WO2009116400A1 - Annealing apparatus and overheat prevention system - Google Patents

Annealing apparatus and overheat prevention system Download PDF

Info

Publication number
WO2009116400A1
WO2009116400A1 PCT/JP2009/054159 JP2009054159W WO2009116400A1 WO 2009116400 A1 WO2009116400 A1 WO 2009116400A1 JP 2009054159 W JP2009054159 W JP 2009054159W WO 2009116400 A1 WO2009116400 A1 WO 2009116400A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
light emitting
emitting element
current
led
Prior art date
Application number
PCT/JP2009/054159
Other languages
French (fr)
Japanese (ja)
Inventor
河西 繁
鈴木 智博
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2009116400A1 publication Critical patent/WO2009116400A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring

Definitions

  • the present invention relates to an annealing apparatus that performs annealing by irradiating a semiconductor wafer or the like with light from a light emitting element such as an LED, and an overheat prevention system used therefor.
  • a wafer that is a substrate to be processed.
  • heat treatment such as film formation, oxidation diffusion treatment, modification treatment, annealing treatment on a semiconductor wafer (hereinafter simply referred to as a wafer) that is a substrate to be processed.
  • annealing after ion implantation is directed to higher temperature rise and fall in order to minimize diffusion.
  • an annealing apparatus capable of such high-speed temperature rising / lowering, an apparatus using an LED (light emitting diode) as a heating source has been proposed (for example, JP-T-2005-536045).
  • the temperature in the vicinity of the LED is detected by a temperature sensor such as a thermocouple, and the interlock is applied when the temperature exceeds a predetermined temperature.
  • the LEDs are very small and are mounted in a state of being arranged in a large number on the support, a temperature sensor cannot be installed at a position close to the LEDs, and the temperature cannot be measured with high accuracy.
  • the timing from when the LED is overheated until the temperature is detected is later than the timing at which failure destruction occurs.
  • the interlock value is installed in the vicinity of the overheating temperature, even if an abnormality occurs, it cannot be detected immediately, and the LED is destroyed. Therefore, the interlock value must be set low, but if so, the interlock function cannot be fully exhibited.
  • An object of the present invention is to provide an annealing apparatus using a light emitting element such as an LED as a heating source, which can quickly and accurately grasp the temperature of the light emitting element and appropriately prevent overheating, and its An object of the present invention is to provide an overheat prevention system used in such an annealing apparatus.
  • a processing chamber in which an object to be processed is accommodated and a plurality of light emitting elements having a pn junction that irradiates light to the object to be processed are provided, and at least one of the objects to be processed is provided.
  • a heating source provided so as to face the surface, a power supply unit that supplies power to the light emitting element of the heating source, a light transmissive member that is provided corresponding to the heating source and transmits light from the light emitting element, An exhaust mechanism for exhausting the processing chamber, a temperature calculation unit for calculating a temperature of the light emitting element based on a current-voltage characteristic at a pn junction of the light emitting element or a current-voltage characteristic at a resistance of the light emitting element, and the temperature
  • An annealing apparatus is provided that includes an interlock unit that stops power supply to the power supply unit when the temperature calculated by the calculation unit exceeds a predetermined temperature.
  • an overheating prevention system for use in an annealing apparatus that performs an annealing process on a substrate in a processing chamber by a heating source including a plurality of light emitting elements having a pn junction.
  • a temperature calculating unit that calculates a temperature of the light emitting element based on a current-voltage characteristic in a pn junction or a current-voltage characteristic in a resistance of the light emitting element; and the temperature calculated in the temperature calculating unit exceeds a predetermined temperature
  • an overheat prevention system including an interlock unit that stops power supply to the light emitting element is provided.
  • the temperature calculation unit uses the current-voltage characteristics at the pn junction of the light emitting element when the current flowing through the light emitting element is a small current of a predetermined value or less.
  • the temperature of the light emitting element can be calculated based on the current-voltage characteristics of the resistance of the light emitting element when the current flowing through the light emitting element is a large current equal to or greater than a predetermined value. .
  • an LED can be exemplified as a typical example.
  • the temperature calculation unit calculates the temperature of the light emitting element, and when the calculated temperature exceeds a predetermined value, the interlock unit issues a signal to stop power feeding, so the temperature of the light emitting element can be quickly and accurately determined. It is possible to grasp and appropriately prevent overheating of the light emitting element.
  • the temperature is estimated by calculation from the current-voltage characteristics when power is supplied to a large number of light emitting elements, the temperature can be grasped as an average value of the large number of light emitting elements. For this reason, temperature detection can be performed with higher accuracy than when a sensor is provided.
  • FIG. 4 is a diagram showing current-voltage characteristics of an LED, divided into pn junction contribution and resistance component contribution. It is a figure which expands and shows the low current part of FIG.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an annealing apparatus according to an embodiment of the present invention
  • FIG. 2 is an enlarged cross-sectional view showing a heating source of the annealing apparatus of FIG. 1
  • FIG. 3 is an LED of the annealing apparatus of FIG. It is sectional drawing which expands and shows the part which supplies electric power to.
  • the annealing apparatus 100 is hermetically configured and has a processing chamber 1 into which a wafer W is loaded.
  • the processing chamber 1 includes a columnar annealing processing unit 1a in which the wafer W is disposed and a gas diffusion unit 1b provided in a donut shape outside the annealing processing unit 1a.
  • the gas diffusion portion 1b is higher in height than the annealing treatment portion 1a, and the cross section of the processing chamber 1 is H-shaped.
  • the gas diffusion portion 1 b of the processing chamber 1 is defined by the chamber 2.
  • Circular holes 3a and 3b corresponding to the annealed portion 1a are formed in the upper wall 2a and the bottom wall 2b of the chamber 2, and these holes 3a and 3b are made of Al or Al alloy, which is a high thermal conductivity material, respectively.
  • the cooling members 4a and 4b are fitted.
  • the cooling members 4a and 4b have flange portions 5a and 5b, and the flange portions 5a and 5b are supported by the upper wall 2a and the bottom wall 2b of the chamber 2 via a thermal insulator 80 such as Ultem.
  • the thermal insulator 80 is provided in order to minimize the heat input from the chamber 2 because the flange portions 5a and 5b are cooled to, for example, ⁇ 50 ° C. or lower as described later.
  • Seal members 6 are interposed between the flange portions 5a and 5b and the thermal insulator 80, and between the thermal insulator 80 and the upper wall 2a and the bottom wall 2b, and are in close contact with each other. Further, portions of the cooling members 4a and 4b that are exposed to the atmosphere are covered with a heat insulating material.
  • the processing chamber 1 is provided with a support member 7 for horizontally supporting the wafer W in the annealing processing section 1a.
  • the support member 7 can be moved up and down when the wafer W is transferred by a lifting mechanism (not shown). Yes.
  • a processing gas introduction port 8 into which a predetermined processing gas is introduced from a processing gas supply mechanism (not shown) is provided on the top wall of the chamber 2, and a processing gas pipe for supplying the processing gas to the processing gas introduction port 8. 9 is connected.
  • An exhaust port 10 is provided on the bottom wall of the chamber 2, and an exhaust pipe 11 connected to an exhaust device (not shown) is connected to the exhaust port 10.
  • a loading / unloading port 12 for loading / unloading the wafer W into / from the chamber 2 is provided on the side wall of the chamber 2, and the loading / unloading port 12 can be opened and closed by a gate valve 13.
  • the processing chamber 1 is provided with a temperature sensor 14 for measuring the temperature of the wafer W supported on the support member 7.
  • the temperature sensor 14 is connected to a measurement unit 15 outside the chamber 2, and a temperature detection signal is output from the measurement unit 15 to a process controller 70 described later.
  • Circular recesses 16 a and 16 b are formed on the surfaces of the cooling members 4 a and 4 b facing the wafer W supported by the support member 7 so as to correspond to the wafer W supported by the support member 7. And in this recessed part 16a, 16b, the heat sources 17a and 17b which mounted the light emitting diode (LED) are arrange
  • LED light emitting diode
  • Light transmitting members 18a and 18b that transmit light from LEDs mounted on the heating sources 17a and 17b to the wafer W side so as to cover the recesses 16a and 16b on the surfaces of the cooling members 4a and 4b facing the wafer W. Is screwed.
  • a material that efficiently transmits light emitted from the LED is used, and for example, quartz is used.
  • Cooling medium channels 21a and 21b are provided in the cooling members 4a and 4b, and a liquid cooling medium capable of cooling the cooling members 4a and 4b to 0 ° C. or less, for example, about ⁇ 50 ° C. therein.
  • a fluorine-based inert liquid (trade name: Fluorinert, Galden, etc.) is passed.
  • Cooling medium supply pipes 22a and 22b and cooling medium discharge pipes 23a and 23b are connected to the cooling medium flow paths 21a and 21b of the cooling members 4a and 4b. As a result, the cooling medium can be circulated through the cooling medium flow paths 21a and 21b to cool the cooling members 4a and 4b.
  • a cooling water flow path 25 is formed in the chamber 2, and normal temperature cooling water flows therethrough, thereby preventing the temperature of the chamber 2 from rising excessively.
  • the heating sources 17 a and 17 b are supported by an insulating high heat conductive material, typically a support 32 made of AlN ceramics, and supported by the support 32 via an electrode 35.
  • the LED array 34 includes a plurality of LEDs 33 and a heat diffusing member 50 made of Cu, which is a highly thermally conductive material bonded to the back side of the support 32.
  • the support 32 is formed with a pattern of a highly conductive electrode 35, for example, gold-plated on copper, and the LED 33 is attached to the electrode 35 with a silver paste 56 which is a bonding material having a high thermal conductivity.
  • the support body 32 and the thermal diffusion member 50 are joined by solder 57 which is a high thermal conductive joining material from the viewpoint of reliability.
  • solder 57 which is a high thermal conductive joining material from the viewpoint of reliability.
  • the heat diffusion member 50 and the cooling member 4a (4b) on the back surface side of the LED array 34 are screwed together with a silicon grease 58 as a high thermal conductive bonding material interposed therebetween.
  • the LED 33 is reached via In other words, the heat generated by the LED 33 is cooled by the cooling medium through a path with good thermal conductivity such as the silver paste 56, the electrode 35, the support 32, the solder 57, the heat diffusion member 50, and the silicon grease 58.
  • the members 4a and 4b can escape very effectively.
  • a wire 36 is connected between one LED 33 and the electrode 35 of the adjacent LED 33.
  • a reflective layer 59 containing, for example, TiO 2 is provided on the surface of the support 32 where the electrode 35 is not provided, and the light emitted from the LED 33 toward the support 32 is reflected effectively. It can be taken out.
  • the reflectance of the reflective layer 59 is preferably 0.8 or more.
  • a reflecting plate 55 is provided between the adjacent LED arrays 34, so that the entire circumference of the LED array 34 is surrounded by the reflecting plate 55.
  • the reflection plate 55 for example, a Cu plate that is gold-plated is used so that light traveling in the lateral direction can be reflected and effectively extracted.
  • Each LED 33 is covered with a lens layer 20 made of, for example, a transparent resin.
  • the lens layer 20 has a function of extracting light emitted from the LED 33 and can also extract light from the side surface of the LED 33.
  • the shape of the lens layer 20 is not particularly limited as long as it has a lens function. However, considering the ease of manufacturing and efficiency, a substantially hemispherical shape is preferable.
  • This lens layer 20 has a refractive index between the LED 33 having a high refractive index and air having a refractive index of 1, in order to alleviate total reflection caused by direct emission of light from the LED 33 into the air. Provided.
  • the space between the support 32 and the light transmission members 18a and 18b is evacuated, and both sides (upper surface and lower surface) of the light transmission members 18a and 18b are in a vacuum state. Therefore, the light transmitting members 18a and 18b can be made thinner than the case where the light transmitting members 18a and 18b function as a partition between the atmospheric state and the vacuum state.
  • the LED 33 of the heating source 17a is fed with power from the power supply unit 60 through the feeding line 61a, the feeding member 41 and the feeding rod 38 (see FIG. 3), and the LED 33 of the heating source 17b is fed from the power supply unit 60 with the feeding line 61b and feeding member. Power is supplied through 41 and the power supply rod 38.
  • Feed control units 42a and 42b are connected to the feed line 61a and the feed line 61b.
  • a feeding electrode 51 is inserted into holes 50a and 32a formed in the thermal diffusion member 50 and the support body 32, respectively, and this feeding electrode 51 is connected to the electrode 35 by soldering.
  • An electrode rod 38 extending through the inside of the cooling members 4 a and 4 b is connected to the power supply electrode 51 at an attachment port 52.
  • a plurality of, for example, eight electrode bars 38 are provided for each LED array 34 (only two are shown in FIGS. 1 and 3), and the electrode bars 38 are covered with a protective cover 38a made of an insulating material.
  • the electrode rod 38 extends to the upper end portion of the cooling member 4a and the lower end portion of the cooling member 4b, and the receiving member 39 is screwed there.
  • An insulating ring 40 is interposed between the receiving member 39 and the cooling members 4a and 4b.
  • gaps between the protective cover 38a and the cooling member 4a (4b) and between the protective cover 38a and the electrode rod 38 are brazed to form a so-called feedthrough.
  • the power supply member 41 is connected to a receiving member 39 attached to each electrode bar 38.
  • the power supply member 41 is covered with a protective cover 44 made of an insulating material.
  • a pogo pin (spring pin) 41 a is provided at the tip of the power supply member 41, and when each pogo pin 41 a comes into contact with the corresponding receiving member 39, the power supply line 61 a, the power supply member 41, and the electrode rod 38 are connected from the power supply unit 60. Power is supplied to each LED 33 of the heating source 17a via the power supply electrode 51 and the electrode 35, and power is supplied to each LED 33 of the heating source 17b via the power supply line 61b, the power supply member 41, the electrode bar 38, the power supply electrode 51 and the electrode 35. It has become so.
  • the power supply control units 42a and 42b supply the LED 33 with the voltage applied by the power supply unit 60 as a DC waveform voltage.
  • power supply to the LED is generally PWM drive that provides a pulsed voltage with a predetermined duty ratio.
  • the DC waveform voltage means a voltage that always drives the LED in the ON state, not a voltage that drives the LED on and off in a pulsed manner.
  • the LED 33 emits light by being fed in this way, and the annealing process is performed by heating the wafer W from the front and back surfaces with the light. Since the pogo pin 41a is urged toward the receiving member 39 by a spring, the power supply member 41 and the electrode bar 38 can be reliably contacted.
  • FIG. 1 the middle of the power supply member 41 is drawn, and the structure of the electrode rod 38, the power supply electrode 51, and the connection portion thereof is omitted.
  • the feeding electrode 51 is omitted.
  • the LED array 34 has a hexagonal shape as shown in FIG. In the LED array 34, it is extremely important how to supply a sufficient voltage to each LED 33 and reduce the area loss of the power feeding portion to increase the number of LEDs 33 to be mounted.
  • the LED array 34 is equally divided into two regions 341 and 342, and these regions 341 and 342 are divided into three power supply regions 341a, 341b, 341c and 342a, 342b, 342c, respectively.
  • three negative electrodes 51a, 51b, 51c and one common positive electrode 52 are arranged in a straight line on the region 341 side, and three negative electrodes are disposed on the region 342 side.
  • 53a, 53b, 53c and one common positive electrode 54 are arranged in a straight line.
  • the common positive electrode 52 supplies power to the power supply regions 341a, 341b, and 342c
  • the common positive electrode 54 supplies power to the power supply regions 342a, 342b, and 341c.
  • the plurality of LEDs 33 in each power feeding area are arranged in parallel in two sets connected in series. By doing in this way, the dispersion
  • the LED array 34 having such a structure is arranged on the cooling member 4a (4b) without a plurality of gaps as shown in FIG.
  • one LED array 34 about 1000 to 2000 LEDs 33 are mounted.
  • the LED 33 one having a wavelength of emitted light in the range of ultraviolet light to near infrared light, preferably in the range of 0.36 to 1.0 ⁇ m is used.
  • Examples of such a material that emits light in the range of 0.36 to 1.0 ⁇ m include compound semiconductors based on GaN, GaAs, GaP, and the like.
  • a material made of a GaAs-based material having a radiation wavelength in the vicinity of 850 to 970 nm, which has a high absorptance with respect to a silicon wafer W used as a heating target, is preferable.
  • a common temperature calculation unit 62 is connected to the power supply control units 42a and 42b.
  • the temperature calculation unit 62 calculates the temperature of the LED 33 based on the current-voltage (IV) characteristics at the pn junction of the LED 33 or the current-voltage (IV) characteristics at the resistance of the LED 33 such as bulk resistance and contact resistance. .
  • the IV characteristics in the pn junction of the LED 33 and the IV characteristics in the resistance such as the bulk resistance and the contact resistance are expressed as a function of temperature as will be described later.
  • the temperature can be calculated, and the temperature of the LED 33 can be estimated from the calculated temperature.
  • the interlock unit 63 is connected to the temperature calculation unit 62.
  • the interlock unit 63 receives the temperature signal calculated by the temperature calculation unit 62, determines whether or not the temperature exceeds a predetermined temperature, and when the temperature exceeds the predetermined temperature, the power supply unit 60 receives a power supply stop signal. The power supply is stopped to prevent overheating and destruction of the LED 33. That is, the temperature calculation unit 62 and the interlock unit 63 function as an overheat prevention system.
  • Each component of the annealing apparatus 100 is connected to and controlled by a process controller 70 having a microprocessor (computer), as shown in FIG.
  • the process controller 70 performs transmission of control commands to the power supply control units 42a and 42b, drive system control, gas supply control, and the like.
  • a user interface 71 including a keyboard on which an operator inputs commands for managing the annealing apparatus 100, a display for visualizing and displaying the operating status of the annealing apparatus 100, and the like.
  • the process controller 70 causes each component of the annealing apparatus 100 to execute processing according to a control program for realizing various processes executed by the annealing apparatus 100 under the control of the process controller 70 and processing conditions.
  • the processing recipe may be stored in a fixed storage medium such as a hard disk, or set in a predetermined position of the storage unit 72 while being stored in a portable storage medium such as a CDROM or DVD. May be. Furthermore, you may make it transmit a recipe suitably from another apparatus via a dedicated line, for example. Then, if necessary, an arbitrary processing recipe is called from the storage unit 72 by an instruction from the user interface 71 and is executed by the process controller 70, so that the desired processing in the annealing apparatus 100 is performed under the control of the process controller 70. Is performed.
  • the gate valve 13 is opened, the wafer W is loaded from the loading / unloading port 12, and placed on the support member 7. Thereafter, the gate valve 13 is closed to make the inside of the processing chamber 1 hermetically sealed, the inside of the processing chamber 1 is exhausted by an exhaust device (not shown) through the exhaust port 11, and the processing gas pipe 9 and the processing gas are supplied from a processing gas supply mechanism (not shown).
  • a predetermined processing gas such as argon gas or nitrogen gas is introduced into the processing chamber 1 through the gas inlet 8 and the pressure in the processing chamber 1 is maintained at a predetermined pressure in the range of 100 to 10,000 Pa, for example.
  • the cooling members 4a and 4b circulate a liquid cooling medium, for example, a fluorine-based inert liquid (trade name Fluorinert, Galden, etc.) in the cooling medium flow paths 21a and 21b, and cause the LED element 33 to have a predetermined temperature of 0 ° C.
  • the temperature is preferably cooled to a temperature of ⁇ 50 ° C. or lower.
  • the light from the LED 33 is directly or once reflected by the reflection layer 59 and then transmitted through the lens layer 20 and further through the light transmission members 18a and 18b.
  • the electromagnetic radiation due to the recombination of electrons and holes is used for extremely high speed.
  • the wafer W is heated.
  • the LED 33 when the LED 33 is kept at a normal temperature, the light emission amount of the LED 33 is decreased due to the heat generated by the LED 33 itself.
  • a cooling medium is passed through the cooling members 4a and 4b, as shown in FIG.
  • LED33 since LED33 is cooled via the cooling members 4a and 4b, the heat-diffusion member 50, the support body 32, and the electrode 35, LED33 can be cooled efficiently.
  • the LED 33 may be overheated due to excessive current flowing through the LED 33, and the efficiency of the LED 33 may be extremely reduced or the LED 33 may be destroyed.
  • a DC voltage is applied to the LED 33 to heat the wafer W, but the power supplied to the LED 33 immediately before the wafer W reaches the maximum temperature ( That is, the LED current increases most, and the temperature of the LED 33 increases most at that time. Therefore, it is necessary to measure the temperature of the LED 33 at this time.
  • the temperature in the vicinity of the LED has been detected by a temperature sensor such as a thermocouple.
  • a temperature sensor such as a thermocouple.
  • the temperature cannot be measured with high accuracy, and The timing from when the LED is overheated until the temperature is detected is later than the timing at which failure destruction occurs.
  • the temperature calculation unit 62 receives data related to the IV characteristics of the LED 33 from the power supply control units 42a and 42b, estimates the temperature based on the data, and based on the estimated temperature, calculates the interface.
  • the lock unit 63 exceeds the set temperature, a signal for cutting off the power supply from the power supply unit 60 is generated.
  • the temperature of the LED can be grasped more accurately and quickly than when the temperature of the LED is measured using a temperature sensor, and the interlock can be applied based on this, so that the LED 33 can be appropriately used. Can be prevented from overheating.
  • the temperature calculation at this time will be specifically described.
  • the IV characteristics of the LED depend on the IV characteristics at the pn junction and the IV characteristics of the bulk resistance and contact resistance of the LED.
  • the IV characteristic in the pn junction can be expressed by the following equation (1).
  • k is a Boltzmann constant
  • T is an absolute temperature
  • Eg is a band gap
  • Is is a reverse leakage current
  • q is a charge amount of one electron.
  • Is can be expressed by the following equation (2).
  • V D is expressed as shown in the following equation (3).
  • I-V characteristics of the bulk resistance and the contact resistance is expressed by the following equation (4) as an expression representing the V R.
  • Ea is the activation energy of the impurity level.
  • FIG. 9 shows IV characteristics obtained by flowing various values of pulse current to the LED 33 so that the temperature does not rise and actually measuring the voltage at that time, and shows two temperatures of 300K and 420K.
  • FIG. 10 is a graph in which the above equation (5) is fitted to the values shown in FIG. 9 and the IV characteristics in the above equations (3) and (4) are divided into graphs.
  • the constants I 0 and R 0 in the formulas (3) and (4) can be obtained by fitting the formula (5) to the actually measured values. From these figures, the slope of the IV characteristic at the pn junction is much larger than the slope of the IV characteristic at the resistance component at a very small current of 4 mA or less, and the slope of the IV characteristic at the resistance component at 200 mA or more. Is much larger than the slope of the IV characteristic in the pn junction.
  • the resistance component can be ignored for temperature estimation.
  • the voltage V can be expressed by the following equation (7).
  • ⁇ V V H ⁇ V L
  • is an ideal factor, ideally 1, but a value that varies depending on the process and structure.
  • k and q are known, and ⁇ is determined by the device structure. Therefore, when ( ⁇ ⁇ k) / q is K, the temperature T is obtained by the following equation (9). Can do.
  • the temperature T is obtained by flowing two types of current while heating the LED.
  • This temperature calculation is performed by the temperature calculation unit 62, and when the interlock unit 63 that has received the temperature calculation result detects that the value exceeds a predetermined value, it is determined as abnormal overheating, Power supply from the power supply unit 60 is stopped.
  • the power supply control unit 42a (42b) emits power (current) as shown in FIG.
  • the above two types of current and voltage are measured. The smaller the minute time, the better, but 5 to 100 msec. Since the current value in this case is 200 mA or more based on the data obtained here, the temperature calculation unit 62 calculates the temperature of the LED 33 from the equation (11), and the value exceeds a predetermined value. In this case, the interlock unit 63 applies the interlock.
  • the temperature calculation is performed for only one LED 33, but the temperature can also be calculated for each group of LEDs 33, for example, the LED array 34.
  • m serial LEDs 33 are connected in parallel.
  • the voltage applied to the LED array 34 is V mn and the flowing current is I mn , and all the LEDs 33 are averaged and treated as a uniform element
  • the voltage applied to each LED 33 is V mn / m
  • the current is I mn / n.
  • the temperature for each LED array 34 can be calculated from these equations (9 ′) and (11 ′).
  • the temperature is calculated based on the above at a plurality of locations away from each other, and a more detailed temperature distribution of the entire heating source 17a (17b) is obtained.
  • the temperature calculator 62 determines the current of the LED 33 based on the current-voltage characteristics at the pn junction of the LED 33 or the current-voltage characteristics of the resistance of the LED 33 such as the bulk resistance and contact resistance.
  • the interlock unit 63 issues a signal to stop power supply. Therefore, the temperature of the LED 33 can be grasped quickly and with high accuracy, and the LED 33 is overheated appropriately. Can be prevented.
  • the temperature is estimated by calculation from the current-voltage characteristics when power is supplied to a large number of LEDs 33, the temperature can be grasped as an average value of the large number of LEDs. For this reason, temperature detection can be performed with higher accuracy than when a sensor is provided.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • the heat source having the LEDs is provided on both sides of the wafer that is the object to be processed has been described, but the heat source may be provided on either one.
  • LED was used as a light emitting element was shown in the said embodiment, you may use other light emitting elements, such as a semiconductor laser.
  • the object to be processed is not limited to the semiconductor wafer, and other objects such as a glass substrate for FPD can be targeted.
  • the present invention is suitable for applications that require rapid heating, such as annealing of a semiconductor wafer after impurities are implanted.

Abstract

Annealing apparatus (100) is provided with a chamber (2) for housing a wafer (W), heating sources (17a, 17b) which have a plurality of LEDs (33) irradiating the wafer (W) within the chamber (2) with light, a power source part (60) which feeds power to the LEDs (33) of the heating sources (17a, 17b), light transmission members (18a, 18b) which transmit light from the LEDs (33), an exhaustion mechanism which exhausts the inside of the chamber (2), a temperature calculation part (62) which calculates the temperature of the LEDs (33) on the basis of current-voltage properties in pn-junction of the LEDs (33) and those in the resistance of the LEDs, and an interlock part (63) which stops feeding of power by the power source part (60) when the temperature calculated by the temperature calculation part (62) exceeds a predetermined temperature.

Description

アニール装置および過熱防止システムAnnealing equipment and overheat prevention system
 本発明は、半導体ウエハ等に対してLED等の発光素子からの光を照射することによりアニールを行うアニール装置およびそれに用いられる過熱防止システムに関する。 The present invention relates to an annealing apparatus that performs annealing by irradiating a semiconductor wafer or the like with light from a light emitting element such as an LED, and an overheat prevention system used therefor.
 半導体デバイスの製造においては、被処理基板である半導体ウエハ(以下単にウエハと記す)に対して、成膜処理、酸化拡散処理、改質処理、アニール処理等の各種熱処理が存在するが、半導体デバイスの高速化、高集積化の要求にともない、特にイオンインプランテーション後のアニールは、拡散を最小限に抑えるために、より高速での昇降温が指向されている。このような高速昇降温が可能なアニール装置としてLED(発光ダイオード)を加熱源として用いたものが提案されている(例えば特表2005-536045号公報)。 In the manufacture of semiconductor devices, there are various types of heat treatment such as film formation, oxidation diffusion treatment, modification treatment, annealing treatment on a semiconductor wafer (hereinafter simply referred to as a wafer) that is a substrate to be processed. With the demand for higher speed and higher integration, annealing after ion implantation, in particular, is directed to higher temperature rise and fall in order to minimize diffusion. As an annealing apparatus capable of such high-speed temperature rising / lowering, an apparatus using an LED (light emitting diode) as a heating source has been proposed (for example, JP-T-2005-536045).
 ところで、上記アニール装置の加熱源としてLEDを用いる場合には、急速加熱に対応して多大な光エネルギーを発生させる必要があり、そのためにLEDを高密度実装する必要がある。 Incidentally, when an LED is used as a heating source of the annealing apparatus, it is necessary to generate a large amount of light energy in response to rapid heating, and therefore, it is necessary to mount the LEDs at a high density.
 しかしながら、LEDは熱による昇温で発光量が低下することが知られており、LEDを高密度実装することにより、LED自体の発熱(投入エネルギーのうち、光として取り出せなかったもの)等の影響が大きくなるとLEDから十分な発光量を得られなくなる。 However, it is known that the amount of light emitted from a LED rises due to temperature rise by heat, and the effect of heat generation of the LED itself (of the input energy that cannot be extracted as light) by mounting the LED at high density. When becomes larger, a sufficient amount of light emission cannot be obtained from the LED.
 このため、LEDを冷却して熱による発光量の低下を抑制する技術が提案されているが(例えば特開2008-16545号公報)、冷却してもなお、LEDに過度の電流が流れること等により異常過熱する場合があり、このような場合にはLEDの効率が低下するのみならず、このまま放置するとLEDが破壊することもある。 For this reason, a technique for cooling the LED to suppress a decrease in the amount of light emission due to heat has been proposed (for example, Japanese Patent Application Laid-Open No. 2008-16545). However, an excessive current flows through the LED even after cooling. May cause abnormal overheating. In such a case, the efficiency of the LED is not only lowered, but the LED may be destroyed if left as it is.
 このようなことから、LED近傍の温度を例えば熱電対等の温度センサーで検知して所定の温度を超えた時点でインターロックがかかるようにしている。 For this reason, the temperature in the vicinity of the LED is detected by a temperature sensor such as a thermocouple, and the interlock is applied when the temperature exceeds a predetermined temperature.
 しかしながら、LEDは非常に小さく、支持体に多数配列した状態で搭載されるため、LEDに近接した位置には温度センサーを設置することができず、高精度で温度測定することができない。また、温度センサーを用いた場合にはLEDが過熱してからその温度を検知するまでのタイミングは故障破壊を起こすタイミングよりも遅くなってしまう。これを回避するために、インターロック値を過熱温度近傍に設置すると、異常が発生してもすぐに検知できず、LEDが破壊してしまう。したがって、インターロック値を低く設定せざるを得ないが、そうするとインターロック機能を十分に発揮することができない。 However, since the LEDs are very small and are mounted in a state of being arranged in a large number on the support, a temperature sensor cannot be installed at a position close to the LEDs, and the temperature cannot be measured with high accuracy. In addition, when a temperature sensor is used, the timing from when the LED is overheated until the temperature is detected is later than the timing at which failure destruction occurs. In order to avoid this, if the interlock value is installed in the vicinity of the overheating temperature, even if an abnormality occurs, it cannot be detected immediately, and the LED is destroyed. Therefore, the interlock value must be set low, but if so, the interlock function cannot be fully exhibited.
発明の概要Summary of the Invention
 本発明の目的は、加熱源としてLED等の発光素子を用いたアニール装置において、発光素子の温度を迅速にかつ高精度で把握して、適切に過熱防止を行うことができるアニール装置、およびそのようなアニール装置に用いられる過熱防止システムを提供することにある。 An object of the present invention is to provide an annealing apparatus using a light emitting element such as an LED as a heating source, which can quickly and accurately grasp the temperature of the light emitting element and appropriately prevent overheating, and its An object of the present invention is to provide an overheat prevention system used in such an annealing apparatus.
 本発明の第1の観点によれば、被処理体が収容される処理室と、被処理体に対して光を照射するpn接合を有する複数の発光素子を備え、被処理体の少なくとも一方の面に面するように設けられた加熱源と、前記加熱源の発光素子に給電する電源部と、前記加熱源に対応して設けられ、前記発光素子からの光を透過する光透過部材と、前記処理室内を排気する排気機構と、前記発光素子のpn接合における電流-電圧特性または前記発光素子の抵抗における電流-電圧特性に基づいて前記発光素子の温度を算出する温度算出部と、前記温度算出部において算出された温度が所定の温度を超えた場合に前記電源部の給電を停止するインターロック部とを具備するアニール装置が提供される。 According to a first aspect of the present invention, a processing chamber in which an object to be processed is accommodated and a plurality of light emitting elements having a pn junction that irradiates light to the object to be processed are provided, and at least one of the objects to be processed is provided. A heating source provided so as to face the surface, a power supply unit that supplies power to the light emitting element of the heating source, a light transmissive member that is provided corresponding to the heating source and transmits light from the light emitting element, An exhaust mechanism for exhausting the processing chamber, a temperature calculation unit for calculating a temperature of the light emitting element based on a current-voltage characteristic at a pn junction of the light emitting element or a current-voltage characteristic at a resistance of the light emitting element, and the temperature An annealing apparatus is provided that includes an interlock unit that stops power supply to the power supply unit when the temperature calculated by the calculation unit exceeds a predetermined temperature.
 本発明の第2の観点では、pn接合を有する複数の発光素子を備えた加熱源により処理室内の基板に対してアニール処理を行うアニール装置に用いられる過熱防止システムであって、前記発光素子のpn接合における電流-電圧特性または前記発光素子の抵抗における電流-電圧特性に基づいて前記発光素子の温度を算出する温度算出部と、前記温度算出部において算出された温度が所定の温度を超えた場合に前記発光素子への給電を停止するインターロック部とを具備する過熱防止システムを提供する。 According to a second aspect of the present invention, there is provided an overheating prevention system for use in an annealing apparatus that performs an annealing process on a substrate in a processing chamber by a heating source including a plurality of light emitting elements having a pn junction. a temperature calculating unit that calculates a temperature of the light emitting element based on a current-voltage characteristic in a pn junction or a current-voltage characteristic in a resistance of the light emitting element; and the temperature calculated in the temperature calculating unit exceeds a predetermined temperature In some cases, an overheat prevention system including an interlock unit that stops power supply to the light emitting element is provided.
上記第1および第2の観点において、前記温度算出部は、前記発光素子に流す電流が所定値以下の小電流の場合に、前記発光素子のpn接合における電流-電圧特性を用いて前記発光素子の温度を算出することができ、前記発光素子に流す電流が所定値以上の大電流の場合に、前記発光素子の抵抗における電流-電圧特性に基づいて前記発光素子の温度を算出することができる。 In the first and second aspects, the temperature calculation unit uses the current-voltage characteristics at the pn junction of the light emitting element when the current flowing through the light emitting element is a small current of a predetermined value or less. The temperature of the light emitting element can be calculated based on the current-voltage characteristics of the resistance of the light emitting element when the current flowing through the light emitting element is a large current equal to or greater than a predetermined value. .
 また、前記発光素子としては、LEDを典型例として例示することができる。 In addition, as the light emitting element, an LED can be exemplified as a typical example.
 本発明によれば、このようにLEDのような発光素子を用いたアニール装置において、発光素子のpn接合における電流-電圧特性または発光素子のバルク抵抗およびコンタクト抵抗等の抵抗における電流-電圧特性に基づいて温度算出部により発光素子の温度を算出し、その算出した温度が所定値を超えたときにインターロック部が給電を停止する信号を出すので、発光素子の温度を迅速にかつ高精度で把握して、適切に発光素子の過熱を防止することができる。 According to the present invention, in such an annealing apparatus using a light emitting element such as an LED, the current-voltage characteristic at the pn junction of the light emitting element or the current-voltage characteristic at the resistance of the light emitting element such as bulk resistance and contact resistance is obtained. Based on this, the temperature calculation unit calculates the temperature of the light emitting element, and when the calculated temperature exceeds a predetermined value, the interlock unit issues a signal to stop power feeding, so the temperature of the light emitting element can be quickly and accurately determined. It is possible to grasp and appropriately prevent overheating of the light emitting element.
 また、多数の発光素子に給電した際の電流-電圧特性から計算により温度を推定するので、多数の発光素子の平均値として温度を把握することができる。このため、センサーを設ける場合よりも高精度の温度検出を行うことができる。 Also, since the temperature is estimated by calculation from the current-voltage characteristics when power is supplied to a large number of light emitting elements, the temperature can be grasped as an average value of the large number of light emitting elements. For this reason, temperature detection can be performed with higher accuracy than when a sensor is provided.
本発明の一実施形態に係るアニール装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the annealing apparatus which concerns on one Embodiment of this invention. 図1のアニール装置の加熱源を拡大して示す断面図である。It is sectional drawing which expands and shows the heating source of the annealing apparatus of FIG. 図1のアニール装置のLEDへ給電する部分を拡大して示す断面図である。It is sectional drawing which expands and shows the part electrically fed to LED of the annealing apparatus of FIG. 図1のアニール装置のLEDアレイの具体的なLEDの配列および給電手法を示す図である。It is a figure which shows the specific LED arrangement | sequence and electric power feeding method of the LED array of the annealing apparatus of FIG. 図1のアニール装置のLEDの接続形態を説明するための図である。It is a figure for demonstrating the connection form of LED of the annealing apparatus of FIG. 図1のアニール装置の加熱源を示す底面図である。It is a bottom view which shows the heating source of the annealing apparatus of FIG. ウエハ加熱の際の設定温度とLEDへ供給されるパワーとの関係を示す図である。It is a figure which shows the relationship between the preset temperature at the time of wafer heating, and the power supplied to LED. LEDの電流と電圧を示す図である。It is a figure which shows the electric current and voltage of LED. LEDに温度が上昇しないように各種値のパルス電流を流し、その時の電圧を実測して得たI-V特性を示す図である。It is a figure which shows the IV characteristic obtained by flowing the pulse current of various values so that temperature may not rise to LED, and measuring the voltage at that time. LEDにおける電流-電圧特性をpn接合寄与分と抵抗成分寄与分とで分けて示す図である。FIG. 4 is a diagram showing current-voltage characteristics of an LED, divided into pn junction contribution and resistance component contribution. 図10の低電流部分を拡大して示す図である。It is a figure which expands and shows the low current part of FIG.
発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION
 以下、添付図面を参照しながら本発明の実施形態について説明する。ここでは、表面に不純物が注入されたウエハをアニールするためのアニール装置を例にとって説明する。
 図1は本発明の一実施形態に係るアニール装置の概略構成を示す断面図、図2は図1のアニール装置の加熱源を拡大して示す断面図、図3は図1のアニール装置のLEDへ給電する部分を拡大して示す断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Here, an example of an annealing apparatus for annealing a wafer having impurities implanted on the surface will be described.
1 is a cross-sectional view showing a schematic configuration of an annealing apparatus according to an embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view showing a heating source of the annealing apparatus of FIG. 1, and FIG. 3 is an LED of the annealing apparatus of FIG. It is sectional drawing which expands and shows the part which supplies electric power to.
 このアニール装置100は、気密に構成され、ウエハWが搬入される処理室1を有している。処理室1は、ウエハWが配置される円柱状のアニール処理部1aとアニール処理部1aの外側にドーナツ状に設けられたガス拡散部1bを有している。ガス拡散部1bはアニール処理部1aよりも高さが高くなっており、処理室1の断面はH状をなしている。処理室1のガス拡散部1bはチャンバー2により規定されている。チャンバー2の上壁2aおよび底壁2bにはアニール処理部1aに対応する円形の孔3a,3bが形成されており、これら孔3a,3bにはそれぞれ高熱伝導性材料であるAlまたはAl合金からなる冷却部材4a,4bが嵌め込まれている。冷却部材4a,4bはフランジ部5a,5bを有し、フランジ部5a,5bはウルテム等の熱絶縁体80を介してチャンバー2の上壁2aおよび底壁2bに支持されている。熱絶縁体80は、後述するようにフランジ部5a、5bが例えば-50℃、あるいはこれ以下に冷却されることから、チャンバー2からの熱の入りを最小にするために設けられている。フランジ部5a,5bと熱絶縁体80との間、および熱絶縁体80と上壁2aおよび底壁2bとの間にはシール部材6が介在され、これらの間が密着されている。さらに冷却部材4a、4bの大気に晒される部分は断熱材で覆われている。 The annealing apparatus 100 is hermetically configured and has a processing chamber 1 into which a wafer W is loaded. The processing chamber 1 includes a columnar annealing processing unit 1a in which the wafer W is disposed and a gas diffusion unit 1b provided in a donut shape outside the annealing processing unit 1a. The gas diffusion portion 1b is higher in height than the annealing treatment portion 1a, and the cross section of the processing chamber 1 is H-shaped. The gas diffusion portion 1 b of the processing chamber 1 is defined by the chamber 2. Circular holes 3a and 3b corresponding to the annealed portion 1a are formed in the upper wall 2a and the bottom wall 2b of the chamber 2, and these holes 3a and 3b are made of Al or Al alloy, which is a high thermal conductivity material, respectively. The cooling members 4a and 4b are fitted. The cooling members 4a and 4b have flange portions 5a and 5b, and the flange portions 5a and 5b are supported by the upper wall 2a and the bottom wall 2b of the chamber 2 via a thermal insulator 80 such as Ultem. The thermal insulator 80 is provided in order to minimize the heat input from the chamber 2 because the flange portions 5a and 5b are cooled to, for example, −50 ° C. or lower as described later. Seal members 6 are interposed between the flange portions 5a and 5b and the thermal insulator 80, and between the thermal insulator 80 and the upper wall 2a and the bottom wall 2b, and are in close contact with each other. Further, portions of the cooling members 4a and 4b that are exposed to the atmosphere are covered with a heat insulating material.
 処理室1には、アニール処理部1a内でウエハWを水平に支持する支持部材7が設けられており、この支持部材7は図示しない昇降機構によりウエハWの受け渡しの際に昇降可能となっている。また、チャンバー2の天壁には、図示しない処理ガス供給機構から所定の処理ガスが導入される処理ガス導入口8が設けられ、この処理ガス導入口8には処理ガスを供給する処理ガス配管9が接続されている。また、チャンバー2の底壁には排気口10が設けられ、この排気口10には図示しない排気装置に繋がる排気配管11が接続されている。さらに、チャンバー2の側壁には、チャンバー2に対するウエハWの搬入出を行うための搬入出口12が設けられており、この搬入出口12はゲートバルブ13により開閉可能となっている。処理室1には、支持部材7上に支持されたウエハWの温度を測定するための温度センサー14が設けられている。また、温度センサー14はチャンバー2の外側の計測部15に接続されており、この計測部15から後述するプロセスコントローラ70に温度検出信号が出力されるようになっている。 The processing chamber 1 is provided with a support member 7 for horizontally supporting the wafer W in the annealing processing section 1a. The support member 7 can be moved up and down when the wafer W is transferred by a lifting mechanism (not shown). Yes. Further, a processing gas introduction port 8 into which a predetermined processing gas is introduced from a processing gas supply mechanism (not shown) is provided on the top wall of the chamber 2, and a processing gas pipe for supplying the processing gas to the processing gas introduction port 8. 9 is connected. An exhaust port 10 is provided on the bottom wall of the chamber 2, and an exhaust pipe 11 connected to an exhaust device (not shown) is connected to the exhaust port 10. Further, a loading / unloading port 12 for loading / unloading the wafer W into / from the chamber 2 is provided on the side wall of the chamber 2, and the loading / unloading port 12 can be opened and closed by a gate valve 13. The processing chamber 1 is provided with a temperature sensor 14 for measuring the temperature of the wafer W supported on the support member 7. The temperature sensor 14 is connected to a measurement unit 15 outside the chamber 2, and a temperature detection signal is output from the measurement unit 15 to a process controller 70 described later.
 冷却部材4a,4bの支持部材7に支持されたウエハWに対向する面には、支持部材7に支持されているウエハWに対応するように円形の凹部16a,16bが形成されている。そして、この凹部16a,16b内には、冷却部材4a,4bに直接接触するように発光ダイオード(LED)を搭載した加熱源17a,17bが配置されている。 Circular recesses 16 a and 16 b are formed on the surfaces of the cooling members 4 a and 4 b facing the wafer W supported by the support member 7 so as to correspond to the wafer W supported by the support member 7. And in this recessed part 16a, 16b, the heat sources 17a and 17b which mounted the light emitting diode (LED) are arrange | positioned so that the cooling members 4a and 4b may be directly contacted.
 冷却部材4a,4bのウエハWと対向する面には、凹部16a,16bを覆うように、加熱源17a,17bに搭載されたLEDからの光をウエハW側に透過する光透過部材18a,18bがねじ止めされている。光透過部材18a,18bはLEDから射出される光を効率良く透過する材料が用いられ、例えば石英が用いられる。 Light transmitting members 18a and 18b that transmit light from LEDs mounted on the heating sources 17a and 17b to the wafer W side so as to cover the recesses 16a and 16b on the surfaces of the cooling members 4a and 4b facing the wafer W. Is screwed. For the light transmitting members 18a and 18b, a material that efficiently transmits light emitted from the LED is used, and for example, quartz is used.
 冷却部材4a,4bには冷却媒体流路21a,21bが設けられており、その中に、冷却部材4a,4bを0℃以下、例えば-50℃程度に冷却することができる液体状の冷却媒体、例えばフッ素系不活性液体(商品名フロリナート、ガルデン等)が通流される。冷却部材4a,4bの冷却媒体流路21a,21bには冷却媒体供給配管22a,22bと、冷却媒体排出配管23a,23bが接続されている。これにより、冷却媒体を冷却媒体流路21a,21bに循環させて冷却部材4a,4bを冷却することが可能となっている。 Cooling medium channels 21a and 21b are provided in the cooling members 4a and 4b, and a liquid cooling medium capable of cooling the cooling members 4a and 4b to 0 ° C. or less, for example, about −50 ° C. therein. For example, a fluorine-based inert liquid (trade name: Fluorinert, Galden, etc.) is passed. Cooling medium supply pipes 22a and 22b and cooling medium discharge pipes 23a and 23b are connected to the cooling medium flow paths 21a and 21b of the cooling members 4a and 4b. As a result, the cooling medium can be circulated through the cooling medium flow paths 21a and 21b to cool the cooling members 4a and 4b.
 なお、チャンバー2には冷却水流路25が形成されており、この中に常温の冷却水が通流するようになっており、これによりチャンバー2の温度が過度に上昇することを防止している。 Note that a cooling water flow path 25 is formed in the chamber 2, and normal temperature cooling water flows therethrough, thereby preventing the temperature of the chamber 2 from rising excessively. .
 加熱源17a,17bは、図2に拡大して示すように、絶縁性を有する高熱伝導性材料、典型的にはAlNセラミックスからなる支持体32と、支持体32に電極35を介して支持された多数のLED33と、支持体32の裏面側に接合された高熱伝導性材料であるCuで構成された熱拡散部材50とで構成された複数のLEDアレイ34を有している。支持体32には例えば銅に金メッキした導電性の高い電極35がパターン形成されており、電極35にLED33が熱伝導性の高い接合材である銀ペースト56により取り付けられている。また、支持体32と熱拡散部材50とは信頼性の観点から、高熱伝導性接合材であるハンダ57により接合されている。また、LEDアレイ34の裏面側の熱拡散部材50と冷却部材4a(4b)とは、これらの間に高熱伝導性接合材であるシリコングリース58が介在された状態でねじ止めされている。このような構成により、冷却媒体から熱伝導率の高い冷却部材4a,4bに高効率で伝達した冷熱が、全面で接触している熱伝導性が高い熱拡散部材50、支持体32、電極35を介してLED33に到達する。すなわち、LED33で発生した熱を、銀ペースト56、電極35、支持体32、ハンダ57、熱拡散部材50、シリコングリース58という熱伝導性の良好な経路を通って冷却媒体で冷却されている冷却部材4a,4bに極めて効果的に逃がすことができる。 As shown in an enlarged view in FIG. 2, the heating sources 17 a and 17 b are supported by an insulating high heat conductive material, typically a support 32 made of AlN ceramics, and supported by the support 32 via an electrode 35. In addition, the LED array 34 includes a plurality of LEDs 33 and a heat diffusing member 50 made of Cu, which is a highly thermally conductive material bonded to the back side of the support 32. The support 32 is formed with a pattern of a highly conductive electrode 35, for example, gold-plated on copper, and the LED 33 is attached to the electrode 35 with a silver paste 56 which is a bonding material having a high thermal conductivity. Moreover, the support body 32 and the thermal diffusion member 50 are joined by solder 57 which is a high thermal conductive joining material from the viewpoint of reliability. Further, the heat diffusion member 50 and the cooling member 4a (4b) on the back surface side of the LED array 34 are screwed together with a silicon grease 58 as a high thermal conductive bonding material interposed therebetween. With such a configuration, the cooling heat transferred from the cooling medium to the cooling members 4a and 4b having high thermal conductivity with high efficiency is in contact with the entire surface, the heat diffusion member 50 having high heat conductivity, the support 32, and the electrode 35. The LED 33 is reached via In other words, the heat generated by the LED 33 is cooled by the cooling medium through a path with good thermal conductivity such as the silver paste 56, the electrode 35, the support 32, the solder 57, the heat diffusion member 50, and the silicon grease 58. The members 4a and 4b can escape very effectively.
 一つのLED33と隣接するLED33の電極35との間はワイヤ36にて接続されている。また、支持体32の表面の電極35が設けられていない部分には例えばTiOを含有する反射層59が設けられており、LED33から支持体32側に射出された光を反射させて有効に取り出すことができるようになっている。反射層59の反射率は0.8以上であることが好ましい。 A wire 36 is connected between one LED 33 and the electrode 35 of the adjacent LED 33. Further, a reflective layer 59 containing, for example, TiO 2 is provided on the surface of the support 32 where the electrode 35 is not provided, and the light emitted from the LED 33 toward the support 32 is reflected effectively. It can be taken out. The reflectance of the reflective layer 59 is preferably 0.8 or more.
 隣接するLEDアレイ34の間には反射板55が設けられており、これによりLEDアレイ34の全周が反射板55に囲まれた状態となっている。反射板55としては例えばCu板に金メッキしたものが用いられ、横方向に向かう光を反射して有効に取り出すことができるようになっている。 A reflecting plate 55 is provided between the adjacent LED arrays 34, so that the entire circumference of the LED array 34 is surrounded by the reflecting plate 55. As the reflection plate 55, for example, a Cu plate that is gold-plated is used so that light traveling in the lateral direction can be reflected and effectively extracted.
 個々のLED33は例えば透明樹脂からなるレンズ層20で覆われている。レンズ層20はLED33から射出する光を取り出す機能を有するものであり、LED33の側面からの光も取り出すことができる。このレンズ層20の形状はレンズ機能を有すれば特に限定されるものではないが、製造の容易性および効率を考慮すると、略半球状が好ましい。このレンズ層20は、屈折率の高いLED33と屈折率が1の空気との間の屈折率を有しており、LED33から空気中に光が直接射出されることによる全反射を緩和するために設けられる。 Each LED 33 is covered with a lens layer 20 made of, for example, a transparent resin. The lens layer 20 has a function of extracting light emitted from the LED 33 and can also extract light from the side surface of the LED 33. The shape of the lens layer 20 is not particularly limited as long as it has a lens function. However, considering the ease of manufacturing and efficiency, a substantially hemispherical shape is preferable. This lens layer 20 has a refractive index between the LED 33 having a high refractive index and air having a refractive index of 1, in order to alleviate total reflection caused by direct emission of light from the LED 33 into the air. Provided.
 支持体32と光透過部材18a,18bとの間の空間は真空引きされており、光透過部材18a,18bの両側(上面と下面)が真空状態となる。したがって、光透過部材18a,18bが大気状態と真空状態との仕切りとして機能する場合よりも薄く構成することができる。 The space between the support 32 and the light transmission members 18a and 18b is evacuated, and both sides (upper surface and lower surface) of the light transmission members 18a and 18b are in a vacuum state. Therefore, the light transmitting members 18a and 18b can be made thinner than the case where the light transmitting members 18a and 18b function as a partition between the atmospheric state and the vacuum state.
 加熱源17aのLED33へは電源部60から給電線61a、給電部材41および給電棒38(図3参照)を介して給電され、加熱源17bのLED33へは電源部60から給電線61b、給電部材41および給電棒38を介して給電される。給電線61aおよび給電線61bには、給電制御部42aおよび42bが接続されている。 The LED 33 of the heating source 17a is fed with power from the power supply unit 60 through the feeding line 61a, the feeding member 41 and the feeding rod 38 (see FIG. 3), and the LED 33 of the heating source 17b is fed from the power supply unit 60 with the feeding line 61b and feeding member. Power is supplied through 41 and the power supply rod 38. Feed control units 42a and 42b are connected to the feed line 61a and the feed line 61b.
 図3に拡大して示すように、熱拡散部材50および支持体32にそれぞれ形成されたホール50aおよび32aには給電電極51が挿入されており、この給電電極51が電極35にハンダ付けにより接続されている。この給電電極51には冷却部材4a,4bの内部を通って延びる電極棒38が取り付けポート52において接続されている。電極棒38は、LEDアレイ34毎に複数個、例えば8個(図1、3では2個のみ図示)設けられており、電極棒38は絶縁材料からなる保護カバー38aで覆われている。電極棒38は、冷却部材4aの上端部および冷却部材4bの下端部まで延び、そこで受け部材39がねじ止めされている。受け部材39と冷却部材4a,4bとの間には絶縁リング40が介装されている。ここで、保護カバー38aと冷却部材4a(4b)との間、保護カバー38aと電極棒38との間の隙間はろう付けされており、いわゆるフィードスルーを形成している。 As shown in FIG. 3 in an enlarged manner, a feeding electrode 51 is inserted into holes 50a and 32a formed in the thermal diffusion member 50 and the support body 32, respectively, and this feeding electrode 51 is connected to the electrode 35 by soldering. Has been. An electrode rod 38 extending through the inside of the cooling members 4 a and 4 b is connected to the power supply electrode 51 at an attachment port 52. A plurality of, for example, eight electrode bars 38 are provided for each LED array 34 (only two are shown in FIGS. 1 and 3), and the electrode bars 38 are covered with a protective cover 38a made of an insulating material. The electrode rod 38 extends to the upper end portion of the cooling member 4a and the lower end portion of the cooling member 4b, and the receiving member 39 is screwed there. An insulating ring 40 is interposed between the receiving member 39 and the cooling members 4a and 4b. Here, gaps between the protective cover 38a and the cooling member 4a (4b) and between the protective cover 38a and the electrode rod 38 are brazed to form a so-called feedthrough.
 給電部材41は各電極棒38に取り付けられた受け部材39に接続されている。給電部材41は絶縁材料からなる保護カバー44で覆われている。給電部材41の先端にはポゴピン(スプリングピン)41aが設けられており、この各ポゴピン41aが対応する受け部材39に接触することにより、電源部60から給電線61a、給電部材41、電極棒38、給電電極51および電極35を介して加熱源17aの各LED33に給電され、給電線61b、給電部材41、電極棒38、給電電極51および電極35を介して加熱源17bの各LED33に給電されるようになっている。この場合に、給電制御部42a,42bにより、電源部60により印加された電圧を直流波形の電圧としてLED33に給電する。LEDへの給電は、従来、所定のデューティ比のパルス状の電圧を与えるPWM駆動が一般的であったが、このように直流駆動にすることにより、発熱マージンが向上する。なお直流波形の電圧とは、従来におけるLEDをパルス的にON-OFF駆動する電圧ではなく、常にON状態で駆動する電圧を意味する。 The power supply member 41 is connected to a receiving member 39 attached to each electrode bar 38. The power supply member 41 is covered with a protective cover 44 made of an insulating material. A pogo pin (spring pin) 41 a is provided at the tip of the power supply member 41, and when each pogo pin 41 a comes into contact with the corresponding receiving member 39, the power supply line 61 a, the power supply member 41, and the electrode rod 38 are connected from the power supply unit 60. Power is supplied to each LED 33 of the heating source 17a via the power supply electrode 51 and the electrode 35, and power is supplied to each LED 33 of the heating source 17b via the power supply line 61b, the power supply member 41, the electrode bar 38, the power supply electrode 51 and the electrode 35. It has become so. In this case, the power supply control units 42a and 42b supply the LED 33 with the voltage applied by the power supply unit 60 as a DC waveform voltage. Conventionally, power supply to the LED is generally PWM drive that provides a pulsed voltage with a predetermined duty ratio. However, by using direct current drive in this manner, a heat generation margin is improved. The DC waveform voltage means a voltage that always drives the LED in the ON state, not a voltage that drives the LED on and off in a pulsed manner.
 このようにして給電されることによりLED33が発光し、その光によりウエハWを表裏面から加熱することによりアニール処理が行われる。ポゴピン41aはスプリングにより受け部材39側に付勢されているので、確実に給電部材41と電極棒38のコンタクトをとることができる。 The LED 33 emits light by being fed in this way, and the annealing process is performed by heating the wafer W from the front and back surfaces with the light. Since the pogo pin 41a is urged toward the receiving member 39 by a spring, the power supply member 41 and the electrode bar 38 can be reliably contacted.
 なお、図1には給電部材41の途中までが描かれており、電極棒38、給電電極51やこれらの接続部の構造等は省略している。また、図2には給電電極51が省略されている。 In FIG. 1, the middle of the power supply member 41 is drawn, and the structure of the electrode rod 38, the power supply electrode 51, and the connection portion thereof is omitted. In FIG. 2, the feeding electrode 51 is omitted.
 LEDアレイ34は、図4に示すように六角形状をなしている。LEDアレイ34においては、各LED33に十分な電圧を供給し、しかも給電部分の面積ロスを少なくして、搭載するLED33の数をいかに増加させるかが極めて重要である。ここでは、LEDアレイ34を2等分して2つの領域341、342を形成し、これら領域341、342をそれぞれ3つの給電領域341a、341b、341cおよび342a、342b、342cに分ける。 The LED array 34 has a hexagonal shape as shown in FIG. In the LED array 34, it is extremely important how to supply a sufficient voltage to each LED 33 and reduce the area loss of the power feeding portion to increase the number of LEDs 33 to be mounted. Here, the LED array 34 is equally divided into two regions 341 and 342, and these regions 341 and 342 are divided into three power supply regions 341a, 341b, 341c and 342a, 342b, 342c, respectively.
 これら給電領域に給電するための電極として、領域341側には、3つの負極51a、51b、51cと共通の一つの正極52とが一直線に配列されており、領域342側には、3つの負極53a、53b、53cと共通の一つの正極54とが一直線に配列されている。そして、共通の正極52からは、給電領域341a,341b,342cに給電され、共通の正極54からは給電領域342a,342b,341cに給電されるようになっている。 As electrodes for supplying power to these power supply regions, three negative electrodes 51a, 51b, 51c and one common positive electrode 52 are arranged in a straight line on the region 341 side, and three negative electrodes are disposed on the region 342 side. 53a, 53b, 53c and one common positive electrode 54 are arranged in a straight line. The common positive electrode 52 supplies power to the power supply regions 341a, 341b, and 342c, and the common positive electrode 54 supplies power to the power supply regions 342a, 342b, and 341c.
 各給電領域の複数のLED33は、図5に示すように、シリアルに接続された組が2組パラレルに配置されている。このようにすることにより、LEDの個々のバラツキおよび電圧のばらつきを抑制することができる。 As shown in FIG. 5, the plurality of LEDs 33 in each power feeding area are arranged in parallel in two sets connected in series. By doing in this way, the dispersion | variation in each LED and the dispersion | variation in voltage can be suppressed.
 このような構造のLEDアレイ34は図6に示すように冷却部材4a(4b)上に複数隙間無く配置される。一つのLEDアレイ34には、1000~2000個程度のLED33が搭載される。LED33としては、射出される光の波長が紫外光~近赤外光の範囲、好ましくは0.36~1.0μmの範囲のものが用いられる。このような0.36~1.0μmの範囲の光を射出する材料としてはGaN、GaAs、GaP等をベースとした化合物半導体が例示される。この中では、特に加熱対象として用いられるシリコン製のウエハWに対する吸収率の高い850~970nm付近の放射波長を有するGaAs系の材料からなるものが好ましい。 The LED array 34 having such a structure is arranged on the cooling member 4a (4b) without a plurality of gaps as shown in FIG. In one LED array 34, about 1000 to 2000 LEDs 33 are mounted. As the LED 33, one having a wavelength of emitted light in the range of ultraviolet light to near infrared light, preferably in the range of 0.36 to 1.0 μm is used. Examples of such a material that emits light in the range of 0.36 to 1.0 μm include compound semiconductors based on GaN, GaAs, GaP, and the like. Among these, a material made of a GaAs-based material having a radiation wavelength in the vicinity of 850 to 970 nm, which has a high absorptance with respect to a silicon wafer W used as a heating target, is preferable.
 給電制御部42a,42bには、共通の温度算出部62が接続されている。温度算出部62では、LED33のpn接合における電流-電圧(I-V)特性またはLED33のバルク抵抗およびコンタクト抵抗等の抵抗における電流-電圧(I-V)特性に基づいてLED33の温度を算出する。 A common temperature calculation unit 62 is connected to the power supply control units 42a and 42b. The temperature calculation unit 62 calculates the temperature of the LED 33 based on the current-voltage (IV) characteristics at the pn junction of the LED 33 or the current-voltage (IV) characteristics at the resistance of the LED 33 such as bulk resistance and contact resistance. .
 すなわち、LED33のpn接合におけるI-V特性と、バルク抵抗およびコンタクト抵抗等の抵抗におけるI-V特性は、後述するように温度の関数として表されるので、これらのいずれかを用いることにより、温度を算出することができ、この算出温度によりLED33の温度を推定することができる。 That is, the IV characteristics in the pn junction of the LED 33 and the IV characteristics in the resistance such as the bulk resistance and the contact resistance are expressed as a function of temperature as will be described later. By using either of these, The temperature can be calculated, and the temperature of the LED 33 can be estimated from the calculated temperature.
 温度算出部62にはインターロック部63が接続されている。インターロック部63は、温度算出部62で算出された温度信号を受け取り、その温度が所定の温度を超えたか否かを判断し、所定の温度を超えた場合に、電源部60に給電停止信号を送り、給電を停止してLED33の過熱および破壊を防止するようになっている。すなわち、温度算出部62およびインターロック部63は過熱防止システムとして機能する。 The interlock unit 63 is connected to the temperature calculation unit 62. The interlock unit 63 receives the temperature signal calculated by the temperature calculation unit 62, determines whether or not the temperature exceeds a predetermined temperature, and when the temperature exceeds the predetermined temperature, the power supply unit 60 receives a power supply stop signal. The power supply is stopped to prevent overheating and destruction of the LED 33. That is, the temperature calculation unit 62 and the interlock unit 63 function as an overheat prevention system.
 アニール装置100の各構成部は、図1に示すように、マイクロプロセッサ(コンピュータ)を備えたプロセスコントローラ70に接続されて制御される構成となっている。例えば、給電制御部42a,42bに対する制御指令の送信、駆動系の制御、ガス供給制御等がこのプロセスコントローラ70で行われる。プロセスコントローラ70には、オペレータがアニール装置100を管理するためにコマンドの入力操作等を行うキーボードや、アニール装置100の稼働状況を可視化して表示するディスプレイ等からなるユーザーインターフェース71が接続されている。さらに、プロセスコントローラ70には、アニール装置100で実行される各種処理をプロセスコントローラ70の制御にて実現するための制御プログラムや、処理条件に応じてアニール装置100の各構成部に処理を実行させるためのプログラムすなわち処理レシピを格納することが可能な記憶部72が接続されている。処理レシピはハードディスクのような固定的な記憶媒体に記憶されていてもよいし、CDROM、DVD等の可搬性の記憶媒体に収容された状態で記憶部72の所定位置にセットするようになっていてもよい。さらに、他の装置から、例えば専用回線を介してレシピを適宜伝送させるようにしてもよい。そして、必要に応じて、ユーザーインターフェース71からの指示等にて任意の処理レシピを記憶部72から呼び出してプロセスコントローラ70に実行させることで、プロセスコントローラ70の制御下で、アニール装置100での所望の処理が行われる。 Each component of the annealing apparatus 100 is connected to and controlled by a process controller 70 having a microprocessor (computer), as shown in FIG. For example, the process controller 70 performs transmission of control commands to the power supply control units 42a and 42b, drive system control, gas supply control, and the like. Connected to the process controller 70 is a user interface 71 including a keyboard on which an operator inputs commands for managing the annealing apparatus 100, a display for visualizing and displaying the operating status of the annealing apparatus 100, and the like. . Further, the process controller 70 causes each component of the annealing apparatus 100 to execute processing according to a control program for realizing various processes executed by the annealing apparatus 100 under the control of the process controller 70 and processing conditions. A storage unit 72 capable of storing a program for processing, that is, a processing recipe, is connected. The processing recipe may be stored in a fixed storage medium such as a hard disk, or set in a predetermined position of the storage unit 72 while being stored in a portable storage medium such as a CDROM or DVD. May be. Furthermore, you may make it transmit a recipe suitably from another apparatus via a dedicated line, for example. Then, if necessary, an arbitrary processing recipe is called from the storage unit 72 by an instruction from the user interface 71 and is executed by the process controller 70, so that the desired processing in the annealing apparatus 100 is performed under the control of the process controller 70. Is performed.
 次に、以上のようなアニール装置100におけるアニール処理動作について説明する。
 まず、ゲートバルブ13を開にして搬入出口12からウエハWを搬入し、支持部材7上に載置する。その後、ゲートバルブ13を閉じて処理室1内を密閉状態とし、排気口11を介して図示しない排気装置により処理室1内を排気するとともに、図示しない処理ガス供給機構から処理ガス配管9および処理ガス導入口8を介して所定の処理ガス、例えばアルゴンガスまたは窒素ガスを処理室1内に導入し、処理室1内の圧力を例えば100~10000Paの範囲内の所定の圧力に維持する。
Next, the annealing process operation in the annealing apparatus 100 as described above will be described.
First, the gate valve 13 is opened, the wafer W is loaded from the loading / unloading port 12, and placed on the support member 7. Thereafter, the gate valve 13 is closed to make the inside of the processing chamber 1 hermetically sealed, the inside of the processing chamber 1 is exhausted by an exhaust device (not shown) through the exhaust port 11, and the processing gas pipe 9 and the processing gas are supplied from a processing gas supply mechanism (not shown). A predetermined processing gas such as argon gas or nitrogen gas is introduced into the processing chamber 1 through the gas inlet 8 and the pressure in the processing chamber 1 is maintained at a predetermined pressure in the range of 100 to 10,000 Pa, for example.
 一方、冷却部材4a,4bは、冷却媒体流路21a,21bに液体状の冷却媒体、例えばフッ素系不活性液体(商品名フロリナート、ガルデン等)を循環させ、LED素子33を0℃以下の所定の温度、好ましくは-50℃以下の温度に冷却される。 On the other hand, the cooling members 4a and 4b circulate a liquid cooling medium, for example, a fluorine-based inert liquid (trade name Fluorinert, Galden, etc.) in the cooling medium flow paths 21a and 21b, and cause the LED element 33 to have a predetermined temperature of 0 ° C. The temperature is preferably cooled to a temperature of −50 ° C. or lower.
 そして、電源部60から給電線61a、給電部材41、電極棒38、給電電極51および電極35を介して加熱源17aの各LED33に給電され、給電線61b、給電部材41、電極棒38、給電電極51および電極35を介して加熱源17bの各LED33に給電され、LED33を発光させる。 Then, power is supplied from the power source 60 to each LED 33 of the heating source 17a through the power supply line 61a, the power supply member 41, the electrode bar 38, the power supply electrode 51, and the electrode 35, and the power supply line 61b, the power supply member 41, the electrode bar 38, power supply Power is supplied to each LED 33 of the heating source 17b through the electrode 51 and the electrode 35, and the LED 33 is caused to emit light.
 LED33からの光は、直接または一旦反射層59で反射してからレンズ層20を透過し、さらに光透過部材18a,18bを透過し、電子とホールの再結合による電磁輻射を利用して極めて高速でウエハWを加熱する。 The light from the LED 33 is directly or once reflected by the reflection layer 59 and then transmitted through the lens layer 20 and further through the light transmission members 18a and 18b. The electromagnetic radiation due to the recombination of electrons and holes is used for extremely high speed. The wafer W is heated.
 ここで、LED33は、常温に保持した場合には、LED33自身の発熱等によりその発光量が低下するが、本実施形態では、冷却部材4a,4bに冷却媒体を通流させ、図2に示すように、冷却部材4a,4b、熱拡散部材50、支持体32、電極35を介してLED33を冷却するので、LED33を効率的に冷却することができる。 Here, when the LED 33 is kept at a normal temperature, the light emission amount of the LED 33 is decreased due to the heat generated by the LED 33 itself. In this embodiment, a cooling medium is passed through the cooling members 4a and 4b, as shown in FIG. Thus, since LED33 is cooled via the cooling members 4a and 4b, the heat-diffusion member 50, the support body 32, and the electrode 35, LED33 can be cooled efficiently.
 しかしながら、このようにLED33を冷却する場合であっても、LED33に過度の電流が流れること等により、LED33が過熱し、LED33の効率が極端に低下したり、LED33が破壊したりすることがある。例えば、本実施形態では、図7に示すように、LED33に対して直流状の電圧を印加してウエハWを加熱するが、ウエハWが最高温度に到達する直前にLED33へ供給されるパワー(すなわちLED電流)が最も上昇し、その時に最もLED33の温度が上昇する。したがって、この時にLED33の温度を測定する必要がある。 However, even when the LED 33 is cooled in this manner, the LED 33 may be overheated due to excessive current flowing through the LED 33, and the efficiency of the LED 33 may be extremely reduced or the LED 33 may be destroyed. . For example, in the present embodiment, as shown in FIG. 7, a DC voltage is applied to the LED 33 to heat the wafer W, but the power supplied to the LED 33 immediately before the wafer W reaches the maximum temperature ( That is, the LED current increases most, and the temperature of the LED 33 increases most at that time. Therefore, it is necessary to measure the temperature of the LED 33 at this time.
 従来は、このようなLED33の温度を測定するために、LED近傍の温度を例えば熱電対等の温度センサーで検知していたが、この場合には、高精度で温度測定することができず、しかもLEDが過熱してからその温度を検知するまでのタイミングは故障破壊を起こすタイミングよりも遅くなってしまう。 Conventionally, in order to measure the temperature of such an LED 33, the temperature in the vicinity of the LED has been detected by a temperature sensor such as a thermocouple. However, in this case, the temperature cannot be measured with high accuracy, and The timing from when the LED is overheated until the temperature is detected is later than the timing at which failure destruction occurs.
 これに対して、本実施形態では、温度算出部62が、LED33のI-V特性に関するデータを給電制御部42a,42bから受け取り、これに基づいて温度を推定し、この推定温度に基づいてインターロック部63が設定温度を超えた場合に電源部60からの給電を遮断する信号を発する。これにより、温度センサーを用いてLEDの温度を測定する場合よりも、高精度でかつ迅速にLEDの温度を把握することができ、これに基づいてインターロックをかけることができるので、適切にLED33の過熱防止を行うことができる。 On the other hand, in the present embodiment, the temperature calculation unit 62 receives data related to the IV characteristics of the LED 33 from the power supply control units 42a and 42b, estimates the temperature based on the data, and based on the estimated temperature, calculates the interface. When the lock unit 63 exceeds the set temperature, a signal for cutting off the power supply from the power supply unit 60 is generated. As a result, the temperature of the LED can be grasped more accurately and quickly than when the temperature of the LED is measured using a temperature sensor, and the interlock can be applied based on this, so that the LED 33 can be appropriately used. Can be prevented from overheating.
 この際の温度算出について具体的に説明する。
 LEDのI-V特性は、pn接合におけるI-V特性と、LEDのバルク抵抗およびコンタクト抵抗が持つI-V特性による。そして、1個のLEDの電圧は、図8に示すように、pn接合の電圧をVとし、バルク抵抗およびコンタクト抵抗等の抵抗に対応する電圧をVとした場合、V=V+Vで表すことができる。
The temperature calculation at this time will be specifically described.
The IV characteristics of the LED depend on the IV characteristics at the pn junction and the IV characteristics of the bulk resistance and contact resistance of the LED. Then, the voltage of a single LED, as illustrated in FIG. 8, the voltage of the pn junction and V D, if the voltage corresponding to the bulk resistance and the resistance of the contact resistance or the like was V R, V = V D + V R can be represented.
 pn接合におけるI-V特性は、以下の(1)式で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 ここで、kはボルツマン定数、Tは絶対温度、Egはバンドギャップ、Isは逆方向漏れ電流、qは1個の電子の電荷量である。
 Isは以下の(2)式で表すことができ、これを上記(1)式に代入すると、Vは以下の(3)式に示すように表される。
Figure JPOXMLDOC01-appb-M000002
The IV characteristic in the pn junction can be expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Here, k is a Boltzmann constant, T is an absolute temperature, Eg is a band gap, Is is a reverse leakage current, and q is a charge amount of one electron.
Is can be expressed by the following equation (2). When this is substituted into the above equation (1), V D is expressed as shown in the following equation (3).
Figure JPOXMLDOC01-appb-M000002
 一方、バルク抵抗およびコンタクト抵抗のI-V特性は、Vを表す式として以下の(4)式で表される。
Figure JPOXMLDOC01-appb-M000003
 ただし、Eaは不純物準位の活性化エネルギーである。
On the other hand, I-V characteristics of the bulk resistance and the contact resistance is expressed by the following equation (4) as an expression representing the V R.
Figure JPOXMLDOC01-appb-M000003
However, Ea is the activation energy of the impurity level.
 したがって、全体の電圧Vは、以下の(5)式で表すことができる。
Figure JPOXMLDOC01-appb-M000004
Therefore, the entire voltage V can be expressed by the following equation (5).
Figure JPOXMLDOC01-appb-M000004
 しかし、この(5)式から直接温度Tを導くことは困難である。そこで、まず、上記(5)式を電流Iで微分してI-V特性の傾きを求めると以下の(6)式のようになる。
Figure JPOXMLDOC01-appb-M000005
 この(6)式からわかるように、Iが小さいとき、pn接合部分の寄与が大きく、Iが大きいとき、抵抗成分の寄与が大きい。このことは、図9からも把握することができる。図9は、LED33に温度が上昇しないように各種値のパルス電流を流し、その時の電圧を実測して得たI-V特性であり、温度が300Kと420Kの2通りが示されている。この図9に示される値に上記(5)式をフィッティングさせ、上記(3)式と上記(4)式におけるI-V特性とを分けてグラフ化したものが図10であり、また図11は、図10の微小電流部分を拡大して示すグラフである。このように実測値に(5)式をフィッティングさせて、(3)式、(4)式中のある定数I、Rを求めることもできる。これらの図から、4mA以下の微小電流ではpn接合におけるI-V特性の傾きは抵抗成分におけるI-V特性の傾きに比べてはるかに大きく、200mA以上になると抵抗成分におけるI-V特性の傾きはpn接合におけるI-V特性の傾きに比べてはるかに大きいことがわかる。
However, it is difficult to derive the temperature T directly from the equation (5). Therefore, when the slope of the IV characteristic is obtained by differentiating the above equation (5) with the current I, the following equation (6) is obtained.
Figure JPOXMLDOC01-appb-M000005
As can be seen from the equation (6), when I is small, the contribution of the pn junction portion is large, and when I is large, the contribution of the resistance component is large. This can also be understood from FIG. FIG. 9 shows IV characteristics obtained by flowing various values of pulse current to the LED 33 so that the temperature does not rise and actually measuring the voltage at that time, and shows two temperatures of 300K and 420K. FIG. 10 is a graph in which the above equation (5) is fitted to the values shown in FIG. 9 and the IV characteristics in the above equations (3) and (4) are divided into graphs. These are the graphs which expand and show the minute electric current part of FIG. Thus, the constants I 0 and R 0 in the formulas (3) and (4) can be obtained by fitting the formula (5) to the actually measured values. From these figures, the slope of the IV characteristic at the pn junction is much larger than the slope of the IV characteristic at the resistance component at a very small current of 4 mA or less, and the slope of the IV characteristic at the resistance component at 200 mA or more. Is much larger than the slope of the IV characteristic in the pn junction.
 このことを利用して、(a)低電流を用いてpn接合と温度との関係によりLED33の温度を求める方法と、(b)大電流を用いてバルク抵抗等の抵抗成分と温度との関係を利用してLED33の温度を求める方法の2種類の方法を採用することができる。 Utilizing this, (a) a method for obtaining the temperature of the LED 33 from the relationship between the pn junction and the temperature using a low current, and (b) a relationship between the resistance component such as a bulk resistance and the temperature using a large current. Two types of methods of obtaining the temperature of the LED 33 using the above can be adopted.
 上記(a)の方法は、4mA以下の微小電流のとき、抵抗による電圧変化よりもpn接合による電圧変化が大きいので、抵抗による成分は温度推定には無視できるものとする。このとき、電圧Vは以下の(7)式で表すことができる。
Figure JPOXMLDOC01-appb-M000006
In the method (a), since the voltage change due to the pn junction is larger than the voltage change due to the resistance at a very small current of 4 mA or less, the resistance component can be ignored for temperature estimation. At this time, the voltage V can be expressed by the following equation (7).
Figure JPOXMLDOC01-appb-M000006
 ここで、同じ温度で異なる2種類の電圧電流(V、IとV、I)を流したときの電圧差ΔV(=V-V)は、以下の(8)式で与えられる。
Figure JPOXMLDOC01-appb-M000007
 (8)式中、ηは理想因子であり、理想的には1であるが、プロセス、構造により変化する値である。
 上記(8)式において、kおよびqは既知であり、ηはデバイス構造で決定されるので、(η×k)/qをKとすると、温度Tは、以下の(9)式で求めることができる。
Figure JPOXMLDOC01-appb-M000008
Here, the voltage difference ΔV (= V H −V L ) when two different voltage currents (V H , I H and V L , I L ) are passed at the same temperature is expressed by the following equation (8). Given.
Figure JPOXMLDOC01-appb-M000007
In equation (8), η is an ideal factor, ideally 1, but a value that varies depending on the process and structure.
In the above equation (8), k and q are known, and η is determined by the device structure. Therefore, when (η × k) / q is K, the temperature T is obtained by the following equation (9). Can do.
Figure JPOXMLDOC01-appb-M000008
 また、上記(b)の方法は、200mA以上の大電流のとき、I-V特性の傾きは、pn接合によるものよりも抵抗成分によるもののほうが十分に大きいから、pn接合による成分は温度推定には無視できるものとする。このとき、上記(6)式に基づいて、以下の(10)式が成り立つ。
Figure JPOXMLDOC01-appb-M000009
 ここで、同じ温度で異なる2種類の電圧電流(V、IとV、I)を流し、V-V=ΔV、I-I=ΔIとすると、上記(10)式から、温度Tは以下の(11)式で表すことができる。
Figure JPOXMLDOC01-appb-M000010
In the method (b), when the current is 200 mA or more, the slope of the IV characteristic is sufficiently larger for the resistance component than for the pn junction. Can be ignored. At this time, the following expression (10) is established based on the above expression (6).
Figure JPOXMLDOC01-appb-M000009
Here, when two different voltage currents (V H , I H and V L , I L ) are flown at the same temperature, and V H −V L = ΔV and I H −I L = ΔI, the above (10) From the equation, the temperature T can be expressed by the following equation (11).
Figure JPOXMLDOC01-appb-M000010
 つまり、上記(a)の場合も(b)の場合も、LEDを加熱中に2種類の電流を流すことにより温度Tを求める。この温度算出は、温度算出部62にて行われ、この温度算出結果を受け取ったインターロック部63が、その値が所定の値を超えたことを検出した場合に、異常過熱と判断して、電源部60からの給電を停止する。 That is, in both cases (a) and (b), the temperature T is obtained by flowing two types of current while heating the LED. This temperature calculation is performed by the temperature calculation unit 62, and when the interlock unit 63 that has received the temperature calculation result detects that the value exceeds a predetermined value, it is determined as abnormal overheating, Power supply from the power supply unit 60 is stopped.
ここで実際のアニール装置100におけるLED温度の測定としては、給電制御部42a(42b)は、例えば図7で示されるようなパワー(電流)をLED33に放出する。このとき温度算出部62は、図7において設定温度が最も高くなる領域付近(図中の円Sで囲まれた領域)における微小時間Δt=t-tの時刻tとtとで上記2種類の電流、電圧を測定する。微小時間は少ないほどよいが、5~100msecである。温度算出部62は、ここで得られたデータに基づき、この場合の電流値は200mA以上であるので、(11)式よりLED33の温度を算出し、その値が所定の値を超えていた場合にはインターロック部63がインターロックをかけることになる。 Here, as the measurement of the LED temperature in the actual annealing apparatus 100, the power supply control unit 42a (42b) emits power (current) as shown in FIG. A temperature calculation unit 62 at this time, the time t 1 and t 2 minute time in becomes highest near the region set temperature (the encircled area S in FIG.) Δt = t 2 -t 1 in FIG. 7 The above two types of current and voltage are measured. The smaller the minute time, the better, but 5 to 100 msec. Since the current value in this case is 200 mA or more based on the data obtained here, the temperature calculation unit 62 calculates the temperature of the LED 33 from the equation (11), and the value exceeds a predetermined value. In this case, the interlock unit 63 applies the interlock.
 以上の説明において、温度算出は1つのLED33についてのみ行われているが、多数のLED33の集合体例えばLEDアレイ34ごとに温度を算出することもできる。この場合にはm個の直列のLED33がn個並列に接続されていると考える。ここでLEDアレイ34にかかる電圧をVmn、流れる電流をImnとして、全てのLED33が平均化され均一な素子として扱うと、1個当たりのLED33にかかる電圧はVmn/m、電流はImn/nとなる。さらに上記した2種類の電圧電流をそれぞれVmnH、ImnHとVmnL、ImnLとし、VmnH-VmnL=ΔVmn、ImnH-ImnL=ΔImnとする。すると微小電流および大電流が流れる場合の温度算出式(9)、(11)におけるΔV、ΔI、I、IはそれぞれΔVmn/m、ΔImn/n、ImnH/n、ImnL/nとなり、これらの式に代入すると、以下の(9′)式および(11′)式に示すようになる。
Figure JPOXMLDOC01-appb-M000011
 したがって、これら(9′)式および(11′)式から、LEDアレイ34ごとの温度を算出することができる。また冷却部材42a(42b)上に配置された多数のLEDアレイ34のうち、距離の離れた複数個所において上記に基づき温度を算出し、さらに詳細な加熱源17a(17b)全体の温度分布を求めることもできる。
In the above description, the temperature calculation is performed for only one LED 33, but the temperature can also be calculated for each group of LEDs 33, for example, the LED array 34. In this case, it is considered that m serial LEDs 33 are connected in parallel. Here, assuming that the voltage applied to the LED array 34 is V mn and the flowing current is I mn , and all the LEDs 33 are averaged and treated as a uniform element, the voltage applied to each LED 33 is V mn / m, and the current is I mn / n. Further, the above two types of voltage / current are V mnH , I mnH and V mnL , I mnL , respectively, and V mnH −V mnL = ΔV mn and I mnH −I mnL = ΔI mn . Then the temperature calculation formula in the case of small current and a large current flows (9), [Delta] V in (11), ΔI, I H , each I L ΔV mn / m, ΔI mn / n, I mnH / n, I mnL / When n is substituted into these equations, the following equations (9 ′) and (11 ′) are obtained.
Figure JPOXMLDOC01-appb-M000011
Therefore, the temperature for each LED array 34 can be calculated from these equations (9 ′) and (11 ′). In addition, among a large number of LED arrays 34 arranged on the cooling member 42a (42b), the temperature is calculated based on the above at a plurality of locations away from each other, and a more detailed temperature distribution of the entire heating source 17a (17b) is obtained. You can also
 本実施形態では、このようにLED33の温度によって変化する、LED33のpn接合における電流-電圧特性またはLED33のバルク抵抗およびコンタクト抵抗等の抵抗における電流-電圧特性に基づいて温度算出部62によりLED33の温度を算出し、その算出した温度が所定値を超えたときにインターロック部63が給電を停止する信号を出すので、LED33の温度を迅速にかつ高精度で把握して、適切にLED33の過熱を防止することができる。 In the present embodiment, the temperature calculator 62 determines the current of the LED 33 based on the current-voltage characteristics at the pn junction of the LED 33 or the current-voltage characteristics of the resistance of the LED 33 such as the bulk resistance and contact resistance. When the temperature is calculated and the calculated temperature exceeds a predetermined value, the interlock unit 63 issues a signal to stop power supply. Therefore, the temperature of the LED 33 can be grasped quickly and with high accuracy, and the LED 33 is overheated appropriately. Can be prevented.
 また、多数のLED33に給電した際の電流-電圧特性から計算により温度を推定するので、多数のLEDの平均値として温度を把握することができる。このため、センサーを設ける場合よりも高精度の温度検出を行うことができる。 Further, since the temperature is estimated by calculation from the current-voltage characteristics when power is supplied to a large number of LEDs 33, the temperature can be grasped as an average value of the large number of LEDs. For this reason, temperature detection can be performed with higher accuracy than when a sensor is provided.
 なお、本発明は上記実施形態に限定されることなく、種々の変形が可能である。例えば、上記実施形態では、被処理体であるウエハの両側にLEDを有する加熱源を設けた例について説明したが、いずれか一方に加熱源を設けたものであってもよい。また、上記実施形態では発光素子としてLEDを用いた場合について示したが、半導体レーザー等他の発光素子を用いてもよい。さらに、被処理体についても、半導体ウエハに限らず、FPD用ガラス基板などの他のものを対象にすることができる。 Note that the present invention is not limited to the above-described embodiment, and various modifications can be made. For example, in the above-described embodiment, the example in which the heat source having the LEDs is provided on both sides of the wafer that is the object to be processed has been described, but the heat source may be provided on either one. Moreover, although the case where LED was used as a light emitting element was shown in the said embodiment, you may use other light emitting elements, such as a semiconductor laser. Furthermore, the object to be processed is not limited to the semiconductor wafer, and other objects such as a glass substrate for FPD can be targeted.
 本発明は、不純物が注入された後の半導体ウエハのアニール処理等、急速加熱が必要な用途に好適である。 The present invention is suitable for applications that require rapid heating, such as annealing of a semiconductor wafer after impurities are implanted.

Claims (8)

  1.  被処理体が収容される処理室と、
     被処理体に対して光を照射するpn接合を有する複数の発光素子を備え、被処理体の少なくとも一方の面に面するように設けられた加熱源と、
     前記加熱源の発光素子に給電する電源部と、
     前記加熱源に対応して設けられ、前記発光素子からの光を透過する光透過部材と、
     前記処理室内を排気する排気機構と、
     前記発光素子のpn接合における電流-電圧特性または前記発光素子の抵抗における電流-電圧特性に基づいて前記発光素子の温度を算出する温度算出部と、
     前記温度算出部において算出された温度が所定の温度を超えた場合に前記電源部の給電を停止するインターロック部と
    を具備するアニール装置。
    A processing chamber in which an object to be processed is stored;
    A heat source provided with a plurality of light emitting elements having a pn junction for irradiating light to the object to be processed, and provided to face at least one surface of the object to be processed;
    A power supply for supplying power to the light emitting element of the heating source;
    A light transmissive member provided corresponding to the heating source and transmitting light from the light emitting element;
    An exhaust mechanism for exhausting the processing chamber;
    A temperature calculation unit for calculating a temperature of the light emitting element based on a current-voltage characteristic at a pn junction of the light emitting element or a current-voltage characteristic at a resistance of the light emitting element;
    An annealing apparatus comprising: an interlock unit that stops power supply to the power supply unit when the temperature calculated by the temperature calculation unit exceeds a predetermined temperature.
  2.  前記温度算出部は、前記発光素子に流れる電流が所定値以下の小電流の場合に、前記発光素子のpn接合における電流-電圧特性を用いて前記発光素子の温度を算出する請求項1に記載のアニール装置。 The temperature calculation unit calculates the temperature of the light emitting element by using a current-voltage characteristic at a pn junction of the light emitting element when a current flowing through the light emitting element is a small current of a predetermined value or less. Annealing equipment.
  3.  前記温度算出部は、前記発光素子に流れる電流が所定値以上の大電流の場合に、前記発光素子の抵抗における電流-電圧特性に基づいて前記発光素子の温度を算出する請求項1に記載のアニール装置。 2. The temperature calculation unit according to claim 1, wherein the temperature calculation unit calculates the temperature of the light emitting element based on a current-voltage characteristic of a resistance of the light emitting element when a current flowing through the light emitting element is a large current of a predetermined value or more. Annealing equipment.
  4.  前記発光素子はLEDである請求項1に記載のアニール装置。 The annealing apparatus according to claim 1, wherein the light emitting element is an LED.
  5.  pn接合を有する複数の発光素子を備えた加熱源により処理室内の基板に対してアニール処理を行うアニール装置に用いられる過熱防止システムであって、
     前記発光素子のpn接合における電流-電圧特性または前記発光素子の抵抗における電流-電圧特性に基づいて前記発光素子の温度を算出する温度算出部と、
     前記温度算出部において算出された温度が所定の温度を超えた場合に前記発光素子への給電を停止するインターロック部と
    を具備する過熱防止システム。
    An overheating prevention system used in an annealing apparatus that performs an annealing process on a substrate in a processing chamber by a heating source including a plurality of light emitting elements having a pn junction,
    A temperature calculation unit for calculating a temperature of the light emitting element based on a current-voltage characteristic at a pn junction of the light emitting element or a current-voltage characteristic at a resistance of the light emitting element;
    An overheat prevention system comprising: an interlock unit that stops power supply to the light emitting element when the temperature calculated by the temperature calculation unit exceeds a predetermined temperature.
  6.  前記温度算出部は、前記発光素子に流す電流が所定値以下の小電流の場合に、前記発光素子のpn接合における電流-電圧特性を用いて前記発光素子の温度を算出する請求項5に記載の過熱防止システム。 The temperature calculation unit calculates the temperature of the light emitting element using a current-voltage characteristic at a pn junction of the light emitting element when a current flowing through the light emitting element is a small current of a predetermined value or less. Overheating prevention system.
  7.  前記温度算出部は、前記発光素子に流す電流が所定値以上の大電流の場合に、前記発光素子の抵抗における電流-電圧特性に基づいて前記発光素子の温度を算出する請求項5に記載の過熱防止システム。 6. The temperature calculating unit according to claim 5, wherein the temperature of the light emitting element is calculated based on a current-voltage characteristic of the resistance of the light emitting element when a current flowing through the light emitting element is a large current equal to or greater than a predetermined value. Overheat prevention system.
  8.  前記発光素子はLEDである請求項5に記載の過熱防止システム。 The overheat prevention system according to claim 5, wherein the light emitting element is an LED.
PCT/JP2009/054159 2008-03-19 2009-03-05 Annealing apparatus and overheat prevention system WO2009116400A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-071786 2008-03-19
JP2008071786A JP2009231353A (en) 2008-03-19 2008-03-19 Annealing apparatus and overheat preventing system

Publications (1)

Publication Number Publication Date
WO2009116400A1 true WO2009116400A1 (en) 2009-09-24

Family

ID=41090806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054159 WO2009116400A1 (en) 2008-03-19 2009-03-05 Annealing apparatus and overheat prevention system

Country Status (2)

Country Link
JP (1) JP2009231353A (en)
WO (1) WO2009116400A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014516A1 (en) * 2010-07-30 2012-02-02 Nkワークス株式会社 Led light-emitting device
JP2013008752A (en) * 2011-06-22 2013-01-10 Tokyo Electron Ltd Heat treatment apparatus and heat treatment method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6111828B2 (en) * 2013-04-30 2017-04-12 ウシオ電機株式会社 Heat treatment equipment
JP6534307B2 (en) * 2015-06-30 2019-06-26 新日本無線株式会社 LED power supply
KR101981983B1 (en) * 2017-08-09 2019-05-24 (주)엘라이트 Led heater
JP7338441B2 (en) 2019-12-13 2023-09-05 ウシオ電機株式会社 light heating device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005115350A (en) * 2003-09-17 2005-04-28 Seiko Epson Corp Temperature measuring device, light source controller, projector, temperature measuring method and light source control method
WO2008029742A1 (en) * 2006-09-05 2008-03-13 Tokyo Electron Limited Annealing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005115350A (en) * 2003-09-17 2005-04-28 Seiko Epson Corp Temperature measuring device, light source controller, projector, temperature measuring method and light source control method
WO2008029742A1 (en) * 2006-09-05 2008-03-13 Tokyo Electron Limited Annealing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014516A1 (en) * 2010-07-30 2012-02-02 Nkワークス株式会社 Led light-emitting device
JPWO2012014516A1 (en) * 2010-07-30 2013-09-12 Nkワークス株式会社 LED light emitting device
JP2013008752A (en) * 2011-06-22 2013-01-10 Tokyo Electron Ltd Heat treatment apparatus and heat treatment method

Also Published As

Publication number Publication date
JP2009231353A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP5138253B2 (en) Annealing equipment
JP5351479B2 (en) Cooling structure of heating source
JP5084420B2 (en) Load lock device and vacuum processing system
WO2009116400A1 (en) Annealing apparatus and overheat prevention system
WO2009125727A1 (en) Annealing apparatus
JP5394730B2 (en) Annealing apparatus and annealing method
US20120325795A1 (en) Heating apparatus and annealing apparatus
JP7376623B2 (en) Systems and methods of thermal management for wafer processing systems
US20150075748A1 (en) Substrate Temperature Regulating Device and Substrate Processing Apparatus Using the Same
US20170316963A1 (en) Direct optical heating of substrates
US20110297321A1 (en) Substrate support stage of plasma processing apparatus
US20170352565A1 (en) Workpiece carrier with gas pressure in inner cavities
CN114846579A (en) Heat treatment apparatus and heat treatment method
WO2008029742A1 (en) Annealing apparatus
JP2010034491A (en) Annealing apparatus
US11817335B2 (en) Method and system for inspecting processing apparatus
WO2008016116A1 (en) Annealing apparatus and annealing method
US20090017641A1 (en) Substrate processing apparatus and semiconductor device producing method
JP2008060560A (en) Annealing apparatus and method
JP2021182582A (en) Thermal treatment apparatus
JP2016076529A (en) Support member for temperature measurement and heat treatment apparatus
US10154586B2 (en) Apparatus and method for solid state source array design and fabrication
US10685861B2 (en) Direct optical heating of substrates through optical guide
JP2014060220A (en) Etching apparatus and etching method
JP2013257189A (en) Thermometric apparatus and processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09722515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09722515

Country of ref document: EP

Kind code of ref document: A1