WO2009116593A1 - Hydrogen generator - Google Patents

Hydrogen generator Download PDF

Info

Publication number
WO2009116593A1
WO2009116593A1 PCT/JP2009/055338 JP2009055338W WO2009116593A1 WO 2009116593 A1 WO2009116593 A1 WO 2009116593A1 JP 2009055338 W JP2009055338 W JP 2009055338W WO 2009116593 A1 WO2009116593 A1 WO 2009116593A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
fuel
hydrogen generator
lattice
fuel pellets
Prior art date
Application number
PCT/JP2009/055338
Other languages
French (fr)
Japanese (ja)
Inventor
敏夫 堀口
ロバート・ジェイ チャートン
ジュリア・エス ウィーヴィング
ダーレン・ピー スキャッターグッド
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2009116593A1 publication Critical patent/WO2009116593A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a hydrogen generator for supplying hydrogen gas to a hydrogen fuel cell for generating electric energy.
  • the fuel cell does not require charging, and can be put into a state where the device can be operated for a long time simply by replenishing the fuel or replacing the fuel cartridge.
  • hydrogen fuel cells that use hydrogen as fuel can increase the power density due to their characteristics, so that they can handle a certain amount of peak load in accordance with conventional secondary batteries.
  • As a battery application to portable information devices and the like is being studied. In particular, in the case of portable information devices, the key is how to store hydrogen in a compact and lightweight manner.
  • WO 02/18267 discloses a hydrogen generator that generates hydrogen by thermally decomposing a substance containing a large amount of hydrogen such as ammonia and borane. Proposed. According to this method, since hydrogen is generated from the solid fuel, it is not necessary to newly prepare a heavy and large hydrogen storage alloy tank or an infrastructure for filling the hydrogen storage alloy with gaseous hydrogen.
  • the physical structure of the hydrogen generator described in the above international application can be applied to general uses such as a portable generator that can be used outdoors, but cannot be applied to a hydrogen generator of a very small size.
  • the size and shape of the hydrogen generator is the same size and shape as the current primary or secondary battery (for example, 18650 size (diameter approximately 18 mm ⁇ height approximately 65 mm)) is desired. Such a size and shape is impossible in the structure of the hydrogen generator.
  • the international application describes a small concrete means for heating the temperature of ammonia borane to 100 ° C. or higher in order to generate hydrogen from ammonia borain in the hydrogen generator for portable information devices. It has not been.
  • the present invention has been made in view of the above points, and can generate hydrogen stably and efficiently from a material containing a compound that generates hydrogen even in a small size. It aims at providing the hydrogen generator which can improve generation amount.
  • a plurality of fuel pellets composed of a material containing a compound that generates hydrogen when heated;
  • a pressure vessel for storing the plurality of fuel pellets;
  • a controller for controlling hydrogen generation from the fuel pellets;
  • a substrate disposed in the pressure vessel;
  • a plurality of igniters provided corresponding to the plurality of fuel pellets on the substrate and heating the corresponding fuel pellets, such that each one fuel pellet is disposed thereon;
  • a grid-like frame composed of a heat-insulating member that is impermeable to hydrogen for isolating each of the fuel pellets from other fuel pellets;
  • a hydrogen generator is provided.
  • FIG. 1 is a diagram showing a configuration of fuel pellets used in a hydrogen generator.
  • FIG. 2 is a diagram showing the configuration of the hydrogen generator according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing an internal structure of the hydrogen generator shown in FIG.
  • FIG. 4 is a diagram showing a configuration of the hydrogen generator when the control substrate is taken out of the pressure vessel of the hydrogen generator as a modification of the first embodiment.
  • FIG. 5 is a top view of the hydrogen generation unit.
  • FIG. 6 is a cross-sectional view of the hydrogen generation unit.
  • FIG. 7A is a diagram showing a horizontal positional relationship of the generator with respect to the lattice-shaped heat insulating member.
  • FIG. 7B is a diagram showing a horizontal positional relationship of heat mix, ammonia borane, and aluminum foil with respect to the lattice-shaped heat insulating member.
  • FIG. 7C is a diagram illustrating a horizontal positional relationship of the carbon filter with respect to the lattice-shaped heat insulating member.
  • FIG. 7D is a diagram illustrating a horizontal positional relationship of the lid with respect to the lattice-shaped heat insulating member.
  • FIG. 8 is a diagram illustrating a configuration of a drive circuit of the igniter.
  • FIG. 9 is a schematic diagram for explaining a method of connecting a drive control signal to the generator.
  • FIG. 10 is a schematic diagram for explaining another connection method of the drive control signal to the generator.
  • FIG. 9 is a schematic diagram for explaining a method of connecting a drive control signal to the generator.
  • FIG. 11 is a diagram showing a part of the correspondence between the input signal and the output signal of the decoder.
  • FIG. 12 is a block configuration diagram of a controller mounted on the control board.
  • FIG. 13 is a flowchart of the operation sequence of the microcontroller (CPU).
  • FIG. 14 is a diagram showing the internal structure of the hydrogen generator according to the second embodiment of the present invention.
  • FIG. 15 is a diagram showing an internal structure of a modification of the hydrogen generator according to the second embodiment.
  • FIG. 16 is a top view of a hydrogen generator according to a third embodiment of the present invention.
  • FIG. 17 is a top view of a modification of the hydrogen generator according to the third embodiment.
  • a fuel pellet 10 used in a hydrogen generator includes an ammonia borane (NH 3 BH 3 ) 12 that is a hydrogen generating compound, and a heat mix 14 for heating the ammonia borane 12. Is composed of.
  • the ammonia borain 122 and the heat mix 14 are each solidified into a predetermined shape, here, a cylindrical shape by applying an appropriate pressure.
  • the fuel pellet 10 is configured by further applying pressure to the ammonia borane 122 and the heat mix 14 so as to be integrated.
  • the pressure applied to the ammonia / borane 12 is required to be preferably a value of 50 MPa to 250 MPa experimentally.
  • Ammonia borain 12 and the heat mix 14 will be described.
  • Ammonia / borane 12 contains about 20% hydrogen by mass, is a solid hydrogen source that is solid and non-explosive at room temperature, and generates hydrogen by thermal decomposition. If the volume is the same, it contains twice as much hydrogen as liquid hydrogen.
  • Ammonia borane 12 is usually a powder, but is a substance that can be pressed into a hard pellet, rod, cone, or the like by applying pressure as necessary.
  • the ammonia borane 12 is thermally decomposed in three stages by raising the temperature to generate hydrogen. That is, when ammonia borane 12 is heated, it melts at about 100 ° C. to become a liquid, and then generates one molecule of hydrogen.
  • the reaction formula in that case is as the following formula (1), and this is the first stage hydrogen generation reaction.
  • this third stage hydrogen generation reaction also generates sufficient heat for complete pyrolysis.
  • ammonia borane 12 generates three molecules of hydrogen from one molecule when heated.
  • the heat mix 14 is a mixture of lithium aluminum hydride (LiAlH 4 ) and ammonium chloride (NH 4 Cl). This becomes a heat source that generates heat by itself when given a small amount of heat by a heater or the like from the outside, and heats the ammonia borane 12. Further, not only as a heat source, but some hydrogen is generated as in the following formula (4).
  • the heat mix 14 is not limited to such a mixture of LiAlH 4 and NH 4 Cl, but is necessary for the ammonia borane 12 to start thermal decomposition when a small amount of heat is applied from the outside. Any material may be used as long as it has a characteristic of generating heat by itself.
  • the fuel pellet 10 composed of such ammonia borane 12 and heat mix 14 has a diameter of 3 mm to 10 mm and an overall height of about 3 mm to 10 mm in consideration of use for portable information equipment. It is preferable. According to the experiments by the present inventors, hydrogen could be generated with high efficiency in pellets having a diameter of about 5.2 mm and a height of about 3.4 mm.
  • the ratio of ammonia borain 12 to heat mix 14 is set to a mass ratio of about 4: 1 to 5: 1 so that hydrogen generation with the highest yield is experimentally performed. It has been confirmed.
  • the case of the hydrogen generator according to the first embodiment of the present invention is a pressure vessel 16 because hydrogen is generated therein, and is made of a sufficiently strong member such as stainless steel.
  • the A hydrogen generation port 18 is provided on one side surface of the pressure vessel 16 of the hydrogen generator.
  • a carbon filter (not shown) that absorbs impurities other than hydrogen is incorporated inside the hydrogen generation port 18.
  • the hydrogen generation port 18 is externally provided with a stop valve (not shown) that can be opened and closed from the outside.
  • a connector 20 for inputting and outputting electrical signals is also provided on the side surface where the hydrogen generation port 18 is provided.
  • the connector 20 is provided with an output terminal for a signal indicating the state of the hydrogen generator and an input terminal for a signal for controlling the operation.
  • the connector 20 is connected to a device (not shown) located outside the hydrogen generator by a cable (not shown).
  • a rupturable plate 22 is provided on one surface, for example, the upper surface, of the pressure vessel 16 of the hydrogen generator.
  • the rupturable plate 22 is a commercially available component configured to be broken when the pressure applied to the rupturable plate 22 exceeds a predetermined pressure. This is a safety device that prevents the hydrogen generator from entering a dangerous state such as an explosion by rupturing the rupturable plate 22 before the internal pressure of the pressure vessel 16 exceeds the maximum pressure resistance due to some abnormal operation.
  • the rupturable plate 22 may be a mechanical valve such as a safety valve PRV (Pressure Relief Valve).
  • a member for preventing leakage of an O-ring or the like is used in combination on the hydrogen generator 18, the connector 20, and the rupture plate 22 attached to the pressure vessel 16 of the hydrogen generator.
  • a control board 24 on which a control circuit for controlling the operation of the hydrogen generator is mounted is disposed inside the pressure vessel 16 of the hydrogen generator.
  • the control board 24 is configured by heat resistance and insulation such as glass epoxy and phenol resin.
  • the control board 24 is connected to the connector 20 on one end side.
  • a connector 26 is provided on the other end side of the control board 24.
  • a connector 28A provided on the board 30A can be connected to the connector 26.
  • a lattice-like heat insulating member 32A is arranged on the substrate 30A.
  • a connector 34A is further provided on the surface of the board 30A opposite to the connector 28A.
  • a connector 28B provided on the board 30B can be connected to the connector 34A.
  • On the substrate 30B a lattice-like heat insulating member 32B is arranged.
  • a connector 34B is further provided on the side opposite to the connector 28B.
  • the unit composed of the substrate 30A, the connector 28A, the heat insulating member 32A, and the connector 34A, and the unit composed of the substrate 30B, the connector 28B, the heat insulating member 32B, and the connector 34B are hydrogen generation units and are the same. It is. These two hydrogen generation units are connected by a connector 28B and a connector 34A, and further they are connected to the control board 24 by a connector 28A and a connector 26.
  • the connector 34B is a dummy that is not connected anywhere.
  • the control substrate 24 may be disposed outside the pressure vessel 16 of the hydrogen generator. That is, the connector 28A comes out from the lower side of the pressure vessel 16 and the connector 26 of the control board 24 is connected to the connector 28A.
  • Such a configuration is economical because the control board 24 is hardly affected by a rise in temperature, a change in pressure, etc., and can withstand multiple uses.
  • 3 and 4 show an example in which the hydrogen generation units are arranged in two stages, but the number of stages is of course not limited thereto. It is also possible to arrange a plurality of hydrogen generation units in the depth direction of the figure.
  • the hydrogen generation unit will be described in detail. Since the two hydrogen generation units have the same structure, in the following description, unless specifically required, the substrates 30A and 30B are the substrate 30, the connectors 28A and 28B are the connectors 28, and the heat insulating members 32A and 32B are thermally insulated. The member 32 and the connectors 34A and 34B will be described as the connector 34.
  • a lattice-like heat insulating member 32 is bonded onto the substrate 30 as shown in FIG.
  • one fuel pellet 10 as shown in FIG. 1 is stored.
  • this lattice-shaped heat insulating member 32 has a thickness of about 1 mm, depending on the material, it has a heat insulating function and strength.
  • the inner diameter of the lattice has a slightly larger dimension than the diameter of the cylindrical fuel pellet 10 stored therein. For example, in the case of the fuel pellet 10 having a diameter of 5.2 mm, the inner diameter of the lattice is set to 5.4 mm square with an allowance of 0.1 mm.
  • the lattice-like heat insulating member 32 is bonded to the substrate 30 with, for example, an adhesive having a caulking function so that there is no gap.
  • an adhesive having a caulking function so that there is no gap.
  • the lattice-shaped heat insulating member 32 is formed of a heat insulating member that does not allow gas such as hydrogen to pass through, and prevents heat generated when hydrogen is generated from one fuel pellet 10 from the periphery of the fuel pellet 10. Has function. With this function, heat necessary for hydrogen generation is not dissipated from the periphery of the fuel pellet 10 and is not transmitted to the surrounding fuel pellet 10, that is, has a heat retaining and heat insulating function. This heat retention / heat insulation function becomes more important as the fuel pellet 10 becomes smaller, and it becomes necessary to use a member having a lower thermal conductivity and a higher heat-resistant temperature.
  • lattice-like heat insulation member 32 since it is necessary to endure the high temperature of about 150 degreeC as a material of the grid
  • the method of manufacturing the lattice-shaped heat insulating member 32 is limited to the case of a resin material, but there are a method of manufacturing by integral molding using a mold and a method of combining a plurality of members obtained by cutting a plate-shaped member. The method is also acceptable. However, an airtight state must be maintained between adjacent lattices.
  • a thin aluminum foil having a thickness of 0.01 to 0.02 mm may be pasted on the surface of the lattice-like heat insulating member 32.
  • the heat generated from the fuel pellets 10 in the lattice is reflected by the aluminum foil and returned to the fuel pellets 10, thereby further increasing the temperature of the fuel pellets 10.
  • the size of the fuel pellet 10 is small, it is necessary to prevent the heat generated from the fuel pellet 10 from escaping as much as possible. Therefore, it is more effective to apply the aluminum foil.
  • the lattice-like heat insulating member 32 is in contact with the periphery of the cylindrical fuel pellet 10, and a gap between the lattice-like heat insulating member 32 and the fuel pellet 10 is formed at a corner portion.
  • This gap also has a function as a space for hydrogen generated from the fuel pellet 10. That is, the case of the hydrogen generator is a sealed pressure vessel 16, and if hydrogen is generated inside, the internal pressure rises. For this reason, if there is no space inside the pressure vessel 16, it is necessary to design a pressure resistant to withstand a high pressure because the pressure rises rapidly. On the other hand, if there is a space somewhere inside the pressure vessel 16, the pressure rise can be reduced.
  • a mica insulating sheet 36 is disposed on the substrate 30, and an igniter 38 is provided on the substrate 30 corresponding to each fuel pellet 10. .
  • the igniter 38 generates heat by flowing a current in accordance with a control signal from a control circuit (not shown) mounted on the control board 24.
  • a control circuit (not shown) mounted on the control board 24.
  • the heat mix 14 is reacted to generate heat, and the ammonia borane 12 is heated by the heat to generate hydrogen.
  • the heat mix 14 and the ammonia borane 12 constitute the cylindrical fuel pellet 10.
  • an aluminum foil 40 having a circular thickness of 0.01 to 0.02 mm and the same diameter as the diameter of the fuel pellet 10 is placed.
  • the aluminum foil 40 reflects heat generated from the heat mix 14 ignited by the igniter 38 and heat generated from the hydrogen generation reaction generated from the ammonia borane 12 due to the heat. Reflection by the aluminum foil 40 has a function of helping heat stay around the fuel pellet 10 instructed to generate hydrogen.
  • a square carbon filter 42 having a size substantially matching the inner dimension of the lattice is placed on the aluminum foil 40.
  • the carbon filter 42 has a function of absorbing impurities other than hydrogen.
  • the cover 44 of a circular heat insulation member is arranged on it.
  • the lid 44 is slightly larger than the diameter of the fuel pellet 10 and is large enough to enter the lattice opening without any gap.
  • the lid 44 prevents the fuel pellets 10, the carbon filter 42, and the like inside the lattice from moving due to a reaction when hydrogen is generated.
  • the lid 44 of the heat insulating member can be made of the same material as the lattice-shaped heat insulating member 32, that is, epoxy resin, polycarbonate resin, wood, or the like.
  • a cylindrical fuel pellet 10 is stored in a square lattice, and a circular aluminum foil 40, a square carbon filter 42, and a circular insulating member lid 44 are laminated in that order.
  • a circular aluminum foil 40, a square carbon filter 42, and a circular insulating member lid 44 are laminated in that order.
  • the reason why only the carbon filter 42 is square is as follows.
  • the carbon filter 42 needs to have a square shape that matches the inner radius of the lattice.
  • FIGS. 7A to 7D are views showing the horizontal positional relationship of the igniter 38, the heat mix 14, the ammonia borane 12, the aluminum foil 40, the carbon filter 42, and the lid 44 with respect to the lattice-like heat insulating member 32.
  • FIG. is there.
  • FIG. 7A shows a case where the generator 38 is a surface mount type resistor as described later, and the outer shape is a square.
  • the figure shows that the center point of the generator 38 substantially coincides with the center point of the grid-like plane formed by the grid-like heat insulating member 32.
  • the outer shape of the resistor is rectangular, the center point is arranged at a position that substantially coincides with the center point of the lattice-shaped plane formed by the lattice-shaped heat insulating member 32.
  • FIG. 7B shows that the center points of the cylindrical heat mix 14, the ammonia borane 12, and the aluminum foil 40 substantially coincide with the center points of the lattice openings formed by the lattice-shaped heat insulating members 32. ing. The figure also shows that the length of one side of the lattice opening is slightly larger than the members of the heat mix 14, the ammonia borane 12, and the aluminum foil 40, and there is a gap.
  • FIG. 7C shows that the carbon filter 42 is the same size as the lattice aperture, and that its center points necessarily coincide.
  • the diameter of the lid 44 is almost the same as one side of the lattice opening, and unlike the heat mix 14, the ammonia borane 12, and the aluminum foil 40, there is no gap between one side of the lattice opening. It is shown that.
  • the horizontal positional relationship between the fuel pellet 10 and the igniter 38 is regulated by the lattice-shaped heat insulating member 32 so that the respective center points are substantially coincident with each other.
  • the heat generated from the igniter 38 is accurately transmitted to the heat mix 14 below the fuel pellet 10.
  • the heat mix 14 sufficiently heats the ammonia borane 12, Hydrogen can be generated from the borane 12 to the maximum extent.
  • the igniter 38 is disposed at a position corresponding to each grid on the substrate 30, and is positioned so that the heat mix 14 of each fuel pellet 10 is in contact therewith. As described above, positioning is performed so that the center of the igniter 38 and the center of the fuel pellet 10 substantially coincide.
  • the igniter 38 is a surface mount type resistor.
  • the surface-mounted resistor 46 constituting the igniter 38 has one end connected to DC + 12V, which is the power supply voltage of the drive circuit, via the current path of the drive FET 48, and the other end connected to GND. It is connected.
  • a drive control signal 50 which is a digital signal indicating a voltage value of High level and Low level is applied to a control terminal of the drive FET 48 from a control circuit (not shown) mounted on the control board 24.
  • the drive FET 48 is turned on when the drive control signal 50 is at a high level, and is turned off when the drive control signal 50 is at a low level.
  • the drive control signal 50 is at a low level, the drive FET 48 is in an OFF state, and no current flows through the resistor 46.
  • the drive control signal 50 becomes high level and the drive FET 48 is turned on, a current flows through the resistor 46.
  • this generator 38 used the resistor for surface mounting as the resistor 46, the same effect can be acquired even if it prints directly on a board
  • a total of 35 ignition units 38 as described above are required in a single hydrogen generation unit as shown in FIG.
  • a surface mounting resistor 46 is mounted on the upper surface of the substrate 30 (the same surface as the mounting surface of the fuel pellet 10), and a driving FET 48 for driving is mounted on the lower surface of the substrate 30.
  • a wiring pattern for connecting the connector 34 is arranged using both the upper surface and the lower surface of the substrate 30.
  • 35 drive control signals 50 are applied via the connector 34 to the 35 igniters 38 arranged on the substrate 30.
  • connection method as shown in FIG. 10 may be used.
  • substrate 30, the connector 34, and the ignition device 38 are the same as that of the structure of FIG.
  • the drive control signal 50 to each of the igniters 38 is applied from the output terminal of the decoder 52 with 6 inputs and 64 outputs.
  • a 6-bit digital signal 54 is input to the input terminal of the decoder 52 from the control board 24 via the connector 34, and an enable signal 56 that enables the board 30 to operate.
  • the 6-bit digital signal 54 is a signal for determining which of the igniters 38 is turned on. Since the input signal is 6 bits, firing can be instructed to a maximum of 2 to the sixth power, that is, 64 of the 38 igniters.
  • a 6-bit digital signal 54 and an enable signal 56 are input to the decoder 52 via the connector 34. The decoder 52 is activated only when the enable signal 56 is at a high level, that is, “1”.
  • the correspondence between the input signal and the output signal of the decoder 52 can be made.
  • This figure shows that any one of the 64 output signals is “1”, that is, a high level, uniquely corresponding to the 64 types of patterns of the input signal.
  • a controller (not shown) mounted on the control board 24 selects one igniter 38 and allows a predetermined current to flow for a certain period of time.
  • the resistor 46 in the igniter 38 generates heat to heat the heat mix 14, and the heat heats the ammonia borane 12 to generate hydrogen.
  • a small amount of hydrogen is also generated from the heat mix 14.
  • the generated hydrogen is discharged from the hydrogen generation port 18 through a carbon filter (not shown) built in the inlet of the hydrogen generation port 18.
  • the controller 58 mounted on the control board 24 includes a microcontroller 60, a nonvolatile memory 62, a igniter selector 64, a secondary battery 66, and a charging circuit 68.
  • the controller 58 is connected to a pressure sensor 70 that is also mounted on the control board 24 or attached to an arbitrary location in the hydrogen generator.
  • the microcontroller 60 is a control unit that controls the operation of the entire hydrogen generator, and is configured by a one-chip microcomputer that integrally has functions such as a CPU, a memory, and an input / output port.
  • the non-volatile memory 62 records the usage state of the fuel pellet 10, and is an electrically rewritable memory such as an EEPROM or a flash memory.
  • the igniter selector 64 generates a signal for selecting the igniter 38 to be ignited.
  • the secondary battery 66 supplies power to the controller 58, and a lithium ion battery or a nickel metal hydride battery is used.
  • the charging circuit 68 charges the secondary battery 66 with electric power supplied from a hydrogen fuel cell to which the present hydrogen generator is connected.
  • the pressure sensor 70 measures the pressure inside the pressure vessel 16 of the hydrogen generator.
  • the drive selector signal 64 (also the enable signal 56 in the case of FIG. 10) is generated by the fire selector 64.
  • the portion surrounded by the alternate long and short dash line is an electronic circuit supplied with power by the secondary battery 66, and the portion surrounded by the broken line is the controller 58.
  • the nonvolatile memory 62 is configured to be freely readable and writable, and is assigned to record the usage state of each fuel pellet 10 at a memory address corresponding to one to one. Therefore, by designating one address of the nonvolatile memory 62, it is possible to set the use state of the fuel pellet 10 corresponding to the address and to check the use state.
  • the fuel pellet 10 is unused when the memory value is "FFH" in hexadecimal, the fuel pellet 10 is used when "80H", and "00H” Indicates that the fuel pellet 10 is not installed.
  • the contents of the nonvolatile memory 62 may be scanned to find “FFH”.
  • the microcontroller 60 first inputs the value of the pressure sensor 70 (step S11). At this time, it is also possible to reduce the influence of noise by inputting the value of the pressure sensor 70 a plurality of times and taking the average value.
  • This predetermined value is a limit value of the amount of hydrogen that can be continuously generated by the hydrogen fuel cell to which the present hydrogen generator is connected. In other words, if the hydrogen pressure inside the pressure vessel 16 of the hydrogen generator becomes smaller than the predetermined value, the hydrogen fuel cell cannot continuously generate power unless hydrogen is newly generated.
  • the yield of hydrogen generation is affected by the initial ambient pressure when the ammonia / borane 12 is heated. According to the results of experiments conducted by the inventor, when hydrogen is generated by heating each fuel pellet 10, the hydrogen generation yield is higher when the ambient pressure is 5 atm (500,000 Pascals) or more.
  • the predetermined value is 5 atm (500,000 Pascal) or more and does not exceed the maximum withstand pressure (10 atm (1 million Pascal)) of the pressure vessel 16 of the hydrogen generator.
  • step S12 If it is determined in step S12 that the value of the pressure sensor 70 is larger than the predetermined value, the process returns to the input of the pressure sensor value in step S11.
  • step S12 if it is determined in step S12 that the value of the pressure sensor 70 is equal to or less than the predetermined value, it is checked whether there is a hydrogen generation request (step S13).
  • This hydrogen generation request is generated from a host device to which the microcontroller 60 is connected. If it is not necessary to operate the hydrogen fuel cell and generate power, for example, when the device to which the hydrogen fuel cell is connected is in a sleep state, it is not necessary to generate power. Wait until it occurs (step S14).
  • step S14 the contents of the nonvolatile memory 62 are scanned to search for unused fuel pellets 10 (step S15). This scan may be performed only at the beginning, and the result may be recorded at a predetermined address in the nonvolatile memory 62, and the scan of the nonvolatile memory 62 may be omitted after the first time. If all the fuel pellets 10 are used and there are no unused fuel pellets 10 (step S16), a fuel shortage error is reported to the host device using this hydrogen generator (step S17). . In this example, a fuel shortage error is reported when there are no unused fuel pellets 10. However, when the number of unused fuel pellets 10 decreases, a low fuel remaining warning is reported. May be.
  • step S16 when there is an unused fuel pellet 10 (step S16), the unused fuel pellet 10 is selected, and a predetermined amount is set in the igniter 38 corresponding to the selected unused fuel pellet 10. To start the operation of generating hydrogen from the corresponding fuel pellet 10 (step S18).
  • step S19 the value of the nonvolatile memory 62 at the location corresponding to the used fuel pellet 10 is rewritten from unused to used (step S19).
  • step S18 hydrogen generation from the fuel pellets 10 was started. However, since it takes some time to actually generate hydrogen, after waiting for a certain time (step S20), the process returns to step S11.
  • the entire structure of the hydrogen generator for generating hydrogen by subdividing the ammonia and borane 12 into pellets is presented, and as an indispensable element, the generator 38 Specifically, the fuel pellet 10 holding means, the heat retaining / insulating method of the heat generated during the generation of hydrogen, and the operation control flow of the hydrogen generator are specifically presented, so that hydrogen can be efficiently generated from the ammonia / borane 12. It is possible to realize a small hydrogen generator that can be used.
  • a substrate 30C is the same substrate as the substrates 30A and 30B.
  • the heat insulating member 32C is a lattice-like heat insulating member similar to the heat insulating members 32A and 32B.
  • the connector 34C is a connector similar to the connectors 34A and 34B.
  • the substrate 30A, the heat insulating member 32A, and the connector 34A are combined to form one hydrogen generating unit
  • the substrate 30B, the heat insulating member 32B, and the connector 34B are combined to form one hydrogen generating unit
  • the substrate 30C One hydrogen generation unit is configured by combining the heat insulating member 32C and the connector 34C.
  • These hydrogen generation units are connected to the control board 24 via connectors 72A, 72B and 72C, respectively.
  • a control circuit for controlling the operation of the hydrogen generator is mounted on the control board 24 as in the first embodiment. Further, it is connected to a host device of this hydrogen generator via a connector 20.
  • each hydrogen generation unit is independently connected to the control board 24 via connectors 34A, 34B, and 34C. Therefore, the hydrogen generation unit using all the fuel pellets 10 can be detached and attached independently without detaching other hydrogen generation units. Further, since the control substrate 24 is arranged upright, the space inside the hydrogen generator can be used more effectively than the structure of the first embodiment.
  • the hydrogen generator according to the second embodiment may have an internal structure as shown in FIG. 15, components having the same functions as those in FIG. 14 are denoted by the same reference numerals.
  • the control substrate 24 that was inside the pressure vessel 16 of the hydrogen generator shown in FIG. 14 is taken out of the pressure vessel 16.
  • the three hydrogen generation units are connected to the relay board 74 via the connector 34A and the connector 72A, the connector 34B and the connector 72B, and the connector 34C and the connector 72C.
  • the signal from the relay board 74 goes out of the pressure vessel 16 by the connector 76 and reaches the control board 24 by connecting the connector 76 to the connector 78 on the control board 24.
  • the control board 24 is hardly affected by a rise in temperature, a change in pressure, and the like, and is economical because it can withstand multiple uses.
  • a lattice-like heat insulating member 32 is arranged on a substrate 30 so that the opening forms an equilateral triangle, and the fuel pellets 10 are arranged therein. It is.
  • the connector 34 is mounted on the substrate 30, and the outer shape of the substrate 30 is a hexagon.
  • the lattice-like heat insulating member 32 may be arranged on the substrate 30 so that the opening thereof has a regular hexagonal shape, and the fuel pellets 10 may be arranged therein.
  • the connector 34 is mounted on the substrate 30 and the outer shape of the substrate 30 is a regular hexagon.
  • the size of the lattice is such that each side of the opening is in contact with the diameter of the cylindrical fuel pellet 10 with a gap of about 0.1 mm. adjust. This facilitates the loading of the fuel pellets 10 and prevents the fuel pellets 10 from greatly deviating from the igniter when hydrogen is generated.
  • a circular aluminum foil 40, a regular triangular or regular hexagonal carbon filter 42, and a circular heat insulating member lid 44 are laminated on the fuel pellet 10 in this order. Yes. Only the shape of the carbon filter is different from that of the first embodiment.
  • the volume of the gap with the cylindrical fuel pellet 10 is such that the openings as shown in FIG. 16 or FIG. Compared to the square case, it becomes smaller. Therefore, more fuel pellets 10 can be mounted on the same volume of hydrogen generator, and the amount of generated hydrogen per unit volume increases, so that the energy density per unit volume can be increased.
  • the outer shape of a hydrogen generator using such a hydrogen generation unit is a hexagonal column in the case of FIG. 16, and a regular hexagonal column or a cylinder in the case of FIG.
  • a useless space generated near the outer periphery of the cylinder can be reduced by reducing the diameter of the internal fuel pellet 10. Therefore, it becomes close to the shape of an existing cylindrical secondary battery or the like, and can be easily replaced with the secondary battery.
  • the position of the control substrate 24 can be set either inside or outside the pressure vessel 16 of the hydrogen generator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

Disclosed is a hydrogen generator comprising a plurality of fuel pellets (10) formed of a material containing a compound capable of evolving hydrogen upon being heated, a pressure-resistant container for storing the plurality of fuel pellets, and a control substrate loaded with a controller for regulating the evolution of hydrogen from the fuel pellets. A plurality of igniters corresponding to the plurality of fuel pellets are installed on a substrate (30) within the pressure-resistant container. The plurality of fuel pellets are placed on the respective igniters and are separated from each other by a lattice-shaped frame formed of a hydrogen-impermeable heat insulating member (32).

Description

水素発生器Hydrogen generator
 本発明は、電気エネルギーを発生させるための水素燃料電池に水素ガスを供給する水素発生器に関する。 The present invention relates to a hydrogen generator for supplying hydrogen gas to a hydrogen fuel cell for generating electric energy.
 携帯電話、PDA、デジタルカメラ、等の携帯情報機器は、主に、リチウムイオン電池等の充電可能な二次電池が電源として用いられてきている。近年、これらの機器の高機能化、多機能化、高速化及び長時間駆動の要求に伴い、小型燃料電池が新たな電源として期待されており、一部では試作又は試用も始まっている。 2. Description of the Related Art Mobile information devices such as mobile phones, PDAs, and digital cameras have mainly used rechargeable secondary batteries such as lithium ion batteries as a power source. In recent years, along with the demands for high functionality, multi-function, high speed, and long-time driving of these devices, small fuel cells are expected as a new power source, and some prototypes or trials have started.
 燃料電池は、従来の二次電池とは異なり充電作業が不要で、燃料を補充または燃料カートリッジを交換するだけで、機器を長時間稼動させることが可能な状態にすることができる。これらの燃料電池のうち、水素を燃料とする水素燃料電池は、その特性上、パワー密度を高くすることが可能であるため、従来の二次電池に準じてある程度のピーク負荷にも対応できる燃料電池として、携帯情報機器等への応用が検討されている。特に、携帯情報機器の場合は、水素を如何にコンパクトに且つ軽量に貯蔵するかがキーである。 Unlike conventional secondary batteries, the fuel cell does not require charging, and can be put into a state where the device can be operated for a long time simply by replenishing the fuel or replacing the fuel cartridge. Among these fuel cells, hydrogen fuel cells that use hydrogen as fuel can increase the power density due to their characteristics, so that they can handle a certain amount of peak load in accordance with conventional secondary batteries. As a battery, application to portable information devices and the like is being studied. In particular, in the case of portable information devices, the key is how to store hydrogen in a compact and lightweight manner.
 米国特許出願公開第2005/0227136号明細書には、水素貯蔵合金で構成されるタンクに水素を充填して使用することが提案されている。しかし、水素吸蔵合金は重量が重く且つサイズも大きくなってしまうので、携帯情報機器には適していない。また、水素吸蔵合金に吸収された水素を使用し終わった場合には、何らかの方法で水素を再度タンクに充填する必要がある。従って、そのためのインフラを整えねばならないという問題がある。 In US Patent Application Publication No. 2005/0227136, it is proposed that a tank made of a hydrogen storage alloy is filled with hydrogen and used. However, hydrogen storage alloys are heavy and large in size, and are not suitable for portable information devices. When the hydrogen absorbed in the hydrogen storage alloy is used, it is necessary to refill the tank with hydrogen by some method. Therefore, there is a problem that infrastructure for that purpose must be prepared.
 水素吸蔵合金に関わるこれらの問題を解決するために、国際公開第02/18267号パンフレットには、アンモニア・ボレインのような水素を多く含む物質を熱分解することによって水素を発生させる水素発生器が提案されている。この方法によれば、水素は固体燃料から発生するので、重く大きい水素吸蔵合金のタンクや、気体の水素を水素吸蔵合金に充填するためのインフラを新たに整える必要はない。 In order to solve these problems related to hydrogen storage alloys, WO 02/18267 discloses a hydrogen generator that generates hydrogen by thermally decomposing a substance containing a large amount of hydrogen such as ammonia and borane. Proposed. According to this method, since hydrogen is generated from the solid fuel, it is not necessary to newly prepare a heavy and large hydrogen storage alloy tank or an infrastructure for filling the hydrogen storage alloy with gaseous hydrogen.
 しかしながら、上記国際出願に記載された水素発生器の物理的な構造は、野外で利用できる運搬可能な発電機等の一般用途には適用できるが、非常に小さいサイズの水素発生器には適用できない。デジタルカメラ、PDA、等の携帯情報機器においては、水素発生器のサイズや形状は現状の1次電池または2次電池と同等のサイズ及び形状(例えば、18650サイズ(直径約18ミリ×高さ約65ミリ))が望まれる。上記水素発生器の構造では、このようなサイズ及び形状にすることは不可能である。 However, the physical structure of the hydrogen generator described in the above international application can be applied to general uses such as a portable generator that can be used outdoors, but cannot be applied to a hydrogen generator of a very small size. . In portable information devices such as digital cameras and PDAs, the size and shape of the hydrogen generator is the same size and shape as the current primary or secondary battery (for example, 18650 size (diameter approximately 18 mm × height approximately 65 mm)) is desired. Such a size and shape is impossible in the structure of the hydrogen generator.
 また、上記国際出願には、上記携帯情報機器用の水素発生器においてアンモニア・ボレインから水素を発生させるためにアンモニア・ボレインの温度を100℃以上に加熱するための小型の具体的な手段が記載されていない。 In addition, the international application describes a small concrete means for heating the temperature of ammonia borane to 100 ° C. or higher in order to generate hydrogen from ammonia borain in the hydrogen generator for portable information devices. It has not been.
 更に、水素発生器を小型にするための水素発生器の具体的な構造、各部品の構成、制御手段等についても記載されていない。 Furthermore, it does not describe the specific structure of the hydrogen generator, the configuration of each part, the control means, etc. for making the hydrogen generator small.
 本発明は、上記の点に鑑みてなされたもので、小型の場合であっても水素を発生する化合物を含む材料から安定的且つ効率的に水素を発生させることができ、単位体積当たりの水素発生量を向上させることが可能な水素発生器を提供することを目的とする。 The present invention has been made in view of the above points, and can generate hydrogen stably and efficiently from a material containing a compound that generates hydrogen even in a small size. It aims at providing the hydrogen generator which can improve generation amount.
 本発明の水素発生器の一態様によれば、
 加熱されることによって水素を発生する化合物を含む材料で構成された複数の燃料ペレットと、
 上記複数の燃料ペレットを格納する耐圧容器と、
 上記燃料ペレットからの水素発生を制御するコントローラと、
 上記耐圧容器内に配置される基板と、
 それぞれ一つの燃料ペレットがその上に配されるように、上記基板上に上記複数の燃料ペレットに対応して設けられ、対応する燃料ペレットを加熱する、複数の発火器と、
 それぞれの上記燃料ペレットを他の燃料ペレットから隔離するための、水素を通さない断熱部材で構成された格子状の枠と、
 を有する水素発生器が提供される。
According to one aspect of the hydrogen generator of the present invention,
A plurality of fuel pellets composed of a material containing a compound that generates hydrogen when heated;
A pressure vessel for storing the plurality of fuel pellets;
A controller for controlling hydrogen generation from the fuel pellets;
A substrate disposed in the pressure vessel;
A plurality of igniters provided corresponding to the plurality of fuel pellets on the substrate and heating the corresponding fuel pellets, such that each one fuel pellet is disposed thereon;
A grid-like frame composed of a heat-insulating member that is impermeable to hydrogen for isolating each of the fuel pellets from other fuel pellets;
A hydrogen generator is provided.
図1は、水素発生器で使用する燃料ペレットの構成を示す図である。FIG. 1 is a diagram showing a configuration of fuel pellets used in a hydrogen generator. 図2は、本発明の第1実施例に係る水素発生器の構成を示す図である。FIG. 2 is a diagram showing the configuration of the hydrogen generator according to the first embodiment of the present invention. 図3は、図2に示した水素発生器の内部構造を示す図である。FIG. 3 is a diagram showing an internal structure of the hydrogen generator shown in FIG. 図4は、第1実施例の変形例として、制御基板を水素発生器の耐圧容器の外に出した場合の水素発生器の構成を示す図である。FIG. 4 is a diagram showing a configuration of the hydrogen generator when the control substrate is taken out of the pressure vessel of the hydrogen generator as a modification of the first embodiment. 図5は、水素発生ユニットの上面図である。FIG. 5 is a top view of the hydrogen generation unit. 図6は、水素発生ユニットの断面図である。FIG. 6 is a cross-sectional view of the hydrogen generation unit. 図7Aは、格子状の断熱部材に対する発火器の水平方向の位置関係を示す図である。FIG. 7A is a diagram showing a horizontal positional relationship of the generator with respect to the lattice-shaped heat insulating member. 図7Bは、格子状の断熱部材に対するヒート・ミックス、アンモニア・ボレイン及びアルミ・フォイルの水平方向の位置関係を示す図である。FIG. 7B is a diagram showing a horizontal positional relationship of heat mix, ammonia borane, and aluminum foil with respect to the lattice-shaped heat insulating member. 図7Cは、格子状の断熱部材に対するカーボン・フィルタの水平方向の位置関係を示す図である。FIG. 7C is a diagram illustrating a horizontal positional relationship of the carbon filter with respect to the lattice-shaped heat insulating member. 図7Dは、格子状の断熱部材に対する蓋の水平方向の位置関係を示す図である。FIG. 7D is a diagram illustrating a horizontal positional relationship of the lid with respect to the lattice-shaped heat insulating member. 図8は、発火器の駆動回路の構成を示す図である。FIG. 8 is a diagram illustrating a configuration of a drive circuit of the igniter. 図9は、発火器への駆動制御信号の接続方法を説明するための模式図である。FIG. 9 is a schematic diagram for explaining a method of connecting a drive control signal to the generator. 図10は、発火器への駆動制御信号の別の接続方法を説明するための模式図である。FIG. 10 is a schematic diagram for explaining another connection method of the drive control signal to the generator. 図11は、デコーダの入力信号と出力信号の対応の一部を示す図である。FIG. 11 is a diagram showing a part of the correspondence between the input signal and the output signal of the decoder. 図12は、制御基板に搭載されているコントローラのブロック構成図である。FIG. 12 is a block configuration diagram of a controller mounted on the control board. 図13は、マイクロコントローラ(CPU)の動作シーケンスのフローチャートを示す図である。FIG. 13 is a flowchart of the operation sequence of the microcontroller (CPU). 図14は、本発明の第2実施例に係る水素発生器の内部構造を示す図である。FIG. 14 is a diagram showing the internal structure of the hydrogen generator according to the second embodiment of the present invention. 図15は、第2実施例に係る水素発生器の変形例の内部構造を示す図である。FIG. 15 is a diagram showing an internal structure of a modification of the hydrogen generator according to the second embodiment. 図16は、本発明の第3実施例に係る水素発生器の上面図である。FIG. 16 is a top view of a hydrogen generator according to a third embodiment of the present invention. 図17は、第3実施例に係る水素発生器の変形例の上面図である。FIG. 17 is a top view of a modification of the hydrogen generator according to the third embodiment.
 以下、本発明を実施するための最良の形態を図面を参照して説明する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
 [第1実施例]
 本発明の第1実施例に係る水素発生器を説明する前に、水素発生の原理を説明する。
[First embodiment]
Before describing the hydrogen generator according to the first embodiment of the present invention, the principle of hydrogen generation will be described.
 図1に示すように、水素発生器で使用する燃料ペレット10は、水素発生化合物であるアンモニア・ボレイン(NHBH)12と、該アンモニア・ボレイン12を加熱するためのヒート・ミックス14と、から構成される。これらアンモニア・ボレイン122とヒート・ミックス14とは、それぞれ適当な圧力をかけることによって所定の形状、ここでは円筒状の形状に固められている。そして、それらアンモニア・ボレイン122とヒート・ミックス14に更に圧力をかけて、一体物となるように形成することで、燃料ペレット10が構成されている。アンモニア・ボレイン12に加える圧力としては、実験的に50MPa~250MPaの値が好ましいことが求められている。 As shown in FIG. 1, a fuel pellet 10 used in a hydrogen generator includes an ammonia borane (NH 3 BH 3 ) 12 that is a hydrogen generating compound, and a heat mix 14 for heating the ammonia borane 12. Is composed of. The ammonia borain 122 and the heat mix 14 are each solidified into a predetermined shape, here, a cylindrical shape by applying an appropriate pressure. Then, the fuel pellet 10 is configured by further applying pressure to the ammonia borane 122 and the heat mix 14 so as to be integrated. The pressure applied to the ammonia / borane 12 is required to be preferably a value of 50 MPa to 250 MPa experimentally.
 ここで、アンモニア・ボレイン12とヒート・ミックス14について説明する。 
 アンモニア・ボレイン12は、質量比で約20%の水素を含み、常温では固体で爆発性が無く安定な水素源であり、熱分解によって水素を発生する。同じ体積であれば、液体水素の2倍の質量の水素を含んでいる。アンモニア・ボレイン12は通常は粉状であるが、必要に応じて圧力を加えることによって硬いペレット状、棒状、円錐状等にプレスすることができる物質である。
Here, the ammonia borain 12 and the heat mix 14 will be described.
Ammonia / borane 12 contains about 20% hydrogen by mass, is a solid hydrogen source that is solid and non-explosive at room temperature, and generates hydrogen by thermal decomposition. If the volume is the same, it contains twice as much hydrogen as liquid hydrogen. Ammonia borane 12 is usually a powder, but is a substance that can be pressed into a hard pellet, rod, cone, or the like by applying pressure as necessary.
 このアンモニア・ボレイン12は、温度を上昇させることにより3段階に熱分解して水素を発生する。即ち、アンモニア・ボレイン12は、熱せられると約100℃で溶けて液体になり、その後に1分子の水素を発生させる。その際の反応式は、下記(1)式の通りであり、これが第1段階の水素発生反応である。 The ammonia borane 12 is thermally decomposed in three stages by raising the temperature to generate hydrogen. That is, when ammonia borane 12 is heated, it melts at about 100 ° C. to become a liquid, and then generates one molecule of hydrogen. The reaction formula in that case is as the following formula (1), and this is the first stage hydrogen generation reaction.
  NHBH → NHBH + H              …(1)
 この反応は発熱反応であり、この反応熱によってアンモニア・ボレイン12自身の温度が上昇して、第2段階の水素発生反応に進む。即ち、上記第1段階の水素発生反応で生成されるNHBHは、更に温度が上昇して約150℃で1分子の水素を発生する。その際の反応式は、下記(2)式の通りであり、これが第2段階の水素発生反応である。
NH 3 BH 3 → NH 2 BH 2 + H 2 (1)
This reaction is an exothermic reaction, and the temperature of the ammonia borane 12 itself rises due to the heat of reaction, and proceeds to the second stage hydrogen generation reaction. That is, the NH 2 BH 2 produced in the first stage hydrogen generation reaction further increases in temperature and generates one molecule of hydrogen at about 150 ° C. The reaction formula in that case is as the following formula (2), and this is the second stage hydrogen generation reaction.
  NHBH → NHBH + H                …(2)
 この反応も発熱反応であり、理論的にはNHBHが第3段階の熱分解を行うことができる温度まで、NHBHの温度を上げるだけの熱を発生する。温度が約480℃を越えると、残ったNHBHは最後の1分子の水素を発生させる。その際の反応式は、下記(3)式の通りであり、これが第3段階の水素発生反応である。
NH 2 BH 2 → NHBH + H 2 (2)
This reaction is also an exothermic reaction and theoretically generates heat sufficient to raise the temperature of NHBH to a temperature at which NHBH can perform the third stage of thermal decomposition. When the temperature exceeds about 480 ° C., the remaining NHBH generates the last molecule of hydrogen. The reaction formula in that case is as the following formula (3), and this is the third stage hydrogen generation reaction.
  NHBH → BN + H                   …(3)
 理論的には、この第3段階の水素発生反応も、熱分解が完全に行われるための十分な熱を発生させる。
