Therefore, plants could not be used for the production of proteins in which modification with an O-type sugar chain has a major role in function and the like.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a kit and a technique using the kit for producing a useful protein modified with an O-type sugar chain using a plant. There is to do.
  • the plant should have an O-type sugar chain modification mechanism. However, plants do not have this. From this, it was possible to reasonably assume that O-type sugar chains do not bind to proteins in plants. Moreover, it was naturally expected that even if a gene related to O-type sugar chain modification was introduced into a plant that does not have an O-type sugar chain modification mechanism, the gene would not function normally.
  • kits for producing an O-type sugar chain binding protein in a plant according to the present invention comprises at least one of a polypeptide N-acetylgalactosamine transferase and a polynucleotide encoding the same. It is a feature.
  • the kit according to the present invention further comprises at least one of a galactose transferase and a polynucleotide encoding the enzyme.
  • the plant according to the present invention is characterized by comprising a polynucleotide encoding a polypeptide N-acetylgalactosamine transferase and a polynucleotide encoding a polypeptide to which N-acetylgalactosamine is bound.
  • composition for producing an O-type sugar chain binding protein in a plant according to the present invention comprises at least one of a polypeptide N-acetylgalactosamine transferase and a polynucleotide encoding the same. It is said.
  • the method for producing an O-type sugar chain binding protein according to the present invention may include a synthesis step of synthesizing a polypeptide N-acetylgalactosamine transferase in a plant or a plant extract.
  • the method for producing an O-type sugar chain binding protein according to the present invention may include a mixing step of mixing a polypeptide N-acetylgalactosamine transferase with a plant extract.
  • FIG. 1 shows the result using the cell extract of TX13 strain
  • FIG. 1 used cell extraction of BY2 wild strain. Results are shown.
  • HPLC HPLC
  • FIG. 3 shows the result of MALDI-TOF-MS in Example 2
  • FIG. 3 shows the result of having measured the molecular weight of the PA-ized sugar chain derived from TX13 cell
  • FIG. 6 is a diagram showing the result of electrophoresis in Example 3.
  • Kit for producing O-type sugar chain binding protein in plant according to the present invention is a polypeptide N-acetylgalactosamine transferase and a polynucleotide encoding the same. It suffices to have at least one of them. According to the kit of the present invention, an O-type sugar chain binding protein can be produced using a plant.
  • the kit according to the present invention does not have a plant as a target protein to which N-acetylgalactosamine is bound (also referred to as a target protein to which an O-type sugar chain is bound.
  • target protein also referred to as a target protein to which an O-type sugar chain is bound.
  • target protein When protein is employed, a particularly advantageous effect is exhibited. For example, in the case of producing a protein in which binding of an O-type sugar chain has a significant effect on its function, it has conventionally been necessary to use animal cells. Since a chain-binding protein can be produced, it is advantageous in that contamination of animal pathogens can be avoided during culturing.
  • the “O-type sugar chain” means a sugar chain bound to a serine residue and / or a threonine residue of a protein.
  • the “O-type sugar chain binding protein” means a protein to which an O-type sugar chain is bound.
  • “A and / or B” means “A”, “B”, or “A and B”.
  • plants include various forms of plants. For example, whole plant, plant organ (eg leaf, petal, stem, root, seed, etc.), plant tissue (eg epidermis, phloem, soft tissue, xylem, vascular bundle, fence-like tissue, spongy tissue, etc.), Various forms of plant cells (for example, cultured cells such as suspension culture cells), protoplasts, callus and the like can be mentioned.
  • plant organ eg leaf, petal, stem, root, seed, etc.
  • plant tissue eg epidermis, phloem, soft tissue, xylem, vascular bundle, fence-like tissue, spongy tissue, etc.
  • Various forms of plant cells for example, cultured cells such as suspension culture cells
  • protoplasts protoplasts, callus and the like can be mentioned.
  • producing an O-type sugar chain binding protein in a plant means that an O-type sugar chain binding protein is produced using a plant.
  • the type and form of the plant used here is not particularly limited, and an extract obtained from a plant may be used. That is, the production of an O-type sugar chain binding protein using a plant extract is also included in the category of “producing an O-type sugar chain binding protein in a plant”.
  • polypeptide N-acetylgalactosamine transferase means an enzyme having an activity of binding N-acetylgalactosamine to a serine residue and / or a threonine residue in a protein.
  • the polypeptide N-acetylgalactosamine transferase is referred to as “ppGalNAcT”
  • the polynucleotide encoding the polypeptide N-acetylgalactosamine transferase is referred to as “ppGalNAcT gene”
  • serine residues and / or threonine in the protein is referred to as “ppGalNAcT activity”.
  • the types of plants that can be used in the kit according to the present invention are not particularly limited. For example, it can be applied to various plants such as various monocotyledonous plants, dicotyledonous plants and trees.
  • monocotyledonous plants include, for example, duckweed plants including duckweed plants (duckweed) and duckweed plants (duckweed, Hingemo); cattleya plants, cymbidium plants, dendrobium plants, phalaenopsis plants, vanda genera Plants, Paphiopedilum spp., Oncidium spp., Etc .; Rubiaceae plants; Rubiaceae plants; Rubiaceae plants; Relatives plants; Thorny plants; Tochika plant, Japanese cucurbitaceae plant, Gramineae plant, Orchardaceae plant, Palmiaceae plant, Sugar beet plant, Hosogusa plant, Thripsaceae plant, Mizuoiaceae plant, Rabbitaceae plant
  • examples of dicotyledonous plants include Asagao genus plants (Asagao), Convolvulus genus plants (Convolvulus, Coleoptera, Clamgao), Sweet potato species (Gumbai convolvulus, Sweet potato), and Prunus genus plants (Nenshikazura, Mamedaoshi) Plants: Nadesico genus plants (carnations, etc.), Jacobe genus plants, Takanetus genus plants, Miminagusa genus, clover genus plants, Nominotsutsuri genus plants, Oyafusuma genus plants, Waigaiso genus plants, Hamahakobe genus plants, Otsumexa genus plants, Shiotsuma genus Plants, mantemae plants, genus plants, genus fusiflora, nanbanjakobe plants; anemoneaceae plants; aroma family plants, donut family plants, anthro
  • composition of the kit according to the present invention a form comprising a ppGalNAcT gene
  • the ppGalNAcT gene provided in the kit according to the present invention is not particularly limited as long as it encodes the above-mentioned polypeptide having activity as ppGalNAcT.
  • the ppGalNAcT gene derived from various organisms such as mammals such as humans, birds and reptiles can be included in the kit according to the present invention. More specifically, GalNAc-T2 (for example, GenBank accession number NM_004481) and GalNAc-T1 (for example, GenBank accession number NM_020474) are exemplified.
  • the polynucleotide that can be included in the kit according to the present invention includes a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising a complementary base sequence of the polynucleotide of the specific example described above and has ppGalNAcT activity.
  • Examples thereof include a polynucleotide encoding a peptide.
  • hybridizing under stringent conditions means binding at 60 ° C. under 2 ⁇ SSC washing conditions.
  • the hybridization can be carried out by a conventionally known method such as the method described in J. Sambrook et al. Molecular Cloning, A Laboratory Manual, 2nd Ed, Cold Spring Harbor Laboratory (1989). Usually, the higher the temperature and the lower the salt concentration, the higher the stringency (harder to hybridize).
  • the method for obtaining the ppGalNAcT gene is not particularly limited, and the ppGalNAcT gene can be isolated from the aforementioned mammals and the like by a conventionally known method.
  • the ppGalNAcT gene can be obtained by performing PCR using a primer pair prepared based on the base sequence of a known ppGalNAcT gene, using the cDNA or genomic DNA of the above-mentioned mammal or the like as a template.
  • the ppGalNAcT gene can also be obtained by chemical synthesis by a conventionally known method.
  • the kit according to the present invention may be provided with an expression vector for expressing the ppGalNAcT gene.
  • the expression vector for ppGalNAcT is not particularly limited as long as it includes a ppGalNAcT gene and a promoter.
  • a plasmid, phage, cosmid or the like can be used, and can be appropriately selected according to the plant cell to be introduced and the introduction method.
  • Specific examples include pBR322, pBR325, pUC19, pUC119, pBluescript, pBluescriptSK, pBI vectors, and the like.
  • a vector comprising the ppGalNAcT gene is introduced into a plant by the Agrobacterium method using the kit according to the present invention, it is preferable to use a pBI binary vector.
  • the pBI binary vector include pBIG, pBIN19, pBI101, pBI121, pBI221, and the like.
  • the promoter is not particularly limited as long as it is a promoter capable of expressing a gene in a plant body, and a known promoter can be suitably used.
  • promoters include cauliflower mosaic virus 35S promoter (CaMV35S), actin promoter, nopaline synthase promoter, tobacco PR1a gene promoter, tomato ribulose 1,5-diphosphate carboxylase oxidase small subunit promoter and the like.
  • CaMV35S cauliflower mosaic virus 35S promoter
  • actin promoter nopaline synthase promoter
  • tobacco PR1a gene promoter tobacco PR1a gene promoter
  • tomato ribulose 1,5-diphosphate carboxylase oxidase small subunit promoter can be mentioned.
  • cauliflower mosaic virus 35S promoter or actin promoter can be used more preferably.
  • the promoter is not particularly limited as long as it is linked so that a gene encoding a transcription factor can be expressed and introduced into the vector.
  • the expression vector may further contain another DNA segment in addition to the promoter and the ppGalNAcT gene.
  • the other DNA segment is not particularly limited, and examples thereof include a terminator, a selection marker, an enhancer, and a base sequence for improving translation efficiency.
  • the expression vector may further have a T-DNA region.
  • the T-DNA region can increase the efficiency of gene transfer particularly when Agrobacterium is used to introduce the expression vector into a plant.
  • the terminator is not particularly limited as long as it has a function as a transcription termination site, and may be a known one.
  • the transcription termination region (Nos terminator) of the nopaline synthase gene the transcription termination region of the cauliflower mosaic virus 35S (CaMV35S terminator) and the like can be preferably used.
  • the Nos terminator can be more preferably used.
  • a drug resistance gene can be used as the selection marker.
  • drug resistance genes include drug resistance genes for hygromycin, bleomycin, kanamycin, gentamicin, chloramphenicol and the like.
  • Examples of the polynucleotide for increasing the translation efficiency include an omega sequence derived from tobacco mosaic virus. By placing this omega sequence in the untranslated region (5′UTR) of the promoter, the translation efficiency of the gene encoding the transcription factor can be increased.
  • the expression vector can contain various DNA segments depending on the purpose.
  • an expression cassette may be constructed by linking a ppGalNAcT gene and a promoter (such as a terminator if necessary) and then introducing it into a vector.
  • the order of the DNA segments can be defined by setting the cleavage sites of each DNA segment as complementary protruding ends and reacting with a ligation enzyme.
  • a terminator when included in the expression cassette, the promoter, the ppGalNAcT gene, and the terminator may be in order from the upstream.
  • the types of reagents for constructing the expression vector that is, the types of restriction enzymes and ligation enzymes are not particularly limited, and commercially available ones may be appropriately selected and used.
  • the method for producing the above expression vector is not particularly limited, and a conventionally known method can be used.
  • Escherichia coli may be used as a host and propagated in the E. coli.
  • a preferred E. coli type may be selected according to the type of vector.
  • the kit according to the present invention includes a vector, a promoter, a selection marker, a polynucleotide for enhancing translation efficiency, and a terminator, which serve as a parent of the above-described expression vector, in a separate container from the ppGalNAcT gene. You may have.
  • kit according to the present invention a form including ppGalNAcT
  • the ppGalNAcT provided in the kit according to the present invention is not limited as long as it is a polypeptide having ppGalNAcT activity.
  • polypeptide is used interchangeably with “peptide” or “protein”.
  • the ppGalNAcT provided in the kit according to the present invention may be one encoded by the ppGalNAcT gene described above.
  • polypeptides according to the invention may also comprise an initiating modified methionine residue in some cases as a result of a host-mediated process.
  • ppGalNAcT provided in the kit according to the present invention may be dissolved in advance in a conventionally known protein storage reagent.
  • the kit according to the present invention may include various other reagents and the like as long as the effects of the present invention are not impaired.
  • the O-type sugar chain is composed of N-acetylgalactosamine as a basic skeleton and other sugars and / or acids such as galactose, N-acetylglucosamine, and sialic acid. Therefore, the kit according to the present invention may contain a sugar and / or an acid transferase constituting the O-type sugar chain.
  • Such transferases include galactose transferase, ST6GALNAC1 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3) -N-acetylgalactosaminide alpha-2,6-sialyltransferase 1 (GenBank Accession) No.
  • NC — 000017 core 1 synthase, glycoprotein-N-acetylgalactosamine 3-beta-galactosyltransferase, 1 (GenBank accession number NC — 000007), UDP-GlcNAc: betaGal beta-1,3-N-acetylglucosaminyltransferase 6 (core3 synthase) Session number NC — 000011), ST3 beta-galactoside alpha-2,3-sialyltransferase 1 (GenBank accession number NM — 003033) and the like can be preferably exemplified.
  • Fig. 8- You may provide the enzyme which catalyzes each process in the synthesis
  • any O-type sugar chain can be bound to the target protein.
  • the kit according to the present invention may include a polynucleotide encoding the further transferase. Moreover, the polynucleotide etc. which hybridize with the polynucleotide which consists of a complementary base sequence of these polynucleotides on stringent conditions, and encodes the polypeptide which has each enzyme activity may be included.
  • the method for obtaining the polynucleotide encoding the further transferase is not particularly limited, and can be isolated from many mammals, birds, reptiles and the like by a conventionally known method.
  • a primer pair prepared based on the base sequence of a gene encoding a known galactose transferase can be used.
  • a polynucleotide can be obtained, for example, by performing PCR using cDNA or genomic DNA of the above-mentioned mammal or the like as a template.
  • a polynucleotide encoding a further transferase can also be obtained by chemical synthesis by a conventionally known method.
  • polynucleotides may be provided separately from the ppGalNAcT gene in a separate container.
  • kit according to the present invention when the kit according to the present invention includes the polynucleotide of the further transferase, it may be in the form of an expression vector including the polynucleotide.
  • This expression vector conforms to the description of the expression vector for ppGalNAcT described above.
  • the polynucleotide encoding the further transferase may be introduced into the expression vector of ppGalNAcT described above, and the expression vector of ppGalNAcT and the expression vector of the further transferase are expressed separately. It is good also as a vector.
  • the kit according to the present invention may be in the form of a target protein and / or a polynucleotide encoding the target protein (hereinafter referred to as “target protein gene”).
  • the target protein gene may be introduced into an expression vector separate from the ppGalNAcT gene, or both genes may be introduced into one expression vector. This form is effective when adopting a protein that the plant does not have as the target protein. This is because according to the kit according to the embodiment, the user of the kit does not need to separately adjust the target protein and / or target protein gene, and can more easily produce the O-type sugar chain binding protein.
  • kits according to the present invention are not limited to those described so far.
  • ppGalNAcT the further transferase, the target protein, a reagent for stably holding the polynucleotide encoding them, a buffer, etc.
  • a restriction enzyme for introducing the polynucleotide into a vector A reagent such as ligase may be included.
  • the extract from a plant cell and a plant may be included, and the reagent for introduce
  • a plurality of different reagents may be mixed in an appropriate volume and / or form, or may be provided in separate containers.
  • kit is intended to mean a package including a container (eg, bottle, plate, tube, dish, etc.) containing a specific material.
  • container eg, bottle, plate, tube, dish, etc.
  • comprising is intended to mean that the ppGalNAcT and / or ppGalNAcT gene is encapsulated in any of the individual containers that make up the kit.
  • the ppGalNAcT and / or ppGalNAcT gene is not particularly limited, but may be dissolved in a conventionally known storage solution such as a buffer solution or may be purified.
  • the kit according to the present invention may be provided with the above-mentioned ppGalNAcT, the above-mentioned additional transferase, the target protein, the polynucleotide encoding them, and other reagents mixed in the same container or in separate containers. Good.
  • kit according to the present invention may include an instruction sheet describing a procedure for producing an O-type binding protein in a plant. It may be written or printed on paper or other media, or it may be affixed to electronic media such as magnetic tape, computer-readable discs or CD-ROMs.
  • the ppGalNAcT gene may be expressed in a plant or an extract from a plant.
  • the method for expressing the ppGalNAcT gene is not particularly limited, and a conventionally known gene expression method in plants such as the above-described expression vector may be used.
  • the target protein only needs to contain a serine residue and / or a threonine residue.
  • the target protein may be a polypeptide possessed by a plant (hereinafter referred to as “endogenous protein”) or a polypeptide possessed by an organism other than a plant (hereinafter referred to as “foreign protein”). Good.
