WO2009118497A2 - Marteau perforateur hydraulique roto-percutant - Google Patents

Marteau perforateur hydraulique roto-percutant Download PDF

Info

Publication number
WO2009118497A2
WO2009118497A2 PCT/FR2009/050377 FR2009050377W WO2009118497A2 WO 2009118497 A2 WO2009118497 A2 WO 2009118497A2 FR 2009050377 W FR2009050377 W FR 2009050377W WO 2009118497 A2 WO2009118497 A2 WO 2009118497A2
Authority
WO
WIPO (PCT)
Prior art keywords
anode
fitting
hammer drill
fluid
guiding device
Prior art date
Application number
PCT/FR2009/050377
Other languages
English (en)
Other versions
WO2009118497A3 (fr
Inventor
Jean-Sylvain Comarmond
Original Assignee
Montabert
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Montabert filed Critical Montabert
Priority to CA2717654A priority Critical patent/CA2717654A1/fr
Priority to SE1050986A priority patent/SE534700C2/sv
Publication of WO2009118497A2 publication Critical patent/WO2009118497A2/fr
Publication of WO2009118497A3 publication Critical patent/WO2009118497A3/fr
Priority to FI20105975A priority patent/FI20105975A/fi

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/06Means for driving the impulse member
    • B25D9/12Means for driving the impulse member comprising a built-in liquid motor, i.e. the tool being driven by hydraulic pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/10Electrodes characterised by the structure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B6/00Drives for drilling with combined rotary and percussive action

Definitions

  • the present invention relates to a roto-percussion hydraulic rotary hammer more specifically used on a drilling rig.
  • a drilling rig comprises, in known manner, a rotary percussion hydraulic hammer mounted sliding on a slide and driving one or more drill bars, the last of these bars carrying a tool called cutting which is contact with the rock.
  • Such a hammer perforator generally aims to drill more or less deep holes in order to place explosive charges.
  • the hammer drill is thus the main element which, on the one hand, confers on the cutter the rotation and the percussion by means of the drill bars so as to penetrate the rock, and on the other hand, provides an injection fluid so as to extract debris from the drilled hole.
  • a hammer drill comprises a mechanism, driven by one or more hydraulic fluid flow rates from a main supply circuit, acting on the drill bars through a fitting which is able to retransmit to the busbar. drilling, on the one hand, the successive shocks caused by a striking piston, and secondly, the rotation due to a hydraulic rotary engine.
  • the hammer drill comprises, in its front part, a device for guiding the fitting.
  • the hammer drill also includes a fluid injection circuit, such as air and water, bringing this fluid from an outer pipe to a central hole of the fitting. This fluid then travels through the drill rod (s) to the cutter, and is used to evacuate the rock debris outwards while drilling.
  • the hammer drill according to the present invention aims to solve the problem mentioned above.
  • the present invention relates to a rotary percussion hammer comprising: a fitting connected to at least one drill bar comprising a tool intended to be in contact with a rock to be perforated;
  • a fluid injection circuit designed to bring an injection fluid from a fluid supply pipe to the tool and the rock to be punched so as to extract, during the drilling, the rock debris out of of a borehole, the injection fluid being intended to be in contact with the guiding device and the fitting, characterized in that it comprises at least one anode disposed in the fluid injection circuit and intended to to be in contact with the injection fluid, the anode being arranged to provide cathodic protection of the metal surfaces of the guide device and / or the fitting against a corrosive attack due to the injection fluid.
  • Cathodic protection is a known technique for controlling the corrosion of metal surfaces by transforming these surfaces into cathodes of an electrochemical cell, the injection fluid forming the electrolyte of the electrochemical cell.
  • the injection fluid contains corrosive substances
  • the latter interact with the anode disposed in the fluid injection circuit and corrode the anode in place of the metal surfaces of the guide device and / or the fitting, so that the corrosion rate of the guide device and / or the fitting is considerably reduced.
  • the anode is disposed in a housing formed in the guiding device.
  • the housing opens outwardly from the guide device, and the hammer perforator comprises means for retaining the anode in the housing.
  • the guiding device defines a substantially annular chamber around the fitting in which is intended to flow the injection fluid, the substantially annular chamber forming the housing in which the anode is arranged, and the fitting present an internal injection channel opening into the annular chamber.
  • the anode is contained in a separate housing of the guide device and the fitting.
  • a first end of the housing containing the anode is connected to the fluid supply line.
  • a second end of the housing containing the anode is connected to the guide device or to the body of the hammer drill.
  • the anode is in electrical continuity with the guide device and / or the fitting.
  • the anode is made of a material having a potential more electronegative than that of the material used for the manufacture of the guide device and / or the fitting.
  • the anode and the guiding device are electrically connected to a DC generator arranged to impose an electric current between the anode and the guiding device.
  • Figure 1 is a longitudinal sectional view of the hammer perforator according to a first embodiment of the invention.
  • Figure 2 is a longitudinal sectional view of the hammer drill according to a second embodiment of the invention.
  • Figure 3 is a longitudinal sectional view of the hammer drill according to a third embodiment of the invention.
  • Figure 4 is a longitudinal sectional view of the hammer perforator according to a fourth embodiment of the invention.
  • Figure 5 is a longitudinal sectional view of the hammer drill according to a fifth embodiment of the invention.
  • a hammer drill 1 according to the invention comprises a striking mechanism consisting of a striking piston 2 contained in a bore 3 formed in the body 4 of the hammer drill, and a system of hydraulic distribution 5 fed from a pressure circuit 6 and a low pressure circuit 7, the hydraulic distribution system 5 allowing the reciprocating displacement of the striking piston 2.
  • the hammer 1 also comprises a rotation mechanism comprising a hydraulic motor 8 driving in rotation a fitting 9 by means of gears 10 and 11 arranged in the body 4 of the hammer drill.
  • the fitting 9 is connected to a drill bar 12 carrying at its end opposite the fitting a cutter 13 in contact with a rock 14 to be punched.
  • the fitting 9 extends in the axis of the striking piston 2 and the front face of the latter 1 is intended to strike the fitting 9.
  • the fitting 9 thus transmits the shock waves received from the striking piston 2 and the rotational movement to the drill bar 12 and the cutter 13, so as to perforate the rock 14.
  • the debris generated by this perforation of the rock 14 is removed as the advance of the cutter 13 in the rock 14, by injecting an injection fluid.
  • This injection fluid generally comes from a water reserve located near the site. This water is pressurized and directed into a fluid supply line 15 to a guiding device 16 of the fitting 12, the guiding device 16 being fixed on the front part of the body 4 of the hammer drill 1.
  • the guiding device 16 comprises a bore 17 through which the fitting 9 extends.
  • the guiding device 16 delimits an annular chamber 18 around the fitting 9 into which a connecting channel 19 is formed in the guiding device. 16 and communicating with the fluid supply line 15.
  • the annular chamber 18 is sealed by means of two annular seals 20 arranged between the guide device 16 and the fitting 9 on both sides of the annular chamber 18.
  • the fitting 9 comprises an axial channel 21 extending over part of its length, the axial channel 21 opening into the annular chamber 18 and communicating with an axial channel 22 formed in the drill bar 9.
  • the axial channel 22 is extends to the cutter 13 so that the injection fluid is directed from the supply line 15 to the rock 14 and can evacuate the drilling debris.
  • the hammer drill 1 comprises a sacrificial anode 23, that is to say an anode made of a material having a potential more electronegative than that of the materials used for the manufacture of the guiding device 16 and the fitting 9.
  • the anode 23 is tubular and is disposed in a housing formed in the guide device 16, the housing opening towards the outside of the guide device.
  • the anode 23 can be made for example from alloys of zinc, magnesium and aluminum. It should be noted that the anode 23 delimits a portion of the passage section of the connecting channel 19 so that the injection fluid flows through the anode 23 before joining the axial channels 21, 22 of the the fitting 9 and the drill bar 12.
  • the anode 23 is in electrical continuity with the guide device 16 and the fitting 9.
  • the hammer drill 1 comprises means for retaining the anode 23 in the housing formed in the guiding device 16.
  • the retaining means comprise a nozzle 24 comprising a first external thread cooperating with a tapping formed in the housing receiving the anode, and a second external thread cooperating with a threaded portion of the duct. supply of injection fluid 15.
  • the injection fluid containing corrosive substances flows from the fluid supply line 15 to the cutter 13 and comes into contact with the guiding device 16 and the fitting 9 so as to form the electrolyte of an electrochemical cell, the guide device 16 and the fitting 9 forming a cathode of such an electrochemical cell.
  • the positioning of the anode 23 in a housing opening outwardly allows easy replacement of the anode 23 when it is degraded. Indeed, it is sufficient to unscrew the tip 24, replacing the degraded anode 23 with a new anode, and finally screwing the tip 24 on the guiding device 16.
  • FIG. 2 shows a second embodiment of the hammer drill 1 which differs from that shown in FIG. 1 essentially in that the anode 23 is replaced by one or more sacrificial anodes 25 disposed in the annular chamber 18 between the two seals. 20.
  • These anodes 25 can have different shapes and be for example tubular or be in the form of bars.
  • the anodes 25 are located as close to the parts to be protected from corrosion, that is to say closer to the guide device 16 and the fitting 9, which improves the cathodic protection of these parts.
  • FIG. 3 represents a third embodiment of the hammer drill 1 which differs from that shown in FIG. 1 essentially in that the sacrificial anode 26 is contained in an anode tube 27 distinct from the guiding device 16 and from the It should be noted that the anode 26 nevertheless remains in electrical contact with the guiding device 16 via a metallic or flexible metal braid tip 28 screwed onto the guiding device 16 and on which is screwed a first end of the anode holder tube 27. The other end of the anode holder tube 27 is fixed to the injection fluid supply line 15.
  • Figure 4 shows a fourth embodiment of the hammer perforator 1 which differs from that shown in Figure 3 essentially in that the anode tube 27 is fixed on the body 4 of the hammer perforator, and in that the injection fluid is introduced directly into the axial channel 21 of the 9 fitting, via an injection tube 29 mechanically fixed to the rear of the body 4 of the hammer drill.
  • This injection tube 29 is mechanically connected and is in electrical continuity with the anode-holding tube 27 and the anode 26.
  • the anode 26 is also in electrical continuity with the body 4 of the hammer drill, the guiding device 16 and the fitting 9.
  • the injection fluid supply line 15, connected to the anode-holding tube 27, supplies injection fluid the fitting 9 which is protected from corrosion by the presence of the anode 26.
  • FIG. 5 represents a fifth embodiment of the perforating hammer 1 that differs from that shown in FIG. 3 essentially in that the anode 30 and the guiding device 16 are electrically connected to a direct current generator 31 arranged to imposing an electric current between the anode 30 and the guiding device 16.
  • the positive and negative poles of the generator are respectively connected to the anode 30 and to the guiding device 16.
  • the anode 30 is electrically insulated from the metal mass of the guide device 16 and the fitting 9, so as not to short circuit the generator 31.
  • This configuration although more complex, increases the effectiveness of the corrosion protection of the device of guide 16 and fitting 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Earth Drilling (AREA)

Abstract

Ce marteau perforateur comprend un emmanchement (9) relié à au moins une barre de forage (12) comportant un outil (13) destiné à être en contact d'une roche à perforer (14), un dispositif de guidage (16) de l'emmanchement (9), et un circuit d'injection de fluide conçu pour amener un fluide d'injection d'une conduite d'amenée de fluide (15) jusqu'à l'outil (13) et la roche à perforer (14) de manière à extraire, durant le forage, les débris de roche hors d'un trou de forage, le fluide d'injection étant destiné à être en contact avec le d ispositif de guidage et l'emmanchement. Le marteau perforateur comprend une anode (23) disposée dans le circuit d'injection de fluide et destinée à être au contact du fluide d'injection, l'anode étant agencée de façon à réaliser une protection cathodique des surfaces métalliques du dispositif de guidage (16) et/ou de l'emmanchement (9) contre une attaque corrosive due au fluide d'injection.

Description

Marteau perforateur hydraulique roto-percutant
La présente invention se rapporte à un marteau perforateur hydraulique roto-percutant plus spécialement utilisé sur une installation de forage. Une installation de forage comprend, de façon connue, un marteau perforateur hydraulique roto-percutant monté coulissant sur une glissière et entraînant une ou plusieurs barres de forage, la dernière de ces barres portant un outil appelé taillant qui est contact de la roche. Un tel marteau perforateur a généralement pour objectif de forer des trous plus ou moins profonds afin de pouvoir y placer des charges explosives. Le marteau perforateur est donc l'élément principal qui, d'une part, confère au taillant la mise en rotation et la mise en percussion par l'intermédiaire des barres de forage de façon à pénétrer la roche, et d'autre part, fournit un fluide d'injection de manière à extraire les débris du trou foré. Un marteau perforateur comprend un mécanisme, animé par un ou plusieurs débits de fluide hydraul ique provenant d'un circuit principal d'alimentation, agissant sur les barres de forage par l'intermédiaire d'un emmanchement qui est apte à retransmettre à la barre de forage, d'une part, les chocs successifs provoqués par un piston de frappe, et d'autre part, la mise en rotation due à un moteur rotatif hydraulique.
Le marteau perforateur comporte, dans sa partie avant, un dispositif de guidage de l'emmanchement. Le marteau perforateur comporte également un circuit d'injection de fluide, tel que de l'air et de l'eau, amenant ce fluide d'une canalisation extérieure vers un trou central de l'emmanchement. Ce fluide parcourt ensuite la ou les barres de forage jusqu'au taillant, puis est utilisé pour évacuer, pendant le forage, les débris de roche vers l'extérieur.
Pour les applications en mine ou tunnel, l'injection d'eau est couramment utilisée, car l'injection d'air générerait une émission de poussières difficilement acceptable dans ce milieu confiné. L'eau est généralement pompée sur le site dans la nappe phréatique ou les eaux disponibles à proximité. L'inconvénient est la présence dans ces eaux de substances, telles que des sels ou acides, qui provoquent une attaque corrosive sur le guide avant et l'emmanchement du marteau perforateur. Le remplacement fréquent de ces pièces et l'arrêt inopiné du chantier génèrent des pertes financières qui peuvent se révéler importantes par rapport au coût du marteau perforateur. Le marteau perforateur selon la présente invention a pour but de résoudre le problème évoqué ci-dessus.
A cet effet, la présente invention concerne un marteau perforateur hydraulique roto-percutant comprenant : - un emmanchement relié à au moins une barre de forage comportant un outil destiné à être en contact d'une roche à perforer,
- un dispositif de guidage de l'emmanchement,
- un circuit d'injection de fluide conçu pour amener un fluide d'injection d'une conduite d'amenée de fluide jusqu'à l'outil et la roche à perforer de manière à extraire, durant le forage, les débris de roche hors d'un trou de forage, le fluide d'injection étant destiné à être en contact avec le dispositif de guidage et l'emmanchement, caractérisé en ce qu'il comprend au moins une anode disposée dans le circuit d'injection de fluide et destinée à être au contact du fluide d'injection, l'anode étant agencée de façon à réaliser une protection cathodique des surfaces métalliques du dispositif de guidage et/ou de l'emmanchement contre une attaque corrosive due au fluide d'injection.
La protection cathodique est une technique connue pour contrôler la corrosion de surfaces métalliques en transformant ces surfaces en cathodes d'une cellule électrochimique, le fluide d'injection formant l'électrolyte de la cellule électrochimique.
Ainsi, lorsque le fluide d'injection contient des substances corrosives, ces dernières interagissent avec l'anode disposée dans le circuit d'injection de fluide et corrode l'anode à la place des surfaces métalliques du dispositif de guidage et/ou de l'emmanchement, si bien que la vitesse de corrosion du dispositif de guidage et/ou de l'emmanchement s'en trouve considérablement réduite.
Il en résulte des remplacements peu fréquents du dispositif de guidage et/ou de l'emmanchement, et donc une diminution des temps d'arrêt du chantier.
Selon un mode de réalisation de l'invention, l'anode est disposée dans un logement ménagé dans le dispositif de guidage.
De préférence, le logement débouche vers l'extérieur du dispositif de guidage, et le marteau perforateur comprend des moyens de retenue de l'anode dans le logement. Avantageusement, le dispositif de guidage délimite une chambre sensiblement annulaire autour de l'emmanchement dans laquelle est destiné à s'écouler le fluide d'injection, la chambre sensiblement annulaire formant le logement dans lequel est disposée l'anode, et l'emmanchement présente un canal interne d'injection débouchant dans la chambre annulaire.
Selon un autre mode de réalisation de l'invention, l'anode est contenue dans un boîtier distinct du dispositif de guidage et de l'emmanchement.
De préférence, une première extrémité du boîtier contenant l'anode est raccordée à la conduite d'amenée de fluide.
Avantageusement, une seconde extrémité du boîtier contenant l'anode est raccordée au dispositif de guidage ou au corps du marteau perforateur.
Selon un mode de réal isation de l'invention, l'anode est en continuité électrique avec le dispositif de guidage et/ou l'emmanchement.
Selon un autre mode de réalisation de l'invention, l'anode est fabriquée dans un matériau ayant un potentiel plus électronégatif que celui du matériau utilisé pour la fabrication du dispositif de guidage et/ou de l'emmanchement. Selon encore un autre mode de réalisation de l'invention, l'anode et le dispositif de guidage sont reliés électriquement à un générateur de courant continu agencé pour imposer un courant électrique entre l'anode et le dispositif de guidage.
De toute façon, l'invention sera bien comprise à l'aide de la description qui suit en référence au dessin schématique annexé représentant, à titre d'exemples non limitatifs, plusieurs formes d'exécution de ce marteau perforateur hydraulique roto-percutant.
La figure 1 est une vue en coupe longitudinale du marteau perforateur selon une première forme d'exécution de l'invention. La figure 2 est une vue en coupe longitudinale du marteau perforateur selon une deuxième forme d'exécution de l'invention.
La figure 3 est une vue en coupe longitudinale du marteau perforateur selon une troisième forme d'exécution de l'invention.
La figure 4 est une vue en coupe longitudinale du marteau perforateur selon une quatrième forme d'exécution de l'invention. La figure 5 est une vue en coupe longitudinale du marteau perforateur selon une cinquième forme d'exécution de l'invention.
En se référant à la figure 1 , un marteau perforateur 1 selon l'invention comprend un mécanisme de frappe se composant d'un piston de frappe 2 contenu dans un alésage 3 ménagé dans le corps 4 du marteau perforateur, et d'un système de distribution hydraulique 5 alimenté à partir d'un circuit sous pression 6 et d'un circuit basse pression 7, le système de distribution hydraulique 5 permettant le déplacement alternatif du piston de frappe 2. Le marteau perforateur 1 comprend également un mécanisme de rotation comportant un moteur hydraulique 8 entraînant en rotation un emmanchement 9 par l'intermédiaire d'engrenages 10 et 11 disposés dans le corps 4 du marteau perforateur.
L'emmanchement 9 est relié à une barre de forage 12 portant à son extrémité opposée à l'emmanchement un taillant 13 au contact d'une roche 14 à perforer. L'emmanchement 9 s'étend dans l'axe du piston de frappe 2 et la face avant de ce dernier 1 est destinée à venir percuter l'emmanchement 9.
L'emmanchement 9 transmet ainsi les ondes de chocs reçues du piston de frappe 2 et le mouvement de rotation à la barre de forage 12 et au taillant 13, de façon à perforer la roche 14.
Les débris générés par cette perforation de la roche 14 sont évacués au fur et à mesure de l'avance du taillant 13 dans la roche 14, en injectant un fluide d'injection. Ce fluide d'injection provient généralement d'une réserve d'eau située à proximité du chantier. Cette eau est mise sous pression et dirigée dans une conduite d'amenée de fluide 15 vers un dispositif de guidage 16 de l'emmanchement 12, le dispositif de guidage 16 étant fixé sur la partie avant du corps 4 du marteau perforateur 1.
Le dispositif de guidage 16 comprend un alésage 17 à travers lequel s'étend l'emmanchement 9. Le dispositif de guidage 16 délimite une chambre annulaire 18 autour de l'emmanchement 9 dans laquelle débouche un canal de liaison 19 ménagé dans le dispositif de guidage 16 et communiquant avec la conduite d'amenée de fluide 15. La chambre annulaire 18 est rendue étanche par l'intermédiaire de deux joints d'étanchéité annulaires 20 disposés entre le dispositif de guidage 16 et l'emmanchement 9 de part et d'autre de la chambre annulaire 18. L'emmanchement 9 comporte un canal axial 21 s'étendant sur une partie de sa longueur, le canal axial 21 débouchant dans la chambre annulaire 18 et communiquant avec un canal axial 22 ménagé dans la barre de forage 9. Le canal axial 22 s'étend jusqu'au taillant 13 de telle sorte que le fluide d'injection soit dirigé depuis la conduite d'amenée 15 jusqu'à la roche 14 et puisse évacuer les débris de forage.
Le marteau perforateur 1 comprend une anode sacrificielle 23, c'est-à-dire une anode fabriquée dans un matériau ayant un potentiel plus électronégatif que celui des matériaux utilisés pour la fabrication du dispositif de guidage 16 et de l'emmanchement 9. L'anode 23 est tubulaire et est disposée dans un logement ménagé dans le dispositif de guidage 16, le logement débouchant vers l'extérieur du dispositif de guidage. L'anode 23 peut être fabriquée par exemple à partir d'alliages de zinc, de magnésium et d'aluminium. II doit être noté que l'anode 23 délimite une partie de la section de passage du canal de liaison 19 de telle sorte que le fluide d'injection s'écoule à travers l'anode 23 avant de rejoindre les canaux axiaux 21 , 22 de l'emmanchement 9 et de la barre de forage 12. De plus, l'anode 23 est en continuité électrique avec le dispositif de guidage 16 et l'emmanchement 9. Le marteau perforateur 1 comprend des moyens de retenue de l'anode 23 dans le logement ménagé dans le dispositif de guidage 16. Les moyens de retenue comportent un embout 24 comprenant un premier filetage externe coopérant avec un taraudage ménagé dans le logement recevant l'anode, et un second filetage externe coopérant avec une portion filetée de la conduite d'amenée de fluide d'injection 15.
En fonctionnement, le fluide d'injection contenant des substances corrosives s'écoule de la conduite d'amenée de fluide 15 jusqu'au taillant 13 et entre en contact avec le dispositif de guidage 16 et l'emmanchement 9 de manière à former l'électrolyte d'une cellule électrochimique, le dispositif de guidage 16 et l'emmanchement 9 formant une cathode d'une telle cellule électrochimique.
Il en résulte une dégradation par corrosion de l'anode 23 à la place des surfaces métalliques du dispositif de guidage 16 et l'emmanchement 9.
Il doit être noté que le positionnement de l'anode 23 dans un logement débouchant vers l'extérieur permet un remplacement aisé de l'anode 23 lorsque celle-ci est dégradée. En effet, il suffit de dévisser l'embout 24, de remplacer l'anode 23 dégradée par une nouvelle anode, et enfin de revisser l'embout 24 sur le dispositif de guidage 16.
La figure 2 représente un second mode de réalisation du marteau perforateur 1 qui diffère de celui représenté sur la figure 1 essentiellement en ce que l'anode 23 est remplacée par une ou plusieurs anodes sacrificielles 25 disposées dans la chambre annulaire 18 entre les deux joints d'étanchéité 20. Ces anodes 25 peuvent avoir différentes formes et être par exemple tubulaires ou se présenter sous forme de barreaux.
Selon ce second mode de réalisation, les anodes 25 se trouvent situées au plus près des pièces à protéger de la corrosion, c'est-à-dire au plus près du dispositif de guidage 16 et de l'emmanchement 9, ce qui améliore la protection cathodique de ces pièces.
La figure 3 représente un troisième mode de réalisation du marteau perforateur 1 qui diffère de celui représenté sur la figure 1 essentiellement en ce que l'anode sacrificielle 26 est contenue dans un tube porte-anode 27 distinct du dispositif de guidage 16 et de l'emmanchement 9. Il doit être noté que l'anode 26 reste cependant en contact électrique avec le dispositif de guidage 16 par l'intermédiaire d'un embout métallique ou flexible à tresse métallique 28 vissé sur le dispositif de guidage 16 et sur lequel est vissée une première extrémité du tube porte-anode 27. L'autre extrémité du tube porte- anode 27 est fixée à la conduite d'amenée de fluide d'injection 15.
Dans cette configuration, lorsque l'anode 26 est consommée, il suffit de remplacer l'ensemble anode 26 / tube porte-anode 27, sans avoir à intervenir sur le dispositif de guidage 16. La figure 4 représente un quatrième mode de réalisation du marteau perforateur 1 qui diffère de celui représenté sur la figure 3 essentiellement en ce que le tube porte-anode 27 est fixé sur le corps 4 du marteau perforateur, et en ce que le fluide d'injection est introduit directement dans le canal axial 21 de l'emmanchement 9, par l'intermédiaire d'un tube d'injection 29 fixé mécaniquement à l'arrière du corps 4 du marteau perforateur. Ce tube d'injection 29 est connecté mécaniquement et est en continuité électrique avec le tube porte-anode 27 et l'anode 26. L'anode 26 est également en continuité électrique avec le corps 4 du marteau perforateur, le dispositif de guidage 16 et l'emmanchement 9. La conduite d'amenée de fluide d'injection 15, connectée au tube porte-anode 27, alimente en fluide d'injection l'emmanchement 9 qui est protégé de la corrosion par la présence de l'anode 26.
La figure 5 représente un cinquième mode de réalisation du marteau perforateur 1 qu i d iffère de celu i représenté sur la figure 3 essentiellement en ce que l'anode 30 et le dispositif de guidage 16 sont reliés électriquement à un générateur de courant continu 31 agencé pour imposer un courant électrique entre l'anode 30 et le dispositif de guidage 16. Les pôles positif et négatif du générateur sont reliés respectivement à l'anode 30 et au dispositif de guidage 16. Dans ce cas, l'anode 30 est isolée électriquement de la masse métallique du dispositif de guidage 16 et de l'emmanchement 9, de façon à ne pas mettre en court circuit le générateur 31. Cette configuration, bien que plus complexe, permet d'augmenter l'efficacité de la protection anticorrosion du dispositif de guidage 16 et de l'emmanchement 9.
Il doit être noté qu'il est possible d'utiliser un générateur de courant continu permanent ou cyclique.
Il doit également être noté qu'il serait possible de remplacer les anodes sacrificielles 23, 25, 26 utilisées dans les modes de réalisation représentés sur les figures 1 , 2 et 4 par des anodes couplées à un générateur de courant continu tel que représenté à la figure 5. Comme il va de soi, l'invention ne se limite pas aux seules formes d'exécution de ce marteau perforateur hydraulique, qui ont été décrites ci- dessus à titre d'exemples; elle en embrasse, au contraire, toutes les variantes de réalisation et d'application respectant le même principe.

Claims

REVENDICATIONS
1. Marteau perforateur hydraulique roto-percutant (1 ) comprenant : - un emmanchement (9) relié à au moins une barre de forage (12) comportant un outil (13) destiné à être en contact d'une roche à perforer (14),
- un dispositif de guidage (16) de l'emmanchement (9),
- un circuit d'injection de fluide conçu pour amener un fluide d'injection d'une conduite d'amenée de fluide (15) jusqu'à l'outil (13) et la roche à perforer (14) de manière à extraire, durant le forage, les débris de roche hors d'un trou de forage, le fluide d'injection étant destiné à être en contact avec le dispositif de guidage et l'emmanchement, caractérisé en ce qu'il comprend au moins une anode (23, 25, 26, 30) disposée dans le circuit d'injection de fluide et destinée à être au contact du fluide d'injection, l'anode étant agencée de façon à réaliser une protection cathodique des surfaces métalliques du dispositif de guidage (16) et/ou de l'emmanchement (9) contre une attaque corrosive due au fluide d'injection.
2. Marteau perforateur selon la revendication 1 , caractérisé en ce que l'anode (23, 25) est disposée dans un logement ménagé dans le dispositif de guidage (16).
3. Marteau perforateur selon la revendication 2, caractérisé en ce que le logement débouche vers l'extérieur du dispositif de guidage (16), et en ce que le marteau perforateur comprend des moyens de retenue (24) de l'anode (23) dans le logement.
4. Marteau perforateur selon la revendication 2, caractérisé en ce que le dispositif de guidage (16) délimite une chambre sensiblement annulaire (18) autour de l'emmanchement (9) dans laquelle est destiné à s'écouler le fluide d'injection, la chambre sensiblement annulaire (18) formant le logement dans lequel est disposée l'anode (25), et en ce que l'emmanchement (9) présente un canal interne d'injection (21 ) débouchant dans la chambre annulaire (18).
5. Marteau perforateur selon la revendication 1 , caractérisé en ce que l'anode (26, 30) est contenue dans un boîtier (27) distinct du dispositif de guidage (16) et de l'emmanchement (9).
6. Marteau perforateur selon la revendication 5, caractérisé en ce qu'une première extrémité du boîtier (27) contenant l'anode (26, 30) est raccordée à la conduite d'amenée de fluide (15).
7. Marteau perforateur selon la revendication 6, caractérisé en ce qu'une seconde extrémité du boîtier (27) contenant l'anode est raccordée au dispositif de guidage (16) ou au corps (4) du marteau perforateur.
8. Marteau perforateur selon l'une des revendications 1 à 7, caractérisé en ce que l'anode (23, 25, 26) est en continuité électrique avec le dispositif de guidage (16) et/ou l'emmanchement (9).
9. Marteau perforateur selon l'une des revendications 1 à 8, caractérisé en ce que l'anode (23, 25, 26) est fabriquée dans un matériau ayant un potentiel plus électronégatif que celui du matériau utilisé pour la fabrication du dispositif de guidage (16) et/ou de l'emmanchement (9).
10. Marteau perforateur selon l'une des revendications 1 à 7, caractérisé en ce que l'anode (30) et le dispositif de guidage (16) sont reliés électriquement à un générateur de courant continu (31 ) agencé pour imposer un courant électrique entre l'anode et le dispositif de guidage.
PCT/FR2009/050377 2008-03-25 2009-03-09 Marteau perforateur hydraulique roto-percutant WO2009118497A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2717654A CA2717654A1 (fr) 2008-03-25 2009-03-09 Marteau perforateur hydraulique roto-percutant
SE1050986A SE534700C2 (sv) 2008-03-25 2009-03-09 Hydraulisk slagborrmaskin med katodiskt korrosionsskydd
FI20105975A FI20105975A (fi) 2008-03-25 2010-09-22 Hydraulinen kiertoiskupora

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR08/01603 2008-03-25
FR0801603A FR2929322B1 (fr) 2008-03-25 2008-03-25 Marteau perforateur hydraulique roto-percutant

Publications (2)

Publication Number Publication Date
WO2009118497A2 true WO2009118497A2 (fr) 2009-10-01
WO2009118497A3 WO2009118497A3 (fr) 2009-11-26

Family

ID=39848247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/050377 WO2009118497A2 (fr) 2008-03-25 2009-03-09 Marteau perforateur hydraulique roto-percutant

Country Status (5)

Country Link
CA (1) CA2717654A1 (fr)
FI (1) FI20105975A (fr)
FR (1) FR2929322B1 (fr)
SE (1) SE534700C2 (fr)
WO (1) WO2009118497A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104066918A (zh) * 2012-01-19 2014-09-24 阿特拉斯·科普柯凿岩设备有限公司 钻岩机中的冲洗液体密封装置及其生产方法、冲洗壳体和钻岩机
US10060206B2 (en) 2010-01-11 2018-08-28 Epiroc Rock Drills Aktiebolag Percussion rock drilling machine and drill rig
WO2022217666A1 (fr) * 2021-04-12 2022-10-20 何泽康 Marteau de rupture à commande de fréquence basée sur la rotation à axe unique et sur le temps

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1023082A (en) * 1962-01-16 1966-03-16 Bwg Bergwerk Walzwerk A metallic pit prop
US3725669A (en) * 1971-12-14 1973-04-03 J Tatum Deep anode bed for cathodic protection
WO2003078788A1 (fr) * 2002-03-20 2003-09-25 Atlas Copco Secoroc Ab Procede permettant d'appliquer un revetement anticorrosion sur des parties particulierement exposees a la corrosion dans un equipement de perforatrice de roches
WO2003078107A1 (fr) * 2002-03-19 2003-09-25 Montabert S.A. Marteau perforateur hydraulique roto-percutant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1023082A (en) * 1962-01-16 1966-03-16 Bwg Bergwerk Walzwerk A metallic pit prop
US3725669A (en) * 1971-12-14 1973-04-03 J Tatum Deep anode bed for cathodic protection
WO2003078107A1 (fr) * 2002-03-19 2003-09-25 Montabert S.A. Marteau perforateur hydraulique roto-percutant
WO2003078788A1 (fr) * 2002-03-20 2003-09-25 Atlas Copco Secoroc Ab Procede permettant d'appliquer un revetement anticorrosion sur des parties particulierement exposees a la corrosion dans un equipement de perforatrice de roches

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10060206B2 (en) 2010-01-11 2018-08-28 Epiroc Rock Drills Aktiebolag Percussion rock drilling machine and drill rig
CN104066918A (zh) * 2012-01-19 2014-09-24 阿特拉斯·科普柯凿岩设备有限公司 钻岩机中的冲洗液体密封装置及其生产方法、冲洗壳体和钻岩机
WO2022217666A1 (fr) * 2021-04-12 2022-10-20 何泽康 Marteau de rupture à commande de fréquence basée sur la rotation à axe unique et sur le temps

Also Published As

Publication number Publication date
SE1050986A1 (sv) 2010-09-23
SE534700C2 (sv) 2011-11-22
FI20105975A (fi) 2010-09-22
FR2929322A1 (fr) 2009-10-02
FR2929322B1 (fr) 2010-03-12
WO2009118497A3 (fr) 2009-11-26
CA2717654A1 (fr) 2009-10-01

Similar Documents

Publication Publication Date Title
US8038223B2 (en) Pick with carbide cap
EP1064453A1 (fr) Appareil de coupe de mineraux
WO2009118497A2 (fr) Marteau perforateur hydraulique roto-percutant
CN103184835A (zh) 具有压缩带定位器的钻头套筒
CN211081782U (zh) 一种油井单筒双井套管机械电切割装置
CN102782253B (zh) 用于截矿机截齿的取出系统
CA2805376A1 (fr) Pic de mine composite a matrice metallique et procede de fabrication
EP1492648B1 (fr) Marteau perforateur hydraulique roto-percutant
EP1039094A1 (fr) Trépan à cones avec dispositif d'étanchéité
CA3088119C (fr) Perforateur hydraulique roto-percutant pourvu d'une chambre de commande reliee en permanence a un accumulateur basse pression
EP4080011B1 (fr) Perforateur hydraulique roto-percutant
NO335492B1 (no) Fremgangsmåte og anordning for rensing av et rørlegeme i grunnen
EP4052854B1 (fr) Perforateur hydraulique roto-percutant pourvu d'un piston de butée
EP2616623B1 (fr) Appareil rotopercutant hydraulique destiné à la perforation de trous de mine
EP4053374A1 (fr) Perforateur hydraulique roto-percutant pourvu d'un piston de butée et d'une chambre de freinage
FR2475450A1 (fr) Pistolet de scellement de goujons, actionne par force explosive
AU2020200965B2 (en) Ground drilling device, method for making a ground drilling device, method for maintaining a ground drilling device, and use of a ground drilling device
NL2007488C2 (en) Cutting device.
EP3194122A1 (fr) Appareil de perforation hydraulique destiné à la perforation de trous de mine
JP3114081B2 (ja) 地山改良安定化装置
US9243456B2 (en) Earth drilling device
CN202249820U (zh) 高效耐磨加长收压器
BE638022A (fr)
FR2495203A1 (fr) Pic de forage perfectionne destine a se monter sur une excavatrice
BE683523A (fr)

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09725112

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2717654

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 20105975

Country of ref document: FI

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09725112

Country of ref document: EP

Kind code of ref document: A2