NHBH → BN + H 2 (3)
Theoretically, this third stage hydrogen generation reaction also generates sufficient heat for complete pyrolysis.
 このように、アンモニア・ボレイン12は、加熱することにより、その1分子から3分子の水素を発生する。 Thus, the ammonia borane 12 generates three molecules of hydrogen from one molecule when heated.
 一方、上記ヒート・ミックス14は、リチウム・アルミニウム水素化合物(LiAlH)と塩化アンモニウム(NHCl)の混合物である。これは、外部からヒータ等で少量の熱を与えられると自ら発熱する熱源となり、上記アンモニア・ボレイン12を加熱する。また、単に熱源としてだけではなく、下記(4)式のように若干の水素を発生する。 On the other hand, the heat mix 14 is a mixture of lithium aluminum hydride (LiAlH 4 ) and ammonium chloride (NH 4 Cl). This becomes a heat source that generates heat by itself when given a small amount of heat by a heater or the like from the outside, and heats the ammonia borane 12. Further, not only as a heat source, but some hydrogen is generated as in the following formula (4).
  LiAlH + NHCl → LiCl + AlN + 4H …(4)
 なお、上記ヒート・ミックス14としては、このようなLiAlHとNHClの混合物に限らず、外部から少量の熱を与えられた際に上記アンモニア・ボレイン12が熱分解を開始するために必要な熱を自ら発熱する特性を有するものであれば、どのようなものであっても良い。
LiAlH 4 + NH 4 Cl → LiCl + AlN + 4H 2 (4)
The heat mix 14 is not limited to such a mixture of LiAlH 4 and NH 4 Cl, but is necessary for the ammonia borane 12 to start thermal decomposition when a small amount of heat is applied from the outside. Any material may be used as long as it has a characteristic of generating heat by itself.
 このようなアンモニア・ボレイン12とヒート・ミックス14でなる燃料ペレット10は、携帯情報機器用に使用することを考慮すると、直径3mmから10mm、全体の高さが3mmから10mm程度の大きさであることが好ましい。本発明者の実験によれば、直径5.2mm、高さ3.4mm程度のサイズのペレットにおいて、高効率で水素を発生させることができた。この燃料ペレット10では、アンモニア・ボレイン12とヒート・ミックス14の比率は、質量比で4:1から5:1程度に設定することで最も収率の高い水素発生が行われることが実験的に確かめられている。 The fuel pellet 10 composed of such ammonia borane 12 and heat mix 14 has a diameter of 3 mm to 10 mm and an overall height of about 3 mm to 10 mm in consideration of use for portable information equipment. It is preferable. According to the experiments by the present inventors, hydrogen could be generated with high efficiency in pellets having a diameter of about 5.2 mm and a height of about 3.4 mm. In this fuel pellet 10, the ratio of ammonia borain 12 to heat mix 14 is set to a mass ratio of about 4: 1 to 5: 1 so that hydrogen generation with the highest yield is experimentally performed. It has been confirmed.
 次に、上記のような燃料ペレット10を使用する水素発生器を説明する。 
 図2に示すように、本発明の第1実施例に係る水素発生器のケースは、その内部で水素が発生するため耐圧容器16となっており、ステンレス等の十分強度のある部材で構成される。この水素発生器の耐圧容器16の一側面には、水素発生口18が設けられている。この水素発生口18の内側には水素以外の不純物を吸収するカーボン・フィルタ(図示しない)が内蔵されている。また、この水素発生口18には、外部から開け閉めできるストップバルブ(図示しない)が外付けされている。更に、この水素発生口18が設けられた側面には、電気信号を入出力するためのコネクタ20も設けられている。このコネクタ20には、水素発生器の状態を示す信号の出力端子と、動作を制御するための信号の入力端子が配置されている。このコネクタ20は、この水素発生器の外部に位置する図示しない機器に図示しないケーブルによって接続される。
Next, a hydrogen generator using the fuel pellet 10 as described above will be described.
As shown in FIG. 2, the case of the hydrogen generator according to the first embodiment of the present invention is a pressure vessel 16 because hydrogen is generated therein, and is made of a sufficiently strong member such as stainless steel. The A hydrogen generation port 18 is provided on one side surface of the pressure vessel 16 of the hydrogen generator. A carbon filter (not shown) that absorbs impurities other than hydrogen is incorporated inside the hydrogen generation port 18. The hydrogen generation port 18 is externally provided with a stop valve (not shown) that can be opened and closed from the outside. Further, a connector 20 for inputting and outputting electrical signals is also provided on the side surface where the hydrogen generation port 18 is provided. The connector 20 is provided with an output terminal for a signal indicating the state of the hydrogen generator and an input terminal for a signal for controlling the operation. The connector 20 is connected to a device (not shown) located outside the hydrogen generator by a cable (not shown).
 また、水素発生器の耐圧容器16の一面、例えば上面には、破裂板22も設けられている。この破裂板22は、当該破裂板22にかかる圧力が既定の圧力以上になると破れるように構成されている市販の部品である。耐圧容器16の内部圧力が何らかの異常動作によって最大耐圧を超える前に、この破裂板22が破れることによって、該水素発生器が爆発等の危険な状態になるのを防止する安全装置である。なお、この破裂板22は、安全弁PRV(Pressure Relief Valve)のような機械的なバルブを使用しても良い。 Also, a rupturable plate 22 is provided on one surface, for example, the upper surface, of the pressure vessel 16 of the hydrogen generator. The rupturable plate 22 is a commercially available component configured to be broken when the pressure applied to the rupturable plate 22 exceeds a predetermined pressure. This is a safety device that prevents the hydrogen generator from entering a dangerous state such as an explosion by rupturing the rupturable plate 22 before the internal pressure of the pressure vessel 16 exceeds the maximum pressure resistance due to some abnormal operation. The rupturable plate 22 may be a mechanical valve such as a safety valve PRV (Pressure Relief Valve).
 なお、これら水素発生口18、コネクタ20、破裂板22の水素発生器の耐圧容器16への取り付け部分には、気密状態を保つため、Oリング等の漏れを防ぐ部材が併用されている。 In addition, in order to maintain an airtight state, a member for preventing leakage of an O-ring or the like is used in combination on the hydrogen generator 18, the connector 20, and the rupture plate 22 attached to the pressure vessel 16 of the hydrogen generator.
 次に、このような水素発生器の内部構造を、図3を参照して説明する。 
 水素発生器の耐圧容器16の内部には、当該水素発生器の動作を制御する制御回路が搭載された制御基板24が配されている。この制御基板24は、ガラスエポキシやフェノール樹脂等の耐熱性と絶縁性を有するもので構成される。この制御基板24は、一端側で上記コネクタ20に接続されている。また、この制御基板24の他端側には、コネクタ26が設けられている。
Next, the internal structure of such a hydrogen generator will be described with reference to FIG.
A control board 24 on which a control circuit for controlling the operation of the hydrogen generator is mounted is disposed inside the pressure vessel 16 of the hydrogen generator. The control board 24 is configured by heat resistance and insulation such as glass epoxy and phenol resin. The control board 24 is connected to the connector 20 on one end side. A connector 26 is provided on the other end side of the control board 24.
 上記コネクタ26には、基板30Aに設けられたコネクタ28Aが接続されることができる。この基板30A上には、格子状の断熱部材32Aが配されている。また、基板30Aの上記コネクタ28Aとは反対面側に、更にコネクタ34Aが設けられている。このコネクタ34Aには、基板30Bに設けられたコネクタ28Bが接続されることができる。この基板30B上には、格子状の断熱部材32Bが配されている。また、上記コネクタ28Bとは反対面側に更にコネクタ34Bが設けられている。ここで、基板30A,コネクタ28A,断熱部材32A,コネクタ34Aで構成されるユニット、及び基板30B,コネクタ28B,断熱部材32B,コネクタ34Bで構成されるユニットは、水素発生ユニットであり、同一のものである。これら2つの水素発生ユニットがコネクタ28Bとコネクタ34Aで接続され、更にそれらがコネクタ28Aとコネクタ26によって制御基板24に接続されている。なお、コネクタ34Bは、この実施例では、どこにも接続されないダミーとなる。 A connector 28A provided on the board 30A can be connected to the connector 26. A lattice-like heat insulating member 32A is arranged on the substrate 30A. Further, a connector 34A is further provided on the surface of the board 30A opposite to the connector 28A. A connector 28B provided on the board 30B can be connected to the connector 34A. On the substrate 30B, a lattice-like heat insulating member 32B is arranged. Further, a connector 34B is further provided on the side opposite to the connector 28B. Here, the unit composed of the substrate 30A, the connector 28A, the heat insulating member 32A, and the connector 34A, and the unit composed of the substrate 30B, the connector 28B, the heat insulating member 32B, and the connector 34B are hydrogen generation units and are the same. It is. These two hydrogen generation units are connected by a connector 28B and a connector 34A, and further they are connected to the control board 24 by a connector 28A and a connector 26. In this embodiment, the connector 34B is a dummy that is not connected anywhere.
 図4に示すように、制御基板24を水素発生器の耐圧容器16の外に配置するようにしても良い。即ち、コネクタ28Aが耐圧容器16の下側から外に出て、そのコネクタ28Aに制御基板24のコネクタ26が接続する。このような構成にすると、制御基板24は温度の上昇や圧力の変化等の影響をほとんど受けないため、複数回の使用にも耐えるので経済的である。 As shown in FIG. 4, the control substrate 24 may be disposed outside the pressure vessel 16 of the hydrogen generator. That is, the connector 28A comes out from the lower side of the pressure vessel 16 and the connector 26 of the control board 24 is connected to the connector 28A. Such a configuration is economical because the control board 24 is hardly affected by a rise in temperature, a change in pressure, etc., and can withstand multiple uses.
 なお、図3及び図4は、水素発生ユニットを2段に配置した例を示したが、段数はそれに限定されないことは勿論である。また、図の奥行き方向に複数の水素発生ユニットを配置することも可能である。 3 and 4 show an example in which the hydrogen generation units are arranged in two stages, but the number of stages is of course not limited thereto. It is also possible to arrange a plurality of hydrogen generation units in the depth direction of the figure.
 次に、上記水素発生ユニットについて詳細に説明する。なお、上記2つの水素発生ユニットは同一構造であるため、以下の説明では、特に必要な場合を除き、基板30A,30Bを基板30、コネクタ28A,28Bをコネクタ28、断熱部材32A,32Bを断熱部材32、コネクタ34A,34Bをコネクタ34として説明する。 Next, the hydrogen generation unit will be described in detail. Since the two hydrogen generation units have the same structure, in the following description, unless specifically required, the substrates 30A and 30B are the substrate 30, the connectors 28A and 28B are the connectors 28, and the heat insulating members 32A and 32B are thermally insulated. The member 32 and the connectors 34A and 34B will be described as the connector 34.
 即ち、水素発生ユニットにおいては、図5に示すように、格子状の断熱部材32が基板30の上に接着されている。それぞれの格子内には、図1に示したような燃料ペレット10が1個ずつ格納される。この格子状の断熱部材32は、その材料にもよるが、約1mm程度の厚さを有することで、断熱機能と強度を持たせている。また、この格子の内のりは、中に格納される円筒形の燃料ペレット10の直径よりも若干大きめの寸法になっている。例えば、直径5.2mmの燃料ペレット10の場合には、0.1mmの余裕を見込んで格子の内のりは5.4mm角にする。このように適当な余裕を持たせることにより、格子内に燃料ペレット10を格納する際に傾いたり、つかえたり、等の不具合を防止することができる。また、逆に格子の内のりが大きすぎて。格子内で燃料ペレット10が動いて遊んでしまい、発火器から離れて正常な水素発生が行われなくなることを防止できる。格子状の断熱部材32は、基板30に対しては隙間がないように、例えばコーキング機能を持った接着剤で接着されている。なお、図5の例では、横7個縦5列で合計35個の燃料ペレット10が格納できるものを示しているが、個数はこれに限定されないことは勿論である。 That is, in the hydrogen generation unit, a lattice-like heat insulating member 32 is bonded onto the substrate 30 as shown in FIG. In each lattice, one fuel pellet 10 as shown in FIG. 1 is stored. Although this lattice-shaped heat insulating member 32 has a thickness of about 1 mm, depending on the material, it has a heat insulating function and strength. Further, the inner diameter of the lattice has a slightly larger dimension than the diameter of the cylindrical fuel pellet 10 stored therein. For example, in the case of the fuel pellet 10 having a diameter of 5.2 mm, the inner diameter of the lattice is set to 5.4 mm square with an allowance of 0.1 mm. By providing an appropriate margin in this way, it is possible to prevent problems such as tilting and holding when the fuel pellets 10 are stored in the lattice. On the contrary, the inside of the lattice is too large. It can be prevented that the fuel pellets 10 move and play in the lattice, and normal hydrogen generation is not performed away from the igniter. The lattice-like heat insulating member 32 is bonded to the substrate 30 with, for example, an adhesive having a caulking function so that there is no gap. In the example of FIG. 5, the fuel pellets 10 that can store a total of 35 fuel pellets 10 in 7 rows and 5 columns are shown, but the number is not limited to this.
 格子状の断熱部材32は、水素等の気体を通さない断熱部材で構成されており、1つの燃料ペレット10から水素を発生させる場合に発生する熱をその燃料ペレット10周辺から逃げないようにする機能を持っている。この機能により、水素発生に必要な熱をその燃料ペレット10の周辺から散逸させず、且つ、周囲の燃料ペレット10には伝わらないようにする、即ち、保熱・断熱機能を持つ。この保熱・断熱機能は、燃料ペレット10が小さくなればなるほど重要であり、より熱伝導率の小さい部材で、且つ耐熱温度の高い部材を使用する必要が出て来る。なお、格子状の断熱部材32の材料としては、150℃前後の高温にも耐える必要があるので、エポキシ樹脂やポリカーボネート樹脂などが使用可能である。また、発熱時間が短い場合等の条件によっては、木材等の部材を使用することも可能である。 The lattice-shaped heat insulating member 32 is formed of a heat insulating member that does not allow gas such as hydrogen to pass through, and prevents heat generated when hydrogen is generated from one fuel pellet 10 from the periphery of the fuel pellet 10. Has function. With this function, heat necessary for hydrogen generation is not dissipated from the periphery of the fuel pellet 10 and is not transmitted to the surrounding fuel pellet 10, that is, has a heat retaining and heat insulating function. This heat retention / heat insulation function becomes more important as the fuel pellet 10 becomes smaller, and it becomes necessary to use a member having a lower thermal conductivity and a higher heat-resistant temperature. In addition, since it is necessary to endure the high temperature of about 150 degreeC as a material of the grid | lattice-like heat insulation member 32, an epoxy resin, a polycarbonate resin, etc. can be used. Further, depending on conditions such as when the heat generation time is short, a member such as wood can be used.
 この格子状の断熱部材32の製作方法は、樹脂材料の場合に限るが、金型による一体成型によって製作する方法と、板状の部材に切り込みを入れた部材を複数組み合わせる方法があるが、いずれの方法でも良い。ただし、隣接する格子に対しては気密状態が保たれていなければならない。 The method of manufacturing the lattice-shaped heat insulating member 32 is limited to the case of a resin material, but there are a method of manufacturing by integral molding using a mold and a method of combining a plurality of members obtained by cutting a plate-shaped member. The method is also acceptable. However, an airtight state must be maintained between adjacent lattices.
 この格子状の断熱部材32の表面に、厚さ0.01~0.02mmの薄いアルミ・フォイルを貼っても良い。アルミ・フォイルを貼ることにより、格子内にある燃料ペレット10から発生する熱がアルミ・フォイルで反射して燃料ペレット10に戻り、燃料ペレット10の温度を更に上昇させる効果がある。燃料ペレット10の大きさが小さい場合には、燃料ペレット10から発生する熱をできるだけ逃がさないようにする必要があるため、アルミ・フォイルを貼ることはより有効になる。 A thin aluminum foil having a thickness of 0.01 to 0.02 mm may be pasted on the surface of the lattice-like heat insulating member 32. By sticking the aluminum foil, the heat generated from the fuel pellets 10 in the lattice is reflected by the aluminum foil and returned to the fuel pellets 10, thereby further increasing the temperature of the fuel pellets 10. When the size of the fuel pellet 10 is small, it is necessary to prevent the heat generated from the fuel pellet 10 from escaping as much as possible. Therefore, it is more effective to apply the aluminum foil.
 この格子状の断熱部材32は、円柱状の燃料ペレット10の周囲に接する形になっており、角の部分には格子状の断熱部材32と燃料ペレット10の間の隙間ができる。この隙間は、燃料ペレット10から発生する水素のための空間としての機能も有する。即ち、水素発生器のケースは密閉された耐圧容器16であり、内部で水素が発生すれば内部圧力が上昇する。そのため、耐圧容器16内部に空間が全くないと圧力上昇が急激になり高い圧力まで耐える耐圧設計をする必要がある。これに対して、耐圧容器16の内部のどこかに空間があれば、圧力上昇を緩和することができる。勿論、上記隙間を設けないような格子を設計し、圧力緩和用の空間を水素発生器内部のどこかに設ける方法もある。しかし、そのような格子の形状が複雑である、また、水素発生器内部の空間のバランスが悪い、等の理由で好ましくない。図5の実施例では、上記隙間を水素発生器の耐圧容器16内部に均等に設けることにより、全体のバランスを向上させ、且つ、耐圧設計を低い圧力に抑えることができる。従って、設計の自由度の広がり、低コスト化・安全性向上を達成することができ、好都合である。 The lattice-like heat insulating member 32 is in contact with the periphery of the cylindrical fuel pellet 10, and a gap between the lattice-like heat insulating member 32 and the fuel pellet 10 is formed at a corner portion. This gap also has a function as a space for hydrogen generated from the fuel pellet 10. That is, the case of the hydrogen generator is a sealed pressure vessel 16, and if hydrogen is generated inside, the internal pressure rises. For this reason, if there is no space inside the pressure vessel 16, it is necessary to design a pressure resistant to withstand a high pressure because the pressure rises rapidly. On the other hand, if there is a space somewhere inside the pressure vessel 16, the pressure rise can be reduced. Of course, there is also a method of designing a grid that does not provide the gap and providing a pressure relief space somewhere inside the hydrogen generator. However, it is not preferable because the shape of such a lattice is complicated and the balance of the space inside the hydrogen generator is poor. In the embodiment of FIG. 5, by providing the gaps uniformly within the pressure vessel 16 of the hydrogen generator, the overall balance can be improved and the pressure resistance design can be suppressed to a low pressure. Therefore, it is advantageous that the degree of freedom of design can be widened, cost reduction and safety improvement can be achieved.
 次に、水素発生ユニット上の格子内に格納される燃料ペレット10の周囲の状態を説明する。 Next, the state around the fuel pellets 10 stored in the lattice on the hydrogen generation unit will be described.
 また、水素発生ユニットにおいては、図6に示すように、基板30上には、雲母の絶縁シート36が配され、その上に、各燃料ペレット10に対応して発火器38が設けられている。この発火器38は、制御基板24に搭載された制御回路(図示せず)からの制御信号により電流を流すことによって発熱する。これによって、ヒート・ミックス14を反応させて発熱させ、その熱でアンモニア・ボレイン12を加熱させ、水素を発生させる。前述したように、ヒート・ミックス14とアンモニア・ボレイン12で円筒形の燃料ペレット10を構成している。 Further, in the hydrogen generation unit, as shown in FIG. 6, a mica insulating sheet 36 is disposed on the substrate 30, and an igniter 38 is provided on the substrate 30 corresponding to each fuel pellet 10. . The igniter 38 generates heat by flowing a current in accordance with a control signal from a control circuit (not shown) mounted on the control board 24. As a result, the heat mix 14 is reacted to generate heat, and the ammonia borane 12 is heated by the heat to generate hydrogen. As described above, the heat mix 14 and the ammonia borane 12 constitute the cylindrical fuel pellet 10.
 各燃料ペレット10の上には、円形状の厚さ0.01~0.02mmで、燃料ペレット10の直径と同じ直径を有するアルミ・フォイル40が載置される。このアルミ・フォイル40は、発火器38によって発火されたヒート・ミックス14から発生した熱や、その熱によってアンモニア・ボレイン12から発生した水素発生反応から発生する熱を反射する。このアルミ・フォイル40によって反射することにより、熱が、水素発生を指示された燃料ペレット10周辺にとどまることを助ける機能を有する。 On each fuel pellet 10, an aluminum foil 40 having a circular thickness of 0.01 to 0.02 mm and the same diameter as the diameter of the fuel pellet 10 is placed. The aluminum foil 40 reflects heat generated from the heat mix 14 ignited by the igniter 38 and heat generated from the hydrogen generation reaction generated from the ammonia borane 12 due to the heat. Reflection by the aluminum foil 40 has a function of helping heat stay around the fuel pellet 10 instructed to generate hydrogen.
 上記アルミ・フォイル40上には、格子の内のり寸法にほぼ合致した大きさの正方形のカーボン・フィルタ42が載置される。このカーボン・フィルタ42は、水素以外の不純物を吸収する機能を有する。そして、その上に、円形状の断熱部材の蓋44が配される。この蓋44は、燃料ペレット10の直径より若干大きめで、且つ格子開口に隙間なく入り込む大きさである。この蓋44によって、この格子内部の燃料ペレット10やカーボン・フィルタ42等が水素発生時の反応によって動くのを防止している。この断熱部材の蓋44は、上記格子状の断熱部材32と同様の材料、即ち、エポキシ樹脂やポリカーボネート樹脂、木材等が使用可能である。 On the aluminum foil 40, a square carbon filter 42 having a size substantially matching the inner dimension of the lattice is placed. The carbon filter 42 has a function of absorbing impurities other than hydrogen. And the cover 44 of a circular heat insulation member is arranged on it. The lid 44 is slightly larger than the diameter of the fuel pellet 10 and is large enough to enter the lattice opening without any gap. The lid 44 prevents the fuel pellets 10, the carbon filter 42, and the like inside the lattice from moving due to a reaction when hydrogen is generated. The lid 44 of the heat insulating member can be made of the same material as the lattice-shaped heat insulating member 32, that is, epoxy resin, polycarbonate resin, wood, or the like.
 図6からわかるように、正方形の格子の中に円筒形の燃料ペレット10が格納され、その上に円形のアルミ・フォイル40、正方形のカーボン・フィルタ42、円形の断熱部材の蓋44が順に積層されている。ここで、カーボン・フィルタ42のみが正方形である理由は下記のとおりである。 As can be seen from FIG. 6, a cylindrical fuel pellet 10 is stored in a square lattice, and a circular aluminum foil 40, a square carbon filter 42, and a circular insulating member lid 44 are laminated in that order. Has been. Here, the reason why only the carbon filter 42 is square is as follows.
 正方形の格子と円筒形の燃料ペレット10との間には隙間がある。もし、カーボン・フィルタ42が円形であると、その隙間が格子の上方に露出する。この状態で水素を発生させた場合に、もし不純物が発生すると、不純物がそのまま格子の外に出てしまう。この不純物を水素発生口18に取り付けた不純物吸収用フィルタで吸収しきれない場合、水素燃料電池に不純物が流出してしまう。水素燃料電池では、水素は高い純度が要求され、もし水素純度が低いと水素燃料電池の破壊につながる。それを防ぐために、それぞれの燃料ペレット10の段階で不純物が流出しないようにしなければならない。そのために、カーボン・フィルタ42は、格子の内のりに合わせた正方形の形状である必要がある。 There is a gap between the square lattice and the cylindrical fuel pellet 10. If the carbon filter 42 is circular, the gap is exposed above the grid. When hydrogen is generated in this state, if an impurity is generated, the impurity goes out of the lattice as it is. If the impurities cannot be absorbed by the impurity absorption filter attached to the hydrogen generation port 18, the impurities will flow out to the hydrogen fuel cell. In a hydrogen fuel cell, high purity is required for hydrogen. If the hydrogen purity is low, the hydrogen fuel cell is destroyed. In order to prevent this, it is necessary to prevent impurities from flowing out at the stage of each fuel pellet 10. Therefore, the carbon filter 42 needs to have a square shape that matches the inner radius of the lattice.
 また、もう一つの理由として、アルミ・フォイル40と蓋44を同様に正方形にして実験を行ったところ、問題が発生したからである。即ち、格子の内部に反応時の熱がこもり、その熱が周囲の別の燃料ペレット10にまで伝わってしまい、水素発生を指示しなかった燃料ペレット10まで反応を開始してしまった。このような誤反応を防止するために、反応時の熱がある程度逃げる構造にしておく必要がある。このような理由により、アルミ・フォイル40、カーボン・フィルタ42、蓋44の形状が定められている。 Another reason is that when an experiment was conducted with the aluminum foil 40 and the lid 44 similarly squared, a problem occurred. That is, the heat during the reaction is accumulated inside the lattice, and the heat is transmitted to the other fuel pellets 10 around it, and the reaction is started up to the fuel pellets 10 that did not instruct the generation of hydrogen. In order to prevent such a false reaction, it is necessary to have a structure in which heat during the reaction escapes to some extent. For these reasons, the shapes of the aluminum foil 40, the carbon filter 42, and the lid 44 are determined.
 図7A乃至図7Dは、格子状の断熱部材32に対する発火器38、ヒート・ミックス14、アンモニア・ボレイン12、アルミ・フォイル40、カーボン・フィルタ42、蓋44の水平方向の位置関係を示す図である。 FIGS. 7A to 7D are views showing the horizontal positional relationship of the igniter 38, the heat mix 14, the ammonia borane 12, the aluminum foil 40, the carbon filter 42, and the lid 44 with respect to the lattice-like heat insulating member 32. FIG. is there.
 図7Aは、発火器38が後述するような表面実装型の抵抗器の場合で、外形が正方形の場合を示している。同図は、発火器38の中心点が格子状の断熱部材32が形成する格子状の平面の中心点とほぼ一致していることを示している。抵抗器の外形が長方形の場合にも同様に、その中心点が格子状の断熱部材32が形成する格子状の平面の中心点とほぼ一致する位置に配置する。 FIG. 7A shows a case where the generator 38 is a surface mount type resistor as described later, and the outer shape is a square. The figure shows that the center point of the generator 38 substantially coincides with the center point of the grid-like plane formed by the grid-like heat insulating member 32. Similarly, when the outer shape of the resistor is rectangular, the center point is arranged at a position that substantially coincides with the center point of the lattice-shaped plane formed by the lattice-shaped heat insulating member 32.
 図7Bは、円筒形のヒート・ミックス14とアンモニア・ボレイン12とアルミ・フォイル40の中心点が、格子状の断熱部材32が形成する格子開口部の中心点とほぼ一致していることを示している。また、同図は、格子開口部の一辺の長さがヒート・ミックス14,アンモニア・ボレイン12,アルミ・フォイル40の部材より若干大きく、隙間があることを示している。 FIG. 7B shows that the center points of the cylindrical heat mix 14, the ammonia borane 12, and the aluminum foil 40 substantially coincide with the center points of the lattice openings formed by the lattice-shaped heat insulating members 32. ing. The figure also shows that the length of one side of the lattice opening is slightly larger than the members of the heat mix 14, the ammonia borane 12, and the aluminum foil 40, and there is a gap.
 図7Cは、カーボン・フィルタ42が格子開口と同じ大きさであり、必然的にその中心点は一致することを示している。 FIG. 7C shows that the carbon filter 42 is the same size as the lattice aperture, and that its center points necessarily coincide.
 図7Dは、蓋44の直径が格子開口部の一辺とほぼ同じであり、ヒート・ミックス14,アンモニア・ボレイン12,アルミ・フォイル40とは異なり格子開口部の一辺との間には隙間がないことを示している。 7D, the diameter of the lid 44 is almost the same as one side of the lattice opening, and unlike the heat mix 14, the ammonia borane 12, and the aluminum foil 40, there is no gap between one side of the lattice opening. It is shown that.
 このように、燃料ペレット10と発火器38の水平方向の位置関係として、それぞれの中心点を略一致させるように格子状の断熱部材32で規制している。このようにすることで、発火器38から発生する熱が燃料ペレット10下部のヒート・ミックス14に的確に伝達され、その結果、ヒート・ミックス14がアンモニア・ボレイン12を十分に加熱し、アンモニア・ボレイン12から水素を最大限に発生させることが可能となる。 As described above, the horizontal positional relationship between the fuel pellet 10 and the igniter 38 is regulated by the lattice-shaped heat insulating member 32 so that the respective center points are substantially coincident with each other. In this way, the heat generated from the igniter 38 is accurately transmitted to the heat mix 14 below the fuel pellet 10. As a result, the heat mix 14 sufficiently heats the ammonia borane 12, Hydrogen can be generated from the borane 12 to the maximum extent.
 次に、上記発火器38について説明する。 
 発火器38は、基板30上の各格子に対応する位置に配置されており、その上に各燃料ペレット10のヒート・ミックス14が接するように位置決めされる。前述したように、発火器38の中心と燃料ペレット10の中心が略一致するように位置決めされる。発火器38は表面実装型の抵抗器である。
Next, the ignition device 38 will be described.
The igniter 38 is disposed at a position corresponding to each grid on the substrate 30, and is positioned so that the heat mix 14 of each fuel pellet 10 is in contact therewith. As described above, positioning is performed so that the center of the igniter 38 and the center of the fuel pellet 10 substantially coincide. The igniter 38 is a surface mount type resistor.
 図8に示すように、発火器38を構成する表面実装型の抵抗器46は、一端が駆動用FET48の電流経路を介して駆動回路の電源電圧であるDC+12Vに接続され、他端がGNDに接続されている。駆動用FET48の制御端子には、HighレベルとLowレベルの電圧値を示すディジタル信号である駆動制御信号50が制御基板24に搭載された制御回路(図示せず)から印加される。駆動用FET48は、この駆動制御信号50がHighレベルになるとONし、LowレベルになるとOFF状態となる。 As shown in FIG. 8, the surface-mounted resistor 46 constituting the igniter 38 has one end connected to DC + 12V, which is the power supply voltage of the drive circuit, via the current path of the drive FET 48, and the other end connected to GND. It is connected. A drive control signal 50 which is a digital signal indicating a voltage value of High level and Low level is applied to a control terminal of the drive FET 48 from a control circuit (not shown) mounted on the control board 24. The drive FET 48 is turned on when the drive control signal 50 is at a high level, and is turned off when the drive control signal 50 is at a low level.
 従って、発火させない状態では、駆動制御信号50はLowレベルで、駆動用FET48はOFFの状態であり、抵抗器46には電流は流れていない。次に、駆動制御信号50がHighレベルになって駆動用FET48がONすると、抵抗器46には電流が流れる。抵抗器46が例えば4Ωとすると、電源電圧が+12Vであるため、FETの電圧降下約0.6Vを考慮しても約2.8Aの電流が流れる。よって、発火器38の抵抗器46で消費される電力は、4*2.8*2.8=約31Wとなる。この31Wの電力が、表面実装用の抵抗器46で消費されるため、その温度が急激に上昇してヒート・ミックス14を発熱することが可能となる。 Therefore, in a state where no ignition is performed, the drive control signal 50 is at a low level, the drive FET 48 is in an OFF state, and no current flows through the resistor 46. Next, when the drive control signal 50 becomes high level and the drive FET 48 is turned on, a current flows through the resistor 46. If the resistor 46 is 4Ω, for example, since the power supply voltage is + 12V, a current of about 2.8A flows even if the voltage drop of the FET is about 0.6V. Therefore, the power consumed by the resistor 46 of the igniter 38 is 4 * 2.8 * 2.8 = about 31 W. Since this 31 W of electric power is consumed by the surface mount resistor 46, the temperature rapidly rises and the heat mix 14 can be heated.
 なお、この発火器38は、抵抗器46として、表面実装用の抵抗器を用いたが、印刷技術を用いて抵抗器を基板上に直接印刷しても同様の効果を得ることがでる。その場合は、抵抗器46の厚さを薄くすることができ、且つ、表面実装用の抵抗器を半田付け等の手段で基板に実装する手間が省け、結果として回路の信頼性を高めることができる。従って、水素発生器をより小型にするためには、より好適である。 In addition, although this generator 38 used the resistor for surface mounting as the resistor 46, the same effect can be acquired even if it prints directly on a board | substrate using a printing technique. In that case, the thickness of the resistor 46 can be reduced, and the trouble of mounting the surface mounting resistor on the substrate by means such as soldering can be saved, resulting in an increase in circuit reliability. it can. Therefore, it is more preferable to make the hydrogen generator smaller.
 上記に説明した発火器38は、本実施例では1つの水素発生ユニットにおいては、図5に示したように横7個縦5列で合計35個必要となる。そのレイアウトとしては、表面実装用の抵抗器46が基板30の上面(燃料ペレット10の搭載面と同じ面)に実装され、駆動用の駆動用FET48が基板30の下面に実装され、これらの部品とコネクタ34を接続する配線パターンが基板30の上面と下面の両方を使用して配置される。 In the present embodiment, a total of 35 ignition units 38 as described above are required in a single hydrogen generation unit as shown in FIG. As the layout, a surface mounting resistor 46 is mounted on the upper surface of the substrate 30 (the same surface as the mounting surface of the fuel pellet 10), and a driving FET 48 for driving is mounted on the lower surface of the substrate 30. And a wiring pattern for connecting the connector 34 is arranged using both the upper surface and the lower surface of the substrate 30.
 この場合、図9の模式図に示すように、基板30上に配置された35個の発火器38に、コネクタ34を介して35本の駆動制御信号50が印加される。この接続方法では、それぞれの基板に対して独立の駆動制御信号線が必要になる。即ち、基板30が1枚の場合は35本の駆動制御信号線で良いが、基板30が5枚ある場合には、35×5=175本の駆動制御信号線が必要となる。これは、これら多数の駆動制御信号線がコネクタ34を経由するので、コネクタ34のピン数が増やす要因となる。 In this case, as shown in the schematic diagram of FIG. 9, 35 drive control signals 50 are applied via the connector 34 to the 35 igniters 38 arranged on the substrate 30. This connection method requires an independent drive control signal line for each substrate. That is, when there is one substrate 30, 35 drive control signal lines are sufficient, but when there are five substrates 30, 35 × 5 = 175 drive control signal lines are required. This is a factor that increases the number of pins of the connector 34 because these many drive control signal lines pass through the connector 34.
 そこで、図10に示すような接続方法としても良い。ここで、基板30、コネクタ34及び発火器38は、図9の構成と同様である。この接続方法では、各発火器38への駆動制御信号50は、6入力64出力のデコーダ52の出力端子から印加されている。このデコーダ52の入力端子には、制御基板24からコネクタ34を介して、6ビットデジタル信号54が入力されると共に、この基板30を動作可能にするイネーブル信号56が入力される。ここで、6ビットデジタル信号54は、どの発火器38をONにするかを決定する信号である。入力信号が6ビットであるので、最大2の6乗、即ち64個の発火器38に対して発火を指示する事ができる。コネクタ34を経由してデコーダ52には6ビットデジタル信号54とイネーブル信号56が入力される。デコーダ52は、イネーブル信号56がHighレベル、即ち「1」の時のみ、その動作が有効になる。 Therefore, a connection method as shown in FIG. 10 may be used. Here, the board | substrate 30, the connector 34, and the ignition device 38 are the same as that of the structure of FIG. In this connection method, the drive control signal 50 to each of the igniters 38 is applied from the output terminal of the decoder 52 with 6 inputs and 64 outputs. A 6-bit digital signal 54 is input to the input terminal of the decoder 52 from the control board 24 via the connector 34, and an enable signal 56 that enables the board 30 to operate. Here, the 6-bit digital signal 54 is a signal for determining which of the igniters 38 is turned on. Since the input signal is 6 bits, firing can be instructed to a maximum of 2 to the sixth power, that is, 64 of the 38 igniters. A 6-bit digital signal 54 and an enable signal 56 are input to the decoder 52 via the connector 34. The decoder 52 is activated only when the enable signal 56 is at a high level, that is, “1”.
 例えば、図11に示すような、デコーダ52の入力信号と出力信号の対応とすることができる。同図は、入力信号の64種類のパターンに一義的に対応して、64本の出力信号のうちのいずれか1本が「1」、即ちHighレベルになることを示している。このHighレベルになった信号を駆動制御信号50として発火器38に入力すれば良い。基板30には、駆動用信号としては6本のみで良く、且つ、それぞれの基板30で共通に使用できるので、基板枚数が増えても駆動用信号の本数は増えない。ただし、それぞれの基板30を有効にするイネーブル信号56がそれぞれの基板30ごとに1本ずつ必要になる。しかしながら、この方法の場合、必要な信号線の本数は、基板30が1枚の場合は6+1=7本、基板30が5枚の場合でも6+5*1=11本と大幅に少なくすることができる。 For example, as shown in FIG. 11, the correspondence between the input signal and the output signal of the decoder 52 can be made. This figure shows that any one of the 64 output signals is “1”, that is, a high level, uniquely corresponding to the 64 types of patterns of the input signal. This high level signal may be input to the igniter 38 as the drive control signal 50. Since only six driving signals are required for the substrate 30 and can be used in common by the respective substrates 30, the number of driving signals does not increase even when the number of substrates increases. However, one enable signal 56 for enabling each substrate 30 is required for each substrate 30. However, in the case of this method, the number of necessary signal lines can be greatly reduced to 6 + 1 = 7 when the number of the substrates 30 is one and 6 + 5 * 1 = 11 even when the number of the substrates 30 is five. .
 次に、水素発生器の動作を説明する。ここで、図示はしないが、水素発生口18の先には水素燃料電池が接続され、外付けのストップ・バルブは開かれているものとする。 Next, the operation of the hydrogen generator will be described. Here, although not shown, it is assumed that a hydrogen fuel cell is connected to the tip of the hydrogen generating port 18 and an external stop valve is opened.
 制御基板24に搭載された不図示のコントローラが1個の発火器38を選択して所定の電流を一定時間流す。これにより、発火器38内の抵抗器46が発熱してヒート・ミックス14が加熱され、その熱によってアンモニア・ボレイン12が加熱されて水素が発生する。この時、少量ではあるが、ヒート・ミックス14からも水素が発生する。発生した水素は、水素発生口18の入口に内蔵された不図示カーボン・フィルタを通って、水素発生口18から放出される。 A controller (not shown) mounted on the control board 24 selects one igniter 38 and allows a predetermined current to flow for a certain period of time. As a result, the resistor 46 in the igniter 38 generates heat to heat the heat mix 14, and the heat heats the ammonia borane 12 to generate hydrogen. At this time, a small amount of hydrogen is also generated from the heat mix 14. The generated hydrogen is discharged from the hydrogen generation port 18 through a carbon filter (not shown) built in the inlet of the hydrogen generation port 18.
 本実施例における水素発生の動作シーケンスは以下のとおりである。 
 制御基板24に搭載されているコントローラ58は、図12に示すように、マイクロコントローラ60、不揮発メモリ62、発火器セレクタ64、2次電池66、及び充電回路68を備える。また、このコントローラ58には、同じく制御基板24に搭載された又は水素発生器内の任意の場所に取り付けられた、圧力センサ70が接続されている。
The operation sequence of hydrogen generation in this example is as follows.
As shown in FIG. 12, the controller 58 mounted on the control board 24 includes a microcontroller 60, a nonvolatile memory 62, a igniter selector 64, a secondary battery 66, and a charging circuit 68. The controller 58 is connected to a pressure sensor 70 that is also mounted on the control board 24 or attached to an arbitrary location in the hydrogen generator.
 マイクロコントローラ60は、本水素発生器全体の動作を制御する制御部であり、CPU、メモリ、入出力ポート等の機能を一体的に有するワンチップマイコンによって構成される。不揮発メモリ62は、燃料ペレット10の使用状態を記録するものであり、EEPROMやフラッシュメモリのように電気的に書き換え可能なメモリである。発火器セレクタ64は、発火させる発火器38を選択するための信号を生成するものである。2次電池66は、コントローラ58に電源を供給するものであり、リチウムイオン電池やニッケル水素電池が用いられる。充電回路68は、本水素発生器が接続される水素燃料電池から供給される電力によって上記2次電池66を充電する。圧力センサ70は、水素発生器の耐圧容器16内部の圧力を測定するものである。発火器セレクタ64によって、前述したような駆動制御信号50(図10の場合はイネーブル信号56も)を生成する。 The microcontroller 60 is a control unit that controls the operation of the entire hydrogen generator, and is configured by a one-chip microcomputer that integrally has functions such as a CPU, a memory, and an input / output port. The non-volatile memory 62 records the usage state of the fuel pellet 10, and is an electrically rewritable memory such as an EEPROM or a flash memory. The igniter selector 64 generates a signal for selecting the igniter 38 to be ignited. The secondary battery 66 supplies power to the controller 58, and a lithium ion battery or a nickel metal hydride battery is used. The charging circuit 68 charges the secondary battery 66 with electric power supplied from a hydrogen fuel cell to which the present hydrogen generator is connected. The pressure sensor 70 measures the pressure inside the pressure vessel 16 of the hydrogen generator. The drive selector signal 64 (also the enable signal 56 in the case of FIG. 10) is generated by the fire selector 64.
 図12において、一点鎖線で囲まれた部分が2次電池66によって電源を供給される電子回路であり、破線で囲まれた部分がコントローラ58である。 In FIG. 12, the portion surrounded by the alternate long and short dash line is an electronic circuit supplied with power by the secondary battery 66, and the portion surrounded by the broken line is the controller 58.
 上記不揮発メモリ62は、自由にリード・ライトすることができるように構成されており、それぞれの燃料ペレット10の使用状態を1対1に対応するメモリアドレスに記録するように割り当てられている。従って、不揮発メモリ62の1つのアドレスを指定することにより、そのアドレスに対応する燃料ペレット10の使用状態を設定すること、及び使用状態をチェックすることが可能となる。不揮発メモリ62の使用状態を示す例としては、メモリの値が16進数で「FFH」の場合は燃料ペレット10が未使用、「80H」の場合は燃料ペレット10が使用済み、「00H」の場合は燃料ペレット10が未装着、を示す等である。未使用の燃料ペレット10を探す場合には、不揮発メモリ62の内容をスキャンし、「FFH」であるものを探せば良い。燃料ペレット10の状態を記録するメモリとして不揮発メモリを使用したことにより、燃料ペレット10をすべて使い切らない状態で本水素発生器を取り外して他の水素燃料電池に接続した場合でも、どの燃料ペレット10が未使用であるかを知ることができるので、効率的である。 The nonvolatile memory 62 is configured to be freely readable and writable, and is assigned to record the usage state of each fuel pellet 10 at a memory address corresponding to one to one. Therefore, by designating one address of the nonvolatile memory 62, it is possible to set the use state of the fuel pellet 10 corresponding to the address and to check the use state. As an example showing the usage state of the nonvolatile memory 62, the fuel pellet 10 is unused when the memory value is "FFH" in hexadecimal, the fuel pellet 10 is used when "80H", and "00H" Indicates that the fuel pellet 10 is not installed. When searching for unused fuel pellets 10, the contents of the nonvolatile memory 62 may be scanned to find “FFH”. By using a non-volatile memory as a memory for recording the state of the fuel pellet 10, even when the hydrogen generator is removed and connected to another hydrogen fuel cell without using up all the fuel pellets 10, Since it can know whether it is unused, it is efficient.
 マイクロコントローラ60は、図13に示すように、まず、上記圧力センサ70の値を入力する(ステップS11)。この際、圧力センサ70の値を複数回入力し、その平均値を取ることによりノイズの影響を低減することも可能である。 As shown in FIG. 13, the microcontroller 60 first inputs the value of the pressure sensor 70 (step S11). At this time, it is also possible to reduce the influence of noise by inputting the value of the pressure sensor 70 a plurality of times and taking the average value.
 次に、上記入力した圧力センサ70の値が既定値より大きいか否かを判断する(ステップS12)。この既定値は、本水素発生器が接続されている水素燃料電池が継続して発電できる水素の量の限界値である。即ち、水素発生器の耐圧容器16内部の水素圧力がこの既定値より小さくなると、水素を新たに発生させないと水素燃料電池は継続して発電できなくなる。一方、アンモニア・ボレイン12から水素を発生させる際には、アンモニア・ボレイン12を加熱する際の周囲の初期圧力によって水素発生の収率が影響される。本発明者の実験した結果によると、それぞれの燃料ペレット10を加熱して水素を発生させる際には、周囲の圧力が5気圧(50万パスカル)以上である方が水素発生収率が高いこと、且つ、10気圧以上では水素発生収率はそれほど上がらないこと、が判明した。従って、上記既定値としては、5気圧(50万パスカル)以上で、且つ、水素発生器の耐圧容器16の最大耐圧(10気圧(100万パスカル))を超えない値にすることが望ましい。 Next, it is determined whether or not the value of the input pressure sensor 70 is larger than a predetermined value (step S12). This predetermined value is a limit value of the amount of hydrogen that can be continuously generated by the hydrogen fuel cell to which the present hydrogen generator is connected. In other words, if the hydrogen pressure inside the pressure vessel 16 of the hydrogen generator becomes smaller than the predetermined value, the hydrogen fuel cell cannot continuously generate power unless hydrogen is newly generated. On the other hand, when hydrogen is generated from the ammonia / borane 12, the yield of hydrogen generation is affected by the initial ambient pressure when the ammonia / borane 12 is heated. According to the results of experiments conducted by the inventor, when hydrogen is generated by heating each fuel pellet 10, the hydrogen generation yield is higher when the ambient pressure is 5 atm (500,000 Pascals) or more. It was also found that the hydrogen generation yield does not increase so much at 10 atmospheres or more. Therefore, it is desirable that the predetermined value is 5 atm (500,000 Pascal) or more and does not exceed the maximum withstand pressure (10 atm (1 million Pascal)) of the pressure vessel 16 of the hydrogen generator.
 上記ステップS12において、圧力センサ70の値が既定値よりも大きいと判断した場合には、上記ステップS11の圧力センサ値の入力に戻る。 If it is determined in step S12 that the value of the pressure sensor 70 is larger than the predetermined value, the process returns to the input of the pressure sensor value in step S11.
 これに対して、上記ステップS12において、圧力センサ70の値が既定値以下であると判断した場合には、水素発生要求があるか否かをチェックする(ステップS13)。この水素発生要求は、マイクロコントローラ60が接続されている上位機器から発生される。今、水素燃料電池を稼動させて発電する必要がない場合、例えば、水素燃料電池が接続されている機器がスリープ状態にある場合など、には発電させる必要はないので、機器から水素発生要求が発生するまで待つ(ステップS14)。 On the other hand, if it is determined in step S12 that the value of the pressure sensor 70 is equal to or less than the predetermined value, it is checked whether there is a hydrogen generation request (step S13). This hydrogen generation request is generated from a host device to which the microcontroller 60 is connected. If it is not necessary to operate the hydrogen fuel cell and generate power, for example, when the device to which the hydrogen fuel cell is connected is in a sleep state, it is not necessary to generate power. Wait until it occurs (step S14).
 そして、水素発生要求が発生したならば(ステップS14)、不揮発メモリ62の内容をスキャンして未使用の燃料ペレット10を探し出す(ステップS15)。このスキャンは、最初だけ行い、その結果を不揮発メモリ62の所定のアドレスに記録しておき、初回以降では不揮発メモリ62のスキャンを省略しても良い。もし、すべての燃料ペレット10が使用されており未使用の燃料ペレット10がない場合には(ステップS16)、燃料切れエラーをこの水素発生器を使用している上位機器に報告する(ステップS17)。なお、ここでは、未使用の燃料ペレット10がない場合に燃料切れエラーを報告するものとしたが、未使用の燃料ペレット10の数が少なくなった場合に、燃料残り少量警告を報告するようにしても良い。 If a hydrogen generation request is generated (step S14), the contents of the nonvolatile memory 62 are scanned to search for unused fuel pellets 10 (step S15). This scan may be performed only at the beginning, and the result may be recorded at a predetermined address in the nonvolatile memory 62, and the scan of the nonvolatile memory 62 may be omitted after the first time. If all the fuel pellets 10 are used and there are no unused fuel pellets 10 (step S16), a fuel shortage error is reported to the host device using this hydrogen generator (step S17). . In this example, a fuel shortage error is reported when there are no unused fuel pellets 10. However, when the number of unused fuel pellets 10 decreases, a low fuel remaining warning is reported. May be.
 これに対して、未使用の燃料ペレット10がある場合には(ステップS16)、その未使用の燃料ペレット10を選択して、その選択した未使用の燃料ペレット10に対応する発火器38に所定の電流を流すように指示し、該当する燃料ペレット10から水素を発生させる動作の起動をかける(ステップS18)。 On the other hand, when there is an unused fuel pellet 10 (step S16), the unused fuel pellet 10 is selected, and a predetermined amount is set in the igniter 38 corresponding to the selected unused fuel pellet 10. To start the operation of generating hydrogen from the corresponding fuel pellet 10 (step S18).
 その後、その使用した燃料ペレット10に対応する場所の不揮発メモリ62の値を未使用から使用済みに書き換える(ステップS19)。なお、上記ステップS18において燃料ペレット10からの水素発生を起動させたが、実際の水素発生までには若干の時間がかかるので、一定時間だけ待った後に(ステップS20)、上記ステップS11に戻る。 Thereafter, the value of the nonvolatile memory 62 at the location corresponding to the used fuel pellet 10 is rewritten from unused to used (step S19). In step S18, hydrogen generation from the fuel pellets 10 was started. However, since it takes some time to actually generate hydrogen, after waiting for a certain time (step S20), the process returns to step S11.
 これらの水素発生反応は速い速度で行われ、水素燃料電池で発電のために要求されるより速い速度で水素が発生する。このために、少量のアンモニア・ボレイン12を耐圧反応器である水素発生器の耐圧容器16の中で断続的に水素発生させる。耐圧反応器の中で水素が発生すると内部圧力が高まり、燃料電池が水素を使用すると内部圧力が低下する。内部圧力が予め定められた圧力値より下がるまで、上記ステップS11、ステップS12のループを回り続ける。そして、内部圧力が予め定められた圧力値より下がったことを検出することで、別のアンモニア・ボレイン12の水素発生を開始させることにより、継続的に発電することが可能となる。 These hydrogen generation reactions are performed at a high speed, and hydrogen is generated at a higher speed than required for power generation in a hydrogen fuel cell. For this purpose, a small amount of ammonia borane 12 is intermittently generated in a pressure vessel 16 of a hydrogen generator, which is a pressure resistant reactor. When hydrogen is generated in the pressure resistant reactor, the internal pressure increases, and when the fuel cell uses hydrogen, the internal pressure decreases. The loop of step S11 and step S12 is continued until the internal pressure falls below a predetermined pressure value. Then, by detecting that the internal pressure has fallen below a predetermined pressure value, it is possible to continuously generate power by starting the hydrogen generation of another ammonia borane 12.
 以上のように、本第1実施例によれば、アンモニア・ボレイン12をペレット状に小分けにして水素を発生させる水素発生器の全体構造を提示し、且つそれに必要不可欠な要素として、発火器38の構成、燃料ペレット10の保持手段、水素発生時に発生する熱の保熱・断熱方法、水素発生器の動作制御フローを具体的に提示したので、アンモニア・ボレイン12から効率的に水素を発生させることができる小型水素発生器を実現することが可能となる。 As described above, according to the first embodiment, the entire structure of the hydrogen generator for generating hydrogen by subdividing the ammonia and borane 12 into pellets is presented, and as an indispensable element, the generator 38 Specifically, the fuel pellet 10 holding means, the heat retaining / insulating method of the heat generated during the generation of hydrogen, and the operation control flow of the hydrogen generator are specifically presented, so that hydrogen can be efficiently generated from the ammonia / borane 12. It is possible to realize a small hydrogen generator that can be used.
 [第2実施例]
 次に、本発明の第2実施例を説明する。なお、本第2実施例において、上記第1実施例と同じ機能のものは同じ参照符号を付すものとする。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In the second embodiment, components having the same functions as those in the first embodiment are denoted by the same reference numerals.
 図14において、基板30Cは、上記基板30A,30Bと同様の基板である。また、断熱部材32Cは、上記断熱部材32A,32Bと同様の格子状の断熱部材である。さらに、コネクタ34Cは、上記コネクタ34A,34Bと同様のコネクタである。 In FIG. 14, a substrate 30C is the same substrate as the substrates 30A and 30B. The heat insulating member 32C is a lattice-like heat insulating member similar to the heat insulating members 32A and 32B. Further, the connector 34C is a connector similar to the connectors 34A and 34B.
 ここでは、基板30Aと断熱部材32Aとコネクタ34Aとを組み合わせて1つの水素発生ユニットを構成し、基板30Bと断熱部材32Bとコネクタ34Bとを組み合わせて1つの水素発生ユニットを構成し、基板30Cと断熱部材32Cとコネクタ34Cとを組み合わせて1つの水素発生ユニットを構成している。これらの水素発生ユニットは、それぞれコネクタ72A,72B,72Cを介して制御基板24に接続されている。制御基板24上には、上記第1実施例同様、この水素発生器の動作を制御する制御回路が搭載されている。また、コネクタ20を介してこの水素発生器の上位機器と接続されている。 Here, the substrate 30A, the heat insulating member 32A, and the connector 34A are combined to form one hydrogen generating unit, and the substrate 30B, the heat insulating member 32B, and the connector 34B are combined to form one hydrogen generating unit, and the substrate 30C One hydrogen generation unit is configured by combining the heat insulating member 32C and the connector 34C. These hydrogen generation units are connected to the control board 24 via connectors 72A, 72B and 72C, respectively. A control circuit for controlling the operation of the hydrogen generator is mounted on the control board 24 as in the first embodiment. Further, it is connected to a host device of this hydrogen generator via a connector 20.
 本実施例においては、それぞれの水素発生ユニットは、コネクタ34A,34B,34Cを介してそれぞれ独立に制御基板24に接続されている。従って、すべての燃料ペレット10を使用した水素発生ユニットは、他の水素発生ユニットを脱着させることなく、独立に取り外し・取り付けが可能となっている。また、制御基板24を立てて配置しているので、上記第1実施例の構造に比べて水素発生器内部のスペースをより有効に利用することが可能となっている。 In this embodiment, each hydrogen generation unit is independently connected to the control board 24 via connectors 34A, 34B, and 34C. Therefore, the hydrogen generation unit using all the fuel pellets 10 can be detached and attached independently without detaching other hydrogen generation units. Further, since the control substrate 24 is arranged upright, the space inside the hydrogen generator can be used more effectively than the structure of the first embodiment.
 また、本第2実施例に係る水素発生器は、図15に示すような内部構造としても良い。図15において、図14と同じ機能のものは同じ参照符号を付している。 Further, the hydrogen generator according to the second embodiment may have an internal structure as shown in FIG. 15, components having the same functions as those in FIG. 14 are denoted by the same reference numerals.
 即ち、本変形例は、図14に示した水素発生器の耐圧容器16の内部にあった制御基板24を耐圧容器16の外に出したものである。3つの水素発生ユニットは、コネクタ34Aとコネクタ72A、コネクタ34Bとコネクタ72B、コネクタ34Cとコネクタ72Cを介して、中継基板74と接続される。そして、この中継基板74からの信号は、コネクタ76により耐圧容器16の外に出て、該コネクタ76を制御基板24上のコネクタ78に接続することにより、制御基板24に達する。この構成にすると、制御基板24は温度の上昇や圧力の変化等の影響をほとんど受けないため、複数回の使用にも耐えるので経済的である。 That is, in this modification, the control substrate 24 that was inside the pressure vessel 16 of the hydrogen generator shown in FIG. 14 is taken out of the pressure vessel 16. The three hydrogen generation units are connected to the relay board 74 via the connector 34A and the connector 72A, the connector 34B and the connector 72B, and the connector 34C and the connector 72C. Then, the signal from the relay board 74 goes out of the pressure vessel 16 by the connector 76 and reaches the control board 24 by connecting the connector 76 to the connector 78 on the control board 24. With this configuration, the control board 24 is hardly affected by a rise in temperature, a change in pressure, and the like, and is economical because it can withstand multiple uses.
 本実施例における水素発生器の動作は、上記第1実施例と同様であるので省略する。 Since the operation of the hydrogen generator in this embodiment is the same as that in the first embodiment, a description thereof will be omitted.
 なお、図14及び図15は、水素発生ユニットを3段に配置した例を示したが、それに限定されないことは勿論である。また、図の奥行き方向に複数の水素発生ユニットを配置することも可能である。 14 and 15 show examples in which the hydrogen generation units are arranged in three stages, but it is needless to say that the present invention is not limited to this. It is also possible to arrange a plurality of hydrogen generation units in the depth direction of the figure.
 [第3実施例]
 次に、本発明の第3実施例を説明する。なお、本第3実施例において、上記第1実施例と同じ機能のものは同じ参照符号を付すものとする。
[Third embodiment]
Next, a third embodiment of the present invention will be described. In the third embodiment, components having the same functions as those in the first embodiment are denoted by the same reference numerals.
 本実施例は、図16に示すように、格子状の断熱部材32を、基板30上に、その開口が正三角形をなすように配置し、燃料ペレット10をその内部に配置するようにしたものである。この場合、コネクタ34は基板30上に実装されており、基板30の外形は六角形である。 In this embodiment, as shown in FIG. 16, a lattice-like heat insulating member 32 is arranged on a substrate 30 so that the opening forms an equilateral triangle, and the fuel pellets 10 are arranged therein. It is. In this case, the connector 34 is mounted on the substrate 30, and the outer shape of the substrate 30 is a hexagon.
 また、図17に示すように、格子状の断熱部材32を、基板30上に、その開口が正六角形の形状をなすように配置し、燃料ペレット10をその内部に配置するようにしても良い。この場合、コネクタ34は基板30上に実装されており、基板30の外形は正六角形である。 Moreover, as shown in FIG. 17, the lattice-like heat insulating member 32 may be arranged on the substrate 30 so that the opening thereof has a regular hexagonal shape, and the fuel pellets 10 may be arranged therein. . In this case, the connector 34 is mounted on the substrate 30 and the outer shape of the substrate 30 is a regular hexagon.
 このような正三角形または正六角形の格子開口の場合でも、その大きさは円筒形の燃料ペレット10の直径に対して、開口のそれぞれの辺が0.1mm程度のギャップで接するように格子寸法を調整する。このことによって、燃料ペレット10の装填を容易にすると共に、水素発生時に燃料ペレット10が発火器から大きくずれることを防止することが可能となる。 Even in the case of such a regular triangular or regular hexagonal lattice opening, the size of the lattice is such that each side of the opening is in contact with the diameter of the cylindrical fuel pellet 10 with a gap of about 0.1 mm. adjust. This facilitates the loading of the fuel pellets 10 and prevents the fuel pellets 10 from greatly deviating from the igniter when hydrogen is generated.
 本実施例においても、図示はしていないが、燃料ペレット10の上側には円形のアルミ・フォイル40、正三角形または正六角形のカーボン・フィルタ42、円形の断熱部材の蓋44が順に積層されている。カーボン・フィルタの形状が上記第1実施例と異なるのみである。 Also in this embodiment, although not shown, a circular aluminum foil 40, a regular triangular or regular hexagonal carbon filter 42, and a circular heat insulating member lid 44 are laminated on the fuel pellet 10 in this order. Yes. Only the shape of the carbon filter is different from that of the first embodiment.
 図17に示すような格子状の断熱部材32の開口部が正六角形である場合、円筒形の燃料ペレット10との隙間の体積は、図16または図5に示すような開口部が正三角形または正方形の場合に比べて、小さくなる。よって、同じ体積の水素発生器に対してより多くの燃料ペレット10を実装できることになり、単位体積当たりの発生水素量が増加するので、単位体積当たりのエネルギー密度を高くすることができる。 When the openings of the lattice-like heat insulating member 32 as shown in FIG. 17 are regular hexagons, the volume of the gap with the cylindrical fuel pellet 10 is such that the openings as shown in FIG. 16 or FIG. Compared to the square case, it becomes smaller. Therefore, more fuel pellets 10 can be mounted on the same volume of hydrogen generator, and the amount of generated hydrogen per unit volume increases, so that the energy density per unit volume can be increased.
 このような水素発生ユニットを使用した水素発生器の外形形状は、図16の場合は六角柱、図17の場合は正六角柱または円筒形となる。円筒形の場合は、内部の燃料ペレット10の直径を小さくすることによって円筒外周付近に発生する無駄なスペースを小さくすることができる。従って、既存の円筒形の2次電池等の形状に近くなり、2次電池との置き換えを容易に行うことが可能となる。 The outer shape of a hydrogen generator using such a hydrogen generation unit is a hexagonal column in the case of FIG. 16, and a regular hexagonal column or a cylinder in the case of FIG. In the case of a cylindrical shape, a useless space generated near the outer periphery of the cylinder can be reduced by reducing the diameter of the internal fuel pellet 10. Therefore, it becomes close to the shape of an existing cylindrical secondary battery or the like, and can be easily replaced with the secondary battery.
 本実施例における水素発生器の動作は、上記第1実施例と同様であるので省略する。 Since the operation of the hydrogen generator in this embodiment is the same as that in the first embodiment, a description thereof will be omitted.
 また、本実施例においても、上記第2実施例のように、制御基板24の位置を水素発生器の耐圧容器16内部または外部のいずれにも設定することができる。 Also in this embodiment, as in the second embodiment, the position of the control substrate 24 can be set either inside or outside the pressure vessel 16 of the hydrogen generator.
 以上、実施例に基づいて本発明を説明したが、本発明は上述した実施例に限定されるものではなく、本発明の要旨の範囲内で種々の変形や応用が可能なことは勿論である。 The present invention has been described based on the embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications and applications are possible within the scope of the gist of the present invention. .

Claims (4)

  1.  加熱されることによって水素を発生する化合物を含む材料で構成された複数の燃料ペレット(10)と、
     上記複数の燃料ペレットを格納する耐圧容器(16)と、
     上記燃料ペレットからの水素発生を制御するコントローラ(58)と、
     を有する水素発生器において、
     上記耐圧容器内に配置される基板(30;30A,30B;30A,30B,30C)と、
     それぞれ一つの燃料ペレットがその上に配されるように、上記基板上に上記複数の燃料ペレットに対応して設けられ、対応する燃料ペレットを加熱する、複数の発火器(38)と、
     それぞれの上記燃料ペレットを他の燃料ペレットから隔離するための、水素を通さない断熱部材(32;32A,32B;32A,32B,32C)で構成された格子状の枠と、
     をさらに有することを特徴とする水素発生器。
    A plurality of fuel pellets (10) composed of a material containing a compound that generates hydrogen when heated;
    A pressure vessel (16) for storing the plurality of fuel pellets;
    A controller (58) for controlling hydrogen generation from the fuel pellets;
    In a hydrogen generator having
    A substrate (30; 30A, 30B; 30A, 30B, 30C) disposed in the pressure vessel;
    A plurality of igniters (38) provided corresponding to the plurality of fuel pellets on the substrate and heating the corresponding fuel pellets, such that each one fuel pellet is disposed thereon;
    A grid-like frame composed of heat insulating members (32; 32A, 32B; 32A, 32B, 32C) that do not allow hydrogen to separate each of the fuel pellets from other fuel pellets;
    The hydrogen generator further comprising:
  2.  上記発火器は、表面実装型の抵抗器(46)または基板に印刷された印刷抵抗に電流を流すことによって発生する発熱を利用することを特徴とする請求項1に記載の水素発生器。 The hydrogen generator according to claim 1, wherein the igniter uses heat generated by passing a current through a surface-mounted resistor (46) or a printed resistor printed on a substrate.
  3.  上記格子状の枠は、エポキシ樹脂またはポリカーボネート樹脂で構成されることを特徴とする請求項1に記載の水素発生器。 The hydrogen generator according to claim 1, wherein the lattice frame is made of an epoxy resin or a polycarbonate resin.
  4.  上記格子状の枠の開口内に、上記燃料ペレットの最下部が上記発火器に接触するように配置され、
     上記水素発生器は、上記燃料ペレットの上に順に積層された、円形アルミ・フォイル(40)、水素以外の不純物を吸収するフィルタ(42)、及び円形断熱部材(44)をさらに有し、
     上記アルミ・フォイルと上記断熱部材の形状と大きさは、上記燃料ペレットの上記発火器への接触面の形状と大きさに一致し、
     上記フィルタの形状と大きさは、上記格子状の枠の開口の形状と大きさに一致していることを特徴とする請求項1に記載の水素発生器。
    In the opening of the lattice-like frame, the lowermost part of the fuel pellet is arranged so as to contact the generator,
    The hydrogen generator further includes a circular aluminum foil (40), a filter (42) for absorbing impurities other than hydrogen, and a circular heat insulating member (44), which are sequentially stacked on the fuel pellet.
    The shape and size of the aluminum foil and the heat insulating member coincides with the shape and size of the contact surface of the fuel pellet to the igniter,
    2. The hydrogen generator according to claim 1, wherein a shape and a size of the filter coincide with a shape and a size of an opening of the lattice-like frame.
PCT/JP2009/055338 2008-03-21 2009-03-18 Hydrogen generator WO2009116593A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-074653 2008-03-21
JP2008074653A JP2009227512A (en) 2008-03-21 2008-03-21 Hydrogen generater

Publications (1)

Publication Number Publication Date
WO2009116593A1 true WO2009116593A1 (en) 2009-09-24

Family

ID=41090992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055338 WO2009116593A1 (en) 2008-03-21 2009-03-18 Hydrogen generator

Country Status (2)

Country Link
JP (1) JP2009227512A (en)
WO (1) WO2009116593A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013188260A2 (en) * 2012-06-11 2013-12-19 Eveready Battery Company, Inc Method of making a packaged fuel unit for a hydrogen generator
US10259705B2 (en) * 2012-08-09 2019-04-16 Intelligent Energy Inc. Fuel unit, refillable hydrogen generator and fuel cell system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013063169A1 (en) 2011-10-26 2013-05-02 Eveready Battery Company, Inc. Hydrogen generator
RU2014140308A (en) 2012-03-07 2016-04-27 Интеллиджент Энерджи, Инк. FUEL UNIT FOR HYDROGEN GENERATOR

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004519400A (en) * 2000-09-01 2004-07-02 キネテイツク・リミテツド Portable hydrogen source
JP2004214198A (en) * 2003-01-08 2004-07-29 Hewlett-Packard Development Co Lp Resistor for fuel cell, and its manufacturing method
WO2007088923A1 (en) * 2006-02-03 2007-08-09 Nissan Motor Co., Ltd. Hydrogen generation system, fuel cell system, and fuel cell vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004519400A (en) * 2000-09-01 2004-07-02 キネテイツク・リミテツド Portable hydrogen source
JP2004214198A (en) * 2003-01-08 2004-07-29 Hewlett-Packard Development Co Lp Resistor for fuel cell, and its manufacturing method
WO2007088923A1 (en) * 2006-02-03 2007-08-09 Nissan Motor Co., Ltd. Hydrogen generation system, fuel cell system, and fuel cell vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013188260A2 (en) * 2012-06-11 2013-12-19 Eveready Battery Company, Inc Method of making a packaged fuel unit for a hydrogen generator
WO2013188260A3 (en) * 2012-06-11 2014-02-20 Eveready Battery Company, Inc Method of making a packaged fuel unit for a hydrogen generator
CN104428057A (en) * 2012-06-11 2015-03-18 智能能源公司 Method of manufacturing packaged fuel unit for hydrogen generator
CN104428057B (en) * 2012-06-11 2016-08-24 智能能源公司 Method of manufacturing packaged fuel unit for hydrogen generator
US10258950B2 (en) 2012-06-11 2019-04-16 Intelligent Energy Inc. Method of making a packaged fuel unit for a hydrogen generator
US10259705B2 (en) * 2012-08-09 2019-04-16 Intelligent Energy Inc. Fuel unit, refillable hydrogen generator and fuel cell system

Also Published As

Publication number Publication date
JP2009227512A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
WO2009096076A1 (en) Hydrogen generator and fuel pellet
JP5265158B2 (en) Hydrogen generator and fuel stick
US7052658B2 (en) Hydrogen generation cartridge and portable hydrogen generator
US9825316B2 (en) Hydrogen producing fuel cartridge and methods for producing hydrogen
US20160104907A1 (en) Hydrogen Generator
US9391334B2 (en) Hydrogen gas generator
WO2009116593A1 (en) Hydrogen generator
KR20090081386A (en) Battery pack and battery-mounted device
US9944521B2 (en) Hydrogen generator having a thermal actuator
CN105580161B (en) Battery pack with electric insulation component
JP2007522916A (en) Gas generation structure, gas generation method and power source using generated gas
JP2009184840A5 (en)
JP6185659B2 (en) Protection circuit module, battery pack, mobile device, and battery pack manufacturing method
KR20150016492A (en) Hydrogen producing fuel cartridge
US20090017348A1 (en) Techniques for packaging and utilizing solid hydrogen-producing fuel
US20110207027A1 (en) Hydrogen supply tank, and hydrogen supply apparatus, hydrogen supply method and hydrogen-consuming device using the same
JP2010126417A (en) Hydrogen generator
WO2013074428A1 (en) Hydrogen generator for a fuel cell
US20150217267A1 (en) Hydrogen gas generator
JP2007329006A (en) Hydrogen fuel cell system
JP2009295335A (en) Hydrogen fuel cell system
JP2007080630A (en) Electronic equipment
CN210350046U (en) Disposable soft package metal air fuel cell
US20150203353A1 (en) Fuel unit, gas generator and system
JP5002138B2 (en) Electronics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09721368

Country of ref document: EP

Kind code of ref document: A1