  • Intrinsic proteins include, for example, glutelin (Glutelin, eg, rice-derived) (Kishimoto T, Watanabe M, Mitsui T, Hori H.Glutelin basic subunits have a mammalian mucin-type O-linked disaccharide side chain.Arch Biochem Biophys 1999 Oct 15; 370 (2): 271-277).
  • foreign protein examples include erythropoietin, synthetic peptide (see, for example, Otvos, L. Jr., Krivuika. Et al., Biochim. Biophys. Acta., 1995, 1267, 55-64), mucin (for example, Shogren, R , et al., Biochemistry, 1989, 28, 5525-5536), HSP-1, HSP-2 (heat shock proteins such as Calvete, JJ, et al., Biochem. J., 1995, 310, 615). Referring to -622), T1 fragment of glycophorin a N ( e.g. Pieper, J., et al., Nat. Struct.
  • DAF decay accelerating factor, e.g., Coyne , KE, et al., J. Immunol., 1992, 149, 2906-2913
  • G-CSF granulocyte colony stimulating factor such as Oh-eda, M., et al., J. Biol. Chem). ., 1990, 265, 11432-11435
  • PSGL-1 P-selection glycoprotein ligand-1, example
  • Glycophorin A eg Remaley, AT, J Biol. Chem., 1991, 266, 24176-24183
  • GF-II insul
  • n-like growth factor II for example, Daughaday, WH, et al., Proc. Natl. Acad. Sci., 1993, 90, see 5823-5827.
  • a ppGalNAcT gene When N-acetylgalactosamine is bound to an endogenous protein, a ppGalNAcT gene may be introduced into a plant cell or extract and expressed together with a polynucleotide encoding the endogenous protein, or ppGalNAcT may be mixed with a plant extract. Also good.
  • the polynucleotide encoding the foreign polypeptide may be introduced into a plant cell or extract that expresses the ppGalNAcT gene, and this may be expressed. PpGalNAcT and the foreign protein may be mixed in the product.
  • the method for introducing a ppGalNAcT gene and a target protein gene into a plant is not particularly limited, and a conventionally known plant transformation method may be used.
  • a conventionally known plant transformation method may be used.
  • an Agrobacterium method, a particle gun method, a polyethylene glycol method, an electroporation method, or the like is used.
  • the above expression vector is introduced into an appropriate Agrobacterium (for example, Agrobacterium tumefaciens), and this strain is introduced into the leaf disk method (by Hirofumi Uchimiya, plant gene manipulation). Manual, 1990, 27-31pp, Kodansha Scientific, Tokyo, etc.) can be used to infect sterile cultured leaf pieces to obtain transformed plants.
  • PpGalNAcT gene and target protein gene may be introduced into separate expression vectors, or both genes may be introduced into one expression vector.
  • transformation using each expression vector may be performed at one time or in two stages. “Transformation in two stages” means that one of the expression vectors is introduced and the other expression vector is introduced into a transformed plant in which the introduction of the expression vector is confirmed. Thus, by performing transformation in two steps, a plant that most stably expresses the expression vector introduced first can be selected in advance. If the other expression vector is introduced into the plant selected here, it becomes possible to obtain a plant in which both expression vectors are stably and highly expressed with high probability. Therefore, it is possible to obtain a plant capable of producing an O-type binding protein with high labor and time, and as a result, it becomes possible to mass-produce useful proteins efficiently, inexpensively and safely. .
  • kits according to the present invention when the kit according to the present invention is in a form including ppGalNAcT, the method of use thereof is not particularly limited.
  • ppGalNAcT may be mixed with a plant extract.
  • the plant extract is not particularly limited as long as it is extracted from the plant, for example, it may be extracted using a conventionally known solvent, the plant is ground and filtered, It may be obtained by squeezing.
  • Plant according to the present invention only needs to have a ppGalNAcT gene and a polynucleotide (target protein gene) encoding a polypeptide (target protein) to which N-acetylgalactosamine is bound.
  • a ppGalNAcT gene and a target protein gene may be introduced into a genome present in a plant chromosome, mitochondria or the like.
  • the method for introducing a gene into a plant, the form and type of the plant into which the gene is introduced, and the like may be the same as those described for the kit according to the present invention.
  • adopting what a plant has as a target protein only a ppGalNAcT gene may be introduce
  • composition according to the present invention encodes a polypeptide N-acetylgalactosaminyltransferase (ppGalNAcT) and the same At least one of the polynucleotides (ppGalNAcT gene) may be included.
  • ppGalNAcT polypeptide N-acetylgalactosaminyltransferase
  • ppGalNAcT when ppGalNAcT is included, the concentration thereof is not particularly limited.
  • ppGalNAcT may be dissolved in a conventionally known protein buffer.
  • a buffer solution is not limited as long as ppGalNAcT can be stored.
  • a buffer solution used in measuring enzyme activity in the following document can be used.
  • Iwasaki H, et al., J Biol Chem., 2003, Feb 21; 278 (8): 5613-5621 includes 25 mM Tris-HCl (pH 7.4), 5 mM MnCl 2 , 0.1 A mixture of% Triton X-100 can be used as a storage buffer. Moreover, you may include enzyme stabilizers, such as glycerol, in these buffers.
  • composition according to the present invention includes the ppGalNAcT gene
  • concentration thereof is not particularly limited.
  • the ppGalNAcT gene only needs to be dissolved in a conventionally known nucleic acid storage buffer.
  • composition according to the present invention may contain the above-described further transferase and / or a polynucleotide encoding the same, a target protein and / or a target protein gene.
  • the method for producing an O-type sugar chain binding protein according to the present invention may include a synthesis step of synthesizing a polypeptide N-acetylgalactosamine transferase in a plant or a plant extract.
  • the specific method of the synthesis step is not particularly limited as long as ppGalNAcT can be synthesized in a plant or a plant extract.
  • the ppGalNAcT gene may be expressed in plants.
  • the synthesis step may be a step of performing an introduction step of introducing a ppGalNAcT gene into a plant cell and then culturing a plant cell into which the ppGalNAcT gene has been introduced.
  • the introduction step is not limited as long as it is a step of introducing a ppGalNAcT gene into a plant cell.
  • a conventionally known plant transformation method described above may be used.
  • plant cells into which the ppGalNAcT gene has been introduced may be maintained in the state of cultured cells, differentiated into tissues such as leaves, roots, and stems, or regenerated into complete plants. May be.
  • ppGalNAcT may be synthesized in a plant extract.
  • ppGalNAcT gene may be expressed by a cell-free expression system after mixing the ppGalNAcT gene in a plant extract.
  • the O-type sugar chain binding protein may be purified from the plant or from the plant extract.
  • a conventionally known purification method for N-type sugar chain protein may be applied.
  • a lectin that specifically recognizes an O-type sugar chain binding protein may be used.
  • the method for producing an O-type sugar chain binding protein according to the present invention may include a mixing step of mixing a polypeptide N-acetylgalactosaminyltransferase with a plant extract.
  • the specific method of the mixing step is not particularly limited as long as ppGalNAcT is mixed with the plant extract.
  • ppGalNAcT may be simply dropped on a plant extract, or may be stirred.
  • O-type sugar chains are produced using UDP-GalNAc contained in plant extracts as a substrate. Further, when UDP-GalNAc is not contained in the plant extract, it may be added separately, or even if it is contained, it may be further added.
  • the O-type sugar chain binding protein may be purified from the plant extract.
  • the purification of the O-type sugar chain binding protein may be performed using a conventionally known purification method for the type sugar chain binding protein.
  • Example 1 Production of transformed plant cells> From human tissues, the ppGalNAcT gene and the galactose transferase gene were cloned.
  • the ppGalNAcT gene was obtained by the following method.
  • a liver-derived human cDNA library is used as a template (ORIGENE
  • the galactose transferase gene was obtained by the following method. Liver-derived human cDNA library (ORIGENE TECHNOLOGIES INC. Multiple Choice (TM) Human cDNA) as a template, primer GT-F (5'-GGCGGATCCAAGGAGATATAACAATGGCCTCTAAATCCTGGCTGAATTTTTTA-3 ') (SEQ ID NO: 3) and GT-TT (TC'TTGATCTC -3 ′) (SEQ ID NO: 4) was amplified by PCR to obtain a DNA fragment containing the galactose transferase gene. This was cleaved with BamHI and SacI and then introduced into the BamHI / SacI site of pBI121 to construct plasmid pBI-C1GALT1.
  • TM Multiple Choice
  • tobacco BY2 cultured cells (Dohi et al., Archives of Virology, 151, 1075-1084, RIKEN; RIKEN BioResource Center; experimental plant development room; plant culture cell catalog; RPC No. 00001) was co-transformed by the Agrobacterium method.
  • MRNA was prepared from the resulting transformed cells, and the expression of N-acetylgalactosamine transferase gene and galactose transferase gene was confirmed by Northern analysis.
  • transformed cells that express both transferase genes were selected. Of the 300 plant cells used in this experiment, two transformed cells expressed both transferase genes together.
  • a transformed cell having a high mRNA amount hereinafter referred to as “TX13 strain” was further selected and cultured in suspension using Murashige-Skoog medium.
  • Example 2 Confirmation of O-type glycan binding protein>
  • the TX13 strain cultured in suspension in Example 1 was suspended in 1.5 ml of 175 mM Tris-HCl buffer (pH 7.5).
  • the cells in the obtained suspension were homogenized using a mortar and pestle and then subjected to centrifugation (8,000 rpm, 15 minutes, 4 ° C.). Next, the supernatant (cell extract) was collected.
  • a cell extract was prepared from non-transformed BY2 cells (hereinafter referred to as “BY2 wild strain”).
  • cell extracts obtained from the TX13 strain and BY2 wild strain were each passed through a lectin column to adsorb glycoproteins to the lectin.
  • the non-adsorbed fraction was discarded.
  • the lectin column used was a column made by Bio-Rad (product number 737-1006, inner diameter 1 cm length 5 cm) with 0.5 ml of Jacalin lectin. Jackalin recognizes the Gal ⁇ (1-3) GalNAc structure.
  • the lectin column was washed with 20 ml of 175 mM Tris-HCl buffer (pH 7.5) to collect the eluate. Further, the adsorbed protein was eluted with 175 mM Tris-HCl buffer (pH 7.5) containing 10 mM methylgalactopyranoside, and 1 ml (fraction 1), 1 ml (fraction 2), 1 ml (fraction 3), It recovered as 1 ml (fraction 4) and 6 ml (fraction 5).
  • FIG. 1 is a diagram showing the results of electrophoresis in this example.
  • FIG. 1 (a) shows the results using a cell extract of TX13 strain
  • FIG. 1 (b) uses the cell extract of BY2 wild strain. Shows the results.
  • the numbers shown above each lane in FIGS. 1A and 1B indicate the numbers of fractions, and “2 & 3” indicates that the mixture of fractions 2 and 3 was subjected to electrophoresis. .
  • the lectin-binding protein that was not confirmed from the cell extract of the BY2 wild strain was confirmed in the cell extract of the TX13 strain.
  • fractions 1 and 2 derived from each cell extract were dialyzed against ultrapure water and then freeze-dried.
  • the obtained product was dissolved in 0.2 M sodium citrate buffer (pH 4.5), ⁇ -N-acetylgalactosaminidase (manufactured by Seikagaku Corporation) was added, and the mixture was kept at 37 ° C. for 3 days.
  • “ultra pure water” refers to water purified using a Milli-Q system (Millipore).
  • the solution after the incubation was purified using Carbograph (GL-Science).
  • the solution was passed through Carbograph, then washed with 5 ml of 50 mM ammonium acetoacetate (pH 7.0), and sugar chains were eluted with 50 mM ammonium acetoacetate (pH 7.0) containing 60% acetonitrile.
  • the resulting solution was then lyophilized.
  • a suitable amount of a PA-forming reagent (2-aminopyridine (manufactured by Wako), 552 mg mixed with 200 ⁇ l of acetic acid (manufactured by Wako)) was added to the lyophilized sample and incubated at 90 ° C. for 1 hour.
  • a reducing reagent a mixture of 200 ⁇ l of acetic acid with 39 mg of dimethylaminoborane (Wako) was added and incubated at 80 ° C. for 40 minutes.
  • an equal amount of distilled water was added to stop the reaction.
  • the extract was allowed to stand at room temperature under vacuum to be concentrated to one-tenth of the liquid volume and subjected to analysis by liquid chromatography (HPLC).
  • HPLC The analysis by HPLC was performed as follows. Acetonitrile was added to the sample so as to be 80% of the total amount and subjected to HPLC (SF-HPLC).
  • HPLC column an amide column (manufactured by Showa denko, model name: Asahipak NH2P-50; 4.6 ⁇ 250 nm) was used.
  • HPLC apparatus a HITACHI HPLC system equipped with a HITACHI FL Detector L-7480 was used. Detailed conditions such as developing solvent and gradient are as follows.
  • FIG. 2 is a diagram showing the results of HPLC in this example.
  • the molecular weight of the purified protein was measured by MALDI-TOF-MS.
  • Autoflex manufactured by Bruker Daltonics
  • Data was obtained under a vacuum of 3.0 ⁇ e ⁇ 7 or less with a laser intensity of 1800-2000 mbar.
  • a matrix reagent a solution obtained by mixing 10 mg of 2,5-dihydroxybenzoic acid (manufactured by Sigma) with a solution obtained by mixing distilled water: acetonitrile at 1: 1 was used.
  • an equal amount of a matrix reagent was mixed with distilled water in which PA sugar chains were dissolved, and 2 ⁇ l of this was placed on a target and crystallized by drying at room temperature, followed by reflector mode analysis.
  • FIG. 3 is a diagram showing the results of MALDI-TOF-MS of this example.
  • FIG. 3 (a) shows the results of measuring the molecular weight of the PA13 sugar chain derived from TX13 cells
  • FIG. 3 (b) Shows the result of measuring the molecular weight of Gal ⁇ (1-3) GalNAc-PA derived from the control.
  • Example 3 Production of O-glycan-binding protein by tobacco plant
  • a ppGalNAcT gene and a galactose transferase gene were introduced into wild-type tobacco SR1 species to obtain transformed cells of SR1.
  • the obtained transformed cells were cultured to obtain SR1 plants. Acquisition of plant bodies from the transformed cells was carried out with reference to Masaki Iwabuchi, Reiro Shimura, “Lab Manual Functional Analysis of Plant Genes”, Maruzen Co., Ltd., p32-p46.
  • the leaves of SR1 tobacco plant grown aseptically were cut into 1 ⁇ 1 cm, and Agrobacterium into which plasmid pBI-GalNAc-T1 and plasmid pBI-C1GALT1 obtained by the method described in Example 1 were introduced.
  • the suspension was infiltrated for 1 minute.
  • MS1 (2 mg / l NAA, 0.02 mg / l BAP, 30 g / l sucrose, 0.8% agar) was added to the MS salt, leaves were placed on the medium and cultured at 26 degrees for 2 days.
  • MS4 containing 100 mg / l kanamycin, 100 mg / l carbenicillin (MSA salt with 0.1 mg / l NAA, 0.5 mg / l BAP, 30 g / l sucrose, 0.8% agar) medium The cells were cultured at 26 ° C. and 8000 Lux for 2 to 3 weeks. Germinated 5-10 mm shoots were added to MSR medium containing 100 mg / l kanamycin and 100 mg / l carbenicillin (MS medium containing 525 mg / l NAA and 100 mg / l BAP and using gellite instead of agar) Moved to. Two weeks later, young plants that grew to a total length of about 5 cm were acclimated and potted to obtain transformed plants.
  • FIG. 4 is a diagram showing the results of electrophoresis in this example. The number above each lane corresponds to the fraction number. As shown in FIG. 4, humanized glycoprotein was detected in fractions 2-4.
  • the kit for producing an O-type sugar chain binding protein in a plant according to the present invention comprises at least one of the polypeptide N-acetylgalactosamine transferase and the polynucleotide encoding the same. As a result, it is possible to produce useful proteins modified with O-type sugar chains using plants.
  • kits according to the present invention can be used, an O-type sugar chain can be bound to a protein in a plant, so that a useful protein can be produced in the plant. Therefore, the present invention contributes to the expansion of industrial uses of plants, and can be used in a wide range of industries such as the pharmaceutical industry and the food industry.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A kit for producing O-glycosylated protein in a plant contains at least one member selected from polypeptide N-acetylgalactosamine transferase and a polynucleotide encoding the same.

Description

植物においてO型糖鎖結合タンパク質を製造するためのキット及びその利用Kit for producing O-type sugar chain binding protein in plants and use thereof
 本発明は、植物においてO型糖鎖結合タンパク質を製造するためのキット及びその利用に関するものである。 The present invention relates to a kit for producing an O-type sugar chain binding protein in a plant and its use.
 真核細胞内で発現するタンパク質のほとんどは、何らかの翻訳後修飾を受けている。 Most proteins expressed in eukaryotic cells have some kind of post-translational modification.
 中でもN型糖鎖による修飾については、生理学的・生物学的に重要な役割を果たすことが明らかにされている。例えば、植物では、N型糖鎖による修飾が環境ストレス耐性に関与することが報告されている。また、例えば特許文献1には、植物細胞を用いてヒト型のN型糖鎖結合タンパク質を製造する方法が開示されている。 Above all, it has been clarified that modification with N-type sugar chains plays an important physiological and biological role. For example, in plants, modification with N-type sugar chains has been reported to be involved in environmental stress tolerance. For example, Patent Document 1 discloses a method for producing a human-type N-type sugar chain binding protein using plant cells.
 一方、O型糖鎖による修飾については、哺乳類、酵母等において、その関連酵素遺伝子等が明らかにされている。
国際公開第WO/2000/034490号パンフレット(2000年6月15日公開)
On the other hand, regarding modification with O-type sugar chains, related enzyme genes and the like have been clarified in mammals, yeasts and the like.
International Publication Number WO / 2000/034490 Pamphlet (released on June 15, 2000)
 ところで、医薬品等に利用可能な有用タンパク質を植物で製造することには様々な利点がある。例えば、植物に対する遺伝子操作は比較的容易であること、培養の際、動物病原の汚染を回避できること等の利点が挙げられる。 By the way, there are various advantages in producing useful proteins that can be used in medicines and the like in plants. For example, there are advantages such as relatively easy genetic manipulation for plants and avoidance of animal pathogenic contamination during culturing.
 しかしながら、植物はO型糖鎖の修飾機構を有していない。そのため、O型糖鎖による修飾が機能等に大きな役割を与えるタンパク質の製造には、植物を利用することができなかった。 However, plants do not have a modification mechanism for O-type sugar chains. Therefore, plants could not be used for the production of proteins in which modification with an O-type sugar chain has a major role in function and the like.
 本発明は、このような事情に鑑みてなされたものであり、その目的は、植物を用いて、O型糖鎖修飾された有用タンパク質を製造するための、キット及びこれを利用した技術を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a kit and a technique using the kit for producing a useful protein modified with an O-type sugar chain using a plant. There is to do.
 上記課題を解決するために、本発明者らは鋭意検討を行なった。 In order to solve the above problems, the present inventors have conducted intensive studies.
 タンパク質のO型糖鎖修飾が、哺乳類動物等のみならず、仮に植物にとっても重要なものであれば、植物がO型糖鎖修飾機構を有してしかるべきである。ところが、植物はこれを有していない。このことから、植物においては、タンパク質にO型糖鎖は結合しないということが当然のように推測できた。また、O型糖鎖修飾機構を有さない植物にO型糖鎖修飾に関連する遺伝子を導入しても、当然に、当該遺伝子が正常に機能しないであろうと予想された。 If the O-type sugar chain modification of a protein is important not only for mammals but also for plants, the plant should have an O-type sugar chain modification mechanism. However, plants do not have this. From this, it was possible to reasonably assume that O-type sugar chains do not bind to proteins in plants. Moreover, it was naturally expected that even if a gene related to O-type sugar chain modification was introduced into a plant that does not have an O-type sugar chain modification mechanism, the gene would not function normally.
 しかし、本発明者らは、ポリペプチドN‐アセチルガラクトサミン転移酵素をコードするポリヌクレオチドを植物に導入して発現させると、O型糖鎖により修飾されたタンパク質を得ることができることを見出し、本発明に想到するに至った。 However, the present inventors have found that when a polynucleotide encoding the polypeptide N-acetylgalactosamine transferase is introduced into a plant and expressed, a protein modified with an O-type sugar chain can be obtained. I came to the idea.
 このように、本発明は、従来の予想に反した全く新たな知見に基づいてなされたものであり、以下の発明を包含する。 As described above, the present invention has been made on the basis of completely new knowledge contrary to conventional expectations, and includes the following inventions.
 即ち、本発明に係る植物においてO型糖鎖結合タンパク質を製造するためのキットは、ポリペプチドN‐アセチルガラクトサミン転移酵素、及びそれをコードするポリヌクレオチドのうちの少なくとも一つを備えていることを特徴としている。 That is, a kit for producing an O-type sugar chain binding protein in a plant according to the present invention comprises at least one of a polypeptide N-acetylgalactosamine transferase and a polynucleotide encoding the same. It is a feature.
 さらに、本発明に係るキットは、ガラクトース転移酵素及びその酵素をコードするポリヌクレオチドのうちの、少なくとも一つをさらに備えていることがより好ましい。 Furthermore, it is more preferable that the kit according to the present invention further comprises at least one of a galactose transferase and a polynucleotide encoding the enzyme.
 また、本発明に係る植物は、ポリペプチドN‐アセチルガラクトサミン転移酵素をコードするポリヌクレオチド、及びN‐アセチルガラクトサミンを結合させる対象のポリペプチドをコードするポリヌクレオチドを備えていることを特徴としている。 The plant according to the present invention is characterized by comprising a polynucleotide encoding a polypeptide N-acetylgalactosamine transferase and a polynucleotide encoding a polypeptide to which N-acetylgalactosamine is bound.
 また、本発明に係る植物においてO型糖鎖結合タンパク質を製造するための組成物は、ポリペプチドN‐アセチルガラクトサミン転移酵素、及びそれをコードするポリヌクレオチドのうちの少なくとも一つを含むことを特徴としている。 The composition for producing an O-type sugar chain binding protein in a plant according to the present invention comprises at least one of a polypeptide N-acetylgalactosamine transferase and a polynucleotide encoding the same. It is said.
 また、本発明に係るO型糖鎖結合タンパク質の製造方法は、植物内又は植物の抽出物内で、ポリペプチドN‐アセチルガラクトサミン転移酵素を合成する合成工程を含んでいてもよい。 In addition, the method for producing an O-type sugar chain binding protein according to the present invention may include a synthesis step of synthesizing a polypeptide N-acetylgalactosamine transferase in a plant or a plant extract.
 また、本発明に係るO型糖鎖結合タンパク質の製造方法は、植物の抽出物に、ポリペプチドN‐アセチルガラクトサミン転移酵素を混合する混合工程を含んでいてもよい。 In addition, the method for producing an O-type sugar chain binding protein according to the present invention may include a mixing step of mixing a polypeptide N-acetylgalactosamine transferase with a plant extract.
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。 Other objects, features, and superior points of the present invention will be fully understood from the following description. The advantages of the present invention will become apparent from the following description with reference to the accompanying drawings.
実施例2における電気泳動の結果を示す図であり、図1の(a)はTX13株の細胞抽出液を用いた結果を示し、図1の(b)はBY2野生株の細胞抽出を用いた結果を示す。It is a figure which shows the result of the electrophoresis in Example 2, (a) of FIG. 1 shows the result using the cell extract of TX13 strain, (b) of FIG. 1 used cell extraction of BY2 wild strain. Results are shown. 実施例2におけるHPLCの結果を示す図である。It is a figure which shows the result of HPLC in Example 2. 実施例2におけるMALDI‐TOF‐MSの結果を示す図であり、図3の(a)はTX13細胞由来のPA化糖鎖の分子量を測定した結果を示し、図3の(b)はコントロールに由来するGalβ(1‐3)GalNAc‐PAの分子量を測定した結果を示す。It is a figure which shows the result of MALDI-TOF-MS in Example 2, (a) of FIG. 3 shows the result of having measured the molecular weight of the PA-ized sugar chain derived from TX13 cell, (b) of FIG. The result of having measured the molecular weight of derived Gal (beta) (1-3) GalNAc-PA is shown. 実施例3における電気泳動の結果を示す図である。FIG. 6 is a diagram showing the result of electrophoresis in Example 3.
 <1.本発明に係る植物においてO型糖鎖結合タンパク質を製造するためのキット>
 本発明に係る植物においてO型糖鎖結合タンパク質を製造するためのキット(以下、「本発明に係るキット」という。)は、ポリペプチドN‐アセチルガラクトサミン転移酵素、及びそれをコードするポリヌクレオチドのうちの少なくとも一方を備えていればよい。本発明に係るキットによれば、植物を用いてO型糖鎖結合タンパク質を製造することができる。
<1. Kit for producing O-type sugar chain binding protein in plant according to the present invention>
A kit for producing an O-type sugar chain binding protein in a plant according to the present invention (hereinafter referred to as “kit according to the present invention”) is a polypeptide N-acetylgalactosamine transferase and a polynucleotide encoding the same. It suffices to have at least one of them. According to the kit of the present invention, an O-type sugar chain binding protein can be produced using a plant.
 本発明に係るキットは、N‐アセチルガラクトサミンを結合させる対象のタンパク質(O型糖鎖を結合させる対象のタンパク質ということもできる。以下、「標的タンパク質」という。)として、植物が有していないタンパク質を採用する場合、特に有利な効果を発揮する。例えば、O型糖鎖の結合がその機能に重大な影響を与えるタンパク質を製造する場合、従来、動物細胞を利用する必要があったが、本発明に係るキットを用いれば、植物にO型糖鎖結合タンパク質を製造させることができるので、培養の際、動物病原の汚染を回避できる等の点において有利である。 The kit according to the present invention does not have a plant as a target protein to which N-acetylgalactosamine is bound (also referred to as a target protein to which an O-type sugar chain is bound. Hereinafter, referred to as “target protein”). When protein is employed, a particularly advantageous effect is exhibited. For example, in the case of producing a protein in which binding of an O-type sugar chain has a significant effect on its function, it has conventionally been necessary to use animal cells. Since a chain-binding protein can be produced, it is advantageous in that contamination of animal pathogens can be avoided during culturing.
 本明細書において「O型糖鎖」とは、タンパク質のセリン残基及び/又はスレオニン残基に結合している糖鎖を意味する。また、「O型糖鎖結合タンパク質」とは、O型糖鎖が結合したタンパク質を意味する。なお、本明細書において「A及び/又はB」と記載したとき、「A」、「B」、又は「A及びB」を意味する。 In the present specification, the “O-type sugar chain” means a sugar chain bound to a serine residue and / or a threonine residue of a protein. The “O-type sugar chain binding protein” means a protein to which an O-type sugar chain is bound. In this specification, “A and / or B” means “A”, “B”, or “A and B”.
 本明細書における「植物」には様々な形態の植物が包含される。例えば、植物体全体、植物器官(例えば葉、花弁、茎、根、種子等)、植物組織(例えば表皮、師部、柔組織、木部、維管束、柵状組織、海綿状組織等)、種々の形態の植物細胞(例えば、懸濁培養細胞等の培養細胞)、プロトプラスト、カルス等が挙げられる。 In the present specification, “plants” include various forms of plants. For example, whole plant, plant organ (eg leaf, petal, stem, root, seed, etc.), plant tissue (eg epidermis, phloem, soft tissue, xylem, vascular bundle, fence-like tissue, spongy tissue, etc.), Various forms of plant cells (for example, cultured cells such as suspension culture cells), protoplasts, callus and the like can be mentioned.
 また、本明細書において「植物においてO型糖鎖結合タンパク質を製造する」とは、植物を用いてO型糖鎖結合タンパク質を製造すること意味する。ここで用いる植物の種類、形態としては、特に限定されず、植物から得た抽出物であってもよい。つまり、植物の抽出物を用いてO型糖鎖結合タンパク質を製造することも「植物においてO型糖鎖結合タンパク質を製造する」の範疇である。 In addition, in the present specification, “producing an O-type sugar chain binding protein in a plant” means that an O-type sugar chain binding protein is produced using a plant. The type and form of the plant used here is not particularly limited, and an extract obtained from a plant may be used. That is, the production of an O-type sugar chain binding protein using a plant extract is also included in the category of “producing an O-type sugar chain binding protein in a plant”.
 また、本明細書において「ポリペプチドN‐アセチルガラクトサミン転移酵素」とは、タンパク質中のセリン残基及び/又はスレオニン残基に、N‐アセチルガラクトサミンを結合させる活性を有する酵素を意味する。以下、ポリペプチドN‐アセチルガラクトサミン転移酵素を「ppGalNAcT」と表記し、ポリペプチドN‐アセチルガラクトサミン転移酵素をコードするポリヌクレオチドを「ppGalNAcT遺伝子」と表記し、タンパク質中のセリン残基及び/又はスレオニン残基に、N‐アセチルガラクトサミンを結合させる活性を「ppGalNAcT活性」と表記する。 In the present specification, “polypeptide N-acetylgalactosamine transferase” means an enzyme having an activity of binding N-acetylgalactosamine to a serine residue and / or a threonine residue in a protein. Hereinafter, the polypeptide N-acetylgalactosamine transferase is referred to as “ppGalNAcT”, the polynucleotide encoding the polypeptide N-acetylgalactosamine transferase is referred to as “ppGalNAcT gene”, and serine residues and / or threonine in the protein. The activity of binding N-acetylgalactosamine to a residue is referred to as “ppGalNAcT activity”.
 本発明に係るキットにおいて利用できる植物の種類としては、特に限定されない。例えば、種々の単子葉植物、双子葉植物、樹木等の植物全般に適用することができる。例えば、単子葉植物としては、例えばウキクサ属植物(ウキクサ)及びアオウキクサ属植物(アオウキクサ,ヒンジモ)が含まれるうきくさ科植物;カトレア属植物、シンビジウム属植物、デンドロビューム属植物、ファレノプシス属植物、バンダ属植物、パフィオペディラム属植物、オンシジウム属植物等が含まれる、らん科植物;がま科植物、みくり科植物、ひるむしろ科植物、いばらも科植物、ほろむいそう科植物、おもだか科植物、とちかがみ科植物、ほんごうそう科植物、いね科植物、かやつりぐさ科植物、やし科植物、さといも科植物、ほしぐさ科植物、つゆくさ科植物、みずあおい科植物、いぐさ科植物、びゃくぶ科植物、ゆり科植物、ひがんばな科植物、やまのいも科植物、あやめ科植物、ばしょう科植物、しょうが科植物、かんな科植物、ひなのしゃくじょう科植物等を例示することができる。 The types of plants that can be used in the kit according to the present invention are not particularly limited. For example, it can be applied to various plants such as various monocotyledonous plants, dicotyledonous plants and trees. For example, monocotyledonous plants include, for example, duckweed plants including duckweed plants (duckweed) and duckweed plants (duckweed, Hingemo); cattleya plants, cymbidium plants, dendrobium plants, phalaenopsis plants, vanda genera Plants, Paphiopedilum spp., Oncidium spp., Etc .; Rubiaceae plants; Rubiaceae plants; Rubiaceae plants; Relatives plants; Thorny plants; Tochika plant, Japanese cucurbitaceae plant, Gramineae plant, Orchardaceae plant, Palmiaceae plant, Sugar beet plant, Hosogusa plant, Thripsaceae plant, Mizuoiaceae plant, Rabbitaceae plant , Bacteriaceae, Lilyaceae, Higanbanaceae, Yamano potato, Ayameceae, Ganoderma, Ginger Canna plant of the family, can be exemplified Hinanoshakujou Plants like.
 また、双子葉植物としては、例えばアサガオ属植物(アサガオ)、ヒルガオ属植物(ヒルガオ,コヒルガオ,ハマヒルガオ)、サツマイモ属植物(グンバイヒルガオ、サツマイモ)、ネナシカズラ属植物(ネナシカズラ、マメダオシ)が含まれるひるがお科植物;ナデシコ属植物(カーネーション等)、ハコベ属植物、タカネツメクサ属植物、ミミナグサ属植物、ツメクサ属植物、ノミノツヅリ属植物、オオヤマフスマ属植物、ワチガイソウ属植物、ハマハコベ属植物、オオツメクサ属植物、シオツメクサ属植物、マンテマ属植物、センノウ属植物、フシグロ属植物、ナンバンハコベ属植物が含まれるなでしこ科植物;もくまもう科植物、どくだみ科植物、こしょう科植物、せんりょう科植物、やなぎ科植物、やまもも科植物、くるみ科植物、かばのき科植物、ぶな科植物、にれ科植物、くわ科植物、いらくさ科植物、かわごけそう科植物、やまもがし科植物、ぼろぼろのき科植物、びゃくだん科植物、やどりぎ科植物、うまのすずくさ科植物、やっこそう科植物、つちとりもち科植物、たで科植物、あかざ科植物、ひゆ科植物、おしろいばな科植物、やまとぐさ科植物、やまごぼう科植物、つるな科植物、すべりひゆ科植物、もくれん科植物、やまぐるま科植物、かつら科植物、すいれん科植物、まつも科植物、きんぽうげ科植物、あけび科植物、めぎ科植物、つづらふじ科植物、ろうばい科植物、くすのき科植物、けし科植物、ふうちょうそう科植物、あぶらな科植物、もうせんごけ科植物、うつぼかずら科植物、べんけいそう科植物、ゆきのした科植物、とべら科植物、まんさく科植物、すずかけのき科植物、ばら科植物、まめ科植物、かたばみ科植物、ふうろそう科植物、あま科植物、はまびし科植物、みかん科植物、にがき科植物、せんだん科植物、ひめはぎ科植物、とうだいぐさ科植物、あわごけ科植物、つげ科植物、がんこうらん科植物、どくうつぎ科植物、うるし科植物、もちのき科植物、にしきぎ科植物、みつばうつぎ科植物、くろたきかずら科植物、かえで科植物、とちのき科植物、むくろじ科植物、あわぶき科植物、つりふねそう科植物、くろうめもどき科植物、ぶどう科植物、ほるとのき科植物、しなのき科植物、あおい科植物、あおぎり科植物、さるなし科植物、つばき科植物、おとぎりそう科植物、みぞはこべ科植物、ぎょりゅう科植物、すみれ科植物、いいぎり科植物、きぶし科植物、とけいそう科植物、しゅうかいどう科植物、さぼてん科植物、じんちょうげ科植物、ぐみ科植物、みそはぎ科植物、ざくろ科植物、ひるぎ科植物、うりのき科植物、のぼたん科植物、ひし科植物、あかばな科植物、ありのとうぐさ科植物、すぎなも科植物、うこぎ科植物、せり科植物、みずき科植物、いわうめ科植物、りょうぶ科植物、いちやくそう科植物、つつじ科植物、やぶこうじ科植物、さくらそう科植物、いそまつ科植物、かきのき科植物、はいのき科植物、えごのき科植物、もくせい科植物、ふじうつぎ科植物、りんどう科植物、きょうちくとう科植物、ががいも科植物、はなしのぶ科植物、むらさき科植物、くまつづら科植物、しそ科植物、なす科植物(トマト等)、ごまのはぐさ科植物、のうぜんかずら科植物、ごま科植物、はまうつぼ科植物、いわたばこ科植物、たぬきも科植物、きつねのまご科植物、はまじんちょう科植物、はえどくそう科植物、おおばこ科植物、あかね科植物、すいかずら科植物、れんぷくそう科植物、おみなえし科植物、まつむしそう科植物、うり科植物、ききょう科植物、きく科植物等を例示できる。 In addition, examples of dicotyledonous plants include Asagao genus plants (Asagao), Convolvulus genus plants (Convolvulus, Coleoptera, Clamgao), Sweet potato species (Gumbai convolvulus, Sweet potato), and Prunus genus plants (Nenshikazura, Mamedaoshi) Plants: Nadesico genus plants (carnations, etc.), Jacobe genus plants, Takanetus genus plants, Miminagusa genus, clover genus plants, Nominotsutsuri genus plants, Oyafusuma genus plants, Waigaiso genus plants, Hamahakobe genus plants, Otsumexa genus plants, Shiotsuma genus Plants, mantemae plants, genus plants, genus fusiflora, nanbanjakobe plants; anemoneaceae plants; aroma family plants, donut family plants, anthropaceae plants, anthropaceae plants, anthropaceae plants, yam family Plant, walnut plant , Birch family plant, beech family plant, bittern family plant, laceaceae plant, iridaceae plant, dendrobaceae plant, sweet potato family plant, shabby genus plant, duck family plant, Yadorigi, Uma no Suzukaku, Yakusou, Uchibuchi, Uchida, Azaza, Ayuyu, Oshirobana, Yamatobusa, Yamagobo Family plant, vine family plant, slippery family plant, creek family plant, mountain bear family plant, wig family plant, renaceae plant, pine family plant, genus genus plant, aceae family, urchinaceae Plants, Tsurujifuji Plants, Waxyaceae Plants, Kusanaki Family Plants, Poppy Family Plants, Japanese Psyllidaceae Plants, Oily Plant Plants, Apricot Family Plants, Utsubo Pseudophyceae Plants, Agrobiaceae Plants, Yukino Plant, laver plant, ma Succulent plant, Suzukake family plant, Rose family plant, Lepidopterous plant, Stomach family plant, Diplophyceae plant, Lariaceae plant, Habushi family plant, Tangerine family plant, Ginger family plant, Sendai Plant, Himehagi plant, Todagusa plant, Dendrobaceae plant, Boxwood plant, Gourdaceae plant, Gourdaceae plant, Urushiaceae plant, Mokinoki plant, Nishikigi plant, Mitsuba Gourdaceae plant, Kurodaki kazura family plant, Maple family plant, Tochinoaceae plant, Mukuroji family plant, Dipteraceae plant, Dendrobaceae plant, Drosophila family plant, Vineceae plant, Horono Mushroom plant, Shinano family plant, Aoi family plant, Papilio family plant, Monkeys family plant, Camellia family plant, Fairy family plant, Mizo Hachibana plant, Gyory family plant, Violet family plant, Iri family Plants, asteraceae plants, and Diatomaceous plant, asteraceae plant, cactaceae plant, rhododendron plant, gypsum plant, misoaceae plant, pomegranate plant, asteraceae plant, cucurbitaceae plant, papaveraceae plant, rhinoceros plant Family plant, red plant family plant, Arino family plant family plant, urchinaceae plant plant, urchinaceae plant plant, urchinaceae plant plant, citrus family plant plant, irrigated plant family plant, rhododendron plant plant, ivy plant family plant, Azalea family plant, Bamboo family plant, Cherry tree family plant, Isomatsu family plant, Oyster family plant, Oyster family plant, Erynaceae plant, Mokusei family plant, Fuji next family plant, Rindo Family plant, asteraceae plant, garaceae plant, bush plant family, purple plant family, kumazaku family plant, shiso family plant, eggplant family plant (tomato, etc.), sesame plant family, sesame family plant Plant, sesame plant, Urchinaceae plant, cigarette plant, raccoonaceae plant, foxglove plant, hamanchoaceae plant, staghorn plant, scallop plant, rape plant, watermelon plant, reptile plant Examples of the plant include the family plant of the family, the pine family, the cucurbitaceae plant, the asteraceae plant, and the asteraceae plant.
 〔本発明に係るキットの構成:ppGalNAcT遺伝子を備える形態〕
 本発明に係るキットが備えるppGalNAcT遺伝子としては、上述のppGalNAcTとしての活性を有するポリペプチドをコードするものである限り、特に限定されない。例えば、ヒト等の哺乳類動物、鳥類、爬虫類等の様々な生物に由来するppGalNAcT遺伝子が、本発明に係るキットに包含され得る。より具体的には、GalNAc‐T2(例えばGenBankアクセッション番号NM_004481)、GalNAc‐T1(例えばGenBankアクセッション番号NM_020474)が例示される。
[Composition of the kit according to the present invention: a form comprising a ppGalNAcT gene]
The ppGalNAcT gene provided in the kit according to the present invention is not particularly limited as long as it encodes the above-mentioned polypeptide having activity as ppGalNAcT. For example, the ppGalNAcT gene derived from various organisms such as mammals such as humans, birds and reptiles can be included in the kit according to the present invention. More specifically, GalNAc-T2 (for example, GenBank accession number NM_004481) and GalNAc-T1 (for example, GenBank accession number NM_020474) are exemplified.
 また、本発明に係るキットが包含し得るポリヌクレオチドとしては、上述した具体例のポリヌクレオチドの相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズし、かつ、ppGalNAcT活性を有するポリペプチドをコードするポリヌクレオチド等を挙げることができる。なお、ここでストリンジェントな条件でハイブリダイズするとは、60℃で2×SSC洗浄条件下で結合することを意味する。上記ハイブリダイゼーションは、J. Sambrook et al. Molecular Cloning, A Laboratory Manual,2nd Ed., Cold Spring Harbor Laboratory(1989)に記載されている方法等、従来公知の方法で行なうことができる。通常、温度が高いほど、塩濃度が低いほどストリンジェンシーは高くなる(ハイブリダイズしにくくなる)。 In addition, the polynucleotide that can be included in the kit according to the present invention includes a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising a complementary base sequence of the polynucleotide of the specific example described above and has ppGalNAcT activity. Examples thereof include a polynucleotide encoding a peptide. Here, hybridizing under stringent conditions means binding at 60 ° C. under 2 × SSC washing conditions. The hybridization can be carried out by a conventionally known method such as the method described in J. Sambrook et al. Molecular Cloning, A Laboratory Manual, 2nd Ed, Cold Spring Harbor Laboratory (1989). Usually, the higher the temperature and the lower the salt concentration, the higher the stringency (harder to hybridize).
 ppGalNAcT遺伝子を取得する方法は特に限定されるものではなく、従来公知の方法により、上述した哺乳類動物等から単離することができる。例えば、既知のppGalNAcT遺伝子の塩基配列に基づき作製したプライマー対を用いて、上述の哺乳類動物等のcDNA又はゲノミックDNAを鋳型としてPCRを行なうこと等によりppGalNAcT遺伝子を得ることができる。また、ppGalNAcT遺伝子は、従来公知の方法により化学合成して得ることもできる。 The method for obtaining the ppGalNAcT gene is not particularly limited, and the ppGalNAcT gene can be isolated from the aforementioned mammals and the like by a conventionally known method. For example, the ppGalNAcT gene can be obtained by performing PCR using a primer pair prepared based on the base sequence of a known ppGalNAcT gene, using the cDNA or genomic DNA of the above-mentioned mammal or the like as a template. The ppGalNAcT gene can also be obtained by chemical synthesis by a conventionally known method.
 本発明に係るキットは、ppGalNAcT遺伝子を発現させるための発現ベクターを備えるものであってもよい。ppGalNAcTの発現ベクターとしては、ppGalNAcT遺伝子とプロモーターとを含めば特に限定されるものではない。 The kit according to the present invention may be provided with an expression vector for expressing the ppGalNAcT gene. The expression vector for ppGalNAcT is not particularly limited as long as it includes a ppGalNAcT gene and a promoter.
 発現ベクターの母体となるベクターとしては、従来公知の種々のベクターを用いることができる。例えば、プラスミド、ファージ、又はコスミド等を用いることができ、導入される植物細胞や導入方法に応じて適宜選択することができる。具体的には、例えば、pBR322、pBR325、pUC19、pUC119、pBluescript、pBluescriptSK、pBI系のベクター等を挙げることができる。特に、本発明に係るキットを用いて、ppGalNAcT遺伝子を備えるベクターを、アグロバクテリウム法により植物体に導入する場合、pBI系のバイナリーベクターを用いることが好ましい。pBI系のバイナリーベクターとしては、具体的には、例えば、pBIG、pBIN19、pBI101、pBI121、pBI221等を挙げることができる。 Various conventionally known vectors can be used as the base vector for the expression vector. For example, a plasmid, phage, cosmid or the like can be used, and can be appropriately selected according to the plant cell to be introduced and the introduction method. Specific examples include pBR322, pBR325, pUC19, pUC119, pBluescript, pBluescriptSK, pBI vectors, and the like. In particular, when a vector comprising the ppGalNAcT gene is introduced into a plant by the Agrobacterium method using the kit according to the present invention, it is preferable to use a pBI binary vector. Specific examples of the pBI binary vector include pBIG, pBIN19, pBI101, pBI121, pBI221, and the like.
 上記プロモーターは、植物体内で遺伝子を発現させることが可能なプロモーターであれば特に限定されるものではなく、公知のプロモーターを好適に用いることができる。かかるプロモーターとしては、例えば、カリフラワーモザイクウイルス35Sプロモーター(CaMV35S)、アクチンプロモーター、ノパリン合成酵素のプロモーター、タバコのPR1a遺伝子プロモーター、トマトのリブロース1,5-二リン酸カルボキシラーゼ・オキシダーゼ小サブユニットプロモーター等を挙げることができる。この中でも、カリフラワーモザイクウイルス35Sプロモーター又はアクチンプロモーターをより好ましく用いることができる。上記各プロモーターを用いれば、得られる発現ベクターでは、植物細胞内に導入されたときに任意の遺伝子を強く発現させることが可能となる。 The promoter is not particularly limited as long as it is a promoter capable of expressing a gene in a plant body, and a known promoter can be suitably used. Examples of such promoters include cauliflower mosaic virus 35S promoter (CaMV35S), actin promoter, nopaline synthase promoter, tobacco PR1a gene promoter, tomato ribulose 1,5-diphosphate carboxylase oxidase small subunit promoter and the like. Can be mentioned. Among these, cauliflower mosaic virus 35S promoter or actin promoter can be used more preferably. When each of the above promoters is used, the resulting expression vector can strongly express an arbitrary gene when introduced into a plant cell.
 上記プロモーターは、転写因子をコードする遺伝子を発現しうるように連結され、ベクター内に導入されていればよく、発現ベクターとしての具体的な構造は特に限定されるものではない。 The promoter is not particularly limited as long as it is linked so that a gene encoding a transcription factor can be expressed and introduced into the vector.
 上記発現ベクターは、上記プロモーター及びppGalNAcT遺伝子に加えて、さらに他のDNAセグメントを含んでいてもよい。当該他のDNAセグメントは特に限定されるものではないが、ターミネーター、選択マーカー、エンハンサー、翻訳効率を高めるための塩基配列等を挙げることができる。また、上記発現ベクターは、さらにT‐DNA領域を有していてもよい。T‐DNA領域は特にアグロバクテリウムを用いて上記発現ベクターを植物体に導入する場合に遺伝子導入の効率を高めることができる。 The expression vector may further contain another DNA segment in addition to the promoter and the ppGalNAcT gene. The other DNA segment is not particularly limited, and examples thereof include a terminator, a selection marker, an enhancer, and a base sequence for improving translation efficiency. The expression vector may further have a T-DNA region. The T-DNA region can increase the efficiency of gene transfer particularly when Agrobacterium is used to introduce the expression vector into a plant.
 ターミネーターは転写終結部位としての機能を有していれば特に限定されるものではなく、公知のものであってもよい。例えば、具体的には、ノパリン合成酵素遺伝子の転写終結領域(Nosターミネーター)、カリフラワーモザイクウイルス35Sの転写終結領域(CaMV35Sターミネーター)等を好ましく用いることができる。この中でもNosターミネーターをより好ましく用いることができる。上記発現ベクターにおいては、ターミネーターを適当な位置に配置することにより、植物細胞に導入された後に、不必要に長い転写物を合成したり、強力なプロモーターがプラスミドのコピー数を減少させたりするような現象の発生を防止することができる。 The terminator is not particularly limited as long as it has a function as a transcription termination site, and may be a known one. For example, specifically, the transcription termination region (Nos terminator) of the nopaline synthase gene, the transcription termination region of the cauliflower mosaic virus 35S (CaMV35S terminator) and the like can be preferably used. Of these, the Nos terminator can be more preferably used. In the above expression vector, by placing the terminator at an appropriate position, it is necessary to synthesize an unnecessarily long transcript after introduction into a plant cell, or a strong promoter reduces the copy number of the plasmid. Can be prevented from occurring.
 上記選択マーカーとしては、例えば薬剤耐性遺伝子を用いることができる。かかる薬剤耐性遺伝子の具体的な一例としては、例えば、ハイグロマイシン、ブレオマイシン、カナマイシン、ゲンタマイシン、クロラムフェニコール等に対する薬剤耐性遺伝子を挙げることができる。これにより、上記抗生物質を含む培地中で生育する植物体を選択することによって、形質転換された植物体を容易に選別することができる。 As the selection marker, for example, a drug resistance gene can be used. Specific examples of such drug resistance genes include drug resistance genes for hygromycin, bleomycin, kanamycin, gentamicin, chloramphenicol and the like. Thereby, the transformed plant body can be easily selected by selecting the plant body growing in the medium containing the antibiotic.
 上記翻訳効率を高めるためのポリヌクレオチドとしては、例えばタバコモザイクウイルス由来のomega配列を挙げることができる。このomega配列をプロモーターの非翻訳領域(5’UTR)に配置させることによって、上記転写因子をコードする遺伝子の翻訳効率を高めることができる。このように、上記発現ベクターには、その目的に応じて、さまざまなDNAセグメントを含ませることができる。 Examples of the polynucleotide for increasing the translation efficiency include an omega sequence derived from tobacco mosaic virus. By placing this omega sequence in the untranslated region (5′UTR) of the promoter, the translation efficiency of the gene encoding the transcription factor can be increased. Thus, the expression vector can contain various DNA segments depending on the purpose.
 発現ベクターを構築する具体的な方法としては、適宜選択された母体となるベクターに、上記プロモーター及びppGalNAcT遺伝子、並びに必要に応じて上記他のDNAセグメントを所定の順序となるように導入する方法が例示される。また、ppGalNAcT遺伝子とプロモーターと(必要に応じてターミネーター等)とを連結して発現カセットを構築し、これをベクターに導入すればよい。 As a specific method for constructing an expression vector, there is a method in which the promoter and the ppGalNAcT gene and, if necessary, the other DNA segments are introduced in a predetermined order into an appropriately selected parent vector. Illustrated. In addition, an expression cassette may be constructed by linking a ppGalNAcT gene and a promoter (such as a terminator if necessary) and then introducing it into a vector.
 発現カセットの構築では、例えば、各DNAセグメントの切断部位を互いに相補的な突出末端としておき、ライゲーション酵素で反応させることで、当該DNAセグメントの順序を規定することが可能となる。なお、発現カセットにターミネーターが含まれる場合には、上流から、プロモーター、ppGalNAcT遺伝子、ターミネーターの順となっていればよい。また、発現ベクターを構築するための試薬類、すなわち制限酵素やライゲーション酵素等の種類についても特に限定されるものではなく、市販のものを適宜選択して用いればよい。 In the construction of the expression cassette, for example, the order of the DNA segments can be defined by setting the cleavage sites of each DNA segment as complementary protruding ends and reacting with a ligation enzyme. In addition, when a terminator is included in the expression cassette, the promoter, the ppGalNAcT gene, and the terminator may be in order from the upstream. Further, the types of reagents for constructing the expression vector, that is, the types of restriction enzymes and ligation enzymes are not particularly limited, and commercially available ones may be appropriately selected and used.
 また、上記発現ベクターの増殖方法(生産方法)も特に限定されるものではなく、従来公知の方法を用いることができる。一般的には大腸菌をホストとして当該大腸菌内で増殖させればよい。このとき、ベクターの種類に応じて、好ましい大腸菌の種類を選択してもよい。 Also, the method for producing the above expression vector (production method) is not particularly limited, and a conventionally known method can be used. In general, Escherichia coli may be used as a host and propagated in the E. coli. At this time, a preferred E. coli type may be selected according to the type of vector.
 なお、本発明に係るキットは、上述した発現ベクターの母体となるベクター、プロモーター、選択マーカー、翻訳効率を高めるためのポリヌクレオチド、ターミネーターを、ppGalNAcT遺伝子とは別の容器に包含させた上で、備えていてもよい。 In addition, the kit according to the present invention includes a vector, a promoter, a selection marker, a polynucleotide for enhancing translation efficiency, and a terminator, which serve as a parent of the above-described expression vector, in a separate container from the ppGalNAcT gene. You may have.
 〔本発明に係るキットの構成:ppGalNAcTを備える形態〕
 本発明に係るキットが備えるppGalNAcTとしては、ppGalNAcT活性を有するポリペプチドであれば限定されない。なお、本明細書において、用語「ポリペプチド」は、「ペプチド」又は「タンパク質」と交換可能に使用される。
[Configuration of kit according to the present invention: a form including ppGalNAcT]
The ppGalNAcT provided in the kit according to the present invention is not limited as long as it is a polypeptide having ppGalNAcT activity. In the present specification, the term “polypeptide” is used interchangeably with “peptide” or “protein”.
 例えば、本発明に係るキットが備えるppGalNAcTとしては、上述のppGalNAcT遺伝子によりコードされるものであってもよい。 For example, the ppGalNAcT provided in the kit according to the present invention may be one encoded by the ppGalNAcT gene described above.
 また、天然の精製産物、化学合成手順の産物、及び原核生物宿主又は真核生物宿主(例えば、細菌細胞、酵母細胞、高等植物細胞、昆虫細胞、及び哺乳動物細胞を含む)から組換え技術によって産生された産物を含む。また、組換え産生手順において用いられる宿主に依存して、ミリスチル化され得るか、又は非ミリスチル化され得る。さらに、本発明にかかるポリペプチドはまた、いくつかの場合、宿主媒介プロセスの結果として、開始の改変メチオニン残基を含み得る。 Also by recombinant techniques from natural purified products, products of chemical synthesis procedures, and prokaryotic or eukaryotic hosts (including, for example, bacterial cells, yeast cells, higher plant cells, insect cells, and mammalian cells). Includes produced products. It can also be myristylated or non-myristylated depending on the host used in the recombinant production procedure. Furthermore, the polypeptides according to the invention may also comprise an initiating modified methionine residue in some cases as a result of a host-mediated process.
 また、本発明に係るキットが備えるppGalNAcTは、従来公知のタンパク質保存用試薬に予め溶解されていてもよい。 Further, ppGalNAcT provided in the kit according to the present invention may be dissolved in advance in a conventionally known protein storage reagent.
 〔その他の構成〕
 本発明に係るキットは、本発明の効果を損なわない範囲で様々な他の試薬等を備えていてもよい。O型糖鎖はN‐アセチルガラクトサミンを基本骨格として、ガラクトース、N‐アセチルグルコサミン、シアル酸等の他の糖及び/又は酸により構成される。そこで、本発明に係るキットは、O型糖鎖を構成する糖及び/又は酸の転移酵素を含んでいてもよい。このような転移酵素としては、ガラクトース転移酵素、ST6GALNAC1(alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide alpha-2,6-sialyltransferase 1(GenBankアクセッション番号 NC_000017)、core 1 synthase, glycoprotein-N-acetylgalactosamine 3-beta-galactosyltransferase, 1(GenBankアクセッション番号 NC_000007)、UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 6 (core3 synthase)(GenBankアクセッション番号 NC_000011)、ST3 beta-galactoside alpha-2,3-sialyltransferase 1(GenBankアクセッション番号 NM_003033)等が好ましく例示できる。また、例えば、Varki, Ajit; Cummings, Richard; Esko, Jeffrey; Freeze, Hudson; Hart, Gerald; Marth, Jamey., Essentials of Glycobiology., Cold Spring Harbor Laboratory Press, 1999, のChapter 8、Fig. 8-3, 8-4, 8-5, 8-6に記載されているO型糖鎖結合タンパク質の合成工程における各工程を触媒する酵素を備えていてもよい。
[Other configurations]
The kit according to the present invention may include various other reagents and the like as long as the effects of the present invention are not impaired. The O-type sugar chain is composed of N-acetylgalactosamine as a basic skeleton and other sugars and / or acids such as galactose, N-acetylglucosamine, and sialic acid. Therefore, the kit according to the present invention may contain a sugar and / or an acid transferase constituting the O-type sugar chain. Such transferases include galactose transferase, ST6GALNAC1 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3) -N-acetylgalactosaminide alpha-2,6-sialyltransferase 1 (GenBank Accession) No. NC — 000017), core 1 synthase, glycoprotein-N-acetylgalactosamine 3-beta-galactosyltransferase, 1 (GenBank accession number NC — 000007), UDP-GlcNAc: betaGal beta-1,3-N-acetylglucosaminyltransferase 6 (core3 synthase) Session number NC — 000011), ST3 beta-galactoside alpha-2,3-sialyltransferase 1 (GenBank accession number NM — 003033) and the like can be preferably exemplified. Also, for example, Varki, Ajit; Cummings, Richard; Esko, Jeffrey; Freeze, Hudson; Hart, Gerald; Marth, Jamey., Essentials of Glycobiology., Cold Spring Harbor Laboratory Press, 1999, Chapter 8, Fig. 8- You may provide the enzyme which catalyzes each process in the synthesis | combination process of O-type sugar chain binding protein described in 3, 8-4, 8-5, 8-6.
 なお、ppGalNAcT以外の酵素であって、O型糖鎖を構成する糖又は酸の転移酵素を、説明の便宜のため「更なる転移酵素」と表記する。本発明に係るキットが更なる転移酵素を備えることで、任意のO型糖鎖を、標的タンパク質に結合させることができる。 Note that an enzyme other than ppGalNAcT, which is a sugar or acid transferase constituting the O-type sugar chain, is referred to as “further transferase” for convenience of explanation. By providing the kit according to the present invention with a further transferase, any O-type sugar chain can be bound to the target protein.
 本発明に係るキットは、上記更なる転移酵素をコードするポリヌクレオチドを含んでもよい。また、これらのポリヌクレオチドの相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズし、かつ、それぞれの酵素活性を有するポリペプチドをコードするポリヌクレオチド等を包含してもよい。 The kit according to the present invention may include a polynucleotide encoding the further transferase. Moreover, the polynucleotide etc. which hybridize with the polynucleotide which consists of a complementary base sequence of these polynucleotides on stringent conditions, and encodes the polypeptide which has each enzyme activity may be included.
 上記更なる転移酵素をコードするポリヌクレオチドを取得する方法は特に限定されるものではなく、従来公知の方法により、多くの哺乳類動物、鳥類、爬虫類等から単離することができる。例えば、既知のガラクトース転移酵素をコードする遺伝子の塩基配列に基づき作製したプライマー対を用いることができる。このプライマー対を用いて、上述の哺乳類動物等のcDNA又はゲノミックDNAを鋳型としてPCRを行なうこと等によりポリヌクレオチドを得ることができる。また、更なる転移酵素をコードするポリヌクレオチドは、従来公知の方法により化学合成して得ることもできる。 The method for obtaining the polynucleotide encoding the further transferase is not particularly limited, and can be isolated from many mammals, birds, reptiles and the like by a conventionally known method. For example, a primer pair prepared based on the base sequence of a gene encoding a known galactose transferase can be used. Using this primer pair, a polynucleotide can be obtained, for example, by performing PCR using cDNA or genomic DNA of the above-mentioned mammal or the like as a template. A polynucleotide encoding a further transferase can also be obtained by chemical synthesis by a conventionally known method.
 これらのポリヌクレオチドについては、ppGalNAcT遺伝子とは容器を分けて、別の容器に入れて提供してもよい。 These polynucleotides may be provided separately from the ppGalNAcT gene in a separate container.
 また、本発明に係るキットが上記更なる転移酵素のポリヌクレオチドを備える場合、当該ポリヌクレオチドを備える発現ベクターの形態であってもよい。この発現ベクターについては、上述したppGalNAcTの発現ベクターの説明に準じる。 In addition, when the kit according to the present invention includes the polynucleotide of the further transferase, it may be in the form of an expression vector including the polynucleotide. This expression vector conforms to the description of the expression vector for ppGalNAcT described above.
 なお、本発明に係るキットにおいて、更なる転移酵素をコードするポリヌクレオチドは、上述のppGalNAcTの発現ベクターに導入されていてもよく、ppGalNAcTの発現ベクター及び更なる転移酵素の発現ベクターを別々の発現ベクターとしてもよい。 In the kit according to the present invention, the polynucleotide encoding the further transferase may be introduced into the expression vector of ppGalNAcT described above, and the expression vector of ppGalNAcT and the expression vector of the further transferase are expressed separately. It is good also as a vector.
 また、本発明に係るキットは標的タンパク質及び/又は標的タンパク質をコードするポリヌクレオチド(以下、「標的タンパク質遺伝子」という。)を備えている形態であってもよい。標的タンパク質遺伝子は、ppGalNAcT遺伝子とは別々の発現ベクターに導入されていてもよく、一つの発現ベクターに両方の遺伝子が導入されていてもよい。この形態は、標的タンパク質として植物が有していないものを採用する場合において有効である。当該形態に係るキットによれば、当該キットの利用者は標的タンパク質及び/又は標的タンパク質遺伝子を別途調整する必要がなく、より簡便にO型糖鎖結合タンパク質を製造することができるからである。 Further, the kit according to the present invention may be in the form of a target protein and / or a polynucleotide encoding the target protein (hereinafter referred to as “target protein gene”). The target protein gene may be introduced into an expression vector separate from the ppGalNAcT gene, or both genes may be introduced into one expression vector. This form is effective when adopting a protein that the plant does not have as the target protein. This is because according to the kit according to the embodiment, the user of the kit does not need to separately adjust the target protein and / or target protein gene, and can more easily produce the O-type sugar chain binding protein.
 また、本発明に係るキットが包含し得る他の試薬等としては、ここまで説明したものに限定されるものではない。例えば、ppGalNAcT、上記更なる転移酵素、標的タンパク質、これらをコードするポリヌクレオチドを安定的に保持するための試薬、バッファー等を含んでもよいし、当該ポリヌクレオチドをベクターに導入するための制限酵素、リガーゼ等の試薬を含んでもよい。また、植物細胞、植物からの抽出物を含んでもよいし、当該ポリヌクレオチドを植物細胞に導入するための試薬を含んでもよい。また、本発明に係るキットは、複数の異なる試薬を、適切な容量及び/又は形態で混合していてもよいし、それぞれ別の容器により提供してもよい。 Further, other reagents that can be included in the kit according to the present invention are not limited to those described so far. For example, ppGalNAcT, the further transferase, the target protein, a reagent for stably holding the polynucleotide encoding them, a buffer, etc. may be included, a restriction enzyme for introducing the polynucleotide into a vector, A reagent such as ligase may be included. Moreover, the extract from a plant cell and a plant may be included, and the reagent for introduce | transducing the said polynucleotide into a plant cell may be included. In the kit according to the present invention, a plurality of different reagents may be mixed in an appropriate volume and / or form, or may be provided in separate containers.
 なお、本明細書中において使用される場合、用語「キット」は、特定の材料を内包する容器(例えば、ボトル、プレート、チューブ、ディッシュ等)を備えた包装が意図される。本明細書中においてキットの局面において使用される場合、「備える」は、ppGalNAcT及び/又はppGalNAcT遺伝子が、キットを構成する個々の容器のいずれかの中に内包されている状態が意図される。このときppGalNAcT及び/又はppGalNAcT遺伝子は、特に限定されないが、従来公知の緩衝液等の保存液に溶解された状態であってもよいし、精製された状態であってもよい。また、本発明に係るキットは、上述のppGalNAcT、上記更なる転移酵素、標的タンパク質、これらをコードするポリヌクレド、その他の試薬等を同一の容器に混合して備えても別々の容器に備えてもよい。 Note that, as used herein, the term “kit” is intended to mean a package including a container (eg, bottle, plate, tube, dish, etc.) containing a specific material. As used herein in the context of a kit, “comprising” is intended to mean that the ppGalNAcT and / or ppGalNAcT gene is encapsulated in any of the individual containers that make up the kit. At this time, the ppGalNAcT and / or ppGalNAcT gene is not particularly limited, but may be dissolved in a conventionally known storage solution such as a buffer solution or may be purified. The kit according to the present invention may be provided with the above-mentioned ppGalNAcT, the above-mentioned additional transferase, the target protein, the polynucleotide encoding them, and other reagents mixed in the same container or in separate containers. Good.
 また、本発明に係るキットには、植物においてO型結合タンパク質を製造するための手順等を記載した指示書を含んでもよい。紙又はその他の媒体に書かれていても印刷されていてもよく、あるいは磁気テープ、コンピューター読み取り可能なディスク又はCD-ROM等のような電子媒体に付されてもよい。 In addition, the kit according to the present invention may include an instruction sheet describing a procedure for producing an O-type binding protein in a plant. It may be written or printed on paper or other media, or it may be affixed to electronic media such as magnetic tape, computer-readable discs or CD-ROMs.
 〔本発明に係るキットの使用方法〕
 本発明に係るキットの使用方法の例を以下に説明するが、これに限定されるものではなく、植物においてO型糖鎖結合タンパクを製造可能なように使用すればよい。
[Method of using the kit according to the present invention]
Although the example of the usage method of the kit which concerns on this invention is demonstrated below, it is not limited to this, What is necessary is just to use it so that O-type sugar chain binding protein can be manufactured in a plant.
 本発明に係るキットがppGalNAcT遺伝子を備えている場合、当該ppGalNAcT遺伝子を、植物又は植物からの抽出物等の中で発現させてもよい。ppGalNAcT遺伝子を発現させる方法としては、特に限定されず、上述の発現ベクターを用いる等、従来公知の植物内での遺伝子発現方法を用いてもよい。 When the kit according to the present invention includes a ppGalNAcT gene, the ppGalNAcT gene may be expressed in a plant or an extract from a plant. The method for expressing the ppGalNAcT gene is not particularly limited, and a conventionally known gene expression method in plants such as the above-described expression vector may be used.
 また、標的タンパク質については、セリン残基及び/又はスレオニン残基が含まれていればよい。例えば、標的タンパク質としては、植物が有しているポリペプチド(以下、「内在タンパク質」という。)でもよく、植物以外の生物が有しているポリペプチド(以下、「外来タンパク質」という。)でもよい。 Moreover, the target protein only needs to contain a serine residue and / or a threonine residue. For example, the target protein may be a polypeptide possessed by a plant (hereinafter referred to as “endogenous protein”) or a polypeptide possessed by an organism other than a plant (hereinafter referred to as “foreign protein”). Good.
 内在タンパク質としては、例えば、グルテリン(Glutelin、例えばコメ由来のものなど)(Kishimoto T, Watanabe M, Mitsui T, Hori H.Glutelin basic subunits have a mammalian mucin-type O-linked disaccharide side chain.Arch Biochem Biophys. 1999 Oct 15;370(2):271-277)等を挙げることができる。 Intrinsic proteins include, for example, glutelin (Glutelin, eg, rice-derived) (Kishimoto T, Watanabe M, Mitsui T, Hori H.Glutelin basic subunits have a mammalian mucin-type O-linked disaccharide side chain.Arch Biochem Biophys 1999 Oct 15; 370 (2): 271-277).
 外来タンパク質としては、例えば、エリスロポエチン、Synthetic peptide(例えばOtvos,L. Jr., Krivuika. et al., Biochim. Biophys. Acta., 1995, 1267, 55-64を参照)、ムチン(例えばShogren, R., et al., Biochemistry, 1989, 28, 5525-5536を参照)、HSP-1、HSP-2(熱ショックタンパク質、例えばCalvete, J. J., et al., Biochem. J., 1995, 310, 615-622を参照)、T1 fragment of glycophorin A(例えばPieper, J., et al., Nat. Struct. Biol., 1996, 3, 228-232を参照)、DAF(崩壊促進因子、例えば、Coyne, K. E., et al., J. Immunol., 1992, 149, 2906-2913を参照)、G-CSF(顆粒球コロニー刺激因子、例えばOh-eda, M., et al., J. Biol. Chem., 1990, 265, 11432-11435を参照)、PSGL-1(P-selection glycoprotein ligand-1、例えばMaly, P., et al., Cell, 1996, 86, 643-653を参照)、ZP-3(卵膜蛋白(zona pellucida protein 3)、例えば、Yurewicz, E. C., et al., Mol. Reprod. Dev., 1992, 33, 182を参照)、Peptides in MHC(major histocompatibility complex)-groove(例えば、Haurum, J.S., et al., J. Exp. Med., 1994, 180, 739-744、Haurum, J.S., et al., Eur. J. Immunol., 1995, 25, 3270-3276を参照)、InterLeukin-5(例えば、Kodama, S., et al., Eur. J. Biochem., 1993, 211, 903-908を参照)、Lactase-phlorizin hydrolase(例えば、Naim, H. Y., and Lentze, M. J., J. Biol. Chem., 1992, 267, 25494-25504)、Glycophorin A(例えば、Remaley, A. T., J. Biol. Chem., 1991, 266, 24176-24183を参照)、GF-II(insulin-like growth factor II、例えば、Daughaday, W.H., et al., Proc. Natl. Acad. Sci., 1993, 90, 5823-5827を参照)。 Examples of the foreign protein include erythropoietin, synthetic peptide (see, for example, Otvos, L. Jr., Krivuika. Et al., Biochim. Biophys. Acta., 1995, 1267, 55-64), mucin (for example, Shogren, R , et al., Biochemistry, 1989, 28, 5525-5536), HSP-1, HSP-2 (heat shock proteins such as Calvete, JJ, et al., Biochem. J., 1995, 310, 615). Referring to -622), T1 fragment of glycophorin a N ( e.g. Pieper, J., et al., Nat. Struct. Biol., 1996, 3, see 228-232), DAF (decay accelerating factor, e.g., Coyne , KE, et al., J. Immunol., 1992, 149, 2906-2913), G-CSF (granulocyte colony stimulating factor such as Oh-eda, M., et al., J. Biol. Chem). ., 1990, 265, 11432-11435), PSGL-1 (P-selection glycoprotein ligand-1, example) See, for example, Maly, P., et al., Cell, 1996, 86, 643-653), ZP-3 (zona pelucida protein 3, eg Yurewicz, EC, et al., Mol. Reprod Dev., 1992, 33, 182), Peptides in MHC (major histocompatibility complex) -groove (eg Haurum, JS, et al., J. Exp. Med., 1994, 180, 739-744, Haurum , JS, et al., Eur. J. Immunol., 1995, 25, 3270-3276), InterLeukin-5 (eg, Kodama, S., et al., Eur. J. Biochem., 1993, 211). , 903-908), Lactase-phlorizin hydrolase (eg Naim, HY, and Lentze, MJ, J. Biol. Chem., 1992, 267, 25494-25504), Glycophorin A (eg Remaley, AT, J Biol. Chem., 1991, 266, 24176-24183), GF-II (insul) n-like growth factor II, for example, Daughaday, WH, et al., Proc. Natl. Acad. Sci., 1993, 90, see 5823-5827).
 内在タンパク質にN‐アセチルガラクトサミンを結合させる場合、植物細胞又は抽出物内にppGalNAcT遺伝子を導入して、内在タンパク質をコードするポリヌクレオチドと共に発現させてもよく、植物の抽出物にppGalNAcTを混合してもよい。 When N-acetylgalactosamine is bound to an endogenous protein, a ppGalNAcT gene may be introduced into a plant cell or extract and expressed together with a polynucleotide encoding the endogenous protein, or ppGalNAcT may be mixed with a plant extract. Also good.
 外来ポリペプチドにN‐アセチルガラクトサミンを結合させる場合、ppGalNAcT遺伝子を発現させる植物細胞又は抽出物内に、当該外来ポリペプチドをコードするポリヌクレオチドを併せて導入してこれを発現させてもよく、抽出物内にppGalNAcT及び当該外来タンパク質を混合してもよい。 When N-acetylgalactosamine is bound to a foreign polypeptide, the polynucleotide encoding the foreign polypeptide may be introduced into a plant cell or extract that expresses the ppGalNAcT gene, and this may be expressed. PpGalNAcT and the foreign protein may be mixed in the product.
 植物に対するppGalNAcT遺伝子及び標的タンパク質遺伝子の導入方法としては特に限定されるものではなく、従来公知の植物の形質転換方法を用いてもよい。例えば、アグロバクテリウム法、パーティクルガン法、ポリエチレングリコール法、エレクトロポレーション法等が用いられる。アグロバクテリウム法を用いる場合は、上述の発現ベクターを適当なアグロバクテリウム(例えば、アグロバクテリウム・ツメファシエンス(Agrobacterium tumefaciens))に導入し、この株をリーフディスク法(内宮博文著,植物遺伝子操作マニュアル,1990,27‐31pp,講談社サイエンティフィック,東京)などにしたがって無菌培養葉片に感染させ、形質転換植物を得ることができる。 The method for introducing a ppGalNAcT gene and a target protein gene into a plant is not particularly limited, and a conventionally known plant transformation method may be used. For example, an Agrobacterium method, a particle gun method, a polyethylene glycol method, an electroporation method, or the like is used. When the Agrobacterium method is used, the above expression vector is introduced into an appropriate Agrobacterium (for example, Agrobacterium tumefaciens), and this strain is introduced into the leaf disk method (by Hirofumi Uchimiya, plant gene manipulation). Manual, 1990, 27-31pp, Kodansha Scientific, Tokyo, etc.) can be used to infect sterile cultured leaf pieces to obtain transformed plants.
 ppGalNAcT遺伝子及び標的タンパク質遺伝子は、別々の発現ベクターに導入されていてもよく、一つの発現ベクターに両方の遺伝子が導入されていてもよい。 PpGalNAcT gene and target protein gene may be introduced into separate expression vectors, or both genes may be introduced into one expression vector.
 ppGalNAcT遺伝子及び標的タンパク質遺伝子を、別々の発現ベクターに導入した場合、それぞれの発現ベクターを用いた形質転換は、一度に行なってもよく、二段階で行なってもよい。「二段階で形質転換を行なう」とは、いずれか一方の発現ベクターを導入して、当該発現ベクターの導入が確認された形質転換植物に対して、他方の発現ベクターを導入することをいう。このように二段階で形質転換を行なうことで、最初に導入した方の発現ベクターを最も安定して高発現する植物を予め選抜することができる。ここで選抜された植物に他方の発現ベクターを導入すれば、両者の発現ベクターがそれぞれ安定して高発現する植物を高確率に取得することが可能となる。それゆえ、O型結合タンパク質を高生産することができる植物を少ない労力と時間で取得することができ、その結果、効率よく、かつ、安価、安全に有用タンパク質を大量生産することが可能になる。 When the ppGalNAcT gene and the target protein gene are introduced into separate expression vectors, transformation using each expression vector may be performed at one time or in two stages. “Transformation in two stages” means that one of the expression vectors is introduced and the other expression vector is introduced into a transformed plant in which the introduction of the expression vector is confirmed. Thus, by performing transformation in two steps, a plant that most stably expresses the expression vector introduced first can be selected in advance. If the other expression vector is introduced into the plant selected here, it becomes possible to obtain a plant in which both expression vectors are stably and highly expressed with high probability. Therefore, it is possible to obtain a plant capable of producing an O-type binding protein with high labor and time, and as a result, it becomes possible to mass-produce useful proteins efficiently, inexpensively and safely. .
 また、本発明に係るキットがppGalNAcTを備える形態である場合、その使用方法としては、特に限定されるものではないが、例えば植物の抽出物にppGalNAcTを混合してもよい。 In addition, when the kit according to the present invention is in a form including ppGalNAcT, the method of use thereof is not particularly limited. For example, ppGalNAcT may be mixed with a plant extract.
 植物の抽出物としては、植物から抽出したものである限り、特に限定されるものではなく、例えば従来公知の溶媒を用いて抽出したものであってもよいし、植物をすり潰して濾過したり、搾り取ったりして得たものでもよい。 The plant extract is not particularly limited as long as it is extracted from the plant, for example, it may be extracted using a conventionally known solvent, the plant is ground and filtered, It may be obtained by squeezing.
 <2.本発明に係る植物>
 本発明に係る植物は、ppGalNAcT遺伝子、及びN‐アセチルガラクトサミンを結合させる対象のポリペプチド(標的タンパク質)をコードするポリヌクレオチド(標的タンパク質遺伝子)を備えていればよい。
<2. Plant according to the present invention>
The plant according to the present invention only needs to have a ppGalNAcT gene and a polynucleotide (target protein gene) encoding a polypeptide (target protein) to which N-acetylgalactosamine is bound.
 例えば、植物の染色体、ミトコンドリア等に存在するゲノム中に、ppGalNAcT遺伝子及び標的タンパク質遺伝子が導入されていてもよい。 For example, a ppGalNAcT gene and a target protein gene may be introduced into a genome present in a plant chromosome, mitochondria or the like.
 植物に対する遺伝子の導入方法、遺伝子を導入する植物の形態、種類等については、本発明に係るキットについて説明した事項に準じればよい。なお、標的タンパク質として植物が有しているものを採用する場合、ppGalNAcT遺伝子のみを植物に導入してもよいし、標的タンパク質をさらに高発現させるため、両方の遺伝子を植物に導入してもよい。 The method for introducing a gene into a plant, the form and type of the plant into which the gene is introduced, and the like may be the same as those described for the kit according to the present invention. In addition, when employ | adopting what a plant has as a target protein, only a ppGalNAcT gene may be introduce | transduced into a plant, and in order to make a target protein express more highly, both genes may be introduce | transduced into a plant. .
 <3.組成物>
 本発明に係るO型糖鎖結合タンパク質を製造するための組成物(以下、「本発明に係る組成物」という。)は、ポリペプチドN‐アセチルガラクトサミン転移酵素(ppGalNAcT)、及びそれをコードするポリヌクレオチド(ppGalNAcT遺伝子)のうちの少なくとも一つを含めばよい。
<3. Composition>
A composition for producing an O-type sugar chain binding protein according to the present invention (hereinafter referred to as “the composition according to the present invention”) encodes a polypeptide N-acetylgalactosaminyltransferase (ppGalNAcT) and the same At least one of the polynucleotides (ppGalNAcT gene) may be included.
 本発明に係る組成物において、ppGalNAcTを包含する場合、その濃度としては特に限定されない。この場合、従来公知のタンパク質用緩衝液にppGalNAcTを溶解したものであってもよい。このような緩衝液としては、ppGalNAcTを保存可能であれば限定されないが、例えば、次の文献にて、酵素活性を測定する際に用いられている緩衝液を使用することができる。Wandall HH, et al., J Biol Chem., 1997 Sep 19;272(38):23503-23514、Zhang Y, et al., J Biol Chem., 2003, Jan 3;278(1):573-584、Bennett EP, et al, J Biol Chem., 1998, Nov 13;273(46):30472-30481。また、例えば、Iwasaki H, et al., J Biol Chem., 2003, Feb 21;278(8):5613-5621には、25mM Tris-HCl (pH 7.4), 5mM MnCl, 0.1% Triton X-100の混合液を、保存用の緩衝液として使用できる。また、これらの緩衝液にはグリセロール等の酵素安定化剤を包含させてもよい。 In the composition according to the present invention, when ppGalNAcT is included, the concentration thereof is not particularly limited. In this case, ppGalNAcT may be dissolved in a conventionally known protein buffer. Such a buffer solution is not limited as long as ppGalNAcT can be stored. For example, a buffer solution used in measuring enzyme activity in the following document can be used. Wandall HH, et al., J Biol Chem., 1997 Sep 19; 272 (38): 23503-23514, Zhang Y, et al., J Biol Chem., 2003, Jan 3; 278 (1): 573-584 Bennett EP, et al, J Biol Chem., 1998, Nov 13; 273 (46): 30472-30481. Also, for example, Iwasaki H, et al., J Biol Chem., 2003, Feb 21; 278 (8): 5613-5621 includes 25 mM Tris-HCl (pH 7.4), 5 mM MnCl 2 , 0.1 A mixture of% Triton X-100 can be used as a storage buffer. Moreover, you may include enzyme stabilizers, such as glycerol, in these buffers.
 また、本発明に係る組成物において、ppGalNAcT遺伝子を包含する場合、その濃度としては特に限定されない。また、ppGalNAcT遺伝子は、従来公知の核酸保存用の緩衝液に溶解されていればよい。 Further, when the composition according to the present invention includes the ppGalNAcT gene, the concentration thereof is not particularly limited. Further, the ppGalNAcT gene only needs to be dissolved in a conventionally known nucleic acid storage buffer.
 本発明に係る組成物は、上述した更なる転移酵素及び/又はこれをコードするポリヌクレオチド、標的タンパク質及び/又は標的タンパク質遺伝子を含んでいてもよい。 The composition according to the present invention may contain the above-described further transferase and / or a polynucleotide encoding the same, a target protein and / or a target protein gene.
 <4.本発明に係るO型糖鎖結合タンパク質の製造方法1>
 本発明に係るO型糖鎖結合タンパク質の製造方法としては、植物内又は植物の抽出物内で、ポリペプチドN‐アセチルガラクトサミン転移酵素を合成する合成工程を含んでいてもよい。
<4. Production method 1 of O-type sugar chain binding protein according to the present invention>
The method for producing an O-type sugar chain binding protein according to the present invention may include a synthesis step of synthesizing a polypeptide N-acetylgalactosamine transferase in a plant or a plant extract.
 上記合成工程の具体的な方法としては、植物内又は植物の抽出物内でppGalNAcTを合成させることが可能であれば、特に限定されない。 The specific method of the synthesis step is not particularly limited as long as ppGalNAcT can be synthesized in a plant or a plant extract.
 例えば植物内でppGalNAcT遺伝子を発現させてもよい。この場合、上記合成工程は、植物細胞内にppGalNAcT遺伝子を導入する導入工程を行ない、次に、ppGalNAcT遺伝子が導入された植物細胞を培養する培養工程を行なう工程であってもよい。 For example, the ppGalNAcT gene may be expressed in plants. In this case, the synthesis step may be a step of performing an introduction step of introducing a ppGalNAcT gene into a plant cell and then culturing a plant cell into which the ppGalNAcT gene has been introduced.
 上記導入工程としては、植物細胞内にppGalNAcT遺伝子を導入する工程である限り限定されない。例えば、上述した従来公知の植物の形質転換方法を用いてもよい。 The introduction step is not limited as long as it is a step of introducing a ppGalNAcT gene into a plant cell. For example, a conventionally known plant transformation method described above may be used.
 上記培養工程では、ppGalNAcT遺伝子が導入された植物細胞を、培養細胞の状態で維持してもよいし、葉、根、茎等の組織に分化させてもよいし、完全な植物体に再生してもよい。また、植物の抽出物内でppGalNAcTを合成させてもよい。例えば、ppGalNAcT遺伝子を植物抽出物内に混合した上で、無細胞発現系によりppGalNAcTを発現させてもよい。 In the above culturing step, plant cells into which the ppGalNAcT gene has been introduced may be maintained in the state of cultured cells, differentiated into tissues such as leaves, roots, and stems, or regenerated into complete plants. May be. Alternatively, ppGalNAcT may be synthesized in a plant extract. For example, ppGalNAcT gene may be expressed by a cell-free expression system after mixing the ppGalNAcT gene in a plant extract.
 上記合成工程の後は、植物内又は植物の抽出物からO型糖鎖結合タンパク質を精製してもよい。O型糖鎖結合タンパク質の精製については、従来公知のN型糖鎖タンパク質の精製方法を適用してもよい。例えば、O型糖鎖結合タンパク質を特異的に認識するレクチンを用いてもよい。 After the above synthesis step, the O-type sugar chain binding protein may be purified from the plant or from the plant extract. For purification of the O-type sugar chain binding protein, a conventionally known purification method for N-type sugar chain protein may be applied. For example, a lectin that specifically recognizes an O-type sugar chain binding protein may be used.
 <5.本発明に係るO型糖鎖結合タンパク質の製造方法2>
 本発明に係るO型糖鎖結合タンパク質の製造方法としては、植物の抽出物に、ポリペプチドN‐アセチルガラクトサミン転移酵素を混合する混合工程を含んでいてもよい。
<5. Production method 2 of O-type sugar chain binding protein according to the present invention>
The method for producing an O-type sugar chain binding protein according to the present invention may include a mixing step of mixing a polypeptide N-acetylgalactosaminyltransferase with a plant extract.
 上記混合工程の具体的な方法としては、植物の抽出物にppGalNAcTを混合する限り、特に限定されない。例えば、単に植物の抽出物にppGalNAcTを滴下するだけでもよく、攪拌してもよい。植物の抽出物中に含まれるUDP-GalNAcを基質としてO型糖鎖が生成される。また、植物の抽出物中にUDP-GalNAcが含まれない場合は別途添加すればよいし、含まれる場合であっても、さらに添加してもよい。 The specific method of the mixing step is not particularly limited as long as ppGalNAcT is mixed with the plant extract. For example, ppGalNAcT may be simply dropped on a plant extract, or may be stirred. O-type sugar chains are produced using UDP-GalNAc contained in plant extracts as a substrate. Further, when UDP-GalNAc is not contained in the plant extract, it may be added separately, or even if it is contained, it may be further added.
 上記混合工程の後は、植物の抽出物からO型糖鎖結合タンパク質を精製すればよい。O型糖鎖結合タンパク質の精製については、従来公知の型糖鎖結合タンパク質の精製方法を用いて行なえばよい。 After the mixing step, the O-type sugar chain binding protein may be purified from the plant extract. The purification of the O-type sugar chain binding protein may be performed using a conventionally known purification method for the type sugar chain binding protein.
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが、本明細書中において参考として援用される。 Examples will be shown below, and the embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail. Further, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims, and the present invention is also applied to the embodiments obtained by appropriately combining the disclosed technical means. It is included in the technical scope of the invention. Moreover, all the literatures described in this specification are used as reference in this specification.
 <実施例1.形質転換植物細胞の作出>
 ヒト組織から、ppGalNAcT遺伝子及びガラクトース転移酵素遺伝子をクローニングした。
<Example 1. Production of transformed plant cells>
From human tissues, the ppGalNAcT gene and the galactose transferase gene were cloned.
 ppGalNAcT遺伝子については、次の方法で得た。肝臓由来ヒトcDNAライブラリーを鋳型(ORIGENE TECHNOLOGIES INC. Multiple Choice(TM) Human cDNA)とし、プライマーU1-F(5'-GGCGGATCCAAGGAGATATAACAATGAGAAAATTTGCATACTGCAAGGTGGTC-3')(配列番号1)およびU1-R(5'-GGCGAGCTCTCAGAATATTTCTGGCAGGGTGACGTTTCG-3')(配列番号2)を用いたPCRで増幅することで、ppGalNAcT遺伝子を含むDNA断片を得た。これをBamHIおよびSacIで切断後、TiプラスミドpBI121のBamHI/SacIサイトに導入し、プラスミドpBI‐GalNAc‐T1を構築した。 The ppGalNAcT gene was obtained by the following method. A liver-derived human cDNA library is used as a template (ORIGENE | TECHNOLOGIES | INC. -3 ′) (SEQ ID NO: 2) was amplified by PCR to obtain a DNA fragment containing the ppGalNAcT gene. This was digested with BamHI and SacI and then introduced into the BamHI / SacI site of Ti plasmid pBI121 to construct plasmid pBI-GalNAc-T1.
 ガラクトース転移酵素遺伝子について、次の方法で得た。肝臓由来ヒトcDNAライブラリー(ORIGENE TECHNOLOGIES INC. Multiple Choice(TM) Human cDNA)を鋳型とし、プライマーGT-F(5'-GGCGGATCCAAGGAGATATAACAATGGCCTCTAAATCCTGGCTGAATTTTTTA-3')(配列番号3)およびGT-R(5'-GGCGAGCTCTCAAGGATTTCCTAACTTCACTTTTGTATC-3')(配列番号4)を用いたPCRで増幅することにより、ガラクトース転移酵素遺伝子を含むDNA断片を得た。これをBamHIおよびSacIで切断後、pBI121のBamHI/SacIサイトに導入し、プラスミドpBI―C1GALT1を構築した。 The galactose transferase gene was obtained by the following method. Liver-derived human cDNA library (ORIGENE TECHNOLOGIES INC. Multiple Choice (TM) Human cDNA) as a template, primer GT-F (5'-GGCGGATCCAAGGAGATATAACAATGGCCTCTAAATCCTGGCTGAATTTTTTA-3 ') (SEQ ID NO: 3) and GT-TT (TC'TTGATCTC -3 ′) (SEQ ID NO: 4) was amplified by PCR to obtain a DNA fragment containing the galactose transferase gene. This was cleaved with BamHI and SacI and then introduced into the BamHI / SacI site of pBI121 to construct plasmid pBI-C1GALT1.
 次に、それぞれのベクターを共にタバコBY2培養細胞(Dohiら、Archives of Virology,151,1075-1084、独立行政法人理化学研究所;理化学研究所バイオリソースセンター;実験植物開発室;植物培養細胞カタログ;RPC番号00001)にアグロバクテリウム法によりco‐transformation形質転換した。得られた形質転換細胞から、mRNAを調製して、N‐アセチルガラクトサミン転移酵素遺伝子及びガラクトース転移酵素遺伝子の発現をノーザン分析により確認した。そして、両方の転移酵素遺伝子を共に発現する形質転換細胞を選抜した。なお、この実験に供した植物細胞300個のうち、両方の転移酵素遺伝子を共に発現する形質転換細胞は2個であった。このうち、mRNA量の高かった形質転換細胞(以下、「TX13株」という。)をさらに選抜して、Murashige‐Skoog培地を用いて懸濁培養した。 Next, together with each vector, tobacco BY2 cultured cells (Dohi et al., Archives of Virology, 151, 1075-1084, RIKEN; RIKEN BioResource Center; experimental plant development room; plant culture cell catalog; RPC No. 00001) was co-transformed by the Agrobacterium method. MRNA was prepared from the resulting transformed cells, and the expression of N-acetylgalactosamine transferase gene and galactose transferase gene was confirmed by Northern analysis. Then, transformed cells that express both transferase genes were selected. Of the 300 plant cells used in this experiment, two transformed cells expressed both transferase genes together. Among them, a transformed cell having a high mRNA amount (hereinafter referred to as “TX13 strain”) was further selected and cultured in suspension using Murashige-Skoog medium.
 <実施例2.O型糖鎖結合タンパク質の確認>
 実施例1にて懸濁培養したTX13株を、1.5mlの175mM Tris‐HCl緩衝液(pH7.5)に懸濁させた。得られた懸濁液中の細胞を乳鉢及び乳棒を用いてホモジナイズした後、遠心分離(8,000rpm、15分、4℃)に供した。次に上澄み(細胞抽出液)を回収した。同様にして、非形質転換BY2細胞(以下、「BY2野生株」という。)から細胞抽出液を調製した。
<Example 2. Confirmation of O-type glycan binding protein>
The TX13 strain cultured in suspension in Example 1 was suspended in 1.5 ml of 175 mM Tris-HCl buffer (pH 7.5). The cells in the obtained suspension were homogenized using a mortar and pestle and then subjected to centrifugation (8,000 rpm, 15 minutes, 4 ° C.). Next, the supernatant (cell extract) was collected. Similarly, a cell extract was prepared from non-transformed BY2 cells (hereinafter referred to as “BY2 wild strain”).
 次に、TX13株及びBY2野生株から得た細胞抽出液を、それぞれレクチンカラムに通じさせ、糖タンパク質をレクチンに吸着させた。非吸着画分については廃棄した。なお、レクチンカラムとしては、ジャッカリン(Jacalin)レクチン0.5mlを、Bio‐Rad社製カラム(品番737-1006 内径1cm 長さ5cm)に充填したものを用いた。ジャッカリンは、Galβ(1‐3)GalNAc構造を認識する。 Next, cell extracts obtained from the TX13 strain and BY2 wild strain were each passed through a lectin column to adsorb glycoproteins to the lectin. The non-adsorbed fraction was discarded. The lectin column used was a column made by Bio-Rad (product number 737-1006, inner diameter 1 cm length 5 cm) with 0.5 ml of Jacalin lectin. Jackalin recognizes the Galβ (1-3) GalNAc structure.
 次に、20mlの175mM Tris‐HCl緩衝液(pH7.5)でレクチンカラムを洗浄して、溶出液を回収した。さらに、10mMのメチルガラクトピラノシドを含む175mM Tris‐HCl緩衝液(pH7.5)により、吸着したタンパク質を溶出して、1ml(フラクション1)、1ml(フラクション2)、1ml(フラクション3)、1ml(フラクション4)、6ml(フラクション5)として回収した。 Next, the lectin column was washed with 20 ml of 175 mM Tris-HCl buffer (pH 7.5) to collect the eluate. Further, the adsorbed protein was eluted with 175 mM Tris-HCl buffer (pH 7.5) containing 10 mM methylgalactopyranoside, and 1 ml (fraction 1), 1 ml (fraction 2), 1 ml (fraction 3), It recovered as 1 ml (fraction 4) and 6 ml (fraction 5).
 次に、各細胞抽出液に由来するフラクション1~3を、12.5%SDS‐ポリアクリルアミドゲル電気泳動に供した。結果を図1に示す。図1は、本実施例における電気泳動の結果を示す図であり、図1の(a)はTX13株の細胞抽出液を用いた結果を示し、(b)はBY2野生株の細胞抽出を用いた結果を示す。また、図1の(a)及び(b)において各レーンの上に示す番号はフラクションの番号を示しており、「2&3」はフラクション2及び3の混合物を電気泳動に供したことを示している。 Next, fractions 1 to 3 derived from each cell extract were subjected to 12.5% SDS-polyacrylamide gel electrophoresis. The results are shown in FIG. FIG. 1 is a diagram showing the results of electrophoresis in this example. FIG. 1 (a) shows the results using a cell extract of TX13 strain, and FIG. 1 (b) uses the cell extract of BY2 wild strain. Shows the results. Moreover, the numbers shown above each lane in FIGS. 1A and 1B indicate the numbers of fractions, and “2 & 3” indicates that the mixture of fractions 2 and 3 was subjected to electrophoresis. .
 図1の(a)の三角印にて示すように、TX13株の細胞抽出液では、BY2野生株の細胞抽出からは確認されなかったレクチン結合性タンパク質が確認された。 As shown by the triangle mark in FIG. 1 (a), the lectin-binding protein that was not confirmed from the cell extract of the BY2 wild strain was confirmed in the cell extract of the TX13 strain.
 次に、各細胞抽出液に由来するフラクション1及び2を超純水に対して透析した後、凍結乾燥した。得られた生成物を0.2M クエン酸ナトリウム緩衝液(pH4.5)に溶解した後、α‐N‐アセチルガラクトサミニダーゼ(生化学工業社製)を加えて、3日間37℃に保温した。なお、本明細書の実施例において「超純水」とは、Milli‐Qシステム(ミリポア社製)を用いて精製した水である。 Next, fractions 1 and 2 derived from each cell extract were dialyzed against ultrapure water and then freeze-dried. The obtained product was dissolved in 0.2 M sodium citrate buffer (pH 4.5), α-N-acetylgalactosaminidase (manufactured by Seikagaku Corporation) was added, and the mixture was kept at 37 ° C. for 3 days. . In the examples of the present specification, “ultra pure water” refers to water purified using a Milli-Q system (Millipore).
 次に、保温後の溶液をCarbograph(GL‐Science社製)を用いて精製した。まず、当該溶液をCarbographに通し、次に5mlの50mM 酢酸アンモニウム(pH7.0)で洗浄し、60%アセトニトリルを含有する50mM 酢酸アンモニウム(pH7.0)で糖鎖を溶出した。次に、得られた溶液を凍結乾燥した。 Next, the solution after the incubation was purified using Carbograph (GL-Science). First, the solution was passed through Carbograph, then washed with 5 ml of 50 mM ammonium acetoacetate (pH 7.0), and sugar chains were eluted with 50 mM ammonium acetoacetate (pH 7.0) containing 60% acetonitrile. The resulting solution was then lyophilized.
 凍結乾燥後の試料にPA化試薬(2‐アミノピリジン(Wako社製)552mgに対して200μlの酢酸(Wako社製)を混合したもの)を適量加えて、90℃で1時間インキュベートした。次に、試料を室温で冷却した後、等量の還元試薬(ジメチルアミノボラン(Wako社製)39mgに対して200μlの酢酸を混合したもの)を加えて、80℃で40分間インキュベートした。次に、反応停止のために等量の蒸留水を加えた。 A suitable amount of a PA-forming reagent (2-aminopyridine (manufactured by Wako), 552 mg mixed with 200 μl of acetic acid (manufactured by Wako)) was added to the lyophilized sample and incubated at 90 ° C. for 1 hour. Next, after the sample was cooled at room temperature, an equal amount of a reducing reagent (a mixture of 200 μl of acetic acid with 39 mg of dimethylaminoborane (Wako)) was added and incubated at 80 ° C. for 40 minutes. Next, an equal amount of distilled water was added to stop the reaction.
 得られた溶液に、超純水飽和のフェノール溶液:クロロホルム溶液(1:1)を等量加えて、未反応のPA化試薬を抽出した。この抽出の操作を再度繰り返した。次に、クロロホルム溶液を混合して、得られた水層部分を抽出した。 To the resulting solution, an equal amount of ultrapure water saturated phenol solution: chloroform solution (1: 1) was added to extract the unreacted PA reagent. This extraction operation was repeated again. Next, the chloroform solution was mixed, and the obtained aqueous layer portion was extracted.
 次に、抽出液を、常温で真空下に静置することで10分の1の液量まで濃縮して、液体クロマトグラフィー(HPLC)による解析に供した。 Next, the extract was allowed to stand at room temperature under vacuum to be concentrated to one-tenth of the liquid volume and subjected to analysis by liquid chromatography (HPLC).
 また、コントロールとして、市販のGalβ(1‐3)GalNAc(Tronto Research Chemicals社製)に対しても同様の操作を行ない、HPLCに供した。即ち、Galβ(1‐3)GalNAc 1mgに対して上記PA化試薬を適量加えて、90℃で1時間インキュベートした。 In addition, as a control, the same operation was performed on a commercially available Galβ (1-3) GalNAc (manufactured by Toronto Research Chemicals) and subjected to HPLC. That is, an appropriate amount of the above PA reagent was added to 1 mg of Galβ (1-3) GalNAc and incubated at 90 ° C. for 1 hour.
 次に、試料を室温で冷却した後、等量の上記還元試薬を加えて、80℃で40分間インキュベートした。次に、反応停止のために等量の蒸留水を加えた。その後、超純水飽和のフェノール溶液:クロロホルム溶液(1:1)を等量加えて、未反応のPA化試薬を抽出した。この抽出の操作を再度繰り返した後、クロロホルム溶液を混合して、得られた水層部分を抽出した。この抽出液を常温で真空下に静置することで10分の1の液量まで濃縮して、HPLCに供した。 Next, after cooling the sample at room temperature, an equal amount of the above-mentioned reducing reagent was added and incubated at 80 ° C. for 40 minutes. Next, an equal amount of distilled water was added to stop the reaction. Thereafter, an equal amount of ultrapure water saturated phenol solution: chloroform solution (1: 1) was added to extract an unreacted PA reagent. This extraction operation was repeated again, and then the chloroform solution was mixed to extract the obtained aqueous layer portion. The extract was allowed to stand at room temperature under vacuum to be concentrated to one-tenth volume and subjected to HPLC.
 HPLCによる解析については、次のようにして行なった。試料に対して、アセトニトリルが全量の80%となるように加えて、HPLC(SF‐HPLC)に供した。HPLCのカラムとしては、アミドカラム(Showa denko社製、型名:Asahipak NH2P‐50;4.6×250nm)を用いた。HPLCの装置としてはHITACHI FL Detector L‐7480を備えるHITACHI HPLCシステムを用いた。展開溶媒及びグラジェント等の詳細な条件は次の通りである。
展開溶媒:80%アセトニトリル
グラジェント:アイソクラチック
流速:0.7ml/分
検出:蛍光(Ex;310nm、Em;380nm)
カラム温度:30℃
結果を図2に示す。図2は、本実施例におけるHPLCの結果を示す図である。
The analysis by HPLC was performed as follows. Acetonitrile was added to the sample so as to be 80% of the total amount and subjected to HPLC (SF-HPLC). As an HPLC column, an amide column (manufactured by Showa denko, model name: Asahipak NH2P-50; 4.6 × 250 nm) was used. As the HPLC apparatus, a HITACHI HPLC system equipped with a HITACHI FL Detector L-7480 was used. Detailed conditions such as developing solvent and gradient are as follows.
Developing solvent: 80% acetonitrile Gradient: Isocratic flow rate: 0.7 ml / min Detection: Fluorescence (Ex; 310 nm, Em; 380 nm)
Column temperature: 30 ° C
The results are shown in FIG. FIG. 2 is a diagram showing the results of HPLC in this example.
 図2に示すように、TX13株の細胞抽出液を用いた結果、コントロールに由来するGalβ(1‐3)GalNAc‐PAと同じ位置にピークを検出した。このピークの溶出画分を分離精製した。このことから、TX13株の細胞抽出液にN‐アセチルガラクトサミンで修飾されたタンパク質が含まれていることが確認できた。 As shown in FIG. 2, as a result of using the cell extract of TX13 strain, a peak was detected at the same position as Galβ (1-3) GalNAc-PA derived from the control. The elution fraction of this peak was separated and purified. From this, it was confirmed that the protein extracted with N-acetylgalactosamine was contained in the cell extract of the TX13 strain.
 次に、精製して得られたタンパク質(PA化糖鎖、上記フラクション2)の分子量をMALDI‐TOF‐MSにより測定した。装置としてautoflex(Bruker Daltonics社製)を用いた。レーザー強度を1800~2000mbarとし、3.0×e-7以下の真空下でデータを得た。マトリックス試薬としては、蒸留水:アセトニトリルを1:1で混合した溶液に、10mgの2,5‐ジヒドロキシ安息香酸(Sigma社製)を混合した溶液を用いた。また、PA化糖鎖を溶解した蒸留水に、等量のマトリックス試薬を混合して、この内2μlをターゲットに置き、室温で乾燥させることで結晶化させた後、Reflector mode分析を行なった。 Next, the molecular weight of the purified protein (PA sugar chain, fraction 2 above) was measured by MALDI-TOF-MS. Autoflex (manufactured by Bruker Daltonics) was used as the apparatus. Data was obtained under a vacuum of 3.0 × e −7 or less with a laser intensity of 1800-2000 mbar. As a matrix reagent, a solution obtained by mixing 10 mg of 2,5-dihydroxybenzoic acid (manufactured by Sigma) with a solution obtained by mixing distilled water: acetonitrile at 1: 1 was used. In addition, an equal amount of a matrix reagent was mixed with distilled water in which PA sugar chains were dissolved, and 2 μl of this was placed on a target and crystallized by drying at room temperature, followed by reflector mode analysis.
 結果を図3に示す。図3は本実施例のMALDI‐TOF‐MSの結果を示す図であり、図3の(a)はTX13細胞由来のPA化糖鎖の分子量を測定した結果を示し、図3の(b)はコントロールに由来するGalβ(1‐3)GalNAc‐PAの分子量を測定した結果を示す。 The results are shown in FIG. FIG. 3 is a diagram showing the results of MALDI-TOF-MS of this example. FIG. 3 (a) shows the results of measuring the molecular weight of the PA13 sugar chain derived from TX13 cells, and FIG. 3 (b). Shows the result of measuring the molecular weight of Galβ (1-3) GalNAc-PA derived from the control.
 図3の(a)及び(b)に示すように、TX13細胞由来のPA化糖鎖の分子量(m/z for [M+Na]=482)は、コントロール由来のGalβ(1‐3)GalNAc‐PAの分子量と同じであり、また構造から推測される分子量(483.5)とほぼ一致した。 As shown in FIGS. 3 (a) and 3 (b), the molecular weight (m / z for [M + Na] + = 482) of the PA-glycan derived from TX13 cells is the same as the control-derived Galβ (1-3) GalNAc−. It was the same as the molecular weight of PA, and almost coincided with the molecular weight estimated from the structure (483.5).
 〔実施例3:タバコ植物体によるO型糖鎖結合タンパク質の生産〕
 野生型タバコSR1種に対してppGalNAcT遺伝子及びガラクトース転移酵素遺伝子を導入して、SR1の形質転換細胞を得た。得られた形質転換細胞を培養してSR1の植物体を得た。形質転換細胞からの植物体の取得については、岩淵雅樹、志村令郎、「ラボマニュアル 植物遺伝子 の機能解析」、丸善株式会社、p32-p46を参照して行なった。
[Example 3: Production of O-glycan-binding protein by tobacco plant]
A ppGalNAcT gene and a galactose transferase gene were introduced into wild-type tobacco SR1 species to obtain transformed cells of SR1. The obtained transformed cells were cultured to obtain SR1 plants. Acquisition of plant bodies from the transformed cells was carried out with reference to Masaki Iwabuchi, Reiro Shimura, “Lab Manual Functional Analysis of Plant Genes”, Maruzen Co., Ltd., p32-p46.
 具体的には、無菌で生育させたSR1タバコ植物の葉を1×1cmに切り抜き、実施例1に記載の方法で得たプラスミドpBI‐GalNAc‐T1及びプラスミドpBI―C1GALT1を導入したアグロバクテリウムの懸濁液に、1分間浸透した。その後、MS1(MS塩にNAAを2mg/l、BAPを0.02mg/l、ショ糖30g/l、0.8%寒天)を加え、培地上に葉を置き26度で2日培養後、100mg/lのカナマイシン、100mg/lのカルベニシリンを含むMS4(MS塩にNAAを0.1mg/l、BAPを0.5mg/l、ショ糖30g/l、0.8%寒天)培地に移し、26℃、8000Luxで2~3週間培養した。発芽した5~10mmのシュートを、100mg/lのカナマイシン、100mg/lのカルベニシリンを含むMSR培地(525mg/lのNAA及び100mg/lのBAPを含み、寒天の代わりにゲルライトを用いたMS培地)に移した。2週間後、全長約5cmに成長した、幼植物を馴化、鉢上げし形質転換植物を得た。 Specifically, the leaves of SR1 tobacco plant grown aseptically were cut into 1 × 1 cm, and Agrobacterium into which plasmid pBI-GalNAc-T1 and plasmid pBI-C1GALT1 obtained by the method described in Example 1 were introduced. The suspension was infiltrated for 1 minute. Then, MS1 (2 mg / l NAA, 0.02 mg / l BAP, 30 g / l sucrose, 0.8% agar) was added to the MS salt, leaves were placed on the medium and cultured at 26 degrees for 2 days. MS4 containing 100 mg / l kanamycin, 100 mg / l carbenicillin (MSA salt with 0.1 mg / l NAA, 0.5 mg / l BAP, 30 g / l sucrose, 0.8% agar) medium, The cells were cultured at 26 ° C. and 8000 Lux for 2 to 3 weeks. Germinated 5-10 mm shoots were added to MSR medium containing 100 mg / l kanamycin and 100 mg / l carbenicillin (MS medium containing 525 mg / l NAA and 100 mg / l BAP and using gellite instead of agar) Moved to. Two weeks later, young plants that grew to a total length of about 5 cm were acclimated and potted to obtain transformed plants.
 次に、実施例2と同じ方法で、当該植物体から細胞抽出液を得て、レクチンカラムを通じさせ、溶出液を回収し、さらに吸着したタンパク質を溶出してフラクション1~5として回収した。次いで、実施例2と同じ方法でフラクション1~5をSDS-ポリアクリルアミドゲル電気泳動に供した。結果を図4に示す。図4は、本実施例における電気泳動の結果を示す図である。各レーンの上の番号はフラクションの番号に対応している。図4に示されるようにフラクション2~4においてヒト型化糖タンパク質が検出された。 Next, in the same manner as in Example 2, a cell extract was obtained from the plant body, passed through a lectin column, the eluate was collected, and the adsorbed protein was eluted and collected as fractions 1-5. Subsequently, fractions 1 to 5 were subjected to SDS-polyacrylamide gel electrophoresis in the same manner as in Example 2. The results are shown in FIG. FIG. 4 is a diagram showing the results of electrophoresis in this example. The number above each lane corresponds to the fraction number. As shown in FIG. 4, humanized glycoprotein was detected in fractions 2-4.
 以上の結果から、植物細胞に導入したN‐アセチルガラクトサミン転移遺伝子及びガラクトース転移遺伝子が機能し、植物タンパク質にO型糖鎖を結合できることが明らかになった。 From the above results, it was revealed that the N-acetylgalactosamine transfer gene and galactose transfer gene introduced into plant cells function and can bind O-type sugar chains to plant proteins.
 本発明に係る植物においてO型糖鎖結合タンパク質を製造するためのキットは、以上のように、ポリペプチドN‐アセチルガラクトサミン転移酵素、及びそれをコードするポリヌクレオチドのうちの少なくとも一つを備えているので、植物を用いて、O型糖鎖修飾された有用タンパク質を製造できるという効果を奏する。 As described above, the kit for producing an O-type sugar chain binding protein in a plant according to the present invention comprises at least one of the polypeptide N-acetylgalactosamine transferase and the polynucleotide encoding the same. As a result, it is possible to produce useful proteins modified with O-type sugar chains using plants.
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内で、いろいろと変更して実施することができるものである。 The specific embodiments or examples made in the detailed description section of the invention are merely to clarify the technical contents of the present invention, and are limited to such specific examples and are interpreted in a narrow sense. It should be understood that various modifications may be made within the spirit of the invention and the scope of the following claims.
 本発明に係るキットを用いれば、植物においてO型糖鎖をタンパク質に結合させることが可能となるので、有用タンパク質を植物で生産することができる。よって、本発明は、植物の工業的利用用途の拡大に寄与すると共に、医薬品産業、食品産業等の幅広い産業において利用可能である。 If the kit according to the present invention is used, an O-type sugar chain can be bound to a protein in a plant, so that a useful protein can be produced in the plant. Therefore, the present invention contributes to the expansion of industrial uses of plants, and can be used in a wide range of industries such as the pharmaceutical industry and the food industry.

Claims (6)

  1.  ポリペプチドN‐アセチルガラクトサミン転移酵素、及びそれをコードするポリヌクレオチドのうちの少なくとも一つを備えていることを特徴とする植物においてO型糖鎖結合タンパク質を製造するためのキット。 A kit for producing an O-type sugar chain binding protein in a plant, comprising at least one of a polypeptide N-acetylgalactosamine transferase and a polynucleotide encoding the same.
  2.  ガラクトース転移酵素、及びその酵素をコードするポリヌクレオチドのうちの少なくとも一つをさらに備えていることを特徴とする請求の範囲第1項に記載のキット。 The kit according to claim 1, further comprising at least one of galactose transferase and a polynucleotide encoding the enzyme.
  3.  ポリペプチドN‐アセチルガラクトサミン転移酵素をコードするポリヌクレオチド、及びN‐アセチルガラクトサミンを結合させる対象のポリペプチドをコードするポリヌクレオチドを備えていることを特徴とする形質転換植物。 A transformed plant comprising a polynucleotide encoding a polypeptide N-acetylgalactosamine transferase and a polynucleotide encoding a target polypeptide to which N-acetylgalactosamine is bound.
  4.  ポリペプチドN‐アセチルガラクトサミン転移酵素、及びそれをコードするポリヌクレオチドのうちの少なくとも一つを含むことを特徴とする植物においてO型糖鎖結合タンパク質を製造するための組成物。 A composition for producing an O-type sugar chain binding protein in a plant, comprising at least one of a polypeptide N-acetylgalactosamine transferase and a polynucleotide encoding the same.
  5.  植物内又は植物の抽出物内で、ポリペプチドN‐アセチルガラクトサミン転移酵素を合成する合成工程を含むことを特徴とするO型糖鎖結合タンパク質の製造方法。 A method for producing an O-type sugar chain binding protein comprising a synthesis step of synthesizing a polypeptide N-acetylgalactosamine transferase in a plant or a plant extract.
  6.  植物の抽出物に、ポリペプチドN‐アセチルガラクトサミン転移酵素を混合する混合工程を含むことを特徴とするO型糖鎖結合タンパク質の製造方法。 A method for producing an O-type sugar chain-binding protein, comprising a mixing step of mixing a polypeptide N-acetylgalactosamine transferase with a plant extract.
PCT/JP2009/055927 2008-03-27 2009-03-25 Kit for producing o-glycosylated protein in plant and use thereof WO2009119649A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008084649A JP2011115043A (en) 2008-03-27 2008-03-27 Kit for producing o-glycosylated protein in plant and use thereof
JP2008-084649 2008-03-27

Publications (1)

Publication Number Publication Date
WO2009119649A1 true WO2009119649A1 (en) 2009-10-01

Family

ID=41113840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055927 WO2009119649A1 (en) 2008-03-27 2009-03-25 Kit for producing o-glycosylated protein in plant and use thereof

Country Status (2)

Country Link
JP (1) JP2011115043A (en)
WO (1) WO2009119649A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6934666B2 (en) * 2018-01-18 2021-09-15 国立研究開発法人産業技術総合研究所 A method for producing a xylose-modified protein in a plant cell, a method for producing a core oligosaccharide-modified protein, and a method for producing a proteoglycan.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013516A1 (en) * 1994-11-01 1996-05-09 Kirin Beer Kabushiki Kaisha Peptide sequence that forms mucin sugar chain and technique for modifying protein to be linked with mucin sugar chain
WO2000034490A1 (en) * 1998-12-09 2000-06-15 Tatsuji Seki A method for manufacturing glycoproteins having human-type glycosylation
WO2003078614A2 (en) * 2002-03-19 2003-09-25 Plant Research International B.V. Gntiii (udp-n-acethylglucosamine:beta-d mannoside beta (1,4)-n-acethylglucosaminy ltransferase iii) expression in plants
WO2006025443A1 (en) * 2004-08-31 2006-03-09 National Institute Of Advanced Industrial Scienceand Technology Genetically modified plant proudcing lactosyl ceramide and utilization of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013516A1 (en) * 1994-11-01 1996-05-09 Kirin Beer Kabushiki Kaisha Peptide sequence that forms mucin sugar chain and technique for modifying protein to be linked with mucin sugar chain
WO2000034490A1 (en) * 1998-12-09 2000-06-15 Tatsuji Seki A method for manufacturing glycoproteins having human-type glycosylation
WO2003078614A2 (en) * 2002-03-19 2003-09-25 Plant Research International B.V. Gntiii (udp-n-acethylglucosamine:beta-d mannoside beta (1,4)-n-acethylglucosaminy ltransferase iii) expression in plants
WO2006025443A1 (en) * 2004-08-31 2006-03-09 National Institute Of Advanced Industrial Scienceand Technology Genetically modified plant proudcing lactosyl ceramide and utilization of the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TENNO, M.: "Structure-function Relationship of UDP-GalNAc: Polypeptide N-acetylgalactosaminyltransferase 1(GalNAc-T1)-Function of the Lectin Domain of GalNAc-T1", KYOTO SANGYO DAIGAKU RONSHU SHIZEN KAGAKU KEIRETSU, no. 33, 2004, pages 60 - 85 *
TENNO, M.: "Structure-function Relationship of UDP-GalNAc:Polypeptide N-Acetylgalactosaminyltransferase 1(GalNAc-T1)-Function of Conserved Aromatic Residues in the Gal/GalNAc-T Motif of GalNAc-T1", KYOTO SANGYO DAIGAKU RONSHU SHIZEN KAGAKU KEIRETSU, no. 33, 2004, pages 45 - 59 *

Also Published As

Publication number Publication date
JP2011115043A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
ES2734276T3 (en) Production of glycosylated polypeptides in microalgae
JP4890712B2 (en) Mammalian glycosylation in plants
JP5350573B2 (en) GNTIII expression in plants
AU2003294912B2 (en) Production of heterologous glycosylated proteins in bryophyte cells
ES2348857T3 (en) IMPROVEMENTS IN OR RELATED TO PROTEIN PRODUCTION.
KR101426576B1 (en) Mammalian-type glycosylation in plants by expression of non-mammalian glycosyltransferases
Wilbers et al. The N‐glycan on Asn54 affects the atypical N‐glycan composition of plant‐produced interleukin‐22, but does not influence its activity
WO2009119649A1 (en) Kit for producing o-glycosylated protein in plant and use thereof
US9024110B2 (en) Methods for glyco-engineering plant cells for controlled human O-glycosylation
WO2018069279A1 (en) Production of polysialylated polypeptides in plants and plant cells
JP4667007B2 (en) Lignan glycosylation enzyme and its use
JP5623683B2 (en) Plant cells with animal-type glycosylation function
JP2006333701A (en) Method for producing glycoprotein having animal type sugar chain
US8846373B2 (en) Methods of using a bacterial GlcNAc-6-P 2′- epimerase to promote sialylation of glycoconjugates
EP2789686A1 (en) Expression of phosphorylated glycoproteins in plants
Jing et al. GONST2 transports GDP-Mannose for sphingolipid glycosylation in the Golgi apparatus of Arabidopsis
KR101606918B1 (en) Plant synthesizing humanized paucimannose type N-glycan and uses thereof
JP2012183022A (en) Enzyme gene for adding sugar chain originated from tobacco and suppression of the same
WO2003078617A1 (en) Production of usppase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09723789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09723789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP