WO2009119131A1 - Semiconductor light-emitting element and method for fabricating the element - Google Patents

Semiconductor light-emitting element and method for fabricating the element Download PDF

Info

Publication number
WO2009119131A1
WO2009119131A1 PCT/JP2009/050281 JP2009050281W WO2009119131A1 WO 2009119131 A1 WO2009119131 A1 WO 2009119131A1 JP 2009050281 W JP2009050281 W JP 2009050281W WO 2009119131 A1 WO2009119131 A1 WO 2009119131A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
active
layer
single mode
length
Prior art date
Application number
PCT/JP2009/050281
Other languages
French (fr)
Japanese (ja)
Inventor
昌輝 大矢
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2009119131A1 publication Critical patent/WO2009119131A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • H01S5/0655Single transverse or lateral mode emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/1064Comprising an active region having a varying composition or cross-section in a specific direction varying width along the optical axis

Definitions

  • the present invention relates to a semiconductor light emitting device, and more particularly to a high output semiconductor light emitting device.
  • Semiconductor lasers are generally required to achieve both high light output and single transverse mode operation.
  • a semiconductor laser for an optical disk such as a GaN blue-violet semiconductor laser for a next-generation DVD light source or an AlGaInP red semiconductor laser for a DVD light source
  • a high output operation is performed for high-speed recording
  • a single horizontal operation is performed for high-density recording.
  • Mode operation is required.
  • a GaN-based semiconductor laser or an AlGaInP-based semiconductor laser is used as a light source for laser display
  • a high output operation is required for large screen projection
  • a single mode operation is desirable for downsizing the optical system.
  • an InP long-wave semiconductor laser for optical fiber communication also requires both high output operation and single transverse mode operation for high-speed and large-capacity communication.
  • Patent Document 1 proposes an active MMI type semiconductor laser structure using an active multi-mode interference (MMI) waveguide.
  • MMI active multi-mode interference
  • the active MMI waveguide is used as a main light emitting region, so that the element resistance can be reduced by expanding the active layer area.
  • the active MMI waveguide is used as a main light emitting region, so that the element resistance can be reduced by expanding the active layer area.
  • by providing a single mode active waveguide at the light exit end it is possible to achieve both high output operation and single transverse mode operation.
  • the active MMI type semiconductor laser has a problem that the shape of the beam emitted from the semiconductor laser is disturbed due to the light (radiated light) emitted as non-guided light from the active MMI waveguide.
  • a recess or a light absorber is provided for removing emitted light. .
  • FIG. 9 is a plan view of the active MMI type semiconductor laser described in FIG. 13 of Patent Document 2.
  • 10 is FIG. 14 of Patent Document 2 and is a cross-sectional view taken along the line XX of FIG. 11 is FIG. 15 of Patent Document 2 and is a cross-sectional view taken along the line XI-XI of FIG.
  • the active MMI semiconductor laser described in Patent Document 2 includes an active fundamental mode waveguide 41 and an active MMI waveguide 42, and is provided at each light emitting end of the active fundamental mode waveguide 41.
  • a light absorber 62 is formed.
  • an n-type InP substrate 51 an n-type InP buffer layer 52, an InGaAsP active layer 53, a p-type InP first cladding layer 54, a p-type InP current blocking layer 55, an n-type InP.
  • a current blocking layer 56, a p-type InP second cladding layer 57, and a p-type InGaAs contact layer 58 are formed, and light absorbers 62 are formed on both sides of the active fundamental mode waveguide 41.
  • the first feature of this semiconductor laser is that a part of the active waveguide is composed of the active MMI waveguide 42. Thereby, the area of the main excitation region (region where gain is generated) can be expanded without changing the element length. At the same time, single transverse mode light can be obtained at the input and output ends of the active MMI waveguide 42. Therefore, the single transverse mode light output can be greatly improved.
  • This active MMI type semiconductor laser cannot obtain single transverse mode light when, for example, an ordinary multimode waveguide is used instead of the active MMI waveguide 42. Further, when a passive MMI waveguide is used instead of the active MMI waveguide 42, it does not contribute to the area expansion of the main excitation region. In these respects, they are greatly different from ordinary semiconductor lasers.
  • the second feature is that a structure for removing emitted light is provided. Radiant light hardly occurs in an ideal active MMI waveguide. However, in an actual semiconductor laser, part of the guided light is not self-imaged at the input / output end of the active MMI waveguide 42 due to manufacturing errors. Therefore, it is radiated out of the waveguide as non-guided light, and the output beam shape is disturbed.
  • a light absorber 62 is provided on the side of the active fundamental mode waveguide 41 to remove the emitted light and improve the beam shape.
  • Non-patent document 1 will be described later. Japanese Patent No. 3244115 Japanese Patent No. 3329765 Lucas B. Soldano, 1 other, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications”, Journal of Lightwave Technology, 1995, Vol. 13, no. 4, pages 615-627
  • the active MMI type semiconductor laser disclosed in Patent Document 2 has no mechanism for guiding the emitted light, and the emitted light propagates while diffusing both in the horizontal direction and in the vertical direction. Therefore, the radiated light component diffused in the horizontal direction can be removed by the radiated light removing means, but the radiated light component diffused in the vertical direction cannot be removed. Therefore, there is a drawback that the effect of removing the emitted light is low.
  • the semiconductor light emitting device is A planar active layer; A current blocking layer for constricting a current flowing into the active layer; An inner stripe type active waveguide constituted by a stripe-shaped opening formed in the current blocking layer,
  • the active waveguide is An active multimode interference waveguide; A first single mode waveguide extending from the active multimode interference waveguide to the exit end; A second single mode waveguide extending from the active multimode interference waveguide opposite to the first single mode waveguide; The length of the first single mode waveguide is longer than the length of the second single mode waveguide.
  • FIG. 1 is a plan view of a waveguide of a semiconductor laser according to a first embodiment of the present invention.
  • FIG. 2 is a sectional view taken along the line II-II in FIG.
  • FIG. 3 is a sectional view taken along line III-III in FIG. It is a beam propagation calculation result in the semiconductor laser for a comparison. It is a far-field image calculation result in the semiconductor laser for a comparison. It is a beam propagation calculation result in the semiconductor laser which concerns on embodiment. It is a far-field image calculation result in the semiconductor laser which concerns on embodiment.
  • 1 is a detailed cross-sectional view of a semiconductor laser according to an embodiment.
  • FIG. 14 is a plan view of the semiconductor laser described in FIG. 13 of Patent Document 2.
  • FIG. 10 is a sectional view taken along line XX in FIG. 9.
  • FIG. 10 is a sectional view taken along line XI-XI in FIG. 9.
  • FIG. 1 is a plan view of a waveguide of a semiconductor laser according to the first embodiment of the present invention.
  • the waveguide 109 of the active MMI semiconductor laser according to the first embodiment includes first and second active fundamental mode waveguides 109a and 109c and an active MMI waveguide 109b.
  • a current blocking layer 108 is formed around the waveguide 109.
  • the + z direction is defined as the front (the main light emission side).
  • the active MMI semiconductor laser includes an n-type cladding layer 103, an n-side optical confinement layer 104, a planar active layer 105, a p-side optical confinement layer 107, a current.
  • a blocking layer 108, a p-type cladding layer 110, and an active waveguide 109 having an inner stripe structure are provided.
  • the current blocking layer 108 controls the current distribution in the horizontal direction in the active layer 105 by blocking currents other than the active waveguide 109.
  • the light distribution in the horizontal direction is controlled by giving a refractive index difference in the horizontal direction.
  • 2 and 3 are conceptual diagrams only, and the substrate and electrodes are omitted.
  • the current I spreads outside the active waveguides 109a and 109b as shown by broken line arrows in FIGS. 2 and 3, so that the vicinity of the active waveguides 109a and 109b.
  • the active layer 105 In the active layer 105, light propagates without being absorbed. However, the current density decreases as the distance from the active waveguides 109a and 109b increases. Therefore, light is attenuated as it propagates in the active layer 105 sufficiently away from the active waveguides 109a and 109b, and functions as a light absorption region 105a.
  • the length of the first active fundamental mode waveguide 109a is made longer than the length of the second active fundamental mode waveguide 109c located on the opposite side via the active MMI waveguide 109b.
  • the length of the first active fundamental mode waveguide 109a cannot be increased without limitation. The reason is that if the length of the first active fundamental mode waveguide 109a is increased, the total length of the active waveguide 109 is increased, leading to deterioration in device characteristics such as an increase in operating current and an increase in cost such as increase in device dimensions. Because. Thus, in order to determine the length of the active waveguide 109, it is necessary to consider other aspects than the removal of the emitted light. Therefore, as shown in FIG. 1, the length of the second active fundamental mode waveguide 109c is shortened by the length of the first active fundamental mode waveguide 109a. Thereby, the first active fundamental mode waveguide 109a can be lengthened without changing the overall length of the active waveguide 109. Therefore, the radiation removal effect can be enhanced without increasing the operating current or increasing the element size.
  • planar type active layer 105 has a continuous shape in the horizontal direction. Therefore, it performs a light guide function in the vertical direction with respect to the emitted light, and the emitted light propagates along the active layer 105 toward the light absorption region 105a without diffusing in the vertical direction. Therefore, all components of the emitted light can be reliably guided to the light absorption region 105a, and the effect of removing the emitted light can be greatly enhanced.
  • any radiated light can be removed.
  • the active MMI waveguide 109b has a manufacturing error, not only the radiation generated with respect to the fundamental mode light but also the active MMI waveguide 109b is manufactured so that the self-imaging of the odd mode light is not allowed. It is also possible to remove the emitted light generated with respect to the mode light.
  • FIG. 4 shows the result of calculating the intensity distribution of light propagating in the + z direction for a comparative active MMI semiconductor laser.
  • the comparative active MMI type semiconductor laser has an active waveguide 9 including a first active fundamental mode waveguide 9a, a second active fundamental mode waveguide 9c, and an active MMI waveguide 9b.
  • the length of the first active fundamental mode waveguide 9a is equal to the length of the second active fundamental mode waveguide 9c.
  • Light emitted from the active MMI waveguide 9 b without being guided to the first active waveguide 9 a reaches the front end of the active waveguide 9.
  • FIG. 5 is a calculation result of a far-field image of the beam emitted from the front end of the active waveguide 9, and the beam shape is disturbed by the influence of the radiated light.
  • FIG. 6 shows the result of calculating the intensity distribution of light propagating in the + z direction for the active MMI semiconductor laser according to the present embodiment.
  • the active MMI semiconductor laser according to the present embodiment has an active waveguide 109 including a first active fundamental mode waveguide 109a, a second active fundamental mode waveguide 109c, and an active MMI waveguide 109b.
  • the length of the first active fundamental mode waveguide 109a is longer than the length of the second active fundamental mode waveguide 109c.
  • Increasing the length of the first active fundamental mode waveguide 109a increases the attenuation of light emitted without being guided from the active MMI waveguide 109b to the first active fundamental mode waveguide 109a.
  • FIG. 7 shows the calculation result of the far-field image of the beam emitted from the front end of the active waveguide 109. Since the emitted beam contains almost no radiation component, a good beam shape can be obtained.
  • the second active fundamental mode waveguide 109c is shortened by the length of the first active fundamental mode waveguide 109a. Therefore, the total length of the active waveguide 109 is equal to the total length of the active waveguide 9 in FIG. Therefore, it is possible to enhance only the effect of removing the emitted light without causing an increase in operating current or an increase in element size.
  • FIG. 8 is a more detailed view of FIG.
  • an n-type buffer layer 102, an n-type cladding layer 103, an n-side optical confinement layer 104, a planar active layer 105, a cap layer 106, a p-side optical confinement layer 107, and a current blocking layer 108 are provided on the n-type substrate 101.
  • the current blocking layer 108 has an opening removed in a stripe shape, and this opening constitutes an active fundamental mode waveguide 109a.
  • a p-type cladding layer 110 and a p-type contact layer 111 are stacked in this order on the current blocking layer 108 and the active fundamental mode waveguide 109a which is an opening.
  • a p-side electrode 112 is provided on the upper surface of the p-type contact layer 111, and an n-side electrode 113 is provided on the lower surface of the n-type substrate 101.
  • the n-type substrate 101 is made of, for example, a GaN substrate.
  • the n-type buffer layer 102 is made of, for example, GaN having a thickness of 1 ⁇ m.
  • the n-type cladding layer 103 is made of, for example, AlGaN having a thickness of 2 ⁇ m.
  • the n-side optical confinement layer 104 is made of GaN having a thickness of 0.1 ⁇ m, for example.
  • the planar active layer 105 has a multiple quantum well structure including, for example, an InGaN well layer having a thickness of 3 nm and an InGaN barrier layer having a thickness of 4 nm.
  • the cap layer 106 is made of, for example, AlGaN having a thickness of 10 nm.
  • the p-side optical confinement layer 107 is made of, for example, GaN having a thickness of 0.1 ⁇ m.
  • the current blocking layer 108 is made of AlN having a thickness of 0.1 ⁇ m, for example, and also has a function as a light distribution control layer due to a difference in refractive index in the horizontal direction.
  • the p-type cladding layer 110 has a 130-period superlattice structure made of, for example, GaN with a thickness of 2.5 nm and AlGaN with a thickness of 2.5 nm.
  • the p-type contact layer 111 is made of, for example, GaN having a thickness of 0.1 ⁇ m.
  • the n-type impurity is, for example, Si, and the p-type impurity is, for example, Mg.
  • each waveguide is determined as follows, for example.
  • the dimensions of the active MMI waveguide 109b are determined with reference to the MMI theory described in Non-Patent Document 1, for example.
  • the beat length L ⁇ derived from this MMI theory is given by equation (1).
  • W is MMI waveguide width
  • n r is the equivalent refractive index of the waveguide
  • n c is the waveguide outside of the equivalent refractive index
  • lambda 0 is the free space wavelength of the guided light.
  • is 0 in the TE mode and 1 in the TM mode.
  • the length L of the MMI waveguide satisfies the formula (2)
  • the MMI waveguide operates as a 1 ⁇ N waveguide.
  • the expression (3) is satisfied, the MMI waveguide operates as an N ⁇ N waveguide.
  • the dimensions of the active MMI waveguide 109b are as follows: when the width is about 2 to 4 ⁇ m, the length is 50 to 150 ⁇ m, when the width is about 4 to 5 ⁇ m, the length is 150 to 250 ⁇ m, and the width Is about 5 to 6 ⁇ m, and the length is 250 to 350 ⁇ m, single transverse mode light is obtained at both ends of the active MMI waveguide 109b. This is very different from the case where only multimode light is obtained at both ends of a normal multimode waveguide.
  • the widths of the first and second active fundamental mode waveguides 109a and 109c are determined so that single transverse mode light obtained at both ends of the active MMI waveguide 109b can be guided stably.
  • it is 1 to 2 ⁇ m.
  • the total length of the active waveguide 109 is determined from the viewpoints of desired element characteristics and manufacturing cost. For example, it is 600 to 800 ⁇ m.
  • the lengths of the first active fundamental mode waveguide 109a and the second active fundamental mode waveguide 109c are determined so that the first active fundamental mode waveguide 109a is longer than the second active fundamental mode waveguide 109c. It is done.
  • the length of the active MMI waveguide 109b is 200 ⁇ m and the total length of the active waveguide 109 is 600 ⁇ m
  • the length of the first active fundamental mode waveguide 109a is 250 to 350 ⁇ m
  • the second active fundamental mode guide is The length of the waveguide 109c is preferably 50 to 150 ⁇ m.
  • the intensity of the emitted light tends to increase as the width of the active MMI waveguide 109b increases and the number of waveguide modes increases.
  • the emitted light is a part of the guided light that is not self-imaged at the input and output ends of the active MMI waveguide 109b, but is emitted outside the waveguide as non-guided light. This is because as the number of waveguide modes in the waveguide 109b increases, the probability that self-imaging cannot be performed increases. Therefore, it is preferable to increase the length of the first active fundamental mode waveguide 109a as the width of the active MMI waveguide 109b becomes wider in order to enhance the effect of removing the emitted light.
  • L 0 is approximated as Equation (4) from Equation (1) and Equation (2) when the difference in equivalent refractive index inside and outside the waveguide is sufficiently large.
  • an active MMI semiconductor laser in which a part of the active waveguide 109 is an MMI waveguide 109b has a planar type active layer 105 continuous in the horizontal direction, and the active MMI waveguide 109b to the active waveguide 109
  • the length to the front end is longer than the length from the active MMI waveguide 109b to the rear end of the active waveguide 109. That is, the length of the first active fundamental mode waveguide 109a located on the output side is longer than the length of the second active fundamental mode waveguide 109c located on the opposite side via the active MMI waveguide 109b.
  • a 300 hPa vacuum MOVPE apparatus is used for manufacturing the element structure.
  • a carrier gas is a mixed gas of hydrogen and nitrogen, and trimethylgallium, trimethylaluminum, and trimethylindium are used as Ga, Al, and In sources, respectively.
  • Silane is used as the n-type impurity, and biscyclopentadienyl magnesium is used as the p-type impurity.
  • the substrate After introducing the n-type GaN substrate 101 into the growth apparatus, the substrate is heated while supplying ammonia, and the growth is started when the growth temperature is reached.
  • an n-type GaN buffer layer 102, an n-type AlGaN cladding layer 103, an n-side GaN optical confinement layer 104, an active layer 105 having a multiple quantum well structure comprising an InGaN well layer and an InGaN barrier layer, an AlGaN cap layer 106, a p-side GaN optical confinement layer 107, and an AlN current blocking layer 108 are formed.
  • the growth temperature is, for example, 200 to 800 ° C. for the AlN current blocking layer 108, 800 ° C. for the active layer 105, and 1100 ° C. otherwise. Since the AlN current blocking layer 108 is grown at a low temperature, it is amorphous at the end of the first growth.
  • a SiO 2 film is deposited thereon, and a SiO 2 mask having stripe-shaped openings is formed using a normal photolithography technique.
  • a mixed solution of phosphoric acid and sulfuric acid is maintained at 50 to 200 ° C. to form an etching solution, and a stripe-shaped active waveguide 109 is formed in the AlN current blocking layer 108.
  • amorphous AlN is easily etched, and single crystal GaN is difficult to etch. Therefore, etching with high selectivity and good controllability is performed.
  • a desired shape can be easily and accurately formed by appropriately setting the shape of the photolithography mask.
  • the substrate is again put into the growth apparatus, the substrate is heated while supplying ammonia, and the second growth is started when the growth temperature is reached.
  • the AlN current blocking layer 108 is single-crystallized in the process of raising the temperature of the substrate.
  • a p-type AlGaN / GaN superlattice cladding layer 110 and a p-type GaN contact layer 111 are formed.
  • the p-side electrode 112 is formed on the upper surface, and the n-side electrode 113 is formed on the lower surface.
  • the above manufacturing method does not require etching removal of the active layer 105 within a range in which current and light are substantially distributed, and can be applied to a material system such as a GaN system or an AlGaInP system. Further, by appropriately controlling the material and thickness of the current blocking layer 108, the second temperature rise condition, etc., the region located under the waveguide 109 in the active layer 105 continuous in the horizontal direction is good. The crystallinity can be lowered only in the region located under the current blocking layer 108 while maintaining the crystallinity. Thereby, the light absorption in a light absorption area
  • the composition of the current blocking layer 108 is preferably Al x In y Ga 1-xy N (0.4 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.6, 0 ⁇ x + y ⁇ 1).
  • the effect of controlling the current distribution and the light distribution can be sufficiently obtained. More specifically, when the band gap of the current blocking layer is reduced, the energy barrier against carriers is reduced, current components that do not contribute to laser oscillation increase exponentially, and the operating current increases rapidly. Further, when the refractive index of the current blocking layer is increased, the light confinement effect in the horizontal direction is weakened, and the horizontal transverse mode stability of light is rapidly deteriorated.
  • the composition of the current blocking layer 108 is Al x In y Ga 1-xy N (0.4 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.6, 0 ⁇ x + y ⁇ 1) is preferable.
  • planar active layer 105 does not need to be continuous over the entire element, and the active layer may be interrupted in a region where current and light are not substantially distributed.
  • the planar active layer 105 may not be flat as long as it is continuous in a region where current and light are substantially distributed, and may have a step or an unevenness.
  • first active fundamental mode waveguide 109a and the active MMI waveguide 109b, or between the second active fundamental mode waveguide 109c and the active MMI waveguide 109b.
  • An active tapered waveguide for reducing loss may be included.
  • the length of the first active fundamental mode waveguide 109a is equal to the length of the active taper waveguide provided between the first active fundamental mode waveguide 109a and the active MMI waveguide 109b. The effect of removing the emitted light can be improved.
  • Non-Patent Document 1 it is possible to design the active MMI waveguide 109b so that self-imaging of odd mode light is not allowed.
  • the first active fundamental mode waveguide 109a and the second active fundamental mode waveguide 109c are designed so that not only fundamental mode light but also primary mode light can be guided, the single active fundamental mode waveguide 109a and the second active fundamental mode waveguide 109c One transverse mode operation can be realized.
  • the length of the active waveguide 109 may be shorter than the total element length of the semiconductor light emitting element.
  • a current non-injection region may be provided at one end or both ends of the active waveguide 109, and another passive waveguide may be connected.
  • the present invention can be applied to a semiconductor light emitting device other than a semiconductor laser, for example, a semiconductor optical amplifier.
  • the present invention can be widely applied to semiconductor light emitting devices and manufacturing methods thereof.

Abstract

There is provided an active MMI type semiconductor laser of an inner stripe type, which has a preferable beam shape and in which radiation light is removed. The semiconductor light-emitting element comprises a planar-type active layer, a current blocking layer for suppressing current flowing into the active layer, and an inner stripe-type active waveguide constituted by a stripe-shaped opening of the current blocking layer. The active waveguide includes an active multi-mode interference waveguide, a first single mode waveguide extended from the active multi-mode interference waveguide to an emission end, and a second single mode waveguide extended from the active multi-mode interference waveguide to the opposite side of the first single mode waveguide. The length of the first single mode waveguide is longer than the length of the second single mode waveguide.

Description

半導体発光素子及びその製造方法Semiconductor light emitting device and manufacturing method thereof
 本発明は、半導体発光素子に関し、特に高出力半導体発光素子に関する。 The present invention relates to a semiconductor light emitting device, and more particularly to a high output semiconductor light emitting device.
 半導体レーザには、一般に、高い光出力と単一横モード動作との両立が求められている。例えば、次世代DVD用光源のGaN系青紫色半導体レーザやDVD用光源のAlGaInP系赤色半導体レーザといった光ディスク用半導体レーザでは、高速記録のために高出力動作が、高密度記録のために単一横モード動作が必要である。また、GaN系半導体レーザやAlGaInP系半導体レーザをレーザディスプレイ用光源として用いる場合にも、大画面投射のために高出力動作が必要であり、光学系の小型化には単一モード動作が望ましい。また、光ファイバ通信用InP系長波半導体レーザにおいても、高速大容量通信のためには高出力動作と単一横モード動作の両立が必要となる。 Semiconductor lasers are generally required to achieve both high light output and single transverse mode operation. For example, in a semiconductor laser for an optical disk such as a GaN blue-violet semiconductor laser for a next-generation DVD light source or an AlGaInP red semiconductor laser for a DVD light source, a high output operation is performed for high-speed recording, and a single horizontal operation is performed for high-density recording. Mode operation is required. In addition, when a GaN-based semiconductor laser or an AlGaInP-based semiconductor laser is used as a light source for laser display, a high output operation is required for large screen projection, and a single mode operation is desirable for downsizing the optical system. In addition, an InP long-wave semiconductor laser for optical fiber communication also requires both high output operation and single transverse mode operation for high-speed and large-capacity communication.
 通常の半導体レーザでは、単一横モード動作を実現するためには導波路幅を狭くする必要がある。それ故に、素子抵抗が増大して素子の発熱が大きくなり、光出力が低下する。これに対して、例えば特許文献1では、アクティブ(能動)多モード干渉(Multi-Mode Interference;MMI)導波路を用いた能動MMI型半導体レーザ構造が提案されている。能動MMI型半導体レーザでは、能動MMI導波路を主な発光領域とすることで、活性層面積拡大による素子抵抗低減を実現する。これと共に、光の出射端にシングルモード能動導波路を設けることで、高出力動作と単一横モード動作との両立を可能とした。 In ordinary semiconductor lasers, it is necessary to narrow the waveguide width in order to realize single transverse mode operation. Therefore, the element resistance increases, the heat generation of the element increases, and the light output decreases. On the other hand, for example, Patent Document 1 proposes an active MMI type semiconductor laser structure using an active multi-mode interference (MMI) waveguide. In the active MMI type semiconductor laser, the active MMI waveguide is used as a main light emitting region, so that the element resistance can be reduced by expanding the active layer area. At the same time, by providing a single mode active waveguide at the light exit end, it is possible to achieve both high output operation and single transverse mode operation.
 他方、能動MMI型半導体レーザでは、能動MMI導波路から非導波光として放射される光(放射光)の影響で、半導体レーザから出射されるビーム形状に乱れを生ずるという問題があった。これに対し、例えば特許文献2に開示されたInP系のいわゆる埋め込みヘテロ構造(Buried Heterostructure;BH)の能動MMI型半導体レーザでは、放射光を除去するための凹部もしくは光吸収体が設けられている。 On the other hand, the active MMI type semiconductor laser has a problem that the shape of the beam emitted from the semiconductor laser is disturbed due to the light (radiated light) emitted as non-guided light from the active MMI waveguide. On the other hand, for example, in an InP-based buried heterostructure (BH) active MMI type semiconductor laser disclosed in Patent Document 2, a recess or a light absorber is provided for removing emitted light. .
 図9は、特許文献2の図13に記載された能動MMI型半導体レーザの平面図である。図10は、特許文献2の図14であって、図9のX-X断面図である。図11は、特許文献2の図15であって、図9のXI-XI断面図である。特許文献2に記載の能動MMI型半導体レーザは、図9に示すように、能動基本モード導波路41と能動MMI導波路42から構成されており、能動基本モード導波路41の各光出射端には光吸収体62が形成されている。また、図10及び図11に示すように、n型InP基板51、n型InPバッファ層52、InGaAsP活性層53、p型InP第1クラッド層54、p型InP電流阻止層55、n型InP電流阻止層56、p型InP第2クラッド層57、p型InGaAsコンタクト層58から構成されており、能動基本モード導波路41の両脇に光吸収体62が形成されている。 FIG. 9 is a plan view of the active MMI type semiconductor laser described in FIG. 13 of Patent Document 2. 10 is FIG. 14 of Patent Document 2 and is a cross-sectional view taken along the line XX of FIG. 11 is FIG. 15 of Patent Document 2 and is a cross-sectional view taken along the line XI-XI of FIG. As shown in FIG. 9, the active MMI semiconductor laser described in Patent Document 2 includes an active fundamental mode waveguide 41 and an active MMI waveguide 42, and is provided at each light emitting end of the active fundamental mode waveguide 41. A light absorber 62 is formed. 10 and 11, an n-type InP substrate 51, an n-type InP buffer layer 52, an InGaAsP active layer 53, a p-type InP first cladding layer 54, a p-type InP current blocking layer 55, an n-type InP. A current blocking layer 56, a p-type InP second cladding layer 57, and a p-type InGaAs contact layer 58 are formed, and light absorbers 62 are formed on both sides of the active fundamental mode waveguide 41.
 この半導体レーザの第1の特徴は、能動導波路の一部が能動MMI導波路42からなる点である。これにより、素子長を変えることなく主励起領域(利得を発生する領域)の面積を拡大できる。同時に、能動MMI導波路42の入出射端では単一横モード光を得ることができる。そのため、単一横モード光出力の大幅な向上が可能となる。この能動MMI型半導体レーザは、例えば能動MMI導波路42の代わりに通常の多モード導波路を用いた場合は単一横モード光が得られない。また、能動MMI導波路42の代わりに受動MMI導波路を用いた場合は主励起領域の面積拡大に寄与しない。これらの点で、通常の半導体レーザとは大きく異なる。 The first feature of this semiconductor laser is that a part of the active waveguide is composed of the active MMI waveguide 42. Thereby, the area of the main excitation region (region where gain is generated) can be expanded without changing the element length. At the same time, single transverse mode light can be obtained at the input and output ends of the active MMI waveguide 42. Therefore, the single transverse mode light output can be greatly improved. This active MMI type semiconductor laser cannot obtain single transverse mode light when, for example, an ordinary multimode waveguide is used instead of the active MMI waveguide 42. Further, when a passive MMI waveguide is used instead of the active MMI waveguide 42, it does not contribute to the area expansion of the main excitation region. In these respects, they are greatly different from ordinary semiconductor lasers.
 第2の特徴は、放射光を除去する構造が設けられている点である。放射光は、理想的な能動MMI導波路であれば、ほとんど生じない。しかし、実際の半導体レーザでは、作製誤差により、導波光の一部が能動MMI導波路42の入出射端で自己結像されない。そのため、非導波光として導波路の外へ放射され、出射ビーム形状に乱れを生ずる。特許文献2では、能動基本モード導波路41の脇に光吸収体62を設けることで、放射光を除去してビーム形状を改善している。なお、非特許文献1については後述する。
特許第3244115号公報 特許第3329765号公報 Lucas B. Soldano、外1名、「Optical Multi-Mode Interference Devices Based on Self-Imaging:Principles and Applications」、Journal of Lightwave Technology、1995年、Vol.13、No.4、第615~627頁
The second feature is that a structure for removing emitted light is provided. Radiant light hardly occurs in an ideal active MMI waveguide. However, in an actual semiconductor laser, part of the guided light is not self-imaged at the input / output end of the active MMI waveguide 42 due to manufacturing errors. Therefore, it is radiated out of the waveguide as non-guided light, and the output beam shape is disturbed. In Patent Document 2, a light absorber 62 is provided on the side of the active fundamental mode waveguide 41 to remove the emitted light and improve the beam shape. Non-patent document 1 will be described later.
Japanese Patent No. 3244115 Japanese Patent No. 3329765 Lucas B. Soldano, 1 other, "Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications", Journal of Lightwave Technology, 1995, Vol. 13, no. 4, pages 615-627
 特許文献2の放射光除去手段を作製するには、活性層の一部をエッチング除去する必要がある。特許文献2に開示されているように、InP系半導体レーザではそれが可能である。一方、GaN系半導体レーザやAlGaInP系半導体レーザでは、材料系固有の問題に起因する素子信頼性などの観点から、活性層の一部をエッチング除去することができなかった。従って、GaN系半導体レーザやAlGaInP系半導体レーザなど、活性層が水平方向に連続した形状である、いわゆるプレーナ型活性層を有する半導体レーザに能動MMI構造を適用した場合、放射光除去手段を設けることができなかった。そのため、放射光に起因したビーム形状の悪化が避けられなかった。 In order to produce the synchrotron radiation removing means of Patent Document 2, it is necessary to etch away a part of the active layer. As disclosed in Patent Document 2, this is possible with an InP-based semiconductor laser. On the other hand, in the GaN-based semiconductor laser and the AlGaInP-based semiconductor laser, a part of the active layer cannot be removed by etching from the viewpoint of element reliability caused by a problem inherent in the material system. Therefore, when the active MMI structure is applied to a semiconductor laser having a so-called planar type active layer, such as a GaN-based semiconductor laser or an AlGaInP-based semiconductor laser, in which the active layer has a continuous shape in the horizontal direction, a synchrotron radiation removing means is provided I could not. Therefore, the deterioration of the beam shape due to the emitted light is inevitable.
 また、特許文献2の能動MMI型半導体レーザでは、放射光を誘導する機構がなく、放射光が水平方向にも垂直方向にも拡散しながら伝搬する。そのため、この放射光除去手段により、水平方向に拡散した放射光成分は除去できるが、垂直方向に拡散した放射光成分は除去できない。従って、放射光の除去効果が低いという欠点があった。 Also, the active MMI type semiconductor laser disclosed in Patent Document 2 has no mechanism for guiding the emitted light, and the emitted light propagates while diffusing both in the horizontal direction and in the vertical direction. Therefore, the radiated light component diffused in the horizontal direction can be removed by the radiated light removing means, but the radiated light component diffused in the vertical direction cannot be removed. Therefore, there is a drawback that the effect of removing the emitted light is low.
 本発明は、放射光が除去され、ビーム形状が良好なインナーストライプ型の能動MMI型半導体レーザを提供することを目的とする。 It is an object of the present invention to provide an inner stripe type active MMI type semiconductor laser in which the emitted light is removed and the beam shape is good.
 本発明に係る半導体発光素子は、
 プレーナ型の活性層と、
 前記活性層へ流入する電流を狭窄するための電流阻止層と、
 前記電流阻止層に形成されたストライプ状の開口部により構成されるインナーストライプ型の能動導波路と、を備え、
 前記能動導波路は、
 能動多モード干渉導波路と、
 前記能動多モード干渉導波路から出射端まで延設された第1の単一モード導波路と、
 前記能動多モード干渉導波路から前記第1の単一モード導波路と反対側に延設された第2の単一モード導波路を備え、
 前記第1の単一モード導波路の長さが前記第2の単一モード導波路の長さよりも長いことを特徴とするものである。
The semiconductor light emitting device according to the present invention is
A planar active layer;
A current blocking layer for constricting a current flowing into the active layer;
An inner stripe type active waveguide constituted by a stripe-shaped opening formed in the current blocking layer,
The active waveguide is
An active multimode interference waveguide;
A first single mode waveguide extending from the active multimode interference waveguide to the exit end;
A second single mode waveguide extending from the active multimode interference waveguide opposite to the first single mode waveguide;
The length of the first single mode waveguide is longer than the length of the second single mode waveguide.
 本発明によれば、放射光が除去され、ビーム形状が良好なインナーストライプ型の能動MMI型半導体レーザを提供することができる。 According to the present invention, it is possible to provide an inner stripe type active MMI type semiconductor laser in which the emitted light is removed and the beam shape is good.
本発明の第1の実施の形態に係る半導体レーザの導波路の平面図である。1 is a plan view of a waveguide of a semiconductor laser according to a first embodiment of the present invention. 図1のII-II断面図である。FIG. 2 is a sectional view taken along the line II-II in FIG. 図1のIII-III断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 比較用の半導体レーザにおけるビーム伝搬計算結果である。It is a beam propagation calculation result in the semiconductor laser for a comparison. 比較用の半導体レーザにおける遠視野像計算結果である。It is a far-field image calculation result in the semiconductor laser for a comparison. 実施の形態に係る半導体レーザにおけるビーム伝搬計算結果である。It is a beam propagation calculation result in the semiconductor laser which concerns on embodiment. 実施の形態に係る半導体レーザにおける遠視野像計算結果である。It is a far-field image calculation result in the semiconductor laser which concerns on embodiment. 実施の形態に係る半導体レーザの詳細な断面図である。1 is a detailed cross-sectional view of a semiconductor laser according to an embodiment. 特許文献2の図13に記載の半導体レーザの平面図である。FIG. 14 is a plan view of the semiconductor laser described in FIG. 13 of Patent Document 2. 図9のX-X断面図である。FIG. 10 is a sectional view taken along line XX in FIG. 9. 図9のXI-XI断面図である。FIG. 10 is a sectional view taken along line XI-XI in FIG. 9.
符号の説明Explanation of symbols
101 n型基板
102 n型バッファ層
103 n型クラッド層
104 n側光閉じ込め層
105 プレーナ型活性層
106 キャップ層
107 p側光閉じ込め層
108 電流阻止層
109 導波路
109a 第1の能動基本モード導波路
109b 能動MMI導波路
109c 第2の能動基本モード導波路
110 p型クラッド層
111 p型コンタクト層
112 p側電極
113 n側電極
101 n-type substrate 102 n-type buffer layer 103 n-type cladding layer 104 n-side optical confinement layer 105 planar active layer 106 cap layer 107 p-side optical confinement layer 108 current blocking layer 109 waveguide 109a first active fundamental mode waveguide 109b Active MMI waveguide 109c Second active fundamental mode waveguide 110 p-type cladding layer 111 p-type contact layer 112 p-side electrode 113 n-side electrode
 以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。 Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiment. In addition, for clarity of explanation, the following description and drawings are simplified as appropriate.
実施の形態1
 図1は、本発明の第1の実施の形態に係る半導体レーザの導波路の平面図である。図1に示すように、実施の形態1に係る能動MMI型半導体レーザの導波路109は、第1及び第2の能動基本モード導波路109a、109c及び能動MMI導波路109bを備える。また、導波路109の周囲に電流阻止層108が形成されている。+z方向を前方(光の主な出射側)とする。
Embodiment 1
FIG. 1 is a plan view of a waveguide of a semiconductor laser according to the first embodiment of the present invention. As shown in FIG. 1, the waveguide 109 of the active MMI semiconductor laser according to the first embodiment includes first and second active fundamental mode waveguides 109a and 109c and an active MMI waveguide 109b. A current blocking layer 108 is formed around the waveguide 109. The + z direction is defined as the front (the main light emission side).
 また、図2及び図3に、図1のII-II及びIII-III断面図を示す。図2及び図3に示すように、本実施の形態に係る能動MMI型半導体レーザは、n型クラッド層103、n側光閉じ込め層104、プレーナ型活性層105、p側光閉じ込め層107、電流阻止層108、p型クラッド層110、インナーストライプ構造の能動導波路109を備えている。ここで、電流阻止層108は、能動導波路109以外の電流を阻止することで活性層105における水平方向の電流分布を制御する。同時に、水平方向に屈折率差を与えることで水平方向の光分布を制御する。なお、図2及び図3はあくまで概念図であり、基板や電極などは省略されている。 2 and 3 are sectional views taken along lines II-II and III-III in FIG. As shown in FIGS. 2 and 3, the active MMI semiconductor laser according to the present embodiment includes an n-type cladding layer 103, an n-side optical confinement layer 104, a planar active layer 105, a p-side optical confinement layer 107, a current. A blocking layer 108, a p-type cladding layer 110, and an active waveguide 109 having an inner stripe structure are provided. Here, the current blocking layer 108 controls the current distribution in the horizontal direction in the active layer 105 by blocking currents other than the active waveguide 109. At the same time, the light distribution in the horizontal direction is controlled by giving a refractive index difference in the horizontal direction. 2 and 3 are conceptual diagrams only, and the substrate and electrodes are omitted.
 このようなプレーナ型活性層105を有する半導体レーザでは、図2及び図3において破線矢印で示すように、能動導波路109a、109bの外側にも電流Iが広がるため、能動導波路109a、109b近傍の活性層105では光は吸収されずに伝搬する。しかし、能動導波路109a、109bから遠ざかるに従って電流密度が下がる。そのため、能動導波路109a、109bから十分に離れた活性層105では光は伝搬するに従い減衰し、光吸収領域105aとして機能する。ここで、能動MMI導波路109bから+z側すなわち出射側に位置する第1の能動基本モード導波路109aに導波されずに放射される光が、光吸収領域105aにおいて十分減衰すれば、放射光を効果的に除去することができる。そこで、第1の能動基本モード導波路109aの長さを、能動MMI導波路109bを介して反対側に位置する第2の能動基本モード導波路109cの長さより長くしている。 In the semiconductor laser having such a planar type active layer 105, the current I spreads outside the active waveguides 109a and 109b as shown by broken line arrows in FIGS. 2 and 3, so that the vicinity of the active waveguides 109a and 109b. In the active layer 105, light propagates without being absorbed. However, the current density decreases as the distance from the active waveguides 109a and 109b increases. Therefore, light is attenuated as it propagates in the active layer 105 sufficiently away from the active waveguides 109a and 109b, and functions as a light absorption region 105a. Here, if the light emitted from the active MMI waveguide 109b without being guided to the first active fundamental mode waveguide 109a located on the + z side, that is, the emission side is sufficiently attenuated in the light absorption region 105a, the emitted light Can be effectively removed. Therefore, the length of the first active fundamental mode waveguide 109a is made longer than the length of the second active fundamental mode waveguide 109c located on the opposite side via the active MMI waveguide 109b.
 しかし、第1の能動基本モード導波路109aの長さは、制限なく長くできるものではない。その理由は、第1の能動基本モード導波路109aの長さを長くすると、能動導波路109の全長が長くなり、動作電流の増大といった素子特性の悪化や、素子寸法の増大といったコスト増加につながるからである。このように能動導波路109の長さを決定するには、放射光除去以外の観点も考慮する必要がある。そこで、図1に示すように第1の能動基本モード導波路109aの長さを長くした分、第2の能動基本モード導波路109cの長さを短くする。これにより、能動導波路109の全長を変えずに、第1の能動基本モード導波路109aを長くすることができる。従って、動作電流の増大や素子寸法の増大などを招くことなく、放射光の除去効果を高めることができる。 However, the length of the first active fundamental mode waveguide 109a cannot be increased without limitation. The reason is that if the length of the first active fundamental mode waveguide 109a is increased, the total length of the active waveguide 109 is increased, leading to deterioration in device characteristics such as an increase in operating current and an increase in cost such as increase in device dimensions. Because. Thus, in order to determine the length of the active waveguide 109, it is necessary to consider other aspects than the removal of the emitted light. Therefore, as shown in FIG. 1, the length of the second active fundamental mode waveguide 109c is shortened by the length of the first active fundamental mode waveguide 109a. Thereby, the first active fundamental mode waveguide 109a can be lengthened without changing the overall length of the active waveguide 109. Therefore, the radiation removal effect can be enhanced without increasing the operating current or increasing the element size.
 さらに、プレーナ型活性層105は水平方向に連続した形状である。そのため、放射光に対しては垂直方向の光ガイド機能を果たし、放射光は垂直方向に拡散することなく、活性層105に沿って光吸収領域105aへ向かって伝搬する。従って、放射光の全ての成分を確実に光吸収領域105aへと導くことができ、放射光の除去効果を大幅に高めることが可能となる。 Furthermore, the planar type active layer 105 has a continuous shape in the horizontal direction. Therefore, it performs a light guide function in the vertical direction with respect to the emitted light, and the emitted light propagates along the active layer 105 toward the light absorption region 105a without diffusing in the vertical direction. Therefore, all components of the emitted light can be reliably guided to the light absorption region 105a, and the effect of removing the emitted light can be greatly enhanced.
 また、能動MMI導波路109bの入出射端で自己結像されない全ての非導波光が光吸収領域105aへ導かれるので、あらゆる放射光を除去することができる。例えば、能動MMI導波路109bが作製誤差を持つ場合に基本モード光に対して生ずる放射光だけでなく、能動MMI導波路109bを奇モード光の自己結像が許容されないよう作製した場合に1次モード光に対して生ずる放射光をも除去することが可能である。 Further, since all the non-guided light that is not self-imaged at the input / output end of the active MMI waveguide 109b is guided to the light absorption region 105a, any radiated light can be removed. For example, when the active MMI waveguide 109b has a manufacturing error, not only the radiation generated with respect to the fundamental mode light but also the active MMI waveguide 109b is manufactured so that the self-imaging of the odd mode light is not allowed. It is also possible to remove the emitted light generated with respect to the mode light.
 次に、本発明の効果を、ビーム伝搬法(Beam Propagation Method;BPM)により検証した結果を示す。図4は、比較用の能動MMI型半導体レーザについて、+z方向に伝搬する光の強度分布を計算した結果である。比較用の能動MMI型半導体レーザは、第1の能動基本モード導波路9a、第2の能動基本モード導波路9c、能動MMI導波路9bからなる能動導波路9を有す。ここで、第1の能動基本モード導波路9aの長さと第2の能動基本モード導波路9cの長さとが等しい。能動MMI導波路9bから第1の能動導波路9aに導波されずに放射された光が、能動導波路9の前方端にまで到達している。図5は、能動導波路9の前方端から出射されたビームの遠視野像の計算結果であり、放射光の影響でビーム形状に乱れを生じている。 Next, the results of verifying the effect of the present invention by the beam propagation method (BPM) will be shown. FIG. 4 shows the result of calculating the intensity distribution of light propagating in the + z direction for a comparative active MMI semiconductor laser. The comparative active MMI type semiconductor laser has an active waveguide 9 including a first active fundamental mode waveguide 9a, a second active fundamental mode waveguide 9c, and an active MMI waveguide 9b. Here, the length of the first active fundamental mode waveguide 9a is equal to the length of the second active fundamental mode waveguide 9c. Light emitted from the active MMI waveguide 9 b without being guided to the first active waveguide 9 a reaches the front end of the active waveguide 9. FIG. 5 is a calculation result of a far-field image of the beam emitted from the front end of the active waveguide 9, and the beam shape is disturbed by the influence of the radiated light.
 一方、図6は、本実施の形態に係る能動MMI型半導体レーザについて、+z方向に伝搬する光の強度分布を計算した結果である。本実施の形態に係る能動MMI型半導体レーザは、第1の能動基本モード導波路109a、第2の能動基本モード導波路109c、能動MMI導波路109bからなる能動導波路109を有す。ここで、第1の能動基本モード導波路109aの長さが第2の能動基本モード導波路109cの長さよりも長い。第1の能動基本モード導波路109aの長さを長くしたことで、能動MMI導波路109bから第1の能動基本モード導波路109aに導波されずに放射された光の減衰が大きくなり、能動導波路109の前方端では放射光がほとんど現れていない。図7は、能動導波路109の前方端から出射されたビームの遠視野像の計算結果である。出射ビームに放射光成分がほとんど含まれないため、良好なビーム形状が得られる。ここで、第1の能動基本モード導波路109aを長くした分、第2の能動基本モード導波路109cを短くした。そのため、能動導波路109の全長は、図4における能動導波路9の全長と等しい。従って、動作電流の増大や素子寸法の増大などを招くことなく、放射光の除去効果のみを高めることが可能となる。 On the other hand, FIG. 6 shows the result of calculating the intensity distribution of light propagating in the + z direction for the active MMI semiconductor laser according to the present embodiment. The active MMI semiconductor laser according to the present embodiment has an active waveguide 109 including a first active fundamental mode waveguide 109a, a second active fundamental mode waveguide 109c, and an active MMI waveguide 109b. Here, the length of the first active fundamental mode waveguide 109a is longer than the length of the second active fundamental mode waveguide 109c. Increasing the length of the first active fundamental mode waveguide 109a increases the attenuation of light emitted without being guided from the active MMI waveguide 109b to the first active fundamental mode waveguide 109a. Little emitted light appears at the front end of the waveguide 109. FIG. 7 shows the calculation result of the far-field image of the beam emitted from the front end of the active waveguide 109. Since the emitted beam contains almost no radiation component, a good beam shape can be obtained. Here, the second active fundamental mode waveguide 109c is shortened by the length of the first active fundamental mode waveguide 109a. Therefore, the total length of the active waveguide 109 is equal to the total length of the active waveguide 9 in FIG. Therefore, it is possible to enhance only the effect of removing the emitted light without causing an increase in operating current or an increase in element size.
 図8は、図2をさらに詳細にしたものである。n型基板101上に、n型バッファ層102、n型クラッド層103、n側光閉じ込め層104、プレーナ型活性層105、キャップ層106、p側光閉じ込め層107、及び電流阻止層108が、この順に積層されている。電流阻止層108は、ストライプ状に除去された開口部をそなえ、この開口部が能動基本モード導波路109aを構成している。電流阻止層108上及び開口部である能動基本モード導波路109a上には、p型クラッド層110及びp型コンタクト層111が、この順に積層されている。また、p型コンタクト層111の上面にp側電極112が設けられ、n型基板101の下面にn側電極113が設けられている。 FIG. 8 is a more detailed view of FIG. On the n-type substrate 101, an n-type buffer layer 102, an n-type cladding layer 103, an n-side optical confinement layer 104, a planar active layer 105, a cap layer 106, a p-side optical confinement layer 107, and a current blocking layer 108 are provided. They are stacked in this order. The current blocking layer 108 has an opening removed in a stripe shape, and this opening constitutes an active fundamental mode waveguide 109a. A p-type cladding layer 110 and a p-type contact layer 111 are stacked in this order on the current blocking layer 108 and the active fundamental mode waveguide 109a which is an opening. A p-side electrode 112 is provided on the upper surface of the p-type contact layer 111, and an n-side electrode 113 is provided on the lower surface of the n-type substrate 101.
 n型基板101は、例えばGaN基板からなる。n型バッファ層102は、例えば厚さ1μmのGaNからなる。n型クラッド層103は、例えば厚さ2μmのAlGaNからなる。n側光閉じ込め層104は、例えば厚さ0.1μmのGaNからなる。プレーナ型活性層105は、例えば厚さ3nmのInGaN井戸層と厚さ4nmのInGaN障壁層とからなる多重量子井戸構造を有する。キャップ層106は、例えば厚さ10nmのAlGaNからなる。p側光閉じ込め層107は、例えば厚さ0.1μmのGaNからなる。電流阻止層108は、例えば厚さ0.1μmのAlNからなり、水平方向の屈折率差により光分布制御層としての機能も兼ね備える。p型クラッド層110は、例えば厚さ2.5nmのGaNと厚さ2.5nmのAlGaNからなる130周期の超格子構造で構成される。p型コンタクト層111は、例えば厚さ0.1μmのGaNからなる。n型不純物は、例えばSiであり、p型不純物は、例えばMgである。 The n-type substrate 101 is made of, for example, a GaN substrate. The n-type buffer layer 102 is made of, for example, GaN having a thickness of 1 μm. The n-type cladding layer 103 is made of, for example, AlGaN having a thickness of 2 μm. The n-side optical confinement layer 104 is made of GaN having a thickness of 0.1 μm, for example. The planar active layer 105 has a multiple quantum well structure including, for example, an InGaN well layer having a thickness of 3 nm and an InGaN barrier layer having a thickness of 4 nm. The cap layer 106 is made of, for example, AlGaN having a thickness of 10 nm. The p-side optical confinement layer 107 is made of, for example, GaN having a thickness of 0.1 μm. The current blocking layer 108 is made of AlN having a thickness of 0.1 μm, for example, and also has a function as a light distribution control layer due to a difference in refractive index in the horizontal direction. The p-type cladding layer 110 has a 130-period superlattice structure made of, for example, GaN with a thickness of 2.5 nm and AlGaN with a thickness of 2.5 nm. The p-type contact layer 111 is made of, for example, GaN having a thickness of 0.1 μm. The n-type impurity is, for example, Si, and the p-type impurity is, for example, Mg.
 各々の導波路の寸法は、例えば以下のように決められる。能動MMI導波路109bの寸法は、例えば非特許文献1に記載のMMI理論を参照して決められる。このMMI理論によって導かれるビート長Lπは式(1)で与えられる。
Figure JPOXMLDOC01-appb-M000001
 ここで、WはMMI導波路の幅、nは導波路内の等価屈折率、nは導波路外の等価屈折率、λは導波光の自由空間波長である。σは、TEモードのとき0、TMモードのとき1である。MMI導波路の長さLが式(2)を満たすとき、MMI導波路は1×N導波路として動作する。
Figure JPOXMLDOC01-appb-M000002
 また、式(3)を満たすとき、MMI導波路はN×N導波路として動作する。
Figure JPOXMLDOC01-appb-M000003
The dimensions of each waveguide are determined as follows, for example. The dimensions of the active MMI waveguide 109b are determined with reference to the MMI theory described in Non-Patent Document 1, for example. The beat length L π derived from this MMI theory is given by equation (1).
Figure JPOXMLDOC01-appb-M000001
Here, W is MMI waveguide width, n r is the equivalent refractive index of the waveguide, n c is the waveguide outside of the equivalent refractive index, lambda 0 is the free space wavelength of the guided light. σ is 0 in the TE mode and 1 in the TM mode. When the length L of the MMI waveguide satisfies the formula (2), the MMI waveguide operates as a 1 × N waveguide.
Figure JPOXMLDOC01-appb-M000002
Further, when the expression (3) is satisfied, the MMI waveguide operates as an N × N waveguide.
Figure JPOXMLDOC01-appb-M000003
 この理論を参照すると、MMI導波路の両端部で単一横モード光が得られるように、MMI導波路を設計することが可能である。例えば上記実施の形態においては、能動MMI導波路109bの寸法は、幅が2~4μm程度の場合、長さは50~150μm、幅が4~5μm程度の場合、長さは150~250μm、幅が5~6μm程度の場合、長さは250~350μm、とすると、この能動MMI導波路109bの両端部では単一横モード光が得られる。通常の多モード導波路の両端部では多モード光しか得られないのとは大きく異なる。 Referring to this theory, it is possible to design the MMI waveguide so that single transverse mode light is obtained at both ends of the MMI waveguide. For example, in the above embodiment, the dimensions of the active MMI waveguide 109b are as follows: when the width is about 2 to 4 μm, the length is 50 to 150 μm, when the width is about 4 to 5 μm, the length is 150 to 250 μm, and the width Is about 5 to 6 μm, and the length is 250 to 350 μm, single transverse mode light is obtained at both ends of the active MMI waveguide 109b. This is very different from the case where only multimode light is obtained at both ends of a normal multimode waveguide.
 第1及び第2の能動基本モード導波路109a、109cの幅は、能動MMI導波路109bの両端部で得た単一横モード光を安定して導波できるように決められる。ここでは、例えば各々1~2μmである。また、能動導波路109の全長は、所望の素子特性や製造コストなどの観点から決められる。例えば600~800μmである。 The widths of the first and second active fundamental mode waveguides 109a and 109c are determined so that single transverse mode light obtained at both ends of the active MMI waveguide 109b can be guided stably. Here, for example, it is 1 to 2 μm. Further, the total length of the active waveguide 109 is determined from the viewpoints of desired element characteristics and manufacturing cost. For example, it is 600 to 800 μm.
 第1の能動基本モード導波路109a及び第2の能動基本モード導波路109cの長さは、第1の能動基本モード導波路109aが第2の能動基本モード導波路109cよりも長くなるように決められる。ここでは、例えば能動MMI導波路109bの長さが200μm、能動導波路109の全長が600μmのとき、第1の能動基本モード導波路109aの長さは250~350μm、第2の能動基本モード導波路109cの長さは50~150μmであることが好ましい。 The lengths of the first active fundamental mode waveguide 109a and the second active fundamental mode waveguide 109c are determined so that the first active fundamental mode waveguide 109a is longer than the second active fundamental mode waveguide 109c. It is done. Here, for example, when the length of the active MMI waveguide 109b is 200 μm and the total length of the active waveguide 109 is 600 μm, the length of the first active fundamental mode waveguide 109a is 250 to 350 μm, and the second active fundamental mode guide is The length of the waveguide 109c is preferably 50 to 150 μm.
 なお、放射光の強度は、能動MMI導波路109bの幅が広く導波モード数が多くなるほど、強くなる傾向にある。その理由は、放射光は、導波光の一部が能動MMI導波路109bの入出射端で自己結像されず、非導波光として導波路の外へ放射される光であるから、能動MMI導波路109bにおける導波モード数が多くなるに従い、自己結像され得ない確率が高くなるためである。従って、能動MMI導波路109bの幅が広くなるほど、放射光除去効果を高めるために第1の能動基本モード導波路109aの長さを長くするのが好ましい。我々の検討では、例えば、1×1-MMI条件を満たす最短の長さL以上にすることで、良好なビーム形状を得るのに十分な放射光除去効果が得られることがわかった。Lは、導波路内外の等価屈折率の差が十分大きい場合、式(1)と式(2)から式(4)として近似される。
Note that the intensity of the emitted light tends to increase as the width of the active MMI waveguide 109b increases and the number of waveguide modes increases. The reason for this is that the emitted light is a part of the guided light that is not self-imaged at the input and output ends of the active MMI waveguide 109b, but is emitted outside the waveguide as non-guided light. This is because as the number of waveguide modes in the waveguide 109b increases, the probability that self-imaging cannot be performed increases. Therefore, it is preferable to increase the length of the first active fundamental mode waveguide 109a as the width of the active MMI waveguide 109b becomes wider in order to enhance the effect of removing the emitted light. In our study, it has been found that, for example, by setting the length to the minimum length L 0 that satisfies the 1 × 1-MMI condition, a sufficient radiation removal effect for obtaining a good beam shape can be obtained. L 0 is approximated as Equation (4) from Equation (1) and Equation (2) when the difference in equivalent refractive index inside and outside the waveguide is sufficiently large.
 本発明では、能動導波路109の一部がMMI導波路109bからなる能動MMI型半導体レーザにおいて、水平方向に連続したプレーナ型活性層105を有し、能動MMI導波路109bから能動導波路109の前方端までの長さが、能動MMI導波路109bから能動導波路109の後方端までの長さよりも長い。すなわち、出射側に位置する第1の能動基本モード導波路109aの長さが、能動MMI導波路109bを介して反対側に位置する第2の能動基本モード導波路109cの長さよりも長い。これにより、能動MMI導波路109bから導波されずに放射される光を効率良く除去することが可能となり、良好なビーム形状が得られる。 In the present invention, an active MMI semiconductor laser in which a part of the active waveguide 109 is an MMI waveguide 109b has a planar type active layer 105 continuous in the horizontal direction, and the active MMI waveguide 109b to the active waveguide 109 The length to the front end is longer than the length from the active MMI waveguide 109b to the rear end of the active waveguide 109. That is, the length of the first active fundamental mode waveguide 109a located on the output side is longer than the length of the second active fundamental mode waveguide 109c located on the opposite side via the active MMI waveguide 109b. As a result, light emitted without being guided from the active MMI waveguide 109b can be efficiently removed, and a good beam shape can be obtained.
 次に、図8を参照して第1の実施の形態に係る半導体レーザの製造方法について説明する。素子構造の製造には、300hPaの減圧MOVPE装置を用いる。キャリアガスには水素と窒素の混合ガスを用い、Ga、Al、Inソースとして、それぞれトリメチルガリウム、トリメチルアルミニウム、トリメチルインジウムを用いる。n型不純物としてシラン、p型不純物としてビスシクロペンタジエニルマグネシウムを用いる。 Next, a manufacturing method of the semiconductor laser according to the first embodiment will be described with reference to FIG. A 300 hPa vacuum MOVPE apparatus is used for manufacturing the element structure. A carrier gas is a mixed gas of hydrogen and nitrogen, and trimethylgallium, trimethylaluminum, and trimethylindium are used as Ga, Al, and In sources, respectively. Silane is used as the n-type impurity, and biscyclopentadienyl magnesium is used as the p-type impurity.
 n型GaN基板101を成長装置に投入後、アンモニアを供給しながら基板を昇温し、成長温度まで達した時点で成長を開始する。1回目の成長では、n型GaNバッファ層102、n型AlGaNクラッド層103、n側GaN光閉じ込め層104、InGaN井戸層とInGaN障壁層からなる多重量子井戸構造を有する活性層105、AlGaNキャップ層106、p側GaN光閉じ込め層107、AlN電流阻止層108を形成する。成長温度は、例えばAlN電流阻止層108は200~800℃、活性層105は800℃、それ以外は1100℃とする。AlN電流阻止層108は低温で成長するため、1回目の成長終了時はアモルファス状である。 After introducing the n-type GaN substrate 101 into the growth apparatus, the substrate is heated while supplying ammonia, and the growth is started when the growth temperature is reached. In the first growth, an n-type GaN buffer layer 102, an n-type AlGaN cladding layer 103, an n-side GaN optical confinement layer 104, an active layer 105 having a multiple quantum well structure comprising an InGaN well layer and an InGaN barrier layer, an AlGaN cap layer 106, a p-side GaN optical confinement layer 107, and an AlN current blocking layer 108 are formed. The growth temperature is, for example, 200 to 800 ° C. for the AlN current blocking layer 108, 800 ° C. for the active layer 105, and 1100 ° C. otherwise. Since the AlN current blocking layer 108 is grown at a low temperature, it is amorphous at the end of the first growth.
 その上にSiO膜を堆積し、通常のフォトリソグラフィー技術を用いて、ストライプ状の開口部を有するSiOマスクを形成する。次に、燐酸と硫酸の混合液を50~200℃に保持してエッチング液とし、AlN電流阻止層108にストライプ状の能動導波路109を形成する。この時、アモルファス状のAlNは容易にエッチングされ、単結晶のGaNはエッチングが困難であるため、選択性が高く制御性の良好なエッチングがなされる。また、能動導波路109を構成する各導波路109a、109b、109cについては、フォトリソグラフィー用マスクの形状を適切に設定することにより、所望の形状を簡便かつ正確に形成することができる。 A SiO 2 film is deposited thereon, and a SiO 2 mask having stripe-shaped openings is formed using a normal photolithography technique. Next, a mixed solution of phosphoric acid and sulfuric acid is maintained at 50 to 200 ° C. to form an etching solution, and a stripe-shaped active waveguide 109 is formed in the AlN current blocking layer 108. At this time, amorphous AlN is easily etched, and single crystal GaN is difficult to etch. Therefore, etching with high selectivity and good controllability is performed. Further, for each of the waveguides 109a, 109b, and 109c constituting the active waveguide 109, a desired shape can be easily and accurately formed by appropriately setting the shape of the photolithography mask.
 次に、再び成長装置に投入後、アンモニアを供給しながら基板を昇温し、成長温度まで達した時点で2回目の成長を開始する。この時、AlN電流阻止層108は、基板の昇温過程で単結晶化が進む。次いで、p型AlGaN/GaN超格子クラッド層110、p型GaNコンタクト層111を形成する。その後、上面にp側電極112、下面にn側電極113を形成する。 Next, the substrate is again put into the growth apparatus, the substrate is heated while supplying ammonia, and the second growth is started when the growth temperature is reached. At this time, the AlN current blocking layer 108 is single-crystallized in the process of raising the temperature of the substrate. Next, a p-type AlGaN / GaN superlattice cladding layer 110 and a p-type GaN contact layer 111 are formed. Thereafter, the p-side electrode 112 is formed on the upper surface, and the n-side electrode 113 is formed on the lower surface.
 上記製造方法は、電流や光が実質的に分布する範囲で活性層105をエッチング除去する必要がなく、GaN系やAlGaInP系などの材料系に対しても適用可能である。また、電流阻止層108の材料や層厚、2回目の昇温条件などを適切に制御することで、水平方向に連続する活性層105のうち、導波路109の下に位置する領域は良好な結晶性を維持したまま、電流阻止層108の下に位置する領域のみ結晶性を低下させることができる。これにより、光吸収領域における光吸収を大きくすることができ、放射光の除去効果をより高めることが可能となる。 The above manufacturing method does not require etching removal of the active layer 105 within a range in which current and light are substantially distributed, and can be applied to a material system such as a GaN system or an AlGaInP system. Further, by appropriately controlling the material and thickness of the current blocking layer 108, the second temperature rise condition, etc., the region located under the waveguide 109 in the active layer 105 continuous in the horizontal direction is good. The crystallinity can be lowered only in the region located under the current blocking layer 108 while maintaining the crystallinity. Thereby, the light absorption in a light absorption area | region can be enlarged, and it becomes possible to improve the removal effect of radiated light more.
 なお、電流阻止層108の組成はAlInGa1-x-yN(0.4≦x≦1、0≦y≦0.6、0≦x+y≦1)であることが好ましい。これにより、電流分布と光分布を制御する効果を十分に得ることができる。より詳細には、電流阻止層のバンドギャップが小さくなるとキャリアに対するエネルギー障壁が小さくなり、レーザ発振に寄与しない電流成分が指数関数的に増大し、動作電流が急激に増大する。また、電流阻止層の屈折率が高くなると水平方向の光閉じ込め効果が弱くなり、光の水平横モード安定性が急激に悪化する。これらの影響を抑制し、電流分布と光分布を良好に制御するには、電流阻止層108の組成をAlInGa1-x-yN(0.4≦x≦1、0≦y≦0.6、0≦x+y≦1)とするのが好ましい。 Note that the composition of the current blocking layer 108 is preferably Al x In y Ga 1-xy N (0.4 ≦ x ≦ 1, 0 ≦ y ≦ 0.6, 0 ≦ x + y ≦ 1). Thereby, the effect of controlling the current distribution and the light distribution can be sufficiently obtained. More specifically, when the band gap of the current blocking layer is reduced, the energy barrier against carriers is reduced, current components that do not contribute to laser oscillation increase exponentially, and the operating current increases rapidly. Further, when the refractive index of the current blocking layer is increased, the light confinement effect in the horizontal direction is weakened, and the horizontal transverse mode stability of light is rapidly deteriorated. In order to suppress these influences and control the current distribution and the light distribution well, the composition of the current blocking layer 108 is Al x In y Ga 1-xy N (0.4 ≦ x ≦ 1, 0 ≦ y ≦ 0.6, 0 ≦ x + y ≦ 1) is preferable.
 上記実施の形態、及び、上記製造方法は例示であり、様々な変形例が可能であること、また、そうした変形例も本発明の範囲にあることは当業者に理解され得るところである。例えば、プレーナ型活性層105は、素子全体にわたって連続である必要はなく、電流や光が実質的に分布しない領域において活性層が途切れていても良い。また、プレーナ型活性層105は、電流や光が実質的に分布する領域において連続であれば平坦でなくとも良く、段差や凹凸があっても良い。 The above embodiment and the above manufacturing method are exemplifications, and various modifications are possible, and those skilled in the art can understand that such modifications are also within the scope of the present invention. For example, the planar active layer 105 does not need to be continuous over the entire element, and the active layer may be interrupted in a region where current and light are not substantially distributed. The planar active layer 105 may not be flat as long as it is continuous in a region where current and light are substantially distributed, and may have a step or an unevenness.
 また、第1の能動基本モード導波路109aと能動MMI導波路109bとの間、あるいは、第2の能動基本モード導波路109cと能動MMI導波路109bとの間に、各々の導波路間の結合損失を低減するための能動テーパー導波路を含んでも良い。ここで、第1の能動基本モード導波路109aと能動MMI導波路109bの間に設けられた能動テーパー導波路の長さの分だけ、第1の能動基本モード導波路109aを長くしたのと同等の放射光除去効果の向上が得られる。 In addition, coupling between the first active fundamental mode waveguide 109a and the active MMI waveguide 109b, or between the second active fundamental mode waveguide 109c and the active MMI waveguide 109b. An active tapered waveguide for reducing loss may be included. Here, the length of the first active fundamental mode waveguide 109a is equal to the length of the active taper waveguide provided between the first active fundamental mode waveguide 109a and the active MMI waveguide 109b. The effect of removing the emitted light can be improved.
 また、非特許文献1に記載のMMI理論を参照すると、能動MMI導波路109bを奇モード光の自己結像が許容されないように設計することが可能である。この場合、第1の能動基本モード導波路109a及び第2の能動基本モード導波路109cは、基本モード光だけでなく、1次モード光の導波が許容されるように設計しても、単一横モード動作を実現することができる。 Further, referring to the MMI theory described in Non-Patent Document 1, it is possible to design the active MMI waveguide 109b so that self-imaging of odd mode light is not allowed. In this case, even if the first active fundamental mode waveguide 109a and the second active fundamental mode waveguide 109c are designed so that not only fundamental mode light but also primary mode light can be guided, the single active fundamental mode waveguide 109a and the second active fundamental mode waveguide 109c One transverse mode operation can be realized.
 また、能動導波路109の長さは、半導体発光素子の全素子長より短くても良い。例えば、能動導波路109の片端あるいは両端に電流非注入領域を設けても良く、他の受動導波路が接続されていても良い。さらに、本発明は半導体レーザ以外の半導体発光素子にも適用でき、例えば、半導体光増幅器にも適用することが可能である。 Further, the length of the active waveguide 109 may be shorter than the total element length of the semiconductor light emitting element. For example, a current non-injection region may be provided at one end or both ends of the active waveguide 109, and another passive waveguide may be connected. Furthermore, the present invention can be applied to a semiconductor light emitting device other than a semiconductor laser, for example, a semiconductor optical amplifier.
 この出願は、2008年3月28日に出願された日本出願特願2008-085603を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2008-085603 filed on Mar. 28, 2008, the entire disclosure of which is incorporated herein.
 本発明は、半導体発光素子及びその製造方法に広く適用することができる。 The present invention can be widely applied to semiconductor light emitting devices and manufacturing methods thereof.

Claims (7)

  1.  プレーナ型の活性層と、
     前記活性層へ流入する電流を狭窄するための電流阻止層と、
     前記電流阻止層のストライプ状の開口部により構成されるインナーストライプ型の能動導波路と、を備え、
     前記能動導波路は、
     能動多モード干渉導波路と、
     前記能動多モード干渉導波路から出射端まで延設された第1の単一モード導波路と、
     前記能動多モード干渉導波路から前記第1の単一モード導波路と反対側に延設された第2の単一モード導波路を備え、
     前記第1の単一モード導波路の長さが前記第2の単一モード導波路の長さよりも長い半導体発光素子。
    A planar active layer;
    A current blocking layer for constricting a current flowing into the active layer;
    An inner stripe-type active waveguide constituted by a stripe-shaped opening of the current blocking layer,
    The active waveguide is
    An active multimode interference waveguide;
    A first single mode waveguide extending from the active multimode interference waveguide to the exit end;
    A second single mode waveguide extending from the active multimode interference waveguide opposite to the first single mode waveguide;
    A semiconductor light emitting device in which a length of the first single mode waveguide is longer than a length of the second single mode waveguide.
  2.  前記第1の単一モード導波路を導波する光の自由空間波長をλ(μm)、前記能動多モード干渉導波路の幅をW(μm)、前記能動多モード干渉導波路の等価屈折率をnとしたとき、
     前記第1の単一モード導波路の長さが、n×W/λ(μm)以上であることを特徴とする請求項1に記載の半導体発光素子。
    The free space wavelength of light guided through the first single-mode waveguide is λ (μm), the width of the active multimode interference waveguide is W (μm), and the equivalent refractive index of the active multimode interference waveguide Where n is
    The length of the first single mode waveguide, n × W 2 / λ semiconductor light-emitting device according to claim 1, characterized in that it ([mu] m) or more.
  3.  前記第1の単一モード導波路の長さが、前記能動多モード干渉導波路の長さ以上であることを特徴とする請求項1又は2に記載の半導体発光素子。 3. The semiconductor light emitting element according to claim 1, wherein a length of the first single mode waveguide is equal to or longer than a length of the active multimode interference waveguide.
  4.  前記活性層はIII族窒化物半導体からなり、
     前記電流阻止層はAlInGa1-x-yN(0.4≦x≦1、0≦y≦0.6、0≦x+y≦1)からなることを特徴とする請求項1~3のいずれか一項に記載の半導体発光素子。
    The active layer is made of a group III nitride semiconductor,
    The current blocking layer is made of Al x In y Ga 1-xy N (0.4 ≦ x ≦ 1, 0 ≦ y ≦ 0.6, 0 ≦ x + y ≦ 1). 4. The semiconductor light emitting device according to claim 3.
  5.  前記能動多モード干渉導波路と第1の単一モード導波路及び/又は第2の単一モード導波路との間に能動テーパー導波路を備えることを特徴とする請求項1~4のいずれか一項に記載の半導体発光素子。 An active tapered waveguide is provided between the active multimode interference waveguide and the first single-mode waveguide and / or the second single-mode waveguide. The semiconductor light emitting device according to one item.
  6.  前記活性層のうち前記電流阻止層の下に位置する領域の結晶性が、前記活性層のうち前記能動導波路の下に位置する領域の結晶性よりも低いことを特徴とする請求項1~5のいずれか一項に記載の半導体発光素子。 The crystallinity of a region of the active layer located under the current blocking layer is lower than the crystallinity of a region of the active layer located under the active waveguide. The semiconductor light emitting device according to any one of 5.
  7.  プレーナ型の活性層を形成し、
     前記活性層へ流入する電流を狭窄するための電流阻止層を形成し、
     前記電流阻止層のストライプ状の開口部により構成されるインナーストライプ型の能動導波路を形成し、
     前記能動導波路の形成では、
     能動多モード干渉導波路、前記能動多モード干渉導波路から出射端まで延設された第1の単一モード導波路、
    及び前記能動多モード干渉導波路から前記第1の単一モード導波路と反対側に延設された第2の単一モード導波路を形成し、
     前記第1の単一モード導波路の長さは、前記第2の単一モード導波路の長さよりも長い、ことを特徴とする半導体発光素子の製造方法。
    Forming a planar active layer,
    Forming a current blocking layer for constricting the current flowing into the active layer;
    Forming an inner stripe type active waveguide constituted by a stripe-shaped opening of the current blocking layer;
    In the formation of the active waveguide,
    An active multimode interference waveguide, a first single mode waveguide extending from the active multimode interference waveguide to the output end;
    And forming a second single mode waveguide extending from the active multimode interference waveguide opposite to the first single mode waveguide;
    The length of the first single mode waveguide is longer than the length of the second single mode waveguide.
PCT/JP2009/050281 2008-03-28 2009-01-13 Semiconductor light-emitting element and method for fabricating the element WO2009119131A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-085603 2008-03-28
JP2008085603 2008-03-28

Publications (1)

Publication Number Publication Date
WO2009119131A1 true WO2009119131A1 (en) 2009-10-01

Family

ID=41113341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050281 WO2009119131A1 (en) 2008-03-28 2009-01-13 Semiconductor light-emitting element and method for fabricating the element

Country Status (1)

Country Link
WO (1) WO2009119131A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825194A (en) * 2014-03-07 2014-05-28 中国科学院半导体研究所 Single-mode photonic crystal edge-emitting semiconductor laser device
CN103915758A (en) * 2014-03-26 2014-07-09 中国科学院上海微系统与信息技术研究所 Terahertz quantum cascade laser of multiple-mode interface structure and manufacturing method thereof
CN104901159A (en) * 2015-05-27 2015-09-09 中国科学院长春光学精密机械与物理研究所 Multi-waveguide integrated resonance semiconductor laser
JP7453650B2 (en) 2020-03-27 2024-03-21 株式会社デンソー semiconductor light emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323782A (en) * 1999-05-13 2000-11-24 Nec Corp Semiconductor laser and semiconductor optical amplifier and manufacture thereof
JP2003258368A (en) * 2002-03-06 2003-09-12 Fujitsu Ltd Semiconductor optical element
WO2005060058A1 (en) * 2003-12-18 2005-06-30 Nec Corporation Semiconductor laser and its manufacturing method
WO2007037057A1 (en) * 2005-09-28 2007-04-05 Nec Corporation Group iii nitride semiconductor light emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323782A (en) * 1999-05-13 2000-11-24 Nec Corp Semiconductor laser and semiconductor optical amplifier and manufacture thereof
JP2003258368A (en) * 2002-03-06 2003-09-12 Fujitsu Ltd Semiconductor optical element
WO2005060058A1 (en) * 2003-12-18 2005-06-30 Nec Corporation Semiconductor laser and its manufacturing method
WO2007037057A1 (en) * 2005-09-28 2007-04-05 Nec Corporation Group iii nitride semiconductor light emitting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825194A (en) * 2014-03-07 2014-05-28 中国科学院半导体研究所 Single-mode photonic crystal edge-emitting semiconductor laser device
CN103915758A (en) * 2014-03-26 2014-07-09 中国科学院上海微系统与信息技术研究所 Terahertz quantum cascade laser of multiple-mode interface structure and manufacturing method thereof
CN104901159A (en) * 2015-05-27 2015-09-09 中国科学院长春光学精密机械与物理研究所 Multi-waveguide integrated resonance semiconductor laser
JP7453650B2 (en) 2020-03-27 2024-03-21 株式会社デンソー semiconductor light emitting device

Similar Documents

Publication Publication Date Title
JP5261857B2 (en) Edge-emitting semiconductor laser and semiconductor laser module
JP4983790B2 (en) Optical semiconductor device and manufacturing method thereof
CN110402524B (en) Semiconductor laser device, semiconductor laser module, and laser light source system for welding
KR100243417B1 (en) High power semiconductor laser with ridge waveguide structure
JP3244115B2 (en) Semiconductor laser
US7466736B2 (en) Semiconductor laser diode, semiconductor optical amplifier, and optical communication device
JP5247444B2 (en) Semiconductor laser device
WO2005088791A1 (en) Semiconductor laser couplable to single mode optical fiber at high coupling efficiency
US20160322787A1 (en) Optical semiconductor element and method of manufacturing the same
US10439361B2 (en) Semiconductor laser device and laser light irradiation apparatus
JP3468612B2 (en) Semiconductor laser device
WO2009119131A1 (en) Semiconductor light-emitting element and method for fabricating the element
US8929692B2 (en) Integrated optical device and manufacturing method of the same
EP1416598A2 (en) Semiconductor light emitting device in which high-power light output can be obtained with a simple structure
JP5579096B2 (en) Semiconductor laser device and communication system
JP2009206463A (en) Semiconductor light-emitting element
JP2010021430A (en) Semiconductor photonic element
JP4953392B2 (en) Optical semiconductor device
JP4309636B2 (en) Semiconductor laser and optical communication device
US8731018B2 (en) Semiconductor laser
JP5163355B2 (en) Semiconductor laser device
JP2004103679A (en) Semiconductor light emitting element and semiconductor light emitting element module
JP2008034886A (en) Semiconductor laser
WO2023233525A1 (en) Optical transmitter
WO2021199297A1 (en) Optical waveguide, method for producing optical waveguide, and optical semiconductor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09726349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP