WO2009117158A2 - Device and method for opening blood vessels by pre-angioplasty serration and dilatation of aetherosclerotic plaque - Google Patents
Device and method for opening blood vessels by pre-angioplasty serration and dilatation of aetherosclerotic plaque Download PDFInfo
- Publication number
- WO2009117158A2 WO2009117158A2 PCT/US2009/001786 US2009001786W WO2009117158A2 WO 2009117158 A2 WO2009117158 A2 WO 2009117158A2 US 2009001786 W US2009001786 W US 2009001786W WO 2009117158 A2 WO2009117158 A2 WO 2009117158A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plaque
- balloon
- spikes
- expansion
- angioplasty
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/3207—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
- A61B17/320725—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with radially expandable cutting or abrading elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0067—Catheters; Hollow probes characterised by the distal end, e.g. tips
- A61M25/0082—Catheter tip comprising a tool
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M25/104—Balloon catheters used for angioplasty
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/20—Surgical instruments, devices or methods, e.g. tourniquets for vaccinating or cleaning the skin previous to the vaccination
- A61B17/205—Vaccinating by means of needles or other puncturing devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22051—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
- A61B2017/22061—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation for spreading elements apart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0067—Catheters; Hollow probes characterised by the distal end, e.g. tips
- A61M25/0082—Catheter tip comprising a tool
- A61M2025/0096—Catheter tip comprising a tool being laterally outward extensions or tools, e.g. hooks or fibres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M2025/1043—Balloon catheters with special features or adapted for special applications
- A61M2025/1086—Balloon catheters with special features or adapted for special applications having a special balloon surface topography, e.g. pores, protuberances, spikes or grooves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M2025/1043—Balloon catheters with special features or adapted for special applications
- A61M2025/109—Balloon catheters with special features or adapted for special applications having balloons for removing solid matters, e.g. by grasping or scraping plaque, thrombus or other matters that obstruct the flow
Definitions
- the present invention is directed to a device and method for opening blood vessels in the body occluded by atherosclerotic plaque by pre-angioplasty serration and dilatation of the plaque.
- Atherosclerotic occlusive disease is the primary cause of stroke, heart attack, limb loss, and death in the US and the industrialized world.
- Atherosclerotic plaque forms a hard layer along the wall of an artery and is comprised of calcium, cholesterol, compacted thrombus and cellular debris.
- the blood supply intended to pass through a specific blood vessel is diminished or even prevented by the occlusive process.
- One of the most widely utilized methods of treating clinically significant atherosclerotic plaque is balloon angioplasty.
- Balloon angioplasty is an accepted and common method of opening blocked or narrowed blood vessels in every vascular bed in the body.
- Balloon angioplasty is performed with a balloon angioplasty catheter.
- the balloon angioplasty catheter consists of a cigar shaped, cylindrical balloon attached to a catheter.
- the balloon angioplasty catheter is placed into the artery from a remote access site that is created either percutaneously or through open exposure of the artery.
- the catheter is passed along the inside of the blood vessel over a wire that guides the way of the catheter.
- the portion of the catheter with the balloon attached is placed at the location of the atherosclerotic plaque that requires treatment.
- the balloon is inflated to a size that is consistent with the original diameter of the artery prior to developing occlusive disease.
- the plaque When the balloon is inflated, the plaque is stretched, compressed, fractured, or broken, depending on its composition, location, and the amount of pressure exerted by the balloon.
- the plaque is heterogeneous and may be soft in some areas or hard in others causing unpredictable cleavage planes to form under standard balloon angioplasty.
- the basic mechanism of balloon angioplasty relies to on a combination of actions caused by the balloon exerting pressure on the atherosclerotic plaque, including; compression of the plaque and the fracture of the hard, circumferentially calcified portion of the plaque. Balloon angioplasty causes plaque disruption and sometimes it causes arterial injury at the angioplasty site.
- Balloon angioplasty is often performed at high inflation pressures, in excess of 4 atmospheres, very commonly at 8 atm and sometimes up to 22 atm. Therefore, the results of balloon angioplasty are unpredictable.
- the angioplasty balloon is expanded with enough pressure to open a hard plaque dissection often occurs; the hardened areas become disrupted and partially separated from the arterial wall and are prone to lifting up as flaps or chunks.
- the random cleavage planes that are created by the dissection depend upon the composition of the plaque and the pressure exerted upon it. The cleavage planes tend to be wandering, longitudinal lines.
- the depth of the cleavage planes or fractures that are created by balloon angioplasty varies significantly and may be superficial or may be deep and extend all the way to the media of the arterial wall.
- the cleavage plane goes across the line of flow, that is perpendicular or diagonal to the axial direction of the vessel, there is the potential for partial or complete lifting of a flap.
- a flap of fractured plaque When a flap of fractured plaque has lifted, it may cause acute occlusion or blockage of blood flow, or leave a significant residual stenosis, or may extend to create a larger flap.
- a segment of the plaque is more resistant to dilatation than the remainder of the plaque.
- greater pressure pumped into the balloon results in full dilatation of the balloon to its intended size.
- the balloon is deflated and removed and the artery segment is reexamined, usually using angiography.
- the process of balloon angioplasty is one of uncontrolled plaque disruption.
- the lumen of the blood vessel at the site of treatment is usually somewhat larger, but not always and not reliably.
- Some of the cleavage planes created by fracture of the plaque with balloon angioplasty form dissection.
- a dissection occurs when a portion of the plaque is lifted away from the artery and is not fully adherent and may be mobile or loose.
- the plaque that has been disrupted by dissection protrudes into the flowstream. If the plaque lifts completely in the direction of blood flow, it may impede flow or cause acute occlusion of the blood vessel.
- the dissection of plaque after balloon angioplasty is treated to prevent occlusion and to resolve residual stenosis.
- a common practice has been to place a retaining structure, such as a rigid or semi-rigid tubular stent, to hold the artery open after angioplasty and retain the dissected plaque material back against the wall of the blood vessel to keep an adequate lumen open for blood flow.
- the clinical management of dissection or residual narrowing after balloon angioplasty is currently addressed through the development of increasingly complex stent structures.
- a retaining structure other than a stent which offers a minimal surface footprint and exerts low lateral pressures against the post- angioplasty surface.
- the present invention employs an intravascular device carrying rows or patterns of small sharp spikes that are actuated by an expansion balloon or other apparatus to pierce the luminal surface of atherosclerotic plaque with lines or patterns of microperforations which act as serrations for forming cleavage lines, expansion lines, or planes in the plaque.
- the plaque With the microperforation and serration procedure, the plaque can be compressed and the artery lumen safely and accurately dilated and stretched during balloon angioplasty to its intended diameter without creating numerous and substantial dissections and elevated flaps.
- the microperforation and serration enable the plaque to be dilated more evenly and smoothly and avoid forming random cracks that may lead to dissection and residual stenosis.
- the plaque after it has been pre-treated with microperforation and serration, may also be dilated with lower pressure than that which is used in standard balloon angioplasty.
- the lower intra-balloon pressure (e.g., less than or equal to 4 atm and very often less than or equal to 2 atm) causes less disruption of the plaque, fewer dissections, and less injury to the artery wall.
- This "low pressure” or “minimal injury” angioplasty is less likely to cause the biological reaction that often follows balloon angioplasty with neointimal hyperplasia or smooth muscle cell replication.
- microperforation and serration permits the plaque to expand with less fracturing or disruption of the plaque during balloon angioplasty. This decreases the need for stent placement to be used to treat dissection or residual stenosis after balloon angioplasty.
- a thin, ring-shaped tack device may be placed at only the location of each specific problem site, so that the amount of foreign material emplaced as a retaining structure in the blood vessel can be minimized and exert only low lateral pressures against the post-angioplasty surface.
- Preferred embodiments of the perforation and serration device include three varying methods for spike deployment, through mechanical, balloon, and balloon-assist deployment.
- a mechanical deployment method lines or patterns of spikes protrude from a carrier surface or are extracted from the core of a catheter used for remote delivery.
- the spikes are mounted on an expandable balloon (similar to those used in angioplasty).
- a balloon-assist method the spikes are mounted on a carrier surface, and the carrier surface is pushed against the plaque under the expansion force of a balloon.
- the balloon in this method is used as means to stabilize the spikes within the artery and assist in pushing the spikes into the artery wall, but not to perform a simultaneous balloon angioplasty.
- Preferred embodiments include a delivery device in which spikes are formed like polymer gum drops on a carrier ribbon or strip which are attached on the surface of an expansion balloon that is folded to a compact state for delivery.
- Another embodiment has spikes shaped as sharp pins carried on mesh bases and folded into flaps of an expansion balloon.
- Another embodiment of the delivery device has spikes that are deployed from and retracted back into a mechanical carrier.
- Another embodiment of the delivery device has spikes carried or projectable from the surface of a catheter carrier and an external multi-lobed balloon for pressing the spikes in circumferential sections against the plaque.
- Yet another embodiment has spikes carried on an accordion-like structure. The spikes may also be carried on ribbons strips of a slitted metal tube which are biased by shape memory outwardly toward the arterial wall.
- the spikes may be carried on a button structure for attachment to a carrier, or may be carried on a stretchable mesh structure over an expansion balloon.
- the spikes may be arranged in various patterns on the delivery device depending on the cleavage planes desired to be formed in the plaque.
- FIG. 1 shows a schematic illustration of the invention method for perforation and serration treatment of atherosclerotic plaque.
- FIGS. IA - 1C illustrate a preferred embodiment of a delivery device in which FIG. IA shows spikes formed like polymer gum drops on a carrier ribbon or strip, FIG. IB shows attachment of the strips 16 on a balloon, and FIG. 1C shows a compact folded balloon.
- FIGS. 2 A - 2F illustrate another preferred embodiment of the delivery device in which
- FIG. 2A shows the spike in the shape of a sharp pin
- FIG. 2B shows how the pin is folded into a mesh
- FIG. 2C shows the mesh annealed to the outer surface of an expansion balloon
- FIG. 2D shows the pin folded into the mesh and under a flap of the balloon
- FIG. 2e shows the pins deployed when the balloon is expanded
- FIG. 2F shows a detail view of the base of the pin.
- FIG 3 shows the arrays of pins in the above-described embodiment folded within accordion-like flaps along the length of the expansion balloon.
- FIGS. 4 A and 4B illustrate another embodiment of the delivery device in which spikes are deployed from and retracted back into a mechanical carrier.
- FIGS. 5A - 5D illustrate other embodiments of the delivery device which has spikes carried or projectable from the surface of a catheter carrier and an external multi-lobed balloon for pressing the spikes in circumferential sections against the plaque.
- FIGS. 6A - 6C show another embodiment for the delivery device in which the spikes are carried on an accordion-like structure
- FIG. 7A - 7C show three variations for mounting a spike on a carrier.
- FIG. 8 illustrates an embodiment of the delivery device in which the spikes are carried on a stretchable mesh structure.
- FIGS. 9 A - 9D illustrate various patterns for arrangement of the spikes on the delivery device.
- FIGS. 1OA - 1OC show another embodiment for the spike carrier of the delivery device in which the spikes are carried on ribbon strips of a slitted metal tube which are biased by shape memory outwardly toward the arterial wall.
- FIGS. HA - HC show a variation of the above-described embodiment in which the ribbons of the carrier sheet contain a series of holes.
- FIGS. 12 A - 12C show another variation of the above-described embodiment in which the middle section of the carrier sheet has slitted ribbons which are biased outwardly toward the arterial wall.
- Plaque is heterogeneous in nature composed of varying masses of soft and hard materials, calcium and highly variable topography, and can give way along paths of least resistance. Therefore, when standard balloon angioplasty is performed, some of the plaque inevitably fractures. The extent and severity of the fracture, the angiographic result and the morphology of the artery surface that result will vary significantly from one patient to the next. This leads to many cases in which stents are required to be implanted, which prolongs the surgical procedure, and increases medical risk and costs. Moreover, the clinical evidence indicates substantial disadvantages with using stents, including body rejection of a large mass of foreign material, and the emplacement of extensive surface area of a stent that may become sites for re-accumulation of plaque and re-stenosis.
- Stents may stimulate biological reaction that limits the long-term patency of the procedure. Stent also cause problems with kinking of the artery in areas where the artery is significantly flexed, such as at the knee joint. Stents may also fracture and break due to material stress.
- the plaque is treated by a perforation and serration procedure that forms lines or patterns of microperforations which act as serrations for forming cleavage lines or planes in the plaque.
- the serrations will result in more predictable and more uniform expansion characteristics in the plaque during a subsequent balloon angioplasty, thereby helping to make the balloon angioplasty a more consistent and predictable process.
- plaque prepared by the perforation and serration procedure can be dilated with a much lower pressure during angioplasty, i.e., less than 4 atmospheres, and as low as 2 atmospheres or less.
- the ability to perform angioplasty at lower pressures will create less plaque dissection and less arterial injury. Less arterial injury may lead to better rates of acute success because there is less dissection, and may also lead to better long-term results since there is less injury to the criza and media in the artery at the treatment location.
- the forming of serrations in the plaque through microperforation is deemed to provide a line along which expansion energy may be released.
- the microperforations are formed in a pre- angioplasty procedure of inserting a carrier carrying an array of small, sharp spikes which are pressed under a slight expansion force to pierce partway into the plaque and without causing injury to the arterial walls. Since plaque usually fractures longitudinally during standard balloon angioplasty, the spikes are preferably arranged in a mostly longitudinal pattern. Other variations include configurations with a diagonal or zig-zag pattern consistent with the expected ways that plaque commonly fractures. The height of the spikes is designed to pierce the plaque surface to create serrations for expansion lines, but not deep enough to cut though the plaque thickness.
- Artery vessels are comprised of organized lamellar structure with repeating structural and functional units of elastin, collagen and smooth muscle cells.
- the lamellar structure is prone to split and create a cleavage between adjacent elastic lamellae.
- the expansion is partly due to the arterial stretching.
- the plaque material has low ductility and fracture stresses can propagate non-uniform cracks in the brittle material.
- the microperforations act as nucleation sites for void formation.
- the perforation and serration procedure will promote more uniform compression of the plaque under expansion pressure during angioplasty.
- the portion of the plaque that does not compress will expand better and will be less likely to break or fracture.
- Forming serrations in the surface of the plaque is expected to provide better and more uniform compression under low pressures in angioplasty and will produce better plaque compression characteristics than the standard approach of applying high expansion pressures against the full length, width, and thickness of the plaque. This is expected to result in compressing the plaque with fewer tendencies for dissection, allowing the plaque to open along more natural lines, and therefore expanding the lumen larger and without causing arterial injury.
- the perforation and serration procedure is expected to provide significant advantages as compared to prior proposals for cutting or scoring the plaque with blades or sharp edges.
- Cutting blades or edges also have relatively long linear lengths that will cut across non-uniform plaque material, producing uneven cuts. Even smaller cutting blades will encounter at times areas of dense calcification among softer masses that could be fractured by the linear cutting blades or edges. In contrast, microperforations form tiny holes at specific prick points across the plaque mass and taken together as a line or pattern of perforations result in more reliable serrations.
- the wire is wrapped around the balloon in a spiral manner, the distance between the wire windings around the outside of the balloon will change at different balloon diameters. This causes some axial displacement of the wires so that it may actually undermine artery plaque by causing it to "dig up" the plaque. This may even create dissection planes that are more circumferentially oriented (as opposed to longitudinal) and may be more likely to function as flow limiting dissections.
- the perforation and serration procedure can be performed at low balloon or other expansion pressures.
- the microperforations are formed by small sharp spikes which can pierce into the plaque without digging it up. Forming tiny prick points with the small spikes will leave most of the surface of the plaque intact, will not injure the arterial wall, and will leave most of the plaque structure intact for more predictable and better compression characteristics.
- the serrations allow the plaque to be compressed at lower pressures during the following angioplasty.
- the plaque is also less likely to form dissections, both because it can be treated at lower pressures, and because the plaque has expansion lines serrated in it that allow it to expand in a more orderly manner.
- the perforation and serration procedure forms small prick points in the plaque, it may also afford a very effective means of distributing anti-plaque medication into the plaque from a drug-eluting balloon during angioplasty or from a drug-eluting stent after angioplasty.
- the microperforations may serve to retain more medication within the plaque mass, acting as a portal to the inner structure of the plaque for the medication to work.
- the spikes may also be used as a carrier for drug delivery by coating the spikes themselves with drugs.
- the perforation and serration procedure is thus designed as a minimally invasive approach for creating predictable cleavage planes in atherosclerotic plaque in preparation for balloon angioplasty.
- the cleavage planes are enabled by the serrations formed by numerous small perforations into the plaque in a predetermined pattern on the plaque surface.
- the artery is prepared so that it will respond to balloon dilatation in a more predictable manner with less likelihood of dissection or elevated surface flaps.
- the need for stent placement to smooth the artery surface and retain plaque dissections or flaps can thus be significantly decreased.
- a suitable device for performing the perforation and serration procedure may be designed in a number of ways, as described below for the following preferred embodiments which are illustrative of the principles of the present invention. Three different methods for spike deployment, through mechanical, balloon, and balloon-assist deployment, are described with respect to certain preferred delivery designs.
- the locations, length, and configuration of the spikes may be designed for varying types of lesions and arterial sites being treated. For example, heavily calcified lesions may require that the spikes be more closely spaced and penetrate a little deeper into the plaque.
- Some device designs may only be partially covered with spikes so that the hardest part of the plaque is left alone and serrations are created along a softer portion of the plaque surface. Lesions that are more longitudinally oriented may require spike placements that are farther apart and arranged in a gradual twirling configuration.
- FIG. 1 shows a schematic illustration of the invention method for perforation and serration treatment of plaque 10 at a site in an artery 11 with a delivery device 12 for serration and dilatation of the plaque.
- the lumen L is the flow opening in the artery that has been occluded by plaque 10.
- the device 12 has one or more arrays 12a, 12b, and 12c of small, sharp spikes carried on carrier strips or surfaces which are seated on the outer surface of an expansion balloon 14 or other expansion device.
- the spikes are mounted on the carrier strips at spaced intervals and extend typically a distance 0.05 mm to 1.0 mm beyond the carrier surface for piercing into the plaque and forming microperforations across the surface of the plaque.
- the delivery device 12 may be carried in a catheter and positioned at the plaque site by insertion into the artery through a surgical incision (not shown) and manipulated into position by a wire 13 to the location of the plaque.
- the spikes and expansion balloon are initially in a deflated or collapsed state to allow threading of the device 12 through the artery.
- the expansion balloon is inflated through an inlet tube 13 at low gas or fluid pressures to gently push the spike arrays against the plaque 10. Gas or fluid pressures in the range of 1 to 4 atm may be used for the pre-angioplasty procedure.
- the spikes create series of microperforations which act as serrations along the horizontal length of the plaque.
- the serrations allow cleavage lines or planes to be formed in the plaque at these locations under compression forces during a following angioplasty procedure. As the spikes are pressed into the plaque, the plaque is also compressed gently for a given measure of dilatation. When the serration has been performed, the balloon is deflated by suction of fluid or gas out through the tube, such that the delivery device 12 can resume its collapsed state so that it can be withdrawn from the artery.
- a standard angioplasty balloon may thereafter be used to compress the plaque against the artery walls to open the lumen.
- the compression of the plaque during angioplasty can take place evenly and with minimal dissection or cracking along the cleavage lines formed by the microperforations.
- the balloon angioplasty Due to the pre-angioplasty preparation of the plaque, the balloon angioplasty can be performed at low pressures of less than 4 atmospheres, and as low as 2 atmospheres of pressure or less. If the pre-angioplasty procedure has compressed the plaque sufficiently, it may not be necessary to follow it with a standard angioplasty.
- FIG. IA illustrates a preferred embodiment of the delivery device in which the spikes are formed like polymer gum drops 15 on a narrow ribbon 16.
- the polymer is heated and fed in liquid form to an ejector that ejects a drop in position on the ribbon.
- the drop rapidly cools as it is ejected, and forms an inverted cone shape that comes to a hard sharp point by tapering off the fluid from the ejector.
- the potential shape of the spike can include other types of pointed shapes, such as a long, pyramidal shape, a triangle shape, an arrow shape (longer and sharp in one axis and narrow and dull in the perpendicular axis), a gum drop shape, a narrow rectangle shape, a pin shape, a needle shape, and others.
- Other materials could be used to form the spike, including a pliable metal, such as Nitinol, or carbon nanotubes.
- the narrow strip 16 is annealed to the surface of an expansion balloon or other mechanically expansive carrier.
- the strips may also be interwoven into a mesh (polymer, metallic, or fabric).
- the strips or mesh are arranged in a pattern that envelopes the surface of the expansion balloon or other mechanically expansive structure.
- FIG. IB shows attachment of the strips 16 (end view) along the longitudinal length of a balloon 17 at a number (8) of circumferential positions.
- the balloon may be folded at folds 18 to bring the sharp points 15 on four adjacent strips to nest with those of the other strip, and then the two lobes of the balloon are folded over again to bring the sharp points of the other four adjacent strips into nested configuration.
- FIG. 1C illustrates the resulting, compact folded balloon in which all the sharp points are folded within to avoid engaging the plaque material when the device is being moved into position.
- FIG. 2 A illustrates another preferred embodiment in which the spike is in the shape of a sharp pin 21 that has a lower end bonded to a mesh 22 that is annealed to the surface of the expansion balloon.
- the lower end of the pin 21 is held by the polymer mesh so that the spike stands erect on the surface of the balloon when the balloon is inflated.
- the pin 21 may be constructed of polymer, metal composite, silicon or carbon composite or carbon nanotubes (single or multi wall).
- FIG. 2B illustrates how the pin 21 is folded by pressing it into the mesh 22.
- the mesh 22 is shown annealed to the outer surface of the expansion balloon 23.
- the pin 21 is laid down laterally and perpendicularly to the axis of the balloon center line for placement, so that the pin is folded into the mesh and under a flap of the balloon.
- the entire mesh in the depressed mode is nearly swallowed up by the balloon material.
- the balloon With the pin laid down flat within the mesh, the balloon is protected from puncture of the balloon surface.
- the flap on the balloon unfolds during balloon expansion, and the meshes are unfolded so that the pins are quickly popped out straight and erect.
- FIG. 2E shows the pins 21 deployed and standing erect on the expansion balloon 23 after the catheter shield 24 is withdrawn and the balloon is inflated.
- the pins are exposed and stand erect on the mesh sheets 22 that are mounted on the balloon surface.
- the pins stick out peripherally and can pierce into the plaque as the balloon is further inflated.
- FIG 2F shows a detail of the base of the pin 21 entwined in the mesh weaving to center the lower end of the pin on the mesh 22 and hold the pin erect when the mesh is unfolded and the balloon is expanded.
- arrays of pins 21 are shown folded within accordion-like flaps of a pre- angioplasty expansion balloon 23 of the device which are folded in alignment with a longitudinal axis LG of the balloon.
- half the flaps and pins are folded toward one end of the balloon, and the other half are folded toward the other end of the balloon.
- the flaps of balloon material between parallel rows of spikes can be made extra flexible and pliable and may be formed as a folding crease.
- gas or fluid pressure is injected in the balloon, the flaps are the first areas to pop out and help to point the spikes outwardly toward the plaque.
- FIGS. 4A and 4B illustrate another embodiment of the delivery device in which an expansion balloon is not used but rather the spikes 41 are deployed from and retracted back into a mechanical carrier 40.
- the carrier has a plurality of tunnels 42a in its interior each of which holds a spike in a ready position within and has a spike exit hole 42b with its axis oriented radially to the outer surface of the carrier.
- the spikes are mechanically or hydraulically actuated, such as by an gas or fluid pressure force indicated by arrows 43, to travel through the tunnels and project radially from the spike exit holes 42b.
- the spikes have sharp points at their tips for creating microperforations in the plaque, but are flexible in their shafts so that they can be deployed from a laying down position and turned to a 90 degree standing up position. In that position, the spikes are pointed toward the wall of the artery and the plaque.
- the spikes may be actuated by respective levers which are pulled or pushed by a cable.
- Other types of mechanisms similarly may be used for mechanically deploying the spikes from the carrier.
- FIGS. 5 A - 5D illustrate other embodiments of the delivery device for pre-angioplasty serration and dilatation.
- rows of spikes 51 are bonded to a ribbon, rod, triangle or other shaped carrier 50.
- An outer balloon 52 is divided into quadrants and shaped with cutout areas that conform to spaces in between the spikes.
- the balloon 52 is inflatable in quadrants circumferentially around the carrier 50. As one quadrant of the balloon 52 is inflated, the spikes on the opposing side of the carrier 50 are pressed into the plaque on the artery wall.
- the balloon 52 on the side of the one quadrant is deflated, then the next quadrant is inflated to press the spikes on another opposing side into a next section of the plaque. This is repeated for the other quadrants as needed until the spikes on all sides have been pricked into the circumference of the plaque surface.
- FIG. 5B another embodiment of the delivery device has rows or ribbons of spikes 53 bonded to an internal carrier balloon 54 sleeved inside of a tube 55 which has spike holes 55a aligned with the positions of the spikes spacing found on the internal carrier balloon 54.
- An outer balloon 56 is shaped with cutout areas that conform to the spaces between the spike holes. The outer balloon is able to be filled in quadrants circumferentially around the carrier device. As one quadrant expands, the tube is pressed on its opposing side against the plaque. The internal carrier balloon 54 is inflated and the spikes are pressed out of the holes and pierce into the plaque on the side in contact with the plaque. This is repeated for the remaining quadrants until the spikes have been pricked into the circumference of the plaque surface.
- the multi-lobed segments of the expanding balloon stabilize and support the spikes as they enter the plaque to cause perforation.
- the spikes may be constructed of any suitable material, such as polymer, pliable metal, or carbon nanotubes, and may have one of many possible shapes, including a pin shape, a needle shape, a long, pyramidal shape, a triangle shape, an arrow shape, a gum drop shape, a narrow rectangle shape, and others.
- the balloon as it is expanded, is also used to compress the plaque to a certain degree and dilate the lumen of the artery.
- the balloon may be manufactured to be inflated with CO2 or with liquid.
- FIG. 5C shows another embodiment where rows of spikes 57 are bonded to or etched out of a ribbon, rod, triangle or other shaped carrier 58.
- An outer balloon 59 is multi-lobed capable of being inflated in sections and conforming to spaces in between the spikes.
- FIG. 5D shows a further embodiment in which the spikes 57 are seated on an inner balloon in a delivery catheter 58.
- the catheter walls have holes 58a located to allow the spikes to poke through when the inner balloon is inflated.
- On the outside of the catheter in this embodiment is multi-lobed external balloon 59 which is inflatable in sections.
- the catheter wall on the opposite side is pushed against the plaque on the arterial wall, and when the inner balloon is inflated, the spikes 57 are pressed out to pierce into the plaque mass. This procedure is repeated in sections circumferentially around the catheter until all areas of the plaque have been pierced by the spikes.
- FIGS. 6A - 6C show another embodiment for the delivery device in which the spikes (welded, bonded, or shaped out-of-plane) are carried at joints on the circumference of an accordion-like structure provide for a mechanical expansion engagement with the plaque.
- the accordion-like structure 60 is stretched longitudinally over the surface of the delivery catheter 61, and the spikes 62 lay flat against the catheter sheath. This position of the spike structure is used when the catheter is inserted and withdrawn.
- the accordion-like structure 60 has its opposite ends moved together, such that the spikes 62 are pressed out radially to pierce the plaque, as shown in FIG. 6B.
- the compression of the accordion-like structure 60 may be actuated by mechanical pulley, polymer fiber or wire attached at points A disposed symmetrically around the circumference of the catheter.
- the wires are pulled uniformly at one end of the accordion-like structure to compress lattice segments of the structure and decrease the distance between the spike connector joints, thereby forcing the spikes outwardly toward the lumen wall.
- FIG. 6C the accordion-like structure is shown laid out in plan view and elevation view, and pre-loaded in end view.
- FIG. 7A — 1C show three variations for mounting a spike on a carrier.
- the spike 70 (pyramid point) is mounted on a button 71 having lower shanks 71a for seating on a carrier.
- the spike 72 (pin) is mounted on a button 73 having button holes 73a for attachment by fasteners to the carrier.
- the spikes 74 (sharp tips) are mounted on a button 75 having holes 75a for fastening to the carrier.
- the buttons may be entwined within a fabric, woven pattern or bag structure using the button holes or mounting shanks on the buttons.
- the spikes are carried on a stretchable mesh structure 80 surrounding an expansion balloon which is inflated to stretch the mesh outwardly on all sides and push the spikes into the surrounding plaque mass.
- the spikes may be interwoven into the mesh structure. When the balloon is deflated, the mesh snaps back with the collapsed surface of the expansion balloon.
- the spikes may be made from metal, polymer, silicon or carbon composite (with or without an inert coating), a super-elastic material, or carbon nanotubes.
- the spikes may have a preferred height (from base to tip) of 0.05mm to 1.0mm.
- the spike tip may be needle-like with a needle head for mounting.
- the tip can be shaped with a thin tubular cross-section (as in a needle for transporting fluid through it), or a groove or slot having one dimension that is much larger than the other where the larger dimension of the groove is less than 2mm and the smaller dimension is much less than the first, and a point where the overall head radius is small less than 0.4mm (as in a pin head), or a collection of very small points where the overall head radius is less than 0.05mm (as in carbon nanotubes). It may instead be formed by carbon nanotubes presenting a collection of very small points to form a sharp tip.
- the spikes may also be coated with, or provide transport for, plaque- inhibiting medication for deposition into the plaque site.
- the spikes may be mounted on the surface of a balloon, or on a catheter, or may be mounted on a mechanically actuated surface.
- the spikes may have various shapes, may be made from a variety of materials, may be deployed in different ways, and may be attached to the delivery device using different methods.
- the spikes are arrayed in any desired pattern to create a cut-along-the-dotted-line serration in the plaque mass so that it can become a cleavage plane or expansion plane during dilatation by balloon angioplasty.
- the configuration of the spikes may be oriented in different manners depending upon the arterial disease and the plaque formation requiring treatment.
- the spikes may also have through-holes or inner channels for eluting medication through the spike to the surface of the plaque.
- FIGS. 9 A - 9D illustrate various patterns for arrangement of the spikes on the delivery device, i.e., circumferential, partial circumferential, patch, spiral/diagonal, and longitudinal.
- the configurations are designed for different functional purposes in managing atherosclerotic plaque or in ease of manufacture or ease of use.
- Plaque with certain characteristics, such as very heavy calcification may be treated with spikes that are configured in more of a circumferential or diagonal pattern, crossing the line of blood flow, since this morphology of plaque tends to form clusters or mounds of calcium.
- the spikes that may not be able to perforate this type of plaque or portions of this type of plaque very readily, but may be able to cut around the areas of worse disease and permit the inner circumference of the whole artery to expand.
- the spikes are arranged generally longitudinally, consistent with the fracture characteristics of plaque in most situations and with most plaque morphologies, and may be configured in a straight line.
- the straight, longitudinal lines of spikes may be very short, consisting of five spikes or less and may be quite long, consisting of 100 spikes or more.
- the longitudinal lines of spikes may be very close together, with as many as 20 lines distributed on the circumference of the artery luminal surface, or there may be as few as a single line of barbs or spikes.
- the lines of spikes may also be in a slight diagonal or in a zig-zag fashion.
- the configuration of the barbs or spikes is determined in accordance with the best expected mechanism for post-angioplasty plaque dissection.
- FIGS. 1OA - 1OC show another embodiment for the spike carrier of the delivery device.
- the spikes are carried on ribbon strips of a slitted metal sheet which has opposite ends that are joined by either welding into a tube or the strips are cut out of a tube leaving one end intact.
- the spikes may have various profiles, such as where the length of the spike base or head is equal to the width of the ribbon strip, or the spike base length is a fraction of the ribbon width and is centered at the middle of the ribbon strip, or where the spike base is a fraction of the ribbon width and positioned at varying locations across the ribbon width or may have multiple spikes at any given ribbon section of width.
- FIG. 1OB is an elevation view of the sheet.
- FIG. 1OB is an elevation view of the sheet.
- 1OC shows the sheet after heat treatment to provide a shape memory in which the ribbons are spring-biased radially outward toward the arterial wall for generating perforations in the plaque.
- the shape memory may be used alone for mechanical engagement of the spikes, or may be combined with an expansion balloon to allow greater control of forces to be applied.
- FIGS. HA - HC show a variation of the above-described embodiment in which the ribbons of the carrier sheet contain a series of holes. The holes serve as points for attachment of strings, cables, or wire elements, configured in such a way, that when pulled can provide additional support and force outward against the lumen wall.
- FIG. HB is an elevation view of the sheet.
- FIG. HC shows the sheet after heat treatment to provide a shape memory for spring- biasing the ribbons radially outward. The shape memory may be combined with an expansion balloon to allow greater control of forces to be applied.
- FIGS. 12 A - 12C show another variation of the above-described embodiment in which both longitudinal ends of the tube are kept intact, leaving only the middle region with slitted ribbons.
- FIG. 12B is an elevation view of the sheet.
- FIG. 12C shows the sheet after heat treatment to provide a shape memory for spring-biasing the middle section of ribbons radially outward.
- a delivery catheter is constructed for the purpose of plaque perforation in an endovascular environment.
- a guidewire is threaded along an artery from a percutaneous access site or a surgical incision to a lesion intended for treatment.
- a catheter is passed over the guidewire with an end of its sheath maintained gas-tight and fluid-tight for operational control externally by an operator.
- a spike delivery device is advanced down the hollow, tubular shaft of the sheath over the guidewire.
- the delivery device for the typical perforation-serration catheter is intended to be as large as 8Fr and more likely 5Fr or less in diameter.
- the guidewire lumen maybe 0.014 inch or up to 0.035 inch in diameter.
- the length of the delivery catheter may be as short as 40 cm but more likely 75 to 80 cm for a short length and 120 to 135 cm for a long length.
- the catheter has another tubular channel for inflating or actuating the expansion balloon or apparatus on its delivery end.
- the expansion balloon, mechanical expansion apparatus or other apparatus When the expansion balloon, mechanical expansion apparatus or other apparatus is actuated, the spikes on the delivery device are pressed toward the plaque. The spikes are driven into the plaque and create multiple perforations forming intended serrations in the surface of the plaque in a proscribed pattern.
- the expansion balloon or apparatus is somewhat compliant and may be inflated further to compress the plaque and enlarge further.
- the expansion balloon or apparatus is de-actuated, disengaging the spikes from the plaque, and once collapsed is withdrawn through the catheter sheath.
- the plaque After the preparation procedure for the plaque, the plaque can be compressed and the artery lumen safely and accurately dilated and stretched during standard balloon angioplasty to its intended diameter without creating numerous and substantial dissections and elevated flaps.
- the perforation and serration enable the plaque to be dilated more evenly and smoothly and avoid forming random cracks that may lead to dissection, arterial injury, and residual stenosis.
- the plaque after it has been pre-treated with perforation and serration, may also be dilated with lower pressure (usually 2 atmospheres or less) than that which is used in standard balloon angioplasty.
- the lower intra-balloon pressure causes less injury to the artery wall. This "low pressure" or "minimal injury” angioplasty is less likely to cause the biological reaction that often follows balloon angioplasty with neointimal hyperplasia or smooth muscle cell replication.
- the plaque is likely to expand with less fracturing or dissection during balloon angioplasty. This decreases the need for stent placement to be used to treat dissection or residual stenosis after balloon angioplasty. If extensive dissections and non-smooth luminal wall surfaces require a stent to be placed, the improved dilatation of the lumen obtained with pre- angioplasty perforation and serration would allow a stent to be more fully opened.
- a thin, ring-shaped tack device may be placed at only the location of each specific problem site, so that the amount of foreign material emplaced as a retaining structure for plaque in the blood vessel can be minimized and exert only low lateral pressures against the post- angioplasty surface.
- a novel method and device for applying a ring-shaped tack device as a retaining structure for plaque in the blood vessel is described in commonly owned U.S. Patent Appln. 11/955,331, filed on December 12, 2007, entitled “Device for Tacking Plaque to Blood Vessel Wall", which is incorporated by reference herein.
- the described procedure for perforation and serration of the plaque performed with a given amount of arterial dilatation may be sufficient to obtain compression of the plaque sufficiently that no balloon angioplasty or stent emplacement is required. Only one or a few of the ring-shaped tacks may be needed to secure the compressed plaque to the artery wall, thereby obtaining the desired medical treatment with minimal forces being applied to the arterial walls and with a minimum of foreign material emplaced in the body.
- the present invention is therefore deemed to include the alternative of combining the perforation and serration procedure with the procedure for applying localized tacks at specific locations for plaque retention.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Anesthesiology (AREA)
- Pulmonology (AREA)
- Biophysics (AREA)
- Hematology (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Child & Adolescent Psychology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Surgical Instruments (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09722111.3A EP2254641B1 (en) | 2008-03-21 | 2009-03-20 | Device for pre-angioplasty serration and dilatation |
AU2009226025A AU2009226025B2 (en) | 2008-03-21 | 2009-03-20 | Device and method for opening blood vessels by pre-angioplasty serration and dilatation of aetherosclerotic plaque |
CA2718067A CA2718067C (en) | 2008-03-21 | 2009-03-20 | Device and method for opening blood vessels by pre-angioplasty serration and dilatation of atherosclerotic plaque |
JP2011500815A JP5846905B2 (en) | 2008-03-21 | 2009-03-20 | Intravascular device for perforation and serration of atherosclerotic plaques in blood vessels |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3847708P | 2008-03-21 | 2008-03-21 | |
US61/038,477 | 2008-03-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009117158A2 true WO2009117158A2 (en) | 2009-09-24 |
WO2009117158A3 WO2009117158A3 (en) | 2009-11-12 |
Family
ID=41089662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/001786 WO2009117158A2 (en) | 2008-03-21 | 2009-03-20 | Device and method for opening blood vessels by pre-angioplasty serration and dilatation of aetherosclerotic plaque |
Country Status (6)
Country | Link |
---|---|
US (4) | US8323243B2 (en) |
EP (1) | EP2254641B1 (en) |
JP (1) | JP5846905B2 (en) |
AU (1) | AU2009226025B2 (en) |
CA (1) | CA2718067C (en) |
WO (1) | WO2009117158A2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2477686A2 (en) * | 2009-09-18 | 2012-07-25 | Innovasc LLC | Pre-angioplasty serration of atherosclerotic plaque enabling low-pressure balloon angioplasty & avoidance of stenting |
CN108653851A (en) * | 2018-04-03 | 2018-10-16 | 河南科技大学第附属医院 | A kind of pediatrician's paediatrics negative pressure gastric lavage device |
US10471238B2 (en) | 2014-11-03 | 2019-11-12 | Cagent Vascular, Llc | Serration balloon |
US10689154B2 (en) | 2015-09-17 | 2020-06-23 | Cagent Vascular, Llc | Wedge dissectors for a medical balloon |
US10905863B2 (en) | 2016-11-16 | 2021-02-02 | Cagent Vascular, Llc | Systems and methods of depositing drug into tissue through serrations |
US11166742B2 (en) | 2008-03-21 | 2021-11-09 | Cagent Vascular, Inc. | Method of enhancing drug uptake from a drug-eluting balloon |
US11219750B2 (en) | 2008-03-21 | 2022-01-11 | Cagent Vascular, Inc. | System and method for plaque serration |
US11369779B2 (en) | 2018-07-25 | 2022-06-28 | Cagent Vascular, Inc. | Medical balloon catheters with enhanced pushability |
US11738181B2 (en) | 2014-06-04 | 2023-08-29 | Cagent Vascular, Inc. | Cage for medical balloon |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9603730B2 (en) | 2007-12-12 | 2017-03-28 | Intact Vascular, Inc. | Endoluminal device and method |
US7896911B2 (en) | 2007-12-12 | 2011-03-01 | Innovasc Llc | Device and method for tacking plaque to blood vessel wall |
US10166127B2 (en) | 2007-12-12 | 2019-01-01 | Intact Vascular, Inc. | Endoluminal device and method |
US10022250B2 (en) | 2007-12-12 | 2018-07-17 | Intact Vascular, Inc. | Deployment device for placement of multiple intraluminal surgical staples |
US8128677B2 (en) | 2007-12-12 | 2012-03-06 | Intact Vascular LLC | Device and method for tacking plaque to a blood vessel wall |
US9375327B2 (en) | 2007-12-12 | 2016-06-28 | Intact Vascular, Inc. | Endovascular implant |
US8992553B2 (en) * | 2009-10-01 | 2015-03-31 | Cardioniti | Cutting balloon assembly and method of manufacturing thereof |
US9199066B2 (en) | 2010-03-12 | 2015-12-01 | Quattro Vascular Pte Ltd. | Device and method for compartmental vessel treatment |
HUE036360T2 (en) * | 2011-05-26 | 2018-07-30 | Adn Int Llc | Expandable device for tissue collection from an aerodigestive body lumen |
US10285831B2 (en) | 2011-06-03 | 2019-05-14 | Intact Vascular, Inc. | Endovascular implant |
WO2013070457A2 (en) * | 2011-11-01 | 2013-05-16 | The Johns Hopkins University | Method and device for endoscopic abrasion |
CA2986656A1 (en) * | 2012-01-25 | 2013-08-01 | Intact Vascular, Inc. | Endoluminal device and method |
CN104159541A (en) | 2012-02-01 | 2014-11-19 | 夸超脉管私人有限公司 | Device for compartmental dilatation of blood vessels |
EP3542849B1 (en) | 2012-02-08 | 2020-12-09 | TriReme Medical, LLC | Constraining structure with non-linear axial struts |
US9216033B2 (en) | 2012-02-08 | 2015-12-22 | Quattro Vascular Pte Ltd. | System and method for treating biological vessels |
US9433464B2 (en) * | 2013-03-14 | 2016-09-06 | Biosense Webster (Israel) Ltd. | Catheter with needles for ablating tissue layers in vessel |
US9108030B2 (en) * | 2013-03-14 | 2015-08-18 | Covidien Lp | Fluid delivery catheter with pressure-actuating needle deployment and retraction |
CN107106822B (en) | 2014-11-17 | 2021-05-04 | 特里雷米医疗有限责任公司 | Balloon catheter system |
KR101663805B1 (en) * | 2014-12-03 | 2016-10-14 | 연세대학교 산학협력단 | Balloon Catheter Having Micro Needles and Manufacturing Method Thereof |
US9433520B2 (en) | 2015-01-29 | 2016-09-06 | Intact Vascular, Inc. | Delivery device and method of delivery |
US9375336B1 (en) | 2015-01-29 | 2016-06-28 | Intact Vascular, Inc. | Delivery device and method of delivery |
US10182841B1 (en) * | 2015-06-16 | 2019-01-22 | C.R. Bard, Inc. | Medical balloon with enhanced focused force control |
CA3001249C (en) * | 2015-10-12 | 2023-10-17 | Reflow Medical, Inc. | Stents having protruding drug-delivery features and associated systems and methods |
US10993824B2 (en) | 2016-01-01 | 2021-05-04 | Intact Vascular, Inc. | Delivery device and method of delivery |
EP3391932B1 (en) * | 2016-03-23 | 2023-10-11 | Terumo Kabushiki Kaisha | Balloon catheter and method for producing the same |
US11660218B2 (en) | 2017-07-26 | 2023-05-30 | Intact Vascular, Inc. | Delivery device and method of delivery |
CN107753092B (en) * | 2017-11-30 | 2024-01-19 | 彭翼 | Intra-cavity intima stripping device |
US10918839B2 (en) | 2018-03-13 | 2021-02-16 | II Jaro Mayda | Balloon catheter |
EP4295892A3 (en) | 2018-04-09 | 2024-03-06 | Boston Scientific Scimed, Inc. | Cutting balloon catheter |
JP7374123B2 (en) | 2018-04-19 | 2023-11-06 | シー・アール・バード・インコーポレーテッド | Catheters and related methods for active slicing/scoring |
EP3852655A4 (en) * | 2018-09-22 | 2022-06-22 | Transit Scientific, LLC | Expandable exoskeleton devices for delivering medicaments |
CN110115609A (en) * | 2019-02-02 | 2019-08-13 | 张嘉 | A kind of orthopaedics sacculus and orthopaedics balloon apparatus with jaggies cable |
EP4045128B1 (en) * | 2019-11-27 | 2023-10-25 | Boston Scientific Scimed Inc. | Cutting balloon catheter |
EP4081169A4 (en) | 2019-12-24 | 2024-01-03 | Encompass Vascular, Inc. | Medical devices for fluid delivery |
US12011184B2 (en) | 2020-02-10 | 2024-06-18 | Elixir Medical Corporation | Methods and apparatus for plaque disruption |
US11504151B2 (en) | 2021-02-18 | 2022-11-22 | Boston Scientific Scimed, Inc. | Thrombectomy apparatuses |
US11471183B1 (en) | 2021-02-18 | 2022-10-18 | Boston Scientific Scimed, Inc. | Thrombectomy methods |
EP4297837A1 (en) | 2021-02-23 | 2024-01-03 | Encompass Vascular, Inc. | Medical devices for fluid delivery and methods of use and manufacture |
EP4329855A1 (en) | 2021-04-30 | 2024-03-06 | Encompass Vascular, Inc. | Medical devices for fluid delivery and methods of use and manufacture |
US20230363786A1 (en) * | 2022-05-16 | 2023-11-16 | Boston Scientific Scimed, Inc. | Reinforced medical balloon |
WO2024064843A2 (en) * | 2022-09-23 | 2024-03-28 | Elixir Medical Corporation | Methods and apparatus for plaque disruption |
CN116898559B (en) * | 2023-09-12 | 2023-12-19 | 首都医科大学附属北京友谊医院 | ablation scalpel |
Family Cites Families (168)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3221746A (en) * | 1963-01-25 | 1965-12-07 | Noble John William | Surgical connecting device |
US3635223A (en) * | 1969-12-02 | 1972-01-18 | Us Catheter & Instr Corp | Embolectomy catheter |
US4465072A (en) * | 1983-02-22 | 1984-08-14 | Taheri Syde A | Needle catheter |
US4665906A (en) | 1983-10-14 | 1987-05-19 | Raychem Corporation | Medical devices incorporating sim alloy elements |
US6221102B1 (en) * | 1983-12-09 | 2001-04-24 | Endovascular Technologies, Inc. | Intraluminal grafting system |
US4699611A (en) | 1985-04-19 | 1987-10-13 | C. R. Bard, Inc. | Biliary stent introducer |
US4795458A (en) | 1987-07-02 | 1989-01-03 | Regan Barrie F | Stent for use following balloon angioplasty |
US4856516A (en) | 1989-01-09 | 1989-08-15 | Cordis Corporation | Endovascular stent apparatus and method |
US5009659A (en) * | 1989-10-30 | 1991-04-23 | Schneider (Usa) Inc. | Fiber tip atherectomy catheter |
US5078736A (en) | 1990-05-04 | 1992-01-07 | Interventional Thermodynamics, Inc. | Method and apparatus for maintaining patency in the body passages |
US5320634A (en) | 1990-07-03 | 1994-06-14 | Interventional Technologies, Inc. | Balloon catheter with seated cutting edges |
US5196024A (en) * | 1990-07-03 | 1993-03-23 | Cedars-Sinai Medical Center | Balloon catheter with cutting edge |
US5042707A (en) * | 1990-10-16 | 1991-08-27 | Taheri Syde A | Intravascular stapler, and method of operating same |
US5312456A (en) * | 1991-01-31 | 1994-05-17 | Carnegie Mellon University | Micromechanical barb and method for making the same |
CA2380683C (en) | 1991-10-28 | 2006-08-08 | Advanced Cardiovascular Systems, Inc. | Expandable stents and method for making same |
US5192291A (en) | 1992-01-13 | 1993-03-09 | Interventional Technologies, Inc. | Rotationally expandable atherectomy cutter assembly |
CA2087132A1 (en) | 1992-01-31 | 1993-08-01 | Michael S. Williams | Stent capable of attachment within a body lumen |
GB9202291D0 (en) * | 1992-02-04 | 1992-03-18 | Ici Plc | Pigment composition |
US5209799A (en) | 1992-04-17 | 1993-05-11 | Inverventional Technologies, Inc. | Method for manufacturing a folding balloon catheter |
US5336178A (en) * | 1992-11-02 | 1994-08-09 | Localmed, Inc. | Intravascular catheter with infusion array |
US5487730A (en) * | 1992-12-30 | 1996-01-30 | Medtronic, Inc. | Balloon catheter with balloon surface retention means |
CA2118886C (en) * | 1993-05-07 | 1998-12-08 | Dennis Vigil | Method and apparatus for dilatation of a stenotic vessel |
US5411478A (en) * | 1993-07-12 | 1995-05-02 | Michael E. Stillabower | Angioplasty apparatus and process |
US5417707A (en) | 1993-10-29 | 1995-05-23 | Medtronic, Inc. | Dilatation balloon protector with raised ribs |
US5484411A (en) | 1994-01-14 | 1996-01-16 | Cordis Corporation | Spiral shaped perfusion balloon and method of use and manufacture |
US5501689A (en) * | 1994-02-03 | 1996-03-26 | United States Surgical Corporation | Plaque stapler |
US5423851A (en) * | 1994-03-06 | 1995-06-13 | Samuels; Shaun L. W. | Method and apparatus for affixing an endoluminal device to the walls of tubular structures within the body |
US5824041A (en) * | 1994-06-08 | 1998-10-20 | Medtronic, Inc. | Apparatus and methods for placement and repositioning of intraluminal prostheses |
US5397355A (en) | 1994-07-19 | 1995-03-14 | Stentco, Inc. | Intraluminal stent |
US5904697A (en) * | 1995-02-24 | 1999-05-18 | Heartport, Inc. | Devices and methods for performing a vascular anastomosis |
US6053943A (en) * | 1995-12-08 | 2000-04-25 | Impra, Inc. | Endoluminal graft with integral structural support and method for making same |
US5591197A (en) * | 1995-03-14 | 1997-01-07 | Advanced Cardiovascular Systems, Inc. | Expandable stent forming projecting barbs and method for deploying |
CA2171896C (en) * | 1995-03-17 | 2007-05-15 | Scott C. Anderson | Multi-anchor stent |
US6102904A (en) * | 1995-07-10 | 2000-08-15 | Interventional Technologies, Inc. | Device for injecting fluid into a wall of a blood vessel |
US5713863A (en) | 1996-01-11 | 1998-02-03 | Interventional Technologies Inc. | Catheter with fluid medication injectors |
US5797951A (en) * | 1995-08-09 | 1998-08-25 | Mueller; Edward Gene | Expandable support member |
EP0768098B1 (en) * | 1995-10-10 | 2000-09-27 | Interventional Technologies Inc | Catheter with fluid medication injectors |
US5665116A (en) * | 1995-11-13 | 1997-09-09 | Chaisson; Gary A. | Method and apparatus for catheterization to dilate vascular blockage |
US5718684A (en) | 1996-05-24 | 1998-02-17 | Gupta; Mukesh | Multi-lobed balloon catheter |
US6007543A (en) * | 1996-08-23 | 1999-12-28 | Scimed Life Systems, Inc. | Stent delivery system with stent securement means |
US5797935A (en) | 1996-09-26 | 1998-08-25 | Interventional Technologies Inc. | Balloon activated forced concentrators for incising stenotic segments |
US6197013B1 (en) * | 1996-11-06 | 2001-03-06 | Setagon, Inc. | Method and apparatus for drug and gene delivery |
US5824053A (en) | 1997-03-18 | 1998-10-20 | Endotex Interventional Systems, Inc. | Helical mesh endoprosthesis and methods of use |
US5957949A (en) | 1997-05-01 | 1999-09-28 | World Medical Manufacturing Corp. | Percutaneous placement valve stent |
US5868779A (en) | 1997-08-15 | 1999-02-09 | Ruiz; Carlos E. | Apparatus and methods for dilating vessels and hollow-body organs |
NL1007349C2 (en) | 1997-10-24 | 1999-04-27 | Suyker Wilhelmus Joseph Leonardus | System for the mechanical production of anastomoses between hollow structures; as well as device and applicator for use therewith. |
US6254642B1 (en) | 1997-12-09 | 2001-07-03 | Thomas V. Taylor | Perorally insertable gastroesophageal anti-reflux valve prosthesis and tool for implantation thereof |
US6096054A (en) | 1998-03-05 | 2000-08-01 | Scimed Life Systems, Inc. | Expandable atherectomy burr and method of ablating an occlusion from a patient's blood vessel |
US6626861B1 (en) | 1998-04-22 | 2003-09-30 | Applied Medical Resources | Balloon catheter apparatus and method |
US6450989B2 (en) * | 1998-04-27 | 2002-09-17 | Artemis Medical, Inc. | Dilating and support apparatus with disease inhibitors and methods for use |
US6036725A (en) * | 1998-06-10 | 2000-03-14 | General Science And Technology | Expandable endovascular support device |
US6290728B1 (en) * | 1998-09-10 | 2001-09-18 | Percardia, Inc. | Designs for left ventricular conduit |
US6280414B1 (en) * | 1998-09-30 | 2001-08-28 | Medtronic Ave, Inc. | Method and apparatus for local delivery of therapeutic agent |
US6048332A (en) | 1998-10-09 | 2000-04-11 | Ave Connaught | Dimpled porous infusion balloon |
US6325820B1 (en) * | 1998-11-16 | 2001-12-04 | Endotex Interventional Systems, Inc. | Coiled-sheet stent-graft with exo-skeleton |
US7947015B2 (en) * | 1999-01-25 | 2011-05-24 | Atrium Medical Corporation | Application of a therapeutic substance to a tissue location using an expandable medical device |
US6245101B1 (en) * | 1999-05-03 | 2001-06-12 | William J. Drasler | Intravascular hinge stent |
US6350271B1 (en) * | 1999-05-17 | 2002-02-26 | Micrus Corporation | Clot retrieval device |
US6723113B1 (en) | 2000-01-19 | 2004-04-20 | Cordis Neurovascular, Inc. | Inflatable balloon catheter seal and method |
EP2292185B1 (en) | 2000-07-24 | 2013-12-04 | Jeffrey Grayzel | Stiffened balloon catheter for dilatation and stenting |
US7204847B1 (en) | 2000-07-28 | 2007-04-17 | C. R. Bard, Inc. | Implant anchor systems |
US6638246B1 (en) | 2000-11-28 | 2003-10-28 | Scimed Life Systems, Inc. | Medical device for delivery of a biologically active material to a lumen |
US7211101B2 (en) * | 2000-12-07 | 2007-05-01 | Abbott Vascular Devices | Methods for manufacturing a clip and clip |
US6623452B2 (en) * | 2000-12-19 | 2003-09-23 | Scimed Life Systems, Inc. | Drug delivery catheter having a highly compliant balloon with infusion holes |
US6719775B2 (en) * | 2001-01-22 | 2004-04-13 | Scimed Life Systems, Inc. | Percutaneous endarterectomy |
US20040098014A1 (en) | 2001-03-30 | 2004-05-20 | Moshe Flugelman | Inflatable medical device with combination cutting elements and drug delivery conduits |
US7087088B2 (en) * | 2001-05-24 | 2006-08-08 | Torax Medical, Inc. | Methods and apparatus for regulating the flow of matter through body tubing |
US6562062B2 (en) | 2001-08-10 | 2003-05-13 | Scimed Life Systems, Inc. | Balloon anchoring system |
US6632231B2 (en) | 2001-08-23 | 2003-10-14 | Scimed Life Systems, Inc. | Segmented balloon catheter blade |
US6808518B2 (en) | 2001-09-28 | 2004-10-26 | Ethicon, Inc. | Methods and devices for treating diseased blood vessels |
DE60231733D1 (en) | 2001-11-09 | 2009-05-07 | Angioscore Inc | |
US20040111108A1 (en) | 2001-11-09 | 2004-06-10 | Farnan Robert C. | Balloon catheter with non-deployable stent |
US20040186551A1 (en) * | 2003-01-17 | 2004-09-23 | Xtent, Inc. | Multiple independent nested stent structures and methods for their preparation and deployment |
US6656155B2 (en) | 2001-12-17 | 2003-12-02 | Scimed Life Systems, Inc. | Catheter for endoluminal delivery of therapeutic agents that minimizes loss of therapeutic |
US7326245B2 (en) * | 2002-01-31 | 2008-02-05 | Boston Scientific Scimed, Inc. | Medical device for delivering biologically active material |
US7186237B2 (en) | 2002-02-14 | 2007-03-06 | Avantec Vascular Corporation | Ballon catheter for creating a longitudinal channel in a lesion and method |
US7331992B2 (en) * | 2002-02-20 | 2008-02-19 | Bard Peripheral Vascular, Inc. | Anchoring device for an endoluminal prosthesis |
US7985234B2 (en) | 2002-02-27 | 2011-07-26 | Boston Scientific Scimed, Inc. | Medical device |
US7007698B2 (en) * | 2002-04-03 | 2006-03-07 | Boston Scientific Corporation | Body lumen closure |
WO2003101310A1 (en) | 2002-06-04 | 2003-12-11 | Christy Cummins | Blood vessel closure clip and delivery device |
US7153315B2 (en) | 2002-06-11 | 2006-12-26 | Boston Scientific Scimed, Inc. | Catheter balloon with ultrasonic microscalpel blades |
US7500986B2 (en) * | 2002-07-11 | 2009-03-10 | Medtronic Vascular, Inc. | Expandable body having deployable microstructures and related methods |
WO2004033021A1 (en) * | 2002-10-07 | 2004-04-22 | Biovalve Technologies, Inc. | Microneedle array patch |
US7686824B2 (en) * | 2003-01-21 | 2010-03-30 | Angioscore, Inc. | Apparatus and methods for treating hardened vascular lesions |
US20050021070A1 (en) | 2003-01-21 | 2005-01-27 | Angioscore, Inc. | Methods and apparatus for manipulating vascular prostheses |
US7279002B2 (en) | 2003-04-25 | 2007-10-09 | Boston Scientific Scimed, Inc. | Cutting stent and balloon |
US6932776B2 (en) * | 2003-06-02 | 2005-08-23 | Meridian Medicalssystems, Llc | Method and apparatus for detecting and treating vulnerable plaques |
US7771447B2 (en) | 2003-12-19 | 2010-08-10 | Boston Scientific Scimed, Inc. | Balloon refolding device |
US7413558B2 (en) | 2003-12-19 | 2008-08-19 | Boston Scientific Scimed, Inc. | Elastically distensible folding member |
US7270673B2 (en) * | 2003-12-31 | 2007-09-18 | Boston Scientific Scimed, Inc. | Microsurgical balloon with protective reinforcement |
EP1740122A2 (en) * | 2004-01-20 | 2007-01-10 | Massachusetts General Hospital | Permanent thrombus filtering stent |
US20050177130A1 (en) | 2004-02-10 | 2005-08-11 | Angioscore, Inc. | Balloon catheter with spiral folds |
US7754047B2 (en) | 2004-04-08 | 2010-07-13 | Boston Scientific Scimed, Inc. | Cutting balloon catheter and method for blade mounting |
US7654997B2 (en) * | 2004-04-21 | 2010-02-02 | Acclarent, Inc. | Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat |
US20050273049A1 (en) * | 2004-06-08 | 2005-12-08 | Peter Krulevitch | Drug delivery device using microprojections |
US20050288766A1 (en) * | 2004-06-28 | 2005-12-29 | Xtent, Inc. | Devices and methods for controlling expandable prostheses during deployment |
US7972351B2 (en) | 2004-07-13 | 2011-07-05 | Boston Scientific Scimed, Inc. | Balloon folding design and method and apparatus for making balloons |
US7354419B2 (en) | 2004-10-15 | 2008-04-08 | Futuremed Interventional, Inc. | Medical balloon having strengthening rods |
US7291158B2 (en) | 2004-11-12 | 2007-11-06 | Boston Scientific Scimed, Inc. | Cutting balloon catheter having a segmented blade |
US8038691B2 (en) | 2004-11-12 | 2011-10-18 | Boston Scientific Scimed, Inc. | Cutting balloon catheter having flexible atherotomes |
US7658744B2 (en) * | 2004-12-03 | 2010-02-09 | Boston Scientific Scimed, Inc. | Multiple balloon catheter |
US7303572B2 (en) * | 2004-12-30 | 2007-12-04 | Cook Incorporated | Catheter assembly with plaque cutting balloon |
US20060184191A1 (en) | 2005-02-11 | 2006-08-17 | Boston Scientific Scimed, Inc. | Cutting balloon catheter having increased flexibility regions |
US10076641B2 (en) | 2005-05-11 | 2018-09-18 | The Spectranetics Corporation | Methods and systems for delivering substances into luminal walls |
US8672990B2 (en) | 2005-05-27 | 2014-03-18 | Boston Scientific Scimed, Inc. | Fiber mesh controlled expansion balloon catheter |
US8052703B2 (en) | 2005-06-29 | 2011-11-08 | Boston Scientific Scimed, Inc. | Medical devices with cutting elements |
US8002725B2 (en) * | 2005-07-18 | 2011-08-23 | Novostent Corporation | Embolic protection and plaque removal system with closed circuit aspiration and filtering |
US8034066B2 (en) | 2005-09-15 | 2011-10-11 | Boston Scientific Scimed, Inc. | Multi-layer medical balloons |
US20070191811A1 (en) | 2006-02-10 | 2007-08-16 | Joseph Berglund | System and Method for Treating a Vascular Condition |
US20070191766A1 (en) | 2006-02-10 | 2007-08-16 | Boston Scientific Scimed, Inc. | Balloon catheter having nanotubes |
ES2335520T3 (en) * | 2006-02-24 | 2010-03-29 | National University Of Ireland, Galway | MINIMALLY INVASIVE INTRAVASCULAR TREATMENT DEVICE. |
US7691116B2 (en) | 2006-03-09 | 2010-04-06 | Boston Scientific Scimed, Inc. | Cutting blade for medical devices |
US8979886B2 (en) | 2006-08-07 | 2015-03-17 | W. L. Gore & Associates, Inc. | Medical balloon and method of making the same |
US20080300610A1 (en) | 2007-05-31 | 2008-12-04 | Cook Incorporated | Device for treating hardened lesions and method of use thereof |
US8579956B2 (en) * | 2007-09-28 | 2013-11-12 | Abbott Cardiovascular Systems Inc. | Methods and devices for treating lesions |
US7896911B2 (en) * | 2007-12-12 | 2011-03-01 | Innovasc Llc | Device and method for tacking plaque to blood vessel wall |
US20100274188A1 (en) | 2007-12-20 | 2010-10-28 | Acclarent, Inc. | Method and System for Treating Target Tissue Within the Eustachian Tube |
US9603980B2 (en) | 2008-02-26 | 2017-03-28 | CARDINAL HEALTH SWITZERLAND 515 GmbH | Layer-by-layer stereocomplexed polymers as drug depot carriers or coatings in medical devices |
WO2009111716A1 (en) | 2008-03-06 | 2009-09-11 | Boston Scientific Scimed, Inc. | Balloon catheter devices with sheath covering |
EP2254645B1 (en) | 2008-03-13 | 2014-04-16 | Cook Medical Technologies LLC | Method of forming a cutting balloon with connector and dilation element |
US9480826B2 (en) | 2008-03-21 | 2016-11-01 | Cagent Vascular, Llc | Intravascular device |
US11229777B2 (en) * | 2008-03-21 | 2022-01-25 | Cagent Vascular, Inc. | System and method for plaque serration |
US8323243B2 (en) | 2008-03-21 | 2012-12-04 | Innovasc Llc | Device and method for opening blood vessels by pre-angioplasty serration and dilatation of atherosclerotic plaque |
US8557271B2 (en) | 2008-07-16 | 2013-10-15 | Warsaw Orthopedic, Inc. | Drug depot implantable within a joint |
EP2349371B1 (en) | 2008-10-07 | 2013-12-04 | Boston Scientific Scimed, Inc. | Medical devices for delivery of therapeutic agents to body lumens |
WO2011028203A1 (en) | 2009-09-02 | 2011-03-10 | Reflow Medical Inc. | Systems, methods and devices for ablation, crossing, and cutting of occlusions |
WO2011096983A1 (en) | 2009-12-29 | 2011-08-11 | Cook Incorporated | Cutting or scoring balloon, system and method of making a cutting or scoring balloon |
WO2011091100A1 (en) | 2010-01-21 | 2011-07-28 | Boston Scientific Scimed, Inc. | Balloon catheters with therapeutic agent in balloon folds and methods of making the same |
US9993625B2 (en) | 2010-01-29 | 2018-06-12 | Mirus Llc | Biodegradable protrusions on inflatable device |
US9199066B2 (en) | 2010-03-12 | 2015-12-01 | Quattro Vascular Pte Ltd. | Device and method for compartmental vessel treatment |
US8211354B2 (en) | 2010-05-18 | 2012-07-03 | Cook Medical Technologies Llc | Balloon with integral retention of a dilation element |
EP3552655B1 (en) | 2010-07-13 | 2020-12-23 | Loma Vista Medical, Inc. | Inflatable medical devices |
EP2593170A1 (en) | 2010-07-16 | 2013-05-22 | Abbott Cardiovascular Systems Inc. | Medical device having tissue engaging member and method for delivery of a therapeutic agent |
US8491615B2 (en) | 2010-12-29 | 2013-07-23 | Boston Scientific Scimed, Inc. | Cutting balloon catheter |
US20120197194A1 (en) | 2011-01-04 | 2012-08-02 | Oscor Inc. | Folding balloon catheter |
GB2487400B (en) | 2011-01-20 | 2013-07-10 | Cook Medical Technologies Llc | Scoring balloon with offset scoring elements |
US9415193B2 (en) | 2011-03-04 | 2016-08-16 | W. L. Gore & Associates, Inc. | Eluting medical devices |
EP2701788A1 (en) | 2011-04-29 | 2014-03-05 | Boston Scientific Scimed, Inc. | Protective surfaces for drug-coated medical devices |
CA2836294C (en) | 2011-06-03 | 2021-01-19 | C.R. Bard, Inc. | Radiopaque medical balloon |
EP2731518B1 (en) | 2011-07-15 | 2018-05-30 | Boston Scientific Scimed, Inc. | Cutting balloon catheter with flexible cutting blades |
US20130030406A1 (en) | 2011-07-26 | 2013-01-31 | Medtronic Vascular, Inc. | Textured Dilatation Balloon and Methods |
GB2494395B (en) | 2011-09-02 | 2014-01-08 | Cook Medical Technologies Llc | Ultrasonically visible scoring balloon |
CN103930156B (en) | 2011-09-13 | 2017-06-23 | 约翰·P·皮戈特 | Catheter in blood vessel with inflatable cut portion |
US9730726B2 (en) | 2011-10-07 | 2017-08-15 | W. L. Gore & Associates, Inc. | Balloon assemblies having controllably variable topographies |
US8574248B2 (en) | 2011-12-12 | 2013-11-05 | Kassab Kughn Endovascular Devices | Catheter system with balloon-mounted plaque-modifying elements |
CN102512747A (en) | 2011-12-27 | 2012-06-27 | 微创医疗器械(上海)有限公司 | Medicine eluting balloon catheter |
CN104159541A (en) | 2012-02-01 | 2014-11-19 | 夸超脉管私人有限公司 | Device for compartmental dilatation of blood vessels |
EP3542849B1 (en) | 2012-02-08 | 2020-12-09 | TriReme Medical, LLC | Constraining structure with non-linear axial struts |
US9216033B2 (en) | 2012-02-08 | 2015-12-22 | Quattro Vascular Pte Ltd. | System and method for treating biological vessels |
US10173038B2 (en) | 2012-09-05 | 2019-01-08 | W. L. Gore & Associates, Inc. | Retractable sheath devices, systems, and methods |
GB2506160B (en) | 2012-09-24 | 2014-08-13 | Cook Medical Technologies Llc | Cutting or scoring balloon and apparatus therefor |
US9320530B2 (en) | 2013-03-13 | 2016-04-26 | The Spectranetics Corporation | Assisted cutting balloon |
CN203564643U (en) | 2013-09-11 | 2014-04-30 | 乐普(北京)医疗器械股份有限公司 | Cutting balloon |
CN103948972B (en) | 2014-05-04 | 2016-06-29 | 广东博迈医疗器械有限公司 | A kind of surface is with the dilating sacculus of modified coating and preparation technology thereof |
US10463842B2 (en) | 2014-06-04 | 2019-11-05 | Cagent Vascular, Llc | Cage for medical balloon |
EP3215212B1 (en) | 2014-11-03 | 2020-07-29 | Cagent Vascular, LLC | Serration balloon |
CN107405158A (en) | 2014-11-03 | 2017-11-28 | 开金血管有限公司 | Medical balloon |
KR101663805B1 (en) | 2014-12-03 | 2016-10-14 | 연세대학교 산학협력단 | Balloon Catheter Having Micro Needles and Manufacturing Method Thereof |
WO2016116821A1 (en) | 2015-01-22 | 2016-07-28 | Koninklijke Philips N.V. | Robotic control of an endovascular deployment device with optical shape sensing feedback |
US10357631B2 (en) | 2015-05-29 | 2019-07-23 | Covidien Lp | Catheter with tapering outer diameter |
WO2017049227A2 (en) | 2015-09-17 | 2017-03-23 | Cagent Vascular, Llc | Wedge dissectors for a medical ballon |
CA3001249C (en) | 2015-10-12 | 2023-10-17 | Reflow Medical, Inc. | Stents having protruding drug-delivery features and associated systems and methods |
WO2017083112A1 (en) | 2015-11-10 | 2017-05-18 | Cook Medical Technologies Llc | Weeping balloon with flow channels for reduced infusion pressure |
CN110114108B (en) | 2016-11-16 | 2022-12-06 | 开金血管公司 | System and method for depositing a drug into tissue through teeth |
CN108601927A (en) | 2016-11-22 | 2018-09-28 | 朝日英达科株式会社 | Balloon catheter |
JP6804370B2 (en) | 2017-03-31 | 2020-12-23 | テルモ株式会社 | Medical long body |
US10918839B2 (en) | 2018-03-13 | 2021-02-16 | II Jaro Mayda | Balloon catheter |
CN112739406A (en) | 2018-07-25 | 2021-04-30 | 开金血管有限公司 | Medical balloon catheter with enhanced pushability |
-
2009
- 2009-03-20 US US12/408,035 patent/US8323243B2/en active Active
- 2009-03-20 JP JP2011500815A patent/JP5846905B2/en active Active
- 2009-03-20 WO PCT/US2009/001786 patent/WO2009117158A2/en active Application Filing
- 2009-03-20 AU AU2009226025A patent/AU2009226025B2/en active Active
- 2009-03-20 EP EP09722111.3A patent/EP2254641B1/en active Active
- 2009-03-20 CA CA2718067A patent/CA2718067C/en active Active
-
2012
- 2012-11-29 US US13/689,657 patent/US9393386B2/en active Active
-
2016
- 2016-07-15 US US15/212,028 patent/US11166742B2/en active Active
-
2021
- 2021-10-05 US US17/494,640 patent/US20220087709A1/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11529501B2 (en) | 2008-03-21 | 2022-12-20 | Gagent Vascular, Inc. | System and method for plaque serration |
US11141573B2 (en) | 2008-03-21 | 2021-10-12 | Cagent Vascular, Inc. | Method for plaque serration |
US11166742B2 (en) | 2008-03-21 | 2021-11-09 | Cagent Vascular, Inc. | Method of enhancing drug uptake from a drug-eluting balloon |
US11219750B2 (en) | 2008-03-21 | 2022-01-11 | Cagent Vascular, Inc. | System and method for plaque serration |
US11229777B2 (en) | 2008-03-21 | 2022-01-25 | Cagent Vascular, Inc. | System and method for plaque serration |
EP2477686A4 (en) * | 2009-09-18 | 2013-07-31 | Innovasc Llc | Pre-angioplasty serration of atherosclerotic plaque enabling low-pressure balloon angioplasty & avoidance of stenting |
EP2477686A2 (en) * | 2009-09-18 | 2012-07-25 | Innovasc LLC | Pre-angioplasty serration of atherosclerotic plaque enabling low-pressure balloon angioplasty & avoidance of stenting |
US11738181B2 (en) | 2014-06-04 | 2023-08-29 | Cagent Vascular, Inc. | Cage for medical balloon |
US11298513B2 (en) | 2014-11-03 | 2022-04-12 | Cagent Vascular, Inc. | Serration balloon |
US10471238B2 (en) | 2014-11-03 | 2019-11-12 | Cagent Vascular, Llc | Serration balloon |
US11701502B2 (en) | 2014-11-03 | 2023-07-18 | Cagent Vascular, Inc. | Serration balloon |
US11040178B2 (en) | 2014-11-03 | 2021-06-22 | Cagent Vascular, Llc | Serration balloon |
US10689154B2 (en) | 2015-09-17 | 2020-06-23 | Cagent Vascular, Llc | Wedge dissectors for a medical balloon |
US11266818B2 (en) | 2015-09-17 | 2022-03-08 | Cagent Vascular, Inc. | Wedge dissectors for a medical balloon |
US11266819B2 (en) | 2015-09-17 | 2022-03-08 | Cagent Vascular, Inc. | Wedge dissectors for a medical balloon |
US11717654B2 (en) | 2015-09-17 | 2023-08-08 | Cagent Vascular, Inc. | Wedge dissectors for a medical balloon |
US11491314B2 (en) | 2015-09-17 | 2022-11-08 | Cagent Vascular Lac. | Wedge dissectors for a medical balloon |
US11123527B2 (en) | 2015-09-17 | 2021-09-21 | Cagent Vascular, Inc. | Wedge dissectors for a medical balloon |
US10905863B2 (en) | 2016-11-16 | 2021-02-02 | Cagent Vascular, Llc | Systems and methods of depositing drug into tissue through serrations |
CN108653851A (en) * | 2018-04-03 | 2018-10-16 | 河南科技大学第附属医院 | A kind of pediatrician's paediatrics negative pressure gastric lavage device |
US11369779B2 (en) | 2018-07-25 | 2022-06-28 | Cagent Vascular, Inc. | Medical balloon catheters with enhanced pushability |
Also Published As
Publication number | Publication date |
---|---|
AU2009226025A1 (en) | 2009-09-24 |
AU2009226025B2 (en) | 2012-08-30 |
CA2718067A1 (en) | 2009-09-24 |
US20130165958A1 (en) | 2013-06-27 |
EP2254641A4 (en) | 2011-07-27 |
US11166742B2 (en) | 2021-11-09 |
US20090240270A1 (en) | 2009-09-24 |
US9393386B2 (en) | 2016-07-19 |
JP5846905B2 (en) | 2016-01-20 |
US20220087709A1 (en) | 2022-03-24 |
US8323243B2 (en) | 2012-12-04 |
CA2718067C (en) | 2014-07-08 |
US20160324538A1 (en) | 2016-11-10 |
WO2009117158A3 (en) | 2009-11-12 |
JP2011515147A (en) | 2011-05-19 |
EP2254641B1 (en) | 2016-09-21 |
EP2254641A2 (en) | 2010-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220087709A1 (en) | Intravascular device | |
US11141573B2 (en) | Method for plaque serration | |
US11219750B2 (en) | System and method for plaque serration | |
AU2022201113B2 (en) | Substrate with rotatable struts for medical device | |
AU725324B2 (en) | Neovascularization catheter | |
AU741554B2 (en) | Neovascularization catheter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09722111 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009226025 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2718067 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011500815 Country of ref document: JP |
|
REEP | Request for entry into the european phase |
Ref document number: 2009722111 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009722111 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2009226025 Country of ref document: AU Date of ref document: 20090320 Kind code of ref document: A |