WO2009119254A1 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
WO2009119254A1
WO2009119254A1 PCT/JP2009/053770 JP2009053770W WO2009119254A1 WO 2009119254 A1 WO2009119254 A1 WO 2009119254A1 JP 2009053770 W JP2009053770 W JP 2009053770W WO 2009119254 A1 WO2009119254 A1 WO 2009119254A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
frame
black level
black
output
Prior art date
Application number
PCT/JP2009/053770
Other languages
French (fr)
Japanese (ja)
Inventor
真介 立花
圭俊 中田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2009119254A1 publication Critical patent/WO2009119254A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current

Definitions

  • the present invention relates to an image pickup apparatus that can use image data output from an image pickup device for a plurality of purposes by dividing it into frames.
  • Patent Document 1 There is an imaging apparatus described in Patent Document 1 as a conventional technique that can be used for a plurality of purposes by dividing image data output by an imaging element for each frame.
  • This imaging device sets an exposure condition so that a video signal having a brightness level for display is obtained for an odd-numbered frame when imaging is performed, and performs imaging under the set exposure condition and outputs it. .
  • the image is captured and output under an exposure condition in which the exposure condition is set so that a video signal with a brightness level suitable for image processing can be obtained. That is, a frame image suitable for display and a frame image suitable for image processing can be alternately output in time series from one camera unit.
  • JP 2007-13777 A JP 2007-13777 A
  • FIG. 6 is a diagram for explaining a hunting phenomenon that occurs in the imaging apparatus.
  • FIG. 6 shows four graphs A1 to A4.
  • a graph A1 is a gain setting graph representing a gain set in the image sensor. The gain is an amplification factor when an image signal captured by the image sensor is amplified and output.
  • Graph A1 shows the gain set to the image sensor for each frame.
  • a graph A3 is a graph showing the output of black level correction processing (hereinafter referred to as “black correction processing”) for each frame. That is, the output by the black correction process is an output of the image signal after black correction is performed on the image signal from the image sensor based on the black correction level accumulated during the black correction process (hereinafter referred to as “black level”). .
  • Graph A4 is a graph showing the black level fed back during the black correction processing for each frame. The black level is a slight level signal output from the image sensor even when no light enters the image sensor from the outside.
  • the black correction is basically a correction in which a net image signal is obtained by subtracting (subtracting) a black level from an image signal obtained by an image sensor.
  • the image signal from the image sensor is black-corrected based on the black level of the previous frame in order to follow the environmental change from moment to moment.
  • the black correction process first, the image signal of the second frame from the image sensor is black-corrected based on the black level K1 obtained from the output T1 of the image signal of the first frame. . That is, since the correction is made based on the black level obtained from the output of the image signal of the odd-numbered frame larger than the output of the image signal of the even-numbered frame, the output after the correction of the output S2 should be the output T2.
  • An output t2 smaller than the output T2 is output.
  • the image signal of the third frame from the image sensor is black-corrected based on the black level k2 obtained from the output t2 of the image signal of the second frame. That is, since the correction is performed based on the black level obtained from the output of the image signal of the even-numbered frame smaller than the output of the image signal of the odd-numbered frame, the output after the correction of the output S3 should be the output T3.
  • An output t3 larger than the output T3 is output. Since the fourth and subsequent frames are similarly black-corrected, the output of the output image signal of the odd-numbered frame gradually increases, but the output of the output image signal of the even-numbered frame gradually increases.
  • An object of the present invention is to provide an imaging apparatus in which a hunting phenomenon does not occur even when black level correction is performed.
  • the imaging apparatus of the present invention includes an imaging unit, a classification unit, a storage unit, a black correction unit, and a divided output unit.
  • the imaging unit sequentially outputs image signals obtained by converting received light into electrical signals in units of frames based on input photoelectric conversion conditions.
  • the classifying unit classifies the frame-unit image signals output from the imaging unit into a plurality of groups.
  • the storage unit detects the black level of the image signal output from the imaging unit for each frame, and stores black level information representing the detected black level for each frame.
  • the black correction unit based on the black level of the frame classified into the same group by the classification unit, out of the black levels indicated by the black level information stored in the storage unit, the image signal in units of frames output from the imaging unit , Correct and output.
  • the division output unit sequentially outputs the image signals in units of frames corrected by the black correction unit for each group classified by the classification unit.
  • the imaging device of the present invention includes an imaging unit, a classification unit, a storage unit, a photoelectric conversion condition generation unit, a black correction unit, and a divided output unit.
  • the imaging unit sequentially outputs image signals obtained by converting received light into electrical signals in units of frames based on input photoelectric conversion conditions.
  • the classification unit counts the image signal output from the imaging unit in units of frames, and classifies the image signal into an odd-numbered frame group and an even-numbered frame group.
  • the storage unit detects the black level of the image signal output from the imaging unit for each frame, and stores black level information representing the detected black level for each frame.
  • the photoelectric conversion condition generation unit generates a photoelectric conversion condition for the next frame classified into the same group based on the image signal of the frame unit classified into the same group by the classification unit, and images the generated photoelectric conversion condition To the output.
  • the black correction unit is configured to output an odd-numbered frame image signal out of the frame-unit image signals output from the imaging unit, and the classification unit among the black levels indicated by the black level information stored in the storage unit.
  • the output is corrected based on the black level of the frame classified into the group of frames. Further, the black correction unit outputs the image signal of the even-numbered frame out of the frame-unit image signals output from the imaging unit, and the classification unit out of the black levels indicated by the black level information stored in the storage unit. Are corrected and output based on the black level of the frame classified into the group of frames and the photoelectric conversion conditions of the odd-numbered frame group and even-numbered frame group output by the photoelectric conversion condition generation unit.
  • the division output unit sequentially outputs the image signals in units of frames corrected by the black correction unit for each group classified by the classification unit.
  • the imaging device of the present invention includes an imaging unit, a classification unit, a storage unit, a photoelectric conversion condition generation unit, a black correction unit, and a divided output unit.
  • the imaging unit sequentially outputs image signals obtained by converting received light into electrical signals in units of frames based on input photoelectric conversion conditions.
  • the classification unit counts the image signal output from the imaging unit in units of frames, and classifies the image signal into an odd-numbered frame group and an even-numbered frame group.
  • the storage unit detects the black level of the image signal output from the imaging unit for each frame, and stores black level information representing the detected black level for each frame.
  • the photoelectric conversion condition generation unit generates a photoelectric conversion condition for the next frame classified into the same group based on the image signal of the frame unit classified into the same group by the classification unit, and images the generated photoelectric conversion condition To the output.
  • the black correction unit includes the even-numbered frame image signal output from the imaging unit, and the classification unit out of the black levels indicated by the black level information stored in the storage unit. The output is corrected based on the black level of the frame classified into the group of frames. Further, the black correction unit outputs an odd-numbered frame image signal among the frame-unit image signals output from the imaging unit, and the classification unit among the black levels indicated by the black level information stored in the storage unit.
  • the division output unit sequentially outputs the image signals in units of frames corrected by the black correction unit for each group classified by the classification unit.
  • FIG. 1 is a block diagram illustrating a configuration of an imaging module 1 according to an embodiment of the present invention.
  • the imaging module 1 that is an imaging device includes an imaging element 11, a frame order detection unit 12, a black level accumulation unit 13, a black correction unit 14, an exposure condition control unit 15, an image division unit 16, and an image analysis unit. 17, an image drawing unit 18, and a display 19.
  • the image pickup device 11 that is an image pickup unit is configured by, for example, a CCD (Charge Coupled Device) image sensor, and based on the exposure condition from the exposure condition control unit 15, an image signal obtained by converting received light into an electric signal in units of frames.
  • CCD Charge Coupled Device
  • the data are sequentially output and sent to the frame order detection unit 12.
  • the exposure conditions that are photoelectric conversion conditions are, for example, exposure conditions such as an exposure time of the image sensor 11 and a gain for amplifying the captured signal into an image signal.
  • the frame order detection unit 12 serving as a classification unit counts image signals received from the image sensor 11 in units of frames, and groups odd-numbered frames (hereinafter referred to as “odd frames”) and even-numbered frames (hereinafter referred to as “even-numbered frames”). And the classified frames are sent to the black level accumulation unit 13, the black correction unit 14, and the exposure condition control unit 15 sequentially in units of frames as odd frames 21 and even frames 22.
  • the black level accumulation unit 13 as a storage unit includes a storage device such as a RAM (Random Access Memory) that stores information, and extracts and extracts the black levels of the odd frames 21 and the even frames 22 received from the frame order detection unit 12.
  • the black level is averaged for every odd frame and every even frame, and black level information representing the averaged black level is stored in the RAM.
  • the black correction unit 14 averages the odd-numbered frames out of the black levels indicated by the black level information stored in the black level storage unit 13 for the image signals of the odd-numbered frames 21 received from the frame order detection unit 12 for the odd-numbered frames. Black correction is performed based on the converted black level, and the odd-numbered frames after black correction are sent to the image dividing unit 16.
  • the exposure condition control unit 15 generates an exposure condition based on the image signal of the previous odd frame when the next frame to be captured is an odd frame, and 1 when the next frame to be captured is an even frame.
  • An exposure condition is generated based on the image signal of the previous even frame. For example, the exposure condition control unit 15 determines that the contrast of the image signal of the even frame 22 received from the frame order detection unit 12 when the brightness of the image signal of the odd frame 21 received from the frame order detection unit 12 is too bright than the predetermined brightness. If it is too strong than the predetermined contrast, control is performed to lower the gain or shorten the exposure time. The exposure condition control unit 15 also sets the contrast of the image signal of the even frame 22 received from the frame order detection unit 12 when the brightness of the image signal of the odd frame 21 received from the frame order detection unit 12 is too dark than the predetermined brightness. When the contrast is too weak than the predetermined contrast, control is performed to increase the gain or lengthen the exposure time.
  • the control by the exposure condition control unit 15 is not limited to the above control, and more complicated control is possible.
  • the exposure condition control unit 15 refers to the brightness of the image signal of the odd frame 21 received from the frame order detection unit 12 and the contrast of the image signal of the even frame 22 received from the frame order detection unit 12 to control the gain.
  • control that emphasizes lightness rather than contrast or control that emphasizes contrast rather than lightness can be performed.
  • the image division unit 16 that is a division output unit sends the odd frame 25 to the image analysis unit 17 and sends the even frame 26 to the image drawing unit 18.
  • the image analysis unit 17 analyzes the presence / absence of a predetermined object such as a pedestrian from the image signal of the odd frame 25 received from the image dividing unit 16, and if there is a predetermined object in the image signal, the object Is displayed on the image drawing unit 18.
  • the image drawing unit 18 sends the image signal of the even frame 26 received from the image dividing unit 16 to the display 19 for display. Further, the image drawing unit 18 synthesizes the image instructed from the image analysis unit 17 with the image indicated by the image signal of the even frame 26 received from the image dividing unit 16 and sends it to the display 19 for display.
  • the display 19 is a display device such as a liquid crystal display.
  • FIG. 2 is a block diagram illustrating a detailed configuration example of the black level accumulation unit 13 and the black correction unit 14.
  • the black level accumulation unit 13 includes an odd frame black level accumulation unit 131 and an even frame black level accumulation unit 132.
  • the odd frame black level accumulation unit 131 extracts the black level of the odd frame 21 received from the frame order detection unit 12, adds or accumulates the extracted black levels, and calculates an average value of the added black levels.
  • the calculated average value is stored as black level information for odd frames.
  • the even frame black level accumulation unit 132 extracts the black level of the even frame 22 received from the frame order detection unit 12, adds or accumulates the extracted black levels, and further calculates an average value of the added black levels.
  • the calculated average value is stored as black level information for even frames.
  • the black correction unit 14 includes an odd frame black correction unit 141 and an even frame black correction unit 142.
  • the odd frame black correction unit 141 displays the average value of the black level of the odd frame read from the odd frame black level storage unit 131 from the image signal of the odd frame 21 received from the frame order detection unit 12 and a predetermined target black level.
  • the difference from the target black level target value is subtracted, and the subtracted image signal is sent to the image dividing unit 16.
  • the even frame black correction unit 142 is a process that is an average value of the black level of the even frame read from the even frame black level accumulation unit 132 from the image signal of the even frame 22 received from the frame order detection unit 12 and a predetermined target black level.
  • the difference from the target black level target value is subtracted, and the subtracted image signal is sent to the image dividing unit 16.
  • FIG. 3 is a diagram for explaining that the hunting phenomenon does not occur in the imaging module 1.
  • FIG. 3 shows four graphs B1 to B4. In the graph shown in FIG. 3, the same values as those in the graph shown in FIG. 6 are given the same reference numerals to indicate that the values are the same.
  • a graph B1 is a gain setting graph representing the gain set in the image sensor 11, and shows the gain set in the image sensor 11 for each frame.
  • the gain is an amplification factor when an image signal captured by the image sensor 11 is amplified and output.
  • the gains G1, G3, and G5 for the frames used in the image analysis unit 17, that is, the odd frames 1, 3, and 5, respectively, are the frames that are used in the image drawing unit 18 to enhance the brightness, that is, even frames 2, 4 , 6 is set to a value larger than the respective gains G2, G4, G6.
  • the frame used in the image drawing unit 18 is set by another parameter so that contrast is emphasized rather than brightness.
  • a graph B2 is a graph showing the output of the image sensor 11 for each frame.
  • a graph B3 is a graph showing the output of the black correction unit 14 for each frame. That is, it is an output of the image signal after the black correction unit 14 performs black correction on the image signal from the image sensor 11 based on the black level notified from the black level storage unit 13.
  • the graph B4 is a graph showing the black level fed back from the black level accumulation unit 13, that is, the black level notified from the black level accumulation unit 13 to the black correction unit 14 for each frame.
  • the black correction unit 14 performs black correction on the image signal from the image sensor 11 based on the black level of the frame informed from the black level accumulation unit 13 in order to follow the environmental change from moment to moment. Specifically, the black correction unit 14 first corrects the image signal of the third frame from the image sensor 11 based on the black level K1 obtained from the output T1 of the image signal of the first frame. To do. That is, since the black correction unit 14 corrects the odd-numbered frame based on the black level obtained from the output of the image signal of the odd-numbered frame, the output after the correction of the output S3 is the output T3 that should be can do.
  • the black correction unit 14 corrects the image signal of the fourth frame from the image sensor 11 based on the black level K2 obtained from the output T2 of the image signal of the second frame. That is, since the black correction unit 14 corrects the even-numbered frame based on the black level obtained from the output of the image signal of the even-numbered frame, the output after the correction of the output S4 is the output T4 that should be can do. Since the fifth and subsequent frames are similarly black-corrected, the output of the image signal of the odd-numbered frame output from the black correction unit 14 does not gradually increase and is output from the black correction unit 14.
  • the imaging module 1 can prevent the occurrence of the hunting phenomenon without gradually decreasing the output of the even-numbered frame image signal.
  • the image signals received from the image sensor 11 are counted in units of frames and classified into two groups, an odd frame group and an even frame group, but the classification is limited to two groups. For example, if there are other uses other than display and processing, the number of groups to be classified according to the use is increased, and black correction is performed for each group, thereby preventing the occurrence of the hunting phenomenon. .
  • the image pickup device 11 sequentially outputs image signals obtained by converting received light into electrical signals based on the input exposure conditions, and outputs them from the image pickup device 11 by the frame order detection unit 12.
  • the image signals in units of frames are classified into a plurality of groups, and the black level of the image signal output from the image sensor 11 is detected for each frame by the black level accumulating unit 13, and black level information representing the detected black level Is stored for each frame.
  • the black correction unit 14 classifies the image signals in units of frames output from the image sensor 11 into the same group by the classification unit among the black levels indicated by the black level information stored in the black level accumulation unit 13. Based on the black level of the frame, the image signal is corrected and output, and is corrected by the image dividing unit 16 by the black correcting unit 14, and is sequentially divided into groups classified by the frame order detecting unit 12. Is output.
  • the exposure condition control unit 15 generates and generates the exposure conditions for the next frame classified into the same group based on the image signals in units of frames classified into the same group by the frame order detection unit 12. Since the exposure condition is output to the image sensor 11, the next exposure condition can be determined based on the image signal that is not affected by the black correction. Further, among the black levels indicated by the black level information stored in the black level accumulation unit 13 from the frame unit image signal output from the image sensor 11 by the black correction unit 14, the frame order detection unit 12 makes the same group.
  • FIG. 4 is a block diagram illustrating a detailed configuration example of the black level accumulation unit 23 and the black correction unit 14.
  • the black level accumulation unit 23 as a storage unit is used instead of the black level accumulation unit 13 shown in FIG.
  • the black level accumulation unit 23 includes an odd frame black level accumulation unit 131 and an even frame black level prediction unit 232.
  • the odd frame black level accumulation unit 131 is the same as the odd frame black level accumulation unit 131 shown in FIG.
  • the even frame black level prediction unit 232 reads the average value of the black level of the odd frame read from the odd frame black level storage unit 131, the exposure condition for the odd frame generated by the exposure condition control unit 15, and the exposure for the even frame. Based on the conditions, the predicted black level to be corrected is predicted by equation (1), and the predicted black level predicted value is sent to the even frame black correction unit 142.
  • Black level prediction value (gain of even frame / gain of odd frame) ⁇ (exposure time of even frame / exposure time of odd frame) ⁇ average black level of odd frame (1)
  • the odd frame black correction unit 141 of the black correction unit 14 is the same as the odd frame black correction unit 141 shown in FIG. 2, but the even frame black correction unit 142 is an even frame read from the even frame black level accumulation unit 132.
  • black level correction is performed by subtracting the difference between the black level prediction value received from the even frame black level prediction unit 232 and the processing target black level target value that is a predetermined target black level. Do.
  • the image pickup device 11 sequentially outputs image signals obtained by converting received light into electrical signals based on the input exposure conditions, and outputs them from the image pickup device 11 by the frame order detection unit 12.
  • Image signals are counted in units of frames and classified into odd-numbered frame groups and even-numbered frame groups, and the black level of the image signal output from the image sensor 11 by the black level storage unit 23 is set for each frame.
  • the black level information representing the detected black level is stored for each frame, and the exposure condition control unit 15 determines the black level information based on the frame unit image signals classified into the same group by the frame order detection unit 12.
  • An exposure condition for the next frame classified into the same group is generated, and the generated exposure condition is an image sensor. Is output to the 1.
  • the black level information stored in the black level storage unit 23 indicates that the image signal of the even number frame is output after being corrected based on the black level of the frame classified into the odd number frame group by the classification unit.
  • FIG. 5 is a block diagram illustrating a detailed configuration example of the black level accumulation unit 33 and the black correction unit 14.
  • the black level accumulation unit 33 as a storage unit is used instead of the black level accumulation unit 13 shown in FIG.
  • the black level accumulation unit 33 includes an odd frame black level prediction unit 331 and an even frame black level accumulation unit 132.
  • the even frame black level accumulating unit 132 is the same as the even frame black level accumulating unit 132 shown in FIG. 2, and the same reference numerals are assigned to indicate the same.
  • the odd frame black level prediction unit 331 calculates the average value of the black level of the even frame read from the even frame black level storage unit 132, the exposure condition for the odd frame generated by the exposure condition control unit 15, and the exposure for the even frame. Based on the conditions, the black level to be corrected is predicted by Expression (2), and the predicted black level is sent to the odd-numbered frame black correction unit 141.
  • Black level prediction value (gain of odd frame / gain of even frame) ⁇ (exposure time of odd frame / exposure time of even frame) ⁇ black level average value of even frame (2)
  • the even frame black correction unit 142 of the black correction unit 14 is the same as the even frame black correction unit 142 shown in FIG. 2, but the odd frame black correction unit 141 is an odd frame read from the odd frame black level accumulation unit 131. Instead of the average value of the black level, black level correction is performed by subtracting the difference between the black level prediction value received from the odd frame black level prediction unit 331 and the display black level target value that is a predetermined target black level. Do.
  • the image pickup device 11 sequentially outputs image signals obtained by converting received light into electrical signals based on the input exposure conditions, and outputs them from the image pickup device 11 by the frame order detection unit 12.
  • Image signals are counted in units of frames, and are classified into odd-numbered frame groups and even-numbered frame groups, and the black level of the image signal output from the image sensor 11 by the black level accumulation unit 33 is set for each frame.
  • the black level information representing the detected black level is stored for each frame, and the exposure condition control unit 15 determines the black level information based on the frame unit image signals classified into the same group by the frame order detection unit 12.
  • An exposure condition for the next frame classified into the same group is generated, and the generated exposure condition is an image sensor. Is output to the 1.
  • the image signals of even-numbered frames are among the black levels indicated by the black level information stored in the black level accumulation unit 33.
  • the black level information stored in the black level storage unit 33 indicates that the image signal of the odd numbered frame is output after being corrected based on the black level of the frame classified into the even numbered frame group by the classification unit.
  • the black levels of the frames classified into the even-numbered frame groups by the frame order detection unit 12 and the odd-numbered frame groups and the even-numbered frame groups output by the exposure condition control unit 15 It is corrected based on the exposure conditions and output, and is corrected by the image dividing unit 16 by the black correcting unit 14.
  • the present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-described embodiment is merely an example in all respects, and the scope of the present invention is shown in the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the scope of the claims are within the scope of the present invention.

Abstract

Provided is an imaging device free from hunting if black level adjustment takes place. A black level accumulation part (13) extracts black levels per frame received from a frame order detection part (12), averages the extracted black levels for odd-numbered and even-numbered frames, and stores the averaged black level. A black level adjustment part (14) adjusts the black level of an image signal of an odd-numbered frame (21) received from the detection part (12) based on the black level averaged for the odd-numbered frames stored in the accumulation part (13) and sends the odd-numbered frame finished with the black level adjustment to an image division part (16). Further, the part (14) adjusts the black level of an image signal of an even-numbered frame (22) received from the detection part (12) based on the black level averaged for the even-numbered frames stored in the accumulation part (13) and sends the even-numbered frame finished with the black level adjustment to the image division part (16).

Description

撮像装置Imaging device
 本発明は、撮像素子が出力する画像データをフレームごとに分けて複数の用途に用いることができる撮像装置に関する。 The present invention relates to an image pickup apparatus that can use image data output from an image pickup device for a plurality of purposes by dividing it into frames.
 撮像素子が出力する画像データをフレームごとに分けて複数の用途に用いることができる従来の技術として、特許文献1に記載される撮像装置がある。この撮像装置は、撮像を行うときに奇数番目のフレームに対しては、表示用の明るさレベルの映像信号が得られるように露光条件を設定し、設定した露光条件で撮像を行って出力する。そして、偶数番目のフレームを撮像するときには、画像処理に適した明るさレベルの映像信号が得られるように露光条件を設定した露光条件で撮像を行って出力する。すなわち、一つのカメラユニットから、表示に適したフレーム画像と、画像処理に適したフレーム画像を、時系列的に、交互に出力することができる。
特開2007-13777号公報
There is an imaging apparatus described in Patent Document 1 as a conventional technique that can be used for a plurality of purposes by dividing image data output by an imaging element for each frame. This imaging device sets an exposure condition so that a video signal having a brightness level for display is obtained for an odd-numbered frame when imaging is performed, and performs imaging under the set exposure condition and outputs it. . When an even-numbered frame is imaged, the image is captured and output under an exposure condition in which the exposure condition is set so that a video signal with a brightness level suitable for image processing can be obtained. That is, a frame image suitable for display and a frame image suitable for image processing can be alternately output in time series from one camera unit.
JP 2007-13777 A
 発明が解決しようとする課題
 しかしながら、このような画像処理を行う場合、ハンチング現象が問題となる。ハンチング現象とは、出力値が目標値の上下を行き来する現象である。
 図6は、撮像装置で発生するハンチング現象を説明するための図である。図6には、グラフA1~A4の4つのグラフが示されている。
 グラフA1は、撮像素子に設定されるゲインを表すゲイン設定のグラフである。ゲインは、撮像素子が撮像した画像の信号を増幅して出力するときの増幅率である。グラフA1は、撮像素子に設定されるゲインをフレームごとに示す。画像分析処理で用いられるフレーム、つまり奇数番目のフレーム(以下「奇数フレーム」という)1,3,5に対するそれぞれのゲインG1,G3,G5は、明度を強調するために、画像描画処理で用いられるフレーム、つまり偶数番目のフレーム(以下「偶数フレーム」という)2,4,6に対するそれぞれのゲインG2,G4,G6よりも大きい値に設定されている。画像描画処理で用いられるフレームは、明度よりもコントラストが強調されるように、別のパラメータが設定される。
 グラフA2は、撮像素子の出力をフレームごとに示すグラフである。すなわち、撮像素子が撮像した画像の信号を、撮像素子がグラフA1に示されるゲインで増幅した画僧信号の出力である。奇数フレーム1,3,5のそれぞれの出力S1,S3,S5は、偶数フレーム2,4,6のそれぞれの出力S2,S4,S6よりも大きな出力になっている。
 グラフA3は、黒レベルの補正処理(以下「黒補正処理」という)による出力をフレームごとに示すグラフである。すなわち、黒補正処理による出力は、黒補正処理時に蓄積された黒補正のレベル(以下「黒レベル」という)に基づいて、撮像素子からの画像信号を黒補正した後の画像信号の出力である。グラフA4は、黒補正処理時にフィードバックされる黒レベルをフレームごとに示すグラフである。
 なお、黒レベルとは、撮像素子に外部から全く光が入らない状態であっても撮像素子から出力されるわずかなレベルの信号である。また、黒補正とは、基本的には、撮像素子で得られた画像信号から黒レベルを差し引いて(減算して)正味の画像信号を得るという補正である。
 黒補正処理では、環境の変化に時々刻々追随するために、1つ前のフレームの黒レベルに基づいて撮像素子からの画像信号が黒補正される。具体的には、黒補正処理では、まず、撮像素子からの第2番目のフレームの画像信号が、第1番目のフレームの画像信号の出力T1から求められる黒レベルK1に基づいて黒補正される。つまり、偶数番目のフレームの画像信号の出力よりも大きい奇数番目のフレームの画像信号の出力から求められる黒レベルに基づいて補正するので、出力S2の補正後の出力が出力T2となるべきところ、出力T2よりも小さい出力t2が出力される。
 次に、撮像素子からの第3番目のフレームの画像信号が、第2番目のフレームの画像信号の出力t2から求められる黒レベルk2に基づいて黒補正される。つまり、奇数番目のフレームの画像信号の出力よりも小さい偶数番目のフレームの画像信号の出力から求められる黒レベルに基づいて補正するので、出力S3の補正後の出力が出力T3となるべきところ、出力T3よりも大きい出力t3が出力される。
 第4番目以降のフレームについても、同様に黒補正されるので、出力される奇数番目のフレームの画像信号の出力は徐々に増加するが、出力される偶数番目のフレームの画像信号の出力は徐々に減少し、出力される画像信号がハンチング現象を起こすことになる。
 本発明の目的は、黒レベル補正を行ってもハンチング現象が発生しない撮像装置を提供することである。
 課題を解決するための手段
 本発明の撮像装置は、撮像部と、分類部と、記憶部と、黒補正部と、分割出力部とを含む。撮像部は、入力される光電変換条件に基づいて、受光する光を電気信号に変換した画像信号をフレーム単位で順次出力する。分類部は、撮像部から出力されるフレーム単位の画像信号を複数のグループに分類する。記憶部は、撮像部から出力される画像信号の黒レベルをフレームごとに検出し、検出した黒レベルを表す黒レベル情報をフレームごとに記憶する。黒補正部は、撮像部から出力されるフレーム単位の画像信号を、記憶部に記憶される黒レベル情報が示す黒レベルのうち、分類部によって同じグループに分類されたフレームの黒レベルに基づいて、補正して出力する。分割出力部は、黒補正部によって補正されたフレーム単位の画像信号を、分類部によって分類されたグループごとに分けて順次出力する。
 また本発明の撮像装置は、撮像部と、分類部と、記憶部と、光電変換条件生成部と、黒補正部と、分割出力部とを含む。撮像部は、入力される光電変換条件に基づいて、受光する光を電気信号に変換した画像信号をフレーム単位で順次出力する。分類部は、撮像部から出力される画像信号をフレーム単位でカウントし、奇数番目のフレームのグループと偶数番目のフレームのグループとに分類する。記憶部は、撮像部から出力される画像信号の黒レベルをフレームごとに検出し、検出した黒レベルを表す黒レベル情報をフレームごとに記憶する。光電変換条件生成部は、分類部によって同じグループに分類されたフレーム単位の画像信号に基づいて、その同じグループに分類される次のフレームの光電変換条件を生成し、生成した光電変換条件を撮像部に出力する。黒補正部は、撮像部から出力されるフレーム単位の画像信号のうち、奇数番目のフレームの画像信号を、記憶部に記憶される黒レベル情報が示す黒レベルのうち、分類部によって奇数番目のフレームのグループに分類されたフレームの黒レベルに基づいて補正して出力する。また黒補正部は、撮像部から出力されるフレーム単位の画像信号のうち、偶数番目のフレームの画像信号を、記憶部に記憶される黒レベル情報が示す黒レベルのうち、分類部によって奇数番目のフレームのグループに分類されたフレームの黒レベル、ならびに光電変換条件生成部によって出力される奇数番目のフレームのグループおよび偶数番目のフレームのグループの光電変換条件に基づいて補正して出力する。分割出力部は、黒補正部によって補正されたフレーム単位の画像信号を、分類部によって分類されたグループごとに分けて順次出力する。
 また本発明の撮像装置は、撮像部と、分類部と、記憶部と、光電変換条件生成部と、黒補正部と、分割出力部とを含む。撮像部は、入力される光電変換条件に基づいて、受光する光を電気信号に変換した画像信号をフレーム単位で順次出力する。分類部は、撮像部から出力される画像信号をフレーム単位でカウントし、奇数番目のフレームのグループと偶数番目のフレームのグループとに分類する。記憶部は、撮像部から出力される画像信号の黒レベルをフレームごとに検出し、検出した黒レベルを表す黒レベル情報をフレームごとに記憶する。光電変換条件生成部は、分類部によって同じグループに分類されたフレーム単位の画像信号に基づいて、その同じグループに分類される次のフレームの光電変換条件を生成し、生成した光電変換条件を撮像部に出力する。黒補正部は、撮像部から出力されるフレーム単位の画像信号のうち、偶数番目のフレームの画像信号を、記憶部に記憶される黒レベル情報が示す黒レベルのうち、分類部によって偶数番目のフレームのグループに分類されたフレームの黒レベルに基づいて補正して出力する。また黒補正部は、撮像部から出力されるフレーム単位の画像信号のうち、奇数番目のフレームの画像信号を、記憶部に記憶される黒レベル情報が示す黒レベルのうち、分類部によって偶数番目のフレームのグループに分類されたフレームの黒レベル、ならびに光電変換条件生成部によって出力される奇数番目のフレームのグループおよび偶数番目のフレームのグループの光電変換条件に基づいて補正して出力する。分割出力部は、黒補正部によって補正されたフレーム単位の画像信号を、分類部によって分類されたグループごとに分けて順次出力する。
Problems to be Solved by the Invention However, when such image processing is performed, the hunting phenomenon becomes a problem. The hunting phenomenon is a phenomenon in which the output value moves back and forth above the target value.
FIG. 6 is a diagram for explaining a hunting phenomenon that occurs in the imaging apparatus. FIG. 6 shows four graphs A1 to A4.
A graph A1 is a gain setting graph representing a gain set in the image sensor. The gain is an amplification factor when an image signal captured by the image sensor is amplified and output. Graph A1 shows the gain set to the image sensor for each frame. The gains G1, G3, and G5 for the frames used in the image analysis process, that is, odd-numbered frames (hereinafter referred to as “odd frames”) 1, 3, and 5, are used in the image drawing process to enhance the brightness. It is set to a value larger than the gains G2, G4, G6 for the frames, that is, even-numbered frames (hereinafter referred to as “even-numbered frames”) 2, 4, 6. For the frame used in the image drawing process, another parameter is set so that the contrast is emphasized rather than the brightness.
A graph A2 is a graph showing the output of the image sensor for each frame. That is, it is an output of an image signal obtained by amplifying a signal of an image captured by the image sensor with a gain indicated by the graph A1. The outputs S1, S3, S5 of the odd frames 1, 3, 5 are larger than the outputs S2, S4, S6 of the even frames 2, 4, 6, respectively.
A graph A3 is a graph showing the output of black level correction processing (hereinafter referred to as “black correction processing”) for each frame. That is, the output by the black correction process is an output of the image signal after black correction is performed on the image signal from the image sensor based on the black correction level accumulated during the black correction process (hereinafter referred to as “black level”). . Graph A4 is a graph showing the black level fed back during the black correction processing for each frame.
The black level is a slight level signal output from the image sensor even when no light enters the image sensor from the outside. The black correction is basically a correction in which a net image signal is obtained by subtracting (subtracting) a black level from an image signal obtained by an image sensor.
In the black correction process, the image signal from the image sensor is black-corrected based on the black level of the previous frame in order to follow the environmental change from moment to moment. Specifically, in the black correction process, first, the image signal of the second frame from the image sensor is black-corrected based on the black level K1 obtained from the output T1 of the image signal of the first frame. . That is, since the correction is made based on the black level obtained from the output of the image signal of the odd-numbered frame larger than the output of the image signal of the even-numbered frame, the output after the correction of the output S2 should be the output T2. An output t2 smaller than the output T2 is output.
Next, the image signal of the third frame from the image sensor is black-corrected based on the black level k2 obtained from the output t2 of the image signal of the second frame. That is, since the correction is performed based on the black level obtained from the output of the image signal of the even-numbered frame smaller than the output of the image signal of the odd-numbered frame, the output after the correction of the output S3 should be the output T3. An output t3 larger than the output T3 is output.
Since the fourth and subsequent frames are similarly black-corrected, the output of the output image signal of the odd-numbered frame gradually increases, but the output of the output image signal of the even-numbered frame gradually increases. As a result, the output image signal causes a hunting phenomenon.
An object of the present invention is to provide an imaging apparatus in which a hunting phenomenon does not occur even when black level correction is performed.
Means for Solving the Problem The imaging apparatus of the present invention includes an imaging unit, a classification unit, a storage unit, a black correction unit, and a divided output unit. The imaging unit sequentially outputs image signals obtained by converting received light into electrical signals in units of frames based on input photoelectric conversion conditions. The classifying unit classifies the frame-unit image signals output from the imaging unit into a plurality of groups. The storage unit detects the black level of the image signal output from the imaging unit for each frame, and stores black level information representing the detected black level for each frame. The black correction unit, based on the black level of the frame classified into the same group by the classification unit, out of the black levels indicated by the black level information stored in the storage unit, the image signal in units of frames output from the imaging unit , Correct and output. The division output unit sequentially outputs the image signals in units of frames corrected by the black correction unit for each group classified by the classification unit.
The imaging device of the present invention includes an imaging unit, a classification unit, a storage unit, a photoelectric conversion condition generation unit, a black correction unit, and a divided output unit. The imaging unit sequentially outputs image signals obtained by converting received light into electrical signals in units of frames based on input photoelectric conversion conditions. The classification unit counts the image signal output from the imaging unit in units of frames, and classifies the image signal into an odd-numbered frame group and an even-numbered frame group. The storage unit detects the black level of the image signal output from the imaging unit for each frame, and stores black level information representing the detected black level for each frame. The photoelectric conversion condition generation unit generates a photoelectric conversion condition for the next frame classified into the same group based on the image signal of the frame unit classified into the same group by the classification unit, and images the generated photoelectric conversion condition To the output. The black correction unit is configured to output an odd-numbered frame image signal out of the frame-unit image signals output from the imaging unit, and the classification unit among the black levels indicated by the black level information stored in the storage unit. The output is corrected based on the black level of the frame classified into the group of frames. Further, the black correction unit outputs the image signal of the even-numbered frame out of the frame-unit image signals output from the imaging unit, and the classification unit out of the black levels indicated by the black level information stored in the storage unit. Are corrected and output based on the black level of the frame classified into the group of frames and the photoelectric conversion conditions of the odd-numbered frame group and even-numbered frame group output by the photoelectric conversion condition generation unit. The division output unit sequentially outputs the image signals in units of frames corrected by the black correction unit for each group classified by the classification unit.
The imaging device of the present invention includes an imaging unit, a classification unit, a storage unit, a photoelectric conversion condition generation unit, a black correction unit, and a divided output unit. The imaging unit sequentially outputs image signals obtained by converting received light into electrical signals in units of frames based on input photoelectric conversion conditions. The classification unit counts the image signal output from the imaging unit in units of frames, and classifies the image signal into an odd-numbered frame group and an even-numbered frame group. The storage unit detects the black level of the image signal output from the imaging unit for each frame, and stores black level information representing the detected black level for each frame. The photoelectric conversion condition generation unit generates a photoelectric conversion condition for the next frame classified into the same group based on the image signal of the frame unit classified into the same group by the classification unit, and images the generated photoelectric conversion condition To the output. The black correction unit includes the even-numbered frame image signal output from the imaging unit, and the classification unit out of the black levels indicated by the black level information stored in the storage unit. The output is corrected based on the black level of the frame classified into the group of frames. Further, the black correction unit outputs an odd-numbered frame image signal among the frame-unit image signals output from the imaging unit, and the classification unit among the black levels indicated by the black level information stored in the storage unit. Are corrected and output based on the black level of the frame classified into the group of frames and the photoelectric conversion conditions of the odd-numbered frame group and even-numbered frame group output by the photoelectric conversion condition generation unit. The division output unit sequentially outputs the image signals in units of frames corrected by the black correction unit for each group classified by the classification unit.
 本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
本発明の一実施形態である撮像モジュールの構成を示すブロック図である。 黒レベル蓄積部および黒補正部の詳細な構成例を示すブロック図である。 撮像モジュールでハンチング現象が発生しないことを説明するための図である。 黒レベル蓄積部および黒補正部の詳細な構成例を示すブロック図である。 黒レベル蓄積部および黒補正部の詳細な構成例を示すブロック図である。 撮像装置で発生するハンチング現象を説明するためのグラフである。
Objects, features, and advantages of the present invention will become more apparent from the following detailed description and drawings.
It is a block diagram which shows the structure of the imaging module which is one Embodiment of this invention. It is a block diagram which shows the detailed structural example of a black level storage part and a black correction | amendment part. It is a figure for demonstrating that a hunting phenomenon does not generate | occur | produce in an imaging module. It is a block diagram which shows the detailed structural example of a black level storage part and a black correction | amendment part. It is a block diagram which shows the detailed structural example of a black level storage part and a black correction | amendment part. It is a graph for demonstrating the hunting phenomenon which generate | occur | produces with an imaging device.
 以下、図面を参考にして、本発明の撮像装置の好適な実施形態について詳細に説明する。
 図1は、本発明の一実施形態である撮像モジュール1の構成を示すブロック図である。撮像装置である撮像モジュール1は、撮像素子11と、フレーム順番検出部12と、黒レベル蓄積部13と、黒補正部14と、露光条件制御部15と、画像分割部16と、画像分析部17と、画像描画部18と、ディスプレイ19とを含む。
 撮像部である撮像素子11は、たとえばCCD(Charge Coupled Device)イメージセンサによって構成され、露光条件制御部15からの露光条件に基づいて、受光する光を電気信号に変換した画像信号をフレーム単位で順次出力し、フレーム順番検出部12に送る。光電変換条件である露光条件は、たとえば撮像素子11の露光時間、および撮像した信号を画像信号に増幅するゲインなどの露光条件である。
 分類部であるフレーム順番検出部12は、撮像素子11から受け取る画像信号をフレーム単位でカウントし、奇数番目のフレーム(以下「奇数フレーム」という)のグループと、偶数番目のフレーム(以下「偶数フレーム」という)のグループとに分類し、分類したフレームを、奇数フレーム21および偶数フレーム22として、フレーム単位で順次、黒レベル蓄積部13、黒補正部14および露光条件制御部15に送る。記憶部である黒レベル蓄積部13は、情報を記憶するRAM(Random Access Memory)などの記憶装置を含み、フレーム順番検出部12から受け取る奇数フレーム21および偶数フレーム22の黒レベルを抽出し、抽出した黒レベルを、奇数フレームごとおよび偶数フレームごとに平均化し、平均化した黒レベルを表す黒レベル情報をRAMに格納する。
 黒補正部14は、奇数フレームに対して、フレーム順番検出部12から受け取る奇数フレーム21の画像信号を、黒レベル蓄積部13に格納される黒レベル情報が示す黒レベルのうち、奇数フレームを平均化した黒レベルに基づいて黒補正し、黒補正後の奇数フレームを画像分割部16に送る。さらに、偶数フレームに対して、フレーム順番検出部12から受け取る偶数フレーム22の画像信号を、黒レベル蓄積部13に格納される黒レベル情報が示す黒レベルのうち、偶数フレームを平均化した黒レベルに基づいて黒補正し、黒補正後の偶数フレームを画像分割部16に送る。
 光電変換条件生成部である露光条件制御部15は、フレーム順番検出部12から受け取る奇数フレーム21および偶数フレーム22の画像信号から、次のフレームを撮像するための露光条件を生成し、生成した露光条件を撮像素子11に送る。露光条件制御部15は、次に撮像するフレームが奇数フレームのときは、1つ前の奇数フレームの画像信号に基づいて露光条件を生成し、次に撮像するフレームが偶数フレームのときは、1つ前の偶数フレームの画像信号に基づいて露光条件を生成する。
 例えば、露光条件制御部15は、フレーム順番検出部12から受け取る奇数フレーム21の画像信号の明度が所定の明度よりも明るすぎる場合およびフレーム順番検出部12から受け取る偶数フレーム22の画像信号のコントラストが所定のコントラストよりも強すぎる場合には、ゲインを下げる、あるいは露光時間を短くするという制御を行う。また、露光条件制御部15は、フレーム順番検出部12から受け取る奇数フレーム21の画像信号の明度が所定の明度よりも暗すぎる場合およびフレーム順番検出部12から受け取る偶数フレーム22の画像信号のコントラストが所定のコントラストよりも弱すぎる場合には、ゲインを上げる、あるいは露光時間を長くするという制御を行う。
 露光条件制御部15による制御は、上記のような制御に限らず、より複雑な制御も可能である。例えば、露光条件制御部15は、フレーム順番検出部12から受け取る奇数フレーム21の画像信号の明度とフレーム順番検出部12から受け取る偶数フレーム22の画像信号のコントラストとを参照して、ゲインの制御と露光時間の制御とを組み合わせて、コントラストよりも明度を強調するような制御を、あるいは明度よりもコントラストを強調するような制御を行うこともできる。
 分割出力部である画像分割部16は、黒補正部14から受け取るフレームのうち、奇数フレーム25を画像分析部17に送り、偶数フレーム26を画像描画部18に送る。画像分析部17は、画像分割部16から受け取る奇数フレーム25の画像信号から、所定の対象物たとえば歩行者などの有無を分析し、画像信号のなかに所定の対象物があると、その対象物を示す画像を画像描画部18に表示するように指示する。画像描画部18は、画像分割部16から受け取る偶数フレーム26の画像信号をディスプレイ19に送って表示させる。さらに、画像描画部18は、画像分析部17から指示される画像を画像分割部16から受け取る偶数フレーム26の画像信号が示す画像に合成してディスプレイ19に送って表示させる。ディスプレイ19は、液晶ディスプレイなどの表示装置である。
 図2は、黒レベル蓄積部13および黒補正部14の詳細な構成例を示すブロック図である。黒レベル蓄積部13は、奇数フレーム黒レベル蓄積部131および偶数フレーム黒レベル蓄積部132を含んで構成される。奇数フレーム黒レベル蓄積部131は、フレーム順番検出部12から受け取る奇数フレーム21の黒レベルを抽出し、抽出した黒レベルを加算つまり累算し、さらに、加算した黒レベルの平均値を算出し、算出した平均値を奇数フレームの黒レベル情報として記憶する。偶数フレーム黒レベル蓄積部132は、フレーム順番検出部12から受け取る偶数フレーム22の黒レベルを抽出し、抽出した黒レベルを加算つまり累算し、さらに、加算した黒レベルの平均値を算出し、算出した平均値を偶数フレームの黒レベル情報として記憶する。
 黒補正部14は、奇数フレーム黒補正部141および偶数フレーム黒補正部142を含んで構成される。奇数フレーム黒補正部141は、フレーム順番検出部12から受け取る奇数フレーム21の画像信号から、奇数フレーム黒レベル蓄積部131から読み出した奇数フレームの黒レベルの平均値と予め定める目標黒レベルである表示用の黒レベル目標値との差を減算し、減算した画像信号を画像分割部16に送る。偶数フレーム黒補正部142は、フレーム順番検出部12から受け取る偶数フレーム22の画像信号から、偶数フレーム黒レベル蓄積部132から読み出した偶数フレームの黒レベルの平均値と予め定める目標黒レベルである処理用の黒レベル目標値との差を減算し、減算した画像信号を画像分割部16に送る。
 フレーム順番検出部12からの奇数フレーム21および偶数フレーム22は、それぞれ露光条件制御部15に送られ、露光条件制御部15は、受け取る奇数フレーム21および偶数フレーム22に基づいて、次に撮像する奇数フレームの露光条件および偶数フレームの露光条件、たとえばゲインおよびシャッタ速度つまり露光時間などの露光条件を生成し、生成した露光条件を撮像素子11に送る。
 図3は、撮像モジュール1でハンチング現象が発生しないことを説明するための図である。図3には、グラフB1~B4の4つのグラフが示されている。図3に示したグラフには、図6に示したグラフの値と同じ値のものには、同じ参照符号を付して、値が同じであることを示している。
 グラフB1は、撮像素子11に設定されるゲインを表すゲイン設定のグラフであり、撮像素子11に設定されるゲインをフレームごとに示す。ゲインは、撮像素子11が撮像した画像の信号を増幅して出力するときの増幅率である。画像分析部17で用いられるフレーム、つまり奇数フレーム1,3,5に対するそれぞれのゲインG1,G3,G5は、明度を強調するために、画像描画部18で用いられるフレーム、つまり偶数フレーム2,4,6に対するそれぞれのゲインG2,G4,G6よりも大きい値に設定されている。画像描画部18で用いられるフレームは、明度よりもコントラストが強調されるように、別のパラメータによって設定される。
 グラフB2は、撮像素子11の出力をフレームごとに示すグラフである。すなわち、撮像素子11が撮像した画像の信号を、撮像素子11がグラフB1に示されるゲインで増幅した画僧信号の出力である。奇数フレーム1,3,5のそれぞれの出力S1,S3,S5は、偶数フレーム2,4,6のそれぞれの出力S2,S4,S6よりも大きな出力になっている。
 グラフB3は、黒補正部14の出力をフレームごとに示すグラフである。すなわち、黒補正部14が黒レベル蓄積部13から知らされる黒レベルに基づいて、撮像素子11からの画像信号を黒補正した後の画像信号の出力である。グラフB4は、黒レベル蓄積部13からフィードバックされる黒レベル、すなわち黒レベル蓄積部13から黒補正部14に知らされる黒レベルをフレームごとに示すグラフである。
 黒補正部14は、環境の変化に時々刻々追随するために、黒レベル蓄積部13から知らされるフレームの黒レベルに基づいて撮像素子11からの画像信号を黒補正する。具体的には、黒補正部14は、まず、撮像素子11からの第3番目のフレームの画像信号を、第1番目のフレームの画像信号の出力T1から求められる黒レベルK1に基づいて黒補正する。つまり、黒補正部14は、奇数番目のフレームに対して、奇数番目のフレームの画像信号の出力から求められる黒レベルに基づいて補正するので、出力S3の補正後の出力をあるべき出力T3とすることができる。
 次に、黒補正部14は、撮像素子11からの第4番目のフレームの画像信号を、第2番目のフレームの画像信号の出力T2から求められる黒レベルK2に基づいて黒補正する。つまり、黒補正部14は、偶数番目のフレームに対して、偶数番目のフレームの画像信号の出力から求められる黒レベルに基づいて補正するので、出力S4の補正後の出力をあるべき出力T4とすることができる。
 第5番目以降のフレームについても、同様に黒補正されるので、黒補正部14から出力される奇数番目のフレームの画像信号の出力が徐々に増加することはなく、かつ黒補正部14から出力される偶数番目のフレームの画像信号の出力が徐々に減少することもなく、撮像モジュール1は、ハンチング現象の発生を防止することができる。
 上述した実施の形態では、撮像素子11から受け取る画像信号をフレーム単位でカウントし、奇数フレームのグループおよび偶数フレームのグループの2つのグループに分類したが、分類は2つのグループに限定されることはなく、たとえば表示用および処理用以外に他の用途があれば、その用途に応じて分類するグループの数を増やし、グループごとに黒補正を行うことによって、ハンチング現象の発生を防止することができる。
 このように、撮像素子11によって、入力される露光条件に基づいて、受光する光を電気信号に変換した画像信号がフレーム単位で順次出力され、フレーム順番検出部12によって、撮像素子11から出力されるフレーム単位の画像信号が複数のグループに分類され、黒レベル蓄積部13によって、撮像素子11から出力される画像信号の黒レベルがフレームごとに検出され、検出された黒レベルを表す黒レベル情報がフレームごとに記憶される。
 そして、黒補正部14によって、撮像素子11から出力されるフレーム単位の画像信号が、黒レベル蓄積部13に記憶される黒レベル情報が示す黒レベルのうち、分類部によって同じグループに分類されたフレームの黒レベルに基づいて、補正されて出力され、画像分割部16によって、黒補正部14によって補正されたフレーム単位の画像信号が、フレーム順番検出部12によって分類されたグループごとに分けて順次出力される。
 したがって、異なるグループの黒レベルを用いて補正することがなくなり、黒レベル補正を行ってもハンチング現象が発生することを防止することができる。
 さらに、露光条件制御部15によって、フレーム順番検出部12によって同じグループに分類されたフレーム単位の画像信号に基づいて、その同じグループに分類される次のフレームの露光条件が生成され、生成された露光条件が撮像素子11に出力されるので、黒補正の影響のない画像信号に基づいて次回露光条件を決めることができる。
 さらに、黒補正部14によって、撮像素子11から出力されるフレーム単位の画像信号から、黒レベル蓄積部13に記憶される黒レベル情報が示す黒レベルのうち、フレーム順番検出部12によって同じグループに分類されたフレームの黒レベルの平均値と、表示用または処理用の黒レベル目標値との差が減算されて補正される。
 したがって、過去の黒レベルの平均値を用いて黒補正をしているので、一時的に強い光を受けた場合においても、それ以降の黒補正された画像出力が極端に大きくなることを防止することができる。
 さらに、フレーム順番検出部12によって、撮像素子11から出力される画像信号がフレーム単位でカウントされ、奇数番目のフレームのグループと偶数番目のフレームのグループとに分類されるので、画像を2つの用途に用いるときに適用することができる。
 図4は、黒レベル蓄積部23および黒補正部14の詳細な構成例を示すブロック図である。記憶部である黒レベル蓄積部23は、図2に示した黒レベル蓄積部13の代わりに用いられる。黒レベル蓄積部23は、奇数フレーム黒レベル蓄積部131および偶数フレーム黒レベル予測部232を含んで構成される。奇数フレーム黒レベル蓄積部131は、図2に示した奇数フレーム黒レベル蓄積部131と同じであり、同じ参照符号を付して同じであることを示している。
 偶数フレーム黒レベル予測部232は、奇数フレーム黒レベル蓄積部131から読み出した奇数フレームの黒レベルの平均値と、露光条件制御部15によって生成される奇数フレームについての露光条件および偶数フレームについての露光条件とに基づいて、式(1)によって補正すべき黒レベル予測値を予測し、予測した黒レベル予測値を偶数フレーム黒補正部142に送る。
  黒レベル予測値=(偶数フレームのゲイン/奇数フレームのゲイン)×(偶数フレームの露光時間/奇数フレームの露光時間)×奇数フレームの黒レベル平均値
                                                                            …(1)
 黒補正部14の奇数フレーム黒補正部141は、図2に示した奇数フレーム黒補正部141と同じであるが、偶数フレーム黒補正部142は、偶数フレーム黒レベル蓄積部132から読み出した偶数フレームの黒レベルの平均値の代わりに、偶数フレーム黒レベル予測部232から受け取る黒レベルの予測値と、予め定める目標黒レベルである処理用の黒レベル目標値との差を減算して黒補正を行う。
 このように、撮像素子11によって、入力される露光条件に基づいて、受光する光を電気信号に変換した画像信号がフレーム単位で順次出力され、フレーム順番検出部12によって、撮像素子11から出力される画像信号がフレーム単位でカウントされ、奇数番目のフレームのグループと偶数番目のフレームのグループとに分類され、黒レベル蓄積部23によって、撮像素子11から出力される画像信号の黒レベルがフレームごとに検出され、検出された黒レベルを表す黒レベル情報がフレームごとに記憶され、露光条件制御部15によって、フレーム順番検出部12によって同じグループに分類されたフレーム単位の画像信号に基づいて、その同じグループに分類される次のフレームの露光条件が生成され、生成された露光条件が撮像素子11に出力される。
 なお、撮像素子11から出力される画像信号の黒レベルをフレームごとに検出する方法としては、フレーム分割黒レベルクランプという方法などが用いられる。
 そして、黒補正部14によって、撮像素子11から出力されるフレーム単位の画像信号のうち、奇数番目のフレームの画像信号が、黒レベル蓄積部23に記憶される黒レベル情報が示す黒レベルのうち、分類部によって奇数番目のフレームのグループに分類されたフレームの黒レベルに基づいて補正して出力され、偶数番目のフレームの画像信号が、黒レベル蓄積部23に記憶される黒レベル情報が示す黒レベルのうち、フレーム順番検出部12によって奇数番目のフレームのグループに分類されたフレームの黒レベル、ならびに露光条件制御部15によって出力される奇数番目のフレームのグループおよび偶数番目のフレームのグループの露光条件に基づいて補正して出力され、画像分割部16によって、黒補正部14によって補正されたフレーム単位の画像信号が、フレーム順番検出部12によって分類されたグループごとに分けて順次出力される。
 したがって、偶数フレームを補正するときに、奇数番目および偶数番目の次回露光条件をもとにして、奇数フレームのグループの過去の黒レベルから予測した黒レベルを用いて補正をするので、黒レベル補正を行ってもハンチング現象が発生することを防止することができる。
 図5は、黒レベル蓄積部33および黒補正部14の詳細な構成例を示すブロック図である。記憶部である黒レベル蓄積部33は、図2に示した黒レベル蓄積部13の代わりに用いられる。黒レベル蓄積部33は、奇数フレーム黒レベル予測部331および偶数フレーム黒レベル蓄積部132を含んで構成される。偶数フレーム黒レベル蓄積部132は、図2に示した偶数フレーム黒レベル蓄積部132と同じであり、同じ参照符号を付して同じであることを示している。
 奇数フレーム黒レベル予測部331は、偶数フレーム黒レベル蓄積部132から読み出した偶数フレームの黒レベルの平均値と、露光条件制御部15によって生成される奇数フレームについての露光条件および偶数フレームについての露光条件とに基づいて、式(2)によって補正すべき黒レベルを予測し、予測した黒レベルを奇数フレーム黒補正部141に送る。
  黒レベル予測値=(奇数フレームのゲイン/偶数フレームのゲイン)×(奇数フレームの露光時間/偶数フレームの露光時間)×偶数フレームの黒レベル平均値 …(2)
 黒補正部14の偶数フレーム黒補正部142は、図2に示した偶数フレーム黒補正部142と同じであるが、奇数フレーム黒補正部141は、奇数フレーム黒レベル蓄積部131から読み出した奇数フレームの黒レベルの平均値の代わりに、奇数フレーム黒レベル予測部331から受け取る黒レベルの予測値と、予め定める目標黒レベルである表示用の黒レベル目標値との差を減算して黒補正を行う。
 このように、撮像素子11によって、入力される露光条件に基づいて、受光する光を電気信号に変換した画像信号がフレーム単位で順次出力され、フレーム順番検出部12によって、撮像素子11から出力される画像信号がフレーム単位でカウントされ、奇数番目のフレームのグループと偶数番目のフレームのグループとに分類され、黒レベル蓄積部33によって、撮像素子11から出力される画像信号の黒レベルがフレームごとに検出され、検出された黒レベルを表す黒レベル情報がフレームごとに記憶され、露光条件制御部15によって、フレーム順番検出部12によって同じグループに分類されたフレーム単位の画像信号に基づいて、その同じグループに分類される次のフレームの露光条件が生成され、生成された露光条件が撮像素子11に出力される。
 そして、黒補正部14によって、撮像素子11から出力されるフレーム単位の画像信号のうち、偶数番目のフレームの画像信号が、黒レベル蓄積部33に記憶される黒レベル情報が示す黒レベルのうち、分類部によって偶数番目のフレームのグループに分類されたフレームの黒レベルに基づいて補正されて出力され、奇数番目のフレームの画像信号が、黒レベル蓄積部33に記憶される黒レベル情報が示す黒レベルのうち、フレーム順番検出部12によって偶数番目のフレームのグループに分類されたフレームの黒レベル、ならびに露光条件制御部15によって出力される奇数番目のフレームのグループおよび偶数番目のフレームのグループの露光条件に基づいて補正されて出力され、画像分割部16によって、黒補正部14によって補正されたフレーム単位の画像信号が、フレーム順番検出部12によって分類されたグループごとに分けて順次出力される。
 したがって、奇数フレームを補正するときに、奇数番目および偶数番目の次回露光条件をもとにして、偶数フレームのグループの過去の黒レベルから予測した黒レベルを用いて補正をするので、黒レベル補正を行ってもハンチング現象が発生することを防止することができる。
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のものである。
 符号の説明
1,9 撮像モジュール
11,91 撮像素子
12 フレーム順番検出部
13,23,33,93 黒レベル蓄積部
14,94 黒補正部
15,95 露光条件制御部
16,96 画像分割部
17,97 画像分析部
18,98 画像描画部
19,99 ディスプレイ
131 奇数フレーム黒レベル蓄積部
132 偶数フレーム黒レベル蓄積部
141 奇数フレーム黒補正部
142 偶数フレーム黒補正部
232 偶数フレーム黒レベル予測部
331 奇数フレーム黒レベル予測部
Hereinafter, preferred embodiments of an imaging device of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram illustrating a configuration of an imaging module 1 according to an embodiment of the present invention. The imaging module 1 that is an imaging device includes an imaging element 11, a frame order detection unit 12, a black level accumulation unit 13, a black correction unit 14, an exposure condition control unit 15, an image division unit 16, and an image analysis unit. 17, an image drawing unit 18, and a display 19.
The image pickup device 11 that is an image pickup unit is configured by, for example, a CCD (Charge Coupled Device) image sensor, and based on the exposure condition from the exposure condition control unit 15, an image signal obtained by converting received light into an electric signal in units of frames. The data are sequentially output and sent to the frame order detection unit 12. The exposure conditions that are photoelectric conversion conditions are, for example, exposure conditions such as an exposure time of the image sensor 11 and a gain for amplifying the captured signal into an image signal.
The frame order detection unit 12 serving as a classification unit counts image signals received from the image sensor 11 in units of frames, and groups odd-numbered frames (hereinafter referred to as “odd frames”) and even-numbered frames (hereinafter referred to as “even-numbered frames”). And the classified frames are sent to the black level accumulation unit 13, the black correction unit 14, and the exposure condition control unit 15 sequentially in units of frames as odd frames 21 and even frames 22. The black level accumulation unit 13 as a storage unit includes a storage device such as a RAM (Random Access Memory) that stores information, and extracts and extracts the black levels of the odd frames 21 and the even frames 22 received from the frame order detection unit 12. The black level is averaged for every odd frame and every even frame, and black level information representing the averaged black level is stored in the RAM.
The black correction unit 14 averages the odd-numbered frames out of the black levels indicated by the black level information stored in the black level storage unit 13 for the image signals of the odd-numbered frames 21 received from the frame order detection unit 12 for the odd-numbered frames. Black correction is performed based on the converted black level, and the odd-numbered frames after black correction are sent to the image dividing unit 16. Further, for the even frames, the black level obtained by averaging the even frames out of the black levels indicated by the black level information stored in the black level accumulation unit 13 for the image signals of the even frames 22 received from the frame order detection unit 12. Based on the above, black correction is performed, and the even frame after black correction is sent to the image dividing unit 16.
The exposure condition control unit 15, which is a photoelectric conversion condition generation unit, generates an exposure condition for capturing the next frame from the image signals of the odd frame 21 and the even frame 22 received from the frame order detection unit 12, and the generated exposure The condition is sent to the image sensor 11. The exposure condition control unit 15 generates an exposure condition based on the image signal of the previous odd frame when the next frame to be captured is an odd frame, and 1 when the next frame to be captured is an even frame. An exposure condition is generated based on the image signal of the previous even frame.
For example, the exposure condition control unit 15 determines that the contrast of the image signal of the even frame 22 received from the frame order detection unit 12 when the brightness of the image signal of the odd frame 21 received from the frame order detection unit 12 is too bright than the predetermined brightness. If it is too strong than the predetermined contrast, control is performed to lower the gain or shorten the exposure time. The exposure condition control unit 15 also sets the contrast of the image signal of the even frame 22 received from the frame order detection unit 12 when the brightness of the image signal of the odd frame 21 received from the frame order detection unit 12 is too dark than the predetermined brightness. When the contrast is too weak than the predetermined contrast, control is performed to increase the gain or lengthen the exposure time.
The control by the exposure condition control unit 15 is not limited to the above control, and more complicated control is possible. For example, the exposure condition control unit 15 refers to the brightness of the image signal of the odd frame 21 received from the frame order detection unit 12 and the contrast of the image signal of the even frame 22 received from the frame order detection unit 12 to control the gain. In combination with the control of the exposure time, control that emphasizes lightness rather than contrast, or control that emphasizes contrast rather than lightness can be performed.
Of the frames received from the black correction unit 14, the image division unit 16 that is a division output unit sends the odd frame 25 to the image analysis unit 17 and sends the even frame 26 to the image drawing unit 18. The image analysis unit 17 analyzes the presence / absence of a predetermined object such as a pedestrian from the image signal of the odd frame 25 received from the image dividing unit 16, and if there is a predetermined object in the image signal, the object Is displayed on the image drawing unit 18. The image drawing unit 18 sends the image signal of the even frame 26 received from the image dividing unit 16 to the display 19 for display. Further, the image drawing unit 18 synthesizes the image instructed from the image analysis unit 17 with the image indicated by the image signal of the even frame 26 received from the image dividing unit 16 and sends it to the display 19 for display. The display 19 is a display device such as a liquid crystal display.
FIG. 2 is a block diagram illustrating a detailed configuration example of the black level accumulation unit 13 and the black correction unit 14. The black level accumulation unit 13 includes an odd frame black level accumulation unit 131 and an even frame black level accumulation unit 132. The odd frame black level accumulation unit 131 extracts the black level of the odd frame 21 received from the frame order detection unit 12, adds or accumulates the extracted black levels, and calculates an average value of the added black levels. The calculated average value is stored as black level information for odd frames. The even frame black level accumulation unit 132 extracts the black level of the even frame 22 received from the frame order detection unit 12, adds or accumulates the extracted black levels, and further calculates an average value of the added black levels. The calculated average value is stored as black level information for even frames.
The black correction unit 14 includes an odd frame black correction unit 141 and an even frame black correction unit 142. The odd frame black correction unit 141 displays the average value of the black level of the odd frame read from the odd frame black level storage unit 131 from the image signal of the odd frame 21 received from the frame order detection unit 12 and a predetermined target black level. The difference from the target black level target value is subtracted, and the subtracted image signal is sent to the image dividing unit 16. The even frame black correction unit 142 is a process that is an average value of the black level of the even frame read from the even frame black level accumulation unit 132 from the image signal of the even frame 22 received from the frame order detection unit 12 and a predetermined target black level. The difference from the target black level target value is subtracted, and the subtracted image signal is sent to the image dividing unit 16.
The odd frame 21 and the even frame 22 from the frame order detection unit 12 are respectively sent to the exposure condition control unit 15, and the exposure condition control unit 15 takes an odd number to be imaged next based on the received odd frame 21 and even frame 22. Frame exposure conditions and even frame exposure conditions, for example, exposure conditions such as gain and shutter speed or exposure time are generated, and the generated exposure conditions are sent to the image sensor 11.
FIG. 3 is a diagram for explaining that the hunting phenomenon does not occur in the imaging module 1. FIG. 3 shows four graphs B1 to B4. In the graph shown in FIG. 3, the same values as those in the graph shown in FIG. 6 are given the same reference numerals to indicate that the values are the same.
A graph B1 is a gain setting graph representing the gain set in the image sensor 11, and shows the gain set in the image sensor 11 for each frame. The gain is an amplification factor when an image signal captured by the image sensor 11 is amplified and output. The gains G1, G3, and G5 for the frames used in the image analysis unit 17, that is, the odd frames 1, 3, and 5, respectively, are the frames that are used in the image drawing unit 18 to enhance the brightness, that is, even frames 2, 4 , 6 is set to a value larger than the respective gains G2, G4, G6. The frame used in the image drawing unit 18 is set by another parameter so that contrast is emphasized rather than brightness.
A graph B2 is a graph showing the output of the image sensor 11 for each frame. That is, it is an output of an image signal obtained by amplifying the image signal captured by the image sensor 11 with the gain indicated by the graph B1. The outputs S1, S3, S5 of the odd frames 1, 3, 5 are larger than the outputs S2, S4, S6 of the even frames 2, 4, 6, respectively.
A graph B3 is a graph showing the output of the black correction unit 14 for each frame. That is, it is an output of the image signal after the black correction unit 14 performs black correction on the image signal from the image sensor 11 based on the black level notified from the black level storage unit 13. The graph B4 is a graph showing the black level fed back from the black level accumulation unit 13, that is, the black level notified from the black level accumulation unit 13 to the black correction unit 14 for each frame.
The black correction unit 14 performs black correction on the image signal from the image sensor 11 based on the black level of the frame informed from the black level accumulation unit 13 in order to follow the environmental change from moment to moment. Specifically, the black correction unit 14 first corrects the image signal of the third frame from the image sensor 11 based on the black level K1 obtained from the output T1 of the image signal of the first frame. To do. That is, since the black correction unit 14 corrects the odd-numbered frame based on the black level obtained from the output of the image signal of the odd-numbered frame, the output after the correction of the output S3 is the output T3 that should be can do.
Next, the black correction unit 14 corrects the image signal of the fourth frame from the image sensor 11 based on the black level K2 obtained from the output T2 of the image signal of the second frame. That is, since the black correction unit 14 corrects the even-numbered frame based on the black level obtained from the output of the image signal of the even-numbered frame, the output after the correction of the output S4 is the output T4 that should be can do.
Since the fifth and subsequent frames are similarly black-corrected, the output of the image signal of the odd-numbered frame output from the black correction unit 14 does not gradually increase and is output from the black correction unit 14. The imaging module 1 can prevent the occurrence of the hunting phenomenon without gradually decreasing the output of the even-numbered frame image signal.
In the embodiment described above, the image signals received from the image sensor 11 are counted in units of frames and classified into two groups, an odd frame group and an even frame group, but the classification is limited to two groups. For example, if there are other uses other than display and processing, the number of groups to be classified according to the use is increased, and black correction is performed for each group, thereby preventing the occurrence of the hunting phenomenon. .
As described above, the image pickup device 11 sequentially outputs image signals obtained by converting received light into electrical signals based on the input exposure conditions, and outputs them from the image pickup device 11 by the frame order detection unit 12. The image signals in units of frames are classified into a plurality of groups, and the black level of the image signal output from the image sensor 11 is detected for each frame by the black level accumulating unit 13, and black level information representing the detected black level Is stored for each frame.
Then, the black correction unit 14 classifies the image signals in units of frames output from the image sensor 11 into the same group by the classification unit among the black levels indicated by the black level information stored in the black level accumulation unit 13. Based on the black level of the frame, the image signal is corrected and output, and is corrected by the image dividing unit 16 by the black correcting unit 14, and is sequentially divided into groups classified by the frame order detecting unit 12. Is output.
Therefore, the correction is not performed using the black level of a different group, and the occurrence of the hunting phenomenon can be prevented even if the black level correction is performed.
Further, the exposure condition control unit 15 generates and generates the exposure conditions for the next frame classified into the same group based on the image signals in units of frames classified into the same group by the frame order detection unit 12. Since the exposure condition is output to the image sensor 11, the next exposure condition can be determined based on the image signal that is not affected by the black correction.
Further, among the black levels indicated by the black level information stored in the black level accumulation unit 13 from the frame unit image signal output from the image sensor 11 by the black correction unit 14, the frame order detection unit 12 makes the same group. The difference between the average black level value of the classified frames and the black level target value for display or processing is subtracted and corrected.
Therefore, since the black correction is performed using the average value of the past black level, the black-corrected image output thereafter is prevented from becoming extremely large even when receiving strong light temporarily. be able to.
Furthermore, the image signal output from the image sensor 11 is counted by the frame order detection unit 12 and is classified into an odd-numbered frame group and an even-numbered frame group. It can be applied when used for.
FIG. 4 is a block diagram illustrating a detailed configuration example of the black level accumulation unit 23 and the black correction unit 14. The black level accumulation unit 23 as a storage unit is used instead of the black level accumulation unit 13 shown in FIG. The black level accumulation unit 23 includes an odd frame black level accumulation unit 131 and an even frame black level prediction unit 232. The odd frame black level accumulation unit 131 is the same as the odd frame black level accumulation unit 131 shown in FIG.
The even frame black level prediction unit 232 reads the average value of the black level of the odd frame read from the odd frame black level storage unit 131, the exposure condition for the odd frame generated by the exposure condition control unit 15, and the exposure for the even frame. Based on the conditions, the predicted black level to be corrected is predicted by equation (1), and the predicted black level predicted value is sent to the even frame black correction unit 142.
Black level prediction value = (gain of even frame / gain of odd frame) × (exposure time of even frame / exposure time of odd frame) × average black level of odd frame (1)
The odd frame black correction unit 141 of the black correction unit 14 is the same as the odd frame black correction unit 141 shown in FIG. 2, but the even frame black correction unit 142 is an even frame read from the even frame black level accumulation unit 132. In place of the average value of the black level, black level correction is performed by subtracting the difference between the black level prediction value received from the even frame black level prediction unit 232 and the processing target black level target value that is a predetermined target black level. Do.
As described above, the image pickup device 11 sequentially outputs image signals obtained by converting received light into electrical signals based on the input exposure conditions, and outputs them from the image pickup device 11 by the frame order detection unit 12. Image signals are counted in units of frames and classified into odd-numbered frame groups and even-numbered frame groups, and the black level of the image signal output from the image sensor 11 by the black level storage unit 23 is set for each frame. And the black level information representing the detected black level is stored for each frame, and the exposure condition control unit 15 determines the black level information based on the frame unit image signals classified into the same group by the frame order detection unit 12. An exposure condition for the next frame classified into the same group is generated, and the generated exposure condition is an image sensor. Is output to the 1.
As a method for detecting the black level of the image signal output from the image sensor 11 for each frame, a method called frame division black level clamping is used.
Then, among the image signals in units of frames output from the image sensor 11 by the black correction unit 14, the image signal of the odd-numbered frame is the black level indicated by the black level information stored in the black level accumulation unit 23. The black level information stored in the black level storage unit 23 indicates that the image signal of the even number frame is output after being corrected based on the black level of the frame classified into the odd number frame group by the classification unit. Among the black levels, the black levels of the frames classified into the odd-numbered frame groups by the frame order detection unit 12 and the odd-numbered frame groups and the even-numbered frame groups output by the exposure condition control unit 15 Corrected based on the exposure conditions and output, and corrected by the black correction unit 14 by the image dividing unit 16 Image signal of frame units are sequentially outputted separately for each group classified by the frame sequence detecting unit 12.
Therefore, when correcting even frames, the black level correction is performed using the black level predicted from the past black level of the odd frame group based on the odd and even next exposure conditions. It is possible to prevent the occurrence of the hunting phenomenon even if the process is performed.
FIG. 5 is a block diagram illustrating a detailed configuration example of the black level accumulation unit 33 and the black correction unit 14. The black level accumulation unit 33 as a storage unit is used instead of the black level accumulation unit 13 shown in FIG. The black level accumulation unit 33 includes an odd frame black level prediction unit 331 and an even frame black level accumulation unit 132. The even frame black level accumulating unit 132 is the same as the even frame black level accumulating unit 132 shown in FIG. 2, and the same reference numerals are assigned to indicate the same.
The odd frame black level prediction unit 331 calculates the average value of the black level of the even frame read from the even frame black level storage unit 132, the exposure condition for the odd frame generated by the exposure condition control unit 15, and the exposure for the even frame. Based on the conditions, the black level to be corrected is predicted by Expression (2), and the predicted black level is sent to the odd-numbered frame black correction unit 141.
Black level prediction value = (gain of odd frame / gain of even frame) × (exposure time of odd frame / exposure time of even frame) × black level average value of even frame (2)
The even frame black correction unit 142 of the black correction unit 14 is the same as the even frame black correction unit 142 shown in FIG. 2, but the odd frame black correction unit 141 is an odd frame read from the odd frame black level accumulation unit 131. Instead of the average value of the black level, black level correction is performed by subtracting the difference between the black level prediction value received from the odd frame black level prediction unit 331 and the display black level target value that is a predetermined target black level. Do.
As described above, the image pickup device 11 sequentially outputs image signals obtained by converting received light into electrical signals based on the input exposure conditions, and outputs them from the image pickup device 11 by the frame order detection unit 12. Image signals are counted in units of frames, and are classified into odd-numbered frame groups and even-numbered frame groups, and the black level of the image signal output from the image sensor 11 by the black level accumulation unit 33 is set for each frame. And the black level information representing the detected black level is stored for each frame, and the exposure condition control unit 15 determines the black level information based on the frame unit image signals classified into the same group by the frame order detection unit 12. An exposure condition for the next frame classified into the same group is generated, and the generated exposure condition is an image sensor. Is output to the 1.
Then, among the image signals in units of frames output from the image sensor 11 by the black correction unit 14, the image signals of even-numbered frames are among the black levels indicated by the black level information stored in the black level accumulation unit 33. The black level information stored in the black level storage unit 33 indicates that the image signal of the odd numbered frame is output after being corrected based on the black level of the frame classified into the even numbered frame group by the classification unit. Among the black levels, the black levels of the frames classified into the even-numbered frame groups by the frame order detection unit 12 and the odd-numbered frame groups and the even-numbered frame groups output by the exposure condition control unit 15 It is corrected based on the exposure conditions and output, and is corrected by the image dividing unit 16 by the black correcting unit 14. Image signal in units of frames and are sequentially outputted separately for each group classified by the frame sequence detecting unit 12.
Therefore, when correcting odd-numbered frames, correction is performed using the black level predicted from the past black level of the group of even-numbered frames based on the odd-numbered and even-numbered next exposure conditions. It is possible to prevent the occurrence of the hunting phenomenon even if the process is performed.
The present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-described embodiment is merely an example in all respects, and the scope of the present invention is shown in the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the scope of the claims are within the scope of the present invention.
DESCRIPTION OF SYMBOLS 1, 9 Imaging module 11, 91 Imaging device 12 Frame order detection unit 13, 23, 33, 93 Black level accumulation unit 14, 94 Black correction unit 15, 95 Exposure condition control unit 16, 96 Image division unit 17, 97 Image analysis unit 18, 98 Image drawing unit 19, 99 Display 131 Odd frame black level accumulation unit 132 Even frame black level accumulation unit 141 Odd frame black correction unit 142 Even frame black correction unit 232 Even frame black level prediction unit 331 Odd frame Black level prediction unit

Claims (6)

  1.  入力される光電変換条件に基づいて、受光する光を電気信号に変換した画像信号をフレーム単位で順次出力する撮像部と、
     撮像部から出力されるフレーム単位の画像信号を複数のグループに分類する分類部と、
     撮像部から出力される画像信号の黒レベルをフレームごとに検出し、検出した黒レベルを表す黒レベル情報をフレームごとに記憶する記憶部と、
     撮像部から出力されるフレーム単位の画像信号を、記憶部に記憶される黒レベル情報が示す黒レベルのうち、分類部によって同じグループに分類されたフレームの黒レベルに基づいて、補正して出力する黒補正部と、
     黒補正部によって補正されたフレーム単位の画像信号を、分類部によって分類されたグループごとに分けて順次出力する分割出力部とを含むことを特徴とする撮像装置。
    An image pickup unit that sequentially outputs image signals obtained by converting received light into electric signals based on input photoelectric conversion conditions in units of frames;
    A classification unit that classifies image signals in units of frames output from the imaging unit into a plurality of groups;
    A storage unit that detects the black level of the image signal output from the imaging unit for each frame, and stores black level information representing the detected black level for each frame;
    A frame unit image signal output from the imaging unit is corrected and output based on the black level of the frame classified into the same group by the classification unit among the black levels indicated by the black level information stored in the storage unit. A black correction unit to
    An image pickup apparatus comprising: a divided output unit that sequentially outputs image signals in units of frames corrected by the black correction unit for each group classified by the classification unit.
  2.  前記分類部によって同じグループに分類されたフレーム単位の画像信号に基づいて、その同じグループに分類される次のフレームの光電変換条件を生成し、生成した光電変換条件を前記撮像部に出力する光電変換条件生成部をさらに含むことを特徴とする請求項1に記載の撮像装置。 A photoelectric conversion condition for the next frame classified into the same group is generated based on image signals in units of frames classified into the same group by the classification unit, and the generated photoelectric conversion condition is output to the imaging unit. The imaging apparatus according to claim 1, further comprising a conversion condition generation unit.
  3.  前記黒補正部は、前記撮像部から出力されるフレーム単位の画像信号から、前記記憶部に記憶される黒レベル情報が示す黒レベルのうち、前記分類部によって同じグループに分類されたフレームの黒レベルの平均値と、予め定める目標黒レベルとの差を減算して補正することを特徴とする請求項1または2に記載の撮像装置。 The black correction unit is configured to select black of frames classified into the same group by the classification unit from among the black levels indicated by the black level information stored in the storage unit from image signals in units of frames output from the imaging unit. The imaging apparatus according to claim 1, wherein a correction is performed by subtracting a difference between an average value of the levels and a predetermined target black level.
  4.  前記分類部は、前記撮像部から出力される画像信号をフレーム単位でカウントし、奇数番目のフレームのグループと偶数番目のフレームのグループとに分類することを特徴とする請求項1~3のいずれか1つに記載の撮像装置。 4. The classification unit according to claim 1, wherein the classification unit counts the image signal output from the imaging unit in units of frames and classifies the image signal into an odd-numbered frame group and an even-numbered frame group. The imaging device as described in any one.
  5.  入力される光電変換条件に基づいて、受光する光を電気信号に変換した画像信号をフレーム単位で順次出力する撮像部と、
     撮像部から出力される画像信号をフレーム単位でカウントし、奇数番目のフレームのグループと偶数番目のフレームのグループとに分類する分類部と、
     撮像部から出力される画像信号の黒レベルをフレームごとに検出し、検出した黒レベルを表す黒レベル情報をフレームごとに記憶する記憶部と、
     分類部によって同じグループに分類されたフレーム単位の画像信号に基づいて、その同じグループに分類される次のフレームの光電変換条件を生成し、生成した光電変換条件を撮像部に出力する光電変換条件生成部と、
     撮像部から出力されるフレーム単位の画像信号のうち、
      奇数番目のフレームの画像信号を、記憶部に記憶される黒レベル情報が示す黒レベルのうち、分類部によって奇数番目のフレームのグループに分類されたフレームの黒レベルに基づいて補正して出力し、
      偶数番目のフレームの画像信号を、記憶部に記憶される黒レベル情報が示す黒レベルのうち、分類部によって奇数番目のフレームのグループに分類されたフレームの黒レベル、ならびに光電変換条件生成部によって出力される奇数番目のフレームのグループおよび偶数番目のフレームのグループの光電変換条件に基づいて補正して出力する黒補正部と、
     黒補正部によって補正されたフレーム単位の画像信号を、分類部によって分類されたグループごとに分けて順次出力する分割出力部とを含むことを特徴とする撮像装置。
    An image pickup unit that sequentially outputs image signals obtained by converting received light into electric signals based on input photoelectric conversion conditions in units of frames;
    A classification unit that counts image signals output from the imaging unit in units of frames, and classifies the signal into an odd-numbered frame group and an even-numbered frame group;
    A storage unit that detects the black level of the image signal output from the imaging unit for each frame, and stores black level information representing the detected black level for each frame;
    Based on image signals in units of frames classified into the same group by the classification unit, the photoelectric conversion conditions for the next frame classified into the same group are generated, and the generated photoelectric conversion conditions are output to the imaging unit. A generator,
    Of the image signals in units of frames output from the imaging unit,
    The image signal of the odd-numbered frame is corrected and output based on the black level of the frame classified into the group of the odd-numbered frame by the classification unit among the black levels indicated by the black level information stored in the storage unit. ,
    Among the black levels indicated by the black level information stored in the storage unit, the black level of the frame classified into the odd-numbered frame group by the classification unit, and the photoelectric conversion condition generation unit A black correction unit for correcting and outputting based on the photoelectric conversion conditions of the odd-numbered frame group and the even-numbered frame group to be output;
    An image pickup apparatus comprising: a divided output unit that sequentially outputs image signals in units of frames corrected by the black correction unit for each group classified by the classification unit.
  6.  入力される光電変換条件に基づいて、受光する光を電気信号に変換した画像信号をフレーム単位で順次出力する撮像部と、
     撮像部から出力される画像信号をフレーム単位でカウントし、奇数番目のフレームのグループと偶数番目のフレームのグループとに分類する分類部と、
     撮像部から出力される画像信号の黒レベルをフレームごとに検出し、検出した黒レベルを表す黒レベル情報をフレームごとに記憶する記憶部と、
     分類部によって同じグループに分類されたフレーム単位の画像信号に基づいて、その同じグループに分類される次のフレームの光電変換条件を生成し、生成した光電変換条件を撮像部に出力する光電変換条件生成部と、
     撮像部から出力されるフレーム単位の画像信号のうち、
      偶数番目のフレームの画像信号を、記憶部に記憶される黒レベル情報が示す黒レベルのうち、分類部によって偶数番目のフレームのグループに分類されたフレームの黒レベルに基づいて補正して出力し、
      奇数番目のフレームの画像信号を、記憶部に記憶される黒レベル情報が示す黒レベルのうち、分類部によって偶数番目のフレームのグループに分類されたフレームの黒レベル、ならびに光電変換条件生成部によって出力される奇数番目のフレームのグループおよび偶数番目のフレームのグループの光電変換条件に基づいて補正して出力する黒補正部と、
     黒補正部によって補正されたフレーム単位の画像信号を、分類部によって分類されたグループごとに分けて順次出力する分割出力部とを含むことを特徴とする撮像装置。
    An image pickup unit that sequentially outputs image signals obtained by converting received light into electric signals based on input photoelectric conversion conditions in units of frames;
    A classification unit that counts image signals output from the imaging unit in units of frames, and classifies the signal into an odd-numbered frame group and an even-numbered frame group;
    A storage unit that detects the black level of the image signal output from the imaging unit for each frame, and stores black level information representing the detected black level for each frame;
    Based on image signals in units of frames classified into the same group by the classification unit, the photoelectric conversion conditions for the next frame classified into the same group are generated, and the generated photoelectric conversion conditions are output to the imaging unit. A generator,
    Of the image signals in units of frames output from the imaging unit,
    The image signal of the even-numbered frame is corrected and output based on the black level of the frame classified into the even-numbered frame group by the classification unit among the black levels indicated by the black level information stored in the storage unit. ,
    Of the black level indicated by the black level information stored in the storage unit, the black level of the frame classified into the even-numbered frame group by the classification unit, and the photoelectric conversion condition generation unit A black correction unit for correcting and outputting based on the photoelectric conversion conditions of the odd-numbered frame group and the even-numbered frame group to be output;
    An image pickup apparatus comprising: a divided output unit that sequentially outputs image signals in units of frames corrected by the black correction unit for each group classified by the classification unit.
PCT/JP2009/053770 2008-03-24 2009-02-27 Imaging device WO2009119254A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008076871 2008-03-24
JP2008-076871 2008-03-24

Publications (1)

Publication Number Publication Date
WO2009119254A1 true WO2009119254A1 (en) 2009-10-01

Family

ID=41113460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053770 WO2009119254A1 (en) 2008-03-24 2009-02-27 Imaging device

Country Status (1)

Country Link
WO (1) WO2009119254A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111292674A (en) * 2020-02-26 2020-06-16 福建华佳彩有限公司 Display driving method and device with high image quality

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352552A (en) * 2000-06-07 2001-12-21 Matsushita Electric Ind Co Ltd Video signal processing unit and video signal processing method
JP2002354348A (en) * 2001-05-29 2002-12-06 Ricoh Co Ltd Image signal processing method and image signal processing device
JP2007013777A (en) * 2005-07-01 2007-01-18 Toyota Central Res & Dev Lab Inc Imaging apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352552A (en) * 2000-06-07 2001-12-21 Matsushita Electric Ind Co Ltd Video signal processing unit and video signal processing method
JP2002354348A (en) * 2001-05-29 2002-12-06 Ricoh Co Ltd Image signal processing method and image signal processing device
JP2007013777A (en) * 2005-07-01 2007-01-18 Toyota Central Res & Dev Lab Inc Imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111292674A (en) * 2020-02-26 2020-06-16 福建华佳彩有限公司 Display driving method and device with high image quality

Similar Documents

Publication Publication Date Title
US10547794B2 (en) Solid-state imaging apparatus and method of operating solid-state imaging apparatus to set a pluratlity of charge accumulation periods in accordance with a flicker period
US9160934B2 (en) Image capturing apparatus obtaining high-exposure and low-exposure images, and method for controlling the same
JP4646655B2 (en) Solid-state imaging device, driving method thereof, and imaging system
US8913161B2 (en) Image capturing apparatus and control method thereof
US8368804B2 (en) Imaging control apparatus, imaging control method, and computer-readable storage medium
US20080316333A1 (en) Imaging apparatus, imaging method, program, and integrated circuit
US10027919B2 (en) Signal processing apparatus, image capturing apparatus, control apparatus, signal processing method, and control method
JP2007194687A (en) Imaging apparatus
CN102572273A (en) Imaging device
US10009547B2 (en) Image pickup apparatus that compensates for flash band, control method therefor, and storage medium
US20200288052A1 (en) Image capturing device for auto exposure
JP2015056806A (en) Solid-state imaging device
CN107205123B (en) Flash band determination device, control method thereof, storage medium, and image pickup apparatus
WO2009119254A1 (en) Imaging device
JP2009077047A (en) Electronic camera
JP5522078B2 (en) Imaging apparatus and image distortion correction method for imaging apparatus
JP2008311834A (en) Defective pixel correcting device and method
JP6145746B2 (en) Imaging device
US10594912B2 (en) Flash band determination device for detecting flash band, method of controlling the same, storage medium, and image pickup apparatus
US9007491B2 (en) Image processing apparatus and control method thereof
JP6659168B2 (en) Image processing apparatus, control method thereof, and program
US20230386000A1 (en) Image processing apparatus, control method thereof, and non-transitory computer-readable storage medium
JP2018191223A (en) Imaging apparatus and control method for imaging device
JP5094454B2 (en) Imaging apparatus and control method thereof
US20230092741A1 (en) Image capturing apparatus and control method thereof and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09724332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP