WO2009119608A1 - Optical unit, optical information recording/reproducing device and optical information recording/reproducing method - Google Patents

Optical unit, optical information recording/reproducing device and optical information recording/reproducing method Download PDF

Info

Publication number
WO2009119608A1
WO2009119608A1 PCT/JP2009/055858 JP2009055858W WO2009119608A1 WO 2009119608 A1 WO2009119608 A1 WO 2009119608A1 JP 2009055858 W JP2009055858 W JP 2009055858W WO 2009119608 A1 WO2009119608 A1 WO 2009119608A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
optical
reproducing
light
focus
Prior art date
Application number
PCT/JP2009/055858
Other languages
French (fr)
Japanese (ja)
Inventor
龍一 片山
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2009119608A1 publication Critical patent/WO2009119608A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1378Separate aberration correction lenses; Cylindrical lenses to generate astigmatism; Beam expanders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms

Definitions

  • the present invention relates to an optical unit for recording and reproducing information three-dimensionally with respect to an optical recording medium, an optical information recording and reproducing apparatus using the optical unit, and an optical information recording and reproducing method.
  • information is recorded and reproduced three-dimensionally with respect to the optical recording medium by utilizing not only the in-plane dimension of the optical recording medium but also the dimension in the thickness direction.
  • As one of the three-dimensional recording / reproducing techniques there is a multilayer recording technique using an optical recording medium having a plurality of recording layers. Such an optical unit for multilayer recording is disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-51129.
  • FIG. 1 is a block diagram for explaining an optical unit described in Japanese Patent Application Laid-Open No. 2003-51129.
  • This optical unit includes a laser 52, a convex lens 53a, a convex lens 53b, a diffraction lens 54, a polarizing beam splitter 55, a quarter wavelength plate 56, a mirror 57, an objective lens 58, and a photodetector 59. It comprises.
  • a disk 51 used in this optical unit includes a substrate 60 and a plurality of recording layers 61a to 61d.
  • the laser 52, the convex lens 53a, the diffractive lens 54, the polarization beam splitter 55, and the quarter wavelength plate 56 are arranged in this order so as to share the same first optical axis.
  • the polarizing beam splitter 55, the convex lens 53b, and the photodetector 59 are arranged in this order, sharing a second optical axis that intersects the first optical axis at a right angle in the polarizing beam splitter 55.
  • a mirror 57 is disposed on the extended line of the first optical axis at an angle of 45 degrees with respect to the first optical axis.
  • the objective lens 58 and the disk 51 are arranged in this order while sharing a third optical axis that intersects the first optical axis at a right angle in the mirror 57.
  • the beam emitted from the laser 52 passes through the convex lens 53a and is converted from divergent light into parallel light, and is divided by the diffraction lens 54 into five beams 63a to 63e.
  • the beam 63a is a recording / reproducing beam
  • the beams 63b to 63e are focus control beams.
  • These beams are incident on the polarization beam splitter 55 as P-polarized light, and almost 100% are transmitted, transmitted through the quarter-wave plate 56, converted from linearly polarized light to circularly polarized light, reflected by the mirror 57, and objective lens.
  • the light is condensed in the disk 51 by 58.
  • the five beams reflected in the disk 51 pass through the objective lens 58 in the reverse direction, are reflected by the mirror 57, pass through the quarter wavelength plate 56, and are converted from circularly polarized light to linearly polarized light.
  • the light converted into the linearly polarized light is incident on the polarization beam splitter 55 as S-polarized light, and almost 100% is reflected, passes through the convex lens 53b, is converted from parallel light into convergent light, and is received by the photodetector 59. .
  • a focus error signal for controlling the condensing position of the beam 63a in the optical axis direction is generated.
  • a reference surface 62 having a groove is formed on a substrate 60, and four recording layers 61a to 61d are formed thereon.
  • the beam 63a is condensed in the recording layers 61a, 61b, 61c, and 61d, respectively. Therefore, information can be recorded / reproduced with respect to each of the recording layers 61a to 61d using the beam 63a.
  • FIG. 2A to 2B are cross-sectional views for explaining the configuration of the diffractive lens 54.
  • FIG. 2A shows a configuration in which a diffractive lens 54a, which is a volume type diffractive lens, is used.
  • FIG. 2B shows a configuration in which a diffractive lens 54b, which is a Fresnel type diffractive lens, is used.
  • zero-order light from the diffractive lens 54a or 54b is used as the beam 63a
  • first-order to fourth-order diffracted light from the diffractive lens 54a or 54b is used as the beams 63b to 63e, respectively.
  • the diffraction lens 54 always generates four beams 63b to 63e, which are focus control beams. For this reason, the diffraction efficiency for each beam in the diffractive lens 54 cannot be increased, and the light quantity of each beam cannot be increased.
  • the photodetector 59 unnecessary beams that are not focused on the reference plane 62 are also received by the photodetector 59. As a result, noise and crosstalk are mixed in the focus error signal, and the focusing position of the beam 63a, which is a recording / reproducing beam, cannot be correctly controlled in the optical axis direction.
  • bit-type hologram recording technology As one of the three-dimensional recording / reproducing technologies, there is a bit-type hologram recording technology. The two beams facing each other are focused and interfered at the same position in the recording layer of the optical recording medium to form a minute diffraction grating at the focused position. Thereby, information is recorded. Information is reproduced by condensing one of the two beams in the recording layer of the optical recording medium and detecting the reflected light from the diffraction grating.
  • an optical unit for recording such a bit-type hologram, “Drive System for Micro-Reflector Recording Employing Blue Laser Diode” (Internal Symposium on Optical Memory. is there. However, this optical unit does not have a function of correctly controlling the focusing position of the recording / reproducing beam in the optical axis direction.
  • Japanese Patent Application Laid-Open No. 2000-292755 discloses a technique relating to an aberration correction element.
  • this aberration correction element a plurality of transparent conductive layers and a plurality of electro-optical material layers are alternately laminated so as to include at least three transparent conductive layers and two or more electro-optical material layers.
  • This aberration correction element corrects aberrations as follows. That is, an arbitrary transparent conductive layer among the plurality of transparent conductive layers is divided. At least some of the divided transparent conductive layers function as a plurality of electrodes. By using these plural electrodes to electrically control the refractive index of the electro-optic material layer, the optical path difference is changed depending on the location, the phase of the incident light is controlled, and the aberration is corrected.
  • Japanese Patent Application Laid-Open No. 2002-74731 discloses a technique related to an optical pickup device.
  • This optical pickup device includes a recording medium, a semiconductor laser light source, an objective lens, an actuator, an optical axis direction changer, and a change detection means.
  • the recording medium has a recording layer.
  • the semiconductor laser light source emits laser light.
  • the objective lens focuses the laser light in the recording layer of the recording medium.
  • the actuator drives the objective lens at least in the focus direction.
  • the optical axis direction shifter is provided between the objective lens and the light source.
  • the shift detection means detects the shift of the optical axis direction shifter.
  • the optical pickup device has the following characteristics.
  • a pupil diameter of the objective lens is set to a and the laser entering the objective lens
  • the maximum movable range of the optical axis direction changer is set to a range where a / w is 0.8 or less, where w is the capturing range of the intensity that is 1 / e 2 of light.
  • Japanese Patent Laid-Open No. 2002-334476 discloses a technique related to an optical pickup device.
  • This optical pickup device includes a light source, an objective lens, a condensing optical system, a detecting unit, and a driving unit.
  • the objective lens condenses the light beam from the light source on the information recording surface of the optical information recording medium.
  • the condensing optical system includes a spherical aberration correcting unit that is disposed in an optical path between the light source and the objective lens and corrects a variation in spherical aberration.
  • the detecting means detects a change in spherical aberration by detecting reflected light from the information recording surface.
  • the driving unit drives the spherical aberration correcting unit to correct the variation of the spherical aberration according to the detection result of the detecting unit.
  • the spherical aberration correcting means has a movable element that can be displaced along at least one optical axis, and the drive means is at least a first actuator having a different response frequency band for moving the movable element. And a second actuator.
  • Japanese Patent Laid-Open No. 2003-77142 discloses a technique related to a focusing control device.
  • the focusing control device includes an objective lens, an aberration correction unit, and a photodetector.
  • the objective lens focuses the light beam on the recording layer of the multilayer recording medium having a plurality of recording layers.
  • the aberration correction unit corrects the aberration of the reflected light beam from the recording layer.
  • the photodetector receives the reflected light beam.
  • the optical pickup focusing control device includes a first generator, a second generator, and a controller.
  • the first generator generates a focus error value of the light beam from the detection signal of the photodetector.
  • the second generator generates an aberration amount of the reflected light beam from the detection signal of the photodetector.
  • the controller controls the focus position of the objective lens based on the focus error value, and controls the aberration correction amount of the aberration correction unit based on the aberration amount. Note that the controller executes the focus jump after adjusting the aberration correction unit to the aberration correction value for the other recording layer at the time of the focus jump from one recording layer to the other recording layer.
  • Japanese Patent Application Laid-Open No. 2005-284081 discloses a technique related to an optical element.
  • This optical element is disposed in the optical path of linearly polarized light emitted from a point light source.
  • This optical element includes a birefringent substrate and switching means.
  • the birefringent substrate has an axis having a high refractive index directed in a direction parallel or perpendicular to the polarization direction.
  • the switching means switches the angle formed between the polarization direction of the linearly polarized light and the high refractive index axis of the birefringent substrate to a direction perpendicular or parallel within a plane orthogonal to the optical path.
  • Japanese Patent Application Laid-Open No. 2005-317120 discloses recording / reproduction with respect to an optical recording medium in which a plurality of recording layers are laminated, or recording / reproduction with respect to a plurality of optical recording media having different protective substrate thicknesses for protecting the recording surface.
  • a technique related to an optical pickup performed by a light beam having a wavelength and a numerical aperture is disclosed.
  • the optical pickup includes a first light source, a second light source, a third light source, an objective lens, a diffraction unit, a liquid crystal diffraction unit, a light receiving unit, an optical recording medium detection unit, and a liquid crystal control unit.
  • the first light source emits a first light beam having a first wavelength.
  • the second light source emits a second light beam having a second wavelength.
  • the third light source emits a third light beam having a third wavelength.
  • the objective lens collects the first, second and third light beams on the individual optical recording media.
  • the diffracting means condenses the first light beam on the first optical recording medium having the first protective substrate thickness through the objective lens, and the second light beam has the second protective substrate thickness.
  • the second optical recording medium is condensed, and the third light beam is condensed on the third optical recording medium having the third protective substrate thickness. Therefore, the diffractive means is disposed immediately before the light source side of the objective lens.
  • the liquid crystal diffractive means is disposed immediately before the light source side of the diffractive means, and changes the refractive index distribution in the cross section perpendicular to the traveling direction of the light beam passing therethrough.
  • the light receiving means receives the reflected beam reflected by each optical recording medium and converts it into an electrical signal.
  • the optical recording medium detection means detects the type of an optical recording medium in which a plurality of recording layers are laminated or an optical recording medium having a different protective substrate thickness for protecting the recording surface.
  • the liquid crystal control means controls the liquid crystal alignment pattern of the liquid crystal diffraction means according to the type of the recording layer or the optical recording medium detected by the optical recording medium detection means.
  • the objective lens, the diffraction unit, and the liquid crystal diffraction unit are fixed to each other, and the first light beam, the second light beam, and the third light beam are incident on the liquid crystal diffraction unit in an infinite system.
  • Japanese Patent Laid-Open No. 2006-258838 discloses a technique related to an optical scanning device.
  • the optical scanning device includes a light source, a focal length varying unit, an optical deflecting unit, an optical scanning unit, a beam spot diameter detecting unit, and a beam spot position detecting unit.
  • the focal length changing means can change the focal length.
  • the light deflecting means can deflect the light beam at least in the sub-scanning direction.
  • the optical scanning unit scans the light beam.
  • the imaging lens forms an image on the image plane of the light beam scanned by the optical scanning unit.
  • the beam spot diameter detecting means detects, converts, or predicts the beam spot diameter.
  • the beam spot position detecting means detects, converts, or predicts at least the beam spot position in the sub-scanning direction.
  • This optical scanning device controls both the beam spot diameter and the beam spot position based on the detection results of the beam spot diameter detecting means and the beam spot position detecting means.
  • Japanese Patent Application Laid-Open No. 2006-302367 discloses a technique related to an optical pickup.
  • This optical pickup includes a light source, a collimating lens, an objective lens, and a light receiving element.
  • the collimating lens converts divergent light emitted from the light source into parallel light.
  • the objective lens focuses the light beam on the optical recording medium.
  • the light receiving element detects reflected light from the optical recording medium.
  • at least one of a collimator lens and an objective lens has a plurality of electrodes, an insulating layer, and an ultraviolet curable or thermosetting conductive liquid on one surface of a solid lens formed of resin or glass. It is comprised by the liquid lens laminated
  • An object of the present invention is to solve the above-described problems in an optical unit and an optical information recording / reproducing apparatus for three-dimensional information recording / reproducing with respect to an optical recording medium, and to collect a recording / reproducing beam.
  • An object of the present invention is to provide an optical unit capable of correctly controlling the position in the optical axis direction, an optical information recording / reproducing apparatus using the optical unit, and an optical information recording / reproducing method.
  • the optical unit of the present invention for an optical recording medium having a recording layer and a focus control reference surface, condenses a recording / reproducing beam in the recording layer and a focus control beam on the focus control reference surface, Information is recorded and reproduced by a recording / reproducing beam.
  • the optical unit includes a light source, an objective lens system, a photodetector, variable focus means, and focus movement means.
  • the light source emits a recording / reproducing beam and a focus control beam.
  • the objective lens system is for condensing a recording / reproducing beam and a focus control beam on an optical recording medium.
  • the photodetector receives the reflected light of the recording / reproducing beam and the reflected light of the focus control beam from the optical recording medium.
  • the variable focus means is for changing the interval between the focus position of the recording / reproducing beam and the focus position of the focus control beam.
  • the focus moving means is for enabling the focusing positions of the recording / reproducing beam and the focus control beam to be moved in the optical axis direction.
  • An optical information recording / reproducing method includes a step of emitting a recording / reproducing beam and a focus control beam from a light source, a step of condensing the recording / reproducing beam in a recording layer of an optical recording medium, and a focus control.
  • the step of condensing the beam for focusing on the reference surface for focus control of the optical recording medium, and the reflected light of the recording / reproducing beam and the reflected light of the focus controlling beam from the optical recording medium are received by the photodetector
  • an optical unit an optical information recording / reproducing apparatus, an optical unit capable of correctly controlling the focusing position of a recording / reproducing beam in the optical axis direction without mixing noise and crosstalk into the focus error signal.
  • An information recording / reproducing method can be provided.
  • FIG. 1 is a block diagram for explaining an optical unit in the related art.
  • 2A to 2B are cross-sectional views for explaining the configuration of a diffractive lens in the related art.
  • FIG. 2A shows a configuration in which a diffractive lens 54a, which is a volume type diffractive lens, is used.
  • FIG. 2B shows a configuration in which a diffractive lens 54b, which is a Fresnel type diffractive lens, is used.
  • FIG. 3 is a block diagram showing a schematic configuration of the optical unit according to the first embodiment of the present invention.
  • FIGS. 4A to 4B are diagrams showing optical paths of an incident beam to the disk 2a and a reflected beam from the disk 2a when information is recorded on the disk 2a.
  • FIG. 4A is a diagram when the beam 25a is selectively generated.
  • FIG. 4B is a diagram when the beam 25i is selectively generated.
  • 5A to 5B are diagrams showing optical paths of an incident beam to the disk 2a and a reflected beam from the disk 2a when information is reproduced from the disk 2a.
  • FIG. 5A is a diagram when the beam 25a is selectively generated.
  • FIG. 5B is a diagram when the beam 25i is selectively generated.
  • FIG. 6 is a cross-sectional view of the active diffractive lens 14.
  • FIG. 7 is a table showing the relationship between the voltage applied to the liquid crystal layer in the active diffractive lens 14 and the focal length of the diffractive lens.
  • FIG. 8 is a block diagram showing a schematic configuration of the optical information recording / reproducing apparatus according to the first embodiment of the present invention.
  • FIG. 9 is a block diagram showing a schematic configuration of an optical unit according to the second embodiment of the present invention.
  • 10A to 10B are diagrams showing optical paths of an incident beam to the disk 2b and a reflected beam from the disk 2b when information is recorded on the disk 2b.
  • FIG. 10A is a diagram when the beam 26a is selectively generated.
  • FIG. 10B is a diagram when the beam 26i is selectively generated.
  • FIGS. 11A to 11B are diagrams showing optical paths of an incident beam to the disk 2b and a reflected beam from the disk 2b when information is reproduced from the disk 2b.
  • FIG. 11A is a diagram when the beam 26a is selectively generated.
  • FIG. 11B is a diagram when the beam 26i is selectively generated.
  • FIG. 12 is a block diagram showing a schematic configuration of an optical information recording / reproducing apparatus according to the second embodiment of the present invention.
  • FIG. 3 is a block diagram showing a schematic configuration of the optical unit according to the first embodiment of the present invention.
  • This optical unit includes a laser 3a, a convex lens 4a, an active wavelength plate 5, a polarization beam splitter 7a, a mirror 8a, an interference filter 9, a quarter wavelength plate 11a, and an objective lens 12a.
  • This optical unit further includes a mirror 8b, a mirror 8c, a mirror 10a, a quarter-wave plate 11b, and an objective lens 12b.
  • the optical unit further includes a convex lens 4f, a photodetector 13a, a laser 3b, a convex lens 4g, a polarizing beam splitter 7d, an active diffraction lens 14, a convex lens 4h, a cylindrical lens 15, and a photodetector 13b. It comprises.
  • Lasers 3a and 3b which are light sources, are semiconductor lasers that emit a recording / reproducing beam having a wavelength of 405 nm and a focus controlling beam having a wavelength of 650 nm, respectively.
  • the interference filter 9 reflects a beam having a wavelength of 405 nm and transmits a beam having a wavelength of 650 nm.
  • the active diffractive lens 14 which is a variable focus unit selectively generates one of a plurality of diffracted beams having different orders from the incident beam.
  • the objective lenses 12a and 12b correspond to focal point moving means and are mounted on an actuator (not shown).
  • the beam emitted from the laser 3a passes through the convex lens 4a, is converted from divergent light into parallel light, and enters the active wave plate 5.
  • the active wave plate 5 has an effect of a quarter wave plate with respect to incident light when information is recorded on the disk 2a which is an optical recording medium. Further, when reproducing information from the disk 2a, the active wave plate 5 has the effect of a half wave plate with respect to the incident light. Therefore, when recording information on the disk 2a, the beam incident on the active wave plate 5 is transmitted through the active wave plate 5 and converted from linearly polarized light to circularly polarized light, and about 50% of the light is polarized by the polarizing beam splitter 7a.
  • the polarization beam splitter 7a As a P-polarized component.
  • the beam incident on the active wave plate 5 is transmitted through the active wave plate 5 and the polarization direction is changed by 90 °, and is incident on the polarization beam splitter 7a as S-polarized light. % Is reflected.
  • the active wavelength plate 5 and the polarization beam splitter 7a correspond to beam switching means.
  • the active wave plate 5 is configured to sandwich a liquid crystal layer between two substrates.
  • Transparent electrodes for applying an alternating voltage to the liquid crystal layer are formed on the surface of the two substrates on the liquid crystal layer side.
  • the liquid crystal layer has uniaxial refractive index anisotropy. The thickness of the liquid crystal layer is determined so that the phase difference between the polarization component in the direction parallel to the optical axis and the polarization component in the direction perpendicular to the optical axis generated in the beam transmitted through the liquid crystal layer is ⁇ . .
  • the direction of the optical axis of the liquid crystal layer is an intermediate direction between the direction perpendicular to the optical axis of the incident light and the direction parallel to the optical axis.
  • the active wave plate 5 has the effect of a quarter wave plate.
  • the direction of the optical axis of the liquid crystal layer is a direction perpendicular to the optical axis of the incident light.
  • the active wave plate 5 has the effect of a half wave plate.
  • the beam reflected by the polarization beam splitter 7a is reflected by the mirror 8a and the interference filter 9, passes through the quarter wavelength plate 11a, and is converted from linearly polarized light to circularly polarized light.
  • the light is condensed in the disk 2a by the lens 12a.
  • the beam that has passed through the polarizing beam splitter 7a is reflected by the mirror 8b, the mirror 8c, and the mirror 10a, passes through the quarter-wave plate 11b, is converted from linearly polarized light to circularly polarized light, and is converted into linearly polarized light by the objective lens 12b. It is focused on.
  • the beam reflected by the polarization beam splitter 7a is reflected by the mirror 8a and the interference filter 9, passes through the quarter wavelength plate 11a, and is converted from linearly polarized light to circularly polarized light.
  • the light is condensed in the disk 2a by the objective lens 12a.
  • the beam reflected in the disk 2a passes through the objective lens 12a in the reverse direction, passes through the quarter-wave plate 11a, is converted from circularly polarized light to linearly polarized light, is reflected by the interference filter 9 and the mirror 8a, and is polarized.
  • the light enters the splitter 7a as P-polarized light.
  • Almost 100% of the light incident on the polarization beam splitter 7a is transmitted, passes through the convex lens 4f, is converted from parallel light into convergent light, and is received by the photodetector 13a. Based on the output from the photodetector 13a, a reproduction signal indicating information recorded on the disc 2a is generated.
  • the beam emitted from the laser 3b passes through the convex lens 4g and is converted from divergent light to weak convergent light, and enters the polarization beam splitter 7d as P-polarized light, and almost 100% is transmitted.
  • the light that has passed through the polarization beam splitter 7d is diffracted by the active diffraction lens 14, passes through the interference filter 9, passes through the quarter wavelength plate 11a, and is converted from linearly polarized light to circularly polarized light. It is condensed inside.
  • the beam reflected in the disk 2a passes through the objective lens 12a in the reverse direction, passes through the quarter-wave plate 11a, is converted from circularly polarized light to linearly polarized light, and passes through the interference filter 9.
  • the light transmitted through the interference filter 9 is diffracted by the active diffractive lens 14, enters the polarization beam splitter 7 d as S-polarized light, and is reflected almost 100%.
  • the light reflected by the polarizing beam splitter 7d is transmitted from the convex lens 4h to be converted from weak divergent light to convergent light, transmitted through the cylindrical lens 15 and given astigmatism, and received by the photodetector 13b.
  • a focus error signal for controlling the condensing position of the recording / reproducing beam in the optical axis direction is generated by a known astigmatism method.
  • FIGS. 4A to 4B are diagrams showing optical paths of an incident beam to the disk 2a and a reflected beam from the disk 2a when information is recorded on the disk 2a.
  • FIG. 4A is a diagram when the beam 25a is selectively generated.
  • FIG. 4B is a diagram when the beam 25i is selectively generated.
  • FIG. 5 is a diagram showing optical paths of an incident beam to the disk 2a and a reflected beam from the disk 2a when information is reproduced from the disk 2a.
  • FIG. 5A is a diagram when the beam 25a is selectively generated.
  • FIG. 5B is a diagram when the beam 25i is selectively generated.
  • the disk 2a is configured to sandwich the recording layer 17a between the substrates 16a and 16b.
  • Wavelength selection layers 18a and 18b are formed on the surfaces of the substrates 16a and 16b on the recording layer 17a side, respectively.
  • the wavelength selection layers 18a and 18b transmit a beam having a wavelength of 405 nm and reflect the beam having a wavelength of 650 nm.
  • the wavelength selection layer 18a corresponds to a focus control reference plane.
  • glass is used as the material of the substrates 16a and 16b.
  • a photopolymer is used as a material of the recording layer 17a.
  • silicon dioxide and titanium dioxide are used as the material of the wavelength selection layers 18a and 18b.
  • 4A to 4B represent beams 23a and 23b emitted from the laser 3a, the beam reflected by the polarization beam splitter 7a and the beam transmitted through the polarization beam splitter 7a, respectively.
  • a beam 23a shown in FIGS. 5A to 5B represents a beam emitted from the laser 3a and reflected by the polarization beam splitter 7a.
  • the beams 25a to 25i shown in FIGS. 4A to 4B or 5A to 5B represent beams that can be selectively generated by the active diffraction lens 14 from the beam emitted from the laser 3b.
  • a solid line and a dotted line in the figure respectively indicate a beam that is actually generated and a beam that is not actually generated.
  • 4A and 5A, and FIGS. 4B and 5B show the optical paths of the beams when the beams 25a and 25i are selectively generated, respectively.
  • the objective lens 12a is driven in the optical axis direction by an actuator (not shown) so that the beam 25a is condensed on the wavelength selection layer 18a.
  • the beam 25a is reflected by the wavelength selection layer 18a and received by the photodetector 13b.
  • the interval between the condensing position of the beam 23a and the condensing position of the beam 25a is narrow. Therefore, the beam 23a is condensed on the condensing point 21a in the recording layer 17a, which is a position close to the wavelength selection layer 18a.
  • the objective lens 12b is driven in the optical axis direction by an actuator (not shown) so that the beam 23b is similarly focused on the focusing point 21a.
  • the beam 23a and the beam 23b interfere at the condensing point 21a, and a minute diffraction grating is formed at the condensing point 21a.
  • the objective lens 12a is driven in the optical axis direction by an actuator (not shown) so that the beam 25i is condensed on the wavelength selection layer 18a.
  • the beam 25i is reflected by the wavelength selection layer 18a and received by the photodetector 13b.
  • the distance between the condensing position of the beam 23a and the condensing position of the beam 25i is wide. Therefore, the beam 23a is condensed on the condensing point 21b in the recording layer 17a that is far from the wavelength selection layer 18a.
  • the objective lens 12b is driven in the optical axis direction by an actuator (not shown) so that the beam 23b is similarly focused on the focusing point 21b.
  • the beam 23a and the beam 23b interfere at the condensing point 21b, and a minute diffraction grating is formed at the condensing point 21b.
  • the objective lens 12a is driven in the optical axis direction by an actuator (not shown) so that the beam 25a is condensed on the wavelength selection layer 18a.
  • the beam 25a is reflected by the wavelength selection layer 18a and received by the photodetector 13b.
  • the interval between the condensing position of the beam 23a and the condensing position of the beam 25a is narrow. Therefore, the beam 23a is focused on the diffraction grating 22a in the recording layer 17a that is close to the wavelength selection layer 18a.
  • the diffraction grating 22a is formed at the condensing point 21a in FIG. 4A.
  • the beam 23a is reflected by the diffraction grating 22a and received by the photodetector 13a.
  • the objective lens 12a is driven in the optical axis direction by an actuator (not shown) so that the beam 25i is condensed on the wavelength selection layer 18a.
  • the beam 25i is reflected by the wavelength selection layer 18a and received by the photodetector 13b.
  • the distance between the condensing position of the beam 23a and the condensing position of the beam 25i is wide. Therefore, the beam 23a is focused on the diffraction grating 22b in the recording layer 17a that is far from the wavelength selection layer 18a.
  • the diffraction grating 22b is formed at the condensing point 21b in FIG. 4B.
  • the beam 23a is reflected by the diffraction grating 22b and received by the photodetector 13a.
  • the diffraction grating formed at the condensing position has bit data information.
  • the active diffractive lens 14 selectively generates one of the beams 25a to 25i.
  • the interval between the condensing position of the beam 23a and the condensing position of the selectively generated beam is controlled to change in nine steps.
  • the objective lens 12a is driven so that the selectively generated beam is condensed on the wavelength selection layer 18a, and the condensing position of the beam 23a is changed in nine steps in the optical axis direction in the recording layer 17a. be able to. Therefore, information can be recorded / reproduced in nine layers in the thickness direction of the recording layer 17a using the beams 23a and 23b.
  • a single beam selectively generated by the active diffraction lens 14 among the beams 25a to 25i is used as the focus control beam. For this reason, the light quantity of the selectively generated beam can be increased.
  • the beam focused on the wavelength selection layer 18a is received by the photodetector 13b, there is no unnecessary beam received by the photodetector 13b. As a result, noise and crosstalk are not mixed in the focus error signal, and the condensing position of the beam 23a can be correctly controlled in the optical axis direction.
  • FIG. 6 is a cross-sectional view of the active diffractive lens 14.
  • the liquid crystal layer 28a and the filler 29a are sandwiched between the substrates 27a and 27b, the liquid crystal layer 28b and the filler 29b are sandwiched between the substrates 27b and 27c, and the liquid crystal is interposed between the substrates 27c and 27d.
  • the layer 28c and the filler 29c are sandwiched, and the liquid crystal layer 28d and the filler 29d are sandwiched between the substrates 27d and 27e.
  • Fresnel type diffractive lenses 30a to 30d are formed on the boundary surfaces between the liquid crystal layers 28a to 28d and the fillers 29a to 29d facing each other.
  • Transparent electrodes 31a and 31b for applying an alternating voltage to the liquid crystal layer 28a are formed on the surfaces of the substrates 27a and 27b on the liquid crystal layer 28a side, respectively.
  • Transparent electrodes 31c and 31d for applying an AC voltage to the liquid crystal layer 28b are formed on the surfaces of the substrates 27b and 27c on the liquid crystal layer 28b side, respectively.
  • Transparent electrodes 31e and 31f for applying an AC voltage to the liquid crystal layer 28c are formed on the surfaces of the substrates 27c and 27d on the liquid crystal layer 28c side, respectively.
  • Transparent electrodes 31g and 31h for applying an alternating voltage to the liquid crystal layer 28d are formed on the surfaces of the substrates 27d and 27e on the liquid crystal layer 28d side, respectively.
  • glass is used as the material of the substrates 27a to 27e.
  • liquid crystal layers 28a to 28d for example, nematic liquid crystal is used.
  • fillers 29a to 29d for example, silicon oxynitride is used.
  • transparent electrodes 31a to 31h for example, ITO (Indium Tin Oxide) is used.
  • the liquid crystal layers 28a to 28d have uniaxial refractive index anisotropy.
  • the grating pitch of the diffraction lenses 30a to 30d is p
  • the distance from the optical axis is r
  • the thickness is t
  • the focal length is f
  • p f ⁇ / r
  • t 2 ⁇ / (ne ⁇ no)
  • the focal length f of the diffractive lenses 30a and 30b is different from the focal length f of the diffractive lenses 30c and 30d.
  • the optical axes of the liquid crystal layers 28a and 28c are in a plane parallel to the plane of the paper including the optical axes of the incident lights 32a and 32b, and the optical axes of the liquid crystal layers 28b and 28d are the plane of the paper including the optical axes of the incident lights 32a and 32b. Is in a plane perpendicular to. Further, it is assumed that the polarization direction of the incident light 32a which is a beam emitted from the laser 3b is parallel to the paper surface, and the polarization direction of the incident light 32b which is a beam reflected by the disk 2a is perpendicular to the paper surface.
  • the diffraction lenses 30a and 30c act on the incident light 32a, but the diffraction lenses 30b and 30d do not act.
  • the diffraction lenses 30b and 30d act on the incident light 32b, but the diffraction lenses 30a and 30c do not act.
  • the optical axes of the liquid crystal layers 28a and 28c are perpendicular to the optical axis of the incident light 32a, and the optical axes of the liquid crystal layers 28b and 28d are aligned with the optical axis of the incident light 32b.
  • the diffractive lenses 30a and 30c act as concave lenses having a focal length of ⁇ f with respect to the incident light 32a
  • the diffractive lenses 30b and 30d act as concave lenses with a focal length of ⁇ f with respect to the incident light 32b.
  • the optical axes of the liquid crystal layers 28a and 28c are intermediate between the direction perpendicular to the optical axis of the incident light 32a and the direction parallel to the optical axis.
  • the optical axes of the liquid crystal layers 28b and 28d are intermediate between the direction perpendicular to the optical axis of the incident light 32b and the direction parallel to the optical axis.
  • the diffractive lenses 30a and 30c do not act as lenses for the incident light 32a, and the diffractive lenses 30b and 30d do not act as lenses for the incident light 32b.
  • the optical axes of the liquid crystal layers 28a and 28c are parallel to the optical axis of the incident light 32a, and the optical axes of the liquid crystal layers 28b and 28d are The direction is parallel to the optical axis of the incident light 32b.
  • FIG. 7 is a table showing the relationship between the voltage applied to the liquid crystal layer in the active diffractive lens 14 and the focal length of the diffractive lens.
  • the first liquid crystal layer shown in the figure refers to the liquid crystal layer 28a for the incident light 32a and the liquid crystal layer 28b for the incident light 32b.
  • the second liquid crystal layer refers to the liquid crystal layer 28c for the incident light 32a and the liquid crystal layer 28d for the incident light 32b.
  • the first diffractive lens refers to the diffractive lens 30a for the incident light 32a and the diffractive lens 30b for the incident light 32b.
  • the second diffractive lens refers to a diffractive lens 30c for incident light 32a and a diffractive lens 30d for incident light 32b.
  • the first and second diffractive lenses are respectively selected from the three diffracted lights of the ⁇ 1st order diffracted light, the 0th order light, and the + 1st order diffracted light from the incident light 32a and 32b according to the applied voltages to the first and second liquid crystal layers Is selectively generated.
  • the focal lengths f in the first and second diffractive lenses are expressed as fd1 and fd2, and the values are Fd and Fd, respectively.
  • the focal length fd1 of the first diffractive lens changes in three stages of ⁇ Fd, ⁇ , and + Fd according to the voltage applied to the first liquid crystal layer
  • the focal length fd2 of the second diffractive lens changes to the second liquid crystal.
  • it changes in three stages of -3Fd, ⁇ , and + 3Fd.
  • the active diffractive lens 14 selectively generates one of nine diffracted lights having different orders from the incident lights 32a and 32b in accordance with the voltage applied to the first and second liquid crystal layers.
  • the focal length of the active diffractive lens 14 that is the combined focal length of the two diffractive lenses is expressed as fd
  • the value Fd is sufficiently larger than the interval between the two diffractive lenses
  • 1 / fd 1 / fd1 + 1.
  • Fd2 holds.
  • the focal length fd of the active diffractive lens 14 changes in nine steps as shown in FIGS. 7A to 7I according to the voltage applied to the first and second liquid crystal layers.
  • (A) to (i) shown in FIG. 7 correspond to the state in which the beams 25a to 25i in FIGS. 4A to 4B or 5A to 5B are selectively generated by the active diffraction lens 14, respectively.
  • the active diffractive lens 14 is a first and second diffractive lens that selectively generates one of three diffracted lights of ⁇ 1st order diffracted light, 0th order light, and + 1st order diffracted light from incident light. It is comprised by.
  • ⁇ f becomes -4fo 2 From / 3Fd + ⁇ F to + 4fo 2 / 3Fd + ⁇ F, it changes in 9 steps at an interval of fo 2 / 3Fd.
  • information is recorded / reproduced on nine layers.
  • an active diffractive lens is configured by first, second, and third diffractive lenses that selectively generate one of three diffracted lights of ⁇ 1st order diffracted light, 0th order light, and + 1st order diffracted light from incident light. It is also possible.
  • the focal length of the first diffractive lens is changed in three steps of -Fd, ⁇ , + Fd
  • the focal length of the second diffractive lens is changed in three steps of -3Fd, ⁇ , + 3Fd
  • the focal length of the third diffractive lens is changed. Change to 3 levels of -9Fd, ⁇ , and + 9Fd.
  • ⁇ f changes in 27 steps from -13fo 2 / 9Fd + ⁇ F to + 13fo 2 / 9Fd + ⁇ F at an interval of fo 2 / 9Fd.
  • the first and second diffractive lenses that selectively generate one of five diffracted lights of -2nd order diffracted light, -1st order diffracted light, 0th order light, + 1st order diffracted light, and + 2nd order diffracted light from the incident light. It is also possible to construct an active diffractive lens.
  • the focal length of the first diffractive lens is changed in five steps: -Fd / 2, -Fd, ⁇ , + Fd, + Fd / 2, and the focal length of the second diffractive lens is -5Fd / 2, -5Fd, ⁇ , + 5Fd, Change to 5 levels of + 5Fd / 2.
  • ⁇ f changes in 25 steps from -12fo 2 / 5Fd + ⁇ F to + 12fo 2 / 5Fd + ⁇ F at intervals of fo 2 / 5Fd.
  • FIG. 8 is a block diagram showing the configuration of the optical information recording / reproducing apparatus according to the first embodiment of the present invention.
  • This optical information recording / reproducing apparatus includes an optical unit 1a, a positioner 33a, a spindle 34a, a controller 35, an active wavelength plate driving circuit 36, a modulation circuit 37, a recording signal generating circuit 38, and a laser driving circuit 39.
  • the optical unit 1a corresponds to the above-described optical unit and is mounted on the positioner 33a.
  • the disk 2a is mounted on the spindle 34a.
  • the controller 35 includes an active wave plate driving circuit 36, a circuit from the modulation circuit 37 to the laser driving circuit 39, a circuit from the amplification circuit 40 to the demodulation circuit 42, a laser driving circuit 43, and an active diffractive lens driving circuit 44.
  • the circuit from the amplifier circuit 45 to the objective lens driving circuit 47, the positioner driving circuit 49, and the spindle driving circuit 50 are controlled.
  • the active wave plate driving circuit 36 which is a beam switching means driving circuit, records the active wave plate 5 so that the active wave plate 5 in the optical unit 1a has the effect of a quarter wave plate when recording information on the disk 2a.
  • An AC voltage having an effective value of 2.5 volts is applied to the liquid crystal layer included in.
  • the active wave plate driving circuit 36 applies the liquid crystal layer of the active wave plate 5 so that the active wave plate 5 in the optical unit 1a has the effect of a half wave plate. Do not apply AC voltage.
  • the modulation circuit 37 modulates a signal input from the outside as recording data according to a modulation rule when recording information on the disk 2a.
  • the recording signal generation circuit 38 generates a recording signal for driving the laser 3a in the optical unit 1a based on the signal modulated by the modulation circuit 37.
  • the laser drive circuit 39 supplies the current corresponding to the recording signal to the laser 3a based on the recording signal generated by the recording signal generation circuit 38 to drive the laser 3a.
  • the laser driving circuit 39 supplies a constant current to the laser 3a so as to drive the laser 3a so that the power of the emitted light from the laser 3a becomes constant.
  • the amplification circuit 40 amplifies the voltage signal output from the photodetector 13a in the optical unit 1a when reproducing the information recorded in the form of a diffraction grating on the disk 2a.
  • the reproduction signal processing circuit 41 generates a reproduction signal, equalizes the waveform, and binarizes it based on the voltage signal amplified by the amplifier circuit 40.
  • the demodulation circuit 42 demodulates the signal binarized by the reproduction signal processing circuit 41 according to a demodulation rule, and outputs it as reproduction data to the outside.
  • the laser drive circuit 43 applies to the laser 3b so that the power of the laser light emitted from the laser 3b in the optical unit 1a is constant. A constant current is supplied to drive the laser 3b.
  • the active diffractive lens driving circuit 44 which is a variable focus means driving circuit, has an effective value of 0 in the liquid crystal layers 28a to 28d of the active diffractive lens 14 when recording information on the disk 2a and reproducing information from the disk 2a.
  • An AC voltage of any one of volts, 2.5 volts, and 5 volts is applied.
  • the active diffractive lens 14 in the optical unit 1a selectively generates one of the beams 25a to 25i according to the applied voltage.
  • the amplification circuit 45 amplifies a voltage signal output from the photodetector 13b in the optical unit 1a when recording information on the disk 2a and reproducing information from the disk 2a.
  • the error signal generation circuit 46 generates a focus error signal for driving the objective lenses 12a and 12b in the optical unit 1a based on the voltage signal amplified by the amplification circuit 45.
  • the objective lens drive circuit 47 is a focus moving means drive circuit that corrects a deviation in the optical axis direction of the light collection position of the selectively generated beam of the beams 25a to 25i with respect to the wavelength selection layer 18a.
  • the objective lens drive circuit 47 supplies current corresponding to the focus error signal to an actuator (not shown) based on the focus error signal generated by the error signal generation circuit 46 to drive the objective lenses 12a and 12b in the optical axis direction. .
  • Positioner drive circuit 49 supplies current to a motor (not shown) to move the positioner 33a in the radial direction of the disk 2a.
  • a motor not shown
  • the condensing positions of the beams 23a and 23b move in the radial direction of the disk 2a.
  • the condensing position of the beam 23a is the radius of the disk 2a. Move in the direction.
  • the spindle drive circuit 50 supplies a current to a motor (not shown) to rotate the spindle 34a.
  • a motor not shown
  • the condensing positions of the beams 23a and 23b move in the tangential direction of the disk 2a.
  • the condensing position of the beam 23a is tangent to the disk 2a. Move in the direction.
  • the optical unit forms tracks parallel to the tangential direction of the disk 2a on the wavelength selection layer 18a, and tracks that can move the condensing positions of the beams 23a and 23b in the radial direction of the disk 2a.
  • a moving means may be provided.
  • the optical information recording / reproducing apparatus includes an error signal generation circuit that generates a track error signal for controlling the condensing positions of the beams 23a and 23b in the radial direction of the disk 2a based on the output from the photodetector 13b. And a track moving means driving circuit for driving the track moving means based on the track error signal.
  • the objective lenses 12a and 12b correspond to not only the focus moving means but also the track moving means, and are mounted on an actuator (not shown).
  • the error signal generation circuit 46 Based on the voltage signal amplified by the amplifier circuit 45, the error signal generation circuit 46 generates not only a focus error signal for driving the objective lenses 12a and 12b in the optical unit 1a but also a track error signal.
  • the objective lens driving circuit 47 is not only a focus moving means driving circuit but also a track moving means driving circuit.
  • the objective lens driving circuit 47 corrects the deviation in the radial direction of the disk 2a with respect to the track formed on the wavelength selection layer 18a at the condensing position of the beam selectively generated from the beams 25a to 25i.
  • the objective lens driving circuit 47 supplies a current corresponding to the track error signal to an actuator (not shown) based on the track error signal generated by the error signal generation circuit 46, so that the objective lenses 12a and 12b are connected to the disk 2a. Drive in the radial direction.
  • the optical unit has another optical detector for receiving the recording / reproducing beam transmitted through the disk 2a when information is recorded on the disk 2a, and the condensing position of the beam 23a.
  • Beam condensing position of the beam 23b may be provided with beam moving means capable of moving in the optical axis direction, the radial direction of the disk 2a, and the tangential direction.
  • the optical information recording / reproducing apparatus sets the condensing position of the beam 23b with respect to the condensing position of the beam 23a based on the output from another amplifier circuit and another optical detector in the optical axis direction and the radial direction of the disk 2a.
  • a position shift signal generating circuit that generates a position shift signal for controlling in the tangential direction and a beam moving means driving circuit that drives the beam moving means based on the position shift signal may be provided.
  • the objective lens 12b corresponds to a beam moving means and is mounted on an actuator (not shown).
  • Another amplifier circuit amplifies a voltage signal output from another photodetector in the optical unit 1a when recording information on the disk 2a.
  • the position shift signal generation circuit generates a position shift signal for driving the objective lens 12b in the optical unit 1a based on the voltage signal amplified by another amplifier circuit.
  • Another objective lens driving circuit which is a beam moving means driving circuit, corrects deviations in the optical axis direction, the radial direction, and the tangential direction of the disc 2a with respect to the condensing position of the beam 23b.
  • another objective lens driving circuit supplies an electric current corresponding to the position shift signal to an actuator (not shown) based on the position shift signal generated by the position shift signal generation circuit, thereby moving the objective lens 12b in the optical axis direction. Drive in the radial direction and tangential direction of the disk 2a.
  • FIG. 9 is a block diagram showing a configuration of an optical unit according to the second embodiment of the present invention.
  • This optical unit includes a laser 3a, a convex lens 4a, an active wavelength plate 5, a half mirror 6, a polarizing beam splitter 7b, an interference filter 9, convex lenses 4b and 4c, a polarizing beam splitter 7c, and an objective lens 12c. And a mirror 10b and convex lenses 4d and 4e.
  • the optical unit further includes a convex lens 4f, a photodetector 13a, a laser 3b, a convex lens 4g, a polarization beam splitter 7d, an active diffraction lens 14, a convex lens 4h, a cylindrical lens 15, and a photodetector 13b. It comprises.
  • Lasers 3a and 3b which are light sources, are semiconductor lasers that emit a recording / reproducing beam having a wavelength of 405 nm and a focus controlling beam having a wavelength of 650 nm, respectively.
  • the interference filter 9 reflects a beam having a wavelength of 405 nm and transmits a beam having a wavelength of 650 nm.
  • the polarization beam splitter 7c transmits a P-polarized component for a beam with a wavelength of 405 nm and reflects an S-polarized component, and transmits a P-polarized component and an S-polarized component for a beam with a wavelength of 650 nm.
  • the active diffractive lens 14 which is a variable focus unit selectively generates one of a plurality of diffracted beams having different orders from the incident beam.
  • the relay lens system including the convex lenses 4b and 4c and the relay lens system including the convex lenses 4d and 4e correspond to a focus moving unit.
  • One of the convex lenses 4b and 4c and one of the convex lenses 4d and 4e are mounted on an actuator (not shown).
  • the beam emitted from the laser 3a passes through the convex lens 4a, is converted from divergent light into parallel light, and enters the active wave plate 5.
  • the active wave plate 5 has the effect of a quarter wave plate for incident light when information is recorded on the disk 2b as an optical recording medium, and the full wave plate for incident light when information is reproduced from the disk 2b. With the effect.
  • the beam incident on the active wavelength plate 5 is transmitted from the active wavelength plate 5 to be converted from linearly polarized light to circularly polarized light, and after about 50% is transmitted through the half mirror 6, About 50% passes through the polarization beam splitter 7b as a P polarization component, and about 50% is reflected as an S polarization component by the polarization beam splitter 7b.
  • the beam incident on the active wave plate 5 is transmitted through the active wave plate 5 without changing the polarization state, and after about 50% is transmitted through the half mirror 6, the polarized beam is transmitted. Nearly 100% is transmitted as P-polarized light to the splitter 7b.
  • the active wavelength plate 5 and the polarization beam splitter 7b correspond to beam switching means.
  • the active wave plate 5 is configured to sandwich a liquid crystal layer between two substrates.
  • Transparent electrodes for applying an alternating voltage to the liquid crystal layer are formed on the surface of the two substrates on the liquid crystal layer side.
  • the liquid crystal layer has uniaxial refractive index anisotropy. The thickness of the liquid crystal layer is determined so that the phase difference between the polarization component in the direction parallel to the optical axis and the polarization component in the direction perpendicular to the optical axis generated in the beam transmitted through the liquid crystal layer is ⁇ . .
  • the direction of the optical axis of the liquid crystal layer is an intermediate direction between the direction perpendicular to the optical axis of the incident light and the parallel direction.
  • the active wave plate 5 has the effect of a quarter wave plate.
  • the direction of the optical axis of the liquid crystal layer is parallel to the optical axis of the incident light.
  • the active wave plate 5 has the effect of a full wave plate.
  • the beam transmitted through the polarization beam splitter 7b is reflected by the interference filter 9 and is transmitted through the relay lens system including the convex lenses 4b and 4c to be converted from parallel light into weak convergent light.
  • the converted weak convergent light is incident on the polarization beam splitter 7c as P-polarized light and is almost 100% transmitted, and is condensed in the disk 2b by the objective lens 12c.
  • the beam reflected by the polarization beam splitter 7b is reflected by the mirror 10b, passes through a relay lens system including the convex lenses 4d and 4e, is converted from parallel light to weak divergent light, and is converted into S-polarized light to the polarization beam splitter 7c.
  • the incident light is reflected almost 100% and is collected in the disk 2b by the objective lens 12c.
  • the beam transmitted through the polarization beam splitter 7b is reflected by the interference filter 9 and passes through the relay lens system constituted by the convex lenses 4b and 4c to change from parallel light to weakly convergent light. Converted.
  • the converted weak convergent light is incident on the polarization beam splitter 7c as P-polarized light and is almost 100% transmitted, and is condensed in the disk 2b by the objective lens 12c.
  • the beam reflected in the disk 2b passes through the objective lens 12c in the reverse direction, enters the polarization beam splitter 7c as P-polarized light, and almost 100% is transmitted, and passes through the relay lens system including the convex lenses 4c and 4b.
  • the converted parallel light is reflected by the interference filter 9, is incident on the polarization beam splitter 7b as P-polarized light, and almost 100% is transmitted, and about 50% is reflected by the half mirror 6, and is transmitted through the convex lens 4f and parallel.
  • the light is converted into convergent light and received by the photodetector 13a. Based on the output from the photodetector 13a, a reproduction signal indicating information recorded on the disk 2b is generated.
  • the beam emitted from the laser 3b passes through the convex lens 4g and is converted from divergent light to weak divergent light, enters the polarization beam splitter 7d as P-polarized light, and almost 100% is transmitted, and is diffracted by the active diffraction lens 14. , And passes through the interference filter 9.
  • the transmitted light passes through the relay lens system including the convex lenses 4b and 4c, is converted from weak divergent light into parallel light, passes through the polarization beam splitter 7c, and is condensed in the disk 2b by the objective lens 12c.
  • the beam reflected in the disk 2b passes through the objective lens 12c in the reverse direction, passes through the polarizing beam splitter 7c, passes through the relay lens system constituted by the convex lenses 4c and 4b, and converts from parallel light to weakly convergent light. Then, it passes through the interference filter 9.
  • the transmitted light is diffracted by the active diffractive lens 14, is incident on the polarizing beam splitter 7d as S-polarized light, is reflected by almost 100%, passes through the convex lens 4h, and is converted from weakly convergent light to convergent light, and the cylindrical lens 15 Astigmatism is given through the light and is received by the photodetector 13b.
  • a focus error signal for controlling the condensing position of the recording / reproducing beam in the optical axis direction is generated by a known astigmatism method.
  • FIGS. 10A to 10B are diagrams showing optical paths of an incident beam to the disk 2b and a reflected beam from the disk 2b when information is recorded on the disk 2b.
  • FIG. 10A is a diagram when the beam 26a is selectively generated.
  • FIG. 10B is a diagram when the beam 26i is selectively generated.
  • FIGS. 11A to 11B are diagrams showing optical paths of an incident beam to the disk 2b and a reflected beam from the disk 2b when information is reproduced from the disk 2b.
  • FIG. 11A is a diagram when the beam 26a is selectively generated.
  • FIG. 11B is a diagram when the beam 26i is selectively generated.
  • the disk 2b is configured to sandwich the recording layer 17b, the quarter-wave plate layer 19, and the reflective layer 20 in this order between the substrates 16c and 16d.
  • the reflective layer 20 corresponds to a focus control reference surface.
  • glass is used as the material of the substrates 16c and 16d.
  • a photopolymer is used as the material of the recording layer 17b.
  • liquid crystal is used as the material of the quarter-wave plate layer 19, for example, liquid crystal is used.
  • aluminum is used as the material of the reflective layer 20.
  • a beam 24a represents a beam transmitted through the polarization beam splitter 7b among the beams emitted from the laser 3a, and a beam 24b is formed by the polarization beam splitter 7b among the beams emitted from the laser 3a. It represents the reflected beam.
  • a beam 24a represents a beam emitted from the laser 3a and transmitted through the polarization beam splitter 7b.
  • Beams 26a to 26i in FIGS. 10A to 10B and FIGS. 11A to 11B represent beams that can be selectively generated by the active diffraction lens 14 from the beams emitted from the laser 3b.
  • FIGS. 10A and 11A show the optical path of the beam when the beam 26a is selectively generated
  • FIGS. 10B and 11B show the optical path of the beam when the beam 26i is selectively generated.
  • either one of the convex lenses 4b and 4c is driven in the optical axis direction by an actuator (not shown) so that the beam 26a is condensed on the reflection layer 20.
  • the beam 26a is reflected by the reflective layer 20 and received by the photodetector 13b.
  • the beam 24a is a position far from the reflective layer 20 on the way to the reflective layer 20 side in the recording layer 17b.
  • the light is condensed at a condensing point 21c in the recording layer 17b.
  • the beam 24b is transmitted through the recording layer 17b, is transmitted through the quarter-wave plate layer 19, is converted from linearly polarized light to circularly polarized light, is reflected by the reflective layer 20, and is transmitted through the quarter-wave plate layer 19.
  • Either one of the convex lenses 4d and 4e is not shown so that it is converted from circularly polarized light into linearly polarized light and is condensed at the condensing point 21c on the way to the side opposite to the reflective layer 20 in the recording layer 17b. It is driven in the optical axis direction by an actuator. Therefore, the beam 24a and the beam 24b interfere at the condensing point 21c, and a minute diffraction grating is formed at the condensing point 21c.
  • either one of the convex lenses 4b and 4c is driven in the optical axis direction by an actuator (not shown) so that the beam 26i is condensed on the reflection layer 20.
  • the beam 26i is reflected by the reflective layer 20 and received by the photodetector 13b.
  • the beam 24a is close to the reflective layer 20 on the way to the reflective layer 20 side in the recording layer 17b.
  • the light is condensed at a condensing point 21d in the recording layer 17b.
  • the beam 24b is transmitted through the recording layer 17b, is transmitted through the quarter-wave plate layer 19, is converted from linearly polarized light to circularly polarized light, is reflected by the reflective layer 20, and is transmitted through the quarter-wave plate layer 19.
  • Either one of the convex lenses 4d and 4e is not shown so that it is converted from circularly polarized light to linearly polarized light and is condensed at the condensing point 21d on the way to the side opposite to the reflective layer 20 in the recording layer 17b. It is driven in the optical axis direction by an actuator.
  • the beam 24a and the beam 24b interfere at the condensing point 21d, and a minute diffraction grating is formed at the condensing point 21d.
  • one of the convex lenses 4b and 4c is driven in the optical axis direction by an actuator (not shown) so that the beam 26a is condensed on the reflective layer 20.
  • the beam 26a is reflected by the reflective layer 20 and received by the photodetector 13b.
  • the distance between the condensing position of the beam 24a and the condensing position of the beam 26a is wide, and the beam 24a is a recording at a position far from the reflective layer 20 on the way to the reflective layer 20 side in the recording layer 17b.
  • the light is condensed on the diffraction grating 22c in the layer 17b.
  • the diffraction grating 22c is a diffraction grating formed at the condensing point 21c in FIG. 10A.
  • the beam 24a is reflected by the diffraction grating 22c and received by the photodetector 13a.
  • either one of the convex lenses 4b and 4c is driven in the optical axis direction by an actuator (not shown) so that the beam 26i is condensed on the reflection layer 20.
  • the beam 26i is reflected by the reflective layer 20 and received by the photodetector 13b.
  • the interval between the condensing position of the beam 24a and the condensing position of the beam 26i is narrow, and the beam 24a is a position near the reflective layer 20 on the way to the reflective layer 20 side in the recording layer 17b.
  • the light is condensed on the diffraction grating 22d in the layer 17b.
  • the diffraction grating 22d is a diffraction grating formed at the condensing point 21d in FIG. 10B.
  • the beam 24a is reflected by the diffraction grating 22d and received by the photodetector 13a.
  • the diffraction grating formed at the condensing position has bit data information.
  • One of the beams 26a to 26i is selectively generated by the active diffractive lens 14, and the interval between the condensing position of the beam 24a and the condensing position of the selectively generated beam is changed in nine steps.
  • the condensing position of the beam 24a is set in the optical axis direction in the recording layer 17b. It can be changed in 9 steps. Therefore, information can be recorded / reproduced in nine layers in the thickness direction of the recording layer 17b by using the beams 24a and 24b.
  • a single beam selectively generated by the active diffraction lens 14 is used as the focus control beam among the beams 26a to 26i. For this reason, the light quantity of the selectively generated beam can be increased.
  • the beam focused on the reflection layer 20 is received by the photodetector 13b, there is no unnecessary beam received by the photodetector 13b. As a result, noise and crosstalk are not mixed in the focus error signal, and the condensing position of the beam 24a can be correctly controlled in the optical axis direction.
  • the cross-sectional view of the active diffractive lens 14 is the same as that shown in FIG. Further, the relationship between the voltage applied to the liquid crystal layer in the active diffractive lens 14 and the focal length of the diffractive lens is the same as that shown in FIG.
  • the focal length of the convex lens 4c is fr
  • the focal length of the objective lens 12c is fo
  • (A) to (i) shown in FIG. 7 correspond to the state in which the beams 26a to 26i in FIGS. 10A to 10B or 11A to 11B are selectively generated by the active diffraction lens 14, respectively.
  • 1 / fd changes in nine steps from / 4/3 Fd to +4/3 Fd at 1/3 Fd intervals.
  • ad fo 2 / ⁇ F
  • 1 / bd changes from ⁇ 4 / 3Fd ⁇ F / fo 2 to + 4 / 3Fd ⁇ F / fo 2 in 9 steps at 1 / 3Fd intervals.
  • ⁇ f does not vary.
  • the active diffractive lens 14 is a first and second diffractive lens that selectively generates one of three diffracted lights of ⁇ 1st order diffracted light, 0th order light, and + 1st order diffracted light from incident light. It has.
  • ⁇ f becomes -4fo 2 From / 3Fd ⁇ F to + 4fo 2 / 3Fd ⁇ F, it changes in 9 steps at intervals of fo 2 / 3Fd. As a result, information is recorded / reproduced on nine layers.
  • the active diffractive lens also includes first, second, and third diffractive lenses that selectively generate one of three diffracted lights of ⁇ 1st order diffracted light, 0th order light, and + 1st order diffracted light from incident light. Good.
  • the focal length of the first diffractive lens is changed in three steps of -Fd, ⁇ , + Fd
  • the focal length of the second diffractive lens is changed in three steps of -3Fd, ⁇ , + 3Fd
  • the focal length of the third diffractive lens is changed.
  • ⁇ f changes from ⁇ 13fo 2 / 9Fd ⁇ F to + 13fo 2 / 9Fd ⁇ F in 27 steps at a fo 2 / 9Fd interval.
  • the active diffractive lens selectively generates one of five diffracted lights, that is, a ⁇ 2nd order diffracted light, a ⁇ 1st order diffracted light, a 0th order light, a + 1st order diffracted light, and a + 2nd order diffracted light from the incident light.
  • a second diffractive lens may be provided.
  • the focal length of the first diffractive lens is changed in five steps: -Fd / 2, -Fd, ⁇ , + Fd, + Fd / 2, and the focal length of the second diffractive lens is -5Fd / 2, -5Fd, ⁇ , + 5Fd,
  • ⁇ f changes from ⁇ 12fo 2 / 5Fd ⁇ F to + 12fo 2 / 5Fd ⁇ F in 25 steps at an interval of fo 2 / 5Fd.
  • FIG. 12 is a block diagram showing a configuration of an optical information recording / reproducing apparatus according to the second embodiment of the present invention.
  • the optical information recording / reproducing apparatus includes an optical unit 1b, a positioner 33b, a spindle 34b, a controller 35, an active wave plate driving circuit 36, a modulation circuit 37, a recording signal generating circuit 38, and a laser driving circuit 39.
  • An amplifier circuit 40, a reproduction signal processing circuit 41, a demodulation circuit 42, a laser drive circuit 43, an active diffraction lens drive circuit 44, an amplification circuit 45, an error signal generation circuit 46, and a relay lens drive circuit 48 A positioner driving circuit 49 and a spindle driving circuit 50.
  • the optical unit 1b corresponds to the optical unit according to the second embodiment described above, and is mounted on the positioner 33b.
  • the disk 2b is mounted on the spindle 34b.
  • the controller 35 includes an active wave plate driving circuit 36, a circuit from the modulation circuit 37 to the laser driving circuit 39, a circuit from the amplification circuit 40 to the demodulation circuit 42, a laser driving circuit 43, and an active diffractive lens driving circuit 44.
  • the circuit from the amplifier circuit 45 to the relay lens drive circuit 48, the positioner drive circuit 49, and the spindle drive circuit 50 are controlled.
  • the active wave plate driving circuit 36 which is a beam switching means driving circuit, when recording information on the disk 2b, makes the active wave plate 5 so that the active wave plate 5 in the optical unit 1b has the effect of a quarter wave plate.
  • An AC voltage having an effective value of 2.5 volts is applied to the liquid crystal layer included in.
  • the active wave plate driving circuit 36 has an effective value on the liquid crystal layer of the active wave plate 5 so that the active wave plate 5 in the optical unit 1b has the effect of all wave plates. Apply an AC voltage of 5 volts.
  • the modulation circuit 37 modulates a signal input from the outside as recording data according to a modulation rule when recording information on the disk 2b.
  • the recording signal generation circuit 38 generates a recording signal for driving the laser 3a in the optical unit 1b based on the signal modulated by the modulation circuit 37.
  • the laser driving circuit 39 drives the laser 3a by supplying a current corresponding to the recording signal to the laser 3a based on the recording signal generated by the recording signal generating circuit 38.
  • the laser drive circuit 39 drives the laser 3a by supplying a constant current to the laser 3a so that the power of the emitted light from the laser 3a is constant.
  • the amplification circuit 40 amplifies the voltage signal output from the photodetector 13a in the optical unit 1b when reproducing information recorded in the form of a diffraction grating on the disk 2b.
  • the reproduction signal processing circuit 41 performs generation, waveform equalization, and binarization of the disk 2b reproduction signal based on the voltage signal amplified by the amplifier circuit 40.
  • the demodulation circuit 42 demodulates the signal binarized by the reproduction signal processing circuit 41 according to a demodulation rule, and outputs it as reproduction data to the outside.
  • the laser drive circuit 43 applies to the laser 3b so that the power of the laser light emitted from the laser 3b in the optical unit 1b is constant. A constant current is supplied to drive the laser 3b.
  • the active diffractive lens driving circuit 44 which is a variable focus unit driving circuit, has an effective value of 0 in the liquid crystal layers 28a to 28d of the active diffractive lens 14 when recording information on the disk 2b and reproducing information from the disk 2b.
  • An AC voltage of any one of volts, 2.5 volts, and 5 volts is applied.
  • the active diffractive lens 14 in the optical unit 1b selectively generates one of the beams 26a to 26i according to the applied voltage.
  • the amplification circuit 45 amplifies a voltage signal output from the photodetector 13b in the optical unit 1b when recording information on the disk 2b and reproducing information from the disk 2b. Based on the voltage signal amplified by the amplifier circuit 45, the error signal generation circuit 46 drives a focus error signal for driving one of the convex lenses 4b and 4c and one of the convex lenses 4d and 4e in the optical unit 1b. Is generated.
  • the relay lens driving circuit 48 is a focus moving unit driving circuit that corrects a deviation in the optical axis direction with respect to the reflective layer 20 of a condensing position of a beam selectively generated from the beams 26a to 26i.
  • the relay lens driving circuit 48 supplies a current corresponding to the focus error signal to an actuator (not shown) based on the focus error signal generated by the error signal generation circuit 46, and either one of the convex lenses 4b and 4c, the convex lens 4d, Either one of 4e is driven in the optical axis direction.
  • Positioner drive circuit 49 supplies current to a motor (not shown) to move the positioner 33b in the radial direction of the disk 2b.
  • a motor not shown
  • the condensing positions of the beams 24a and 24b move in the radial direction of the disk 2b
  • the condensing position of the beam 24a is the radius of the disk 2b. Move in the direction.
  • the spindle drive circuit 50 supplies a current to a motor (not shown) to rotate the spindle 34b.
  • a motor not shown
  • the converging positions of the beams 24a and 24b move in the tangential direction of the disk 2b.
  • the converging position of the beam 24a is tangent to the disk 2b. Move in the direction.
  • the optical unit forms tracks parallel to the tangential direction of the disk 2b on the reflective layer 20 and moves the tracks 24a and 24b in the radial direction of the disk 2b.
  • Means may be provided.
  • the optical information recording / reproducing apparatus includes an error signal generation circuit that generates a track error signal for controlling the condensing positions of the beams 24a and 24b in the radial direction of the disk 2b based on the output from the photodetector 13b. And a track moving means driving circuit for driving the track moving means based on the track error signal.
  • the relay lens system including the convex lenses 4b and 4c and the relay lens system including the convex lenses 4d and 4e correspond to not only the focus moving means but also the track moving means.
  • One of the convex lenses 4b and 4c and one of the convex lenses 4d and 4e are mounted on an actuator (not shown).
  • the error signal generation circuit 46 drives a focus error signal for driving either one of the convex lenses 4b and 4c and one of the convex lenses 4d and 4e in the optical unit 1b. As well as a track error signal.
  • the relay lens driving circuit 48 corrects the deviation in the radial direction of the disk 2b with respect to the track formed on the reflective layer 20 at the condensing position of the beam selectively generated from the beams 26a to 26i.
  • the relay lens drive circuit 48 supplies a current corresponding to the track error signal to an actuator (not shown) based on the track error signal generated by the error signal generation circuit 46, and either one of the convex lenses 4b and 4c, One of the convex lenses 4d and 4e is driven in the radial direction of the disk 2b.
  • the optical unit includes another photodetector for receiving the recording / reproducing beam reflected in the disk 2b when information is recorded on the disk 2b, and the condensing position of the beam 24a.
  • beam moving means capable of moving the condensing position of the beam 24b with respect to the optical axis direction, the radial direction of the disk 2b, and the tangential direction.
  • the optical information recording / reproducing apparatus sets the condensing position of the beam 24b relative to the condensing position of the beam 24a based on the output from another amplifier circuit and another optical detector in the optical axis direction and the radial direction of the disk 2b.
  • a position shift signal generating circuit that generates a position shift signal for controlling in the tangential direction and a beam moving means driving circuit that drives the beam moving means based on the position shift signal may be provided.
  • the relay lens system including the convex lenses 4d and 4e corresponds to beam moving means, and one of the convex lenses 4d and 4e is mounted on an actuator (not shown).
  • Another amplifier circuit amplifies a voltage signal output from another photodetector in the optical unit 1b when recording information on the disk 2b.
  • the position shift signal generation circuit generates a position shift signal for driving one of the convex lenses 4d and 4e in the optical unit 1b based on the voltage signal amplified by another amplifier circuit.
  • Another relay lens driving circuit which is a beam moving means driving circuit, corrects deviations in the optical axis direction, the radial direction of the disk 2b, and the tangential direction of the condensing position of the beam 24b with respect to the condensing position of the beam 24a.
  • another relay lens drive circuit supplies a current corresponding to the position shift signal to an actuator (not shown) based on the position shift signal generated by the position shift signal generation circuit, and either one of the convex lenses 4d and 4e. Are driven in the optical axis direction, the radial direction of the disk 2b, and the tangential direction.
  • bit-type hologram recording optical unit and the bit-type hologram recording optical information recording / reproducing apparatus are exemplified.
  • the present invention is not limited to bit-type hologram recording and page-type hologram recording, as long as it is an optical unit and an optical information recording / reproducing apparatus for performing three-dimensional information recording / reproduction on an optical recording medium. It can also be applied to two-photon absorption recording.
  • the optical information recording / reproducing apparatus using the optical unit, and the optical information recording / reproducing method a single beam is used as the focus control beam.
  • the amount of light of the beam can be increased, and when the beam collected on the focus control reference surface is received by the photodetector, there is no other unnecessary beam received by the photodetector. Therefore, noise and crosstalk are not mixed in the focus error signal, and the focusing position of the recording / reproducing beam can be correctly controlled in the optical axis direction.

Abstract

A light quantity of a beam can be increased by using a single beam as a focal point controlling beam. At the time of receiving by an optical detector a beam which has been collected on a focal point controlling reference surface, other unnecessary beams received by the optical detector are eliminated.

Description

光学ユニット、光学的情報記録再生装置および光学的情報記録再生方法Optical unit, optical information recording / reproducing apparatus, and optical information recording / reproducing method
 本発明は、光記録媒体に対して3次元的に情報の記録再生を行う光学ユニット、この光学ユニットを用いる光学的情報記録再生装置および光学的情報記録再生方法に関する。 The present invention relates to an optical unit for recording and reproducing information three-dimensionally with respect to an optical recording medium, an optical information recording and reproducing apparatus using the optical unit, and an optical information recording and reproducing method.
 光記録媒体の大容量化技術の1つとして、光記録媒体の面内方向の次元だけでなく厚さ方向の次元も利用し、光記録媒体に対して3次元的に情報の記録再生を行う3次元記録再生技術がある。3次元記録再生技術の1つとして、複数の記録層を有する光記録媒体を用いる多層記録技術がある。このような多層記録用の光学ユニットは、例えば特開2003-51129号公報に開示されている。 As one of the technologies for increasing the capacity of optical recording media, information is recorded and reproduced three-dimensionally with respect to the optical recording medium by utilizing not only the in-plane dimension of the optical recording medium but also the dimension in the thickness direction. There is a three-dimensional recording / reproducing technique. As one of the three-dimensional recording / reproducing techniques, there is a multilayer recording technique using an optical recording medium having a plurality of recording layers. Such an optical unit for multilayer recording is disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-51129.
 図1は、特開2003-51129号公報に記載の光学ユニットについて説明するためのブロック図である。この光学ユニットは、レーザ52と、凸レンズ53aと、凸レンズ53bと、回折レンズ54と、偏光ビームスプリッタ55と、1/4波長板56と、ミラー57と、対物レンズ58と、光検出器59とを具備する。この光学ユニットに用いるディスク51は、基板60と、複数の記録層61a~61dとを具備する。 FIG. 1 is a block diagram for explaining an optical unit described in Japanese Patent Application Laid-Open No. 2003-51129. This optical unit includes a laser 52, a convex lens 53a, a convex lens 53b, a diffraction lens 54, a polarizing beam splitter 55, a quarter wavelength plate 56, a mirror 57, an objective lens 58, and a photodetector 59. It comprises. A disk 51 used in this optical unit includes a substrate 60 and a plurality of recording layers 61a to 61d.
 この光学ユニットの各構成要素の位置関係を説明する。レーザ52と凸レンズ53aと回折レンズ54と偏光ビームスプリッタ55と1/4波長板56とは、この順番に、同じ第1の光軸を共有して配置されている。偏光ビームスプリッタ55において第1の光軸に直角に交わる第2の光軸を共有して、偏光ビームスプリッタ55と凸レンズ53bと光検出器59とが、この順番に配置されている。第1の光軸の延長線上には、第1の光軸に対して45度の角度でミラー57が配置されている。ミラー57において第1の光軸に直角に交わる第3の光軸を共有して、対物レンズ58とディスク51とがこの順番に配置されている。 The positional relationship of each component of this optical unit will be described. The laser 52, the convex lens 53a, the diffractive lens 54, the polarization beam splitter 55, and the quarter wavelength plate 56 are arranged in this order so as to share the same first optical axis. The polarizing beam splitter 55, the convex lens 53b, and the photodetector 59 are arranged in this order, sharing a second optical axis that intersects the first optical axis at a right angle in the polarizing beam splitter 55. A mirror 57 is disposed on the extended line of the first optical axis at an angle of 45 degrees with respect to the first optical axis. The objective lens 58 and the disk 51 are arranged in this order while sharing a third optical axis that intersects the first optical axis at a right angle in the mirror 57.
 この光学ユニットの動作について説明する。レーザ52から出射したビームは、凸レンズ53aを透過して発散光から平行光へ変換され、回折レンズ54によりビーム63a~63eの5つのビームに分割される。ここで、ビーム63aは記録再生用ビーム、ビーム63b~63eは焦点制御用ビームである。これらのビームは、偏光ビームスプリッタ55へP偏光として入射してほぼ100%が透過し、1/4波長板56を透過して直線偏光から円偏光へ変換され、ミラー57で反射され、対物レンズ58によりディスク51内に集光される。ディスク51内で反射された5つのビームは、対物レンズ58を逆向きに通り、ミラー57で反射され、1/4波長板56を透過して円偏光から直線偏光へ変換される。直線偏光に変換された光は、偏光ビームスプリッタ55へS偏光として入射してほぼ100%が反射され、凸レンズ53bを透過して平行光から収束光へ変換され、光検出器59で受光される。光検出器59からの出力に基づいて、ビーム63aの集光位置を光軸方向に制御するためのフォーカス誤差信号が生成される。 The operation of this optical unit will be described. The beam emitted from the laser 52 passes through the convex lens 53a and is converted from divergent light into parallel light, and is divided by the diffraction lens 54 into five beams 63a to 63e. Here, the beam 63a is a recording / reproducing beam, and the beams 63b to 63e are focus control beams. These beams are incident on the polarization beam splitter 55 as P-polarized light, and almost 100% are transmitted, transmitted through the quarter-wave plate 56, converted from linearly polarized light to circularly polarized light, reflected by the mirror 57, and objective lens. The light is condensed in the disk 51 by 58. The five beams reflected in the disk 51 pass through the objective lens 58 in the reverse direction, are reflected by the mirror 57, pass through the quarter wavelength plate 56, and are converted from circularly polarized light to linearly polarized light. The light converted into the linearly polarized light is incident on the polarization beam splitter 55 as S-polarized light, and almost 100% is reflected, passes through the convex lens 53b, is converted from parallel light into convergent light, and is received by the photodetector 59. . Based on the output from the photodetector 59, a focus error signal for controlling the condensing position of the beam 63a in the optical axis direction is generated.
 ディスク51は、基板60上に溝を有する基準面62が形成され、その上に記録層61a~61dの4つの記録層が形成されている。ビーム63e、63d、63c、63bが基準面62上に集光されるように対物レンズ58を駆動することにより、ビーム63aはそれぞれ記録層61a、61b、61c、61d内に集光される。従って、ビーム63aを用い、記録層61a~61dのそれぞれに対して情報の記録再生を行うことができる。 In the disk 51, a reference surface 62 having a groove is formed on a substrate 60, and four recording layers 61a to 61d are formed thereon. By driving the objective lens 58 so that the beams 63e, 63d, 63c, and 63b are condensed on the reference surface 62, the beam 63a is condensed in the recording layers 61a, 61b, 61c, and 61d, respectively. Therefore, information can be recorded / reproduced with respect to each of the recording layers 61a to 61d using the beam 63a.
 図2A~2Bは、回折レンズ54の構成を説明するための断面図である。図2Aは、体積型の回折レンズである回折レンズ54a、を用いた場合の構成を示している。図2Bは、フレネル型の回折レンズである回折レンズ54bを用いた場合の構成を示している。 2A to 2B are cross-sectional views for explaining the configuration of the diffractive lens 54. FIG. FIG. 2A shows a configuration in which a diffractive lens 54a, which is a volume type diffractive lens, is used. FIG. 2B shows a configuration in which a diffractive lens 54b, which is a Fresnel type diffractive lens, is used.
 例えば、ビーム63aとしては回折レンズ54aまたは54bからの0次光、ビーム63b~63eとしてはそれぞれ回折レンズ54aまたは54bからの1次~4次回折光が用いられる。 For example, zero-order light from the diffractive lens 54a or 54b is used as the beam 63a, and first-order to fourth-order diffracted light from the diffractive lens 54a or 54b is used as the beams 63b to 63e, respectively.
 この光学ユニットにおいては、回折レンズ54により、焦点制御用ビームであるビーム63b~63eの4つのビームが常に生成されている。このため、回折レンズ54における各々のビームに対する回折効率を高くすることができず、各々のビームの光量を大きくすることができない。また、4つのビームのうち基準面62上に集光されたビームを光検出器59で受光する際、基準面62上に集光されない不要なビームも光検出器59で受光される。その結果、フォーカス誤差信号にノイズやクロストークが混入し、記録再生用ビームであるビーム63aの集光位置を光軸方向に正しく制御することができなくなる。 In this optical unit, the diffraction lens 54 always generates four beams 63b to 63e, which are focus control beams. For this reason, the diffraction efficiency for each beam in the diffractive lens 54 cannot be increased, and the light quantity of each beam cannot be increased. Of the four beams, when the light focused on the reference plane 62 is received by the photodetector 59, unnecessary beams that are not focused on the reference plane 62 are also received by the photodetector 59. As a result, noise and crosstalk are mixed in the focus error signal, and the focusing position of the beam 63a, which is a recording / reproducing beam, cannot be correctly controlled in the optical axis direction.
 また、3次元記録再生技術の1つとして、ビット型のホログラム記録技術がある。互いに対向する2つのビームは、光記録媒体の記録層内における同一の位置に集光して干渉し、集光位置に微小な回折格子を形成する。これにより情報の記録が行われる。2つのビームのうちどちらか一方を光記録媒体の記録層内に集光し、回折格子からの反射光を検出することにより情報の再生が行われる。このようなビット型のホログラム記録用の光学ユニットとして、“Drive System for Micro-Reflector Recording Employing Blue Laser Diode”(International Symposium on Optical Memory 2006 Technical Digest, pp.36-37.)に記載の光学ユニットがある。しかし、この光学ユニットは、記録再生用ビームの集光位置を光軸方向に正しく制御する機能を有していない。 Also, as one of the three-dimensional recording / reproducing technologies, there is a bit-type hologram recording technology. The two beams facing each other are focused and interfered at the same position in the recording layer of the optical recording medium to form a minute diffraction grating at the focused position. Thereby, information is recorded. Information is reproduced by condensing one of the two beams in the recording layer of the optical recording medium and detecting the reflected light from the diffraction grating. As an optical unit for recording such a bit-type hologram, “Drive System for Micro-Reflector Recording Employing Blue Laser Diode” (Internal Symposium on Optical Memory. is there. However, this optical unit does not have a function of correctly controlling the focusing position of the recording / reproducing beam in the optical axis direction.
 上記に関連して、特開2000-292755号公報には、収差補正素子に係る技術が開示されている。この収差補正素子は、少なくとも透明導電層を3層以上かつ電気光学材料層を2層以上含むように複数の透明導電層と複数の電気光学材料層とが交互に積層されている。この収差補正素子は、次のように収差を補正することを特徴とする。すなわち、複数の透明導電層のうちの任意の透明導電層が分割される。その分割された透明導電層の少なくとも一部が複数の電極として機能する。これら複数の電極を用いて電気光学材料層の屈折率を電気的に制御することにより光路差を場所によって変化させ、入射光の位相が制御され、収差が補正される。 In relation to the above, Japanese Patent Application Laid-Open No. 2000-292755 discloses a technique relating to an aberration correction element. In this aberration correction element, a plurality of transparent conductive layers and a plurality of electro-optical material layers are alternately laminated so as to include at least three transparent conductive layers and two or more electro-optical material layers. This aberration correction element corrects aberrations as follows. That is, an arbitrary transparent conductive layer among the plurality of transparent conductive layers is divided. At least some of the divided transparent conductive layers function as a plurality of electrodes. By using these plural electrodes to electrically control the refractive index of the electro-optic material layer, the optical path difference is changed depending on the location, the phase of the incident light is controlled, and the aberration is corrected.
 また、特開2002-74731号公報には、光ピックアップ装置に係る技術が開示されている。この光ピックアップ装置は、記録媒体と、半導体レーザ光源と、対物レンズと、アクチュエータと、光軸方向変移器と、変移検出手段とを備える。ここで、記録媒体は、記録層を持つ。半導体レーザ光源は、レーザ光を発射する。対物レンズは、レーザ光について記録媒体の記録層内で焦点を結ばせる。アクチュエータは、対物レンズを少なくともフォーカス方向に駆動する。光軸方向変移器は、対物レンズと光源の間に設けられている。変移検出手段は、光軸方向変移器の変移を検出する。光ピックアップ装置は、次のような特徴を持つ。すなわち、光軸方向変移器を可動しディスク厚の異なる記録媒体に焦点を結ぶことにより信号の記録再生を行う情報記録再生装置において、対物レンズの瞳径をaとし、対物レンズに入ってくるレーザ光の1/eとなる強度の取り込み範囲をwとしたときに、光軸方向変移器の最大可動範囲をa/wが0.8以下の範囲に設定している。 Japanese Patent Application Laid-Open No. 2002-74731 discloses a technique related to an optical pickup device. This optical pickup device includes a recording medium, a semiconductor laser light source, an objective lens, an actuator, an optical axis direction changer, and a change detection means. Here, the recording medium has a recording layer. The semiconductor laser light source emits laser light. The objective lens focuses the laser light in the recording layer of the recording medium. The actuator drives the objective lens at least in the focus direction. The optical axis direction shifter is provided between the objective lens and the light source. The shift detection means detects the shift of the optical axis direction shifter. The optical pickup device has the following characteristics. That is, in an information recording / reproducing apparatus that records and reproduces a signal by moving an optical axis direction shifter and focusing on a recording medium having a different disc thickness, a pupil diameter of the objective lens is set to a and the laser entering the objective lens The maximum movable range of the optical axis direction changer is set to a range where a / w is 0.8 or less, where w is the capturing range of the intensity that is 1 / e 2 of light.
 また、特開2002-334476号公報には、光ピックアップ装置に係る技術が開示されている。この光ピックアップ装置は、光源と、対物レンズと、集光光学系と、検出手段と、駆動手段とを有する。ここで、対物レンズは、光源からの光束を光情報記録媒体の情報記録面上に集光させる。集光光学系は、光源と対物レンズとの間の光路中に配置され、球面収差の変動を補正するための球面収差補正手段とを含む。検出手段は、情報記録面からの反射光を検出することで球面収差の変動を検出する。駆動手段は、検出手段の検出結果に応じて球面収差の変動を補正するために球面収差補正手段を駆動する。この光ピックアップ装置は、球面収差補正手段は少なくとも1つの光軸に沿って変移可能な可動要素を有し、駆動手段は前記可動要素を変移させるための、応答周波数帯域の異なる少なくとも第1のアクチュエータ及び第2のアクチュエータを有する。 Also, Japanese Patent Laid-Open No. 2002-334476 discloses a technique related to an optical pickup device. This optical pickup device includes a light source, an objective lens, a condensing optical system, a detecting unit, and a driving unit. Here, the objective lens condenses the light beam from the light source on the information recording surface of the optical information recording medium. The condensing optical system includes a spherical aberration correcting unit that is disposed in an optical path between the light source and the objective lens and corrects a variation in spherical aberration. The detecting means detects a change in spherical aberration by detecting reflected light from the information recording surface. The driving unit drives the spherical aberration correcting unit to correct the variation of the spherical aberration according to the detection result of the detecting unit. In this optical pickup device, the spherical aberration correcting means has a movable element that can be displaced along at least one optical axis, and the drive means is at least a first actuator having a different response frequency band for moving the movable element. And a second actuator.
 また、特開2003-77142号公報には、フォーカシング制御装置に係る技術が開示されている。このフォーカシング制御装置は、対物レンズと、収差補正ユニットと、光検出器とを含む。ここで、対物レンズは、複数の記録層を有する多層記録媒体の記録層に光ビームを合焦せしめる。収差補正ユニットは、記録層からの反射光ビームの収差を補正する。光検出器は、反射光ビームを受光する。この光ピックアップのフォーカシング制御装置は、第1生成器と、第2生成器と、コントローラとを有する。ここで、第1生成器は、光検出器の検出信号から光ビームのフォーカスエラー値を生成する。第2生成器は、光検出器の検出信号から反射光ビームの収差量を生成する。コントローラは、フォーカスエラー値に基づいて対物レンズの合焦位置を制御するとともに、収差量に基づいて収差補正ユニットの収差補正量を制御する。なお、コントローラは、1の記録層から他の記録層へのフォーカスジャンプに際し、収差補正ユニットを他の記録層に対する収差補正値に調整した後、フォーカスジャンプを実行する。 Japanese Patent Laid-Open No. 2003-77142 discloses a technique related to a focusing control device. The focusing control device includes an objective lens, an aberration correction unit, and a photodetector. Here, the objective lens focuses the light beam on the recording layer of the multilayer recording medium having a plurality of recording layers. The aberration correction unit corrects the aberration of the reflected light beam from the recording layer. The photodetector receives the reflected light beam. The optical pickup focusing control device includes a first generator, a second generator, and a controller. Here, the first generator generates a focus error value of the light beam from the detection signal of the photodetector. The second generator generates an aberration amount of the reflected light beam from the detection signal of the photodetector. The controller controls the focus position of the objective lens based on the focus error value, and controls the aberration correction amount of the aberration correction unit based on the aberration amount. Note that the controller executes the focus jump after adjusting the aberration correction unit to the aberration correction value for the other recording layer at the time of the focus jump from one recording layer to the other recording layer.
 また、特開2005-284081号公報には、光学素子に係る技術が開示されている。この光学素子は、点光源から出射した直線偏光の光路中に配置される。この光学素子は、複屈折基板と、切り換え手段とを備える。ここで、複屈折基板は、偏光方向に対して平行または垂直な方向に屈折率の高い軸を向けたものである。切り換え手段は、直線偏光の偏光方向と複屈折基板の屈折率の高い軸とのなす角を、光路に対して直交する面内において垂直または平行な方向に切り換える。 Also, Japanese Patent Application Laid-Open No. 2005-284081 discloses a technique related to an optical element. This optical element is disposed in the optical path of linearly polarized light emitted from a point light source. This optical element includes a birefringent substrate and switching means. Here, the birefringent substrate has an axis having a high refractive index directed in a direction parallel or perpendicular to the polarization direction. The switching means switches the angle formed between the polarization direction of the linearly polarized light and the high refractive index axis of the birefringent substrate to a direction perpendicular or parallel within a plane orthogonal to the optical path.
 また、特開2005-317120号公報には、複数の記録層が積層された光学記録媒体に対する記録再生を行う、或いは記録面を保護する保護基板厚の異なる複数の光学記録媒体に対する記録再生を異なる波長及び開口数の光ビームによって行う光ピックアップに係る技術が開示されている。この光ピックアップは、第1の光源と、第2の光源と、第3の光源と、対物レンズと、回折手段と、液晶回折手段と、受光手段と、光学記録媒体検出手段と、液晶制御手段とを備えている。ここで、第1の光源は、第1の波長を有する第1の光ビームを出射する。第2の光源は、第2の波長を有する第2の光ビームを出射する。第3の光源は、第3の波長を有する第3の光ビームを出射する。対物レンズは、第1、第2及び第3の光ビームを個々の光学記録媒体上に集光する。回折手段は、対物レンズを介して第1の光ビームを第1の保護基板厚を有する第1の光学記録媒体上に集光し、第2の光ビームを第2の保護基板厚を有する第2の光学記録媒体上に集光し、第3の光ビームを第3の保護基板厚を有する第3の光学記録媒体上に集光する。したがって、回折手段は、対物レンズの光源側直前に配置される。液晶回折手段は、回折手段の光源側直前に配置され、透過していく光ビームの進行方向に垂直な断面内での屈折率分布を変化させる。受光手段は、個々の光学記録媒体にて反射された反射ビームを受光して電気信号に変換する。光学記録媒体検出手段は、複数の記録層が積層された光学記録媒体或いは記録面を保護する保護基板厚が異なる光学記録媒体の種別を検出する。液晶制御手段は、光学記録媒体検出手段で検出された記録層又は光学記録媒体の種別に応じて液晶回折手段の液晶配向パターンを制御する。対物レンズと回折手段と液晶回折手段は、互いに固定され、第1の光ビーム、第2の光ビーム及び第3の光ビームが液晶回折手段に対して無限系にて入射される。 Japanese Patent Application Laid-Open No. 2005-317120 discloses recording / reproduction with respect to an optical recording medium in which a plurality of recording layers are laminated, or recording / reproduction with respect to a plurality of optical recording media having different protective substrate thicknesses for protecting the recording surface. A technique related to an optical pickup performed by a light beam having a wavelength and a numerical aperture is disclosed. The optical pickup includes a first light source, a second light source, a third light source, an objective lens, a diffraction unit, a liquid crystal diffraction unit, a light receiving unit, an optical recording medium detection unit, and a liquid crystal control unit. And. Here, the first light source emits a first light beam having a first wavelength. The second light source emits a second light beam having a second wavelength. The third light source emits a third light beam having a third wavelength. The objective lens collects the first, second and third light beams on the individual optical recording media. The diffracting means condenses the first light beam on the first optical recording medium having the first protective substrate thickness through the objective lens, and the second light beam has the second protective substrate thickness. The second optical recording medium is condensed, and the third light beam is condensed on the third optical recording medium having the third protective substrate thickness. Therefore, the diffractive means is disposed immediately before the light source side of the objective lens. The liquid crystal diffractive means is disposed immediately before the light source side of the diffractive means, and changes the refractive index distribution in the cross section perpendicular to the traveling direction of the light beam passing therethrough. The light receiving means receives the reflected beam reflected by each optical recording medium and converts it into an electrical signal. The optical recording medium detection means detects the type of an optical recording medium in which a plurality of recording layers are laminated or an optical recording medium having a different protective substrate thickness for protecting the recording surface. The liquid crystal control means controls the liquid crystal alignment pattern of the liquid crystal diffraction means according to the type of the recording layer or the optical recording medium detected by the optical recording medium detection means. The objective lens, the diffraction unit, and the liquid crystal diffraction unit are fixed to each other, and the first light beam, the second light beam, and the third light beam are incident on the liquid crystal diffraction unit in an infinite system.
 また、特開2006-258838号公報には、光走査装置に係る技術が開示されている。この光走査装置は、光源と、焦点距離可変手段と、光偏向手段と、光走査手段と、ビームスポット径検出手段と、ビームスポット位置検出手段とを有する。ここで、焦点距離可変手段は、焦点距離を可変可能とするものである。光偏向手段は、光ビームを少なくとも副走査方向に偏向可能とするものである。光走査手段は、光ビームを走査する。結像レンズは、光走査手段により走査される光ビームを像面に結像する。ビームスポット径検出手段は、ビームスポット径を検出もしくは換算もしくは予測する。ビームスポット位置検出手段は、少なくとも副走査方向のビームスポット位置を検出もしくは換算もしくは予測する。この光走査装置は、ビームスポット径検出手段及びビームスポット位置検出手段による検出結果に基づいて、ビームスポット径及びビームスポット位置の両方を制御する。 Japanese Patent Laid-Open No. 2006-258838 discloses a technique related to an optical scanning device. The optical scanning device includes a light source, a focal length varying unit, an optical deflecting unit, an optical scanning unit, a beam spot diameter detecting unit, and a beam spot position detecting unit. Here, the focal length changing means can change the focal length. The light deflecting means can deflect the light beam at least in the sub-scanning direction. The optical scanning unit scans the light beam. The imaging lens forms an image on the image plane of the light beam scanned by the optical scanning unit. The beam spot diameter detecting means detects, converts, or predicts the beam spot diameter. The beam spot position detecting means detects, converts, or predicts at least the beam spot position in the sub-scanning direction. This optical scanning device controls both the beam spot diameter and the beam spot position based on the detection results of the beam spot diameter detecting means and the beam spot position detecting means.
 また、特開2006-302367号公報には、光ピックアップに係る技術が開示されている。この光ピックアップは、光源と、コリメートレンズと、対物レンズと、受光素子とを備える。ここで、コリメートレンズは、光源から出射された発散光を平行光に変換する。対物レンズは、光記録媒体に光ビームを集光する。受光素子は、前記光記録媒体からの反射光を検出する。この光ピックアップは、コリメートレンズ及び対物レンズの少なくともいずれか一のレンズが、樹脂あるいはガラスにより形成された固体レンズの一面に複数の電極、絶縁層及び紫外線硬化型もしくは熱硬化型の導電性液体が順に積層された液体レンズにより構成されている。 Also, Japanese Patent Application Laid-Open No. 2006-302367 discloses a technique related to an optical pickup. This optical pickup includes a light source, a collimating lens, an objective lens, and a light receiving element. Here, the collimating lens converts divergent light emitted from the light source into parallel light. The objective lens focuses the light beam on the optical recording medium. The light receiving element detects reflected light from the optical recording medium. In this optical pickup, at least one of a collimator lens and an objective lens has a plurality of electrodes, an insulating layer, and an ultraviolet curable or thermosetting conductive liquid on one surface of a solid lens formed of resin or glass. It is comprised by the liquid lens laminated | stacked in order.
 本発明の目的は、光記録媒体に対して3次元的に情報の記録再生を行うための光学ユニットおよび光学的情報記録再生装置における上に述べた課題を解決し、記録再生用ビームの集光位置を光軸方向に正しく制御することができる光学ユニットと、この光学ユニットを用いる光学的情報記録再生装置と、光学的情報記録再生方法とを提供することにある。 An object of the present invention is to solve the above-described problems in an optical unit and an optical information recording / reproducing apparatus for three-dimensional information recording / reproducing with respect to an optical recording medium, and to collect a recording / reproducing beam. An object of the present invention is to provide an optical unit capable of correctly controlling the position in the optical axis direction, an optical information recording / reproducing apparatus using the optical unit, and an optical information recording / reproducing method.
 本発明の光学ユニットは、記録層と焦点制御用基準面とを有する光記録媒体に対し、記録層内に記録再生用ビーム、焦点制御用基準面上に焦点制御用ビームをそれぞれ集光し、記録再生用ビームにより情報の記録および再生を行うものである。この光学ユニットは、光源と、対物レンズ系と、光検出器と、可変焦点手段と、焦点移動手段とを具備する。ここで、光源は、記録再生用ビームと、焦点制御用ビームとを出射するものである。対物レンズ系は、記録再生用ビームおよび焦点制御用ビームを、光記録媒体に集光するためのものである。光検出器は、光記録媒体からの、記録再生用ビームの反射光と、焦点制御用ビームの反射光とを受光するものである。可変焦点手段は、記録再生用ビームの集光位置と、焦点制御用ビームの集光位置との間隔を変化可能とするためのものである。焦点移動手段は、記録再生用ビームおよび焦点制御用ビームの集光位置を光軸方向に移動可能とするためのものである。 The optical unit of the present invention, for an optical recording medium having a recording layer and a focus control reference surface, condenses a recording / reproducing beam in the recording layer and a focus control beam on the focus control reference surface, Information is recorded and reproduced by a recording / reproducing beam. The optical unit includes a light source, an objective lens system, a photodetector, variable focus means, and focus movement means. Here, the light source emits a recording / reproducing beam and a focus control beam. The objective lens system is for condensing a recording / reproducing beam and a focus control beam on an optical recording medium. The photodetector receives the reflected light of the recording / reproducing beam and the reflected light of the focus control beam from the optical recording medium. The variable focus means is for changing the interval between the focus position of the recording / reproducing beam and the focus position of the focus control beam. The focus moving means is for enabling the focusing positions of the recording / reproducing beam and the focus control beam to be moved in the optical axis direction.
 本発明による光学的情報記録再生方法は、光源から記録再生用ビームと焦点制御用ビームとを出射するステップと、記録再生用ビームを光記録媒体の記録層内に集光するステップと、焦点制御用ビームを光記録媒体の焦点制御用基準面面上に集光するステップと、光検出器において、光記録媒体からの記録再生用ビームの反射光と焦点制御用ビームの反射光とを受光するステップと、可変焦点手段を用いて記録再生用ビームの集光位置と焦点制御用ビームの集光位置との間隔を変化するステップと、焦点移動手段を用いて記録再生用ビームおよび焦点制御用ビームの集光位置を光軸方向に移動するステップとを具備する。 An optical information recording / reproducing method according to the present invention includes a step of emitting a recording / reproducing beam and a focus control beam from a light source, a step of condensing the recording / reproducing beam in a recording layer of an optical recording medium, and a focus control. The step of condensing the beam for focusing on the reference surface for focus control of the optical recording medium, and the reflected light of the recording / reproducing beam and the reflected light of the focus controlling beam from the optical recording medium are received by the photodetector A step of changing the distance between the condensing position of the recording / reproducing beam and the converging position of the focus control beam using the variable focus means, and the recording / reproducing beam and the focus control beam using the focus moving means. Moving the light collecting position in the direction of the optical axis.
 本発明によれば、フォーカス誤差信号にノイズやクロストークが混入せず、記録再生用ビームの集光位置を光軸方向に正しく制御することができる光学ユニット、光学的情報記録再生装置、光学的情報記録再生方法を提供することができる。 According to the present invention, an optical unit, an optical information recording / reproducing apparatus, an optical unit capable of correctly controlling the focusing position of a recording / reproducing beam in the optical axis direction without mixing noise and crosstalk into the focus error signal. An information recording / reproducing method can be provided.
 上記発明の目的、効果、特徴は、添付される図面と連携して実施の形態の記述から、より明らかになる。
図1は、関連技術における光学ユニットについて説明するためのブロック図である。 図2A~2Bは、関連技術における回折レンズの構成を説明するための断面図である。図2Aは、体積型の回折レンズである回折レンズ54a、を用いた場合の構成を示している。図2Bは、フレネル型の回折レンズである回折レンズ54bを用いた場合の構成を示している。 図3は、本発明の第1の実施形態に係る光学ユニットの概略構成を示すブロック図である。 図4A~4Bは、ディスク2aへ情報を記録するときにおける、ディスク2aへの入射ビームおよびディスク2aからの反射ビームの光路を示す図である。図4Aは、ビーム25aが選択的に生成された場合の図である。図4Bは、ビーム25iが選択的に生成された場合の図である。 図5A~5Bは、ディスク2aから情報を再生するときにおける、ディスク2aへの入射ビームおよびディスク2aからの反射ビームの光路を示す図である。図5Aは、ビーム25aが選択的に生成された場合の図である。図5Bは、ビーム25iが選択的に生成された場合の図である。 図6は、アクティブ回折レンズ14の断面図である。 図7は、アクティブ回折レンズ14における液晶層への印加電圧と回折レンズの焦点距離との関係を示す表である。 図8は、本発明の第1の実施形態に係る光学的情報記録再生装置の概略構成を示すブロック図である。 図9は、本発明の第2の実施形態に係る光学ユニットの概略構成を示すブロック図である。 図10A~10Bは、ディスク2bへ情報を記録するときにおける、ディスク2bへの入射ビームおよびディスク2bからの反射ビームの光路を示す図である。図10Aは、ビーム26aが選択的に生成された場合の図である。図10Bは、ビーム26iが選択的に生成された場合の図である。 図11A~11Bは、ディスク2bから情報を再生するときにおける、ディスク2bへの入射ビームおよびディスク2bからの反射ビームの光路を示す図である。図11Aは、ビーム26aが選択的に生成された場合の図である。図11Bは、ビーム26iが選択的に生成された場合の図である。 図12は、本発明の第2の実施形態に係る光学的情報記録再生装置の概略構成を示すブロック図である。
The objects, effects, and features of the present invention will become more apparent from the description of the embodiments in conjunction with the accompanying drawings.
FIG. 1 is a block diagram for explaining an optical unit in the related art. 2A to 2B are cross-sectional views for explaining the configuration of a diffractive lens in the related art. FIG. 2A shows a configuration in which a diffractive lens 54a, which is a volume type diffractive lens, is used. FIG. 2B shows a configuration in which a diffractive lens 54b, which is a Fresnel type diffractive lens, is used. FIG. 3 is a block diagram showing a schematic configuration of the optical unit according to the first embodiment of the present invention. 4A to 4B are diagrams showing optical paths of an incident beam to the disk 2a and a reflected beam from the disk 2a when information is recorded on the disk 2a. FIG. 4A is a diagram when the beam 25a is selectively generated. FIG. 4B is a diagram when the beam 25i is selectively generated. 5A to 5B are diagrams showing optical paths of an incident beam to the disk 2a and a reflected beam from the disk 2a when information is reproduced from the disk 2a. FIG. 5A is a diagram when the beam 25a is selectively generated. FIG. 5B is a diagram when the beam 25i is selectively generated. FIG. 6 is a cross-sectional view of the active diffractive lens 14. FIG. 7 is a table showing the relationship between the voltage applied to the liquid crystal layer in the active diffractive lens 14 and the focal length of the diffractive lens. FIG. 8 is a block diagram showing a schematic configuration of the optical information recording / reproducing apparatus according to the first embodiment of the present invention. FIG. 9 is a block diagram showing a schematic configuration of an optical unit according to the second embodiment of the present invention. 10A to 10B are diagrams showing optical paths of an incident beam to the disk 2b and a reflected beam from the disk 2b when information is recorded on the disk 2b. FIG. 10A is a diagram when the beam 26a is selectively generated. FIG. 10B is a diagram when the beam 26i is selectively generated. 11A to 11B are diagrams showing optical paths of an incident beam to the disk 2b and a reflected beam from the disk 2b when information is reproduced from the disk 2b. FIG. 11A is a diagram when the beam 26a is selectively generated. FIG. 11B is a diagram when the beam 26i is selectively generated. FIG. 12 is a block diagram showing a schematic configuration of an optical information recording / reproducing apparatus according to the second embodiment of the present invention.
 添付図面を参照して、本発明を実施するための形態を以下に説明する。 DETAILED DESCRIPTION Embodiments for carrying out the present invention will be described below with reference to the accompanying drawings.
 (第1の実施形態)
 図3は、本発明の第1の実施形態に係る光学ユニットの概略構成を示すブロック図である。この光学ユニットは、レーザ3aと、凸レンズ4aと、アクティブ波長板5と、偏光ビームスプリッタ7aと、ミラー8aと、干渉フィルタ9と、1/4波長板11aと、対物レンズ12aとを具備する。この光学ユニットは、さらに、ミラー8bと、ミラー8cと、ミラー10aと、1/4波長板11bと、対物レンズ12bとを具備する。この光学ユニットは、さらに、凸レンズ4fと、光検出器13aと、レーザ3bと、凸レンズ4gと、偏光ビームスプリッタ7dと、アクティブ回折レンズ14と、凸レンズ4hと、円筒レンズ15と、光検出器13bとを具備する。
(First embodiment)
FIG. 3 is a block diagram showing a schematic configuration of the optical unit according to the first embodiment of the present invention. This optical unit includes a laser 3a, a convex lens 4a, an active wavelength plate 5, a polarization beam splitter 7a, a mirror 8a, an interference filter 9, a quarter wavelength plate 11a, and an objective lens 12a. This optical unit further includes a mirror 8b, a mirror 8c, a mirror 10a, a quarter-wave plate 11b, and an objective lens 12b. The optical unit further includes a convex lens 4f, a photodetector 13a, a laser 3b, a convex lens 4g, a polarizing beam splitter 7d, an active diffraction lens 14, a convex lens 4h, a cylindrical lens 15, and a photodetector 13b. It comprises.
 光源であるレーザ3a、3bは、それぞれ波長405nmの記録再生用ビーム、波長650nmの焦点制御用ビームを出射する半導体レーザである。干渉フィルタ9は、波長405nmのビームを反射し、波長650nmのビームを透過させる。可変焦点手段であるアクティブ回折レンズ14は、入射ビームから互いに次数が異なる複数の回折ビームのうちの1つを選択的に生成する。対物レンズ12a、12bは焦点移動手段に相当し、図示されないアクチュエータに搭載されている。 Lasers 3a and 3b, which are light sources, are semiconductor lasers that emit a recording / reproducing beam having a wavelength of 405 nm and a focus controlling beam having a wavelength of 650 nm, respectively. The interference filter 9 reflects a beam having a wavelength of 405 nm and transmits a beam having a wavelength of 650 nm. The active diffractive lens 14 which is a variable focus unit selectively generates one of a plurality of diffracted beams having different orders from the incident beam. The objective lenses 12a and 12b correspond to focal point moving means and are mounted on an actuator (not shown).
 レーザ3aから出射したビームは、凸レンズ4aを透過して発散光から平行光へ変換され、アクティブ波長板5へ入射する。アクティブ波長板5は、光記録媒体であるディスク2aへ情報を記録するときには、入射光に対して1/4波長板の効果を持つ。また、ディスク2aから情報を再生するときには、アクティブ波長板5は、入射光に対して1/2波長板の効果を持つ。したがって、ディスク2aへ情報を記録するときには、アクティブ波長板5へ入射したビームは、アクティブ波長板5を透過して直線偏光から円偏光へ変換され、約50%が偏光ビームスプリッタ7aでS偏光成分として反射され、約50%が偏光ビームスプリッタ7aをP偏光成分として透過する。一方、ディスク2aから情報を再生するときには、アクティブ波長板5へ入射したビームは、アクティブ波長板5を透過して偏光方向が90°変化し、偏光ビームスプリッタ7aへS偏光として入射してほぼ100%が反射される。ここで、アクティブ波長板5および偏光ビームスプリッタ7aは、ビーム切替手段に相当する。 The beam emitted from the laser 3a passes through the convex lens 4a, is converted from divergent light into parallel light, and enters the active wave plate 5. The active wave plate 5 has an effect of a quarter wave plate with respect to incident light when information is recorded on the disk 2a which is an optical recording medium. Further, when reproducing information from the disk 2a, the active wave plate 5 has the effect of a half wave plate with respect to the incident light. Therefore, when recording information on the disk 2a, the beam incident on the active wave plate 5 is transmitted through the active wave plate 5 and converted from linearly polarized light to circularly polarized light, and about 50% of the light is polarized by the polarizing beam splitter 7a. About 50% of the light is transmitted through the polarization beam splitter 7a as a P-polarized component. On the other hand, when information is reproduced from the disk 2a, the beam incident on the active wave plate 5 is transmitted through the active wave plate 5 and the polarization direction is changed by 90 °, and is incident on the polarization beam splitter 7a as S-polarized light. % Is reflected. Here, the active wavelength plate 5 and the polarization beam splitter 7a correspond to beam switching means.
 アクティブ波長板5は、2枚の基板の間に液晶層を挟むように構成される。2枚の基板の液晶層側の面には、液晶層に交流電圧を印加するための透明電極が形成されている。液晶層は、一軸の屈折率異方性を有している。液晶層の厚さは、液晶層を透過するビームに生じる光学軸に平行な方向の偏光成分と光学軸に垂直な方向の偏光成分との間の位相差がπになるように定められている。液晶層に実効値が2.5ボルトの交流電圧が印加される場合、液晶層の光学軸の方向は、入射光の光軸に垂直な方向と平行な方向との中間の方向となる。このとき、アクティブ波長板5は、1/4波長板の効果を持つ。一方、液晶層に交流電圧が印加されない場合、液晶層の光学軸の方向は、入射光の光軸に垂直な方向となる。このとき、アクティブ波長板5は、1/2波長板の効果を持つ。 The active wave plate 5 is configured to sandwich a liquid crystal layer between two substrates. Transparent electrodes for applying an alternating voltage to the liquid crystal layer are formed on the surface of the two substrates on the liquid crystal layer side. The liquid crystal layer has uniaxial refractive index anisotropy. The thickness of the liquid crystal layer is determined so that the phase difference between the polarization component in the direction parallel to the optical axis and the polarization component in the direction perpendicular to the optical axis generated in the beam transmitted through the liquid crystal layer is π. . When an AC voltage having an effective value of 2.5 volts is applied to the liquid crystal layer, the direction of the optical axis of the liquid crystal layer is an intermediate direction between the direction perpendicular to the optical axis of the incident light and the direction parallel to the optical axis. At this time, the active wave plate 5 has the effect of a quarter wave plate. On the other hand, when no AC voltage is applied to the liquid crystal layer, the direction of the optical axis of the liquid crystal layer is a direction perpendicular to the optical axis of the incident light. At this time, the active wave plate 5 has the effect of a half wave plate.
 ディスク2aへ情報を記録するときには、偏光ビームスプリッタ7aで反射されたビームは、ミラー8a、干渉フィルタ9で反射され、1/4波長板11aを透過して直線偏光から円偏光へ変換され、対物レンズ12aによりディスク2a内に集光される。また、偏光ビームスプリッタ7aを透過したビームは、ミラー8b、ミラー8c、ミラー10aで反射され、1/4波長板11bを透過して直線偏光から円偏光へ変換され、対物レンズ12bによりディスク2a内に集光される。 When recording information on the disk 2a, the beam reflected by the polarization beam splitter 7a is reflected by the mirror 8a and the interference filter 9, passes through the quarter wavelength plate 11a, and is converted from linearly polarized light to circularly polarized light. The light is condensed in the disk 2a by the lens 12a. The beam that has passed through the polarizing beam splitter 7a is reflected by the mirror 8b, the mirror 8c, and the mirror 10a, passes through the quarter-wave plate 11b, is converted from linearly polarized light to circularly polarized light, and is converted into linearly polarized light by the objective lens 12b. It is focused on.
 一方、ディスク2aから情報を再生するときには、偏光ビームスプリッタ7aで反射されたビームは、ミラー8a、干渉フィルタ9で反射され、1/4波長板11aを透過して直線偏光から円偏光へ変換され、対物レンズ12aによりディスク2a内に集光される。ディスク2a内で反射されたビームは、対物レンズ12aを逆向きに通り、1/4波長板11aを透過して円偏光から直線偏光へ変換され、干渉フィルタ9、ミラー8aで反射され、偏光ビームスプリッタ7aへP偏光として入射する。偏光ビームスプリッタ7aへ入射した光は、ほぼ100%が透過し、凸レンズ4fを透過して平行光から収束光へ変換され、光検出器13aで受光される。光検出器13aからの出力に基づいて、ディスク2aに記録されている情報を示す再生信号が生成される。 On the other hand, when information is reproduced from the disk 2a, the beam reflected by the polarization beam splitter 7a is reflected by the mirror 8a and the interference filter 9, passes through the quarter wavelength plate 11a, and is converted from linearly polarized light to circularly polarized light. The light is condensed in the disk 2a by the objective lens 12a. The beam reflected in the disk 2a passes through the objective lens 12a in the reverse direction, passes through the quarter-wave plate 11a, is converted from circularly polarized light to linearly polarized light, is reflected by the interference filter 9 and the mirror 8a, and is polarized. The light enters the splitter 7a as P-polarized light. Almost 100% of the light incident on the polarization beam splitter 7a is transmitted, passes through the convex lens 4f, is converted from parallel light into convergent light, and is received by the photodetector 13a. Based on the output from the photodetector 13a, a reproduction signal indicating information recorded on the disc 2a is generated.
 レーザ3bから出射したビームは、凸レンズ4gを透過して発散光から弱い収束光へ変換され、偏光ビームスプリッタ7dへP偏光として入射してほぼ100%が透過する。偏光ビームスプリッタ7dを透過した光は、アクティブ回折レンズ14で回折され、干渉フィルタ9を透過し、1/4波長板11aを透過して直線偏光から円偏光へ変換され、対物レンズ12aによりディスク2a内に集光される。ディスク2a内で反射されたビームは、対物レンズ12aを逆向きに通り、1/4波長板11aを透過して円偏光から直線偏光へ変換され、干渉フィルタ9を透過する。干渉フィルタ9を透過した光は、アクティブ回折レンズ14で回折され、偏光ビームスプリッタ7dへS偏光として入射してほぼ100%が反射される。偏光ビームスプリッタ7dで反射された光は、凸レンズ4hを透過して弱い発散光から収束光へ変換され、円筒レンズ15を透過して非点収差が与えられ、光検出器13bで受光される。光検出器13bからの出力に基づいて、記録再生用ビームの集光位置を光軸方向に制御するためのフォーカス誤差信号が公知の非点収差法により生成される。 The beam emitted from the laser 3b passes through the convex lens 4g and is converted from divergent light to weak convergent light, and enters the polarization beam splitter 7d as P-polarized light, and almost 100% is transmitted. The light that has passed through the polarization beam splitter 7d is diffracted by the active diffraction lens 14, passes through the interference filter 9, passes through the quarter wavelength plate 11a, and is converted from linearly polarized light to circularly polarized light. It is condensed inside. The beam reflected in the disk 2a passes through the objective lens 12a in the reverse direction, passes through the quarter-wave plate 11a, is converted from circularly polarized light to linearly polarized light, and passes through the interference filter 9. The light transmitted through the interference filter 9 is diffracted by the active diffractive lens 14, enters the polarization beam splitter 7 d as S-polarized light, and is reflected almost 100%. The light reflected by the polarizing beam splitter 7d is transmitted from the convex lens 4h to be converted from weak divergent light to convergent light, transmitted through the cylindrical lens 15 and given astigmatism, and received by the photodetector 13b. Based on the output from the photodetector 13b, a focus error signal for controlling the condensing position of the recording / reproducing beam in the optical axis direction is generated by a known astigmatism method.
 図4A~4Bは、ディスク2aへ情報を記録するときにおける、ディスク2aへの入射ビームおよびディスク2aからの反射ビームの光路を示す図である。図4Aは、ビーム25aが選択的に生成された場合の図である。図4Bは、ビーム25iが選択的に生成された場合の図である。 4A to 4B are diagrams showing optical paths of an incident beam to the disk 2a and a reflected beam from the disk 2a when information is recorded on the disk 2a. FIG. 4A is a diagram when the beam 25a is selectively generated. FIG. 4B is a diagram when the beam 25i is selectively generated.
 図5は、ディスク2aから情報を再生するときにおける、ディスク2aへの入射ビームおよびディスク2aからの反射ビームの光路を示す図である。図5Aは、ビーム25aが選択的に生成された場合の図である。図5Bは、ビーム25iが選択的に生成された場合の図である。 FIG. 5 is a diagram showing optical paths of an incident beam to the disk 2a and a reflected beam from the disk 2a when information is reproduced from the disk 2a. FIG. 5A is a diagram when the beam 25a is selectively generated. FIG. 5B is a diagram when the beam 25i is selectively generated.
 ディスク2aは、基板16a、16bの間に記録層17aを挟むように構成される。基板16a、16bの記録層17a側の面には、それぞれ波長選択層18a、18bが形成されている。波長選択層18a、18bは、波長405nmのビームを透過させ、波長650nmのビームを反射する。ここで、波長選択層18aは、焦点制御用基準面に相当する。基板16a、16bの材料としては例えばガラスが用いられる。記録層17aの材料としては例えばフォトポリマが用いられる。波長選択層18a、18bの材料としては例えば二酸化ケイ素および二酸化チタンが用いられる。 The disk 2a is configured to sandwich the recording layer 17a between the substrates 16a and 16b. Wavelength selection layers 18a and 18b are formed on the surfaces of the substrates 16a and 16b on the recording layer 17a side, respectively. The wavelength selection layers 18a and 18b transmit a beam having a wavelength of 405 nm and reflect the beam having a wavelength of 650 nm. Here, the wavelength selection layer 18a corresponds to a focus control reference plane. For example, glass is used as the material of the substrates 16a and 16b. As a material of the recording layer 17a, for example, a photopolymer is used. For example, silicon dioxide and titanium dioxide are used as the material of the wavelength selection layers 18a and 18b.
 図4A~4Bに示されるビーム23a、23bは、レーザ3aから出射されたビームのうち、それぞれ偏光ビームスプリッタ7aで反射されたビーム、偏光ビームスプリッタ7aを透過したビームを表している。図5A~5Bに示されるビーム23aは、レーザ3aから出射されて偏光ビームスプリッタ7aで反射されたビームを表している。図4A~4Bまたは図5A~5Bに示されるビーム25a~25iは、レーザ3bから出射されたビームからアクティブ回折レンズ14により選択的に生成され得るビームを表している。図中の実線、点線はそれぞれ実際に生成されたビーム、実際には生成されなかったビームを示す。図4Aと図5A、図4Bと図5Bは、それぞれビーム25a、25iが選択的に生成された場合のビームの光路を示している。 4A to 4B represent beams 23a and 23b emitted from the laser 3a, the beam reflected by the polarization beam splitter 7a and the beam transmitted through the polarization beam splitter 7a, respectively. A beam 23a shown in FIGS. 5A to 5B represents a beam emitted from the laser 3a and reflected by the polarization beam splitter 7a. The beams 25a to 25i shown in FIGS. 4A to 4B or 5A to 5B represent beams that can be selectively generated by the active diffraction lens 14 from the beam emitted from the laser 3b. A solid line and a dotted line in the figure respectively indicate a beam that is actually generated and a beam that is not actually generated. 4A and 5A, and FIGS. 4B and 5B show the optical paths of the beams when the beams 25a and 25i are selectively generated, respectively.
 図4Aにおいては、ビーム25aが波長選択層18a上に集光されるように、対物レンズ12aは、図示されないアクチュエータによって光軸方向へ駆動される。ビーム25aは、波長選択層18aで反射され、光検出器13bで受光される。このとき、ビーム23aの集光位置とビーム25aの集光位置との間隔は狭い。そのため、ビーム23aは、波長選択層18aに近い位置である記録層17a内の集光点21aに集光される。また、ビーム23bが同じく集光点21aに集光されるように、対物レンズ12bは、図示されないアクチュエータによって光軸方向へ駆動される。ビーム23aとビーム23bとは、集光点21aにおいて干渉し、集光点21aに微小な回折格子が形成される。 In FIG. 4A, the objective lens 12a is driven in the optical axis direction by an actuator (not shown) so that the beam 25a is condensed on the wavelength selection layer 18a. The beam 25a is reflected by the wavelength selection layer 18a and received by the photodetector 13b. At this time, the interval between the condensing position of the beam 23a and the condensing position of the beam 25a is narrow. Therefore, the beam 23a is condensed on the condensing point 21a in the recording layer 17a, which is a position close to the wavelength selection layer 18a. Further, the objective lens 12b is driven in the optical axis direction by an actuator (not shown) so that the beam 23b is similarly focused on the focusing point 21a. The beam 23a and the beam 23b interfere at the condensing point 21a, and a minute diffraction grating is formed at the condensing point 21a.
 図4Bにおいては、ビーム25iが波長選択層18a上に集光されるように、対物レンズ12aは、図示されないアクチュエータによって光軸方向へ駆動される。ビーム25iは、波長選択層18aで反射され、光検出器13bで受光される。このとき、ビーム23aの集光位置とビーム25iの集光位置との間隔は広い。そのため、ビーム23aは、波長選択層18aから遠い位置である記録層17a内の集光点21bに集光される。また、ビーム23bが同じく集光点21bに集光されるように、対物レンズ12bは、図示されないアクチュエータによって光軸方向へ駆動される。ビーム23aとビーム23bとは、集光点21bにおいて干渉し、集光点21bに微小な回折格子が形成される。 In FIG. 4B, the objective lens 12a is driven in the optical axis direction by an actuator (not shown) so that the beam 25i is condensed on the wavelength selection layer 18a. The beam 25i is reflected by the wavelength selection layer 18a and received by the photodetector 13b. At this time, the distance between the condensing position of the beam 23a and the condensing position of the beam 25i is wide. Therefore, the beam 23a is condensed on the condensing point 21b in the recording layer 17a that is far from the wavelength selection layer 18a. Further, the objective lens 12b is driven in the optical axis direction by an actuator (not shown) so that the beam 23b is similarly focused on the focusing point 21b. The beam 23a and the beam 23b interfere at the condensing point 21b, and a minute diffraction grating is formed at the condensing point 21b.
 図5Aにおいては、ビーム25aが波長選択層18a上に集光されるように、対物レンズ12aは、図示されないアクチュエータによって光軸方向へ駆動される。ビーム25aは、波長選択層18aで反射され、光検出器13bで受光される。このとき、ビーム23aの集光位置とビーム25aの集光位置との間隔は狭い。そのため、ビーム23aは、波長選択層18aに近い位置である記録層17a内の回折格子22aに集光される。回折格子22aは、図4Aにおける集光点21aに形成されたものである。ビーム23aは、回折格子22aで反射され、光検出器13aで受光される。 In FIG. 5A, the objective lens 12a is driven in the optical axis direction by an actuator (not shown) so that the beam 25a is condensed on the wavelength selection layer 18a. The beam 25a is reflected by the wavelength selection layer 18a and received by the photodetector 13b. At this time, the interval between the condensing position of the beam 23a and the condensing position of the beam 25a is narrow. Therefore, the beam 23a is focused on the diffraction grating 22a in the recording layer 17a that is close to the wavelength selection layer 18a. The diffraction grating 22a is formed at the condensing point 21a in FIG. 4A. The beam 23a is reflected by the diffraction grating 22a and received by the photodetector 13a.
 図5Bにおいては、ビーム25iが波長選択層18a上に集光されるように、対物レンズ12aは、図示されないアクチュエータによって光軸方向へ駆動される。ビーム25iは、波長選択層18aで反射され、光検出器13bで受光される。このとき、ビーム23aの集光位置とビーム25iの集光位置との間隔は広い。そのため、ビーム23aは、波長選択層18aから遠い位置である記録層17a内の回折格子22bに集光される。回折格子22bは、図4Bにおける集光点21bに形成されたものである。ビーム23aは、回折格子22bで反射され、光検出器13aで受光される。 In FIG. 5B, the objective lens 12a is driven in the optical axis direction by an actuator (not shown) so that the beam 25i is condensed on the wavelength selection layer 18a. The beam 25i is reflected by the wavelength selection layer 18a and received by the photodetector 13b. At this time, the distance between the condensing position of the beam 23a and the condensing position of the beam 25i is wide. Therefore, the beam 23a is focused on the diffraction grating 22b in the recording layer 17a that is far from the wavelength selection layer 18a. The diffraction grating 22b is formed at the condensing point 21b in FIG. 4B. The beam 23a is reflected by the diffraction grating 22b and received by the photodetector 13a.
 ここで、集光位置に形成された回折格子は、ビットデータの情報を有している。アクティブ回折レンズ14によりビーム25a~25iのうちの1つが選択的に生成される。ビーム23aの集光位置と選択的に生成されたビームの集光位置との間隔は、9段階に変化するように制御される。選択的に生成されたビームが波長選択層18a上に集光されるように、対物レンズ12aが駆動され、ビーム23aの集光位置は、記録層17a内で光軸方向に9段階に変化させることができる。従って、ビーム23a、23bを用い、記録層17aの厚さ方向へ9層に情報の記録再生を行うことができる。 Here, the diffraction grating formed at the condensing position has bit data information. The active diffractive lens 14 selectively generates one of the beams 25a to 25i. The interval between the condensing position of the beam 23a and the condensing position of the selectively generated beam is controlled to change in nine steps. The objective lens 12a is driven so that the selectively generated beam is condensed on the wavelength selection layer 18a, and the condensing position of the beam 23a is changed in nine steps in the optical axis direction in the recording layer 17a. be able to. Therefore, information can be recorded / reproduced in nine layers in the thickness direction of the recording layer 17a using the beams 23a and 23b.
 本実施形態においては、焦点制御用ビームとしてビーム25a~25iのうちのアクティブ回折レンズ14により選択的に生成された単一のビームを用いる。このため、選択的に生成されたビームの光量を大きくすることができる。また、波長選択層18a上に集光されたビームを光検出器13bで受光する際、他に光検出器13bで受光される不要なビームはない。その結果、フォーカス誤差信号にノイズやクロストークが混入せず、ビーム23aの集光位置を光軸方向に正しく制御することができる。 In the present embodiment, a single beam selectively generated by the active diffraction lens 14 among the beams 25a to 25i is used as the focus control beam. For this reason, the light quantity of the selectively generated beam can be increased. In addition, when the beam focused on the wavelength selection layer 18a is received by the photodetector 13b, there is no unnecessary beam received by the photodetector 13b. As a result, noise and crosstalk are not mixed in the focus error signal, and the condensing position of the beam 23a can be correctly controlled in the optical axis direction.
 図6は、アクティブ回折レンズ14の断面図である。アクティブ回折レンズ14は、基板27a、27bの間に液晶層28aおよび充填材29aが挟まれ、基板27b、27cの間に液晶層28bおよび充填材29bが挟まれ、基板27c、27dの間に液晶層28cおよび充填材29cが挟まれ、基板27d、27eの間に液晶層28dおよび充填材29dが挟まれるように構成されている。互いに対向する液晶層28a~28dと充填材29a~29dとの境界面には、それぞれフレネル型の回折レンズ30a~30dが形成されている。また、基板27a、27bの液晶層28a側の面には、それぞれ液晶層28aに交流電圧を印加するための透明電極31a、31bが形成されている。基板27b、27cの液晶層28b側の面には、それぞれ液晶層28bに交流電圧を印加するための透明電極31c、31dが形成されている。基板27c、27dの液晶層28c側の面には、それぞれ液晶層28cに交流電圧を印加するための透明電極31e、31fが形成されている。基板27d、27eの液晶層28d側の面には、それぞれ液晶層28dに交流電圧を印加するための透明電極31g、31hが形成されている。基板27a~27eの材料としては、例えばガラスが用いられる。液晶層28a~28dの材料としては、例えばネマチック液晶が用いられる。充填材29a~29dの材料としては、例えば酸窒化ケイ素が用いられる。透明電極31a~31hの材料としては、例えばITO(Indium Tin Oxide)が用いられる。 FIG. 6 is a cross-sectional view of the active diffractive lens 14. In the active diffractive lens 14, the liquid crystal layer 28a and the filler 29a are sandwiched between the substrates 27a and 27b, the liquid crystal layer 28b and the filler 29b are sandwiched between the substrates 27b and 27c, and the liquid crystal is interposed between the substrates 27c and 27d. The layer 28c and the filler 29c are sandwiched, and the liquid crystal layer 28d and the filler 29d are sandwiched between the substrates 27d and 27e. Fresnel type diffractive lenses 30a to 30d are formed on the boundary surfaces between the liquid crystal layers 28a to 28d and the fillers 29a to 29d facing each other. Transparent electrodes 31a and 31b for applying an alternating voltage to the liquid crystal layer 28a are formed on the surfaces of the substrates 27a and 27b on the liquid crystal layer 28a side, respectively. Transparent electrodes 31c and 31d for applying an AC voltage to the liquid crystal layer 28b are formed on the surfaces of the substrates 27b and 27c on the liquid crystal layer 28b side, respectively. Transparent electrodes 31e and 31f for applying an AC voltage to the liquid crystal layer 28c are formed on the surfaces of the substrates 27c and 27d on the liquid crystal layer 28c side, respectively. Transparent electrodes 31g and 31h for applying an alternating voltage to the liquid crystal layer 28d are formed on the surfaces of the substrates 27d and 27e on the liquid crystal layer 28d side, respectively. For example, glass is used as the material of the substrates 27a to 27e. As a material for the liquid crystal layers 28a to 28d, for example, nematic liquid crystal is used. As a material for the fillers 29a to 29d, for example, silicon oxynitride is used. As a material of the transparent electrodes 31a to 31h, for example, ITO (Indium Tin Oxide) is used.
 液晶層28a~28dは、一軸の屈折率異方性を有している。液晶層28a~28dの光学軸に平行な方向、垂直な方向の偏光成分に対する屈折率をそれぞれne、no、充填材29a~29dの屈折率をnfとしたとき、nf=(ne+no)/2であるとする。また、入射光32a、32bの波長をλ、回折レンズ30a~30dの格子ピッチをp、光軸からの距離をr、厚さをt、焦点距離をfとしたとき、p=fλ/r、t=2λ/(ne-no)であるとする。但し、回折レンズ30a、30bにおける焦点距離fと回折レンズ30c、30dにおける焦点距離fとは異なるものとする。ここで、入射光32a、32bに対する液晶層28a~28dの屈折率をn、回折レンズ30a~30dの位相深さをφとすると、φ=2πt(nf-n)/λとなる。φ=-2πならば回折レンズ30a~30dは-1次回折効率が1となり、焦点距離が-fの凹レンズとして動作する。φ=0ならば、回折レンズ30a~30dは透過率(0次光の効率)が1となり、レンズとして動作しない。φ=+2πならば、回折レンズ30a~30dは+1次回折効率が1となり、焦点距離が+fの凸レンズとして動作する。 The liquid crystal layers 28a to 28d have uniaxial refractive index anisotropy. When the refractive indexes for the polarization components in the directions parallel to and perpendicular to the optical axes of the liquid crystal layers 28a to 28d are ne and no, and the refractive indexes of the fillers 29a to 29d are nf, nf = (ne + no) / 2. Suppose there is. Further, when the wavelength of the incident light 32a and 32b is λ, the grating pitch of the diffraction lenses 30a to 30d is p, the distance from the optical axis is r, the thickness is t, and the focal length is f, p = fλ / r, Assume that t = 2λ / (ne−no). However, the focal length f of the diffractive lenses 30a and 30b is different from the focal length f of the diffractive lenses 30c and 30d. Here, assuming that the refractive index of the liquid crystal layers 28a to 28d with respect to the incident light 32a and 32b is n and the phase depth of the diffraction lenses 30a to 30d is φ, φ = 2πt (nf−n) / λ. If φ = −2π, the diffractive lenses 30a to 30d have a −1st order diffraction efficiency of 1 and operate as concave lenses with a focal length of −f. If φ = 0, the diffractive lenses 30a to 30d have a transmittance (0th-order light efficiency) of 1, and do not operate as lenses. If φ = + 2π, the diffractive lenses 30a to 30d operate as convex lenses having a + 1st order diffraction efficiency of 1 and a focal length of + f.
 液晶層28a、28cの光学軸は、入射光32a、32bの光軸を含む紙面に平行な面内にあり、液晶層28b、28dの光学軸は、入射光32a、32bの光軸を含む紙面に垂直な面内にあるとする。また、レーザ3bから出射したビームである入射光32aの偏光方向は紙面に平行であり、ディスク2aで反射されたビームである入射光32bの偏光方向は紙面に垂直であるとする。このとき、入射光32aに対しては、回折レンズ30a、30cは作用するが回折レンズ30b、30dは作用しない。入射光32bに対しては、回折レンズ30b、30dは作用するが回折レンズ30a、30cは作用しない。 The optical axes of the liquid crystal layers 28a and 28c are in a plane parallel to the plane of the paper including the optical axes of the incident lights 32a and 32b, and the optical axes of the liquid crystal layers 28b and 28d are the plane of the paper including the optical axes of the incident lights 32a and 32b. Is in a plane perpendicular to. Further, it is assumed that the polarization direction of the incident light 32a which is a beam emitted from the laser 3b is parallel to the paper surface, and the polarization direction of the incident light 32b which is a beam reflected by the disk 2a is perpendicular to the paper surface. At this time, the diffraction lenses 30a and 30c act on the incident light 32a, but the diffraction lenses 30b and 30d do not act. The diffraction lenses 30b and 30d act on the incident light 32b, but the diffraction lenses 30a and 30c do not act.
 液晶層28a~28dに交流電圧が印加されない場合、液晶層28a、28cの光学軸は入射光32aの光軸に垂直な方向となり、液晶層28b、28dの光学軸は入射光32bの光軸に垂直な方向となる。このとき、入射光32aに対する液晶層28a、28cの屈折率はn=ne、回折レンズ30a、30cの位相深さはφ=-2πとなる。また、入射光32bに対する液晶層28b、28dの屈折率はn=ne、回折レンズ30b、30dの位相深さはφ=-2πとなる。従って、回折レンズ30a、30cは、入射光32aに対して焦点距離が-fの凹レンズとして作用し、回折レンズ30b、30dは、入射光32bに対して焦点距離が-fの凹レンズとして作用する。 When no AC voltage is applied to the liquid crystal layers 28a to 28d, the optical axes of the liquid crystal layers 28a and 28c are perpendicular to the optical axis of the incident light 32a, and the optical axes of the liquid crystal layers 28b and 28d are aligned with the optical axis of the incident light 32b. The vertical direction. At this time, the refractive index of the liquid crystal layers 28a and 28c with respect to the incident light 32a is n = ne, and the phase depth of the diffraction lenses 30a and 30c is φ = −2π. Further, the refractive index of the liquid crystal layers 28b and 28d with respect to the incident light 32b is n = ne, and the phase depth of the diffraction lenses 30b and 30d is φ = −2π. Accordingly, the diffractive lenses 30a and 30c act as concave lenses having a focal length of −f with respect to the incident light 32a, and the diffractive lenses 30b and 30d act as concave lenses with a focal length of −f with respect to the incident light 32b.
 液晶層28a~28dに実効値が2.5ボルトの交流電圧が印加される場合、液晶層28a、28cの光学軸は入射光32aの光軸に垂直な方向と平行な方向との中間の方向となり、液晶層28b、28dの光学軸は入射光32bの光軸に垂直な方向と平行な方向との中間の方向となる。このとき、入射光32aに対する液晶層28a、28cの屈折率がn=(ne+no)/2であるとすると、回折レンズ30a、30cの位相深さはφ=0となる。入射光32bに対する液晶層28b、28dの屈折率がn=(ne+no)/2であるとすると、回折レンズ30b、30dの位相深さはφ=0となる。従って、回折レンズ30a、30cは、入射光32aに対してレンズとして作用せず、回折レンズ30b、30dは、入射光32bに対してレンズとして作用しない。 When an AC voltage having an effective value of 2.5 volts is applied to the liquid crystal layers 28a to 28d, the optical axes of the liquid crystal layers 28a and 28c are intermediate between the direction perpendicular to the optical axis of the incident light 32a and the direction parallel to the optical axis. Thus, the optical axes of the liquid crystal layers 28b and 28d are intermediate between the direction perpendicular to the optical axis of the incident light 32b and the direction parallel to the optical axis. At this time, if the refractive index of the liquid crystal layers 28a and 28c with respect to the incident light 32a is n = (ne + no) / 2, the phase depth of the diffraction lenses 30a and 30c is φ = 0. If the refractive index of the liquid crystal layers 28b and 28d with respect to the incident light 32b is n = (ne + no) / 2, the phase depth of the diffraction lenses 30b and 30d is φ = 0. Accordingly, the diffractive lenses 30a and 30c do not act as lenses for the incident light 32a, and the diffractive lenses 30b and 30d do not act as lenses for the incident light 32b.
 液晶層28a~28dに実効値が5ボルトの交流電圧が印加される場合、液晶層28a、28cの光学軸は入射光32aの光軸に平行な方向となり、液晶層28b、28dの光学軸は入射光32bの光軸に平行な方向となる。このとき、入射光32aに対する液晶層28a、28cの屈折率はn=no、回折レンズ30a、30cの位相深さはφ=+2πとなる。入射光32bに対する液晶層28b、28dの屈折率はn=no、回折レンズ30b、30dの位相深さはφ=+2πとなる。従って、回折レンズ30a、30cは、入射光32aに対して焦点距離が+fの凸レンズとして作用し、回折レンズ30b、30dは、入射光32bに対して焦点距離が+fの凸レンズとして作用する。 When an AC voltage having an effective value of 5 volts is applied to the liquid crystal layers 28a to 28d, the optical axes of the liquid crystal layers 28a and 28c are parallel to the optical axis of the incident light 32a, and the optical axes of the liquid crystal layers 28b and 28d are The direction is parallel to the optical axis of the incident light 32b. At this time, the refractive index of the liquid crystal layers 28a and 28c with respect to the incident light 32a is n = no, and the phase depth of the diffraction lenses 30a and 30c is φ = + 2π. The refractive index of the liquid crystal layers 28b and 28d with respect to the incident light 32b is n = no, and the phase depth of the diffraction lenses 30b and 30d is φ = + 2π. Accordingly, the diffractive lenses 30a and 30c act as a convex lens with a focal length of + f with respect to the incident light 32a, and the diffractive lenses 30b and 30d act as a convex lens with a focal length of + f with respect to the incident light 32b.
 図7は、アクティブ回折レンズ14における液晶層への印加電圧と回折レンズの焦点距離との関係を示す表である。図中に示される第一液晶層は、入射光32aに対する液晶層28a、入射光32bに対する液晶層28bを指すものとする。同様に、第二液晶層は、入射光32aに対する液晶層28c、入射光32bに対する液晶層28dを指すものとする。また、第一回折レンズは、入射光32aに対する回折レンズ30a、入射光32bに対する回折レンズ30bを指すものとする。同様に、第二回折レンズは、入射光32aに対する回折レンズ30c、入射光32bに対する回折レンズ30dを指すものとする。 FIG. 7 is a table showing the relationship between the voltage applied to the liquid crystal layer in the active diffractive lens 14 and the focal length of the diffractive lens. The first liquid crystal layer shown in the figure refers to the liquid crystal layer 28a for the incident light 32a and the liquid crystal layer 28b for the incident light 32b. Similarly, the second liquid crystal layer refers to the liquid crystal layer 28c for the incident light 32a and the liquid crystal layer 28d for the incident light 32b. The first diffractive lens refers to the diffractive lens 30a for the incident light 32a and the diffractive lens 30b for the incident light 32b. Similarly, the second diffractive lens refers to a diffractive lens 30c for incident light 32a and a diffractive lens 30d for incident light 32b.
 第一、第二回折レンズは、それぞれ第一、第二液晶層への印加電圧に応じて、入射光32a、32bから-1次回折光、0次光、+1次回折光の3つの回折光のうちの1つを選択的に生成する。ここで、第一、第二回折レンズにおける焦点距離fをfd1、fd2と表記し、その値がそれぞれFd、3Fdであるとする。このとき、第一回折レンズの焦点距離fd1は、第一液晶層への印加電圧に応じて-Fd、∞、+Fdの3段階に変化し、第二回折レンズの焦点距離fd2は、第二液晶層への印加電圧に応じて-3Fd、∞、+3Fdの3段階に変化する。 The first and second diffractive lenses are respectively selected from the three diffracted lights of the −1st order diffracted light, the 0th order light, and the + 1st order diffracted light from the incident light 32a and 32b according to the applied voltages to the first and second liquid crystal layers Is selectively generated. Here, the focal lengths f in the first and second diffractive lenses are expressed as fd1 and fd2, and the values are Fd and Fd, respectively. At this time, the focal length fd1 of the first diffractive lens changes in three stages of −Fd, ∞, and + Fd according to the voltage applied to the first liquid crystal layer, and the focal length fd2 of the second diffractive lens changes to the second liquid crystal. Depending on the voltage applied to the layer, it changes in three stages of -3Fd, ∞, and + 3Fd.
 その結果、アクティブ回折レンズ14は第一、第二液晶層への印加電圧に応じて、入射光32a、32bから互いに次数が異なる9つの回折光のうちの1つを選択的に生成する。このとき、2つの回折レンズの合成焦点距離であるアクティブ回折レンズ14の焦点距離をfdと表記すると、値Fdが2つの回折レンズの間隔に比べて十分に大きい場合、1/fd=1/fd1+1/fd2が成り立つ。アクティブ回折レンズ14の焦点距離fdは、第一、第二液晶層への印加電圧に応じて、図7の(a)~(i)に示されるように、9段階に変化する。 As a result, the active diffractive lens 14 selectively generates one of nine diffracted lights having different orders from the incident lights 32a and 32b in accordance with the voltage applied to the first and second liquid crystal layers. At this time, when the focal length of the active diffractive lens 14 that is the combined focal length of the two diffractive lenses is expressed as fd, when the value Fd is sufficiently larger than the interval between the two diffractive lenses, 1 / fd = 1 / fd1 + 1. / Fd2 holds. The focal length fd of the active diffractive lens 14 changes in nine steps as shown in FIGS. 7A to 7I according to the voltage applied to the first and second liquid crystal layers.
 アクティブ回折レンズ14の厚さを無視し、アクティブ回折レンズ14に対する物点位置と像点位置とをそれぞれad、bdとすると、1/ad+1/bd=1/fdが成り立つ。また、対物レンズ12aの厚さを無視し、対物レンズ12aの焦点距離をfo、対物レンズ12aに対する物点位置、像点位置をそれぞれao、boとすると、1/ao+1/bo=1/foが成り立つ。 If the thickness of the active diffractive lens 14 is ignored and the object point position and the image point position with respect to the active diffractive lens 14 are ad and bd, respectively, 1 / ad + 1 / bd = 1 / fd is established. Further, ignoring the thickness of the objective lens 12a, assuming that the focal length of the objective lens 12a is fo, the object point position with respect to the objective lens 12a, and the image point position are ao and bo, respectively, 1 / ao + 1 / bo = 1 / fo. It holds.
 図7に示される(a)~(i)は、アクティブ回折レンズ14によりそれぞれ図4A~4Bまたは図5A~5Bにおけるビーム25a~25iが選択的に生成されている状態に対応する。(a)から(i)へ向かって順に、1/fdは、-4/3Fdから+4/3Fdまで1/3Fd間隔で9段階に変化する。ad=-fo/ΔFであるとすると、1/bdは、-4/3Fd+ΔF/foから+4/3Fd+ΔF/foまで1/3Fd間隔で9段階に変化する。Fd、fo/ΔFがアクティブ回折レンズ14と対物レンズ12aとの間隔に比べて十分に大きい場合、ao=-bdとなるため、1/aoは、+4/3Fd-ΔF/foから-4/3Fd-ΔF/foまで-1/3Fd間隔で9段階に変化する。Fd、fo/ΔFがfoに比べて十分に大きい場合、boは、fo+4fo/3Fd-ΔFからfo-4fo/3Fd-ΔFまで-fo/3Fd間隔で9段階に変化する。 (A) to (i) shown in FIG. 7 correspond to the state in which the beams 25a to 25i in FIGS. 4A to 4B or 5A to 5B are selectively generated by the active diffraction lens 14, respectively. In order from (a) to (i), 1 / fd changes in nine steps from -4/3 Fd to +4/3 Fd at 1/3 Fd intervals. Assuming that ad = −fo 2 / ΔF, 1 / bd changes in nine steps at intervals of 1/3 Fd from −4/3 Fd + ΔF / fo 2 to +4/3 Fd + ΔF / fo 2 . When Fd, fo 2 / ΔF is sufficiently larger than the distance between the active diffractive lens 14 and the objective lens 12a, ao = −bd, so 1 / ao is + 4 / 3Fd−ΔF / fo 2 to −4 / until 3Fd-ΔF / fo 2 varies 9 stage -1 / 3FD intervals. When Fd and fo 2 / ΔF are sufficiently larger than fo, bo changes in nine steps from −fo + 4fo 2 / 3Fd−ΔF to fo−4fo 2 / 3Fd−ΔF at −fo 2 / 3Fd intervals.
 これに対し、図4A~4Bまたは図5A~5Bにおけるビーム23aに関しては、ao=∞であるとすると、bo=foとなる。ビーム25a~25iの集光位置を基準としたビーム23aの集光位置をΔfとすると、Δfは、-4fo/3Fd+ΔFから+4fo/3Fd+ΔFまでfo/3Fd間隔で9段階に変化する。例えば、ΔF=5fo/3Fdであるとし、Fd=300mm、fo=3mmであるとすると、Δfは10μmから90μmまで10μm間隔で9段階に変化する。ここで、第一、第二液晶層への印加電圧が多少変動しても、第一、第二回折レンズの回折効率が多少変動するだけで焦点距離は変動しない。そのため、Δfは変動しない。 On the other hand, regarding the beam 23a in FIGS. 4A to 4B or FIGS. 5A to 5B, if ao = ∞, bo = fo. Assuming that the condensing position of the beam 23a with reference to the condensing positions of the beams 25a to 25i is Δf, Δf changes in nine steps from -4fo 2 / 3Fd + ΔF to + 4fo 2 / 3Fd + ΔF at an interval of fo 2 / 3Fd. For example, if ΔF = 5fo 2 / 3Fd, Fd = 300 mm, and fo = 3 mm, Δf changes from 10 μm to 90 μm in 9 steps at 10 μm intervals. Here, even if the voltage applied to the first and second liquid crystal layers varies slightly, the diffraction efficiency of the first and second diffractive lenses varies only slightly, and the focal length does not vary. Therefore, Δf does not vary.
 本実施形態においては、アクティブ回折レンズ14は、入射光から-1次回折光、0次光、+1次回折光の3つの回折光のうちの1つを選択的に生成する第一、第二回折レンズにより構成されている。第一回折レンズの焦点距離を-Fd、∞、+Fdの3段階に変化させ、第二回折レンズの焦点距離を-3Fd、∞、+3Fdの3段階に変化させることにより、Δfは、-4fo/3Fd+ΔFから+4fo/3Fd+ΔFまでfo/3Fd間隔で9段階に変化する。これにより9層に情報の記録再生が行われる。 In the present embodiment, the active diffractive lens 14 is a first and second diffractive lens that selectively generates one of three diffracted lights of −1st order diffracted light, 0th order light, and + 1st order diffracted light from incident light. It is comprised by. By changing the focal length of the first diffractive lens in three steps of -Fd, ∞, and + Fd and changing the focal length of the second diffractive lens in three steps of -3Fd, ∞, and + 3Fd, Δf becomes -4fo 2 From / 3Fd + ΔF to + 4fo 2 / 3Fd + ΔF, it changes in 9 steps at an interval of fo 2 / 3Fd. As a result, information is recorded / reproduced on nine layers.
 また、入射光から-1次回折光、0次光、+1次回折光の3つの回折光のうちの1つを選択的に生成する第一、第二、第三回折レンズによりアクティブ回折レンズを構成することも可能である。第一回折レンズの焦点距離を-Fd、∞、+Fdの3段階に変化させ、第二回折レンズの焦点距離を-3Fd、∞、+3Fdの3段階に変化させ、第三回折レンズの焦点距離を-9Fd、∞、+9Fdの3段階に変化させる。この場合、Δfは、-13fo/9Fd+ΔFから+13fo/9Fd+ΔFまでfo/9Fd間隔で27段階に変化する。これにより27層に情報の記録再生を行うことが可能である。 In addition, an active diffractive lens is configured by first, second, and third diffractive lenses that selectively generate one of three diffracted lights of −1st order diffracted light, 0th order light, and + 1st order diffracted light from incident light. It is also possible. The focal length of the first diffractive lens is changed in three steps of -Fd, ∞, + Fd, the focal length of the second diffractive lens is changed in three steps of -3Fd, ∞, + 3Fd, and the focal length of the third diffractive lens is changed. Change to 3 levels of -9Fd, ∞, and + 9Fd. In this case, Δf changes in 27 steps from -13fo 2 / 9Fd + ΔF to + 13fo 2 / 9Fd + ΔF at an interval of fo 2 / 9Fd. As a result, information can be recorded and reproduced on the 27th layer.
 さらに、入射光から-2次回折光、-1次回折光、0次光、+1次回折光、+2次回折光の5つの回折光のうちの1つを選択的に生成する第一、第二回折レンズによりアクティブ回折レンズを構成することも可能である。第一回折レンズの焦点距離を-Fd/2、-Fd、∞、+Fd、+Fd/2の5段階に変化させ、第二回折レンズの焦点距離を-5Fd/2、-5Fd、∞、+5Fd、+5Fd/2の5段階に変化させる。この場合、Δfは、-12fo/5Fd+ΔFから+12fo/5Fd+ΔFまでfo/5Fd間隔で25段階に変化する。これにより25層に情報の記録再生を行うことが可能である。 In addition, the first and second diffractive lenses that selectively generate one of five diffracted lights of -2nd order diffracted light, -1st order diffracted light, 0th order light, + 1st order diffracted light, and + 2nd order diffracted light from the incident light. It is also possible to construct an active diffractive lens. The focal length of the first diffractive lens is changed in five steps: -Fd / 2, -Fd, ∞, + Fd, + Fd / 2, and the focal length of the second diffractive lens is -5Fd / 2, -5Fd, ∞, + 5Fd, Change to 5 levels of + 5Fd / 2. In this case, Δf changes in 25 steps from -12fo 2 / 5Fd + ΔF to + 12fo 2 / 5Fd + ΔF at intervals of fo 2 / 5Fd. As a result, it is possible to record and reproduce information on 25 layers.
 図8は、本発明の第1の実施の形態に係る光学的情報記録再生装置の構成を示すブロック図である。この光学情報記録再生装置は、光学ユニット1aと、ポジショナ33aと、スピンドル34aと、コントローラ35と、アクティブ波長版駆動回路36と、変調回路37と、記録信号生成回路38と、レーザ駆動回路39と、増幅回路40と、再生信号処理回路41と、復調回路42と、レーザ駆動回路43と、アクティブ回折レンズ駆動回路44と、増幅回路45と、誤差信号生成回路46と、対物レンズ駆動回路47と、ポジショナ駆動回路49と、スピンドル駆動回路50とを具備する。 FIG. 8 is a block diagram showing the configuration of the optical information recording / reproducing apparatus according to the first embodiment of the present invention. This optical information recording / reproducing apparatus includes an optical unit 1a, a positioner 33a, a spindle 34a, a controller 35, an active wavelength plate driving circuit 36, a modulation circuit 37, a recording signal generating circuit 38, and a laser driving circuit 39. The amplification circuit 40, the reproduction signal processing circuit 41, the demodulation circuit 42, the laser drive circuit 43, the active diffraction lens drive circuit 44, the amplification circuit 45, the error signal generation circuit 46, and the objective lens drive circuit 47, A positioner driving circuit 49 and a spindle driving circuit 50.
 光学ユニット1aは、上述の光学ユニットに相当し、ポジショナ33aに搭載されている。ディスク2aは、スピンドル34aに搭載されている。コントローラ35は、アクティブ波長板駆動回路36と、変調回路37からレーザ駆動回路39までの回路と、増幅回路40から復調回路42までの回路と、レーザ駆動回路43と、アクティブ回折レンズ駆動回路44と、増幅回路45から対物レンズ駆動回路47までの回路と、ポジショナ駆動回路49と、スピンドル駆動回路50とを制御する。 The optical unit 1a corresponds to the above-described optical unit and is mounted on the positioner 33a. The disk 2a is mounted on the spindle 34a. The controller 35 includes an active wave plate driving circuit 36, a circuit from the modulation circuit 37 to the laser driving circuit 39, a circuit from the amplification circuit 40 to the demodulation circuit 42, a laser driving circuit 43, and an active diffractive lens driving circuit 44. The circuit from the amplifier circuit 45 to the objective lens driving circuit 47, the positioner driving circuit 49, and the spindle driving circuit 50 are controlled.
 ビーム切替手段駆動回路であるアクティブ波長板駆動回路36は、ディスク2aへ情報を記録するときには、光学ユニット1a内のアクティブ波長板5が1/4波長板の効果を持つように、アクティブ波長板5が有する液晶層に実効値2.5ボルトの交流電圧を印加する。また、ディスク2aから情報を再生するときには、アクティブ波長板駆動回路36は、光学ユニット1a内のアクティブ波長板5が1/2波長板の効果を持つように、アクティブ波長板5が有する液晶層に交流電圧を印加しない。 The active wave plate driving circuit 36, which is a beam switching means driving circuit, records the active wave plate 5 so that the active wave plate 5 in the optical unit 1a has the effect of a quarter wave plate when recording information on the disk 2a. An AC voltage having an effective value of 2.5 volts is applied to the liquid crystal layer included in. When reproducing information from the disc 2a, the active wave plate driving circuit 36 applies the liquid crystal layer of the active wave plate 5 so that the active wave plate 5 in the optical unit 1a has the effect of a half wave plate. Do not apply AC voltage.
 変調回路37は、ディスク2aへ情報を記録するときに、記録データとして外部から入力される信号を変調規則に従って変調する。記録信号生成回路38は、変調回路37で変調された信号に基づいて、光学ユニット1a内のレーザ3aを駆動するための記録信号を生成する。レーザ駆動回路39は、ディスク2aへ情報を記録するときには、記録信号生成回路38で生成された記録信号に基づいて、レーザ3aへ記録信号に応じた電流を供給してレーザ3aを駆動する。ディスク2aから情報を再生するときには、レーザ駆動回路39は、レーザ3aからの出射光のパワーが一定になるように、レーザ3aへ一定の電流を供給してレーザ3aを駆動する。 The modulation circuit 37 modulates a signal input from the outside as recording data according to a modulation rule when recording information on the disk 2a. The recording signal generation circuit 38 generates a recording signal for driving the laser 3a in the optical unit 1a based on the signal modulated by the modulation circuit 37. When recording information on the disk 2a, the laser drive circuit 39 supplies the current corresponding to the recording signal to the laser 3a based on the recording signal generated by the recording signal generation circuit 38 to drive the laser 3a. When reproducing information from the disk 2a, the laser driving circuit 39 supplies a constant current to the laser 3a so as to drive the laser 3a so that the power of the emitted light from the laser 3a becomes constant.
 増幅回路40は、ディスク2aに回折格子の形態で記録された情報を再生するときに、光学ユニット1a内の光検出器13aから出力される電圧信号を増幅する。再生信号処理回路41は、増幅回路40で増幅された電圧信号に基づいて、再生信号の生成、波形等化、2値化を行う。復調回路42は、再生信号処理回路41で2値化された信号を復調規則に従って復調し、再生データとして外部へ出力する。 The amplification circuit 40 amplifies the voltage signal output from the photodetector 13a in the optical unit 1a when reproducing the information recorded in the form of a diffraction grating on the disk 2a. The reproduction signal processing circuit 41 generates a reproduction signal, equalizes the waveform, and binarizes it based on the voltage signal amplified by the amplifier circuit 40. The demodulation circuit 42 demodulates the signal binarized by the reproduction signal processing circuit 41 according to a demodulation rule, and outputs it as reproduction data to the outside.
 レーザ駆動回路43は、ディスク2aへ情報を記録するときおよびディスク2aから情報を再生するときに、光学ユニット1a内のレーザ3bから出射されるレーザ光のパワーが一定になるように、レーザ3bへ一定の電流を供給してレーザ3bを駆動する。 When recording information on the disk 2a and reproducing information from the disk 2a, the laser drive circuit 43 applies to the laser 3b so that the power of the laser light emitted from the laser 3b in the optical unit 1a is constant. A constant current is supplied to drive the laser 3b.
 可変焦点手段駆動回路であるアクティブ回折レンズ駆動回路44は、ディスク2aへ情報を記録するときおよびディスク2aから情報を再生するときに、アクティブ回折レンズ14が有する液晶層28a~28dに実効値が0ボルト、2.5ボルト、5ボルトのいずれかの交流電圧を印加する。光学ユニット1a内のアクティブ回折レンズ14は、印加される電圧に応じてビーム25a~25iのうちの1つを選択的に生成する。 The active diffractive lens driving circuit 44, which is a variable focus means driving circuit, has an effective value of 0 in the liquid crystal layers 28a to 28d of the active diffractive lens 14 when recording information on the disk 2a and reproducing information from the disk 2a. An AC voltage of any one of volts, 2.5 volts, and 5 volts is applied. The active diffractive lens 14 in the optical unit 1a selectively generates one of the beams 25a to 25i according to the applied voltage.
 増幅回路45は、ディスク2aへ情報を記録するときおよびディスク2aから情報を再生するときに、光学ユニット1a内の光検出器13bから出力される電圧信号を増幅する。誤差信号生成回路46は、増幅回路45で増幅された電圧信号に基づいて、光学ユニット1a内の対物レンズ12a、12bを駆動するためのフォーカス誤差信号を生成する。対物レンズ駆動回路47は、ビーム25a~25iのうちの選択的に生成されたビームの集光位置の波長選択層18aに対する光軸方向のずれを補正する焦点移動手段駆動回路である。対物レンズ駆動回路47は、誤差信号生成回路46で生成されたフォーカス誤差信号に基づいて、図示されないアクチュエータへフォーカス誤差信号に応じた電流を供給して対物レンズ12a、12bを光軸方向へ駆動する。 The amplification circuit 45 amplifies a voltage signal output from the photodetector 13b in the optical unit 1a when recording information on the disk 2a and reproducing information from the disk 2a. The error signal generation circuit 46 generates a focus error signal for driving the objective lenses 12a and 12b in the optical unit 1a based on the voltage signal amplified by the amplification circuit 45. The objective lens drive circuit 47 is a focus moving means drive circuit that corrects a deviation in the optical axis direction of the light collection position of the selectively generated beam of the beams 25a to 25i with respect to the wavelength selection layer 18a. The objective lens drive circuit 47 supplies current corresponding to the focus error signal to an actuator (not shown) based on the focus error signal generated by the error signal generation circuit 46 to drive the objective lenses 12a and 12b in the optical axis direction. .
 ポジショナ駆動回路49は、図示されないモータへ電流を供給してポジショナ33aをディスク2aの半径方向へ移動する。これによって、ディスク2aへ情報を記録するときには、ビーム23a、23bの集光位置がディスク2aの半径方向へ移動し、ディスク2aから情報を再生するときには、ビーム23aの集光位置がディスク2aの半径方向へ移動する。 Positioner drive circuit 49 supplies current to a motor (not shown) to move the positioner 33a in the radial direction of the disk 2a. Thus, when information is recorded on the disk 2a, the condensing positions of the beams 23a and 23b move in the radial direction of the disk 2a. When information is reproduced from the disk 2a, the condensing position of the beam 23a is the radius of the disk 2a. Move in the direction.
 スピンドル駆動回路50は、図示されないモータへ電流を供給してスピンドル34aを回転させる。これによって、ディスク2aへ情報を記録するときには、ビーム23a、23bの集光位置がディスク2aの接線方向へ移動し、ディスク2aから情報を再生するときには、ビーム23aの集光位置がディスク2aの接線方向へ移動する。 The spindle drive circuit 50 supplies a current to a motor (not shown) to rotate the spindle 34a. Thus, when information is recorded on the disk 2a, the condensing positions of the beams 23a and 23b move in the tangential direction of the disk 2a. When information is reproduced from the disk 2a, the condensing position of the beam 23a is tangent to the disk 2a. Move in the direction.
 第1の実施形態においては、光学ユニットは、波長選択層18aにディスク2aの接線方向に平行なトラックを形成すると共に、ビーム23a、23bの集光位置をディスク2aの半径方向に移動可能なトラック移動手段を具備してもよい。また、光学的情報記録再生装置は、光検出器13bからの出力に基づいてビーム23a、23bの集光位置をディスク2aの半径方向に制御するためのトラック誤差信号を生成する誤差信号生成回路と、トラック誤差信号に基づいてトラック移動手段を駆動するトラック移動手段駆動回路とを具備してもよい。 In the first embodiment, the optical unit forms tracks parallel to the tangential direction of the disk 2a on the wavelength selection layer 18a, and tracks that can move the condensing positions of the beams 23a and 23b in the radial direction of the disk 2a. A moving means may be provided. The optical information recording / reproducing apparatus includes an error signal generation circuit that generates a track error signal for controlling the condensing positions of the beams 23a and 23b in the radial direction of the disk 2a based on the output from the photodetector 13b. And a track moving means driving circuit for driving the track moving means based on the track error signal.
 このとき、対物レンズ12a、12bは、焦点移動手段だけでなくトラック移動手段にも相当し、図示されないアクチュエータに搭載されている。誤差信号生成回路46は、増幅回路45で増幅された電圧信号に基づいて、光学ユニット1a内の対物レンズ12a、12bを駆動するためのフォーカス誤差信号だけでなくトラック誤差信号をも生成する。対物レンズ駆動回路47は、焦点移動手段駆動回路だけでなくトラック移動手段駆動回路でもある。対物レンズ駆動回路47は、ビーム25a~25iのうち選択的に生成されたビームの集光位置の、波長選択層18aに形成されたトラックに対するディスク2aの半径方向のずれを補正する。そのために、対物レンズ駆動回路47は、誤差信号生成回路46で生成されたトラック誤差信号に基づいて、図示されないアクチュエータへトラック誤差信号に応じた電流を供給して対物レンズ12a、12bをディスク2aの半径方向へ駆動する。 At this time, the objective lenses 12a and 12b correspond to not only the focus moving means but also the track moving means, and are mounted on an actuator (not shown). Based on the voltage signal amplified by the amplifier circuit 45, the error signal generation circuit 46 generates not only a focus error signal for driving the objective lenses 12a and 12b in the optical unit 1a but also a track error signal. The objective lens driving circuit 47 is not only a focus moving means driving circuit but also a track moving means driving circuit. The objective lens driving circuit 47 corrects the deviation in the radial direction of the disk 2a with respect to the track formed on the wavelength selection layer 18a at the condensing position of the beam selectively generated from the beams 25a to 25i. For this purpose, the objective lens driving circuit 47 supplies a current corresponding to the track error signal to an actuator (not shown) based on the track error signal generated by the error signal generation circuit 46, so that the objective lenses 12a and 12b are connected to the disk 2a. Drive in the radial direction.
 また、第1の実施形態においては、光学ユニットは、ディスク2aへ情報を記録するときにディスク2a内を透過した記録再生用ビームを受光する別の光検出器と、ビーム23aの集光位置に対するビーム23bの集光位置を光軸方向、ディスク2aの半径方向、接線方向に移動可能なビーム移動手段とを具備してもよい。また、光学的情報記録再生装置は、別の増幅回路と、別の光検出器からの出力に基づいてビーム23aの集光位置に対するビーム23bの集光位置を光軸方向、ディスク2aの半径方向、接線方向に制御するための位置ずれ信号を生成する位置ずれ信号生成回路と、位置ずれ信号に基づいてビーム移動手段を駆動するビーム移動手段駆動回路とを具備してもよい。 Further, in the first embodiment, the optical unit has another optical detector for receiving the recording / reproducing beam transmitted through the disk 2a when information is recorded on the disk 2a, and the condensing position of the beam 23a. Beam condensing position of the beam 23b may be provided with beam moving means capable of moving in the optical axis direction, the radial direction of the disk 2a, and the tangential direction. Further, the optical information recording / reproducing apparatus sets the condensing position of the beam 23b with respect to the condensing position of the beam 23a based on the output from another amplifier circuit and another optical detector in the optical axis direction and the radial direction of the disk 2a. A position shift signal generating circuit that generates a position shift signal for controlling in the tangential direction and a beam moving means driving circuit that drives the beam moving means based on the position shift signal may be provided.
 このとき、対物レンズ12bは、ビーム移動手段に相当し、図示されないアクチュエータに搭載されている。別の増幅回路は、ディスク2aへ情報を記録するときに、光学ユニット1a内の別の光検出器から出力される電圧信号を増幅する。位置ずれ信号生成回路は、別の増幅回路で増幅された電圧信号に基づいて、光学ユニット1a内の対物レンズ12bを駆動するための位置ずれ信号を生成する。ビーム移動手段駆動回路である別の対物レンズ駆動回路は、ビーム23aの集光位置に対するビーム23bの集光位置の光軸方向、ディスク2aの半径方向、接線方向のずれを補正する。そのために、別の対物レンズ駆動回路は、位置ずれ信号生成回路で生成された位置ずれ信号に基づいて、図示されないアクチュエータへ位置ずれ信号に応じた電流を供給して対物レンズ12bを光軸方向、ディスク2aの半径方向、接線方向へ駆動する。 At this time, the objective lens 12b corresponds to a beam moving means and is mounted on an actuator (not shown). Another amplifier circuit amplifies a voltage signal output from another photodetector in the optical unit 1a when recording information on the disk 2a. The position shift signal generation circuit generates a position shift signal for driving the objective lens 12b in the optical unit 1a based on the voltage signal amplified by another amplifier circuit. Another objective lens driving circuit, which is a beam moving means driving circuit, corrects deviations in the optical axis direction, the radial direction, and the tangential direction of the disc 2a with respect to the condensing position of the beam 23b. For this purpose, another objective lens driving circuit supplies an electric current corresponding to the position shift signal to an actuator (not shown) based on the position shift signal generated by the position shift signal generation circuit, thereby moving the objective lens 12b in the optical axis direction. Drive in the radial direction and tangential direction of the disk 2a.
(第2の実施形態)
 図9は、本発明の第2の実施形態に係る光学ユニットの構成を示すブロック図である。この光学ユニットは、レーザ3aと、凸レンズ4aと、アクティブ波長板5と、ハーフミラー6と、偏光ビームスプリッタ7bと、干渉フィルタ9と、凸レンズ4b、4cと、偏光ビームスプリッタ7cと、対物レンズ12cと、ミラー10bと、凸レンズ4d、4eとを具備する。この光学ユニットは、さらに、凸レンズ4fと、光検出器13aと、レーザ3bと、凸レンズ4gと、偏光ビームスプリッタ7dと、アクティブ回折レンズ14、凸レンズ4hと、円筒レンズ15と、光検出器13bとを具備する。
(Second Embodiment)
FIG. 9 is a block diagram showing a configuration of an optical unit according to the second embodiment of the present invention. This optical unit includes a laser 3a, a convex lens 4a, an active wavelength plate 5, a half mirror 6, a polarizing beam splitter 7b, an interference filter 9, convex lenses 4b and 4c, a polarizing beam splitter 7c, and an objective lens 12c. And a mirror 10b and convex lenses 4d and 4e. The optical unit further includes a convex lens 4f, a photodetector 13a, a laser 3b, a convex lens 4g, a polarization beam splitter 7d, an active diffraction lens 14, a convex lens 4h, a cylindrical lens 15, and a photodetector 13b. It comprises.
 光源であるレーザ3a、3bは、それぞれ波長405nmの記録再生用ビーム、波長650nmの焦点制御用ビームを出射する半導体レーザである。干渉フィルタ9は、波長405nmのビームを反射し、波長650nmのビームを透過させる。偏光ビームスプリッタ7cは、波長405nmのビームについてはP偏光成分を透過させてS偏光成分を反射し、波長650nmのビームについてはP偏光成分、S偏光成分とも透過させる。可変焦点手段であるアクティブ回折レンズ14は、入射ビームから互いに次数が異なる複数の回折ビームのうちの1つを選択的に生成する。凸レンズ4b、4cを含むリレーレンズ系、凸レンズ4d、4eを含むリレーレンズ系は、焦点移動手段に相当する。凸レンズ4b、4cのいずれか一方、凸レンズ4d、4eのいずれか一方は、図示されないアクチュエータに搭載されている。 Lasers 3a and 3b, which are light sources, are semiconductor lasers that emit a recording / reproducing beam having a wavelength of 405 nm and a focus controlling beam having a wavelength of 650 nm, respectively. The interference filter 9 reflects a beam having a wavelength of 405 nm and transmits a beam having a wavelength of 650 nm. The polarization beam splitter 7c transmits a P-polarized component for a beam with a wavelength of 405 nm and reflects an S-polarized component, and transmits a P-polarized component and an S-polarized component for a beam with a wavelength of 650 nm. The active diffractive lens 14 which is a variable focus unit selectively generates one of a plurality of diffracted beams having different orders from the incident beam. The relay lens system including the convex lenses 4b and 4c and the relay lens system including the convex lenses 4d and 4e correspond to a focus moving unit. One of the convex lenses 4b and 4c and one of the convex lenses 4d and 4e are mounted on an actuator (not shown).
 レーザ3aから出射したビームは、凸レンズ4aを透過して発散光から平行光へ変換され、アクティブ波長板5へ入射する。アクティブ波長板5は、光記録媒体であるディスク2bへ情報を記録するときには入射光に対して1/4波長板の効果を持ち、ディスク2bから情報を再生するときには入射光に対して全波長板の効果を持つ。したがって、ディスク2bへ情報を記録するときには、アクティブ波長板5へ入射したビームは、アクティブ波長板5を透過して直線偏光から円偏光へ変換され、約50%がハーフミラー6を透過したのち、約50%が偏光ビームスプリッタ7bをP偏光成分として透過し、約50%が偏光ビームスプリッタ7bでS偏光成分として反射される。一方、ディスク2bから情報を再生するときには、アクティブ波長板5へ入射したビームは、アクティブ波長板5を偏光状態が変化することなく透過し、約50%がハーフミラー6を透過したのち、偏光ビームスプリッタ7bへP偏光として入射してほぼ100%が透過する。ここで、アクティブ波長板5および偏光ビームスプリッタ7bはビーム切替手段に相当する。 The beam emitted from the laser 3a passes through the convex lens 4a, is converted from divergent light into parallel light, and enters the active wave plate 5. The active wave plate 5 has the effect of a quarter wave plate for incident light when information is recorded on the disk 2b as an optical recording medium, and the full wave plate for incident light when information is reproduced from the disk 2b. With the effect. Therefore, when recording information on the disk 2b, the beam incident on the active wavelength plate 5 is transmitted from the active wavelength plate 5 to be converted from linearly polarized light to circularly polarized light, and after about 50% is transmitted through the half mirror 6, About 50% passes through the polarization beam splitter 7b as a P polarization component, and about 50% is reflected as an S polarization component by the polarization beam splitter 7b. On the other hand, when reproducing information from the disk 2b, the beam incident on the active wave plate 5 is transmitted through the active wave plate 5 without changing the polarization state, and after about 50% is transmitted through the half mirror 6, the polarized beam is transmitted. Nearly 100% is transmitted as P-polarized light to the splitter 7b. Here, the active wavelength plate 5 and the polarization beam splitter 7b correspond to beam switching means.
 アクティブ波長板5は、2枚の基板の間に液晶層を挟むように構成される。2枚の基板の液晶層側の面には、液晶層に交流電圧を印加するための透明電極が形成されている。液晶層は、一軸の屈折率異方性を有している。液晶層の厚さは、液晶層を透過するビームに生じる光学軸に平行な方向の偏光成分と光学軸に垂直な方向の偏光成分との間の位相差がπになるように定められている。液晶層に実効値2.5ボルトの交流電圧が印加される場合、液晶層の光学軸の方向は、入射光の光軸に垂直な方向と平行な方向との中間の方向となる。このとき、アクティブ波長板5は、1/4波長板の効果を持つ。一方、液晶層に実効値5ボルトの交流電圧が印加される場合、液晶層の光学軸の方向は、入射光の光軸に平行な方向となる。このとき、アクティブ波長板5は、全波長板の効果を持つ。 The active wave plate 5 is configured to sandwich a liquid crystal layer between two substrates. Transparent electrodes for applying an alternating voltage to the liquid crystal layer are formed on the surface of the two substrates on the liquid crystal layer side. The liquid crystal layer has uniaxial refractive index anisotropy. The thickness of the liquid crystal layer is determined so that the phase difference between the polarization component in the direction parallel to the optical axis and the polarization component in the direction perpendicular to the optical axis generated in the beam transmitted through the liquid crystal layer is π. . When an AC voltage having an effective value of 2.5 volts is applied to the liquid crystal layer, the direction of the optical axis of the liquid crystal layer is an intermediate direction between the direction perpendicular to the optical axis of the incident light and the parallel direction. At this time, the active wave plate 5 has the effect of a quarter wave plate. On the other hand, when an AC voltage having an effective value of 5 volts is applied to the liquid crystal layer, the direction of the optical axis of the liquid crystal layer is parallel to the optical axis of the incident light. At this time, the active wave plate 5 has the effect of a full wave plate.
 ディスク2bへ情報を記録するときには、偏光ビームスプリッタ7bを透過したビームは、干渉フィルタ9で反射され、凸レンズ4b、4cを含むリレーレンズ系を透過して平行光から弱い収束光へ変換される。変換された弱い収束光は、偏光ビームスプリッタ7cへP偏光として入射してほぼ100%が透過し、対物レンズ12cによりディスク2b内に集光される。また、偏光ビームスプリッタ7bで反射されたビームは、ミラー10bで反射され、凸レンズ4d、4eを含むリレーレンズ系を透過して平行光から弱い発散光へ変換され、偏光ビームスプリッタ7cへS偏光として入射してほぼ100%が反射され、対物レンズ12cによりディスク2b内に集光される。 When recording information on the disk 2b, the beam transmitted through the polarization beam splitter 7b is reflected by the interference filter 9 and is transmitted through the relay lens system including the convex lenses 4b and 4c to be converted from parallel light into weak convergent light. The converted weak convergent light is incident on the polarization beam splitter 7c as P-polarized light and is almost 100% transmitted, and is condensed in the disk 2b by the objective lens 12c. The beam reflected by the polarization beam splitter 7b is reflected by the mirror 10b, passes through a relay lens system including the convex lenses 4d and 4e, is converted from parallel light to weak divergent light, and is converted into S-polarized light to the polarization beam splitter 7c. The incident light is reflected almost 100% and is collected in the disk 2b by the objective lens 12c.
 一方、ディスク2bから情報を再生するときには、偏光ビームスプリッタ7bを透過したビームは、干渉フィルタ9で反射され、凸レンズ4b、4cにより構成されるリレーレンズ系を透過して平行光から弱い収束光へ変換される。変換された弱い収束光は、偏光ビームスプリッタ7cへP偏光として入射してほぼ100%が透過し、対物レンズ12cによりディスク2b内に集光される。ディスク2b内で反射されたビームは、対物レンズ12cを逆向きに通り、偏光ビームスプリッタ7cへP偏光として入射してほぼ100%が透過し、凸レンズ4c、4bを含むリレーレンズ系を透過して弱い発散光から平行光へ変換される。変換された平行光は、干渉フィルタ9で反射され、偏光ビームスプリッタ7bへP偏光として入射してほぼ100%が透過し、約50%がハーフミラー6で反射され、凸レンズ4fを透過して平行光から収束光へ変換され、光検出器13aで受光される。光検出器13aからの出力に基づいて、ディスク2bに記録された情報を示す再生信号が生成される。 On the other hand, when information is reproduced from the disk 2b, the beam transmitted through the polarization beam splitter 7b is reflected by the interference filter 9 and passes through the relay lens system constituted by the convex lenses 4b and 4c to change from parallel light to weakly convergent light. Converted. The converted weak convergent light is incident on the polarization beam splitter 7c as P-polarized light and is almost 100% transmitted, and is condensed in the disk 2b by the objective lens 12c. The beam reflected in the disk 2b passes through the objective lens 12c in the reverse direction, enters the polarization beam splitter 7c as P-polarized light, and almost 100% is transmitted, and passes through the relay lens system including the convex lenses 4c and 4b. It is converted from weak divergent light to parallel light. The converted parallel light is reflected by the interference filter 9, is incident on the polarization beam splitter 7b as P-polarized light, and almost 100% is transmitted, and about 50% is reflected by the half mirror 6, and is transmitted through the convex lens 4f and parallel. The light is converted into convergent light and received by the photodetector 13a. Based on the output from the photodetector 13a, a reproduction signal indicating information recorded on the disk 2b is generated.
 レーザ3bから出射されたビームは、凸レンズ4gを透過して発散光から弱い発散光へ変換され、偏光ビームスプリッタ7dへP偏光として入射してほぼ100%が透過し、アクティブ回折レンズ14で回折され、干渉フィルタ9を透過する。透過した光は、凸レンズ4b、4cを含むリレーレンズ系を透過して弱い発散光から平行光へ変換され、偏光ビームスプリッタ7cを透過し、対物レンズ12cによりディスク2b内に集光される。ディスク2b内で反射されたビームは、対物レンズ12cを逆向きに通り、偏光ビームスプリッタ7cを透過し、凸レンズ4c、4bにより構成されるリレーレンズ系を透過して平行光から弱い収束光へ変換され、干渉フィルタ9を透過する。透過した光は、アクティブ回折レンズ14で回折され、偏光ビームスプリッタ7dへS偏光として入射してほぼ100%が反射され、凸レンズ4hを透過して弱い収束光から収束光へ変換され、円筒レンズ15を透過して非点収差が与えられ、光検出器13bで受光される。光検出器13bからの出力に基づいて、記録再生用ビームの集光位置を光軸方向に制御するためのフォーカス誤差信号が公知の非点収差法により生成される。 The beam emitted from the laser 3b passes through the convex lens 4g and is converted from divergent light to weak divergent light, enters the polarization beam splitter 7d as P-polarized light, and almost 100% is transmitted, and is diffracted by the active diffraction lens 14. , And passes through the interference filter 9. The transmitted light passes through the relay lens system including the convex lenses 4b and 4c, is converted from weak divergent light into parallel light, passes through the polarization beam splitter 7c, and is condensed in the disk 2b by the objective lens 12c. The beam reflected in the disk 2b passes through the objective lens 12c in the reverse direction, passes through the polarizing beam splitter 7c, passes through the relay lens system constituted by the convex lenses 4c and 4b, and converts from parallel light to weakly convergent light. Then, it passes through the interference filter 9. The transmitted light is diffracted by the active diffractive lens 14, is incident on the polarizing beam splitter 7d as S-polarized light, is reflected by almost 100%, passes through the convex lens 4h, and is converted from weakly convergent light to convergent light, and the cylindrical lens 15 Astigmatism is given through the light and is received by the photodetector 13b. Based on the output from the photodetector 13b, a focus error signal for controlling the condensing position of the recording / reproducing beam in the optical axis direction is generated by a known astigmatism method.
 図10A~10Bは、ディスク2bへ情報を記録するときにおける、ディスク2bへの入射ビームおよびディスク2bからの反射ビームの光路を示す図である。図10Aは、ビーム26aが選択的に生成された場合の図である。図10Bは、ビーム26iが選択的に生成された場合の図である。 10A to 10B are diagrams showing optical paths of an incident beam to the disk 2b and a reflected beam from the disk 2b when information is recorded on the disk 2b. FIG. 10A is a diagram when the beam 26a is selectively generated. FIG. 10B is a diagram when the beam 26i is selectively generated.
 図11A~11Bは、ディスク2bから情報を再生するときにおける、ディスク2bへの入射ビームおよびディスク2bからの反射ビームの光路を示す図である。図11Aは、ビーム26aが選択的に生成された場合の図である。図11Bは、ビーム26iが選択的に生成された場合の図である。 11A to 11B are diagrams showing optical paths of an incident beam to the disk 2b and a reflected beam from the disk 2b when information is reproduced from the disk 2b. FIG. 11A is a diagram when the beam 26a is selectively generated. FIG. 11B is a diagram when the beam 26i is selectively generated.
 ディスク2bは、基板16c、16dの間に、記録層17b、1/4波長板層19、反射層20をこの順に挟むように構成される。ここで、反射層20は、焦点制御用基準面に相当する。基板16c、16dの材料としては例えばガラスが用いられる。記録層17bの材料としては例えばフォトポリマが用いられる。1/4波長板層19の材料としては例えば液晶が用いられる。反射層20の材料としては例えばアルミニウムが用いられる。 The disk 2b is configured to sandwich the recording layer 17b, the quarter-wave plate layer 19, and the reflective layer 20 in this order between the substrates 16c and 16d. Here, the reflective layer 20 corresponds to a focus control reference surface. For example, glass is used as the material of the substrates 16c and 16d. For example, a photopolymer is used as the material of the recording layer 17b. As the material of the quarter-wave plate layer 19, for example, liquid crystal is used. For example, aluminum is used as the material of the reflective layer 20.
 図10A~10Bにおいて、ビーム24aは、レーザ3aから出射されたビームのうちの偏光ビームスプリッタ7bを透過したビームを表し、ビーム24bは、レーザ3aから出射されたビームのうちの偏光ビームスプリッタ7bで反射されたビームを表している。図11A~Bにおいて、ビーム24aは、レーザ3aから出射して偏光ビームスプリッタ7bを透過したビームを表している。図10A~10B、図11A~Bにおけるビーム26a~26iは、レーザ3bから出射されたビームからアクティブ回折レンズ14により選択的に生成され得るビームを表している。図中の実線、点線は、それぞれ実際に生成されたビーム、実際には生成されなかったビームを示す。図10Aおよび図11Aは、ビーム26aが選択的に生成された場合のビームの光路を示し、図10Bおよび図11Bは、ビーム26iが選択的に生成された場合のビームの光路を示している。 10A to 10B, a beam 24a represents a beam transmitted through the polarization beam splitter 7b among the beams emitted from the laser 3a, and a beam 24b is formed by the polarization beam splitter 7b among the beams emitted from the laser 3a. It represents the reflected beam. In FIGS. 11A and 11B, a beam 24a represents a beam emitted from the laser 3a and transmitted through the polarization beam splitter 7b. Beams 26a to 26i in FIGS. 10A to 10B and FIGS. 11A to 11B represent beams that can be selectively generated by the active diffraction lens 14 from the beams emitted from the laser 3b. A solid line and a dotted line in the figure respectively indicate a beam that is actually generated and a beam that is not actually generated. FIGS. 10A and 11A show the optical path of the beam when the beam 26a is selectively generated, and FIGS. 10B and 11B show the optical path of the beam when the beam 26i is selectively generated.
 図10Aにおいては、ビーム26aが反射層20上に集光されるように、凸レンズ4b、4cのいずれか一方が、図示されないアクチュエータにより光軸方向へ駆動される。ビーム26aは、反射層20で反射され、光検出器13bで受光される。このとき、ビーム24aの集光位置とビーム26aの集光位置との間隔は広いため、ビーム24aは、記録層17b内を反射層20の側へ向かう途中の、反射層20から遠い位置である記録層17b内の集光点21cに集光される。また、ビーム24bが記録層17bを透過し、1/4波長板層19を透過して直線偏光から円偏光へ変換され、反射層20で反射され、1/4波長板層19を透過して円偏光から直線偏光へ変換され、記録層17b内を反射層20と反対の側へ向かう途中で、同じく集光点21cに集光されるように、凸レンズ4d、4eのいずれか一方が図示されないアクチュエータにより光軸方向へ駆動される。したがって、ビーム24aとビーム24bとは集光点21cにおいて干渉し、集光点21cに微小な回折格子が形成される。 In FIG. 10A, either one of the convex lenses 4b and 4c is driven in the optical axis direction by an actuator (not shown) so that the beam 26a is condensed on the reflection layer 20. The beam 26a is reflected by the reflective layer 20 and received by the photodetector 13b. At this time, since the distance between the condensing position of the beam 24a and the condensing position of the beam 26a is wide, the beam 24a is a position far from the reflective layer 20 on the way to the reflective layer 20 side in the recording layer 17b. The light is condensed at a condensing point 21c in the recording layer 17b. The beam 24b is transmitted through the recording layer 17b, is transmitted through the quarter-wave plate layer 19, is converted from linearly polarized light to circularly polarized light, is reflected by the reflective layer 20, and is transmitted through the quarter-wave plate layer 19. Either one of the convex lenses 4d and 4e is not shown so that it is converted from circularly polarized light into linearly polarized light and is condensed at the condensing point 21c on the way to the side opposite to the reflective layer 20 in the recording layer 17b. It is driven in the optical axis direction by an actuator. Therefore, the beam 24a and the beam 24b interfere at the condensing point 21c, and a minute diffraction grating is formed at the condensing point 21c.
 図10Bにおいては、ビーム26iが反射層20上に集光されるように、凸レンズ4b、4cのいずれか一方が図示されないアクチュエータにより光軸方向へ駆動される。ビーム26iは、反射層20で反射され、光検出器13bで受光される。このとき、ビーム24aの集光位置とビーム26iの集光位置との間隔は狭いため、ビーム24aは、記録層17b内を反射層20の側へ向かう途中で、反射層20に近い位置である記録層17b内の集光点21dに集光される。また、ビーム24bが記録層17bを透過し、1/4波長板層19を透過して直線偏光から円偏光へ変換され、反射層20で反射され、1/4波長板層19を透過して円偏光から直線偏光へ変換され、記録層17b内を反射層20と反対の側へ向かう途中で、同じく集光点21dに集光されるように、凸レンズ4d、4eのいずれか一方が図示されないアクチュエータにより光軸方向へ駆動される。ビーム24aとビーム24bとは、集光点21dにおいて干渉し、集光点21dに微小な回折格子が形成される。 In FIG. 10B, either one of the convex lenses 4b and 4c is driven in the optical axis direction by an actuator (not shown) so that the beam 26i is condensed on the reflection layer 20. The beam 26i is reflected by the reflective layer 20 and received by the photodetector 13b. At this time, since the distance between the condensing position of the beam 24a and the condensing position of the beam 26i is narrow, the beam 24a is close to the reflective layer 20 on the way to the reflective layer 20 side in the recording layer 17b. The light is condensed at a condensing point 21d in the recording layer 17b. The beam 24b is transmitted through the recording layer 17b, is transmitted through the quarter-wave plate layer 19, is converted from linearly polarized light to circularly polarized light, is reflected by the reflective layer 20, and is transmitted through the quarter-wave plate layer 19. Either one of the convex lenses 4d and 4e is not shown so that it is converted from circularly polarized light to linearly polarized light and is condensed at the condensing point 21d on the way to the side opposite to the reflective layer 20 in the recording layer 17b. It is driven in the optical axis direction by an actuator. The beam 24a and the beam 24b interfere at the condensing point 21d, and a minute diffraction grating is formed at the condensing point 21d.
 図11Aにおいては、ビーム26aが反射層20上に集光されるように、凸レンズ4b、4cのいずれか一方が図示されないアクチュエータにより光軸方向へ駆動される。ビーム26aは、反射層20で反射され、光検出器13bで受光される。このとき、ビーム24aの集光位置とビーム26aの集光位置との間隔は広く、ビーム24aは、記録層17b内を反射層20の側へ向かう途中の、反射層20から遠い位置である記録層17b内の回折格子22cに集光される。回折格子22cは、図10Aにおける集光点21cに形成された回折格子である。ビーム24aは、回折格子22cで反射され、光検出器13aで受光される。 In FIG. 11A, one of the convex lenses 4b and 4c is driven in the optical axis direction by an actuator (not shown) so that the beam 26a is condensed on the reflective layer 20. The beam 26a is reflected by the reflective layer 20 and received by the photodetector 13b. At this time, the distance between the condensing position of the beam 24a and the condensing position of the beam 26a is wide, and the beam 24a is a recording at a position far from the reflective layer 20 on the way to the reflective layer 20 side in the recording layer 17b. The light is condensed on the diffraction grating 22c in the layer 17b. The diffraction grating 22c is a diffraction grating formed at the condensing point 21c in FIG. 10A. The beam 24a is reflected by the diffraction grating 22c and received by the photodetector 13a.
 図11Bにおいては、ビーム26iが反射層20上に集光されるように、凸レンズ4b、4cのいずれか一方が図示されないアクチュエータにより光軸方向へ駆動される。ビーム26iは、反射層20で反射され、光検出器13bで受光される。このとき、ビーム24aの集光位置とビーム26iの集光位置との間隔は狭く、ビーム24aは、記録層17b内を反射層20の側へ向かう途中の、反射層20に近い位置である記録層17b内の回折格子22dに集光される。回折格子22dは、図10Bにおける集光点21dに形成された回折格子である。ビーム24aは、回折格子22dで反射され、光検出器13aで受光される。 In FIG. 11B, either one of the convex lenses 4b and 4c is driven in the optical axis direction by an actuator (not shown) so that the beam 26i is condensed on the reflection layer 20. The beam 26i is reflected by the reflective layer 20 and received by the photodetector 13b. At this time, the interval between the condensing position of the beam 24a and the condensing position of the beam 26i is narrow, and the beam 24a is a position near the reflective layer 20 on the way to the reflective layer 20 side in the recording layer 17b. The light is condensed on the diffraction grating 22d in the layer 17b. The diffraction grating 22d is a diffraction grating formed at the condensing point 21d in FIG. 10B. The beam 24a is reflected by the diffraction grating 22d and received by the photodetector 13a.
 ここで、集光位置に形成された回折格子は、ビットデータの情報を有している。アクティブ回折レンズ14によりビーム26a~26iのうちの1つを選択的に生成してビーム24aの集光位置と選択的に生成されたビームの集光位置との間隔を9段階に変化させる。その選択的に生成されたビームが反射層20上に集光されるように凸レンズ4b、4cのいずれか一方を駆動することにより、ビーム24aの集光位置を記録層17b内で光軸方向に9段階に変化させることができる。従って、ビーム24a、24bを用い、記録層17bの厚さ方向へ9層に情報の記録再生を行うことができる。 Here, the diffraction grating formed at the condensing position has bit data information. One of the beams 26a to 26i is selectively generated by the active diffractive lens 14, and the interval between the condensing position of the beam 24a and the condensing position of the selectively generated beam is changed in nine steps. By driving one of the convex lenses 4b and 4c so that the selectively generated beam is condensed on the reflection layer 20, the condensing position of the beam 24a is set in the optical axis direction in the recording layer 17b. It can be changed in 9 steps. Therefore, information can be recorded / reproduced in nine layers in the thickness direction of the recording layer 17b by using the beams 24a and 24b.
 本実施形態においては、焦点制御用ビームとしてビーム26a~26iのうちアクティブ回折レンズ14により選択的に生成された単一のビームを用いる。このため、選択的に生成されたビームの光量を大きくすることができる。また、反射層20上に集光されたビームを光検出器13bで受光する際、他に光検出器13bで受光される不要なビームはない。その結果、フォーカス誤差信号にノイズやクロストークが混入せず、ビーム24aの集光位置を光軸方向に正しく制御することができる。 In the present embodiment, a single beam selectively generated by the active diffraction lens 14 is used as the focus control beam among the beams 26a to 26i. For this reason, the light quantity of the selectively generated beam can be increased. In addition, when the beam focused on the reflection layer 20 is received by the photodetector 13b, there is no unnecessary beam received by the photodetector 13b. As a result, noise and crosstalk are not mixed in the focus error signal, and the condensing position of the beam 24a can be correctly controlled in the optical axis direction.
 アクティブ回折レンズ14の断面図は、図6に示されるものと同じである。また、アクティブ回折レンズ14における液晶層への印加電圧と回折レンズの焦点距離との関係は、図7に示されるものと同じである。 The cross-sectional view of the active diffractive lens 14 is the same as that shown in FIG. Further, the relationship between the voltage applied to the liquid crystal layer in the active diffractive lens 14 and the focal length of the diffractive lens is the same as that shown in FIG.
 アクティブ回折レンズ14の厚さを無視し、アクティブ回折レンズ14に対する物点位置、像点位置をそれぞれad、bdとすると、1/ad+1/bd=1/fdが成り立つ。凸レンズ4bの厚さを無視し、凸レンズ4bの焦点距離をfr、凸レンズ4bに対する物点位置、像点位置をそれぞれar1、br1とすると、1/ar1+1/br1=1/frが成り立つ。凸レンズ4cの厚さを無視し、凸レンズ4cの焦点距離をfr、凸レンズ4cに対する物点位置、像点位置をそれぞれar2、br2とすると、1/ar2+1/br2=1/frが成り立つ。また、対物レンズ12cの厚さを無視し、対物レンズ12cの焦点距離をfo、対物レンズ12cに対する物点位置、像点位置をそれぞれao、boとすると、1/ao+1/bo=1/foが成り立つ。 If the thickness of the active diffractive lens 14 is ignored and the object point position and the image point position with respect to the active diffractive lens 14 are ad and bd, respectively, 1 / ad + 1 / bd = 1 / fd is established. If the thickness of the convex lens 4b is ignored, the focal length of the convex lens 4b is fr, the object point position and the image point position with respect to the convex lens 4b are ar1 and br1, respectively, 1 / ar1 + 1 / br1 = 1 / fr holds. If the thickness of the convex lens 4c is ignored, the focal length of the convex lens 4c is fr, and the object point position and the image point position with respect to the convex lens 4c are ar2 and br2, respectively, 1 / ar2 + 1 / br2 = 1 / fr holds. Further, ignoring the thickness of the objective lens 12c, if the focal length of the objective lens 12c is fo, and the object point position and the image point position with respect to the objective lens 12c are ao and bo, respectively, 1 / ao + 1 / bo = 1 / fo. It holds.
 図7に示される(a)~(i)は、アクティブ回折レンズ14によりそれぞれ図10A~10Bまたは図11A~11Bにおけるビーム26a~26iが選択的に生成されている状態に対応する。(a)から(i)へ向かって順に、1/fdは、-4/3Fdから+4/3Fdまで1/3Fd間隔で9段階に変化する。ad=fo/ΔFであるとすると、1/bdは-4/3Fd-ΔF/foから+4/3Fd-ΔF/foまで1/3Fd間隔で9段階に変化する。Fd、fo/ΔFがアクティブ回折レンズ14と凸レンズ4bとの間隔に比べて十分に大きい場合、ar1=-bdとなるため、1/ar1は、+4/3Fd+ΔF/foから-4/3Fd+ΔF/foまで-1/3Fd間隔で9段階に変化する。Fd、fo/ΔFがfrに比べて十分に大きい場合、br1は、fr+4fr/3Fd+frΔF/foからfr-4fr/3Fd+frΔF/foまで-fr/3Fd間隔で9段階に変化する。br1+ar2=2fr+frΔF/foであるとすると、ar2は、fr-4fr/3Fdからfr+4fr/3Fdまでfr/3Fd間隔で9段階に変化する。Fdがfrに比べて十分に大きい場合、1/br2は、-4/3Fdから+4/3Fdまで1/3Fd間隔で9段階に変化する。Fdが凸レンズ4cと対物レンズ12cとの間隔に比べて十分に大きい場合、ao=-br2となるため、1/aoは、+4/3Fdから-4/3Fdまで-1/3Fd間隔で9段階に変化する。Fdがfoに比べて十分に大きい場合、boは、fo+4fo/3Fdからfo-4fo/3Fdまで-fo/3Fd間隔で9段階に変化する。 (A) to (i) shown in FIG. 7 correspond to the state in which the beams 26a to 26i in FIGS. 10A to 10B or 11A to 11B are selectively generated by the active diffraction lens 14, respectively. In order from (a) to (i), 1 / fd changes in nine steps from / 4/3 Fd to +4/3 Fd at 1/3 Fd intervals. Assuming that ad = fo 2 / ΔF, 1 / bd changes from −4 / 3Fd−ΔF / fo 2 to + 4 / 3Fd−ΔF / fo 2 in 9 steps at 1 / 3Fd intervals. When Fd, fo 2 / ΔF is sufficiently larger than the distance between the active diffractive lens 14 and the convex lens 4b, ar1 = −bd, so 1 / ar1 is changed from + 4 / 3Fd + ΔF / fo 2 to −4 / 3Fd + ΔF / Changes to 9 levels at -1/3 Fd intervals up to fo 2 . When Fd and fo 2 / ΔF are sufficiently larger than fr, br1 is 9 steps from fr + 4fr 2 / 3Fd + fr 2 ΔF / fo 2 to fr-4fr 2 / 3Fd + fr 2 ΔF / fo 2 at −fr 2 / 3Fd intervals. To change. Assuming that br1 + ar2 = 2fr + fr 2 ΔF / fo 2 , ar2 changes from fr-4fr 2 / 3Fd to fr + 4fr 2 / 3Fd in nine steps at fr 2 / 3Fd intervals. When Fd is sufficiently larger than fr, 1 / br2 changes in nine steps from -4/3 Fd to +4/3 Fd at 1/3 Fd intervals. When Fd is sufficiently larger than the distance between the convex lens 4c and the objective lens 12c, ao = −br2, so 1 / ao is divided into nine stages at intervals of −1 / 3Fd from + 4 / 3Fd to −4 / 3Fd. Change. When Fd is sufficiently larger than fo, bo changes in nine steps from −fo + 4fo 2 / 3Fd to fo−4fo 2 / 3Fd at −fo 2 / 3Fd intervals.
 これに対し、図10A~10Bまたは図11A~11Bにおけるビーム24aに関しては、ar1=∞であるとするとbr1=frとなる。br1+ar2=2fr+frΔF/foであるとすると、ar2=fr+frΔF/foとなる。fo/ΔFがfrに比べて十分に大きい場合、1/br2=ΔF/foとなる。fo/ΔFが凸レンズ4cと対物レンズ12cとの間隔に比べて十分に大きい場合、ao=-br2となるため、1/ao=-ΔF/foとなる。fo/ΔFがfoに比べて十分に大きい場合、bo=fo-ΔFとなる。ビーム26a~26iの集光位置を基準としたビーム24aの集光位置をΔfとすると、Δfは、-4fo/3Fd-ΔFから+4fo/3Fd-ΔFまでfo/3Fd間隔で9段階に変化する。例えば、ΔF=13fo/6Fdであり、Fd=300mm、fo=3mmであるとすると、Δfは、-105μmから-25μmまで10μm間隔で9段階に変化する。ここで、第一、第二液晶層への印加電圧が多少変動しても、第一、第二回折レンズの回折効率が多少変動するだけで焦点距離は変動しない。そのため、Δfは変動しない。 On the other hand, regarding the beam 24a in FIGS. 10A to 10B or FIGS. 11A to 11B, when ar1 = ∞, br1 = fr. When br1 + ar2 = 2fr + fr 2 and a [Delta] F / fo 2, the ar2 = fr + fr 2 ΔF / fo 2. When fo 2 / ΔF is sufficiently larger than fr, 1 / br 2 = ΔF / fo 2 . When fo 2 / ΔF is sufficiently larger than the distance between the convex lens 4c and the objective lens 12c, ao = −br2, so 1 / ao = −ΔF / fo 2 . When fo 2 / ΔF is sufficiently larger than fo, bo = fo−ΔF. Assuming that the focal position of the beam 24a with reference to the focal positions of the beams 26a to 26i is Δf, Δf is in nine stages from -4fo 2 / 3Fd−ΔF to + 4fo 2 / 3Fd−ΔF at intervals of fo 2 / 3Fd. Change. For example, if ΔF = 13fo 2 / 6Fd, Fd = 300 mm, and fo = 3 mm, Δf changes in nine steps from −105 μm to −25 μm at 10 μm intervals. Here, even if the voltage applied to the first and second liquid crystal layers varies slightly, the diffraction efficiency of the first and second diffractive lenses varies only slightly, and the focal length does not vary. Therefore, Δf does not vary.
 本実施形態においては、アクティブ回折レンズ14は、入射光から-1次回折光、0次光、+1次回折光の3つの回折光のうちの1つを選択的に生成する第一、第二回折レンズを備えている。第一回折レンズの焦点距離を-Fd、∞、+Fdの3段階に変化させ、第二回折レンズの焦点距離を-3Fd、∞、+3Fdの3段階に変化させることにより、Δfは、-4fo/3Fd-ΔFから+4fo/3Fd-ΔFまでfo/3Fd間隔で9段階に変化する。これにより9層に情報の記録再生が行われる。 In the present embodiment, the active diffractive lens 14 is a first and second diffractive lens that selectively generates one of three diffracted lights of −1st order diffracted light, 0th order light, and + 1st order diffracted light from incident light. It has. By changing the focal length of the first diffractive lens in three steps of -Fd, ∞, and + Fd and changing the focal length of the second diffractive lens in three steps of -3Fd, ∞, and + 3Fd, Δf becomes -4fo 2 From / 3Fd−ΔF to + 4fo 2 / 3Fd−ΔF, it changes in 9 steps at intervals of fo 2 / 3Fd. As a result, information is recorded / reproduced on nine layers.
 アクティブ回折レンズは、入射光から-1次回折光、0次光、+1次回折光の3つの回折光のうちの1つを選択的に生成する第一、第二、第三回折レンズを備えてもよい。第一回折レンズの焦点距離を-Fd、∞、+Fdの3段階に変化させ、第二回折レンズの焦点距離を-3Fd、∞、+3Fdの3段階に変化させ、第三回折レンズの焦点距離を-9Fd、∞、+9Fdの3段階に変化させることにより、Δfは、-13fo/9Fd-ΔFから+13fo/9Fd-ΔFまでfo/9Fd間隔で27段階に変化する。これにより27層に情報の記録再生を行うことが可能である。 The active diffractive lens also includes first, second, and third diffractive lenses that selectively generate one of three diffracted lights of −1st order diffracted light, 0th order light, and + 1st order diffracted light from incident light. Good. The focal length of the first diffractive lens is changed in three steps of -Fd, ∞, + Fd, the focal length of the second diffractive lens is changed in three steps of -3Fd, ∞, + 3Fd, and the focal length of the third diffractive lens is changed. By changing in three steps of −9Fd, ∞, and + 9Fd, Δf changes from −13fo 2 / 9Fd−ΔF to + 13fo 2 / 9Fd−ΔF in 27 steps at a fo 2 / 9Fd interval. As a result, information can be recorded and reproduced on the 27th layer.
 また、アクティブ回折レンズは、入射光から-2次回折光、-1次回折光、0次光、+1次回折光、+2次回折光の5つの回折光のうちの1つを選択的に生成する第一、第二回折レンズを備えてもよい。第一回折レンズの焦点距離を-Fd/2、-Fd、∞、+Fd、+Fd/2の5段階に変化させ、第二回折レンズの焦点距離を-5Fd/2、-5Fd、∞、+5Fd、+5Fd/2の5段階に変化させることにより、Δfは、-12fo/5Fd-ΔFから+12fo/5Fd-ΔFまでfo/5Fd間隔で25段階に変化する。これにより25層に情報の記録再生を行うことが可能である。 In addition, the active diffractive lens selectively generates one of five diffracted lights, that is, a −2nd order diffracted light, a −1st order diffracted light, a 0th order light, a + 1st order diffracted light, and a + 2nd order diffracted light from the incident light. A second diffractive lens may be provided. The focal length of the first diffractive lens is changed in five steps: -Fd / 2, -Fd, ∞, + Fd, + Fd / 2, and the focal length of the second diffractive lens is -5Fd / 2, -5Fd, ∞, + 5Fd, By changing to 5 steps of + 5Fd / 2, Δf changes from −12fo 2 / 5Fd−ΔF to + 12fo 2 / 5Fd−ΔF in 25 steps at an interval of fo 2 / 5Fd. As a result, it is possible to record and reproduce information on 25 layers.
 図12は、本発明の第2の実施形態に係る光学的情報記録再生装置の構成を示すブロック図である。この光学情報記録再生装置は、光学ユニット1bと、ポジショナ33bと、スピンドル34bと、コントローラ35と、アクティブ波長板駆動回路36と、変調回路37と、記録信号生成回路38と、レーザ駆動回路39と、増幅回路40と、再生信号処理回路41と、復調回路42と、レーザ駆動回路43と、アクティブ回折レンズ駆動回路44と、増幅回路45と、誤差信号生成回路46と、リレーレンズ駆動回路48と、ポジショナ駆動回路49と、スピンドル駆動回路50とを具備する。 FIG. 12 is a block diagram showing a configuration of an optical information recording / reproducing apparatus according to the second embodiment of the present invention. The optical information recording / reproducing apparatus includes an optical unit 1b, a positioner 33b, a spindle 34b, a controller 35, an active wave plate driving circuit 36, a modulation circuit 37, a recording signal generating circuit 38, and a laser driving circuit 39. An amplifier circuit 40, a reproduction signal processing circuit 41, a demodulation circuit 42, a laser drive circuit 43, an active diffraction lens drive circuit 44, an amplification circuit 45, an error signal generation circuit 46, and a relay lens drive circuit 48 A positioner driving circuit 49 and a spindle driving circuit 50.
 光学ユニット1bは、上述の第2の実施形態に係る光学ユニットに相当し、ポジショナ33bに搭載されている。ディスク2bは、スピンドル34bに搭載されている。コントローラ35は、アクティブ波長板駆動回路36と、変調回路37からレーザ駆動回路39までの回路と、増幅回路40から復調回路42までの回路と、レーザ駆動回路43と、アクティブ回折レンズ駆動回路44と、増幅回路45からリレーレンズ駆動回路48までの回路と、ポジショナ駆動回路49と、スピンドル駆動回路50とを制御する。 The optical unit 1b corresponds to the optical unit according to the second embodiment described above, and is mounted on the positioner 33b. The disk 2b is mounted on the spindle 34b. The controller 35 includes an active wave plate driving circuit 36, a circuit from the modulation circuit 37 to the laser driving circuit 39, a circuit from the amplification circuit 40 to the demodulation circuit 42, a laser driving circuit 43, and an active diffractive lens driving circuit 44. The circuit from the amplifier circuit 45 to the relay lens drive circuit 48, the positioner drive circuit 49, and the spindle drive circuit 50 are controlled.
 ビーム切替手段駆動回路であるアクティブ波長板駆動回路36は、ディスク2bへ情報を記録するときには、光学ユニット1b内のアクティブ波長板5が1/4波長板の効果を持つように、アクティブ波長板5が有する液晶層に実効値2.5ボルトの交流電圧を印加する。また、ディスク2bから情報を再生するときには、アクティブ波長板駆動回路36は、光学ユニット1b内のアクティブ波長板5が全波長板の効果を持つように、アクティブ波長板5が有する液晶層に実効値5ボルトの交流電圧を印加する。 The active wave plate driving circuit 36 which is a beam switching means driving circuit, when recording information on the disk 2b, makes the active wave plate 5 so that the active wave plate 5 in the optical unit 1b has the effect of a quarter wave plate. An AC voltage having an effective value of 2.5 volts is applied to the liquid crystal layer included in. Further, when reproducing information from the disk 2b, the active wave plate driving circuit 36 has an effective value on the liquid crystal layer of the active wave plate 5 so that the active wave plate 5 in the optical unit 1b has the effect of all wave plates. Apply an AC voltage of 5 volts.
 変調回路37は、ディスク2bへ情報を記録するときに、記録データとして外部から入力される信号を変調規則に従って変調する。記録信号生成回路38は、変調回路37で変調された信号に基づいて、光学ユニット1b内のレーザ3aを駆動するための記録信号を生成する。レーザ駆動回路39は、ディスク2bへ情報を記録するときには、記録信号生成回路38で生成された記録信号に基づいて、レーザ3aへ記録信号に応じた電流を供給してレーザ3aを駆動する。ディスク2bから情報を再生するときには、レーザ駆動回路39は、レーザ3aからの出射光のパワーが一定になるように、レーザ3aへ一定の電流を供給してレーザ3aを駆動する。 The modulation circuit 37 modulates a signal input from the outside as recording data according to a modulation rule when recording information on the disk 2b. The recording signal generation circuit 38 generates a recording signal for driving the laser 3a in the optical unit 1b based on the signal modulated by the modulation circuit 37. When recording information on the disk 2b, the laser driving circuit 39 drives the laser 3a by supplying a current corresponding to the recording signal to the laser 3a based on the recording signal generated by the recording signal generating circuit 38. When reproducing information from the disk 2b, the laser drive circuit 39 drives the laser 3a by supplying a constant current to the laser 3a so that the power of the emitted light from the laser 3a is constant.
 増幅回路40は、ディスク2bに回折格子の形態で記録された情報を再生するときに、光学ユニット1b内の光検出器13aから出力される電圧信号を増幅する。再生信号処理回路41は、増幅回路40で増幅された電圧信号に基づいて、ディスク2b再生信号の生成、波形等化、2値化を行う。復調回路42は、再生信号処理回路41で2値化された信号を復調規則に従って復調し、再生データとして外部へ出力する。 The amplification circuit 40 amplifies the voltage signal output from the photodetector 13a in the optical unit 1b when reproducing information recorded in the form of a diffraction grating on the disk 2b. The reproduction signal processing circuit 41 performs generation, waveform equalization, and binarization of the disk 2b reproduction signal based on the voltage signal amplified by the amplifier circuit 40. The demodulation circuit 42 demodulates the signal binarized by the reproduction signal processing circuit 41 according to a demodulation rule, and outputs it as reproduction data to the outside.
 レーザ駆動回路43は、ディスク2bへ情報を記録するときおよびディスク2bから情報を再生するときに、光学ユニット1b内のレーザ3bから出射されるレーザ光のパワーが一定になるように、レーザ3bへ一定の電流を供給してレーザ3bを駆動する。 When recording information on the disk 2b and reproducing information from the disk 2b, the laser drive circuit 43 applies to the laser 3b so that the power of the laser light emitted from the laser 3b in the optical unit 1b is constant. A constant current is supplied to drive the laser 3b.
 可変焦点手段駆動回路であるアクティブ回折レンズ駆動回路44は、ディスク2bへ情報を記録するときおよびディスク2bから情報を再生するときに、アクティブ回折レンズ14が有する液晶層28a~28dに実効値が0ボルト、2.5ボルト、5ボルトのいずれかの交流電圧を印加する。光学ユニット1b内のアクティブ回折レンズ14は、印加される電圧に応じてビーム26a~26iのうちの1つを選択的に生成する。 The active diffractive lens driving circuit 44, which is a variable focus unit driving circuit, has an effective value of 0 in the liquid crystal layers 28a to 28d of the active diffractive lens 14 when recording information on the disk 2b and reproducing information from the disk 2b. An AC voltage of any one of volts, 2.5 volts, and 5 volts is applied. The active diffractive lens 14 in the optical unit 1b selectively generates one of the beams 26a to 26i according to the applied voltage.
 増幅回路45は、ディスク2bへ情報を記録するときおよびディスク2bから情報を再生するときに、光学ユニット1b内の光検出器13bから出力される電圧信号を増幅する。誤差信号生成回路46は、増幅回路45で増幅された電圧信号に基づいて、光学ユニット1b内の凸レンズ4b、4cのいずれか一方、凸レンズ4d、4eのいずれか一方を駆動するためのフォーカス誤差信号を生成する。リレーレンズ駆動回路48は、ビーム26a~26iのうち選択的に生成されたビームの集光位置の、反射層20に対する光軸方向のずれを補正する焦点移動手段駆動回路である。リレーレンズ駆動回路48は、誤差信号生成回路46で生成されたフォーカス誤差信号に基づいて、図示されないアクチュエータへフォーカス誤差信号に応じた電流を供給して凸レンズ4b、4cのいずれか一方、凸レンズ4d、4eのいずれか一方を光軸方向へ駆動する。 The amplification circuit 45 amplifies a voltage signal output from the photodetector 13b in the optical unit 1b when recording information on the disk 2b and reproducing information from the disk 2b. Based on the voltage signal amplified by the amplifier circuit 45, the error signal generation circuit 46 drives a focus error signal for driving one of the convex lenses 4b and 4c and one of the convex lenses 4d and 4e in the optical unit 1b. Is generated. The relay lens driving circuit 48 is a focus moving unit driving circuit that corrects a deviation in the optical axis direction with respect to the reflective layer 20 of a condensing position of a beam selectively generated from the beams 26a to 26i. The relay lens driving circuit 48 supplies a current corresponding to the focus error signal to an actuator (not shown) based on the focus error signal generated by the error signal generation circuit 46, and either one of the convex lenses 4b and 4c, the convex lens 4d, Either one of 4e is driven in the optical axis direction.
 ポジショナ駆動回路49は、図示されないモータへ電流を供給してポジショナ33bをディスク2bの半径方向へ移動する。これによって、ディスク2bへ情報を記録するときには、ビーム24a、24bの集光位置がディスク2bの半径方向へ移動し、ディスク2bから情報を再生するときには、ビーム24aの集光位置がディスク2bの半径方向へ移動する。 Positioner drive circuit 49 supplies current to a motor (not shown) to move the positioner 33b in the radial direction of the disk 2b. Thus, when information is recorded on the disk 2b, the condensing positions of the beams 24a and 24b move in the radial direction of the disk 2b, and when information is reproduced from the disk 2b, the condensing position of the beam 24a is the radius of the disk 2b. Move in the direction.
 スピンドル駆動回路50は、図示されないモータへ電流を供給してスピンドル34bを回転させる。これによって、ディスク2bへ情報を記録するときには、ビーム24a、24bの集光位置がディスク2bの接線方向へ移動し、ディスク2bから情報を再生するときには、ビーム24aの集光位置がディスク2bの接線方向へ移動する。 The spindle drive circuit 50 supplies a current to a motor (not shown) to rotate the spindle 34b. Thus, when information is recorded on the disk 2b, the converging positions of the beams 24a and 24b move in the tangential direction of the disk 2b. When information is reproduced from the disk 2b, the converging position of the beam 24a is tangent to the disk 2b. Move in the direction.
 第2の実施形態においては、光学ユニットは、反射層20にディスク2bの接線方向に平行なトラックを形成すると共に、ビーム24a、24bの集光位置をディスク2bの半径方向に移動可能なトラック移動手段を具備してもよい。また、光学的情報記録再生装置は、光検出器13bからの出力に基づいてビーム24a、24bの集光位置をディスク2bの半径方向に制御するためのトラック誤差信号を生成する誤差信号生成回路と、トラック誤差信号に基づいてトラック移動手段を駆動するトラック移動手段駆動回路とを具備してもよい。 In the second embodiment, the optical unit forms tracks parallel to the tangential direction of the disk 2b on the reflective layer 20 and moves the tracks 24a and 24b in the radial direction of the disk 2b. Means may be provided. The optical information recording / reproducing apparatus includes an error signal generation circuit that generates a track error signal for controlling the condensing positions of the beams 24a and 24b in the radial direction of the disk 2b based on the output from the photodetector 13b. And a track moving means driving circuit for driving the track moving means based on the track error signal.
 このとき、凸レンズ4b、4cを含むリレーレンズ系、凸レンズ4d、4eを含むリレーレンズ系は、焦点移動手段だけでなくトラック移動手段にも相当する。凸レンズ4b、4cのいずれか一方、凸レンズ4d、4eのいずれか一方は、図示されないアクチュエータに搭載されている。誤差信号生成回路46は、増幅回路45で増幅された電圧信号に基づいて、光学ユニット1b内の凸レンズ4b、4cのいずれか一方、凸レンズ4d、4eのいずれか一方を駆動するためのフォーカス誤差信号だけでなく、トラック誤差信号をも生成する。リレーレンズ駆動回路48は、ビーム26a~26iのうち選択的に生成されたビームの集光位置の、反射層20に形成されたトラックに対するディスク2bの半径方向のずれを補正する。そのために、リレーレンズ駆動回路48は、誤差信号生成回路46で生成されたトラック誤差信号に基づいて、図示されないアクチュエータへトラック誤差信号に応じた電流を供給して凸レンズ4b、4cのいずれか一方、凸レンズ4d、4eのいずれか一方をディスク2bの半径方向へ駆動する。 At this time, the relay lens system including the convex lenses 4b and 4c and the relay lens system including the convex lenses 4d and 4e correspond to not only the focus moving means but also the track moving means. One of the convex lenses 4b and 4c and one of the convex lenses 4d and 4e are mounted on an actuator (not shown). Based on the voltage signal amplified by the amplifier circuit 45, the error signal generation circuit 46 drives a focus error signal for driving either one of the convex lenses 4b and 4c and one of the convex lenses 4d and 4e in the optical unit 1b. As well as a track error signal. The relay lens driving circuit 48 corrects the deviation in the radial direction of the disk 2b with respect to the track formed on the reflective layer 20 at the condensing position of the beam selectively generated from the beams 26a to 26i. For this purpose, the relay lens drive circuit 48 supplies a current corresponding to the track error signal to an actuator (not shown) based on the track error signal generated by the error signal generation circuit 46, and either one of the convex lenses 4b and 4c, One of the convex lenses 4d and 4e is driven in the radial direction of the disk 2b.
 また、第2の実施形態においては、光学ユニットは、ディスク2bへ情報を記録するときにディスク2b内で反射された記録再生用ビームを受光する別の光検出器と、ビーム24aの集光位置に対するビーム24bの集光位置を光軸方向、ディスク2bの半径方向、接線方向に移動可能なビーム移動手段とを具備してもよい。また、光学的情報記録再生装置は、別の増幅回路と、別の光検出器からの出力に基づいてビーム24aの集光位置に対するビーム24bの集光位置を光軸方向、ディスク2bの半径方向、接線方向に制御するための位置ずれ信号を生成する位置ずれ信号生成回路と、位置ずれ信号に基づいてビーム移動手段を駆動するビーム移動手段駆動回路とを具備してもよい。 In the second embodiment, the optical unit includes another photodetector for receiving the recording / reproducing beam reflected in the disk 2b when information is recorded on the disk 2b, and the condensing position of the beam 24a. There may be provided beam moving means capable of moving the condensing position of the beam 24b with respect to the optical axis direction, the radial direction of the disk 2b, and the tangential direction. Further, the optical information recording / reproducing apparatus sets the condensing position of the beam 24b relative to the condensing position of the beam 24a based on the output from another amplifier circuit and another optical detector in the optical axis direction and the radial direction of the disk 2b. A position shift signal generating circuit that generates a position shift signal for controlling in the tangential direction and a beam moving means driving circuit that drives the beam moving means based on the position shift signal may be provided.
 このとき、凸レンズ4d、4eを含むリレーレンズ系は、ビーム移動手段に相当し、凸レンズ4d、4eのいずれか一方は、図示されないアクチュエータに搭載されている。別の増幅回路は、ディスク2bへ情報を記録するときに、光学ユニット1b内の別の光検出器から出力される電圧信号を増幅する。位置ずれ信号生成回路は、別の増幅回路で増幅された電圧信号に基づいて、光学ユニット1b内の凸レンズ4d、4eのいずれか一方を駆動するための位置ずれ信号を生成する。ビーム移動手段駆動回路である別のリレーレンズ駆動回路は、ビーム24aの集光位置に対するビーム24bの集光位置の光軸方向、ディスク2bの半径方向、接線方向のずれを補正する。そのために、別のリレーレンズ駆動回路は、位置ずれ信号生成回路で生成された位置ずれ信号に基づいて、図示されないアクチュエータへ位置ずれ信号に応じた電流を供給して凸レンズ4d、4eのいずれか一方を光軸方向、ディスク2bの半径方向、接線方向へ駆動する。 At this time, the relay lens system including the convex lenses 4d and 4e corresponds to beam moving means, and one of the convex lenses 4d and 4e is mounted on an actuator (not shown). Another amplifier circuit amplifies a voltage signal output from another photodetector in the optical unit 1b when recording information on the disk 2b. The position shift signal generation circuit generates a position shift signal for driving one of the convex lenses 4d and 4e in the optical unit 1b based on the voltage signal amplified by another amplifier circuit. Another relay lens driving circuit, which is a beam moving means driving circuit, corrects deviations in the optical axis direction, the radial direction of the disk 2b, and the tangential direction of the condensing position of the beam 24b with respect to the condensing position of the beam 24a. For this purpose, another relay lens drive circuit supplies a current corresponding to the position shift signal to an actuator (not shown) based on the position shift signal generated by the position shift signal generation circuit, and either one of the convex lenses 4d and 4e. Are driven in the optical axis direction, the radial direction of the disk 2b, and the tangential direction.
 上述のように、第1および第2の実施の形態においては、ビット型のホログラム記録用光学ユニット、ビット型のホログラム記録用光学的情報記録再生装置を例示した。しかし、本発明は、光記録媒体に対して3次元的に情報の記録再生を行うための光学ユニットおよび光学的情報記録再生装置であれば、ビット型のホログラム記録に限らずページ型のホログラム記録、2光子吸収記録等にも適用することができる。 As described above, in the first and second embodiments, the bit-type hologram recording optical unit and the bit-type hologram recording optical information recording / reproducing apparatus are exemplified. However, the present invention is not limited to bit-type hologram recording and page-type hologram recording, as long as it is an optical unit and an optical information recording / reproducing apparatus for performing three-dimensional information recording / reproduction on an optical recording medium. It can also be applied to two-photon absorption recording.
 なお、上記の各実施形態を説明する上で使用した具体的な数値は、いずれも一例であって、物理的または技術的な矛盾のない範囲で自由に変更可能である。 It should be noted that the specific numerical values used in describing each of the above-described embodiments are merely examples, and can be freely changed within a range where there is no physical or technical contradiction.
 上に述べたように、本発明による光学ユニットと、この光学ユニットを用いる光学的情報記録再生装置と、光学的情報記録再生方法によれば、焦点制御用ビームとして単一のビームを用いることにより、ビームの光量を大きくすることができ、また、焦点制御用基準面上に集光されたビームを光検出器で受光する際、他に光検出器で受光される不要なビームはない。そのため、フォーカス誤差信号にノイズやクロストークが混入せず、記録再生用ビームの集光位置を光軸方向に正しく制御することができる。 As described above, according to the optical unit according to the present invention, the optical information recording / reproducing apparatus using the optical unit, and the optical information recording / reproducing method, a single beam is used as the focus control beam. The amount of light of the beam can be increased, and when the beam collected on the focus control reference surface is received by the photodetector, there is no other unnecessary beam received by the photodetector. Therefore, noise and crosstalk are not mixed in the focus error signal, and the focusing position of the recording / reproducing beam can be correctly controlled in the optical axis direction.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記実施の形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 なお、本出願は、日本出願番号2008-084952に基づく優先権を主張するものであり、日本出願番号2008-084952における開示内容は引用により本出願に組み込まれる。 Note that this application claims priority based on Japanese Application No. 2008-084952, and the disclosure content in Japanese Application No. 2008-084952 is incorporated by reference into this application.

Claims (10)

  1.  記録層と焦点制御用基準面とを有する光記録媒体に対し、前記記録層内に記録再生用ビーム、前記焦点制御用基準面上に焦点制御用ビームをそれぞれ集光し、前記記録再生用ビームにより情報の記録および再生を行う光学ユニットにおいて、
     前記記録再生用ビームと、前記焦点制御用ビームとを出射する光源と、
     前記記録再生用ビームおよび前記焦点制御用ビームを前記光記録媒体に集光する対物レンズ系と、
     前記光記録媒体から入射する、前記記録再生用ビームの反射光と前記焦点制御用ビームの反射光とを受光する光検出器と、
     前記記録再生用ビームの集光位置と前記焦点制御用ビームの集光位置との間隔を変化可能とするための可変焦点手段と、
     前記記録再生用ビームおよび前記焦点制御用ビームの集光位置を光軸方向に移動可能とするための焦点移動手段と
     を具備する
     光学ユニット。
    For an optical recording medium having a recording layer and a focus control reference surface, a recording / reproduction beam is condensed in the recording layer, and a focus control beam is condensed on the focus control reference surface. In the optical unit for recording and reproducing information by
    A light source for emitting the recording / reproducing beam and the focus control beam;
    An objective lens system for condensing the recording / reproducing beam and the focus control beam on the optical recording medium;
    A photodetector that receives the reflected light of the recording / reproducing beam and the reflected light of the focus control beam incident from the optical recording medium;
    Variable focus means for enabling the interval between the focusing position of the recording / reproducing beam and the focusing position of the focus control beam to be changed;
    An optical unit comprising: a focus moving means for enabling the focusing positions of the recording / reproducing beam and the focus control beam to move in the optical axis direction.
  2.  前記可変焦点手段は、焦点距離を変化可能な回折レンズ系を具備する
     請求の範囲1に記載の光学ユニット。
    The optical unit according to claim 1, wherein the variable focus unit includes a diffractive lens system capable of changing a focal length.
  3.  前記回折レンズ系は、焦点距離を変化可能な複数の回折レンズを備え、
     前記複数の回折レンズは焦点距離の変化量が互いに異なる
     請求の範囲2に記載の光学ユニット。
    The diffractive lens system includes a plurality of diffractive lenses capable of changing a focal length,
    The optical unit according to claim 2, wherein the plurality of diffractive lenses have different focal length changes.
  4.  前記焦点移動手段として、前記対物レンズ系を用い、
     前記対物レンズ系は、光軸方向に移動可能である
     請求の範囲1から請求の範囲3のいずれかに記載の光学ユニット。
    Using the objective lens system as the focal point moving means,
    The optical unit according to any one of claims 1 to 3, wherein the objective lens system is movable in an optical axis direction.
  5.  前記焦点移動手段は、複数のレンズを有するリレーレンズ系を備え、
     前記複数のレンズのいずれか一つは光軸方向に移動可能である
     請求の範囲1から請求の範囲3のいずれかに記載の光学ユニット。
    The focal point moving means includes a relay lens system having a plurality of lenses,
    The optical unit according to any one of claims 1 to 3, wherein any one of the plurality of lenses is movable in an optical axis direction.
  6.  前記記録再生用ビームを前記記録層内で互いに対向して同一の位置に集光される2つのビームとするか単一のビームとするかを切り替え可能なビーム切替手段をさらに具備する
     請求の範囲1に記載の光学ユニット。
    The beam recording means further comprises a beam switching means capable of switching between two beams or a single beam which are focused on the same position so as to oppose each other in the recording layer. The optical unit according to 1.
  7.  請求の範囲1から請求の範囲5のいずれかに記載の光学ユニットと、
     前記可変焦点手段を駆動する可変焦点手段駆動回路と、
     前記光検出器からの出力に基づいて前記記録再生用ビームの集光位置を光軸方向に制御するためのフォーカス誤差信号を生成する誤差信号生成回路と、
     前記フォーカス誤差信号に基づいて前記焦点移動手段を駆動する焦点移動手段駆動回路と
    を具備する
     光学的情報記録再生装置。
    An optical unit according to any one of claims 1 to 5,
    A variable focus means driving circuit for driving the variable focus means;
    An error signal generation circuit for generating a focus error signal for controlling the focusing position of the recording / reproducing beam in the optical axis direction based on an output from the photodetector;
    An optical information recording / reproducing apparatus comprising: a focus moving means driving circuit for driving the focus moving means based on the focus error signal.
  8.  前記記録再生用ビームを前記記録層内で互いに対向して同一の位置に集光される2つのビームとするか単一のビームとするかを切り替え可能なビーム切替手段と、
     前記光記録媒体へ情報を記録するときには前記記録再生用ビームが前記2つのビームとなり、前記光記録媒体から情報を再生するときには前記記録再生用ビームが前記単一のビームとなるように前記ビーム切替手段を駆動するビーム切替手段駆動回路と
     をさらに具備する
     請求の範囲7に記載の光学的情報記録再生装置。
    Beam switching means capable of switching between the two beams that are focused on the same position facing each other in the recording layer or a single beam in the recording layer;
    The beam switching is performed so that the recording / reproducing beam becomes the two beams when information is recorded on the optical recording medium, and the recording / reproducing beam becomes the single beam when information is reproduced from the optical recording medium. The optical information recording / reproducing apparatus according to claim 7, further comprising: a beam switching unit driving circuit that drives the unit.
  9.  記録再生用ビームと焦点制御用ビームとを光源から出射するステップと、
     光記録媒体の記録層内に前記記録再生用ビームを集光するステップと、
     前記光記録媒体の焦点制御用基準面上に前記焦点制御用ビームを集光するステップと、
     前記光記録媒体からの前記記録再生用ビームの反射光と前記焦点制御用ビームの反射光とを受光するステップと、
     前記記録再生用ビームの集光位置と前記焦点制御用ビームの集光位置との間隔を変えるステップと、
     前記記録再生用ビームおよび前記焦点制御用ビームの集光位置を光軸方向に移動するステップと
     を具備する
     光学的情報記録再生方法。
    Emitting a recording / reproducing beam and a focus control beam from a light source;
    Condensing the recording / reproducing beam in a recording layer of an optical recording medium;
    Condensing the focus control beam on a focus control reference surface of the optical recording medium;
    Receiving reflected light of the recording / reproducing beam and reflected light of the focus control beam from the optical recording medium;
    Changing the distance between the focusing position of the recording / reproducing beam and the focusing position of the focus control beam;
    An optical information recording / reproducing method comprising: moving a focusing position of the recording / reproducing beam and the focus control beam in an optical axis direction.
  10.  請求の範囲9に記載の光学的情報記録再生方法において、
     前記記録再生用ビームを前記記録層内で互いに対向して同一の位置に集光される2つのビームとするか単一のビームとするかを切り替えるステップをさらに具備する
     光学的情報記録再生方法。
    In the optical information recording / reproducing method according to claim 9,
    An optical information recording / reproducing method further comprising the step of switching the recording / reproducing beam between two beams focused on the same position facing each other in the recording layer or a single beam.
PCT/JP2009/055858 2008-03-27 2009-03-24 Optical unit, optical information recording/reproducing device and optical information recording/reproducing method WO2009119608A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008084952 2008-03-27
JP2008-084952 2008-03-27

Publications (1)

Publication Number Publication Date
WO2009119608A1 true WO2009119608A1 (en) 2009-10-01

Family

ID=41113800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055858 WO2009119608A1 (en) 2008-03-27 2009-03-24 Optical unit, optical information recording/reproducing device and optical information recording/reproducing method

Country Status (1)

Country Link
WO (1) WO2009119608A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176117A (en) * 1999-12-15 2001-06-29 Olympus Optical Co Ltd Optical pickup device
JP2006107668A (en) * 2004-10-08 2006-04-20 Hitachi Maxell Ltd Device and method for recording/reproducing information, and 3-dimensional recording medium
JP2007122844A (en) * 2005-09-29 2007-05-17 Sanyo Electric Co Ltd Optical pickup system and optical disk device
JP2007220206A (en) * 2006-02-16 2007-08-30 Sony Corp Optical recording and reproducing device
JP2008071436A (en) * 2006-09-14 2008-03-27 Sony Corp Optical disk drive and optical aberration correcting method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176117A (en) * 1999-12-15 2001-06-29 Olympus Optical Co Ltd Optical pickup device
JP2006107668A (en) * 2004-10-08 2006-04-20 Hitachi Maxell Ltd Device and method for recording/reproducing information, and 3-dimensional recording medium
JP2007122844A (en) * 2005-09-29 2007-05-17 Sanyo Electric Co Ltd Optical pickup system and optical disk device
JP2007220206A (en) * 2006-02-16 2007-08-30 Sony Corp Optical recording and reproducing device
JP2008071436A (en) * 2006-09-14 2008-03-27 Sony Corp Optical disk drive and optical aberration correcting method

Similar Documents

Publication Publication Date Title
US7558162B2 (en) Optical pick-up head, optical information apparatus, and optical information reproducing method
US6987598B2 (en) Optical element, optical head, optical recording reproducing apparatus and optical recording/reproducing method
US7710849B2 (en) Optical head device and optical information recording or reproducing device
JP4472563B2 (en) Optical unit, optical pickup, and optical information processing apparatus
JP4175092B2 (en) Optical head device and optical information recording / reproducing device
US20100074077A1 (en) Optical head device and optical information recording/reproducing device
US20070159936A1 (en) Optical head unit and optical disc apparatus
WO2008041330A1 (en) Pickup device
WO2010013592A1 (en) Optical unit, control method, and optical information recording/reproducing device
JP2007328877A (en) Optical pickup and optical disk device
WO2007113983A1 (en) Optical pickup device
WO2007094288A1 (en) Optical head, optical head control method and optical information processor
JP4858854B2 (en) Optical head, optical information recording / reproducing apparatus, and optical information recording / reproducing method
WO2009119608A1 (en) Optical unit, optical information recording/reproducing device and optical information recording/reproducing method
JP5339208B2 (en) Optical head device and optical information recording / reproducing device using the same
KR101013765B1 (en) Optical pickup and disc apparatus
JP2008021341A (en) Optical pickup and information apparatus
JP5445141B2 (en) Optical information reproducing apparatus and optical head apparatus
JPWO2008108138A1 (en) Optical head device, optical information recording / reproducing apparatus, and optical information recording / reproducing method
JPWO2008126512A1 (en) Optical head device, and optical information recording / reproducing apparatus and optical information recording / reproducing method using the same
JPWO2008143006A1 (en) Optical head device and optical information recording / reproducing device
JPWO2008143119A1 (en) Optical path switching element, optical path switching apparatus, optical head apparatus, and optical information recording / reproducing apparatus
US20100309770A1 (en) Optical head device and optical information recording/reproducing device
JP5240098B2 (en) Optical unit and optical information recording / reproducing apparatus
JP4505979B2 (en) Optical head, light emitting / receiving element, and optical recording medium recording / reproducing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724777

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09724777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP