WO2009118825A1 - Gas chromatograph - Google Patents

Gas chromatograph Download PDF

Info

Publication number
WO2009118825A1
WO2009118825A1 PCT/JP2008/055542 JP2008055542W WO2009118825A1 WO 2009118825 A1 WO2009118825 A1 WO 2009118825A1 JP 2008055542 W JP2008055542 W JP 2008055542W WO 2009118825 A1 WO2009118825 A1 WO 2009118825A1
Authority
WO
WIPO (PCT)
Prior art keywords
insert
injector
sample
region
base
Prior art date
Application number
PCT/JP2008/055542
Other languages
French (fr)
Japanese (ja)
Inventor
尚弘 西本
正樹 叶井
正憲 西野
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2010505066A priority Critical patent/JP4840532B2/en
Priority to PCT/JP2008/055542 priority patent/WO2009118825A1/en
Publication of WO2009118825A1 publication Critical patent/WO2009118825A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0241Drop counters; Drop formers
    • B01L3/0268Drop counters; Drop formers using pulse dispensing or spraying, eg. inkjet type, piezo actuated ejection of droplets from capillaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00378Piezo-electric or ink jet dispensers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • B01L2300/0838Capillaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0433Moving fluids with specific forces or mechanical means specific forces vibrational forces
    • B01L2400/0439Moving fluids with specific forces or mechanical means specific forces vibrational forces ultrasonic vibrations, vibrating piezo elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0442Moving fluids with specific forces or mechanical means specific forces thermal energy, e.g. vaporisation, bubble jet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography

Definitions

  • the present invention relates to a gas chromatograph, and more particularly to a gas chromatograph provided with an injector for discharging a sample by a piezoelectric element.
  • a gas chromatograph has a configuration in which an inlet of a separation column is connected to an insert, a liquid sample is injected into the insert using a microsyringe, vaporized, and the vaporized sample is placed on a carrier gas and sent into the separation column.
  • Injectors and inserts need to be replaced due to dirt, etc., and precise alignment between the injector and the insert is required every time it is replaced, so there are problems such as complicated and time-consuming operations for injector replacement and insert replacement. there were. Therefore, there is a demand for easy replacement of injectors and inserts while ensuring positioning accuracy.
  • An object of the present invention is to provide a gas chromatograph provided with a mechanism that can realize the alignment accuracy at the time of injector replacement with a simple structure and can thermally separate the injector from the insert.
  • the gas chromatograph apparatus is configured such that the injector and the insert are connected by a member having a positioning function to perform alignment.
  • the member having the positioning mechanism includes a heating mechanism for heating the insert and a heat insulating portion between the injector and the insert, so that the insert is heated in a state in which heat is not easily transmitted to the injector portion, and the sample is It has a structure that can be vaporized.
  • the gas chromatograph according to the present invention includes an injector that discharges a sample by a piezoelectric element, a sample inlet that receives a sample discharged from the injector, a heating unit that heats and vaporizes the received sample, and an exhaust that discharges the vaporized sample.
  • An insert having an outlet, a base for positioning the injector and the insert, a heater arranged to heat the insert in the insert heating region of the base, a sample outlet of the injector, and a sample inlet of the insert are shared.
  • a sealed container having a carrier gas supply port to which carrier gas is supplied so as to be included in the internal space, a separation column connected to the discharge port of the insert, and a detector connected downstream of the separation column ing.
  • the base In order to position the injector and the insert relative to each other, the base is inserted so that the injector area having the first positioning portion for positioning the injector, the center of the discharge port of the injector and the center of the sample inlet of the insert are on the same straight line And an insert region having a second positioning portion for positioning.
  • the base is provided with a heat insulating region arranged between the injector region and the insert region in order to thermally separate the injector region and the insert region.
  • the insert has a cylindrical outer shape.
  • the base is made of a silicon substrate
  • the second positioning portion is a groove having a V-shaped cross section formed by anisotropic wet etching of the silicon substrate. The insert is positioned by being fitted into the groove of the second positioning portion.
  • a separation column is a capillary column.
  • the insert is connected to the capillary column so that its internal space communicates with the capillary column, and the sample inlet of the insert has a diameter of 1 mm or less.
  • the insert volume needs to correspond to the volume increase at the time of sample vaporization, but since it is for a small amount sample of about nL as a liquid, it is about ⁇ L in a gas state, has a diameter of 1 mm or less, and several mm There is no problem with the length of insert.
  • the injector one having a rectangular flat bottom surface can be used.
  • the first positioning portion is a recess having a flat surface formed on the base, and the bottom surface of the recess is formed in a shape that matches the shape of the bottom surface of the injector, the injector is in the recess. Positioning is performed by fitting.
  • the heat insulating region can be a region made of porous silicon dioxide formed on the base.
  • the heat insulating region made of porous silicon dioxide is specifically described later, but by selectively treating the silicon substrate between the injector region and the insert region, the silicon substrate is integrated with the injector region and the insert region. Can be formed.
  • a preferable example of the heater is a metal thin film resistor formed on a base.
  • the distance between the injector and the insert can be made constant, and the center of the injector outlet and the center of the sample inlet of the insert can be aligned.
  • the gas chromatograph of the present invention it is possible to easily perform positioning at the time of injector replacement while corresponding to the introduction of a small amount of sample using an ink jet type injector, so that the replacement time of the injector can be greatly shortened, Performance degradation due to poor alignment is prevented and stable measurement is possible.
  • FIG. 1A is for showing the outline of the sample injection part of the gas chromatograph of one Example.
  • FIG. 1B is a front view of the same embodiment.
  • FIG. 1C is a cross-sectional view taken along the line CC of FIG. 1A.
  • FIG. 1D is a cross-sectional view showing a connection state between the insert and the capillary column.
  • FIG. 2 is a perspective view showing the base and the injector and the insert positioned and fixed to the base.
  • FIG. 3 is a process diagram illustrating a method of manufacturing a base in the order of processes.
  • FIG. 1A to 1D are schematic configuration diagrams of a gas chromatograph of one embodiment.
  • FIG. 1A is a plan view of a sample injection portion, and shows a part in a sectional view through a sealed container.
  • FIG. 1B is a front view of the same embodiment, showing the sealed container and the insert through.
  • 1C is a cross-sectional view taken along the line CC in FIG. 1A
  • FIG. 1D is a cross-sectional view showing a connection state between the insert and the capillary column.
  • FIG. 2 is a perspective view showing the base and the injector and the insert positioned and fixed to the base.
  • the base 2 is made of a silicon substrate, and the injector 4 and the insert 6 are positioned and fixed.
  • the injector 4 is of an ink jet type in which a sample is ejected by a piezoelectric element, and has an outer shape of a rectangular parallelepiped and a rectangular flat bottom surface.
  • a sample supply pipe that has a discharge port 8 for discharging a sample at the tip surface of the injector 4, that is, the end surface facing the insert 6 when positioned on the base 2, and a sample is supplied from the outside to the opposite end surface 10 is connected.
  • An actuator 12 made of a piezoelectric element is provided on the upper surface of the injector 4 in order to discharge the sample supplied from the sample supply pipe 10 as a droplet from the discharge port 8.
  • the base 2 has an injector region 13 for positioning the injector 4 on the base 2, and a concave portion 14 having a flat bottom surface is formed in the injector region 13 as a first positioning portion for positioning the injector 4. .
  • the bottom surface of the concave portion 14 is formed in a shape that matches the bottom surface shape of the injector 2, and the injector 2 is positioned by being fitted into the concave portion 14.
  • a pressing spring 16 is provided in order to fix the injector 4 in the recess 14 of the base 2.
  • the holding spring 16 has a base end fixed to the hermetic container 18, and the injector 4 is fixed in a state of being positioned with respect to the base 2 by pressing the injector 4 toward the base 2 at the tip end.
  • the insert 6 has a cylindrical outer shape, and has a sample inlet 20 that receives a sample discharged from the injector 4, a heating unit 22 that heats and vaporizes the received sample, and an outlet 24 that discharges the vaporized sample.
  • An end of the capillary column 26 is inserted into the discharge port 24 as a separation column.
  • the inner space of the insert 6 communicates with the capillary column 26, and the central axis of the insert 6 and the central axis of the capillary column 26 are the same.
  • the insert 6 and the capillary column 26 are connected so as to be in a straight line.
  • the insert 6 has an outer diameter of 500 ⁇ m, and the sample inlet 20 has a diameter of, for example, 300 ⁇ m.
  • an insert region 28 is provided in the base 2.
  • a groove 28 having a V-shaped cross section is formed as a second positioning portion so that the center of the discharge port 8 of the injector 4 and the center of the sample inlet 20 of the insert are on the same straight line.
  • the groove 28 is formed by anisotropic wet etching of the silicon substrate of the base 2 with an alkaline solution.
  • the insert 6 is positioned by being fitted into the groove 28.
  • the insert 6 is also fixed by being pressed by an appropriate member (not shown) such as a holding spring.
  • a heater 32 is provided in the insert region 28 of the base 2 so as to heat the heating part 22 of the insert 6.
  • the heater 32 is made of a Ni—Cr alloy or the like, and is a metal thin film resistor having a thickness of 1 to 10 ⁇ m formed by vapor deposition or sputtering through a mask having an opening in a predetermined region of the insert region 28. Lead wires 34 and 36 for energization are connected to the heater 32.
  • a heat insulating region 38 made of porous silicon dioxide is formed between the injector region 13 and the insert region 28.
  • the heat insulating region 38 is for preventing the heat of the heater 32 from being transmitted to the injector region 13.
  • the heat insulating region 38 is formed so as to reach from the surface to the bottom surface in the thickness direction of the base 2 over the entire width of the base 2 in order to thermally shield between the injector region 13 and the insert region 28.
  • a sealed container 18 covering the injector 4 and the insert 6 is provided.
  • a carrier gas supply port 40 through which gas is supplied is provided.
  • the sample supply pipe 10 penetrates the sealed container 18 and is connected to the injector 4 from the outside, the capillary column 26 penetrates the sealed container 18 and is guided to the outside, and the lead wires 34 and 36 also penetrate the sealed container 18 to the outside. Has been led to.
  • the sealed container 18 covers the sample discharge port 8 of the injector 4 and the sample inlet 20 of the insert 6 in a common internal space, and the carrier gas is supplied from the carrier gas supply port 40 to the internal space, whereby the insert 6
  • the sample that has been injected into and vaporized is fed into the capillary column 26 by the carrier gas and separated.
  • a detector 42 is connected downstream of the capillary column 26.
  • an FID hydrogen flame ionization detector
  • the discharge amount of the ink jet injector 4 of this embodiment is smaller than that of a conventional microsyringe, and is usually about several pL to several tens of nL / 1 drop.
  • the injector 4 is manufactured in a chip shape using MEMS (micro electro mechanical system) technology, and its outer shape is usually determined by cutting using a precision processing machine such as a dicing saw. Therefore, it is produced with an accuracy of the order of ⁇ m.
  • MEMS micro electro mechanical system
  • the tolerance is about ⁇ 20 ⁇ m.
  • the silicon substrate 50 to be the base 2 has a surface crystal plane of (100) and has a low resistivity.
  • the silicon substrate 50 is thermally oxidized to form an oxide film 52 on the surface.
  • This oxide film 52 becomes a protective film for later etching.
  • a silicon nitride film may be formed by a technique such as CVD (chemical vapor deposition).
  • a photomask pattern is transferred to the photoresist layer 54 on the oxide film 52 by photolithography, and an opening 56 for forming a recess for positioning the injector and a V-groove for positioning the insert are formed.
  • an opening 58 is formed.
  • the opening 58 for forming the V-groove is rectangular, and its longitudinal direction is aligned with the ⁇ 110> axial direction of the silicon substrate 50.
  • the oxide film 52 in the openings 56 and 58 is removed by wet etching using a chemical solution such as buffered hydrofluoric acid or by dry etching using a gas such as CF 4 .
  • the photoresist layer 54 is removed, and etching is performed using a chemical solution capable of anisotropic etching with different etching rates depending on the silicon crystal orientation, such as KOH (potassium hydroxide) and TMAH (tetramethylammonium hydroxide).
  • KOH potassium hydroxide
  • TMAH tetramethylammonium hydroxide
  • the recess opening 56 for positioning the injector has a large etching area, the etching of the (100) plane is finished before the line intersecting the (111) plane appears, and the recess 14 having a flat bottom surface is formed. It is formed.
  • the following process is a process for forming a thermal insulating layer made of porous silicon oxide (see Non-Patent Document 2).
  • an Au thin film 60 is formed by vapor deposition on the surface of the silicon substrate 50 where the recesses 14 and the grooves 30 are formed.
  • a resist pattern is formed on the surface of the Au thin film 60 by photolithography, and etching is performed with an Au etchant to selectively remove the Au thin film in the region where the thermal insulating layer is to be formed or to form the opening 62.
  • the opening 62 is formed so as to cross the surface of the silicon substrate 50 in the width direction.
  • the portion is converted into a porous silicon layer 64.
  • the porous silicon layer 64 formed by anodization is formed isotropically and has a depth of about 300 ⁇ m.
  • a heater 22 is formed by forming a metal film serving as a resistor by a mask vapor deposition method or a mask sputtering method.
  • the silicon substrate 50 having a thickness of about 300 ⁇ m it can be made porous in the entire thickness direction in the step (7).
  • the recess 14 at the fixed position of the injector chip is formed with a depth of about 200 ⁇ m. If an injector chip having a discharge port height of about 500 ⁇ m from the bottom surface of the chip is used, the straight line connecting the injector discharge port and the sample inlet of the insert is 200 ⁇ m above the silicon substrate surface. On the other hand, if the depth of the V-groove 30 is 205 ⁇ m from the surface of the silicon substrate, when an insert having an outer diameter of 500 ⁇ m is used, it is in line with the discharge port of the injector.
  • the injector chip 4 and the insert 6 are arranged on the base 2 of the alignment member manufactured as described above. Since the bottom surface of the recess 14 for arranging the injector chip 4 is formed according to the shape of the bottom surface of the injector chip, it can be fixed at a position aligned with the center of the insert 6.
  • the fixing is exemplified by fixing with the presser spring 16 in consideration of chip replacement, but is not limited to this as long as the chip can be easily replaced.

Abstract

[PROBLEMS] To realize the positioning accuracy at injector replacement by simple arrangement and thermally separate the injector from an insert. [MEANS FOR SOLVING PROBLEMS] A base board (2) comprises an injector area (13) having a first positioning part (14) for positioning of an injector (4) in order to attain mutually positioning of the injector (4) and an insert (6), and an insert area (28) having a second positioning part (30) for positioning of the insert (6) so that the center of a discharge port (8) of the injector (4) and the center of a sample inlet (20) of the insert (6) lie on the same straight line. Further, the base board (2) comprises a thermal insulation area (38) disposed between the injector area (13) and the insert area (28) in order to thermally separate them.

Description

ガスクロマトグラフGas chromatograph
 本発明はガスクロマトグラフに関し、特に試料を圧電素子によって吐出するインジェクタを備えたガスクロマトグラフに関するものである。 The present invention relates to a gas chromatograph, and more particularly to a gas chromatograph provided with an injector for discharging a sample by a piezoelectric element.
 一般にガスクロマトグラフでは、分離カラムの入口をインサートに接続し、マイクロシリンジを用いてインサート内に液体試料を注入して気化させ、気化した試料をキャリアガスにのせて分離カラム内へと送り込む構成を有する。 In general, a gas chromatograph has a configuration in which an inlet of a separation column is connected to an insert, a liquid sample is injected into the insert using a microsyringe, vaporized, and the vaporized sample is placed on a carrier gas and sent into the separation column. .
 マイクロシリンジによる試料注入では極微量の試料注入は難しい。そのため、最近は、圧電素子による液体吐出が可能なインクジェット技術を用いた超微量インジェクタが開発されており、マイクロシリンジでは不可能なpL~nLオーダーの試料注入が可能となっている(非特許文献1参照。)。
分析化学 Vol.54, No.6, pp.533-539 (2005) P.Steiner et al., Micromachining applications of porous silicon, Thin Solid Films 255 (1995) 52-58
Sample injection with a microsyringe is difficult to inject a very small amount of sample. Therefore, recently, an ultra-small amount of injector using an ink jet technology capable of discharging a liquid by a piezoelectric element has been developed, and it is possible to inject a sample on the order of pL to nL, which is impossible with a microsyringe (non-patent document). 1).
Analytical Chemistry Vol.54, No.6, pp.533-539 (2005) P. Steiner et al., Micromachining applications of porous silicon, Thin Solid Films 255 (1995) 52-58
 圧電素子によるインジェクタを用いる場合には、従来のシリンジと異なりニードルがないため、インジェクタの吐出口とインサートの入口との間の高精度なアライメントが必要になる。例えば、分離カラムとしてキャピラリカラムを使用し、キャピラリカラムの一端に接続されたインサートがキャピラリ程度の内径をもっている場合においては、内径が約320μmのインサートの中心とインジェクタの吐出口(例えば78μm×38μm)の中心とを正確に位置合わせする必要がある。 When using an injector with a piezoelectric element, unlike a conventional syringe, there is no needle, so high-precision alignment is required between the injector outlet and the inlet of the insert. For example, using a capillary column as a separation column, in the case where one end connected to insert the capillary column has an inner diameter of about capillary has an inner diameter center and the injector discharge port of the insert about 320 .mu.m (e.g. 78 .mu.m × 38 [mu] m) Must be accurately aligned with the center of the.
 インジェクタ及びインサートは汚れ等により交換することが必要になり、交換する度にインジェクタとインサートの精密な位置合わせが必要であるので、インジェクタ交換やインサート交換の操作が煩雑で時間がかかる等の問題があった。そのため、インジェクタやインサート交換を簡便で、しかも位置決め精度を確保しながら行えるようにしたいという要請がある。 Injectors and inserts need to be replaced due to dirt, etc., and precise alignment between the injector and the insert is required every time it is replaced, so there are problems such as complicated and time-consuming operations for injector replacement and insert replacement. there were. Therefore, there is a demand for easy replacement of injectors and inserts while ensuring positioning accuracy.
 また、位置決め精度を確保しようとすると、一体化された位置合わせ機構にインジェクタとインサートを固定することが必要になる。インサートは試料気化のために加熱しなければならないので、その熱により位置合わせ機構を介してインジェクタまで加熱されてしまい、インジェクタの吐出機構が損傷を受ける問題がある。 Also, in order to ensure positioning accuracy, it is necessary to fix the injector and insert to the integrated positioning mechanism. Since the insert must be heated for vaporizing the sample, the heat is heated up to the injector through the alignment mechanism, and there is a problem that the discharge mechanism of the injector is damaged.
 本発明の目的は、インジェクタ交換時の位置合わせ精度を簡便な構造で実現し、かつインジェクタをインサートから熱的に分離できる機構を備えたガスクロマトグラフを提供することにある。 An object of the present invention is to provide a gas chromatograph provided with a mechanism that can realize the alignment accuracy at the time of injector replacement with a simple structure and can thermally separate the injector from the insert.
 上記課題を解決するために、本発明に係るガスクロマトグラフ装置は、インジェクタとインサートの間を位置決め機能をもつ部材によって接続し、位置合わせができるようにしたものである。また、この位置決め機構をもつ部材は、インサートを加熱する加熱機構と、インジェクタとインサートの間の熱絶縁部を備えていることにより、インジェクタ部に熱が伝わりにくい状態でインサートを加熱し、試料を気化できる構造となっている。 In order to solve the above-mentioned problems, the gas chromatograph apparatus according to the present invention is configured such that the injector and the insert are connected by a member having a positioning function to perform alignment. In addition, the member having the positioning mechanism includes a heating mechanism for heating the insert and a heat insulating portion between the injector and the insert, so that the insert is heated in a state in which heat is not easily transmitted to the injector portion, and the sample is It has a structure that can be vaporized.
 すなわち、本発明に係るガスクロマトグラフは、試料を圧電素子によって吐出するインジェクタと、インジェクタから吐出された試料を受け取る試料入口、受け取った試料を加熱して気化する加熱部及び気化した試料を排出する排出口をもつインサートと、インジェクタ及びインサートを位置決めするための基台と、基台のインサート加熱領域においてインサートを加熱するように配置されたヒータと、インジェクタの試料吐出口及びインサートの試料入口を共通の内部空間に含むように被い、キャリアガスが供給されるキャリアガス供給口をもつ密閉容器と、インサートの排出口に接続された分離カラムと、分離カラムの下流に接続された検出器とを備えている。 That is, the gas chromatograph according to the present invention includes an injector that discharges a sample by a piezoelectric element, a sample inlet that receives a sample discharged from the injector, a heating unit that heats and vaporizes the received sample, and an exhaust that discharges the vaporized sample. An insert having an outlet, a base for positioning the injector and the insert, a heater arranged to heat the insert in the insert heating region of the base, a sample outlet of the injector, and a sample inlet of the insert are shared. A sealed container having a carrier gas supply port to which carrier gas is supplied so as to be included in the internal space, a separation column connected to the discharge port of the insert, and a detector connected downstream of the separation column ing.
 基台はインジェクタとインサートを相互に位置決めするために、インジェクタを位置決めする第1位置決め部を有するインジェクタ領域と、インジェクタの吐出口の中心とインサートの試料入口中心とが同一直線上にくるようにインサートを位置決めする第2の位置決め部を有するインサート領域とを備えている。 In order to position the injector and the insert relative to each other, the base is inserted so that the injector area having the first positioning portion for positioning the injector, the center of the discharge port of the injector and the center of the sample inlet of the insert are on the same straight line And an insert region having a second positioning portion for positioning.
 さらに、基台はインジェクタ領域とインサート領域の間を熱的に分離するために、インジェクタ領域とインサート領域の間に配置された断熱領域を備えている。 Furthermore, the base is provided with a heat insulating region arranged between the injector region and the insert region in order to thermally separate the injector region and the insert region.
 インサートとしては円筒状の外形形状をもつものが好ましい。その場合、基台はシリコン基板からなり第2の位置決め部はシリコン基板の異方性ウエットエッチングにより形成された断面がV字型の溝であるのが好ましい。インサートは第2の位置決め部の溝に嵌め込まれることにより位置決めされる。 It is preferable that the insert has a cylindrical outer shape. In that case, it is preferable that the base is made of a silicon substrate, and the second positioning portion is a groove having a V-shaped cross section formed by anisotropic wet etching of the silicon substrate. The insert is positioned by being fitted into the groove of the second positioning portion.
 分離カラムの一例はキャピラリカラムである。その場合、インサートはその内部空間がキャピラリカラムと連通するようにキャピラリカラムに接続されており、インサートの試料入口は直径が1mm以下である。このようにインサートの試料入口を小さくすれば、インサート自体を小さくしてインサートの熱容量を小さくすることができるので、急速な昇温ができ、高速分析が可能となる。また、インサート容積は試料気化時の体積増加に対応する必要があるが、液体としてnL程度の微量試料用であるため気体になった状態でμL程度であり、1mm以下の直径を持ち、数mmの長さのインサートで問題無い。 An example of a separation column is a capillary column. In that case, the insert is connected to the capillary column so that its internal space communicates with the capillary column, and the sample inlet of the insert has a diameter of 1 mm or less. Thus, if the sample inlet of the insert is made small, the insert itself can be made small and the heat capacity of the insert can be made small, so that the temperature can be rapidly raised and high-speed analysis becomes possible. In addition, the insert volume needs to correspond to the volume increase at the time of sample vaporization, but since it is for a small amount sample of about nL as a liquid, it is about μL in a gas state, has a diameter of 1 mm or less, and several mm There is no problem with the length of insert.
 インジェクタとしては底面が矩形の平坦面となったものを用いることができる。その場合、第1の位置決め部が基台に形成された平坦面をもつ凹部で、その凹部の底面がインジェクタの底面形状と一致する形状に形成されているようにすれば、インジェクタがその凹部に嵌め込まれることにより位置決めされる。 As the injector, one having a rectangular flat bottom surface can be used. In that case, if the first positioning portion is a recess having a flat surface formed on the base, and the bottom surface of the recess is formed in a shape that matches the shape of the bottom surface of the injector, the injector is in the recess. Positioning is performed by fitting.
 基台がシリコン基板からなるものである場合には、断熱領域は基台に形成された多孔質二酸化シリコンからなる領域とすることができる。多孔質二酸化シリコンからなる断熱領域は、具体的には後述するが、インジェクタ領域とインサート領域の間のシリコン基板を選択的に処理することにより、インジェクタ領域及びインサート領域と一体のものとしてシリコン基板に形成することができる。 When the base is made of a silicon substrate, the heat insulating region can be a region made of porous silicon dioxide formed on the base. The heat insulating region made of porous silicon dioxide is specifically described later, but by selectively treating the silicon substrate between the injector region and the insert region, the silicon substrate is integrated with the injector region and the insert region. Can be formed.
 ヒータの好ましい一例は、基台上に形成された金属薄膜抵抗体である。 A preferable example of the heater is a metal thin film resistor formed on a base.
 位置合わせ機能を有する基台にインジェクタとインサートを取り付けることにより、インジェクタとインサートとの距離を一定にし、かつインジェクタの吐出口の中心とインサートの試料入口中心を一直線上に合わせることができる。本発明のガスクロマトグラフでは、インクジェット方式のインジェクタを用いた微量試料導入に対応しながら、インジェクタ交換時の位置決めを容易に行なうことができるようになるため、インジェクタの交換時間を大幅に短縮できるとともに、アライメント不良による性能低下を防止し、安定した測定が可能になる。 By attaching the injector and the insert to the base having the alignment function, the distance between the injector and the insert can be made constant, and the center of the injector outlet and the center of the sample inlet of the insert can be aligned. In the gas chromatograph of the present invention, it is possible to easily perform positioning at the time of injector replacement while corresponding to the introduction of a small amount of sample using an ink jet type injector, so that the replacement time of the injector can be greatly shortened, Performance degradation due to poor alignment is prevented and stable measurement is possible.
図1Aは一実施例のガスクロマトグラフの試料注入部の概略を示すためのものである。FIG. 1A is for showing the outline of the sample injection part of the gas chromatograph of one Example.
図1Bは同実施例の正面図である。FIG. 1B is a front view of the same embodiment.
図1Cは図1AのC-C線位置での断面図である。1C is a cross-sectional view taken along the line CC of FIG. 1A.
図1Dはインサートとキャピラリカラムとの接続状態を示す断面図である。FIG. 1D is a cross-sectional view showing a connection state between the insert and the capillary column.
図2は基台と基台に位置決めされて固定されたインジェクタ及びインサートを示す斜視図である。FIG. 2 is a perspective view showing the base and the injector and the insert positioned and fixed to the base.
図3は基台を製造する方法を工程順に示す工程図である。FIG. 3 is a process diagram illustrating a method of manufacturing a base in the order of processes.
符号の説明Explanation of symbols
   2   基台
   4   インジェクタ
   6   インサート
   8   吐出口
  13   インジェクタ領域
  14   第1位置決め部としての凹部
  18   密閉容器
  20   試料入口
  22   加熱部
  24   排出口
  26   分離カラムとしてのキャピラリカラム
  28   インサート領域
  32   ヒータ
  38   断熱領域
  40   キャアガス供給口
  42   検出器
DESCRIPTION OF SYMBOLS 2 Base 4 Injector 6 Insert 8 Discharge port 13 Injector area | region 14 Recessed part as 1st positioning part 18 Airtight container 20 Sample inlet 22 Heating part 24 Outlet 26 Capillary column as a separation column 28 Insert area | region 32 Heater 38 Thermal insulation area | region 40 Caer gas Supply port 42 Detector
 以下に本発明の一実施例を詳細に説明する。
 図1A~図1Dは一実施例のガスクロマトグラフの概略構成図である。図1Aは試料注入部の平面図であり、密閉容器を透視して一部を断面図で示している。図1Bは同実施例の正面図であり、密閉容器とインサートを透視して示している。図1Cは図1AのC-C線位置での断面図、図1Dはインサートとキャピラリカラムとの接続状態を示す断面図である。図2は基台と基台に位置決めされて固定されたインジェクタ及びインサートを示す斜視図である。
Hereinafter, an embodiment of the present invention will be described in detail.
1A to 1D are schematic configuration diagrams of a gas chromatograph of one embodiment. FIG. 1A is a plan view of a sample injection portion, and shows a part in a sectional view through a sealed container. FIG. 1B is a front view of the same embodiment, showing the sealed container and the insert through. 1C is a cross-sectional view taken along the line CC in FIG. 1A, and FIG. 1D is a cross-sectional view showing a connection state between the insert and the capillary column. FIG. 2 is a perspective view showing the base and the injector and the insert positioned and fixed to the base.
 基台2はシリコン基板からなり、インジェクタ4とインサート6が位置決めされて固定されている。 The base 2 is made of a silicon substrate, and the injector 4 and the insert 6 are positioned and fixed.
 インジェクタ4は試料を圧電素子によって吐出するインクジェット方式のものであり、外形形状は直方体で底面が矩形の平坦面となっている。インジェクタ4の先端面、すなわち基台2に位置決めされたときにインサート6に対向する端面に、試料を吐出する吐出口8をもち、その反対側の端面に外部から試料が供給される試料供給パイプ10が接続されている。インジェクタ4の上面には試料供給パイプ10から供給された試料を液滴として吐出口8から吐出するために、圧電素子からなるアクチュエータ12が設けられている。 The injector 4 is of an ink jet type in which a sample is ejected by a piezoelectric element, and has an outer shape of a rectangular parallelepiped and a rectangular flat bottom surface. A sample supply pipe that has a discharge port 8 for discharging a sample at the tip surface of the injector 4, that is, the end surface facing the insert 6 when positioned on the base 2, and a sample is supplied from the outside to the opposite end surface 10 is connected. An actuator 12 made of a piezoelectric element is provided on the upper surface of the injector 4 in order to discharge the sample supplied from the sample supply pipe 10 as a droplet from the discharge port 8.
 基台2はインジェクタ4を基台2に位置決めするためにインジェクタ領域13をもち、インジェクタ領域13にはインジェクタ4を位置決めする第1位置決め部として底面が平坦面となった凹部14が形成されている。その凹部14の底面がインジェクタ2の底面形状と一致する形状に形成されており、インジェクタ2が凹部14に嵌め込まれることにより位置決めされている。 The base 2 has an injector region 13 for positioning the injector 4 on the base 2, and a concave portion 14 having a flat bottom surface is formed in the injector region 13 as a first positioning portion for positioning the injector 4. . The bottom surface of the concave portion 14 is formed in a shape that matches the bottom surface shape of the injector 2, and the injector 2 is positioned by being fitted into the concave portion 14.
 インジェクタ4を基台2の凹部14内に固定するために、押さえバネ16が設けられている。押さえバネ16は基端部が密閉容器18に固定され、その先端部でインジェクタ4を基台2方向に押し付けることにより、インジェクタ4は基台2に対して位置決めされた状態で固定されている。 In order to fix the injector 4 in the recess 14 of the base 2, a pressing spring 16 is provided. The holding spring 16 has a base end fixed to the hermetic container 18, and the injector 4 is fixed in a state of being positioned with respect to the base 2 by pressing the injector 4 toward the base 2 at the tip end.
 インサート6は円筒状の外形形状をもち、インジェクタ4から吐出された試料を受け取る試料入口20、受け取った試料を加熱して気化する加熱部22及び気化した試料を排出する排出口24をもっている。排出口24には分離カラムとしてキャピラリカラム26の入口側の端部が挿入され、インサート6はその内部空間がキャピラリカラム26と連通して、インサート6の中心軸とキャピラリカラム26の中心軸が同一直線上にくるようにインサート6とキャピラリカラム26が接続されている。インサート6は外形の直径が500μm、試料入口20の直径が、例えば300μmである。 The insert 6 has a cylindrical outer shape, and has a sample inlet 20 that receives a sample discharged from the injector 4, a heating unit 22 that heats and vaporizes the received sample, and an outlet 24 that discharges the vaporized sample. An end of the capillary column 26 is inserted into the discharge port 24 as a separation column. The inner space of the insert 6 communicates with the capillary column 26, and the central axis of the insert 6 and the central axis of the capillary column 26 are the same. The insert 6 and the capillary column 26 are connected so as to be in a straight line. The insert 6 has an outer diameter of 500 μm, and the sample inlet 20 has a diameter of, for example, 300 μm.
 インサート6を基台2に位置決めするために、基台2にはインサート領域28が設けられている。インサート領域28にはインジェクタ4の吐出口8の中心とインサートの試料入口20の中心とが同一直線上にくるように、第2の位置決め部として断面がV字型の溝28が形成されている。溝28は基台2のシリコン基板をアルカリ溶液により異方性ウエットエッチングすることにより形成されたものである。インサート6はその溝28に嵌め込まれることにより位置決めされている。インサート6もインジェクタ4と同様に押さえバネなどの適当な部材(図示略)で押さえることにより固定されている。 In order to position the insert 6 on the base 2, an insert region 28 is provided in the base 2. In the insert region 28, a groove 28 having a V-shaped cross section is formed as a second positioning portion so that the center of the discharge port 8 of the injector 4 and the center of the sample inlet 20 of the insert are on the same straight line. . The groove 28 is formed by anisotropic wet etching of the silicon substrate of the base 2 with an alkaline solution. The insert 6 is positioned by being fitted into the groove 28. Similarly to the injector 4, the insert 6 is also fixed by being pressed by an appropriate member (not shown) such as a holding spring.
 基台2のインサート領域28にはインサート6の加熱部22を加熱するようにヒータ32が設けられている。ヒータ32はNi-Cr合金などからなり、インサート領域28の所定の領域に開口をもつマスクを介して蒸着又はスパッタリングにより形成された膜厚が1~10μmの金属薄膜抵抗体である。ヒータ32には通電用のリード線34,36が接続されている。 A heater 32 is provided in the insert region 28 of the base 2 so as to heat the heating part 22 of the insert 6. The heater 32 is made of a Ni—Cr alloy or the like, and is a metal thin film resistor having a thickness of 1 to 10 μm formed by vapor deposition or sputtering through a mask having an opening in a predetermined region of the insert region 28. Lead wires 34 and 36 for energization are connected to the heater 32.
 基台2にはインジェクタ領域13とインサート領域28の間に多孔質二酸化シリコンからなる断熱領域38が形成されている。断熱領域38はヒータ32の熱がインジェクタ領域13に伝わるのを防止するためのものである。断熱領域38はインジェクタ領域13とインサート領域28の間を熱的に遮断するために、基台2の全幅にわたって基台2の厚さ方向に表面から底面まで達するように形成されている。 In the base 2, a heat insulating region 38 made of porous silicon dioxide is formed between the injector region 13 and the insert region 28. The heat insulating region 38 is for preventing the heat of the heater 32 from being transmitted to the injector region 13. The heat insulating region 38 is formed so as to reach from the surface to the bottom surface in the thickness direction of the base 2 over the entire width of the base 2 in order to thermally shield between the injector region 13 and the insert region 28.
 インジェクタ4からインサート6に注入された試料を気化し、キャリアガスの流れとともにキャピラリカラム26に送りこむために、インジェクタ4及びインサート6を被う密閉容器18が設けられ、密閉容器18には外部からキャリアガスが供給されるキャアガス供給口40が設けられている。試料供給パイプ10は密閉容器18を貫通して外部からインジェクタ4に接続され、キャピラリカラム26は密閉容器18を貫通して外部に導かれ、リード線34,36も密閉容器18を貫通して外部に導かれている。 In order to vaporize the sample injected into the insert 6 from the injector 4 and send it to the capillary column 26 together with the flow of the carrier gas, a sealed container 18 covering the injector 4 and the insert 6 is provided. A carrier gas supply port 40 through which gas is supplied is provided. The sample supply pipe 10 penetrates the sealed container 18 and is connected to the injector 4 from the outside, the capillary column 26 penetrates the sealed container 18 and is guided to the outside, and the lead wires 34 and 36 also penetrate the sealed container 18 to the outside. Has been led to.
 密閉容器18がインジェクタ4の試料吐出口8及びインサート6の試料入口20を共通の内部空間に含むように被い、その内部空間にキャアガス供給口40からキャリアガスが供給されることにより、インサート6に注入されて気化された試料がキャリアガスによってキャピラリカラム26へ送り込まれて分離される。 The sealed container 18 covers the sample discharge port 8 of the injector 4 and the sample inlet 20 of the insert 6 in a common internal space, and the carrier gas is supplied from the carrier gas supply port 40 to the internal space, whereby the insert 6 The sample that has been injected into and vaporized is fed into the capillary column 26 by the carrier gas and separated.
 キャピラリカラム26で分離された試料成分を検出するために、キャピラリカラム26の下流には検出器42が接続されている。検出器42としてはFID(水素炎イオン化検出器)などを用いることができる。 In order to detect the sample component separated by the capillary column 26, a detector 42 is connected downstream of the capillary column 26. As the detector 42, an FID (hydrogen flame ionization detector) or the like can be used.
 この実施例のインクジェット式インジェクタ4の吐出量は、従来のマイクロシリンジよりも少量であり、通常数pL~数10nL/1滴程度である。本実施例において、インジェクタ4はMEMS(マイクロ・エレクトロ・メカニカル・システム)技術を用いてチップ状に作製されたものであり、その外形は通常ダイシングソー等の精密加工機を用いた切断により決められるため、μmオーダーの精度で作製される。 The discharge amount of the ink jet injector 4 of this embodiment is smaller than that of a conventional microsyringe, and is usually about several pL to several tens of nL / 1 drop. In this embodiment, the injector 4 is manufactured in a chip shape using MEMS (micro electro mechanical system) technology, and its outer shape is usually determined by cutting using a precision processing machine such as a dicing saw. Therefore, it is produced with an accuracy of the order of μm.
 インサートについても、例えば外形500μmの場合、公差は±20μm程度である。シリコン基板の基台2に形成したV字型の溝30を用いることにより、10μmオーダーの精度で位置決めすることができる。 For the insert, for example, when the outer shape is 500 μm, the tolerance is about ± 20 μm. By using the V-shaped groove 30 formed on the base 2 of the silicon substrate, positioning can be performed with an accuracy of the order of 10 μm.
 次に図3を参照しながら、この位置決め部材である基台2の作製方法について説明する。 Next, a method for producing the base 2 as the positioning member will be described with reference to FIG.
 (1)基台2となるシリコン基板50は表面の結晶面が(100)のものであり、低抵抗率のものを用いる。まず、シリコン基板50を熱酸化して表面に酸化膜52を形成する。この酸化膜52は後のエッチングの保護膜となるものである。酸化膜52の代わりに、CVD(化学気相成長法)等の手法により、シリコン窒化膜を形成してもよい。 (1) The silicon substrate 50 to be the base 2 has a surface crystal plane of (100) and has a low resistivity. First, the silicon substrate 50 is thermally oxidized to form an oxide film 52 on the surface. This oxide film 52 becomes a protective film for later etching. Instead of the oxide film 52, a silicon nitride film may be formed by a technique such as CVD (chemical vapor deposition).
 (2)フォトリソグラフィーの手法により、酸化膜52上のフォトレジスト層54にフォトマスクのパターンを転写し、インジェクタを位置決めする凹部を形成するための開口部56とインサートを位置決めするV溝を形成するための開口部58を形成する。V溝を形成するための開口部58は長方形であり、その長手方向をシリコン基板50の<110>軸方向と合わせておく。 (2) A photomask pattern is transferred to the photoresist layer 54 on the oxide film 52 by photolithography, and an opening 56 for forming a recess for positioning the injector and a V-groove for positioning the insert are formed. For this purpose, an opening 58 is formed. The opening 58 for forming the V-groove is rectangular, and its longitudinal direction is aligned with the <110> axial direction of the silicon substrate 50.
 (3)開口部56,58の酸化膜52をバッファードフッ酸などの薬液を用いたウエットエッチングにより、又はCF4などのガスを用いたドライエッチングによって除去する。 (3) The oxide film 52 in the openings 56 and 58 is removed by wet etching using a chemical solution such as buffered hydrofluoric acid or by dry etching using a gas such as CF 4 .
 (4)フォトレジスト層54を除去し、KOH(水酸化カリウム)、TMAH(水酸化テトラメチルアンモニウム)等、シリコン結晶方位によってエッチング速度が異なる異方性エッチングが可能な薬液を用いてエッチングを行う。このとき、V溝形成用の開口部58において、シリコン基板50の表面の面方位は(100)であり、開口部58は、<110>方向に合わせているので、エッチング面には最もエッチングレートの低い(111)面が現れ、断面V字型の溝30が形成される。 (4) The photoresist layer 54 is removed, and etching is performed using a chemical solution capable of anisotropic etching with different etching rates depending on the silicon crystal orientation, such as KOH (potassium hydroxide) and TMAH (tetramethylammonium hydroxide). . At this time, in the V groove forming opening 58, the surface orientation of the surface of the silicon substrate 50 is (100), and the opening 58 is aligned with the <110> direction. Low (111) plane appears, and a groove 30 having a V-shaped cross section is formed.
 一方、インジェクタを位置決めする凹部用の開口部56は、エッチング面積が広いため、(111)面が交差する線が現れる前に(100)面のエッチングが終了し、平坦な底面をもつ凹部14が形成される。 On the other hand, since the recess opening 56 for positioning the injector has a large etching area, the etching of the (100) plane is finished before the line intersecting the (111) plane appears, and the recess 14 having a flat bottom surface is formed. It is formed.
 以下の工程は多孔質シリコン酸化物からなる熱絶縁層形成工程である(非特許文献2参照。)。 The following process is a process for forming a thermal insulating layer made of porous silicon oxide (see Non-Patent Document 2).
 (5)まずシリコン基板50の凹部14と溝30が形成された表面にAu薄膜60を蒸着法で形成する。 (5) First, an Au thin film 60 is formed by vapor deposition on the surface of the silicon substrate 50 where the recesses 14 and the grooves 30 are formed.
 (6)Au薄膜60の表面にフォトリソグラフィーでレジストパターンを形成し、Auエッチャントでエッチングして熱絶縁層を形成する領域のAu薄膜を選択的に除去してか開口部62を形成する。開口部62はシリコン基板50の表面を幅方向に横切るように形成する。 (6) A resist pattern is formed on the surface of the Au thin film 60 by photolithography, and etching is performed with an Au etchant to selectively remove the Au thin film in the region where the thermal insulating layer is to be formed or to form the opening 62. The opening 62 is formed so as to cross the surface of the silicon substrate 50 in the width direction.
 (7)レジスト除去後、Au薄膜60の開口部62に対し、HF:水:エタノール=2:2:2の混合溶液中で電流密度240mA/cm2で60分間陽極酸化してシリコン基板の一部を多孔質シリコン層64に変換する。このとき、陽極酸化でできる多孔質シリコン層64は等方的に形成され、深さ約300μmとなる。 (7) After removing the resist, the opening 62 of the Au thin film 60 is anodized in a mixed solution of HF: water: ethanol = 2: 2: 2 at a current density of 240 mA / cm 2 for 60 minutes to form a silicon substrate. The portion is converted into a porous silicon layer 64. At this time, the porous silicon layer 64 formed by anodization is formed isotropically and has a depth of about 300 μm.
 (8)シリコン基板表面のAu薄膜60を除去し、熱酸化を行う。このとき、1000℃、30分間のウェット酸化の条件で、シリコン基板表面には約0.3μmの酸化膜層66が形成される。一方、多孔質シリコン層64は酸化速度が速いため、全層が多孔質酸化シリコン38となる。 (8) The Au thin film 60 on the silicon substrate surface is removed and thermal oxidation is performed. At this time, an oxide film layer 66 of about 0.3 μm is formed on the surface of the silicon substrate under conditions of wet oxidation at 1000 ° C. for 30 minutes. On the other hand, since the porous silicon layer 64 has a high oxidation rate, the entire layer becomes the porous silicon oxide 38.
 (9)マスク蒸着法又はマスクスパッタリング法により抵抗体となる金属膜を形成してヒータ22を作製する。 (9) A heater 22 is formed by forming a metal film serving as a resistor by a mask vapor deposition method or a mask sputtering method.
 (10)ダイシングソーによりシリコン基板50のキャピラリ接続側の端面を溝30にかかる位置で切断して、溝30のV字型の端面をシリコン基板50の端面に露出させる。 (10) The end face on the capillary connection side of the silicon substrate 50 is cut at a position on the groove 30 with a dicing saw, and the V-shaped end face of the groove 30 is exposed to the end face of the silicon substrate 50.
 シリコン基板50は厚さが300μm程度のものを使用すれば、工程(7)で厚さ方向全体に多孔質化が可能である。インジェクタチップの固定位置の凹部14は200μm程度の深さで形成する。またインジェクタチップとして吐出口の高さがチップの底面から500μm程度に形成されたものを使用すれば、インジェクタの吐出口とインサートの試料入口を結ぶ直線はシリコン基板表面の200μm上方となる。一方、V溝30の深さはシリコン基板表面から205μmの深さとすれば、外径500μmのインサートを用いる場合、インジェクタの吐出口と一直線上になる。 If the silicon substrate 50 having a thickness of about 300 μm is used, it can be made porous in the entire thickness direction in the step (7). The recess 14 at the fixed position of the injector chip is formed with a depth of about 200 μm. If an injector chip having a discharge port height of about 500 μm from the bottom surface of the chip is used, the straight line connecting the injector discharge port and the sample inlet of the insert is 200 μm above the silicon substrate surface. On the other hand, if the depth of the V-groove 30 is 205 μm from the surface of the silicon substrate, when an insert having an outer diameter of 500 μm is used, it is in line with the discharge port of the injector.
 以上のように作製された位置合わせ部材の基台2上に、インジェクタチップ4及びインサート6を配置する。インジェクタチップ4配置用の凹部14の底面はインジェクタチップの外形の底面形状に合わせて形成されているため、インサート6の中心に合わせた位置で固定可能である。固定にはチップ交換を考慮して、押さえバネ16による固定を例示しているが、チップ交換が簡便に行える手段であれば、これに限定されない。 The injector chip 4 and the insert 6 are arranged on the base 2 of the alignment member manufactured as described above. Since the bottom surface of the recess 14 for arranging the injector chip 4 is formed according to the shape of the bottom surface of the injector chip, it can be fixed at a position aligned with the center of the insert 6. The fixing is exemplified by fixing with the presser spring 16 in consideration of chip replacement, but is not limited to this as long as the chip can be easily replaced.

Claims (6)

  1.  試料を圧電素子によって吐出するインジェクタと、
     前記インジェクタから吐出された試料を受け取る試料入口、受け取った試料を加熱して気化する加熱部及び気化した試料を排出する排出口をもつインサートと、
     前記インジェクタを位置決めする第1位置決め部を有するインジェクタ領域、前記インジェクタの吐出口の中心と前記インサートの試料入口中心とが同一直線上にくるように前記インサートを位置決めする第2の位置決め部を有するインサート領域、及びインジェクタ領域とインサート領域の間に配置された断熱領域からなる基台と、
     前記基台のインサート領域において前記インサートの加熱部を加熱するように配置されたヒータと、
     前記インジェクタの試料吐出口及び前記インサートの試料入口を共通の内部空間に含むように被い、キャリアガスが供給されるキャリアガス供給口をもつ密閉容器と、
     前記インサートの排出口に接続された分離カラムと、
     前記分離カラムの下流に接続された検出器と、
    を備えたガスクロマトグラフ。
    An injector for discharging a sample by a piezoelectric element;
    A sample inlet for receiving the sample discharged from the injector, a heating section for heating and vaporizing the received sample, and an insert having a discharge port for discharging the vaporized sample;
    An injector region having a first positioning part for positioning the injector; an insert having a second positioning part for positioning the insert so that a center of a discharge port of the injector and a center of a sample inlet of the insert are on the same straight line A base comprising a region and a heat insulating region disposed between the injector region and the insert region;
    A heater arranged to heat the heating part of the insert in the insert region of the base;
    Covering the sample outlet of the injector and the sample inlet of the insert in a common internal space, and a sealed container having a carrier gas supply port to which a carrier gas is supplied;
    A separation column connected to the outlet of the insert;
    A detector connected downstream of the separation column;
    Gas chromatograph equipped with.
  2.  前記インサートは円筒状の外形形状をもち、前記基台はシリコン基板からなり前記第2の位置決め部はシリコン基板の異方性ウエットエッチングにより形成された断面がV字型の溝であり、前記インサートは第2の位置決め部の溝に嵌め込まれることにより位置決めされている請求項1に記載のガスクロマトグラフ。 The insert has a cylindrical outer shape, the base is made of a silicon substrate, and the second positioning portion is a groove having a V-shaped cross section formed by anisotropic wet etching of the silicon substrate. The gas chromatograph according to claim 1, wherein the gas chromatograph is positioned by being fitted into a groove of the second positioning portion.
  3.  前記分離カラムはキャピラリカラムであり、前記インサートはその内部空間が前記キャピラリカラムと連通するようにキャピラリカラムに接続されており、
     前記インサートの試料入口は直径が1mm以下である請求項2に記載のガスクロマトグラフ。
    The separation column is a capillary column, and the insert is connected to the capillary column such that the internal space communicates with the capillary column,
    The gas chromatograph according to claim 2, wherein the sample inlet of the insert has a diameter of 1 mm or less.
  4.  前記インジェクタの底面は矩形の平坦面であり、前記第1の位置決め部は前記基台に形成された平坦面をもつ凹部であり、前記凹部の底面が前記インジェクタの底面形状と一致する形状に形成されており、前記インジェクタが前記凹部に嵌め込まれることにより位置決めされている請求項2又は3に記載のガスクロマトグラフ。 The bottom surface of the injector is a rectangular flat surface, the first positioning portion is a recess having a flat surface formed on the base, and the bottom surface of the recess is formed in a shape that matches the bottom surface shape of the injector. The gas chromatograph according to claim 2 or 3, wherein the injector is positioned by being fitted into the recess.
  5.  前記断熱領域は前記基台に形成された多孔質二酸化シリコンからなる領域である請求項2から4のいずれか一項に記載のガスクロマトグラフ。 The gas chromatograph according to any one of claims 2 to 4, wherein the heat insulating region is a region made of porous silicon dioxide formed on the base.
  6.  前記ヒータは基台上に形成された金属薄膜抵抗体である請求項1から5のいずれかに記載のガスクロマトグラフ。 The gas chromatograph according to any one of claims 1 to 5, wherein the heater is a metal thin film resistor formed on a base.
PCT/JP2008/055542 2008-03-25 2008-03-25 Gas chromatograph WO2009118825A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010505066A JP4840532B2 (en) 2008-03-25 2008-03-25 Gas chromatograph
PCT/JP2008/055542 WO2009118825A1 (en) 2008-03-25 2008-03-25 Gas chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/055542 WO2009118825A1 (en) 2008-03-25 2008-03-25 Gas chromatograph

Publications (1)

Publication Number Publication Date
WO2009118825A1 true WO2009118825A1 (en) 2009-10-01

Family

ID=41113066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/055542 WO2009118825A1 (en) 2008-03-25 2008-03-25 Gas chromatograph

Country Status (2)

Country Link
JP (1) JP4840532B2 (en)
WO (1) WO2009118825A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002207027A (en) * 2001-01-11 2002-07-26 Shimadzu Corp Method for manufacturing resin member having minute flow channel, member manufactured thereby and measuring instrument using the same
WO2008026241A1 (en) * 2006-08-28 2008-03-06 Shimadzu Corporation Gas chromatograph

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000137034A (en) * 1998-10-30 2000-05-16 Shimadzu Corp Liquid injection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002207027A (en) * 2001-01-11 2002-07-26 Shimadzu Corp Method for manufacturing resin member having minute flow channel, member manufactured thereby and measuring instrument using the same
WO2008026241A1 (en) * 2006-08-28 2008-03-06 Shimadzu Corporation Gas chromatograph

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FUMIHIRO ENDO ET AL.: "Inkjet Chip o Mochiita Shiryo Donyu ni yoru Gas Chromatography", SEPARATION SCIENCE 2005 KOEN YOSHISHU, 28 July 2005 (2005-07-28), pages 103 - 104 *
P.STEINER ET AL.: "Micromachining applications of porous silicon", THIN SOLID FILMS, vol. 255, no. 1/2, 15 January 1995 (1995-01-15), pages 52 - 58, XP004010502, DOI: doi:10.1016/0040-6090(95)91137-B *
TAKAHIDE NISHIYAMA ET AL.: "Inkjet Microchip o Mochiiru Gas Chromatography no Tame no Cho Biryo Injector no Kaihatsu", JOURNAL OF JAPAN SOCIETY FOR ANALYTICAL CHEMISTRY, vol. 54, no. 6, 5 June 2005 (2005-06-05), pages 533 - 539 *
TATSURO NAKAGAMA: "Gas Chromatograph-yo Cho Biryo Biryo Injector", BUNSEKI, no. 8, 5 August 2007 (2007-08-05), pages 385 - 388 *

Also Published As

Publication number Publication date
JPWO2009118825A1 (en) 2011-07-21
JP4840532B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
US8309916B2 (en) Ion transfer tube having single or multiple elongate bore segments and mass spectrometer system
US7275308B2 (en) Method for manufacturing a monolithic ink-jet printhead
US6561625B2 (en) Bubble-jet type ink-jet printhead and manufacturing method thereof
US20050047969A1 (en) Microfluidic chip with enhanced tip for stable electrospray ionization
US8240052B2 (en) Process of forming an integrated multiplexed electrospray atomizer
US9726651B2 (en) Double-sided diaphragm micro gas-preconcentrator with a back-on-face configuration
US20070085038A1 (en) Polymer based electrospray nozzle for mass spectrometry
US6750076B2 (en) Fabrication of a microchip-based electrospray device
CN112895718A (en) Fluid ejection device
US6676244B2 (en) Bubble-jet type inkjet printhead
EP1714300A1 (en) Microfluidic device comprising an electrospray nose
KR100433530B1 (en) Manufacturing method for monolithic ink-jet printhead
JP4840532B2 (en) Gas chromatograph
US8196450B2 (en) Gas chromatograph
JP2020082503A (en) Nozzle plate manufacturing method and ink jet head manufacturing method
EP3499546B1 (en) Apparatus and method for cleaning an inlet of a mass spectrometer
JP2005238540A (en) Fluid driving device, manufacturing method for fluid driving device, electrostatically driven fluid discharging apparatus, and manufacturing method for electrostatically driven fluid discharging apparatus
US6533951B1 (en) Method of manufacturing fluid pump
US10981392B2 (en) Liquid ejection head and method of manufacturing liquid ejection head
KR101208303B1 (en) Micro-ejector and method for manufacturing the same
US20060238573A1 (en) Monolithic fluid ejection device and method for fabricating the same
FR2960798A1 (en) Microfluidic device for nebulization of liquid of interest i.e. aerosol, inhaled by patient in medical field, has liquid transporting unit conveying liquid of interest to liquid supplying orifice via lateral channel
JPH05318738A (en) Liquid-ejection recording head
JP2005161706A (en) Liquid droplet jet head, method of manufacturing the same, and liquid droplet jet device having the same
TWI231785B (en) Fluid injector and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08738837

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505066

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08738837

Country of ref document: EP

Kind code of ref document: A1