WO2009119276A1 - Method and system for adjusting electrode position - Google Patents

Method and system for adjusting electrode position Download PDF

Info

Publication number
WO2009119276A1
WO2009119276A1 PCT/JP2009/054204 JP2009054204W WO2009119276A1 WO 2009119276 A1 WO2009119276 A1 WO 2009119276A1 JP 2009054204 W JP2009054204 W JP 2009054204W WO 2009119276 A1 WO2009119276 A1 WO 2009119276A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
linear electrodes
optical
optical crystals
light
Prior art date
Application number
PCT/JP2009/054204
Other languages
French (fr)
Japanese (ja)
Inventor
修 石橋
藤男 奥村
雅彦 太田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2009119276A1 publication Critical patent/WO2009119276A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0316Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/315Digital deflection, i.e. optical switching based on the use of controlled internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0322Arrangements comprising two or more independently controlled crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/124Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode interdigital
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/16Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 series; tandem

Definitions

  • the present invention relates to an optical switch that switches between a light transmitting state and a light reflecting state.
  • the optical switch includes an optical waveguide layer having an electro-optic effect, and first and second electrode groups provided in the optical waveguide layer.
  • Each of the first and second electrode groups is composed of a plurality of plate-like electrodes extending in the thickness direction of the optical waveguide layer.
  • Each plate electrode is arranged at a constant interval.
  • Each of the first electrode group and the second electrode group has a comb shape on a surface intersecting the thickness direction of the optical waveguide layer, and plate electrodes corresponding to the comb teeth are alternately arranged. Has been placed.
  • a change in refractive index occurs between adjacent plate electrodes by applying a voltage between the first and second electrode groups.
  • a periodic refractive index change occurs in the optical waveguide layer.
  • a portion where the periodic refractive index change functions as a diffraction grating, and incident light is reflected.
  • the voltage application to the first and second electrode groups is stopped, the function as the diffraction grating is lost, and the incident light is transmitted.
  • the optical switch By reducing the area (capacitance) of the electrode, the operating voltage can be lowered, thereby saving power. Further, the optical switch can be miniaturized by reducing the area of the electrode.
  • the optical switch described in Patent Document 1 since a plurality of plate electrodes having a large area are used to form a diffraction grating, it is difficult to achieve such downsizing and power saving. . If the area of the plate electrode is reduced, the region in which the periodic refractive index change occurs is reduced, and as a result, a sufficient function as a diffraction grating may not be obtained.
  • the required extinction ratio is about 10: 1, but the extinction ratio is not sufficient when considering application to an image display device. For this reason, further improvement of the extinction ratio is also demanded.
  • An object of the present invention is to provide an electrode position adjusting method and system for an optical switch that can solve the above-mentioned problems.
  • the electrode position adjustment method of the present invention comprises: First and second optical crystals each having a surface on which a plurality of linear electrodes are formed at equal intervals are stacked so that the longitudinal directions of the plurality of linear electrodes coincide with each other.
  • the electrode position adjustment system of the present invention is First and second optical crystals each having a surface in which a plurality of linear electrodes are formed at equal intervals are respectively held in a stacked state so that the longitudinal directions of the plurality of linear electrodes coincide with each other.
  • a light irradiating unit that irradiates a light beam onto a region including the plurality of linear electrodes formed on the first and second optical crystals held on the first and second stages;
  • a light receiving portion for detecting transmitted light that has passed through the first and second optical crystals;
  • a control unit that monitors the output level of the light receiving unit while changing The control unit is characterized in that the moving position where the output level of the light receiving unit is the highest is determined as the optimum position of the first and second optical crystals.
  • FIG. 1A It is a top view of the principal part of the optical switch with which the electrode position adjustment method of this invention is applied. It is sectional drawing by the AA line of FIG. 1A. It is a schematic diagram which shows the positional relationship of the electrode part in the advancing direction of incident light of the optical switch shown to FIG. 1A. It is a schematic diagram which shows the refractive index change area
  • FIG. 1A is a top view of the main part of an optical switch to which the electrode position adjusting method of the present invention is applied
  • FIG. 1B is a cross-sectional view taken along the line AA of FIG. 1A.
  • an optical switch includes an optical crystal plate 10, an optical crystal plate 11 having electrode portions 13a and 13b formed on the surface, and an optical crystal having electrode portions 14a and 14b formed on the surface. It has a structure in which the plate 12 is laminated.
  • the optical crystal plates 10 to 12 are made of a crystal having an electro-optic effect (electro-optic crystal).
  • Each of the electrode portions 13a and 13b is a comb-shaped electrode having a plurality of linear electrodes arranged at equal intervals and having a main cross section having the maximum area in the same plane.
  • the linear electrodes are alternately arranged, and the intervals between the linear electrodes are equal.
  • the electrode portions 14a and 14b are also comb-shaped electrodes similar to the electrode portions 13a and 13b, and the linear electrodes are alternately arranged.
  • the intervals between the linear electrodes of the electrode portions 14a and 14b are equal intervals, and are the same as the intervals between the linear electrodes of the electrode portions 13a and 13b.
  • the optical crystal plate 10 is attached to the surface of the optical crystal plate 11 so as to cover the portion where the linear electrodes corresponding to the comb teeth of the electrode portions 13a and 13b are formed.
  • the optical crystal plate 11 to which the optical crystal plate 10 is attached is attached to the surface of the optical crystal plate 12 so as to cover the portion where the linear electrodes corresponding to the comb teeth of the electrode portions 14a and 14b are formed.
  • FIG. 1A is a perspective view showing a state in which the electrode portions 13a and 13b formed on the surface of the optical crystal plate 11 are viewed from the optical crystal plate 10 side.
  • the first electrode formation region composed of the electrode portions 13a and 13b is slightly shifted from the second electrode formation region composed of the electrode portions 14a and 14b. Is formed.
  • FIG. 1B when viewed from the direction perpendicular to the cross section of the optical crystal plates 10 to 12 cut along the line AA in FIG. 1A, the position of each linear electrode of the electrode portions 13a and 13b, and the electrode The positions of the linear electrodes of the portions 14a and 14b are the same.
  • FIG. 1C is a schematic diagram showing the positional relationship between the electrode portions 13a and 13b and the electrode portions 14a and 14b in the traveling direction of incident light.
  • the cross section shown in FIG. 1C is a cross section taken along line BB in FIG. 1A.
  • the first electrode formation region composed of the electrode portions 13a and 13b and the second electrode formation region composed of the electrode portions 14a and 14b are sequentially arranged in the traveling direction of the incident light. That is, the first and second electrode formation regions are located on the optical path.
  • the first and second electrode formation regions are formed by forming electrode surfaces (or electrode portions) of the electrode portions of the mutual regions. Are stacked so that the parallel surfaces are parallel.
  • the positions of the linear electrodes of the electrode portions 13a and 13b coincide with the positions of the linear electrodes of the electrode portions 14a and 14b.
  • An optical switch is formed by laminating the optical crystal plates 10 to 12 shown in FIGS. 1A to 1C at high temperature and high pressure.
  • the optical crystal plates 10 to 12 bonded together under high temperature and high pressure can be regarded as one optical crystal (specifically, an electro-optical crystal). That is, by bonding the optical crystal plates 10 to 12 under high temperature and high pressure, an electro-optical crystal having an electrode portion inside can be formed.
  • the refractive index of the crystal in the vicinity of the electrode including the electrode portions 13a and 13b changes due to the electro-optic effect.
  • the refractive index of the crystal in the vicinity of the electrode including the electrode portions 14a and 14b changes due to the electro-optic effect.
  • FIG. 2 schematically shows a refractive index change region formed in the electrode vicinity region including the electrode portions 13a and 13b.
  • a voltage is applied between the electrode portions 13a and 13b, an electric field is generated between adjacent linear electrodes, and the refractive index of the crystal in the electrode vicinity region including each linear electrode changes due to the electric field.
  • the region where the refractive index has changed is the refractive index changing region 16 shown in FIG.
  • Incident light is totally reflected at the interface (refractive index interface) between the refractive index changing region 16 and the surrounding crystal region.
  • the incident angle of the incident light (same as the incident angle ⁇ shown in FIG. 1C) is desirably set so as to satisfy a condition that allows total reflection at this interface.
  • FIG. 2 shows a state in which incident light enters the refractive index change region from the left side toward the drawing and the reflected light goes to the right side.
  • Is preferably incident on the refractive index changing region from the front side (or back side) toward the drawing, and the reflected light is directed toward the back side (or front side).
  • the electrode when an opaque material is used as the electrode, the electrode itself blocks a part of the incident light, so that the light use efficiency is reduced accordingly. In order to improve this point, the use efficiency of light can be improved by making the electrode a transparent electrode.
  • the refractive index change region 16 When a voltage is applied to the electrode portions 13a and 13b, the refractive index change region 16 is formed, so that the incident light is totally reflected at the interface of the refractive index change region 16. On the other hand, when the supply of voltage to the electrode portions 13a and 13b is stopped, the refractive index changing region 16 is not formed, and the incident light passes through the electrode portions 13a and 13b as it is. Similarly, in the regions of the electrode portions 14a and 14b, when a voltage is applied, a refractive index change region is formed, and incident light is totally reflected at the interface of the refractive index change region. When the supply of voltage to the electrode portions 14a and 14b is stopped, the refractive index change region is not formed, and incident light passes through the electrode portions 14a and 14b as it is.
  • the switch operation of the optical switch it is possible to switch between a first state in which incident light is reflected and a second state in which incident light is transmitted.
  • a voltage is applied to each of the electrode portions 13a and 13b and the electrode portions 14a and 14b to form refractive index change regions, and incident light is reflected in these refractive index change regions.
  • the second state voltage supply to the electrode portions 13a and 13b and the electrode portions 14a and 14b is stopped. By stopping the voltage supply, the refractive index change due to the electro-optic effect does not occur in each region including the electrode portions 13a and 13b and the electrode portions 14a and 14b, so that the incident light passes through these regions.
  • the interface of the refractive index changing region partially includes a region that does not satisfy the total reflection condition, and a part of the incident light is transmitted through this region.
  • the range of the region that does not satisfy the total reflection condition depends on the interval between the linear electrodes and the magnitude of the applied voltage (the magnitude of the electric field).
  • incident light is reflected at the interface of the first refractive index change region formed by applying a voltage to the electrode portions 13a and 13b, and further, a voltage is applied to the electrode portions 14a and 14b.
  • the light transmitted through the first refractive index change region is reflected at the interface of the second refractive index change region formed in this way. Thereby, it is possible to obtain a high extinction ratio.
  • the extinction ratio can be further improved by setting the number of electrode portions (number of refractive index change regions) formed along the traveling direction of incident light to three or more.
  • the number of refractive index changing regions is increased, the number and capacity of the electrodes increase accordingly, which is not desirable from the viewpoint of power saving and miniaturization. It is desirable to determine the number of refractive index changing regions in consideration of the relationship between the extinction ratio and power saving and miniaturization.
  • the linear electrode when a translucent or opaque electrode material is used for the linear electrode, part of the incident light is blocked by the linear electrode.
  • FIG. 3A is a schematic diagram illustrating a state where the positions of the linear electrodes of the electrode portions 13a and 13b and the linear electrodes of the electrode portions 14a and 14b are not appropriate.
  • FIG. 3A shows the interface between the linear electrodes of the electrode portions 13a and 13b and the linear electrodes of the electrode portions 14a and 14b when viewed from the direction perpendicular to the cross section taken along the line AA in FIG. 1A. The positional relationship with respect to the incident light is shown.
  • the linear electrodes of the electrode portions 13a and 13b are formed at positions shifted in the direction intersecting the longitudinal direction of the linear electrodes with respect to the linear electrodes of the electrode portions 14a and 14b. For this reason, in the second state in which the incident light is transmitted, a part of the light transmitted through the region including the linear electrodes of the electrode portions 13a and 13b is blocked by the electrode portions 14a and 14b.
  • FIG. 3B is a schematic diagram illustrating a state where the positions of the linear electrodes of the electrode portions 13a and 13b and the linear electrodes of the electrode portions 14a and 14b are appropriate.
  • FIG. 3B shows the interface between the linear electrodes of the electrode portions 13a and 13b and the linear electrodes of the electrode portions 14a and 14b when viewed from the direction perpendicular to the cross section of the line AA in FIG. 1A. The positional relationship with respect to the incident light is shown.
  • the positions of the linear electrodes of the electrode portions 13a and 13b and the linear electrodes of the electrode portions 14a and 14b with respect to the incident light coincide with each other. For this reason, in the second state where incident light is transmitted, most of the light transmitted through the regions including the linear electrodes of the electrode portions 13a and 13b is transmitted through the region including the electrode portions 14a and 14b.
  • the electrode position adjusting method according to the present invention provides the position of the linear electrodes of the electrode portions 13a and 13b and the linear electrodes of the electrode portions 14a and 14b with respect to incident light in the optical switch as shown in FIGS. 1A to 1C. This is a method of adjusting to an optimal position.
  • the first and second optical crystals having a surface on which a plurality of linear electrodes are formed at equal intervals are arranged in the longitudinal direction of each of the plurality of linear electrodes. Are laminated so that they coincide with each other, and a light beam is irradiated onto a region including the plurality of linear electrodes formed in the first and second optical crystals.
  • At least one of the first and second optical crystals is moved in a direction crossing the longitudinal direction, and the plurality of linear electrodes between the first and second optical crystals are arranged. While changing the relative position, the intensity of the transmitted light that has passed through the first and second optical crystals is detected. The movement position where the intensity of the transmitted light detected is the highest is determined as the optimum position of the first and second optical crystals.
  • FIG. 4 is a block diagram showing the configuration of a system for carrying out the electrode position adjusting method according to the first embodiment of the present invention.
  • the electrode position adjustment system includes a control unit 20, a light receiving unit 30, a display unit 40, stages 50 and 51, a light irradiation unit 60, and an input unit 70.
  • Stages 50 and 51 are stages capable of one-dimensional or two-dimensional movement.
  • the laminated optical crystal plates 10 and 11 shown in FIG. 1A are fixed to the stage 50, and the optical crystal plate 12 shown in FIG. 1A is fixed to the stage 51.
  • the stage 50 is movable in a direction intersecting with the longitudinal direction of each linear electrode of the electrode portions 13a and 13b, and the stage 51 is movable in a direction intersecting with the longitudinal direction of each linear electrode of the electrode portions 14a and 14b. is there.
  • the direction intersecting the longitudinal direction of the linear electrode is a direction along line AA in FIG. 1A.
  • the back surface of the optical crystal plate 11 fixed to the stage 50 is the surface of the optical crystal plate 12 fixed to the stage 51 (the electrode portions 14a and 14b are formed).
  • the optical crystal plate can be moved by the stages 50 and 51 in a state in which these surfaces are in contact with each other (surface formed). Further, the optical crystal plates 11 and 12 are held by the stages 50 and 51 so that the longitudinal directions of the linear electrodes coincide with each other.
  • the display unit 40 is a display device such as an LCD (Liquid Crystal Display).
  • the input unit 70 is an operation unit on which a plurality of keys are arranged, and the operator can freely input data necessary for operating the system and adjust the positions of the stages 50 and 51 through the input unit 70. It can be carried out.
  • the light irradiation unit 60 irradiates the optical crystal plates 10 to 12 fixed to the stages 50 and 51 with a parallel light beam.
  • the light from the light irradiation unit 60 enters each interface of the optical crystal plates 10 to 12 from the same direction as the incident light shown in FIG. That is, the incident angle of the light from the light irradiation unit 60 at each interface of the optical crystal plates 10 to 12 is the incident angle ⁇ of the incident light shown in FIG.
  • the light receiving unit 30 receives light transmitted from the light irradiation unit 60 through the region including the electrode units 13a and 13b and the region including the electrode units 14a and 14b.
  • the light receiving unit 30 is, for example, a photodiode, and outputs a signal having a magnitude corresponding to the light receiving level.
  • the output signal of the light receiving unit 30 is supplied to the control unit 20.
  • the control unit 20 includes an optimum position determination unit 21 and a stage control unit 22.
  • the stage control unit 23 performs movement control of the stages 50 and 51.
  • the stage control unit 22 receives an operator input through the input unit 70, and moves the stages 50 and 51 in accordance with the input instruction. With this control, the operator can adjust the positions of the stages 50 and 51.
  • the stage control unit 22 moves the stages 50 and 51 based on the movement instruction signal from the optimum position determination unit 22.
  • the optimum position determination unit 21 passes one of the stages 50 and 51 through the stage control unit 22 in the second direction which is the first direction and the opposite direction in the direction intersecting the longitudinal direction of the linear electrodes. Move by a predetermined amount.
  • the predetermined movement amount is half of the interval between the linear electrodes.
  • the optimum position determination unit 21 receives the output signal of the light receiving unit 30, and shows a first change in the level of the received signal when the stage is moved by a predetermined amount from the initial position state in the first direction. And a second waveform indicating a change in level of the received signal when the stage is moved by a predetermined amount in the second direction from the initial position.
  • the operator performs a stage moving operation through the input unit 70 to set a position between the electrodes as a guide.
  • the reference position set by the operator is the initial position.
  • the optimum position determination unit 21 optimizes the positions of the linear electrodes of the electrode parts 13a and 13b and the linear electrodes of the electrode parts 14a and 14b at the highest level in the first and second waveforms. Judge as position.
  • FIG. 5 is a flowchart showing a procedure of the electrode position adjusting method according to the first embodiment of the present invention using the position adjusting system of FIG.
  • the stage control unit 22 receives an operator input through the input unit 70 and moves the stages 50 and 51 in accordance with the input instruction.
  • a position (initial position) between the electrodes that serves as a guide is set (step S10).
  • the optimum position determination unit 21 moves the stage 51 from the initial position state in the first direction by a predetermined amount, and obtains a first waveform indicating the level change of the received signal from the light receiving unit 30 at that time. (Step S11). Further, the optimum position determination unit 21 moves the stage 51 from the initial position state in the second direction by a predetermined amount, and acquires a second waveform indicating the level change of the received signal from the light receiving unit 30 at that time. (Step S12).
  • the optimum position determination unit 21 examines the highest point in the acquired first and second waveforms, and the linear electrodes of the electrode portions 13a and 13b and the linear shapes of the electrode portions 14a and 14b at that point. The position with the electrode is determined as the optimum position (step S13).
  • the positional relationship between the linear electrodes of the electrode portions 13a and 13b and the linear electrodes of the electrode portions 14a and 14b is always set.
  • the optimal positional relationship shown in FIG. 3B can be set.
  • FIG. 6 is a schematic diagram for explaining predetermined conditions when setting the initial position.
  • FIG. 6 shows the interface between the linear electrodes of the electrode portions 13a and 13b and the linear electrodes of the electrode portions 14a and 14b when viewed from the direction perpendicular to the cross section of the line AA in FIG. 1A. The position relative to the incident light is shown.
  • the interval D1 indicates the size of the interval between adjacent linear electrodes
  • the shift amount D2 indicates the shift amount of each linear electrode of the electrode portions 13a and 13b with respect to each linear electrode of the electrode portions 14a and 14b.
  • the predetermined condition is given by “D2 ⁇ D1 / 2”.
  • a predetermined amount D1 ⁇ 2
  • the state of the optimum position shown in FIG. 3B is included.
  • the levels of the first and second waveforms become maximum at the timing when the optimum position is reached. Therefore, the optimum electrode position can be known by examining the maximum levels (peaks) in the first and second waveforms.
  • FIG. 7 shows an example of the first and second waveforms.
  • FIG. 7 shows the first and second waveforms when the state shown in FIG. 6 is set as the initial position.
  • the vertical axis represents the detected light intensity (received signal level).
  • the horizontal axis indicates the amount of stage movement.
  • the obtained second waveforms are shown in FIG.
  • the maximum level (peak) of the first waveform is detected, and the electrode position at that time is the optimum position P.
  • the optimum positions of the linear electrodes of the electrode portions 13a and 13b and the linear electrodes of the electrode portions 14a and 14b can be known.
  • the electrode positions at the maximum levels (peaks) of the first and second waveforms are determined by the respective linear electrodes of the electrode portions 13a and 13b. It will be in the state which shifted
  • the optical crystal plate is bonded at the optimum position.
  • the optical crystal plate is bonded at a high temperature and a high pressure.
  • the electrode position adjustment method of the present embodiment described above has the following effects.
  • the positions of the electrode portions 13a and 13b and the electrode portions 14a and 14b are the width direction of the linear electrode (this width direction is the longitudinal direction of the linear electrode).
  • this width direction is the longitudinal direction of the linear electrode.
  • the intersecting direction for example, the direction orthogonal to each other
  • part of the light transmitted between the linear electrodes of the electrode portions 13a and 13b is blocked by the electrode portions 14a and 14b. Accordingly, the output light intensity is reduced when the optical switch is turned on (voltage supply is stopped). For this reason, the extinction ratio of the optical switch is lowered.
  • the positions of the electrode portions 13a and 13b and the electrode portions 14a and 14b when the optical switch is viewed along the traveling direction of the incident light The width direction of the electrode can be surely and accurately matched.
  • the positions of the electrode portions 13a and 13b coincide with the positions of the electrode portions 14a and 14b, most of the light transmitted between the linear electrodes of the electrode portions 13a and 13b passes between the linear electrodes of the electrode portions 14a and 14b. To do. Therefore, the output light intensity of the optical switch is higher than the output light intensity of the optical switch having a deviation in the electrode position, and as a result, the extinction ratio can be improved.
  • the electrode position adjusting method of the present embodiment the electrode position can be reliably adjusted to the optimum position, so that an optical switch with stable quality can be provided.
  • the positions of the electrode portions 13a and 13b and the electrode portions 14a and 14b of the optical switch are shifted not only in the width direction of the linear electrodes but also in the length direction of the linear electrodes.
  • the change in the output light intensity of the optical switch with respect to the displacement of the electrode position in the length direction of the linear electrode is sufficiently larger than the change in the output light intensity of the optical switch with respect to the displacement of the electrode position in the width direction of the linear electrode. small. Therefore, the extinction ratio is not greatly reduced by the displacement of the electrode position in the length direction of the linear electrode. In other words, in order to improve the extinction ratio, it is important to adjust the electrode to an optimal position in the width direction of the linear electrode.
  • the optical switch formed using the electrode position adjusting method of the present embodiment has a configuration in which a plurality of refractive index change regions are formed in the traveling direction of incident light, in addition to the effect of electrode position adjustment described above.
  • the extinction ratio can be further improved.
  • each electrode portion of the optical switch is composed of a plurality of linear electrodes arranged at equal intervals and having a main cross section having a maximum area in the same plane. Since the electrode portion composed of such a plurality of linear electrodes has a smaller area and capacity than the plate electrode described in Patent Document 1, it is possible to save power and reduce the size of the optical switch.
  • FIG. 8 is a block diagram showing the configuration of a system for carrying out the electrode position adjusting method according to the second embodiment of the present invention.
  • This electrode position adjustment system has the same configuration as the system shown in FIG. 4 except that a temperature control means including a plurality of temperature control elements 80 and a temperature control unit 23 which is a function of the control unit 20 is provided. It is.
  • a temperature control means including a plurality of temperature control elements 80 and a temperature control unit 23 which is a function of the control unit 20 is provided. It is.
  • FIG. 8 the same components as those shown in FIG.
  • the temperature control element 80 is a thermoelectric conversion element typified by a Peltier element, and is provided on a part (exposed surface) of each electrode portion 13a, 13b, 14a, 14b. In the example shown in FIG. 8, the temperature control element 80 is provided on the voltage supply terminal surface of the electrode portion.
  • the temperature control element 80 has a heat generating surface, and the heat generating surface is formed so as to contact the voltage supply terminal surface.
  • the temperature control unit 23 controls current supply from a power source (not shown) to each temperature control element 80.
  • a current is supplied to the temperature control element 80, the temperature control element 80 generates heat.
  • the temperature control element 80 generates heat, the electrode portion is heated by the heat energy from the heat generating surface, and as a result, the temperature of the optical crystal around the electrode portion increases.
  • the amount of heat energy supplied from the heat generating surface of the temperature control element 80 to the electrode portions 13a, 13b, 14a, and 14b is determined by the amount of current supplied to the temperature control element 80. Further, parameters such as the thermal conductivity of the electrode portions 13a, 13b, 14a, and 14b and the distance from the temperature control element 80 to the region where the temperature should be maintained (electrode forming region including the electrode portions 13a, 13b, 14a, and 14b) Based on this, it is possible to calculate the amount of heat energy required to maintain the region where the temperature is to be maintained within a certain temperature range.
  • the temperature control unit 23 controls the current supply to the temperature control element 80 so that the calculated amount of heat energy is supplied from the temperature control element 80 to the electrode units 13a, 13b, 14a, and 14b. Thereby, the temperature of the electrode formation area containing electrode part 13a, 13b, 14a, 14b is maintained in a fixed temperature range.
  • All of the optical crystal plates 10 to 12 are transparent above the phase transition temperature at which the crystal structure changes, and are electro-optical crystals capable of obtaining a large refractive index near the phase transition temperature, such as KTN (potassium niobate tantalate: KTa). 1-x Nb x O 3 ).
  • FIG. 9 is a flowchart showing one procedure of the electrode position adjusting method according to the second embodiment of the present invention using the position adjusting system of FIG.
  • the stage control unit 22 receives an operator input through the input unit 70 and moves the stages 50 and 51 in accordance with the input instruction. By this movement control, a position between the electrodes (initial position) that serves as a guide is set (step S20).
  • the temperature control unit 23 supplies the temperature control elements 80 to the temperature control elements 80 so that the temperature of the optical crystal plates 10 to 12 (particularly the temperature of the electrode formation region) is maintained at or above the phase transition temperature.
  • Current supply is controlled (step S21).
  • the optimum position determination unit 21 moves the stage 51 from the initial position state in the first direction by a predetermined amount, and obtains a first waveform indicating the level change of the received signal from the light receiving unit 30 at that time. (Step S22). Further, the optimum position determination unit 21 moves the stage 51 from the initial position state in the second direction by a predetermined amount, and acquires a second waveform indicating the level change of the received signal from the light receiving unit 30 at that time. (Step S23).
  • the optimum position determination unit 21 examines the highest point in the acquired first and second waveforms, and the linear electrodes of the electrode portions 13a and 13b and the linear shapes of the electrode portions 14a and 14b at that point. The position with the electrode is determined as the optimum position (step S24).
  • the optical crystal plate is bonded at the optimum position.
  • the optical crystal plate is bonded at a high temperature and a high pressure.
  • the temperature of the electro-optic crystal (more preferably, the electrode formation region) is changed to a phase transition. Maintain above the temperature and near the phase transition temperature. That is, the electro-optic crystal (more desirably, the electrode formation region) is maintained in a transparent state.
  • the electro-optic crystal (more desirably, the electrode formation region) in a transparent state.
  • the amount of light transmitted through the electrode formation region is increased, and the output waveform (the first waveform) of the light receiving unit 30 associated with the movement of the stage is correspondingly increased.
  • the change in the first and second waveforms is increased. As a result, the peak of the output waveform (first and second waveforms) can be detected with higher accuracy.
  • a method for maintaining at least the electrode formation regions formed on the optical crystal plates 10 to 12 at a temperature equal to or higher than the phase transition temperature through the temperature control element 80.
  • other methods may be used instead.
  • the optical crystal plates 10 to 12 are accommodated in a casing capable of maintaining the temperature of the internal atmosphere at the instructed temperature, and the temperature control unit 23 controls the temperature in the casing. In the housing, the atmosphere is heated, thereby increasing the temperature of the optical crystal plates 10-12.
  • the internal temperature is set such that the optical crystal plates 10 to 12 are maintained at a temperature equal to or higher than the phase transition temperature.
  • the upper limit of the temperature control range is determined by considering the temperature dependence of the refractive index of the electro-optic crystal. Within the operating range of the switch. Specifically, the upper limit of the temperature control range is determined as follows.
  • the refractive index of the electro-optic crystal changes, and accordingly, the critical angle when incident light is totally reflected at the refractive index interface in the refractive index changing region also changes. For this reason, for example, when the incident angle of the incident light with respect to the refractive index interface is set to a critical angle at the phase transition temperature, the set incident angle becomes smaller than the critical angle when the critical angle changes due to the temperature rise. In this case, incident light is not totally reflected at the refractive index interface of the refractive index change region, but is transmitted through the refractive index change region, and as a result, the optical switch does not operate.
  • the upper limit of the temperature control range is a temperature at which the critical angle does not exceed the set incident angle.
  • the temperature condition where the critical angle does not exceed the set incident angle can be defined by the parameters of the distance between the linear electrodes, the magnitude of the applied voltage, and the incident angle.
  • the electrode position adjusting method of the present embodiment described above has the same effects as the electrode position adjusting method of the first embodiment described above.
  • FIG. 10A and 10B are schematic views showing a first arrangement example when the electrode position adjusting method of the present invention is executed.
  • FIG. 10A schematically shows a partial cross section taken along line BB of the optical switch shown in FIG. 1A.
  • FIG. 10B schematically shows a partial cross section taken along line AA of the optical switch shown in FIG. 1A.
  • the optical crystal plates 10 to 12 are made of an electro-optical crystal (for example, KTN), and the refractive index n is about 2.2.
  • the refractive index change ⁇ n when a voltage of 5 V is applied between the linear electrodes (when an electric field is applied) is ⁇ 0.022.
  • the thicknesses of the optical crystal plates 10 to 12 are 100 ⁇ m, 34 ⁇ m, and 100 ⁇ m, respectively.
  • the wavelength ⁇ of incident light is 460 nm.
  • the diameter D b of the incident light is 20 [mu] m.
  • the spacing Sx between the linear electrodes of the electrode portions 13a, 13b, 14a, and 14b is 5 ⁇ m.
  • the width E w of each linear electrode is 5 ⁇ m.
  • the electrode portions 13a, 13b, 14a, and 14b all have a thickness of 500 nm.
  • the distance between the electrode portion 13b and the end of the optical crystal plate 11 in the Y-axis direction is 50 ⁇ m.
  • the Y-axis direction is the longitudinal direction of the linear electrode.
  • the light utilization efficiency is high and the thickness of the optical crystal plate 11 as the intermediate layer can be made the thinnest is as follows.
  • the critical angle ⁇ m when the incident light is totally reflected at the refractive index interface of the refractive index changing region of the electro-optic crystal whose refractive index changes by applying an electric field is 81.9 °
  • the electrode portions 13a, 13b, 14a, 14b electrode length E l of linear electrodes is 141 .mu.m.
  • the electrode length E l may be greater than 141 .mu.m.
  • the first-order diffraction angle ⁇ d is 2.4 °.
  • First stage of the electrode portion 13a and the second stage of the electrode portion 14a of the Y-axis direction of the spacing S y and the Z-axis direction between S z respectively 95 .mu.m, is 34 .mu.m.
  • the Z-axis direction is the thickness direction of the optical crystal plate.
  • the optical path length L 1 of the transmitted light between these electrode portions 13a and 14a is 239 ⁇ m.
  • the electrode portions 13b and 14b have the same relationship as the electrode portions 13a and 14a.
  • the light from the light irradiation unit 60 is incident on the incident end face of the optical crystal plate 10 at an incident angle of 18.2 °.
  • the incident end face of the optical crystal plate 10 is a surface perpendicular to the interface between the optical crystal plates 10 and 11 (formation surface of the electrode portions 13a and 13b) or the interface between the optical crystal plates 11 and 12 (electrode portions 14a and 14b). This is a surface perpendicular to the formation surface.
  • the incident position of the light from the light irradiation unit 60 on the incident end face of the optical crystal plate 10 is set to a position of 115 ⁇ m from the interface between the optical crystal plates 11 and 12.
  • the light receiving unit 30 is disposed at a position where light transmitted through the optical crystal plates 10 to 12 among the light from the light irradiation unit 60 can be received.
  • the system shown in FIG. 1 or FIG. 4 is set so as to satisfy the above arrangement conditions, and the optimum position is obtained by the electrode adjustment method in the first or second embodiment described above.
  • FIG. 11A and FIG. 11B are schematic views showing a second arrangement example when the electrode position adjusting method of the present invention is executed.
  • FIG. 11A schematically shows a partial cross section taken along line BB of the optical switch shown in FIG. 1A.
  • FIG. 11B schematically shows a partial cross section taken along line AA of the optical switch shown in FIG. 1A.
  • the optical crystal plates 10 to 12 are made of an electro-optical crystal (for example, lithium niobate (LN)), and the refractive index n is about 2.286.
  • the electro-optic crystal has a refractive index change ⁇ n of ⁇ 0.016 when a voltage of 100 V is applied between the linear electrodes (when an electric field is applied).
  • the thicknesses of the optical crystal plates 10 to 12 are 100 ⁇ m, 29 ⁇ m, and 100 ⁇ m, respectively.
  • the wavelength ⁇ of incident light is 460 nm.
  • the diameter Db of incident light is 20 ⁇ m.
  • the spacing Sx between the linear electrodes of the electrode portions 13a, 13b, 14a, and 14b is 5 ⁇ m.
  • the width E w of each linear electrode is 1 ⁇ m.
  • the electrode portions 13a, 13b, 14a, and 14b all have a thickness of 500 nm.
  • the light utilization efficiency is high and the thickness of the optical crystal plate 11 as the intermediate layer can be made the thinnest is as follows.
  • the critical angle ⁇ m when the incident light is totally reflected at the refractive index interface of the refractive index changing region of the electro-optic crystal whose refractive index changes by applying an electric field is 83.2 °
  • the electrode portions 13a, 13b, 14a, 14b electrode length E l of linear electrodes is 169 .mu.m.
  • the electrode length E l may be greater than 169 .mu.m.
  • the first-order diffraction angle ⁇ d is 2.3 °.
  • the distance S y in the Y-axis direction and the distance S z in the Z-axis direction between the first-stage electrode portion 13a and the second-stage electrode portion 14a are 77 ⁇ m and 29 ⁇ m, respectively.
  • the Y-axis direction is the longitudinal direction of the linear electrode
  • the Z-axis direction is the thickness direction of the optical crystal plate.
  • the optical path length L l of the transmitted light between these electrode portions 13a and 14a is 248 ⁇ m.
  • the electrode portions 13b and 14b have the same relationship as the electrode portions 13a and 14a.
  • the light from the light irradiation unit 60 is incident on the incident end face of the optical crystal plate 10 at an incident angle of 15.7 °.
  • the incident end face of the optical crystal plate 10 is a surface perpendicular to the interface between the optical crystal plates 10 and 11 (formation surface of the electrode portions 13a and 13b) or the interface between the optical crystal plates 11 and 12 (electrode portions 14a and 14b). This is a surface perpendicular to the formation surface.
  • the incident position of the light from the light irradiation unit 60 on the incident end face of the optical crystal plate 10 is set at a position of 99 ⁇ m from the interface between the optical crystal plates 11 and 12.
  • the light receiving unit 30 is disposed at a position where light transmitted through the optical crystal plates 10 to 12 among the light from the light irradiation unit 60 can be received.
  • the system shown in FIG. 1 or FIG. 4 is set so as to satisfy the above arrangement conditions, and the optimum position is obtained by the electrode adjustment method in the first or second embodiment described above.
  • one of the stages 50 and 51 is configured to move by a predetermined amount in the first direction and in the second direction opposite to the first direction.
  • the stage to be moved may be either one or both of the stages 50 and 51. That is, at least one of the stages 50 and 51 is moved in a direction crossing the longitudinal direction of the linear electrodes, and light is received while changing the relative positions of the linear electrodes between the optical crystals 11 and 12. Monitor the output level. Thereby, accurate adjustment of an electrode position is possible.
  • the range in which the relative position of the linear electrodes between the optical crystals 11 and 12 is changed is the range of the interval between the linear electrodes.
  • Electrode formation method Next, the electrode forming method of the optical switch will be specifically described.
  • FIGS. 12A to 12I are cross-sectional process diagrams showing one procedure of an electrode forming method for an optical switch.
  • a resist 91 is applied to the surface of the electro-optic crystal 90 (step of FIG. 12A).
  • the mask 92 on which the electrode pattern is formed the surface on which the resist 91 is applied is masked, and the applied surface is exposed (step of FIG. 12B).
  • the exposed portion of the resist 91 is removed (step of FIG. 12C).
  • the exposed surface of the electro-optic crystal 90 is etched using the resist 91 from which the exposed portion has been removed as a mask (step of FIG. 12D).
  • the etching material is hydrogen fluoride or the like.
  • an electrode material gold, platinum, etc.
  • an electrode material gold, platinum, etc.
  • the resist 91 is removed (step in FIG. 12F).
  • these surfaces are polished so that the surface of the electro-optic crystal 90 and the surface of the electrode 93 have the same height (step of FIG. 12G).
  • the surface of the electro-optic crystal 90 on which the electrode 93 is formed and the surface of the electro-optic crystal 95 on which the electrode 96 is similarly formed in the steps of FIGS. 12A to 12G are moved in the moving direction.
  • the electro-optic crystals 90 and 95 are bonded together by being adhered under high temperature and high pressure conditions (step of FIG. 12H).
  • the surfaces to which the electro-optic crystals 90 and 95 are bonded are processed into surfaces having sufficient flatness.
  • the surface of the electro-optic crystal 95 on which the electrode 96 is formed and one surface of the electro-optic crystal 97 are brought into close contact under high temperature and high pressure conditions, thereby bonding the electro-optic crystals 95 and 97 (see FIG. Step 12I).
  • the surfaces to which the electro-optic crystals 95 and 97 are bonded are processed into surfaces having sufficient flatness.
  • the electrode portions 13a, 13b, 14a and 14b are formed on the optical crystal plates 11 and 12 shown in FIG. 1A, and the optical crystal plates 10 to 12 are bonded. It can be performed.
  • the optical switch created by using the electrode position adjusting method of the present invention can be applied to an optical communication device, an image display device, an image forming device, and the like.
  • an image display apparatus and an image forming apparatus will be described as application examples of the optical switch.
  • FIG. 13 is a schematic diagram showing an example of an image display device.
  • This image display device includes laser light sources 102, 103, 104, collimator lenses 105, 106, 107, reflection mirror 108, dichroic mirrors 109, 110, horizontal scanning mirror 115, vertical scanning mirror 116, and optical switches 118, 119, 120.
  • the optical switches 118, 119, and 120 are optical switches created by using the electrode position adjusting method of the present invention.
  • a collimator lens 105, an optical switch 118, and a reflection mirror 108 are sequentially arranged in the traveling direction of the laser light from the laser light source 102.
  • a parallel light beam from the collimator lens 105 enters the optical switch 118.
  • the optical switch 118 operates according to a control signal supplied from a control unit (not shown).
  • a control signal supplied from a control unit (not shown).
  • a voltage is applied to the electrode portion of the optical switch 118 to form a refractive index change region, so that incident light is reflected in the refractive index change region. This reflected light deviates from the optical path toward the reflecting mirror 108.
  • incident light passes through the optical switch 118 and travels toward the reflection mirror 108.
  • the collimator lens 106, the optical switch 119, and the dichroic mirror 109 are sequentially arranged in the traveling direction of the laser light from the laser light source 103.
  • a parallel light beam from the collimator lens 106 enters the optical switch 119.
  • the optical switch 119 the same operation as that of the optical switch 118 is performed.
  • incident light is reflected in the refractive index change region, and the reflected light deviates from the optical path toward the dichroic mirror 109.
  • incident light passes through the optical switch 119 and travels toward the dichroic mirror 109.
  • the collimator lens 107, the optical switch 120, and the dichroic mirror 110 are sequentially arranged in the traveling direction of the laser light from the laser light source 104.
  • a parallel light beam from the collimator lens 107 enters the optical switch 120.
  • the optical switch 120 the same operation as that of the optical switch 118 is performed.
  • incident light is reflected in the refractive index change region, and the reflected light deviates from the optical path toward the dichroic mirror 110.
  • incident light passes through the optical switch 120 and travels toward the dichroic mirror 110.
  • the dichroic mirror 109 is provided at a position where the light beam from the optical switch 119 and the light beam reflected by the reflection mirror 108 intersect.
  • the dichroic mirror 109 has a wavelength selection characteristic that reflects light from the optical switch 119 and transmits light from the reflection mirror 108.
  • the dichroic mirror 110 is provided at a position where the light beam from the optical switch 120 and the light beam from the dichroic mirror 109 intersect.
  • the dichroic mirror 109 has a wavelength selection characteristic that reflects light from the optical switch 120 and transmits light from the dichroic mirror 109.
  • the horizontal scanning mirror 115 is arranged in the traveling direction of the light beam from the dichroic mirror 110, and its operation is controlled by a horizontal scanning control signal from a control unit (not shown).
  • the vertical scanning mirror 116 is disposed in the traveling direction of the light beam from the horizontal scanning mirror 115, and its operation is controlled by a vertical scanning control signal from a control unit (not shown).
  • a color image can be displayed on the screen 117 by controlling on / off of the optical switches 118, 119, and 120 and controlling the horizontal scanning mirror 115 and the vertical scanning mirror 116.
  • FIG. 14 is a schematic diagram illustrating an example of an image forming apparatus.
  • This image forming apparatus includes a housing 200, an f ⁇ lens 223, and a photoreceptor 224.
  • a laser light source 202, a collimator lens 205, a reflection mirror 208, a scanning mirror 222, and an optical switch 218 are accommodated in the housing 200.
  • the optical switch 218 is an optical switch created using the electrode position adjusting method of the present invention.
  • a collimator lens 205, an optical switch 218, and a reflection mirror 208 are sequentially arranged in the traveling direction of the laser light from the laser light source 202.
  • a parallel light beam from the collimator lens 205 enters the optical switch 218.
  • the optical switch 218 operates in accordance with a control signal supplied from a control unit (not shown).
  • a control signal supplied from a control unit (not shown).
  • a control signal supplied from a control unit (not shown).
  • a voltage is applied to the electrode portion of the optical switch 218 to form a refractive index change region, so that incident light is reflected in the refractive index change region. This reflected light deviates from the optical path toward the reflecting mirror 208.
  • incident light passes through the optical switch 218 and travels toward the reflection mirror 208.
  • the scanning mirror 222 is arranged in the traveling direction of the light beam from the reflection mirror 208, and its operation is controlled by a scanning control signal from a control unit (not shown). Light from the scanning mirror 222 is applied to the photoconductor 224 via the f ⁇ lens 223.
  • an image can be formed on the photosensitive member 224.
  • the present invention is limited to this. It is not a thing.
  • the present invention can also be applied to those in which a plurality of linear electrodes are formed on each of three or more optical crystal plates. Specifically, by repeating the procedure of adjusting the electrode position for two optical crystal plates, and then adjusting the electrode position by stacking another optical crystal on the adjusted optical crystal plate. The electrode positions of the plurality of optical crystal plates can be adjusted.
  • the first optical crystal side linear electrode and the second optical crystal side linear electrode when the first and second optical crystals are viewed along the traveling direction of the light flux.
  • the position can be surely and accurately matched in the width direction of the linear electrode. Therefore, in the optical switch using the first and second optical crystals at the optimum position, if light is incident from the same direction as the light beam at the time of electrode position adjustment, it follows the traveling direction of the incident light
  • the positions of the linear electrode on the first optical crystal side and the linear electrode on the second optical crystal side are exactly the same in the width direction of the linear electrode. In this case, since most of the light transmitted between the linear electrodes on the first optical crystal side passes between the linear electrodes on the second optical crystal side, the output light intensity of the optical switch can be further increased. As a result, the extinction ratio can be improved.
  • the electrode portion of the optical switch is composed of a plurality of linear electrodes arranged at equal intervals. Since the electrode portion composed of such a plurality of linear electrodes has a smaller area and capacity than the plate electrode described in Patent Document 1, it is possible to save power and reduce the size of the optical switch.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

First and second optical crystal plates each of which has a surface whereupon a plurality of linear electrodes are formed at equal intervals are laminated such that the longitudinal directions of the linear electrodes match, a luminous flux is applied to the linear electrodes formed on the first and the second optical crystal plates, and in the state where the first and the second optical crystals are laminated, at least the first optical crystal or the second optical crystal is shifted in a direction which intersects with the longitudinal direction, then, the intensity of transmitted light which passed through the first and the second optical crystals is detected, while changing relative positions of the linear electrodes between the first and the second optical crystals (steps (S10-S12)). A shift position where the intensity of the transmitted light is maximum is permitted to be an optimum position for the first and the second optical crystal plates (step (S13)).

Description

電極位置調整方法およびシステムElectrode position adjusting method and system
 本発明は、光を透過する状態と光を反射する状態とを切り替える光スイッチに関する。 The present invention relates to an optical switch that switches between a light transmitting state and a light reflecting state.
 電気光学効果を利用して透過状態と反射状態の切り替えを行う光スイッチが、特許文献1(特許2666805(特開平1-214827)号公報)に開示されている。この光スイッチは、電気光学効果を有する光導波路層と、この光導波路層内に設けられた第1および第2の電極群とを有する。第1および第2の電極群のそれぞれは、光導波路層の厚さ方向に延伸する複数の板状の電極からなる。各板電極は、一定の間隔で配置されている。第1および第2の電極群のそれぞれの、光導波路層の厚さ方向と交差する面における断面の形状は、櫛形状とされており、互いの櫛の歯に相当する板電極が、交互に配置されている。 An optical switch that switches between a transmissive state and a reflective state using an electro-optic effect is disclosed in Patent Document 1 (Japanese Patent No. 2666805 (Japanese Patent Laid-Open No. 1-214827)). The optical switch includes an optical waveguide layer having an electro-optic effect, and first and second electrode groups provided in the optical waveguide layer. Each of the first and second electrode groups is composed of a plurality of plate-like electrodes extending in the thickness direction of the optical waveguide layer. Each plate electrode is arranged at a constant interval. Each of the first electrode group and the second electrode group has a comb shape on a surface intersecting the thickness direction of the optical waveguide layer, and plate electrodes corresponding to the comb teeth are alternately arranged. Has been placed.
 この光スイッチでは、第1および第2の電極群の間に電圧を印加することで、隣接する板電極間において、屈折率変化が生じる。この結果、光導波路層内に、周期的な屈折率変化が生じる。この周期的な屈折率変化を生じた部分が回折格子として機能し、入射光が反射される。一方、第1および第2の電極群への電圧印加を停止すると、回折格子としての機能はなくなるので、入射光は透過する。 In this optical switch, a change in refractive index occurs between adjacent plate electrodes by applying a voltage between the first and second electrode groups. As a result, a periodic refractive index change occurs in the optical waveguide layer. A portion where the periodic refractive index change functions as a diffraction grating, and incident light is reflected. On the other hand, when the voltage application to the first and second electrode groups is stopped, the function as the diffraction grating is lost, and the incident light is transmitted.
 光スイッチの、さらなる小型化および省電力化が望まれている。電極の面積(容量)を小さくすることで、動作電圧を低くすることができ、それにより省電力化を図ることができる。また、電極の面積を小さくすることにより、光スイッチの小型化を図ることもできる。しかしながら、特許文献1に記載の光スイッチにおいては、回折格子を形成するために、面積の大きな複数の板電極を用いているため、そのような小型化および省電力化を図ることは困難である。仮に、板電極の面積を小さくした場合は、周期的な屈折率変化を生じる領域が小さくなり、その結果、回折格子としての十分な機能を得られなくなる場合がある。 Demand for further miniaturization and power saving of optical switches. By reducing the area (capacitance) of the electrode, the operating voltage can be lowered, thereby saving power. Further, the optical switch can be miniaturized by reducing the area of the electrode. However, in the optical switch described in Patent Document 1, since a plurality of plate electrodes having a large area are used to form a diffraction grating, it is difficult to achieve such downsizing and power saving. . If the area of the plate electrode is reduced, the region in which the periodic refractive index change occurs is reduced, and as a result, a sufficient function as a diffraction grating may not be obtained.
 ところで、光通信などで使用されている一般的な光スイッチの場合、要求される消光比は10:1程度であるが、画像表示機器への応用を考えると、その消光比は十分ではない。このため、消光比のさらなる改善も求められている。 By the way, in the case of a general optical switch used in optical communication or the like, the required extinction ratio is about 10: 1, but the extinction ratio is not sufficient when considering application to an image display device. For this reason, further improvement of the extinction ratio is also demanded.
 これまで、小型化および省電力化を図り、かつ、消光比の改善を図ることのできる光スイッチを実現するための技術は提案されていない。 So far, no technology has been proposed for realizing an optical switch capable of reducing the size and power consumption and improving the extinction ratio.
 本発明の目的は、上記課題を解決することのできる、光スイッチの電極位置調整方法およびシステムを提供することにある。 An object of the present invention is to provide an electrode position adjusting method and system for an optical switch that can solve the above-mentioned problems.
 上記目的を達成するために、本発明の電極位置調整方法は、
 複数の線状電極が等間隔で形成された面を有する第1および第2の光学結晶を、互いの前記複数の線状電極の長手方向が一致するように積層して、該第1および第2の光学結晶に形成された前記複数の線状電極を含む領域に光束を照射し、
 前記第1および第2の光学結晶を積層した状態で、前記第1および第2の光学結晶の少なくとも一方を前記長手方向と交差する方向に移動させて、前記第1および第2の光学結晶の間における互いの前記複数の線状電極の相対的な位置を変化させながら、前記第1および第2の光学結晶を通過した透過光の強度を検出し、
 検出した前記透過光の強度が最も高くなった移動位置を前記第1および第2の光学結晶の最適位置とする、ことを特徴とする。
In order to achieve the above object, the electrode position adjustment method of the present invention comprises:
First and second optical crystals each having a surface on which a plurality of linear electrodes are formed at equal intervals are stacked so that the longitudinal directions of the plurality of linear electrodes coincide with each other. Irradiating a region including the plurality of linear electrodes formed on the optical crystal 2 with a light beam;
In a state in which the first and second optical crystals are stacked, at least one of the first and second optical crystals is moved in a direction intersecting the longitudinal direction, and the first and second optical crystals are Detecting the intensity of transmitted light that has passed through the first and second optical crystals while changing the relative position of the plurality of linear electrodes between each other,
The movement position where the intensity of the detected transmitted light is highest is set as the optimum position of the first and second optical crystals.
 また、本発明の電極位置調整システムは、
 複数の線状電極が等間隔で形成された面を有する第1および第2の光学結晶を、互いの前記複数の線状電極の長手方向が一致するように積層した状態でそれぞれ保持する第1および第2のステージと、
 前記第1および第2のステージに保持した第1および第2の光学結晶に形成された前記複数の線状電極を含む領域に光束を照射する光照射部と、
 前記第1および第2の光学結晶を通過した透過光を検出する受光部と、
 前記第1および第2のステージの少なくとも一方を、前記長手方向と交差する方向に移動させて、前記第1および第2の光学結晶の間における互いの前記複数の線状電極の相対的な位置を変化させながら、前記受光部の出力レベルをモニタする制御部と、を有し、
 前記制御部は、前記受光部の出力レベルが最も高くなった移動位置を前記第1および第2の光学結晶の最適位置として決定する、ことを特徴とする。
The electrode position adjustment system of the present invention is
First and second optical crystals each having a surface in which a plurality of linear electrodes are formed at equal intervals are respectively held in a stacked state so that the longitudinal directions of the plurality of linear electrodes coincide with each other. And a second stage,
A light irradiating unit that irradiates a light beam onto a region including the plurality of linear electrodes formed on the first and second optical crystals held on the first and second stages;
A light receiving portion for detecting transmitted light that has passed through the first and second optical crystals;
Relative positions of the plurality of linear electrodes between the first and second optical crystals by moving at least one of the first and second stages in a direction crossing the longitudinal direction A control unit that monitors the output level of the light receiving unit while changing
The control unit is characterized in that the moving position where the output level of the light receiving unit is the highest is determined as the optimum position of the first and second optical crystals.
本発明の電極位置調整方法が適用される光スイッチの主要部の上面図である。It is a top view of the principal part of the optical switch with which the electrode position adjustment method of this invention is applied. 図1AのA-A線による断面図である。It is sectional drawing by the AA line of FIG. 1A. 図1Aに示す光スイッチの、入射光の進行方向における電極部の位置関係を示す模式図である。It is a schematic diagram which shows the positional relationship of the electrode part in the advancing direction of incident light of the optical switch shown to FIG. 1A. 図1Aに示す光スイッチの電界印加時に形成される屈折率変化領域を示す模式図である。It is a schematic diagram which shows the refractive index change area | region formed at the time of the electric field application of the optical switch shown to FIG. 1A. 図1Aに示す光スイッチの電極部の位置が適正でない状態を示す模式図である。It is a schematic diagram which shows the state where the position of the electrode part of the optical switch shown to FIG. 1A is not appropriate. 図1Aに示す光スイッチの電極部の位置が適正である状態を示す模式図である。It is a schematic diagram which shows the state in which the position of the electrode part of the optical switch shown to FIG. 1A is appropriate. 本発明の第1の実施形態である電極位置調整方法を実施するためのシステムの構成を示すブロック図である。It is a block diagram which shows the structure of the system for enforcing the electrode position adjustment method which is the 1st Embodiment of this invention. 本発明の第1の実施形態である電極位置調整方法の一手順を示すフローチャートである。It is a flowchart which shows one procedure of the electrode position adjustment method which is the 1st Embodiment of this invention. 初期位置を設定する場合の所定の条件を説明するための模式図である。It is a schematic diagram for demonstrating the predetermined conditions in the case of setting an initial position. 第1および第2の波形の一例を示す波形図である。It is a wave form diagram which shows an example of the 1st and 2nd waveform. 本発明の第2の実施形態である電極位置調整方法を実施するためのシステムの構成を示すブロック図である。It is a block diagram which shows the structure of the system for enforcing the electrode position adjustment method which is the 2nd Embodiment of this invention. 本発明の第2の実施形態である電極位置調整方法の一手順を示すフローチャートである。It is a flowchart which shows one procedure of the electrode position adjustment method which is the 2nd Embodiment of this invention. 本発明の電極位置調整方法を実行する場合の第1の配置例を説明するための模式図である。It is a schematic diagram for demonstrating the 1st example of arrangement | positioning in the case of performing the electrode position adjustment method of this invention. 本発明の電極位置調整方法を実行する場合の第1の配置例を説明するための模式図である。It is a schematic diagram for demonstrating the 1st example of arrangement | positioning in the case of performing the electrode position adjustment method of this invention. 本発明の電極位置調整方法を実行する場合の第2の配置例を説明するための模式図である。It is a schematic diagram for demonstrating the 2nd example of arrangement | positioning in the case of performing the electrode position adjustment method of this invention. 本発明の電極位置調整方法を実行する場合の第2の配置例を説明するための模式図である。It is a schematic diagram for demonstrating the 2nd example of arrangement | positioning in the case of performing the electrode position adjustment method of this invention. 光スイッチの電極形成方法の一手順を示す断面工程図である。It is sectional process drawing which shows one procedure of the electrode formation method of an optical switch. 光スイッチの電極形成方法の一手順を示す断面工程図である。It is sectional process drawing which shows one procedure of the electrode formation method of an optical switch. 光スイッチの電極形成方法の一手順を示す断面工程図である。It is sectional process drawing which shows one procedure of the electrode formation method of an optical switch. 光スイッチの電極形成方法の一手順を示す断面工程図である。It is sectional process drawing which shows one procedure of the electrode formation method of an optical switch. 光スイッチの電極形成方法の一手順を示す断面工程図である。It is sectional process drawing which shows one procedure of the electrode formation method of an optical switch. 光スイッチの電極形成方法の一手順を示す断面工程図である。It is sectional process drawing which shows one procedure of the electrode formation method of an optical switch. 光スイッチの電極形成方法の一手順を示す断面工程図である。It is sectional process drawing which shows one procedure of the electrode formation method of an optical switch. 光スイッチの電極形成方法の一手順を示す断面工程図である。It is sectional process drawing which shows one procedure of the electrode formation method of an optical switch. 光スイッチの電極形成方法の一手順を示す断面工程図である。It is sectional process drawing which shows one procedure of the electrode formation method of an optical switch. 画像表示装置の一例を示す模式図である。It is a schematic diagram which shows an example of an image display apparatus. 画像形成装置の一例を示す模式図である。1 is a schematic diagram illustrating an example of an image forming apparatus.
符号の説明Explanation of symbols
10~12 光学結晶板
13a、13b、14a、14b 電極部
20 制御部
21 最適位置判定部
22 ステージ制御部
30 受光部
40 表示部
50、51 ステージ
60 光照射部
10 to 12 Optical crystal plates 13a, 13b, 14a, 14b Electrode unit 20 Control unit 21 Optimal position determination unit 22 Stage control unit 30 Light receiving unit 40 Display unit 50, 51 Stage 60 Light irradiation unit
 次に、本発明の実施形態について図面を参照して説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.
 まず、本発明の電極位置調整方法が適用される光スイッチの構成について説明する。 First, the configuration of an optical switch to which the electrode position adjusting method of the present invention is applied will be described.
 図1Aは、本発明の電極位置調整方法が適用される光スイッチの主要部の上面図、図1Bは、図1AのA-A線による断面図である。 1A is a top view of the main part of an optical switch to which the electrode position adjusting method of the present invention is applied, and FIG. 1B is a cross-sectional view taken along the line AA of FIG. 1A.
 図1Aおよび図1Bに示すように、光スイッチは、光学結晶板10と、表面に電極部13a、13bが形成された光学結晶板11と、表面に電極部14a、14bが形成された光学結晶板12とを積層した構造を有する。光学結晶板10~12は、電気光学効果を有する結晶(電気光学結晶)よりなる。 As shown in FIGS. 1A and 1B, an optical switch includes an optical crystal plate 10, an optical crystal plate 11 having electrode portions 13a and 13b formed on the surface, and an optical crystal having electrode portions 14a and 14b formed on the surface. It has a structure in which the plate 12 is laminated. The optical crystal plates 10 to 12 are made of a crystal having an electro-optic effect (electro-optic crystal).
 電極部13a、13bのそれぞれは、等間隔に配置され、かつ、面積最大となる主断面が同一平面内に配置された複数の線状電極を有する櫛形電極である。電極部13aと電極部13bとは、互いの線状電極が交互に配置されており、各線状電極の間隔は等間隔である。電極部14a、14bも、電極部13a、13bと同様の櫛形電極であり、互いの線状電極が交互に配置されている。電極部14a、14bの各線状電極間の間隔は等間隔であり、電極部13a、13bの各線状電極間の間隔と同じである。 Each of the electrode portions 13a and 13b is a comb-shaped electrode having a plurality of linear electrodes arranged at equal intervals and having a main cross section having the maximum area in the same plane. In the electrode portion 13a and the electrode portion 13b, the linear electrodes are alternately arranged, and the intervals between the linear electrodes are equal. The electrode portions 14a and 14b are also comb-shaped electrodes similar to the electrode portions 13a and 13b, and the linear electrodes are alternately arranged. The intervals between the linear electrodes of the electrode portions 14a and 14b are equal intervals, and are the same as the intervals between the linear electrodes of the electrode portions 13a and 13b.
 光学結晶板10は、電極部13a、13bの櫛歯に相当する線状電極が形成された部分を覆うように、光学結晶板11の表面に貼り付けられる。光学結晶板10が貼り付けられた光学結晶板11は、電極部14a、14bの櫛歯に相当する線状電極が形成された部分を覆うように、光学結晶板12の表面に貼り付けられる。 The optical crystal plate 10 is attached to the surface of the optical crystal plate 11 so as to cover the portion where the linear electrodes corresponding to the comb teeth of the electrode portions 13a and 13b are formed. The optical crystal plate 11 to which the optical crystal plate 10 is attached is attached to the surface of the optical crystal plate 12 so as to cover the portion where the linear electrodes corresponding to the comb teeth of the electrode portions 14a and 14b are formed.
 図1Aには、光学結晶板11の表面に形成された電極部13a、13bを光学結晶板10側から見た状態が透視図的に示されている。光学結晶板10の表面に垂直な方向から見た場合、電極部13a、13bよりなる第1の電極形成領域は、電極部14a、14bよりなる第2の電極形成領域上から少しずれた位置に形成されている。ただし、図1Bに示すように、図1AのA-A線により光学結晶板10~12を切断した断面に垂直な方向から見た場合、電極部13a、13bの各線状電極の位置と、電極部14a、14bの各線状電極の位置は一致する。 FIG. 1A is a perspective view showing a state in which the electrode portions 13a and 13b formed on the surface of the optical crystal plate 11 are viewed from the optical crystal plate 10 side. When viewed from the direction perpendicular to the surface of the optical crystal plate 10, the first electrode formation region composed of the electrode portions 13a and 13b is slightly shifted from the second electrode formation region composed of the electrode portions 14a and 14b. Is formed. However, as shown in FIG. 1B, when viewed from the direction perpendicular to the cross section of the optical crystal plates 10 to 12 cut along the line AA in FIG. 1A, the position of each linear electrode of the electrode portions 13a and 13b, and the electrode The positions of the linear electrodes of the portions 14a and 14b are the same.
 図1Cは、入射光の進行方向における電極部13a、13bと電極部14a、14bの位置関係を示す模式図である。図1Cに示す断面は、図1AのB-B線における断面である。 FIG. 1C is a schematic diagram showing the positional relationship between the electrode portions 13a and 13b and the electrode portions 14a and 14b in the traveling direction of incident light. The cross section shown in FIG. 1C is a cross section taken along line BB in FIG. 1A.
 図1Cに示すように、電極部13a、13bよりなる第1の電極形成領域および電極部14a、14bよりなる第2の電極形成領域は、入射光の進行方向に順に配置されている。すなわち、第1および第2の電極形成領域は、光路上に位置する。入射光15の進行方向に沿って第1および第2の電極形成領域を見た場合、第1および第2の電極形成領域は、互いの領域の電極部の電極面(または電極部が形成された面)が平行になるように積層されている。また、入射光15の進行方向に沿って見た場合、電極部13a、13bの各線状電極の位置が、電極部14a、14bの各線状電極の位置と一致する。 As shown in FIG. 1C, the first electrode formation region composed of the electrode portions 13a and 13b and the second electrode formation region composed of the electrode portions 14a and 14b are sequentially arranged in the traveling direction of the incident light. That is, the first and second electrode formation regions are located on the optical path. When the first and second electrode formation regions are viewed along the traveling direction of the incident light 15, the first and second electrode formation regions are formed by forming electrode surfaces (or electrode portions) of the electrode portions of the mutual regions. Are stacked so that the parallel surfaces are parallel. Further, when viewed along the traveling direction of the incident light 15, the positions of the linear electrodes of the electrode portions 13a and 13b coincide with the positions of the linear electrodes of the electrode portions 14a and 14b.
 図1A~図1Cに示した光学結晶板10~12を高温・高圧下で貼り合わせることで光スイッチを形成する。高温・高圧下で貼り合わせた光学結晶板10~12は、1つの光学結晶(具体的には、電気光学結晶)と見なすことができる。すなわち、光学結晶板10~12を高温・高圧下で貼り合わせることで、内部に電極部を備える電気光学結晶を形成することができる。 An optical switch is formed by laminating the optical crystal plates 10 to 12 shown in FIGS. 1A to 1C at high temperature and high pressure. The optical crystal plates 10 to 12 bonded together under high temperature and high pressure can be regarded as one optical crystal (specifically, an electro-optical crystal). That is, by bonding the optical crystal plates 10 to 12 under high temperature and high pressure, an electro-optical crystal having an electrode portion inside can be formed.
 この光スイッチでは、電極部13a、13b間に電圧を印加すると、電気光学効果により、電極部13a、13bを含む電極近傍領域の結晶の屈折率が変化する。同様に、電極部14a、14b間に電圧を印加すると、電気光学効果により、電極部14a、14bを含む電極近傍領域の結晶の屈折率が変化する。 In this optical switch, when a voltage is applied between the electrode portions 13a and 13b, the refractive index of the crystal in the vicinity of the electrode including the electrode portions 13a and 13b changes due to the electro-optic effect. Similarly, when a voltage is applied between the electrode portions 14a and 14b, the refractive index of the crystal in the vicinity of the electrode including the electrode portions 14a and 14b changes due to the electro-optic effect.
 図2に、電極部13a、13bを含む電極近傍領域に形成される屈折率変化領域を模式的に示す。電極部13a、13b間に電圧を印加すると、隣接する線状電極間において電界が発生し、その電界により、各線状電極を含む電極近傍領域の結晶の屈折率が変化する。この屈折率が変化した領域が、図2に示す屈折率変化領域16である。入射光は、屈折率変化領域16とその周りの結晶領域との界面(屈折率界面)において全反射する。入射光の入射角度(図1Cに示した入射角θに同じ)は、この界面における全反射が可能な条件を満たすように設定することが望ましい。 FIG. 2 schematically shows a refractive index change region formed in the electrode vicinity region including the electrode portions 13a and 13b. When a voltage is applied between the electrode portions 13a and 13b, an electric field is generated between adjacent linear electrodes, and the refractive index of the crystal in the electrode vicinity region including each linear electrode changes due to the electric field. The region where the refractive index has changed is the refractive index changing region 16 shown in FIG. Incident light is totally reflected at the interface (refractive index interface) between the refractive index changing region 16 and the surrounding crystal region. The incident angle of the incident light (same as the incident angle θ shown in FIG. 1C) is desirably set so as to satisfy a condition that allows total reflection at this interface.
 なお、図2では、入射光が図面に向かって左側から屈折率変化領域に入射し、その反射光が右側へ向かう状態が示されているが、光の利用効率をより向上させるため、入射光は、図面に向かって手前側(または奥側)から屈折率変化領域に入射し、その反射光が奥側(または手前側)へ向かうことにすることが望ましい。 Note that FIG. 2 shows a state in which incident light enters the refractive index change region from the left side toward the drawing and the reflected light goes to the right side. However, in order to further improve the light utilization efficiency, Is preferably incident on the refractive index changing region from the front side (or back side) toward the drawing, and the reflected light is directed toward the back side (or front side).
 また、電極として不透明な材料を用いた場合、電極自身が入射光の一部を遮ることになるため、その分、光の利用効率が低下する。この点を改善するために、電極を透明電極にすることで、光の利用効率を向上させることができる。 In addition, when an opaque material is used as the electrode, the electrode itself blocks a part of the incident light, so that the light use efficiency is reduced accordingly. In order to improve this point, the use efficiency of light can be improved by making the electrode a transparent electrode.
 電極部13a、13bへ電圧を印加した場合は、屈折率変化領域16が形成されるため、入射光は、その屈折率変化領域16の界面で全反射される。一方、電極部13a、13bへの電圧の供給を停止すると、屈折率変化領域16が形成されず、入射光は、そのまま電極部13a、13bの部分を透過する。これと同様に、電極部14a、14bの領域においても、電圧が印加されると、屈折率変化領域が形成されて、入射光は、その屈折率変化領域の界面で全反射される。電極部14a、14bへの電圧の供給を停止すると、屈折率変化領域が形成されず、入射光は、そのまま電極部14a、14bの部分を透過する。 When a voltage is applied to the electrode portions 13a and 13b, the refractive index change region 16 is formed, so that the incident light is totally reflected at the interface of the refractive index change region 16. On the other hand, when the supply of voltage to the electrode portions 13a and 13b is stopped, the refractive index changing region 16 is not formed, and the incident light passes through the electrode portions 13a and 13b as it is. Similarly, in the regions of the electrode portions 14a and 14b, when a voltage is applied, a refractive index change region is formed, and incident light is totally reflected at the interface of the refractive index change region. When the supply of voltage to the electrode portions 14a and 14b is stopped, the refractive index change region is not formed, and incident light passes through the electrode portions 14a and 14b as it is.
 光スイッチにおけるスイッチ動作では、入射光が反射される第1の状態と、入射光が透過する第2の状態との切り替えが可能である。第1の状態では、電極部13a、13bおよび電極部14a、14bのそれぞれに電圧を印加して屈折率変化領域を形成し、これら屈折率変化領域にて、入射光を反射する。第2の状態では、電極部13a、13bおよび電極部14a、14bへの電圧供給を停止する。電圧供給の停止により、電極部13a、13bおよび電極部14a、14bを含む各領域において、電気光学効果による屈折率変化を生じなくなるため、入射光はこれら領域を透過する。 In the switch operation of the optical switch, it is possible to switch between a first state in which incident light is reflected and a second state in which incident light is transmitted. In the first state, a voltage is applied to each of the electrode portions 13a and 13b and the electrode portions 14a and 14b to form refractive index change regions, and incident light is reflected in these refractive index change regions. In the second state, voltage supply to the electrode portions 13a and 13b and the electrode portions 14a and 14b is stopped. By stopping the voltage supply, the refractive index change due to the electro-optic effect does not occur in each region including the electrode portions 13a and 13b and the electrode portions 14a and 14b, so that the incident light passes through these regions.
 なお、屈折率変化領域の界面は、部分的に、全反射の条件を満たさない領域を含んでおり、この領域において、入射光の一部が透過する。全反射の条件を満たさない領域の範囲は、線状電極の間隔や印加電圧の大きさ(電界の大きさ)に依存する。上述の光スイッチにおいては、電極部13a、13bに電圧を印加することで形成された第1の屈折率変化領域の界面で入射光を反射し、さらに、電極部14a、14bに電圧を印加することで形成された第2の屈折率変化領域の界面で、第1の屈折率変化領域を透過した光を反射する。これにより、高い消光比を得ることが可能となっている。入射光の進行方向に沿って形成される電極部の数(屈折率変化領域の数)を3つ以上とすることで、消光比をさらに改善することができる。ただし、屈折率変化領域の数を増大すると、それにともなって電極の数および容量も増えるため、省電力化および小型化の観点からは望ましくない。屈折率変化領域の数は、消光比と省電力化および小型化との関係を考慮して決定することが望ましい。 The interface of the refractive index changing region partially includes a region that does not satisfy the total reflection condition, and a part of the incident light is transmitted through this region. The range of the region that does not satisfy the total reflection condition depends on the interval between the linear electrodes and the magnitude of the applied voltage (the magnitude of the electric field). In the optical switch described above, incident light is reflected at the interface of the first refractive index change region formed by applying a voltage to the electrode portions 13a and 13b, and further, a voltage is applied to the electrode portions 14a and 14b. The light transmitted through the first refractive index change region is reflected at the interface of the second refractive index change region formed in this way. Thereby, it is possible to obtain a high extinction ratio. The extinction ratio can be further improved by setting the number of electrode portions (number of refractive index change regions) formed along the traveling direction of incident light to three or more. However, when the number of refractive index changing regions is increased, the number and capacity of the electrodes increase accordingly, which is not desirable from the viewpoint of power saving and miniaturization. It is desirable to determine the number of refractive index changing regions in consideration of the relationship between the extinction ratio and power saving and miniaturization.
 また、例えば、半透明または不透明な電極材料を線状電極に用いた場合、入射光の一部が線状電極にて遮られる。電極部13a、13bの各線状電極と電極部14a、14bの各線状電極との位置が適正でない場合、入射光が透過する第2の状態において、電極部13a、13bの各線状電極を含む領域を透過した光の一部が電極部14a、14bにて遮られるため、消光比が低下する。 Also, for example, when a translucent or opaque electrode material is used for the linear electrode, part of the incident light is blocked by the linear electrode. In the second state where incident light is transmitted when the positions of the linear electrodes of the electrode portions 13a and 13b and the linear electrodes of the electrode portions 14a and 14b are not appropriate, the regions including the linear electrodes of the electrode portions 13a and 13b Since part of the light transmitted through the light is blocked by the electrode portions 14a and 14b, the extinction ratio is lowered.
 図3Aは、電極部13a、13bの各線状電極と電極部14a、14bの各線状電極との位置が適正でない状態を示す模式図である。図3Aには、図1AのA-A線の断面に垂直な方向から見た場合の、電極部13a、13bの各線状電極と電極部14a、14bの各線状電極との、それぞれの界面における入射光に対する位置関係が示されている。この例では、電極部13a、13bの各線状電極は、電極部14a、14bの各線状電極に対して、線状電極の長手方向と交差する方向にシフトした位置に形成されている。このため、入射光が透過する第2の状態において、電極部13a、13bの各線状電極を含む領域を透過した光の一部が、電極部14a、14bにて遮られる。 FIG. 3A is a schematic diagram illustrating a state where the positions of the linear electrodes of the electrode portions 13a and 13b and the linear electrodes of the electrode portions 14a and 14b are not appropriate. FIG. 3A shows the interface between the linear electrodes of the electrode portions 13a and 13b and the linear electrodes of the electrode portions 14a and 14b when viewed from the direction perpendicular to the cross section taken along the line AA in FIG. 1A. The positional relationship with respect to the incident light is shown. In this example, the linear electrodes of the electrode portions 13a and 13b are formed at positions shifted in the direction intersecting the longitudinal direction of the linear electrodes with respect to the linear electrodes of the electrode portions 14a and 14b. For this reason, in the second state in which the incident light is transmitted, a part of the light transmitted through the region including the linear electrodes of the electrode portions 13a and 13b is blocked by the electrode portions 14a and 14b.
 電極部13a、13bの各線状電極と電極部14a、14bの各線状電極との、入射光に対する位置を、適正に合わせることで、高い消光比を得られる。図3Bは、電極部13a、13bの各線状電極と電極部14a、14bの各線状電極との位置が適正である状態を示す模式図である。図3Bには、図1AのA-A線の断面に垂直な方向から見た場合の、電極部13a、13bの各線状電極と電極部14a、14bの各線状電極との、それぞれの界面における入射光に対する位置関係が示されている。この例では、電極部13a、13bの各線状電極と電極部14a、14bの各線状電極との、それぞれの界面における入射光に対する位置が一致している。このため、入射光が透過する第2の状態において、電極部13a、13bの各線状電極を含む領域を透過した光の殆どが、電極部14a、14bを含む領域を透過する。 A high extinction ratio can be obtained by appropriately matching the positions of the linear electrodes of the electrode portions 13a and 13b and the linear electrodes of the electrode portions 14a and 14b with respect to the incident light. FIG. 3B is a schematic diagram illustrating a state where the positions of the linear electrodes of the electrode portions 13a and 13b and the linear electrodes of the electrode portions 14a and 14b are appropriate. FIG. 3B shows the interface between the linear electrodes of the electrode portions 13a and 13b and the linear electrodes of the electrode portions 14a and 14b when viewed from the direction perpendicular to the cross section of the line AA in FIG. 1A. The positional relationship with respect to the incident light is shown. In this example, the positions of the linear electrodes of the electrode portions 13a and 13b and the linear electrodes of the electrode portions 14a and 14b with respect to the incident light coincide with each other. For this reason, in the second state where incident light is transmitted, most of the light transmitted through the regions including the linear electrodes of the electrode portions 13a and 13b is transmitted through the region including the electrode portions 14a and 14b.
 図3Bに示したように、電極位置を適正に設定することで、入射光が透過する第2の状態において、電極部13a、13bの各線状電極を含む領域を透過した光の殆どが、電極部14a、14bの各線状電極を含む領域を透過することになるので、高い消光比を得ることができる。 As shown in FIG. 3B, by setting the electrode position appropriately, in the second state where incident light is transmitted, most of the light transmitted through the regions including the linear electrodes of the electrode portions 13a and 13b is the electrode. Since the region including each linear electrode of the portions 14a and 14b is transmitted, a high extinction ratio can be obtained.
 本発明の電極位置調整方法は、図1A~図1Cに示したような光スイッチにおける、電極部13a、13bの各線状電極と電極部14a、14bの各線状電極との、入射光に対する位置を最適な位置に調整する方法である。本発明の電極位置調整方法の一態様によれば、複数の線状電極が等間隔で形成された面を有する第1および第2の光学結晶を、互いの上記複数の線状電極の長手方向が一致するように積層して、該第1および第2の光学結晶に形成された上記複数の線状電極を含む領域に光束を照射する。この状態で、上記第1および第2の光学結晶の少なくとも一方を上記長手方向と交差する方向に移動させて、上記第1および第2の光学結晶の間における互いの上記複数の線状電極の相対的な位置を変化させながら、上記第1および第2の光学結晶を通過した透過光の強度を検出する。検出した上記透過光の強度が最も高くなった移動位置を上記第1および第2の光学結晶の最適位置とする。 The electrode position adjusting method according to the present invention provides the position of the linear electrodes of the electrode portions 13a and 13b and the linear electrodes of the electrode portions 14a and 14b with respect to incident light in the optical switch as shown in FIGS. 1A to 1C. This is a method of adjusting to an optimal position. According to one aspect of the electrode position adjusting method of the present invention, the first and second optical crystals having a surface on which a plurality of linear electrodes are formed at equal intervals are arranged in the longitudinal direction of each of the plurality of linear electrodes. Are laminated so that they coincide with each other, and a light beam is irradiated onto a region including the plurality of linear electrodes formed in the first and second optical crystals. In this state, at least one of the first and second optical crystals is moved in a direction crossing the longitudinal direction, and the plurality of linear electrodes between the first and second optical crystals are arranged. While changing the relative position, the intensity of the transmitted light that has passed through the first and second optical crystals is detected. The movement position where the intensity of the transmitted light detected is the highest is determined as the optimum position of the first and second optical crystals.
 以下、本発明の電極位置調整方法の実施形態について、具体的に説明する。 Hereinafter, embodiments of the electrode position adjusting method of the present invention will be specifically described.
 (第1の実施形態)
 図4は、本発明の第1の実施形態である電極位置調整方法を実施するためのシステムの構成を示すブロック図である。図4を参照すると、電極位置調整システムは、制御部20、受光部30、表示部40、ステージ50、51、光照射部60、および入力部70を有する。
(First embodiment)
FIG. 4 is a block diagram showing the configuration of a system for carrying out the electrode position adjusting method according to the first embodiment of the present invention. Referring to FIG. 4, the electrode position adjustment system includes a control unit 20, a light receiving unit 30, a display unit 40, stages 50 and 51, a light irradiation unit 60, and an input unit 70.
 ステージ50、51は、一次元または2次元の移動が可能なステージである。図1Aに示した光学結晶板10、11を貼り合わせたものがステージ50に固定され、図1Aに示した光学結晶板12がステージ51に固定される。ステージ50は、電極部13a、13bの各線状電極の長手方向と交差する方向に移動可能であり、ステージ51は、電極部14a、14bの各線状電極の長手方向と交差する方向に移動可能である。ここで、線状電極の長手方向と交差する方向は、図1Aにおける線A-Aに沿った方向である。ステージ50に固定された光学結晶板11の裏面(電極部13a、13bが形成された面の反対側の面)は、ステージ51に固定された光学結晶板12の表面(電極部14a、14bが形成された面)と接触(面接触)しており、これら面が接触した状態で、ステージ50、51による光学結晶板の移動が可能となっている。また、光学結晶板11、12は、互いの線状電極の長手方向が一致するように、ステージ50、51に保持される。 Stages 50 and 51 are stages capable of one-dimensional or two-dimensional movement. The laminated optical crystal plates 10 and 11 shown in FIG. 1A are fixed to the stage 50, and the optical crystal plate 12 shown in FIG. 1A is fixed to the stage 51. The stage 50 is movable in a direction intersecting with the longitudinal direction of each linear electrode of the electrode portions 13a and 13b, and the stage 51 is movable in a direction intersecting with the longitudinal direction of each linear electrode of the electrode portions 14a and 14b. is there. Here, the direction intersecting the longitudinal direction of the linear electrode is a direction along line AA in FIG. 1A. The back surface of the optical crystal plate 11 fixed to the stage 50 (the surface opposite to the surface on which the electrode portions 13a and 13b are formed) is the surface of the optical crystal plate 12 fixed to the stage 51 (the electrode portions 14a and 14b are The optical crystal plate can be moved by the stages 50 and 51 in a state in which these surfaces are in contact with each other (surface formed). Further, the optical crystal plates 11 and 12 are held by the stages 50 and 51 so that the longitudinal directions of the linear electrodes coincide with each other.
 表示部40は、LCD(Liquid Crystal Display)等の表示デバイスである。入力部70は、複数のキーが配置された操作部であり、操作者は、この入力部70を通じて、システムを動作させるのに必要なデータの入力や、ステージ50、51の位置調整を自由に行うことができる。 The display unit 40 is a display device such as an LCD (Liquid Crystal Display). The input unit 70 is an operation unit on which a plurality of keys are arranged, and the operator can freely input data necessary for operating the system and adjust the positions of the stages 50 and 51 through the input unit 70. It can be carried out.
 光照射部60は、ステージ50、51に固定された光学結晶板10~12に向けて平行光束を照射する。光照射部60からの光は、図2に示した入射光と同じ方向から光学結晶板10~12の各界面に入射する。すなわち、光照射部60からの光の、光学結晶板10~12の各界面における入射角度は、図2に示した入射光の入射角度θとされる。 The light irradiation unit 60 irradiates the optical crystal plates 10 to 12 fixed to the stages 50 and 51 with a parallel light beam. The light from the light irradiation unit 60 enters each interface of the optical crystal plates 10 to 12 from the same direction as the incident light shown in FIG. That is, the incident angle of the light from the light irradiation unit 60 at each interface of the optical crystal plates 10 to 12 is the incident angle θ of the incident light shown in FIG.
 受光部30は、光照射部60からの光のうち、電極部13a、13bを含む領域および電極部14a、14bを含む領域を透過した光を受光する。受光部30は、例えばフォトダイオードであって、受光レベルに応じた大きさの信号を出力する。受光部30の出力信号は、制御部20に供給される。 The light receiving unit 30 receives light transmitted from the light irradiation unit 60 through the region including the electrode units 13a and 13b and the region including the electrode units 14a and 14b. The light receiving unit 30 is, for example, a photodiode, and outputs a signal having a magnitude corresponding to the light receiving level. The output signal of the light receiving unit 30 is supplied to the control unit 20.
 制御部20は、最適位置判定部21およびステージ制御部22を有する。ステージ制御部23は、ステージ50、51の移動制御を行う。例えば、ステージ制御部22は、入力部70を通じて操作者の入力を受け付け、その入力指示に従ってステージ50、51を移動させる。この制御により、操作者によるステージ50、51の位置調整が可能となる。また、ステージ制御部22は、最適位置判定部22からの移動指示信号に基づいて、ステージ50、51を移動させる。 The control unit 20 includes an optimum position determination unit 21 and a stage control unit 22. The stage control unit 23 performs movement control of the stages 50 and 51. For example, the stage control unit 22 receives an operator input through the input unit 70, and moves the stages 50 and 51 in accordance with the input instruction. With this control, the operator can adjust the positions of the stages 50 and 51. The stage control unit 22 moves the stages 50 and 51 based on the movement instruction signal from the optimum position determination unit 22.
 最適位置判定部21は、ステージ制御部22を通じて、線状電極の長手方向と交差する方向において、ステージ50、51の一方を第1の方向とその反対の方向となる第2の方向にそれぞれ、所定量だけ移動させる。所定の移動量は、線状電極間の間隔の半分である。 The optimum position determination unit 21 passes one of the stages 50 and 51 through the stage control unit 22 in the second direction which is the first direction and the opposite direction in the direction intersecting the longitudinal direction of the linear electrodes. Move by a predetermined amount. The predetermined movement amount is half of the interval between the linear electrodes.
 また、最適位置判定部21は、受光部30の出力信号を受信しており、ステージを初期位置の状態から第1の方向へ所定量だけ移動させた場合の受信信号のレベル変化を示す第1の波形と、ステージを初期位置の状態から第2の方向へ所定量だけ移動させた場合の受信信号のレベル変化を示す第2の波形とを表示部40に表示する。操作者は、入力部70を通じたステージの移動操作を行って目安となる電極間の位置を設定する。この操作者により設定される目安となる位置が初期位置である。 The optimum position determination unit 21 receives the output signal of the light receiving unit 30, and shows a first change in the level of the received signal when the stage is moved by a predetermined amount from the initial position state in the first direction. And a second waveform indicating a change in level of the received signal when the stage is moved by a predetermined amount in the second direction from the initial position. The operator performs a stage moving operation through the input unit 70 to set a position between the electrodes as a guide. The reference position set by the operator is the initial position.
 さらに、最適位置判定部21は、第1および第2の波形において、最もレベルの高い点における、電極部13a、13bの各線状電極と電極部14a、14bの各線状電極との位置を、最適位置と判定する。 Furthermore, the optimum position determination unit 21 optimizes the positions of the linear electrodes of the electrode parts 13a and 13b and the linear electrodes of the electrode parts 14a and 14b at the highest level in the first and second waveforms. Judge as position.
 図5は、図3の位置調整システムを用いた、本発明の第1の実施形態である電極位置調整方法の一手順を示すフローチャートである。 FIG. 5 is a flowchart showing a procedure of the electrode position adjusting method according to the first embodiment of the present invention using the position adjusting system of FIG.
 図5を参照すると、まず、ステージ制御部22が、入力部70を通じて操作者の入力を受け付け、その入力指示に従ってステージ50、51を移動させる。この移動制御により、目安となる電極間の位置(初期位置)が設定される(ステップS10)。 Referring to FIG. 5, first, the stage control unit 22 receives an operator input through the input unit 70 and moves the stages 50 and 51 in accordance with the input instruction. By this movement control, a position (initial position) between the electrodes that serves as a guide is set (step S10).
 次に、最適位置判定部21が、ステージ51を初期位置の状態から第1の方向へ所定量だけ移動させ、そのときの受光部30からの受信信号のレベル変化を示す第1の波形を取得する(ステップS11)。さらに、最適位置判定部21が、ステージ51を初期位置の状態から第2の方向へ所定量だけ移動させ、そのときの受光部30からの受信信号のレベル変化を示す第2の波形を取得する(ステップS12)。 Next, the optimum position determination unit 21 moves the stage 51 from the initial position state in the first direction by a predetermined amount, and obtains a first waveform indicating the level change of the received signal from the light receiving unit 30 at that time. (Step S11). Further, the optimum position determination unit 21 moves the stage 51 from the initial position state in the second direction by a predetermined amount, and acquires a second waveform indicating the level change of the received signal from the light receiving unit 30 at that time. (Step S12).
 最後に、最適位置判定部21が、取得した第1および第2の波形において、最もレベルの高い点を調べ、その点における電極部13a、13bの各線状電極と電極部14a、14bの各線状電極との位置を、最適位置と判定する(ステップS13)。 Finally, the optimum position determination unit 21 examines the highest point in the acquired first and second waveforms, and the linear electrodes of the electrode portions 13a and 13b and the linear shapes of the electrode portions 14a and 14b at that point. The position with the electrode is determined as the optimum position (step S13).
 上述の電極位置調整手順によれば、所定の条件を満たすように初期位置を設定すれば、必ず、電極部13a、13bの各線状電極と電極部14a、14bの各線状電極との位置関係を、図3Bに示した最適な位置関係に設定することができる。 According to the above-described electrode position adjustment procedure, if the initial position is set so as to satisfy a predetermined condition, the positional relationship between the linear electrodes of the electrode portions 13a and 13b and the linear electrodes of the electrode portions 14a and 14b is always set. The optimal positional relationship shown in FIG. 3B can be set.
 図6は、初期位置を設定する場合の所定の条件を説明するための模式図である。図6には、図1AのA-A線の断面に垂直な方向から見た場合の、電極部13a、13bの各線状電極と電極部14a、14bの各線状電極との、それぞれの界面における入射光に対する位置が示されている。間隔D1は、隣接する線状電極の間隔の大きさを示し、ずれ量D2は、電極部13a、13bの各線状電極の、電極部14a、14bの各線状電極に対するずれ量を示す。この場合、所定の条件は、「D2<D1÷2」で与えられる。 FIG. 6 is a schematic diagram for explaining predetermined conditions when setting the initial position. FIG. 6 shows the interface between the linear electrodes of the electrode portions 13a and 13b and the linear electrodes of the electrode portions 14a and 14b when viewed from the direction perpendicular to the cross section of the line AA in FIG. 1A. The position relative to the incident light is shown. The interval D1 indicates the size of the interval between adjacent linear electrodes, and the shift amount D2 indicates the shift amount of each linear electrode of the electrode portions 13a and 13b with respect to each linear electrode of the electrode portions 14a and 14b. In this case, the predetermined condition is given by “D2 <D1 / 2”.
 上記の所定の条件「D2<D1÷2」を満たすように初期位置を設定すれば、第1の方向に所定量(=D1÷2)だけステージを移動させた場合、または、第2の方向に所定量(=D1÷2)だけステージを移動させた場合のいずれかにおいて、図3Bに示した最適位置の状態を含むこととなる。この場合、第1および第2の波形は、最適位置の状態となるタイミングでそのレベルが最大となる。したがって、この第1および第2の波形における最大レベル(ピーク)を調べることで、最適な電極位置を知ることができる。 If the initial position is set so as to satisfy the predetermined condition “D2 <D1 / 2”, the stage is moved by a predetermined amount (= D1 / 2) in the first direction, or the second direction In any case where the stage is moved by a predetermined amount (= D1 ÷ 2), the state of the optimum position shown in FIG. 3B is included. In this case, the levels of the first and second waveforms become maximum at the timing when the optimum position is reached. Therefore, the optimum electrode position can be known by examining the maximum levels (peaks) in the first and second waveforms.
 図7に、第1および第2の波形の一例を示す。図7には、図6に示した状態を初期位置とした場合の第1および第2の波形が示されている。縦軸は検出光強度(受信信号レベル)を示す。横軸はステージの移動量を示す。第1の方向に、所定量(=D1÷2)だけステージが移動した場合に得られる第1の波形と、第2の方向に、所定量(=D1÷2)だけステージが移動した場合に得られる第2の波形とが、それぞれ図7に示されている。この例では、第1の方向に、所定量(=D1÷2)だけステージが移動した場合に、図3Bに示した最適位置の状態が含まれる。よって、第1の波形が、最大レベル(ピーク)を含む。この第1の波形の最大レベル(ピーク)を検出し、そのときの電極位置が最適位置Pとなる。このようにして、電極部13a、13bの各線状電極と電極部14a、14bの各線状電極との最適な位置を知ることができる。 FIG. 7 shows an example of the first and second waveforms. FIG. 7 shows the first and second waveforms when the state shown in FIG. 6 is set as the initial position. The vertical axis represents the detected light intensity (received signal level). The horizontal axis indicates the amount of stage movement. A first waveform obtained when the stage moves by a predetermined amount (= D1 ÷ 2) in the first direction, and a case where the stage moves by a predetermined amount (= D1 ÷ 2) in the second direction. The obtained second waveforms are shown in FIG. In this example, the state of the optimum position shown in FIG. 3B is included when the stage moves by a predetermined amount (= D1 / 2) in the first direction. Therefore, the first waveform includes the maximum level (peak). The maximum level (peak) of the first waveform is detected, and the electrode position at that time is the optimum position P. In this way, the optimum positions of the linear electrodes of the electrode portions 13a and 13b and the linear electrodes of the electrode portions 14a and 14b can be known.
 なお、初期位置を「D2≧D1÷2」の条件で設定した場合は、第1および第2の波形の最大レベル(ピーク)における電極位置は、電極部13a、13bの各線状電極が、電極部14a、14bの各線状電極に対して間隔D以上ずれた状態となる。この場合は、電極部13a、13bの各線状電極の位置は、電極部14a、14bのうちの、対応すべき線状電極とは異なる線状電極の位置と一致することとなる。 When the initial position is set under the condition of “D2 ≧ D1 / 2”, the electrode positions at the maximum levels (peaks) of the first and second waveforms are determined by the respective linear electrodes of the electrode portions 13a and 13b. It will be in the state which shifted | deviated more than the space | interval D with respect to each linear electrode of the parts 14a and 14b. In this case, the position of each linear electrode of the electrode portions 13a and 13b coincides with the position of a linear electrode different from the corresponding linear electrode in the electrode portions 14a and 14b.
 最適位置を求めた後は、その最適位置で光学結晶板を貼り合わせる。光学結晶板の貼り合わせは、高温、高圧で行う。 After obtaining the optimum position, the optical crystal plate is bonded at the optimum position. The optical crystal plate is bonded at a high temperature and a high pressure.
 上述した本実施形態の電極位置調整方法によれば、以下のような効果を有する。 The electrode position adjustment method of the present embodiment described above has the following effects.
 入射光の進行方向に沿って光スイッチを見た場合の、電極部13a、13bと電極部14a、14bとの位置が、線状電極の幅方向(この幅方向は線状電極の長手方向と交差する方向(例えば直交する方向)である。)にずれている場合は、電極部13a、13bの各線状電極間を透過した光の一部が電極部14a、14bにて遮られてしまうため、その分、光スイッチをオンさせた場合(電圧供給停止)の出力光強度が低下する。このため、光スイッチの消光比が低くなる。 When the optical switch is viewed along the traveling direction of the incident light, the positions of the electrode portions 13a and 13b and the electrode portions 14a and 14b are the width direction of the linear electrode (this width direction is the longitudinal direction of the linear electrode). In the case of deviation in the intersecting direction (for example, the direction orthogonal to each other), part of the light transmitted between the linear electrodes of the electrode portions 13a and 13b is blocked by the electrode portions 14a and 14b. Accordingly, the output light intensity is reduced when the optical switch is turned on (voltage supply is stopped). For this reason, the extinction ratio of the optical switch is lowered.
 これに対して、本実施形態の電極位置調整方法によれば、入射光の進行方向に沿って光スイッチを見た場合の、電極部13a、13bと電極部14a、14bとの位置を、線状電極の幅方向について、確実かつ正確に一致させることができる。電極部13a、13bと電極部14a、14bとの位置が一致した場合は、電極部13a、13bの各線状電極間を透過した光の殆どが、電極部14a、14bの各線状電極間を通過する。したがって、光スイッチの出力光強度は、上記の電極位置にずれを有する光スイッチの出力光強度よりも高いものとなり、その結果、消光比を改善することができる。 On the other hand, according to the electrode position adjusting method of the present embodiment, the positions of the electrode portions 13a and 13b and the electrode portions 14a and 14b when the optical switch is viewed along the traveling direction of the incident light The width direction of the electrode can be surely and accurately matched. When the positions of the electrode portions 13a and 13b coincide with the positions of the electrode portions 14a and 14b, most of the light transmitted between the linear electrodes of the electrode portions 13a and 13b passes between the linear electrodes of the electrode portions 14a and 14b. To do. Therefore, the output light intensity of the optical switch is higher than the output light intensity of the optical switch having a deviation in the electrode position, and as a result, the extinction ratio can be improved.
 また、目視により光スイッチの電極位置を調整する場合は、その調整精度は人によって異なる。このため、光スイッチの製造過程において、電極位置の調整精度にばらつきが生じ、品質の安定した光スイッチの提供が困難である。 Also, when adjusting the electrode position of the optical switch by visual observation, the adjustment accuracy varies depending on the person. For this reason, in the manufacturing process of the optical switch, variations occur in the adjustment accuracy of the electrode position, and it is difficult to provide an optical switch with stable quality.
 これに対して、本実施形態の電極位置調整方法によれば、電極位置を最適な位置に確実に調整することができるので、品質の安定した光スイッチを提供することができる。 On the other hand, according to the electrode position adjusting method of the present embodiment, the electrode position can be reliably adjusted to the optimum position, so that an optical switch with stable quality can be provided.
 なお、光スイッチの電極部13a、13bと電極部14a、14bとの位置は、線状電極の幅方向だけでなく、線状電極の長さ方向においてもずれを生じる。しかし、線状電極の長さ方向における電極位置のずれに対する光スイッチの出力光強度の変化は、線状電極の幅方向における電極位置のずれに対する光スイッチの出力光強度の変化に比べて十分に小さい。したがって、線状電極の長さ方向における電極位置のずれにより、消光比が大きく低下することはない。換言すると、消光比を改善するためには、線状電極の幅方向について、電極を最適な位置に調整することが重要である。 Note that the positions of the electrode portions 13a and 13b and the electrode portions 14a and 14b of the optical switch are shifted not only in the width direction of the linear electrodes but also in the length direction of the linear electrodes. However, the change in the output light intensity of the optical switch with respect to the displacement of the electrode position in the length direction of the linear electrode is sufficiently larger than the change in the output light intensity of the optical switch with respect to the displacement of the electrode position in the width direction of the linear electrode. small. Therefore, the extinction ratio is not greatly reduced by the displacement of the electrode position in the length direction of the linear electrode. In other words, in order to improve the extinction ratio, it is important to adjust the electrode to an optimal position in the width direction of the linear electrode.
 また、本実施形態の電極位置調整方法を用いて形成される光スイッチは、入射光の進行方向に複数の屈折率変化領域が形成される構成であるので、上記の電極位置調整の効果に加えて、消光比をさらに改善することが可能となっている。 In addition, since the optical switch formed using the electrode position adjusting method of the present embodiment has a configuration in which a plurality of refractive index change regions are formed in the traveling direction of incident light, in addition to the effect of electrode position adjustment described above. Thus, the extinction ratio can be further improved.
 また、光スイッチの各電極部は、等間隔に配置され、かつ、面積最大となる主断面が同一平面内に配置された複数の線状電極より構成されている。このような複数の線状電極より構成された電極部は、特許文献1に記載された板電極に比べて、面積および容量が小さいので、光スイッチの省電力化および小型化が可能である。 Further, each electrode portion of the optical switch is composed of a plurality of linear electrodes arranged at equal intervals and having a main cross section having a maximum area in the same plane. Since the electrode portion composed of such a plurality of linear electrodes has a smaller area and capacity than the plate electrode described in Patent Document 1, it is possible to save power and reduce the size of the optical switch.
 (第2の実施形態)
 図8は、本発明の第2の実施形態である電極位置調整方法を実施するためのシステムの構成を示すブロック図である。この電極位置調整システムは、複数の温度制御素子80と、制御部20の機能である温度制御部23とからなる温度制御手段を設けた以外は、図4に示したシステムと同様の構成のものである。図8中、図4に示した構成と同じものには同じ符号を付している。
(Second Embodiment)
FIG. 8 is a block diagram showing the configuration of a system for carrying out the electrode position adjusting method according to the second embodiment of the present invention. This electrode position adjustment system has the same configuration as the system shown in FIG. 4 except that a temperature control means including a plurality of temperature control elements 80 and a temperature control unit 23 which is a function of the control unit 20 is provided. It is. In FIG. 8, the same components as those shown in FIG.
 温度制御素子80は、ペルチェ素子に代表される熱電変換素子であって、各電極部13a、13b、14a、14bの一部(露出面)に設けられている。図8に示した例では、温度制御素子80は、電極部の電圧供給用端子面上に設けられている。温度制御素子80は発熱面を備え、その発熱面が電圧供給用端子面に接触するように形成されている。 The temperature control element 80 is a thermoelectric conversion element typified by a Peltier element, and is provided on a part (exposed surface) of each electrode portion 13a, 13b, 14a, 14b. In the example shown in FIG. 8, the temperature control element 80 is provided on the voltage supply terminal surface of the electrode portion. The temperature control element 80 has a heat generating surface, and the heat generating surface is formed so as to contact the voltage supply terminal surface.
 温度制御部23は、不図示の電源から各温度制御素子80への電流供給を制御するものである。温度制御素子80に電流が供給されると、温度制御素子80が発熱する。温度制御素子80が発熱すると、発熱面からの熱エネルギーによって電極部が加熱され、その結果、電極部の周辺の光学結晶の温度が上昇する。 The temperature control unit 23 controls current supply from a power source (not shown) to each temperature control element 80. When a current is supplied to the temperature control element 80, the temperature control element 80 generates heat. When the temperature control element 80 generates heat, the electrode portion is heated by the heat energy from the heat generating surface, and as a result, the temperature of the optical crystal around the electrode portion increases.
 温度制御素子80の発熱面から電極部13a、13b、14a、14bへ供給される熱エネルギー量は、温度制御素子80への供給電流量により決まる。また、電極部13a、13b、14a、14bの熱伝導率、温度制御素子80から温度を維持すべき領域(電極部13a、13b、14a、14bを含む電極形成領域)までの距離等のパラメータに基づいて、温度を維持すべき領域を一定の温度範囲内で維持するのに必要な熱エネルギー量を算出することができる。この算出した熱エネルギー量が温度制御素子80から電極部13a、13b、14a、14bに供給されるように、温度制御部23は、温度制御素子80への電流供給を制御する。これにより、電極部13a、13b、14a、14bを含む電極形成領域の温度を一定温度範囲内に維持する。 The amount of heat energy supplied from the heat generating surface of the temperature control element 80 to the electrode portions 13a, 13b, 14a, and 14b is determined by the amount of current supplied to the temperature control element 80. Further, parameters such as the thermal conductivity of the electrode portions 13a, 13b, 14a, and 14b and the distance from the temperature control element 80 to the region where the temperature should be maintained (electrode forming region including the electrode portions 13a, 13b, 14a, and 14b) Based on this, it is possible to calculate the amount of heat energy required to maintain the region where the temperature is to be maintained within a certain temperature range. The temperature control unit 23 controls the current supply to the temperature control element 80 so that the calculated amount of heat energy is supplied from the temperature control element 80 to the electrode units 13a, 13b, 14a, and 14b. Thereby, the temperature of the electrode formation area containing electrode part 13a, 13b, 14a, 14b is maintained in a fixed temperature range.
 光学結晶板10~12はいずれも、結晶の構造が変化する相転移温度以上で透明となり、相転移温度付近で大きな屈折率を得られる電気光学結晶、例えば、KTN(タンタル酸ニオブ酸カリウム:KTa1-xNbxO3)よりなる。 All of the optical crystal plates 10 to 12 are transparent above the phase transition temperature at which the crystal structure changes, and are electro-optical crystals capable of obtaining a large refractive index near the phase transition temperature, such as KTN (potassium niobate tantalate: KTa). 1-x Nb x O 3 ).
 図9は、図8の位置調整システムを用いた、本発明の第2の実施形態である電極位置調整方法の一手順を示すフローチャートである。 FIG. 9 is a flowchart showing one procedure of the electrode position adjusting method according to the second embodiment of the present invention using the position adjusting system of FIG.
 図9を参照すると、まず、ステージ制御部22が、入力部70を通じて操作者の入力を受け付け、その入力指示に従ってステージ50、51を移動させる。この移動制御により、目安となる電極間の位置(初期位置)が設定される(ステップS20)。 Referring to FIG. 9, first, the stage control unit 22 receives an operator input through the input unit 70 and moves the stages 50 and 51 in accordance with the input instruction. By this movement control, a position between the electrodes (initial position) that serves as a guide is set (step S20).
 次に、光学結晶板10~12の温度(特に電極形成領域の温度)が相転移温度以上、かつ、相転移温度近傍に維持されるように、温度制御部23が、各温度制御素子80への電流供給を制御する(ステップS21)。 Next, the temperature control unit 23 supplies the temperature control elements 80 to the temperature control elements 80 so that the temperature of the optical crystal plates 10 to 12 (particularly the temperature of the electrode formation region) is maintained at or above the phase transition temperature. Current supply is controlled (step S21).
 次に、最適位置判定部21が、ステージ51を初期位置の状態から第1の方向へ所定量だけ移動させ、そのときの受光部30からの受信信号のレベル変化を示す第1の波形を取得する(ステップS22)。さらに、最適位置判定部21が、ステージ51を初期位置の状態から第2の方向へ所定量だけ移動させ、そのときの受光部30からの受信信号のレベル変化を示す第2の波形を取得する(ステップS23)。 Next, the optimum position determination unit 21 moves the stage 51 from the initial position state in the first direction by a predetermined amount, and obtains a first waveform indicating the level change of the received signal from the light receiving unit 30 at that time. (Step S22). Further, the optimum position determination unit 21 moves the stage 51 from the initial position state in the second direction by a predetermined amount, and acquires a second waveform indicating the level change of the received signal from the light receiving unit 30 at that time. (Step S23).
 最後に、最適位置判定部21が、取得した第1および第2の波形において、最もレベルの高い点を調べ、その点における電極部13a、13bの各線状電極と電極部14a、14bの各線状電極との位置を、最適位置と判定する(ステップS24)。 Finally, the optimum position determination unit 21 examines the highest point in the acquired first and second waveforms, and the linear electrodes of the electrode portions 13a and 13b and the linear shapes of the electrode portions 14a and 14b at that point. The position with the electrode is determined as the optimum position (step S24).
 最適位置を求めた後は、その最適位置で光学結晶板を貼り合わせる。光学結晶板を貼り合わせは、高温、高圧で行う。 After obtaining the optimum position, the optical crystal plate is bonded at the optimum position. The optical crystal plate is bonded at a high temperature and a high pressure.
 本実施形態の電極位置調整方法によれば、光学結晶板を相転移温度以上で透明となる電気光学結晶により形成した光スイッチにおいて、電気光学結晶(より望ましくは電極形成領域)の温度を相転移温度以上、かつ、相転移温度近傍に維持する。すなわち、電気光学結晶(より望ましくは電極形成領域)を透明な状態で維持する。電気光学結晶(より望ましくは電極形成領域)を透明な状態で維持することで、電極形成領域を透過する光の光量が増大し、その分、ステージの移動に伴う受光部30の出力波形(第1および第2の波形)の変化が大きくなる。この結果、出力波形(第1および第2の波形)のピークの検出を、より高精度に行うことが可能となる。 According to the electrode position adjusting method of this embodiment, in an optical switch in which an optical crystal plate is formed of an electro-optic crystal that is transparent at a phase transition temperature or higher, the temperature of the electro-optic crystal (more preferably, the electrode formation region) is changed to a phase transition. Maintain above the temperature and near the phase transition temperature. That is, the electro-optic crystal (more desirably, the electrode formation region) is maintained in a transparent state. By maintaining the electro-optic crystal (more desirably, the electrode formation region) in a transparent state, the amount of light transmitted through the electrode formation region is increased, and the output waveform (the first waveform) of the light receiving unit 30 associated with the movement of the stage is correspondingly increased. The change in the first and second waveforms is increased. As a result, the peak of the output waveform (first and second waveforms) can be detected with higher accuracy.
 なお、本実施形態の電極位置調整方法においては、温度制御素子80を通じて、少なくとも光学結晶板10~12に形成された電極形成領域を相転移温度以上の温度で維持する手法(温度制御手段)を用いているが、これに代えて他の手法(他の温度制御手段)を用いてもよい。例えば、内部雰囲気の温度を指示された温度で維持可能な筐体内に、光学結晶板10~12を収容し、温度制御部23が、筐体内の温度を制御する。筐体内では、雰囲気が加熱され、それにより、光学結晶板10~12の温度が上昇する。内部温度は、光学結晶板10~12が相転移温度以上の温度で維持されるような温度とされる。 In the electrode position adjusting method of the present embodiment, a method (temperature control means) for maintaining at least the electrode formation regions formed on the optical crystal plates 10 to 12 at a temperature equal to or higher than the phase transition temperature through the temperature control element 80. However, other methods (other temperature control means) may be used instead. For example, the optical crystal plates 10 to 12 are accommodated in a casing capable of maintaining the temperature of the internal atmosphere at the instructed temperature, and the temperature control unit 23 controls the temperature in the casing. In the housing, the atmosphere is heated, thereby increasing the temperature of the optical crystal plates 10-12. The internal temperature is set such that the optical crystal plates 10 to 12 are maintained at a temperature equal to or higher than the phase transition temperature.
 また、電気光学結晶(より望ましくは電極形成領域)を相転移温度以上の温度で維持する場合、その温度制御範囲の上限値は、電気光学結晶の屈折率の温度依存性を考慮して、光スイッチが動作する範囲内とする。具体的には、以下のようにして温度制御範囲の上限は決まる。 In addition, when the electro-optic crystal (more desirably, the electrode formation region) is maintained at a temperature equal to or higher than the phase transition temperature, the upper limit of the temperature control range is determined by considering the temperature dependence of the refractive index of the electro-optic crystal. Within the operating range of the switch. Specifically, the upper limit of the temperature control range is determined as follows.
 電気光学結晶の温度が上昇すると、電気光学結晶の屈折率が変化し、それに伴って、屈折率変化領域の屈折率界面において入射光が全反射するときの臨界角も変化する。このため、例えば、入射光の屈折率界面に対する入射角を相転移温度における臨界角に設定した場合、温度上昇により臨界角が変化すると、設定した入射角が臨界角よりも小さくなる。この場合、入射光は屈折率変化領域の屈折率界面にて全反射されず、屈折率変化領域を透過することになり、その結果、光スイッチが動作しなくなる。したがって、温度制御範囲の上限は、臨界角が設定した入射角を超えない温度とされる。臨界角が設定した入射角を超えない温度の条件は、線状電極の間隔、印加電圧の大きさ、および入射角の各パラメータにより規定することができる。 When the temperature of the electro-optic crystal rises, the refractive index of the electro-optic crystal changes, and accordingly, the critical angle when incident light is totally reflected at the refractive index interface in the refractive index changing region also changes. For this reason, for example, when the incident angle of the incident light with respect to the refractive index interface is set to a critical angle at the phase transition temperature, the set incident angle becomes smaller than the critical angle when the critical angle changes due to the temperature rise. In this case, incident light is not totally reflected at the refractive index interface of the refractive index change region, but is transmitted through the refractive index change region, and as a result, the optical switch does not operate. Therefore, the upper limit of the temperature control range is a temperature at which the critical angle does not exceed the set incident angle. The temperature condition where the critical angle does not exceed the set incident angle can be defined by the parameters of the distance between the linear electrodes, the magnitude of the applied voltage, and the incident angle.
 以上説明した本実施形態の電極位置調整方法においても、前述の第1の実施形態の電極位置調整方法と同様な作用効果を奏する。 The electrode position adjusting method of the present embodiment described above has the same effects as the electrode position adjusting method of the first embodiment described above.
 上述した第1および第2の実施形態の電極位置調整方法は、実際の光スイッチの設定状態に近い状態で実行することが望ましい。 It is desirable that the above-described electrode position adjustment methods of the first and second embodiments be executed in a state close to the actual optical switch setting state.
 以下に、光スイッチの設定状態と、その設定状態に最適なシステムの配置例を具体的に説明する。 Below, the setting state of the optical switch and a system arrangement example optimal for the setting state will be described in detail.
 (第1の配置例)
 図10Aおよび図10Bは、本発明の電極位置調整方法を実行する場合の第1の配置例を示す模式図である。図10Aには、図1Aに示した光スイッチのB-B線における部分断面が模式的に示されている。図10Bには、図1Aに示した光スイッチのA-A線における部分断面が模式的に示されている。
(First arrangement example)
10A and 10B are schematic views showing a first arrangement example when the electrode position adjusting method of the present invention is executed. FIG. 10A schematically shows a partial cross section taken along line BB of the optical switch shown in FIG. 1A. FIG. 10B schematically shows a partial cross section taken along line AA of the optical switch shown in FIG. 1A.
 光学結晶板10~12は、電気光学結晶(例えばKTN)よりなり、その屈折率nは約2.2である。この電気光学結晶の、線状電極間に電圧5Vを印加したとき(電界印加時)の屈折率変化Δnは-0.022である。光学結晶板10~12の厚さは、それぞれ100μm、34μm、100μmである。 The optical crystal plates 10 to 12 are made of an electro-optical crystal (for example, KTN), and the refractive index n is about 2.2. In this electro-optic crystal, the refractive index change Δn when a voltage of 5 V is applied between the linear electrodes (when an electric field is applied) is −0.022. The thicknesses of the optical crystal plates 10 to 12 are 100 μm, 34 μm, and 100 μm, respectively.
 入射光の波長λは460nmである。入射光の直径Dbは20μmである。電極部13a、13b、14a、14bの各線状電極の間隔Sxは5μmである。各線状電極の幅Ewは、5μmである。電極部13a、13b、14a、14bの厚さは、いずれも500nmである。電極部13bと光学結晶板11の端部のY軸方向における間隔は50μmである。Y軸方向は、線状電極の長手方向である。 The wavelength λ of incident light is 460 nm. The diameter D b of the incident light is 20 [mu] m. The spacing Sx between the linear electrodes of the electrode portions 13a, 13b, 14a, and 14b is 5 μm. The width E w of each linear electrode is 5 μm. The electrode portions 13a, 13b, 14a, and 14b all have a thickness of 500 nm. The distance between the electrode portion 13b and the end of the optical crystal plate 11 in the Y-axis direction is 50 μm. The Y-axis direction is the longitudinal direction of the linear electrode.
 上記の光スイッチの条件において、光利用効率が高く、かつ、中間層である光学結晶板11の厚さを最も薄くすることができる条件は、以下のようになる。 Under the above optical switch conditions, the light utilization efficiency is high and the thickness of the optical crystal plate 11 as the intermediate layer can be made the thinnest is as follows.
 電界印加によって屈折率が変化する電気光学結晶の屈折率変化領域の屈折率界面において入射光が全反射するときの臨界角θmは81.9°で、電極部13a、13b、14a、14bの各線状電極の電極長Elが141μmである。なお、電極長Elは141μmよりも長くてもよい。 The critical angle θ m when the incident light is totally reflected at the refractive index interface of the refractive index changing region of the electro-optic crystal whose refractive index changes by applying an electric field is 81.9 °, and the electrode portions 13a, 13b, 14a, 14b electrode length E l of linear electrodes is 141 .mu.m. The electrode length E l may be greater than 141 .mu.m.
 一次回折角θdは2.4°である。一段目の電極部13aと二段目の電極部14aのY軸方向の間隔SyおよびZ軸方向の間隔Szはそれぞれ95μm、34μmである。ここで、Z軸方向は光学結晶板の厚さ方向である。これら電極部13a、14a間における透過光の光路長Llは239μmである。電極部13b、14bも、電極部13a、14aと同様の関係である。 The first-order diffraction angle θ d is 2.4 °. First stage of the electrode portion 13a and the second stage of the electrode portion 14a of the Y-axis direction of the spacing S y and the Z-axis direction between S z respectively 95 .mu.m, is 34 .mu.m. Here, the Z-axis direction is the thickness direction of the optical crystal plate. The optical path length L 1 of the transmitted light between these electrode portions 13a and 14a is 239 μm. The electrode portions 13b and 14b have the same relationship as the electrode portions 13a and 14a.
 上記のように設定された光スイッチの電極位置を調整する場合は、光照射部60からの光を、光学結晶板10の入射端面に対して、入射角18.2°で入射させる。ここで、光学結晶板10の入射端面は、光学結晶板10、11の界面(電極部13a、13bの形成面)に垂直な面、または光学結晶板11、12の界面(電極部14a、14bの形成面)に垂直な面である。また、光照射部60からの光の、光学結晶板10の入射端面上における入射位置は、光学結晶板11、12の界面から115μmの位置とする。受光部30は、光照射部60からの光のうち、光学結晶板10~12を透過した光を受光可能な位置に配置する。 When adjusting the electrode position of the optical switch set as described above, the light from the light irradiation unit 60 is incident on the incident end face of the optical crystal plate 10 at an incident angle of 18.2 °. Here, the incident end face of the optical crystal plate 10 is a surface perpendicular to the interface between the optical crystal plates 10 and 11 (formation surface of the electrode portions 13a and 13b) or the interface between the optical crystal plates 11 and 12 ( electrode portions 14a and 14b). This is a surface perpendicular to the formation surface. The incident position of the light from the light irradiation unit 60 on the incident end face of the optical crystal plate 10 is set to a position of 115 μm from the interface between the optical crystal plates 11 and 12. The light receiving unit 30 is disposed at a position where light transmitted through the optical crystal plates 10 to 12 among the light from the light irradiation unit 60 can be received.
 図1または図4に示したシステムを上記の配置条件を満たすように設定し、前述の第1または第2の実施形態における電極調整方法により最適位置を求める。 The system shown in FIG. 1 or FIG. 4 is set so as to satisfy the above arrangement conditions, and the optimum position is obtained by the electrode adjustment method in the first or second embodiment described above.
 (第2の配置例)
 図11Aおよび図11Bは、本発明の電極位置調整方法を実行する場合の第2の配置例を示す模式図である。図11Aには、図1Aに示した光スイッチのB-B線における部分断面が模式的に示されている。図11Bには、図1Aに示した光スイッチのA-A線における部分断面が模式的に示されている。
(Second arrangement example)
FIG. 11A and FIG. 11B are schematic views showing a second arrangement example when the electrode position adjusting method of the present invention is executed. FIG. 11A schematically shows a partial cross section taken along line BB of the optical switch shown in FIG. 1A. FIG. 11B schematically shows a partial cross section taken along line AA of the optical switch shown in FIG. 1A.
 光学結晶板10~12は、電気光学結晶(例えばリチウムナイオベート(LN))よりなり、その屈折率nは約2.286である。この電気光学結晶の、線状電極間に電圧100Vを印加したとき(電界印加時)の屈折率変化Δnは-0.016である。光学結晶板10~12の厚さは、それぞれ100μm、29μm、100μmである。 The optical crystal plates 10 to 12 are made of an electro-optical crystal (for example, lithium niobate (LN)), and the refractive index n is about 2.286. The electro-optic crystal has a refractive index change Δn of −0.016 when a voltage of 100 V is applied between the linear electrodes (when an electric field is applied). The thicknesses of the optical crystal plates 10 to 12 are 100 μm, 29 μm, and 100 μm, respectively.
 入射光の波長λは460nmである。入射光の直径Dbは20μmである。電極部13a、13b、14a、14bの各線状電極の間隔Sxは5μmである。各線状電極の幅Ewは1μmである。電極部13a、13b、14a、14bの厚さは、いずれも500nmである。 The wavelength λ of incident light is 460 nm. The diameter Db of incident light is 20 μm. The spacing Sx between the linear electrodes of the electrode portions 13a, 13b, 14a, and 14b is 5 μm. The width E w of each linear electrode is 1 μm. The electrode portions 13a, 13b, 14a, and 14b all have a thickness of 500 nm.
 上記の光スイッチの条件において、光利用効率が高く、かつ、中間層である光学結晶板11の厚さを最も薄くすることができる条件は、以下のようになる。 Under the above optical switch conditions, the light utilization efficiency is high and the thickness of the optical crystal plate 11 as the intermediate layer can be made the thinnest is as follows.
 電界印加によって屈折率が変化する電気光学結晶の屈折率変化領域の屈折率界面において入射光が全反射するときの臨界角θmは83.2°で、電極部13a、13b、14a、14bの各線状電極の電極長Elが169μmである。なお、電極長Elは169μmよりも長くてもよい。 The critical angle θ m when the incident light is totally reflected at the refractive index interface of the refractive index changing region of the electro-optic crystal whose refractive index changes by applying an electric field is 83.2 °, and the electrode portions 13a, 13b, 14a, 14b electrode length E l of linear electrodes is 169 .mu.m. The electrode length E l may be greater than 169 .mu.m.
 一次回折角θdは2.3°である。一段目の電極部13aと二段目の電極部14aのY軸方向の間隔SyおよびZ軸方向の間隔Szはそれぞれ77μm、29μmである。ここで、Y軸方向は線状電極の長手方向であり、Z軸方向は光学結晶板の厚さ方向である。これら電極部13a、14a間における透過光の光路長Llは248μmである。電極部13b、14bも、電極部13a、14aと同様の関係である。 The first-order diffraction angle θ d is 2.3 °. The distance S y in the Y-axis direction and the distance S z in the Z-axis direction between the first-stage electrode portion 13a and the second-stage electrode portion 14a are 77 μm and 29 μm, respectively. Here, the Y-axis direction is the longitudinal direction of the linear electrode, and the Z-axis direction is the thickness direction of the optical crystal plate. The optical path length L l of the transmitted light between these electrode portions 13a and 14a is 248 μm. The electrode portions 13b and 14b have the same relationship as the electrode portions 13a and 14a.
 上記のように設定された光スイッチの電極位置を調整する場合は、光照射部60からの光を、光学結晶板10の入射端面に対して、入射角15.7°で入射させる。ここで、光学結晶板10の入射端面は、光学結晶板10、11の界面(電極部13a、13bの形成面)に垂直な面、または光学結晶板11、12の界面(電極部14a、14bの形成面)に垂直な面である。また、光照射部60からの光の、光学結晶板10の入射端面上における入射位置は、光学結晶板11、12の界面から99μmの位置とする。受光部30は、光照射部60からの光のうち、光学結晶板10~12を透過した光を受光可能な位置に配置する。 When adjusting the electrode position of the optical switch set as described above, the light from the light irradiation unit 60 is incident on the incident end face of the optical crystal plate 10 at an incident angle of 15.7 °. Here, the incident end face of the optical crystal plate 10 is a surface perpendicular to the interface between the optical crystal plates 10 and 11 (formation surface of the electrode portions 13a and 13b) or the interface between the optical crystal plates 11 and 12 ( electrode portions 14a and 14b). This is a surface perpendicular to the formation surface. Further, the incident position of the light from the light irradiation unit 60 on the incident end face of the optical crystal plate 10 is set at a position of 99 μm from the interface between the optical crystal plates 11 and 12. The light receiving unit 30 is disposed at a position where light transmitted through the optical crystal plates 10 to 12 among the light from the light irradiation unit 60 can be received.
 図1または図4に示したシステムを上記の配置条件を満たすように設定し、前述の第1または第2の実施形態における電極調整方法により最適位置を求める。 The system shown in FIG. 1 or FIG. 4 is set so as to satisfy the above arrangement conditions, and the optimum position is obtained by the electrode adjustment method in the first or second embodiment described above.
 なお、上述した第1および第2の実施形態においては、ステージ50、51の一方を第1の方向とその反対の方向となる第2の方向にそれぞれ、所定量だけ移動させるように構成されているが、本発明はこれに限定されるものではない。移動させるステージは、ステージ50、51の一方であっても、双方であってもよい。すなわち、ステージ50、51の少なくとも一方を、線状電極の長手方向と交差する方向に移動させて、光学結晶11、12の間における互いの線状電極の相対的な位置を変化させながら、受光部の出力レベルをモニタする。これにより、電極位置の正確な調整が可能である。なお、光学結晶11、12の間における互いの線状電極の相対的な位置を変化させる範囲は線状電極の間隔の範囲とすることが望ましい。 In the first and second embodiments described above, one of the stages 50 and 51 is configured to move by a predetermined amount in the first direction and in the second direction opposite to the first direction. However, the present invention is not limited to this. The stage to be moved may be either one or both of the stages 50 and 51. That is, at least one of the stages 50 and 51 is moved in a direction crossing the longitudinal direction of the linear electrodes, and light is received while changing the relative positions of the linear electrodes between the optical crystals 11 and 12. Monitor the output level. Thereby, accurate adjustment of an electrode position is possible. In addition, it is desirable that the range in which the relative position of the linear electrodes between the optical crystals 11 and 12 is changed is the range of the interval between the linear electrodes.
 [電極形成方法]
 次に、光スイッチの電極形成方法について具体的に説明する。
[Electrode formation method]
Next, the electrode forming method of the optical switch will be specifically described.
 図12A~図12Iは、光スイッチの電極形成方法の一手順を示す断面工程図である。 FIGS. 12A to 12I are cross-sectional process diagrams showing one procedure of an electrode forming method for an optical switch.
 まず、電気光学結晶90の表面にレジスト91を塗布する(図12Aの工程)。次に、電極パターンが形成されたマスク92を用いて、レジスト91が塗布された面をマスキングし、その塗布面を露光する(図12Bの工程)。次に、レジスト91の露光された部分を除去する(図12Cの工程)。 First, a resist 91 is applied to the surface of the electro-optic crystal 90 (step of FIG. 12A). Next, using the mask 92 on which the electrode pattern is formed, the surface on which the resist 91 is applied is masked, and the applied surface is exposed (step of FIG. 12B). Next, the exposed portion of the resist 91 is removed (step of FIG. 12C).
 次に、露光部分が除去されたレジスト91をマスクとして用いて、電気光学結晶90の露出した表面をエッチングする(図12Dの工程)。エッチング材料は、フッ化水素等である。 Next, the exposed surface of the electro-optic crystal 90 is etched using the resist 91 from which the exposed portion has been removed as a mask (step of FIG. 12D). The etching material is hydrogen fluoride or the like.
 次に、電気光学結晶90のエッチングされた部分に電極材料(金、白金など)を堆積して電極93を形成し(図12Eの工程)、その後、レジスト91を除去する(図12Fの工程)。次に、電気光学結晶90の表面と電極93の表面とが同じ高さになるように、それらの面を研磨する(図12Gの工程)。 Next, an electrode material (gold, platinum, etc.) is deposited on the etched portion of the electro-optic crystal 90 to form an electrode 93 (step in FIG. 12E), and then the resist 91 is removed (step in FIG. 12F). . Next, these surfaces are polished so that the surface of the electro-optic crystal 90 and the surface of the electrode 93 have the same height (step of FIG. 12G).
 次に、電気光学結晶90の電極93が形成された面と、同様に図12A~図12Gの工程で電極96が形成された電気光学結晶95の電極96と対向する面とを、移動方向に沿って動かしながら結晶位置を調整した後、高温、高圧の条件下で密着させることで、電気光学結晶90、95を貼り合わせる(図12Hの工程)。この貼り合わせ工程において、電気光学結晶90、95の貼り合わせる面は、十分な平坦度を有する面に加工してあるものとする。 Next, the surface of the electro-optic crystal 90 on which the electrode 93 is formed and the surface of the electro-optic crystal 95 on which the electrode 96 is similarly formed in the steps of FIGS. 12A to 12G are moved in the moving direction. After adjusting the crystal position while moving along, the electro-optic crystals 90 and 95 are bonded together by being adhered under high temperature and high pressure conditions (step of FIG. 12H). In this bonding step, the surfaces to which the electro-optic crystals 90 and 95 are bonded are processed into surfaces having sufficient flatness.
 最後に、電気光学結晶95の電極96が形成された面と電気光学結晶97の一方の面とを、高温、高圧の条件下で密着させることで、電気光学結晶95、97を貼り合わせる(図12Iの工程)。この貼り合わせ工程において、電気光学結晶95、97の貼り合わせる面は、十分な平坦度を有する面に加工してあるものとする。 Finally, the surface of the electro-optic crystal 95 on which the electrode 96 is formed and one surface of the electro-optic crystal 97 are brought into close contact under high temperature and high pressure conditions, thereby bonding the electro-optic crystals 95 and 97 (see FIG. Step 12I). In this bonding step, the surfaces to which the electro-optic crystals 95 and 97 are bonded are processed into surfaces having sufficient flatness.
 上述の図12A~図12Iの工程を適用することで、図1Aに示した光学結晶板11、12への電極部13a、13b、14a、14bの形成、および光学結晶板10~12の貼り合わせを行うことができる。 By applying the processes of FIGS. 12A to 12I described above, the electrode portions 13a, 13b, 14a and 14b are formed on the optical crystal plates 11 and 12 shown in FIG. 1A, and the optical crystal plates 10 to 12 are bonded. It can be performed.
 本発明の電極位置調整方法を用いて作成した光スイッチは、光通信装置、画像表示装置や画像形成装置等に適用することができる。以下に、光スイッチの適用例として、画像表示装置および画像形成装置を説明する。 The optical switch created by using the electrode position adjusting method of the present invention can be applied to an optical communication device, an image display device, an image forming device, and the like. Hereinafter, an image display apparatus and an image forming apparatus will be described as application examples of the optical switch.
 [画像表示装置]
 次に、本発明の電極位置調整方法を用いて作成した光スイッチを備える画像表示装置の構成について説明する。
[Image display device]
Next, the configuration of an image display apparatus including an optical switch created using the electrode position adjusting method of the present invention will be described.
 図13は、画像表示装置の一例を示す模式図である。この画像表示装置は、レーザ光源102、103、104、コリメータレンズ105、106、107、反射ミラー108、ダイクロイックミラー109、110、水平走査ミラー115、垂直走査ミラー116、および光スイッチ118、119、120を収容した筐体100を有する。光スイッチ118、119、120は、本発明の電極位置調整方法を用いて作成した光スイッチである。 FIG. 13 is a schematic diagram showing an example of an image display device. This image display device includes laser light sources 102, 103, 104, collimator lenses 105, 106, 107, reflection mirror 108, dichroic mirrors 109, 110, horizontal scanning mirror 115, vertical scanning mirror 116, and optical switches 118, 119, 120. Has a housing 100 containing the. The optical switches 118, 119, and 120 are optical switches created by using the electrode position adjusting method of the present invention.
 レーザ光源102からのレーザ光の進行方向に、コリメータレンズ105、光スイッチ118、および反射ミラー108が順に配置されている。コリメータレンズ105からの平行光束が光スイッチ118に入射する。光スイッチ118は、不図示の制御部から供給される制御信号に応じて動作する。制御信号がオンの期間(電圧供給期間)は、光スイッチ118の電極部に電圧が印加され、屈折率変化領域が形成されるため、その屈折率変化領域にて入射光が反射される。この反射光は、反射ミラー108へ向かう光路から外れる。制御信号がオフの期間(電圧供給停止期間)は、入射光は光スイッチ118を透過して反射ミラー108へ向かう。 A collimator lens 105, an optical switch 118, and a reflection mirror 108 are sequentially arranged in the traveling direction of the laser light from the laser light source 102. A parallel light beam from the collimator lens 105 enters the optical switch 118. The optical switch 118 operates according to a control signal supplied from a control unit (not shown). During a period in which the control signal is on (voltage supply period), a voltage is applied to the electrode portion of the optical switch 118 to form a refractive index change region, so that incident light is reflected in the refractive index change region. This reflected light deviates from the optical path toward the reflecting mirror 108. During a period when the control signal is off (voltage supply stop period), incident light passes through the optical switch 118 and travels toward the reflection mirror 108.
 レーザ光源103からのレーザ光の進行方向に、コリメータレンズ106、光スイッチ119、およびダイクロイックミラー109が順に配置されている。コリメータレンズ106からの平行光束が光スイッチ119に入射する。光スイッチ119においても、光スイッチ118と同様な動作が行われる。制御信号がオンの期間(電圧供給期間)は、屈折率変化領域にて入射光が反射され、その反射光は、ダイクロイックミラー109へ向かう光路から外れる。制御信号がオフの期間(電圧供給停止期間)は、入射光は光スイッチ119を透過してダイクロイックミラー109へ向かう。 The collimator lens 106, the optical switch 119, and the dichroic mirror 109 are sequentially arranged in the traveling direction of the laser light from the laser light source 103. A parallel light beam from the collimator lens 106 enters the optical switch 119. In the optical switch 119, the same operation as that of the optical switch 118 is performed. During the period when the control signal is on (voltage supply period), incident light is reflected in the refractive index change region, and the reflected light deviates from the optical path toward the dichroic mirror 109. During a period when the control signal is off (voltage supply stop period), incident light passes through the optical switch 119 and travels toward the dichroic mirror 109.
 レーザ光源104からのレーザ光の進行方向に、コリメータレンズ107、光スイッチ120、およびダイクロイックミラー110が順に配置されている。コリメータレンズ107からの平行光束が光スイッチ120に入射する。光スイッチ120においても、光スイッチ118と同様な動作が行われる。制御信号がオンの期間(電圧供給期間)は、屈折率変化領域にて入射光が反射され、その反射光は、ダイクロイックミラー110へ向かう光路から外れる。制御信号がオフの期間(電圧供給停止期間)は、入射光は光スイッチ120を透過してダイクロイックミラー110へ向かう。 The collimator lens 107, the optical switch 120, and the dichroic mirror 110 are sequentially arranged in the traveling direction of the laser light from the laser light source 104. A parallel light beam from the collimator lens 107 enters the optical switch 120. In the optical switch 120, the same operation as that of the optical switch 118 is performed. During a period in which the control signal is on (voltage supply period), incident light is reflected in the refractive index change region, and the reflected light deviates from the optical path toward the dichroic mirror 110. During a period in which the control signal is off (voltage supply stop period), incident light passes through the optical switch 120 and travels toward the dichroic mirror 110.
 ダイクロイックミラー109は、光スイッチ119からの光束と反射ミラー108にて反射された光束とが交差する位置に設けられている。ダイクロイックミラー109は、光スイッチ119からの光を反射し、反射ミラー108からの光を透過するような波長選択特性を有している。 The dichroic mirror 109 is provided at a position where the light beam from the optical switch 119 and the light beam reflected by the reflection mirror 108 intersect. The dichroic mirror 109 has a wavelength selection characteristic that reflects light from the optical switch 119 and transmits light from the reflection mirror 108.
 ダイクロイックミラー110は、光スイッチ120からの光束とダイクロイックミラー109からの光束とが交差する位置に設けられている。ダイクロイックミラー109は、光スイッチ120からの光を反射し、ダイクロイックミラー109からの光を透過するような波長選択特性を有している。 The dichroic mirror 110 is provided at a position where the light beam from the optical switch 120 and the light beam from the dichroic mirror 109 intersect. The dichroic mirror 109 has a wavelength selection characteristic that reflects light from the optical switch 120 and transmits light from the dichroic mirror 109.
 水平走査ミラー115は、ダイクロイックミラー110からの光束の進行方向に配置されており、不図示の制御部からの水平走査制御信号によりその動作が制御される。垂直走査ミラー116は、水平走査ミラー115からの光束の進行方向に配置されており、不図示の制御部からの垂直走査制御信号によりその動作が制御される。 The horizontal scanning mirror 115 is arranged in the traveling direction of the light beam from the dichroic mirror 110, and its operation is controlled by a horizontal scanning control signal from a control unit (not shown). The vertical scanning mirror 116 is disposed in the traveling direction of the light beam from the horizontal scanning mirror 115, and its operation is controlled by a vertical scanning control signal from a control unit (not shown).
 レーザ光源102、103、104として、R、G、Bの3原色に対応する色のレーザ光を出射する光源を用いる。光スイッチ118、119、120をオンオフ制御し、かつ、水平走査ミラー115および垂直走査ミラー116を制御することで、スクリーン117上に、カラー画像を表示することができる。 As the laser light sources 102, 103, and 104, light sources that emit laser light of colors corresponding to the three primary colors R, G, and B are used. A color image can be displayed on the screen 117 by controlling on / off of the optical switches 118, 119, and 120 and controlling the horizontal scanning mirror 115 and the vertical scanning mirror 116.
 [画像形成装置]
 次に、本発明の電極位置調整方法を用いて作成した光スイッチを備える画像形成装置の構成について説明する。
[Image forming apparatus]
Next, the configuration of an image forming apparatus including an optical switch created using the electrode position adjusting method of the present invention will be described.
 図14は、画像形成装置の一例を示す模式図である。この画像形成装置は、筐体200、fθレンズ223および感光体224を有する。レーザ光源202、コリメータレンズ205、反射ミラー208、走査ミラー222、および光スイッチ218が、筐体200内に収容されている。光スイッチ218は、本発明の電極位置調整方法を用いて作成した光スイッチである。 FIG. 14 is a schematic diagram illustrating an example of an image forming apparatus. This image forming apparatus includes a housing 200, an fθ lens 223, and a photoreceptor 224. A laser light source 202, a collimator lens 205, a reflection mirror 208, a scanning mirror 222, and an optical switch 218 are accommodated in the housing 200. The optical switch 218 is an optical switch created using the electrode position adjusting method of the present invention.
 レーザ光源202からのレーザ光の進行方向に、コリメータレンズ205、光スイッチ218、および反射ミラー208が順に配置されている。コリメータレンズ205からの平行光束が光スイッチ218に入射する。光スイッチ218は、不図示の制御部から供給される制御信号に応じて動作する。制御信号がオンの期間(電圧供給期間)は、光スイッチ218の電極部に電圧が印加され、屈折率変化領域が形成されるため、その屈折率変化領域にて入射光が反射される。この反射光は、反射ミラー208へ向かう光路から外れる。制御信号がオフの期間(電圧供給停止期間)は、入射光は光スイッチ218を透過して反射ミラー208へ向かう。 A collimator lens 205, an optical switch 218, and a reflection mirror 208 are sequentially arranged in the traveling direction of the laser light from the laser light source 202. A parallel light beam from the collimator lens 205 enters the optical switch 218. The optical switch 218 operates in accordance with a control signal supplied from a control unit (not shown). During a period in which the control signal is on (voltage supply period), a voltage is applied to the electrode portion of the optical switch 218 to form a refractive index change region, so that incident light is reflected in the refractive index change region. This reflected light deviates from the optical path toward the reflecting mirror 208. During a period when the control signal is off (voltage supply stop period), incident light passes through the optical switch 218 and travels toward the reflection mirror 208.
 走査ミラー222は、反射ミラー208からの光束の進行方向に配置されており、不図示の制御部からの走査制御信号によりその動作が制御される。走査ミラー222からの光は、fθレンズ223を介して感光体224に照射される。 The scanning mirror 222 is arranged in the traveling direction of the light beam from the reflection mirror 208, and its operation is controlled by a scanning control signal from a control unit (not shown). Light from the scanning mirror 222 is applied to the photoconductor 224 via the fθ lens 223.
 光スイッチ218をオンオフ制御し、かつ、走査ミラー222を制御することで、感光体224上に画像を形成するができる。 By turning on / off the optical switch 218 and controlling the scanning mirror 222, an image can be formed on the photosensitive member 224.
 以上説明した第1および第2の実施形態の電極位置調整方法およびシステムは、本発明の一例であり、その手順および構成は、発明の趣旨を逸脱しない範囲で適宜に変更することができる。 The electrode position adjustment methods and systems of the first and second embodiments described above are examples of the present invention, and the procedure and configuration thereof can be changed as appropriate without departing from the spirit of the invention.
 また、第1および第2の実施形態では、2つの光学結晶板のそれぞれに複数の線状電極が形成されたものについて電極位置を調整する例を挙げたが、本発明はこれに限定されるものではない。本発明は、3つ以上の光学結晶板のそれぞれに複数の線状電極が形成されたものについても適用することができる。具体的には、2つの光学結晶板について電極位置を調整し、その調整された光学結晶板に、さらに1つの別の光学結晶を積層して電極位置の調整を行う、といった手順を繰り返すことで、複数の光学結晶板の電極位置を調整することができる。 In the first and second embodiments, the example in which the electrode position is adjusted for the two optical crystal plates each having a plurality of linear electrodes is described. However, the present invention is limited to this. It is not a thing. The present invention can also be applied to those in which a plurality of linear electrodes are formed on each of three or more optical crystal plates. Specifically, by repeating the procedure of adjusting the electrode position for two optical crystal plates, and then adjusting the electrode position by stacking another optical crystal on the adjusted optical crystal plate. The electrode positions of the plurality of optical crystal plates can be adjusted.
 本発明によれば、光束の進行方向に沿って第1および第2の光学結晶を見た場合の、第1の光学結晶側の線状電極と第2の光学結晶側の線状電極との位置を、線状電極の幅方向について、確実かつ正確に一致させることができる。したがって、最適位置とされた第1および第2の光学結晶を用いた光スイッチにおいて、電極位置調整時における光束と同じ方向から光が入射するようにすれば、その入射光の進行方向に沿って光スイッチを見た場合の、第1の光学結晶側の線状電極と第2の光学結晶側の線状電極との位置は、線状電極の幅方向について、正確に一致することになる。この場合、第1の光学結晶側の線状電極間を透過した光の殆どが、第2の光学結晶側の線状電極間を通過することになるので、光スイッチの出力光強度をよりも高いものとすることができ、その結果、消光比を改善することができる。 According to the present invention, the first optical crystal side linear electrode and the second optical crystal side linear electrode when the first and second optical crystals are viewed along the traveling direction of the light flux. The position can be surely and accurately matched in the width direction of the linear electrode. Therefore, in the optical switch using the first and second optical crystals at the optimum position, if light is incident from the same direction as the light beam at the time of electrode position adjustment, it follows the traveling direction of the incident light When the optical switch is viewed, the positions of the linear electrode on the first optical crystal side and the linear electrode on the second optical crystal side are exactly the same in the width direction of the linear electrode. In this case, since most of the light transmitted between the linear electrodes on the first optical crystal side passes between the linear electrodes on the second optical crystal side, the output light intensity of the optical switch can be further increased. As a result, the extinction ratio can be improved.
 また、本発明によれば、光スイッチの電極部は、等間隔に配置された複数の線状電極より構成されることになる。このような複数の線状電極より構成された電極部は、特許文献1に記載された板電極に比べて、面積および容量が小さいので、光スイッチの省電力化および小型化が可能である。 Further, according to the present invention, the electrode portion of the optical switch is composed of a plurality of linear electrodes arranged at equal intervals. Since the electrode portion composed of such a plurality of linear electrodes has a smaller area and capacity than the plate electrode described in Patent Document 1, it is possible to save power and reduce the size of the optical switch.
 以上、実施形態を参照して本発明を説明したが、本発明は上述した実施形態に限定されるものではない。本発明の構成および動作については、本発明の趣旨を逸脱しない範囲において、当業者が理解し得る様々な変更を行うことができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above-described embodiments. Various modifications that can be understood by those skilled in the art can be made to the configuration and operation of the present invention without departing from the spirit of the present invention.
 この出願は、2008年3月28日に出願された日本出願特願2008-86615を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2008-86615 filed on Mar. 28, 2008, the entire disclosure of which is incorporated herein.

Claims (14)

  1.  複数の線状電極が等間隔で形成された面を有する第1および第2の光学結晶を、互いの前記複数の線状電極の長手方向が一致するように積層して、該第1および第2の光学結晶に形成された前記複数の線状電極を含む領域に光束を照射し、
     前記第1および第2の光学結晶を積層した状態で、前記第1および第2の光学結晶の少なくとも一方を前記長手方向と交差する方向に移動させて、前記第1および第2の光学結晶の間における互いの前記複数の線状電極の相対的な位置を変化させながら、前記第1および第2の光学結晶を通過した透過光の強度を検出し、
     検出した前記透過光の強度が最も高くなった移動位置を前記第1および第2の光学結晶の最適位置とする、電極位置調整方法。
    First and second optical crystals each having a surface on which a plurality of linear electrodes are formed at equal intervals are stacked so that the longitudinal directions of the plurality of linear electrodes coincide with each other. Irradiating a region including the plurality of linear electrodes formed on the optical crystal 2 with a light beam;
    In a state in which the first and second optical crystals are stacked, at least one of the first and second optical crystals is moved in a direction intersecting the longitudinal direction, and the first and second optical crystals are Detecting the intensity of transmitted light that has passed through the first and second optical crystals while changing the relative position of the plurality of linear electrodes between each other,
    An electrode position adjustment method in which the detected moving position where the intensity of the transmitted light is the highest is the optimum position of the first and second optical crystals.
  2.  前記第1および第2の光学結晶の間における互いの前記複数の線状電極の相対的な位置を変化させる範囲を、前記複数の線状電極の間隔の範囲とする、請求の範囲第1項に記載の電極位置調整方法。 The range in which the relative position of each of the plurality of linear electrodes between the first and second optical crystals is changed as the range of the interval between the plurality of linear electrodes. The electrode position adjusting method as described in 2.
  3.  前記第1および第2の光学結晶の一方を移動させる場合に、前記長手方向と交差する方向に沿って、第1の方向とその反対の方向となる第2の方向にそれぞれ、前記第1および第2の光学結晶の一方を、前記複数の線状電極の間隔の半分の移動量で移動させる、請求の範囲第1項または第2項に記載の電極位置調整方法。 When moving one of the first and second optical crystals, along the direction intersecting the longitudinal direction, the first and second directions are opposite to each other in the first direction and the second direction, respectively. 3. The electrode position adjusting method according to claim 1, wherein one of the second optical crystals is moved by a movement amount that is a half of an interval between the plurality of linear electrodes. 4.
  4.  少なくとも前記第1および第2の光学結晶に形成された前記複数の線状電極を含む領域を、光学結晶の構造が変化する相転移温度以上の温度で維持した状態で、前記光束の照射を行う、請求の範囲第1項から第3項のいずれか1項に記載の電極位置調整方法。 Irradiation of the light beam is performed in a state where at least a region including the plurality of linear electrodes formed in the first and second optical crystals is maintained at a temperature equal to or higher than a phase transition temperature at which the structure of the optical crystal changes. The electrode position adjusting method according to any one of claims 1 to 3.
  5.  前記複数の線状電極を加熱して該線状電極を含む領域を前記相転移温度以上の温度で維持する、請求の範囲第4項に記載の電極位置調整方法。 The electrode position adjusting method according to claim 4, wherein the plurality of linear electrodes are heated to maintain a region including the linear electrodes at a temperature equal to or higher than the phase transition temperature.
  6.  前記第1および第2の光学結晶を収容した筐体内の雰囲気を加熱して前記第1および第2の光学結晶を前記相転移温度以上の温度で維持する、請求の範囲第4項に記載の電極位置調整方法。 The atmosphere in a housing containing the first and second optical crystals is heated to maintain the first and second optical crystals at a temperature equal to or higher than the phase transition temperature. Electrode position adjustment method.
  7.  前記複数の線状電極が等間隔で形成された面への前記光束の入射角が、前記複数の線状電極間に電圧を印加した際の、前記第1および第2の光学結晶を構成する電気光学結晶内に形成される屈折率変化領域の屈折率界面によって、入射光が全反射するときの条件を満たす入射角である、請求の範囲第1項から第6項のいずれか1項に記載の電極位置調整方法。 The incident angle of the light beam on the surface on which the plurality of linear electrodes are formed at equal intervals constitutes the first and second optical crystals when a voltage is applied between the plurality of linear electrodes. 7. The incident angle according to any one of claims 1 to 6, which is an incident angle that satisfies a condition when incident light is totally reflected by a refractive index interface of a refractive index changing region formed in an electro-optic crystal. The electrode position adjusting method as described.
  8.  複数の線状電極が等間隔で形成された面を有する第1および第2の光学結晶を、互いの前記複数の線状電極の長手方向が一致するように積層した状態でそれぞれ保持する第1および第2のステージと、
     前記第1および第2のステージに保持した第1および第2の光学結晶に形成された前記複数の線状電極を含む領域に光束を照射する光照射部と、
     前記第1および第2の光学結晶を通過した透過光を検出する受光部と、
     前記第1および第2のステージの少なくとも一方を、前記長手方向と交差する方向に移動させて、前記第1および第2の光学結晶の間における互いの前記複数の線状電極の相対的な位置を変化させながら、前記受光部の出力レベルをモニタする制御部と、を有し、
     前記制御部は、前記受光部の出力レベルが最も高くなった移動位置を前記第1および第2の光学結晶の最適位置として決定する、電極位置調整システム。
    First and second optical crystals each having a surface in which a plurality of linear electrodes are formed at equal intervals are respectively held in a stacked state so that the longitudinal directions of the plurality of linear electrodes coincide with each other. And a second stage,
    A light irradiating unit that irradiates a light beam onto a region including the plurality of linear electrodes formed on the first and second optical crystals held on the first and second stages;
    A light receiving portion for detecting transmitted light that has passed through the first and second optical crystals;
    Relative positions of the plurality of linear electrodes between the first and second optical crystals by moving at least one of the first and second stages in a direction crossing the longitudinal direction A control unit that monitors the output level of the light receiving unit while changing
    The control unit determines the moving position where the output level of the light receiving unit is the highest as the optimum position of the first and second optical crystals.
  9.  前記制御部は、前記第1および第2の光学結晶の間における互いの前記複数の線状電極の相対的な位置を変化させる範囲を、前記複数の線状電極の間隔の範囲とする、請求の範囲第8項に記載の電極位置調整システム。 The said control part makes the range which changes the relative position of the said some linear electrode between the said 1st and 2nd optical crystals as the range of the space | interval of these linear electrodes. The electrode position adjusting system according to claim 8.
  10.  前記制御部は、前記長手方向と交差する方向に沿って、第1の方向とその反対の方向となる第2の方向にそれぞれ、前記第1および第2のステージの一方を、前記複数の線状電極の間隔の半分の移動量で移動させる、請求の範囲第8項または第9項に記載の電極位置調整システム。 The control unit moves one of the first and second stages along the direction intersecting the longitudinal direction to the first direction and the second direction opposite to the first direction. The electrode position adjustment system according to claim 8 or 9, wherein the electrode position adjustment system is moved by a movement amount that is a half of an interval between the electrodes.
  11.  少なくとも前記第1および第2の光学結晶に形成された前記複数の線状電極を含む領域を、光学結晶の構造が変化する相転移温度以上の温度で維持する温度制御手段を、さらに有する、請求の範囲第8項から第10項のいずれか1項に記載の電極位置調整システム。 The apparatus further comprises temperature control means for maintaining at least a region including the plurality of linear electrodes formed in the first and second optical crystals at a temperature equal to or higher than a phase transition temperature at which the structure of the optical crystal changes. The electrode position adjusting system according to any one of items 8 to 10 of the range.
  12.  前記温度制御手段は、前記複数の線状電極を加熱するための温度制御素子を有する、請求の範囲第11項に記載の電極位置調整システム。 The electrode position adjustment system according to claim 11, wherein the temperature control means includes a temperature control element for heating the plurality of linear electrodes.
  13.  前記温度制御手段は、前記第1および第2の光学結晶を収容した筐体内の雰囲気を加熱する手段である、請求の範囲第11項に記載の電極位置調整システム。 12. The electrode position adjustment system according to claim 11, wherein the temperature control means is means for heating an atmosphere in a housing containing the first and second optical crystals.
  14.  前記複数の線状電極が等間隔で形成された面への前記平行光束の入射角が、前記複数の線状電極間に電圧を印加した際の、前記第1および第2の光学結晶を構成する電気光学結晶内に形成される屈折率変化領域の屈折率界面によって、入射光が全反射するときの条件を満たす入射角である、請求の範囲第8項から第13項のいずれか1項に記載の電極位置調整システム。 The incident angle of the parallel light flux on the surface on which the plurality of linear electrodes are formed at equal intervals constitutes the first and second optical crystals when a voltage is applied between the plurality of linear electrodes. 14. The incident angle according to any one of claims 8 to 13, which is an incident angle that satisfies a condition when incident light is totally reflected by a refractive index interface of a refractive index changing region formed in an electro-optic crystal. The electrode position adjustment system described in 1.
PCT/JP2009/054204 2008-03-28 2009-03-05 Method and system for adjusting electrode position WO2009119276A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008086615 2008-03-28
JP2008-086615 2008-03-28

Publications (1)

Publication Number Publication Date
WO2009119276A1 true WO2009119276A1 (en) 2009-10-01

Family

ID=41113478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054204 WO2009119276A1 (en) 2008-03-28 2009-03-05 Method and system for adjusting electrode position

Country Status (1)

Country Link
WO (1) WO2009119276A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446733A (en) * 1987-08-18 1989-02-21 Fujitsu Ltd Electrooptic element
JPH0588226A (en) * 1991-09-27 1993-04-09 Hikari Keisoku Gijutsu Kaihatsu Kk Nonlinear optical element and production thereof
JP2006293018A (en) * 2005-04-11 2006-10-26 Rohm Co Ltd Optical modulation apparatus and system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446733A (en) * 1987-08-18 1989-02-21 Fujitsu Ltd Electrooptic element
JPH0588226A (en) * 1991-09-27 1993-04-09 Hikari Keisoku Gijutsu Kaihatsu Kk Nonlinear optical element and production thereof
JP2006293018A (en) * 2005-04-11 2006-10-26 Rohm Co Ltd Optical modulation apparatus and system

Similar Documents

Publication Publication Date Title
KR100905554B1 (en) Mobile unit using the projector of optical modulator
US5664032A (en) Display panel with electrically-controlled waveguide-routing
US20180217414A1 (en) Electro-Holographic Light Field Generators and Displays
US20160091772A1 (en) Optical modulator and image display apparauts
JP5742141B2 (en) Optical scanning device
WO1996007943A1 (en) Projection display with electrically-controlled waveguide-routing
JP5240195B2 (en) Light switch
JP2011085610A (en) Optical deflecting element, laser device, and sensing device
WO2018008183A1 (en) Optical scanning element
EP2202568B1 (en) Optical modulator
JP5187391B2 (en) Light switch
WO2009119276A1 (en) Method and system for adjusting electrode position
US11119383B2 (en) Telescope arrays and superimposed volume gratings for light field generation
JP5187396B2 (en) Light switch
JP5168076B2 (en) Optical switch, optical switch manufacturing method, image display apparatus, and image forming apparatus
JP5299421B2 (en) Light switch
JP5187395B2 (en) Light switch
KR20010012874A (en) Electro-optical element, and method of driving and method of manufacturing the same
US20170269394A1 (en) Light modulator and image display device
JP2014224896A (en) Optical waveguide type diffraction grating and optical module
KR100400548B1 (en) Reflection type one dimension light lay modulator and display using thereof
JP2013061489A (en) Optical scanner
JP4675778B2 (en) Optical information processing equipment
WO2010001852A1 (en) Optical modulator
TW202346936A (en) Waveguide and display device having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09725670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09725670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP