WO2009114470A2 - Tetrahydroindole and tetrahdyroindazole as hsp90 inhibitors containing a zinc binding moiety - Google Patents

Tetrahydroindole and tetrahdyroindazole as hsp90 inhibitors containing a zinc binding moiety Download PDF

Info

Publication number
WO2009114470A2
WO2009114470A2 PCT/US2009/036531 US2009036531W WO2009114470A2 WO 2009114470 A2 WO2009114470 A2 WO 2009114470A2 US 2009036531 W US2009036531 W US 2009036531W WO 2009114470 A2 WO2009114470 A2 WO 2009114470A2
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
compound
cancer
aryl
aliphatic
Prior art date
Application number
PCT/US2009/036531
Other languages
French (fr)
Other versions
WO2009114470A3 (en
Inventor
Changgeng Qian
Xiong Cai
Haixiao Zhai
Original Assignee
Curis, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Curis, Inc. filed Critical Curis, Inc.
Publication of WO2009114470A2 publication Critical patent/WO2009114470A2/en
Publication of WO2009114470A3 publication Critical patent/WO2009114470A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/54Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings condensed with carbocyclic rings or ring systems
    • C07D231/56Benzopyrazoles; Hydrogenated benzopyrazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings

Definitions

  • HSP90s are ubiquitous chaperone proteins that are involved in proper protein folding and stabilization of a wide range of proteins, including key proteins involved in signal transduction, cell cycle control and transcriptional regulation.
  • HSP90 chaperone proteins are associated with important signaling proteins, such as steroid hormone receptors and protein kinases, (e.g., Raf- 1, EGFR, v-Src family kinases, Cdk4, and ErbB-2), many of which are overexpressed or mutated in various cancers (Buchner J. TIBS, 1999, 24, 136-141; Stepanova, L. et al. Genes Dev. 1996, 10, 1491-502; Dai, K. et al. J. Biol. Chem.
  • HSP90 may assist HSP90 in its function (Caplan, A. Trends in Cell Biol. 1999, 9, 262-68).
  • HSP90 has been shown by mutational analysis to be necessary for the survival of normal eukaryotic cells. However, HSP90 is overexpressed in many tumor types indicating that it may play a significant role in the survival of cancer cells and that cancer cells may be more sensitive to inhibition of HSP90 than normal cells.
  • cancer cells typically have a large number of mutated and overexpressed oncoproteins that are dependent on HSP90 for folding.
  • HSP90 because the environment of a tumor is typically hostile due to hypoxia, nutrient deprivation, acidosis, etc., tumor cells may be especially dependent on HSP90 for survival.
  • inhibition of HSP90 causes simultaneous inhibition of a number of client oncoproteins, as well as hormone receptors and transcription factors making it an attractive target for an anti-cancer agent.
  • the two main classes of HSP90 inhibitors that are currently pursued by many companies are based on the natural antibiotic geldanamycin and synthetic purine-scaffold.
  • geldanamycin related HSP90 inhibitors are currently in clinical trial namely, 17-allylamino 17-demethoxygeldanamycin (17- AAG), 17-dimethylaminoethylamino- 17-demethoxygeldanamycin (17-DMAG) and IPI-504.
  • many of the purine-scaffold HSP90 inhibitors are showing positive preclinical results.
  • the frontrunner in the purine-scaffold is CNF- 2024, which is currently in phase 1 clinical trial.
  • conjugates or fusion proteins that contain most or all of the amino acid sequences of two different proteins/polypeptides and that retain the individual binding activities of the separate proteins/polypeptides.
  • This approach is made possible by independent folding of the component protein domains and the large size of the conjugates that permits the components to bind their cellular targets in an essentially independent manner.
  • Such an approach is not, however, generally feasible in the case of small molecule therapeutics, where even minor structural modifications can lead to major changes in target binding and/or the pharmacokinetic/pharmacodynamic properties of the resulting molecule.
  • HSP90 inhibitors in combination with histone deacetylases (HDAC) has been shown to produce synergistic effects.
  • Histone acetylation is a reversible modification, with deacetylation being catalyzed by a family of enzymes termed HDACs.
  • HDACs are represented by X genes in humans and are divided into four distinct classes ⁇ J MoI Biol, 2004, 338:1, 17-31).
  • HDACs In mammalians class I HDACs (HDACl-3, and HDAC8) are related to yeast RPD3 HDAC, class 2 (HDAC4-7, HDAC9 and HDAClO) related to yeast HDAl, class 4 (HDACl 1), and class 3 (a distinct class encompassing the sirtuins which are related to yeast Sir2).
  • Histone acetylation is a reversible modification, with deacetylation being catalyzed by a family of enzymes termed HDACs.
  • HDACs are represented by X genes in humans and are divided into four distinct classes ⁇ J MoI Biol, 2004, 338:1, 17-31).
  • HDACs HDAC 1-3, and HDAC8 are related to yeast RPD3 HDAC, class 2 (HDAC4-7, HDAC9 and HDAC 10) related to yeast HDAl, class 4 (HDACl 1), and class 3 (a distinct class encompassing the sirtuins which are related to yeast Sir2).
  • Csordas Biochem. J, 1990, 286: 23-38 teaches that histones are subject to post-translational acetylation of the, ⁇ -amino groups of N-terminal lysine residues, a reaction that is catalyzed by histone acetyl transferase (HATl).
  • HATl histone acetyl transferase
  • Acetylation neutralizes the positive charge of the lysine side chain, and is thought to impact chromatin structure.
  • access of transcription factors to chromatin templates is enhanced by histone hyperacetylation, and enrichment in underacetylated histone H4 has been found in transcriptionally silent regions of the genome (Taunton et al., Science, 1996, 272:408-411).
  • transcriptional silencing due to histone modification can lead to oncogenic transformation and cancer.
  • HDAC inhibitors are being evaluated by clinical investigators.
  • the first FDA approved HDAC inhibitor is Suberoylanilide hydroxamic acid (SAHA, Zolinza®) for the treatment of cutaneous T-cell lymphoma (CTCL).
  • Other HDAC inhibitors include hydroxamic acid derivatives, PXDlOl, LBH589 and LAQ824, are currently in the clinical development.
  • benzamide class of HDAC inhibitors MS-275, MGCDO 103 and CI-994 have reached clinical trials. Mourne et al. (Abstract #4725, AACR 2005), demonstrate that thiophenyl modification of benzamides significantly enhance HDAC inhibitory activity against HDACl .
  • HSP90 inhibitors in combination with HDAC inhibitors may provide advantageous results in the treatment of cancer.
  • co-treatment with HDAC inhibitor SAHA and HSP90 inhibitor 17-AAG synergistically induces apoptosis in Bcr-Abl + cells sensitive and resistant to STI571 (imatinib mesylate) (Rahmani, M., et al, MoI Pharmacol, 2005, 67:1166-1176).
  • the present invention relates to HSP90 inhibitors containing zinc-binding moiety based derivatives that have enhanced and unexpected properties as inhibitors of HSP90 and their use in the treatment of HSP90 related diseases and disorders such as cancer.
  • the compounds of the present invention may further act as HDAC or matrix metalloproteinase (MMP) inhibitors by virtue of their ability to bind zinc ions.
  • MMP matrix metalloproteinase
  • these compounds are active at multiple therapeutic targets and are effective for treating disease.
  • the compounds have enhanced activity when compared to the activities of combinations of separate molecules individually having the HSP90 and HDAC activities.
  • the combination of pharmacophores into a single molecule may provide a synergistic effect as compared to the individual pharmacophores.
  • the compounds of the present invention inhibit both HSP90 and HDAC activity.
  • the present invention provides a compound having a general formula I or formula II:
  • R 5 is independently hydrogen, aliphatic, substituted aliphatic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic;
  • Xi-X 5 are independently N, C, or CR 6 , where R 6 is independently selected from hydrogen, substituted or unsubstituted hydroxy, substituted or unsubstituted amino, halogen, alkoxy, substituted alkoxy, alkylamino, substituted alkylamino, dialkylamino, substituted dialkylamino, substituted or unsubstituted alkylthio, substituted or unsubstituted alkylsulfonyl, substituted or unsubstituted thiol, substituted or unsubstituted carboxamido, CF 3 , CN, NO 2 , N 3 , substituted carbonyl, sulfonyl, acyl, aliphatic, substituted aliphatic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
  • C is selected from:
  • Wi is O or S
  • Yi is absent, N, or CH
  • Zi is N or
  • R 7 and R 9 are independently hydrogen, OR', aliphatic or substituted aliphatic, wherein R' is hydrogen, aliphatic, substituted aliphatic or acyl; provided that if R 7 and R9 are both present, one of R 7 or R9 must be OR' and if Y is absent, R9 must be OR'; and Rs is hydrogen, acyl, aliphatic or substituted aliphatic;
  • Wi is O or S
  • J is O, NH or NCH 3
  • R i0 is hydrogen or lower alkyl
  • Wi is O or S
  • Y 2 and Z 2 are independently N, C or
  • Rn and Ri 2 are independently selected from hydrogen or aliphatic;
  • R 1 , R 2 and R3 are independently selected from hydrogen, hydroxy, amino, halogen, alkoxy, substituted alkoxy, alkylamino, substituted alkylamino, dialkylamino, substituted dialkylamino, substituted or unsubstituted alkylthio, substituted or unsubstituted alkylsulfonyl, CF 3 , CN, NO 2 , N 3 , sulfonyl, acyl, aliphatic, substituted aliphatic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
  • the compounds of the present invention are compounds represented by formula (I) and formula (II) as illustrated above, and geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof.
  • compounds of the present invention are compounds represented by formula (III) or formula (IV) as illustrated below, or geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:
  • Bi is absent, O, S, SO, SO 2 , N(R 8 ), CO, C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic or aryl;
  • B 2 is absent, O, S, SO, SO 2 , N(Rg) or CO;
  • B 3 is absent, O, S, SO, SO 2 , N(R 8 ), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl;
  • B 4 is absent, O, S, SO, SO 2 , N(Rg), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl;
  • B 5 is absent, Ci
  • Y 2 is CRi, where Ri is substituted or unsubstituted Ci-Cs-alkyl, preferably Ci-C 4 -alkyl.
  • Ri is methyl or methyl substituted by one, two or three halogen atoms, such as trifluoromethyl.
  • compounds of the present invention are compounds represented by formula (V) or formula (VI) as illustrated below, or geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:
  • Bi is absent, O, S, SO, SO 2 , N(R 8 ), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic or aryl
  • B 2 is absent, O, S, SO, SO 2 , N(R 8 ) or CO
  • B 3 is absent, O, S, SO, SO 2 , N(R 8 ), CO, C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl
  • B 4 is absent, O, S, SO, SO 2 , N(R 8 ), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl
  • B 5 is absent, Ci-C
  • compounds of the present invention are compounds represented by formula (VII) as illustrated below, or geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:
  • Bi is absent, O, S, SO, SO 2 , N(R 8 ), CO, C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic or aryl;
  • B 2 is absent, O, S, SO, SO 2 , N(R 8 ) or CO;
  • B 3 is absent, O, S, SO, SO 2 , N(R 8 ), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl;
  • B 4 is absent, O, S, SO, SO 2 , N(Rg), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl;
  • B 5 is absent,
  • Representative compounds according to the invention are those selected from the Table A below or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:
  • the invention further provides methods for the prevention or treatment of diseases or conditions involving aberrant proliferation, differentiation or survival of cells.
  • the invention further provides for the use of one or more compounds of the invention in the manufacture of a medicament for halting or decreasing diseases involving aberrant proliferation, differentiation, or survival of cells.
  • the disease is cancer.
  • the invention relates to a method of treating cancer in a subject in need of treatment comprising administering to said subject a therapeutically effective amount of a compound of the invention.
  • cancer refers to any cancer caused by the proliferation of malignant neoplastic cells, such as tumors, neoplasms, carcinomas, sarcomas, leukemias, lymphomas and the like.
  • cancers include, but are not limited to, mesothelioma, leukemias and lymphomas such as cutaneous T-cell lymphomas (CTCL), noncutaneous peripheral T-cell lymphomas, lymphomas associated with human T-cell lymphotrophic virus (HTLV) such as adult T-cell leukemia/lymphoma (ATLL), B-cell lymphoma, acute nonlymphocytic leukemias, chronic lymphocytic leukemia, chronic myelogenous leukemia, acute myelogenous leukemia, lymphomas, and multiple myeloma, non-Hodgkin lymphoma, acute lymphatic leukemia (ALL), chronic lymphatic leukemia (CLL), Hodgkin's lymphoma, Burkit
  • myelodisplastic syndrome childhood solid tumors such as brain tumors, neuroblastoma, retinoblastoma, Wilms' tumor, bone tumors, and soft- tissue sarcomas, common solid tumors of adults such as head and neck cancers (e.g., oral, laryngeal, nasopharyngeal and esophageal), genitourinary cancers (e.g., prostate, bladder, renal, uterine, ovarian, testicular), lung cancer (e.g., small-cell and non small cell), breast cancer, pancreatic cancer, melanoma and other skin cancers, stomach cancer, brain tumors, tumors related to Gorlin's syndrome (e.g., medulloblastoma, meningioma, etc.), and liver cancer.
  • childhood solid tumors such as brain tumors, neuroblastoma, retinoblastoma, Wilms' tumor, bone tumors, and soft- tissue s
  • Additional exemplary forms of cancer which may be treated by the subject compounds include, but are not limited to, cancer of skeletal or smooth muscle, stomach cancer, cancer of the small intestine, rectum carcinoma, cancer of the salivary gland, endometrial cancer, adrenal cancer, anal cancer, rectal cancer, parathyroid cancer, and pituitary cancer.
  • cancers include, but are not limited to, labial carcinoma, larynx carcinoma, hypopharynx carcinoma, tongue carcinoma, salivary gland carcinoma, gastric carcinoma, adenocarcinoma, thyroid cancer (medullary and papillary thyroid carcinoma, renal carcinoma, kidney parenchyma carcinoma, cervix carcinoma, uterine corpus carcinoma, endometrium carcinoma, chorion carcinoma, testis carcinoma, urinary carcinoma, melanoma, brain tumors such as glioblastoma, astrocytoma, meningioma, medulloblastoma and peripheral neuroectodermal tumors, gall bladder carcinoma, bronchial carcinoma, multiple myeloma, basalioma, teratoma, retinoblast
  • the present invention includes the use of one or more compounds of the invention in the manufacture of a medicament that prevents further aberrant proliferation, differentiation, or survival of cells.
  • compounds of the invention may be useful in preventing tumors from increasing in size or from reaching a metastatic state.
  • the subject compounds may be administered to halt the progression or advancement of cancer or to induce tumor apoptosis or to inhibit tumor angiogenesis.
  • the instant invention includes use of the subject compounds to prevent a recurrence of cancer.
  • This invention further embraces the treatment or prevention of cell proliferative disorders such as hyperplasias, dysplasias and pre-cancerous lesions.
  • Dysplasia is the earliest form of pre-cancerous lesion recognizable in a biopsy by a pathologist.
  • the subject compounds may be administered for the purpose of preventing said hyperplasias, dysplasias or pre-cancerous lesions from continuing to expand or from becoming cancerous. Examples of pre-cancerous lesions may occur in skin, esophageal tissue, breast and cervical intra-epithelial tissue.
  • Combination therapy includes the administration of the subject compounds in further combination with other biologically active ingredients (such as, but not limited to, a second and different antineoplastic agent) and non-drug therapies (such as, but not limited to, surgery or radiation treatment).
  • the compounds of the invention can be used in combination with other pharmaceutically active compounds, preferably compounds that are able to enhance the effect of the compounds of the invention.
  • the compounds of the invention can be administered simultaneously (as a single preparation or separate preparation) or sequentially to the other drug therapy.
  • a combination therapy envisions administration of two or more drugs during a single cycle or course of therapy.
  • the subject compounds may be administered in combination with one or more separate agents that modulate protein kinases involved in various disease states.
  • kinases may include, but are not limited to: serine/threonine specific kinases, receptor tyrosine specific kinases and non-receptor tyrosine specific kinases.
  • Serine/threonine kinases include mitogen activated protein kinases (MAPK), meiosis specific kinase (MEK), RAF and aurora kinase.
  • receptor kinase families include epidermal growth factor receptor (EGFR) (e.g. HER2/neu, HER3, HER4, ErbB, ErbB2, ErbB3, ErbB4, Xmrk, DER, Let23); fibroblast growth factor (FGF) receptor (e.g.
  • EGFR epidermal growth factor receptor
  • FGF fibroblast growth factor
  • HGFR hepatocyte growth/scatter factor receptor
  • HGFR e.g, MET, RON, SEA, SEX
  • insulin receptor e.g. IGFI-R
  • Eph e.g. CEK5, CEK8, EBK, ECK, EEK, E
  • Nonreceptor tyrosine kinase families include, but are not limited to, BCR-ABL (e.g. p43 abl , ARG); BTK (e.g. ITK/EMT, TEC); CSK, FAK, FPS, JAK, SRC, BMX, FER, CDK and SYK.
  • the subject compounds may be administered in combination with one or more separate agents that modulate non- kinase biological targets or processes.
  • targets include histone deacetylases (HDAC), DNA methyltransferase (DNMT), heat shock proteins (e.g. HSP90), and proteosomes.
  • subject compounds may be combined with antineoplastic agents (e.g. small molecules, monoclonal antibodies, antisense RNA, and fusion proteins) that inhibit one or more biological targets such as Zolinza, Tarceva, Iressa, Tykerb, Gleevec, Sutent, Sprycel, Nexavar, Soraf ⁇ nib, CNF2024, RG108, BMS387032, Affinitak, Avastin, Herceptin, Erbitux, AG24322, PD325901, ZD6474, PD 184322, Obatodax, ABT737 and AEE788.
  • antineoplastic agents e.g. small molecules, monoclonal antibodies, antisense RNA, and fusion proteins
  • antineoplastic agents e.g. small molecules, monoclonal antibodies, antisense RNA, and fusion proteins
  • the compounds of the invention are administered in combination with a chemotherapeutic agent.
  • chemotherapeutic agents encompass a wide range of therapeutic treatments in the field of oncology. These agents are administered at various stages of the disease for the purposes of shrinking tumors, destroying remaining cancer cells left over after surgery, inducing remission, maintaining remission and/or alleviating symptoms relating to the cancer or its treatment.
  • alkylating agents such as mustard gas derivatives (Mechlorethamine, cylophosphamide, chlorambucil, melphalan, ifosfamide), ethylenimines (thiotepa, hexamethylmelanine), Alkylsulfonates (Busulfan), Hydrazines and Triazines (Altretamine, Procarbazine, dacarbazine and Temozolomide), Nitrosoureas (Carmustine, Lomustine and Streptozocin), Ifosfamide and metal salts (Carboplatin, Cisplatin, and Oxaliplatin); plant alkaloids such as Podophyllotoxins (Etoposide and Tenisopide), Taxanes (Paclitaxel and Docetaxel), Vinca alkaloids (Vincristine, Vinblastine, Vindesine and Vinorelbine), and Camptothecan analogs (Iri)
  • the compounds of the invention are administered in combination with a chemoprotective agent.
  • Chemoprotective agents act to protect the body or minimize the side effects of chemotherapy. Examples of such agents include, but are not limited to, amfostine, mesna, and dexrazoxane.
  • the subject compounds are administered in combination with radiation therapy. Radiation is commonly delivered internally (implantation of radioactive material near cancer site) or externally from a machine that employs photon (x-ray or gamma-ray) or particle radiation.
  • the combination therapy further comprises radiation treatment
  • the radiation treatment may be conducted at any suitable time so long as a beneficial effect from the co- action of the combination of the therapeutic agents and radiation treatment is achieved. For example, in appropriate cases, the beneficial effect is still achieved when the radiation treatment is temporally removed from the administration of the therapeutic agents, perhaps by days or even weeks.
  • compounds of the invention can be used in combination with an immunotherapeutic agent.
  • immunotherapy is the generation of an active systemic tumor-specific immune response of host origin by administering a vaccine composition at a site distant from the tumor.
  • Various types of vaccines have been proposed, including isolated tumor-antigen vaccines and antiidiotype vaccines.
  • Another approach is to use tumor cells from the subject to be treated, or a derivative of such cells (reviewed by Schirrmacher et al. (1995) J. Cancer Res. Clin. Oncol. 121 :487).
  • Schirrmacher et al. (1995) J. Cancer Res. Clin. Oncol. 121 :487) In U.S. Pat. No. 5,484,596, Hanna Jr. et al.
  • a method for treating a resectable carcinoma to prevent recurrence or metastases comprising surgically removing the tumor, dispersing the cells with collagenase, irradiating the cells, and vaccinating the patient with at least three consecutive doses of about 10 7 cells.
  • Suitable agents for adjunctive therapy include a 5HTi agonist, such as a triptan (e.g. sumatriptan or naratriptan); an adenosine Al agonist; an EP ligand; an NMDA modulator, such as a glycine antagonist; a sodium channel blocker (e.g. lamotrigine); a substance P antagonist (e.g. an NKi antagonist); a cannabinoid; acetaminophen or phenacetin; a 5-lipoxygenase inhibitor; a leukotriene receptor antagonist; a DMARD (e.g.
  • a 5HTi agonist such as a triptan (e.g. sumatriptan or naratriptan); an adenosine Al agonist; an EP ligand; an NMDA modulator, such as a glycine antagonist; a sodium channel blocker (e.g. lamotrigine); a substance P antagonist (e.g.
  • methotrexate e.g. methotrexate
  • gabapentin and related compounds e.g. a tricyclic antidepressant (e.g. amitryptilline); a neurone stabilising antiepileptic drug; a mono-aminergic uptake inhibitor (e.g. venlafaxine); a matrix metalloproteinase inhibitor; a nitric oxide synthase (NOS) inhibitor, such as an iNOS or an nNOS inhibitor; an inhibitor of the release, or action, of tumour necrosis factor .alpha.; an antibody therapy, such as a monoclonal antibody therapy; an antiviral agent, such as a nucleoside inhibitor (e.g. lamivudine) or an immune system modulator (e.g.
  • a nucleoside inhibitor e.g. lamivudine
  • an immune system modulator e.g.
  • an opioid analgesic e.g. a local anaesthetic; a stimulant, including caffeine; an H 2 -antagonist (e.g. ranitidine); a proton pump inhibitor (e.g. omeprazole); an antacid (e.g. aluminium or magnesium hydroxide; an antiflatulent (e.g. simethicone); a decongestant (e.g. phenylephrine, phenylpropanolamine, pseudoephedrine, oxymetazoline, epinephrine, naphazoline, xylometazoline, propylhexedrine, or levo-desoxyephedrine); an antitussive (e.g. codeine, hydrocodone, carmiphen, carbetapentane, or dextramethorphan); a diuretic; or a sedating or non-sedating antihistamine.
  • an antitussive e.g. codeine,
  • MMPs Matrix metalloproteinases
  • HDAC trichostatin A
  • MMP2 gelatinase A
  • MMP2 Type IV collagenase
  • Another recent article that discusses the relationship of HDAC and MMPs can be found in Young D.A., et al., Arthritis Research & Therapy, 2005, 7: 503.
  • the commonality between HDAC and MMPs inhibitors is their zinc-binding functionality.
  • compounds of the invention can be used as MMP inhibitors and may be of use in the treatment of disorders relating to or associated with dysregulation of MMP.
  • the overexpression and activation of MMPs are known to induce tissue destruction and are also associated with a number of specific diseases including rheumatoid arthritis, periodontal disease, cancer and atherosclerosis.
  • the compounds may also be used in the treatment of a disorder involving, relating to or, associated with dysregulation of histone deacetylase (HDAC).
  • HDAC histone deacetylase
  • HDAC activity is known to play a role in triggering disease onset, or whose symptoms are known or have been shown to be alleviated by HDAC inhibitors.
  • disorders of this type that would be expected to be amenable to treatment with the compounds of the invention include the following but not limited to: Anti-proliferative disorders (e.g.
  • Neurodegenerative diseases including Huntington's Disease, Polyglutamine disease, Parkinson's Disease, Alzheimer's Disease, Seizures, Striatonigral degeneration, Progressive supranuclear palsy, Torsion dystonia, Spasmodic torticollis and dyskinesis, Familial tremor, Gilles de Ia Tourette syndrome, Diffuse Lewy body disease, Progressive supranuclear palsy, Pick's disease, intracerebral hemorrhage, Primary lateral sclerosis, Spinal muscular atrophy, Amyotrophic lateral sclerosis, Hypertrophic interstitial polyneuropathy, Retinitis pigmentosa, Hereditary optic atrophy, Hereditary spastic paraplegia, Progressive ataxia and Shy-Drager syndrome; Metabolic diseases including Type 2 diabetes; Degenerative Diseases of the Eye including Glaucoma, Age-related macular degeneration, Rubeotic glaucoma; Inflammatory diseases and/or Immune system disorders including Rheuma
  • compounds of the invention can be used to induce or inhibit apoptosis, a physiological cell death process critical for normal development and homeostasis. Alterations of apoptotic pathways contribute to the pathogenesis of a variety of human diseases.
  • Compounds of the invention, as modulators of apoptosis will be useful in the treatment of a variety of human diseases with aberrations in apoptosis including cancer (particularly, but not limited to, follicular lymphomas, carcinomas with p53 mutations, hormone dependent tumors of the breast, prostate and ovary, and precancerous lesions such as familial adenomatous polyposis), viral infections (including, but not limited to, herpes virus, poxvirus, Epstein-Barr virus, Sindbis virus and adenovirus), autoimmune diseases (including, but not limited to, systemic lupus, erythematosus, immune mediated glomerulonephritis, rheumatoid arthritis, psorias
  • the invention provides the use of compounds of the invention for the treatment and/or prevention of immune response or immune -mediated responses and diseases, such as the prevention or treatment of rejection following transplantation of synthetic or organic grafting materials, cells, organs or tissue to replace all or part of the function of tissues, such as heart, kidney, liver, bone marrow, skin, cornea, vessels, lung, pancreas, intestine, limb, muscle, nerve tissue, duodenum, small-bowel, pancreatic-islet-cell, including xeno-transplants, etc.; to treat or prevent graft-versus-host disease, autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, thyroiditis, Hashimoto's thyroiditis, multiple sclerosis, myasthenia gravis, type I diabetes uveitis, juvenile-onset or recent-onset diabetes mellitus, uveitis, Graves disease, psoriasis, atopic dermatiti
  • the present invention may be used to prevent/suppress an immune response associated with a gene therapy treatment, such as the introduction of foreign genes into autologous cells and expression of the encoded product.
  • a gene therapy treatment such as the introduction of foreign genes into autologous cells and expression of the encoded product.
  • the invention relates to a method of treating an immune response disease or disorder or an immune-mediated response or disorder in a subject in need of treatment comprising administering to said subject a therapeutically effective amount of a compound of the invention.
  • the invention provides the use of compounds of the invention in the treatment of a variety of neurodegenerative diseases, a non-exhaustive list of which includes: I. Disorders characterized by progressive dementia in the absence of other prominent neurologic signs, such as Alzheimer's disease; Senile dementia of the Alzheimer type; and Pick's disease (lobar atrophy); II.
  • Syndromes combining progressive dementia with other prominent neurologic abnormalities such as A) syndromes appearing mainly in adults (e.g., Huntington's disease, Multiple system atrophy combining dementia with ataxia and/or manifestations of Parkinson's disease, Progressive supranuclear palsy (Steel-Richardson-Olszewski), diffuse Lewy body disease, and corticodentatonigral degeneration); and B) syndromes appearing mainly in children or young adults (e.g., Hallervorden-Spatz disease and progressive familial myoclonic epilepsy); III.
  • A) syndromes appearing mainly in adults e.g., Huntington's disease, Multiple system atrophy combining dementia with ataxia and/or manifestations of Parkinson's disease, Progressive supranuclear palsy (Steel-Richardson-Olszewski), diffuse Lewy body disease, and corticodentatonigral degeneration
  • B) syndromes appearing mainly in children or young adults e.g
  • Syndromes of gradually developing abnormalities of posture and movement such as paralysis agitans (Parkinson's disease), striatonigral degeneration, progressive supranuclear palsy, torsion dystonia (torsion spasm; dystonia musculorum deformans), spasmodic torticollis and other dyskinesis, familial tremor, and Gilles de Ia Tourette syndrome;
  • Syndromes of progressive ataxia such as cerebellar degenerations (e.g., cerebellar cortical degeneration and olivopontocerebellar atrophy (OPCA)); and spinocerebellar degeneration (Friedreich's atazia and related disorders);
  • cerebellar degenerations e.g., cerebellar cortical degeneration and olivopontocerebellar atrophy (OPCA)
  • spinocerebellar degeneration Friedreich's atazia and related disorders
  • Syndrome of central autonomic nervous system failure (Shy-Drager syndrome); VI. Syndromes of muscular weakness and wasting without sensory changes (motorneuron disease such as amyotrophic lateral sclerosis, spinal muscular atrophy (e.g., infantile spinal muscular atrophy (Werdnig-Hoffman), juvenile spinal muscular atrophy (Wohlfart- Kugelberg-Welander) and other forms of familial spinal muscular atrophy), primary lateral sclerosis, and hereditary spastic paraplegia; VII.
  • disorders combining muscular weakness and wasting with sensory changes progressive neural muscular atrophy; chronic familial polyneuropathies) such as peroneal muscular atrophy (Charcot-Marie-Tooth), hypertrophic interstitial polyneuropathy (Dejerine-Sottas), and miscellaneous forms of chronic progressive neuropathy; VIII Syndromes of progressive visual loss such as pigmentary degeneration of the retina (retinitis pigmentosa), and hereditary optic atrophy (Leber's disease).
  • compounds of the invention can be implicated in chromatin remodeling.
  • the invention encompasses pharmaceutical compositions comprising pharmaceutically acceptable salts of the compounds of the invention as described above.
  • the invention also encompasses pharmaceutical compositions comprising hydrates of the compounds of the invention.
  • hydrate includes but is not limited to hemihydrate, monohydrate, dihydrate, trihydrate and the like.
  • the invention further encompasses pharmaceutical compositions comprising any solid or liquid physical form of the compound of the invention.
  • the compounds can be in a crystalline form, in amorphous form, and have any particle size. The particles may be micronized, or may be agglomerated, particulate granules, powders, oils, oily suspensions or any other form of solid or liquid physical form.
  • compositions suitable for administration can be incorporated into pharmaceutical compositions suitable for administration, together with a pharmaceutically acceptable carrier or excipient.
  • Such compositions typically comprise a therapeutically effective amount of any of the compounds above, and a pharmaceutically acceptable carrier.
  • the effective amount when treating cancer is an amount effective to selectively induce terminal differentiation of suitable neoplastic cells and less than an amount which causes toxicity in a patient.
  • Compounds of the invention may be administered by any suitable means, including, without limitation, parenteral, intravenous, intramuscular, subcutaneous, implantation, oral, sublingual, buccal, nasal, pulmonary, transdermal, topical, vaginal, rectal, and transmucosal administrations or the like. Topical administration can also involve the use of transdermal administration such as transdermal patches or iontophoresis devices.
  • Pharmaceutical preparations include a solid, semisolid or liquid preparation (tablet, pellet, troche, capsule, suppository, cream, ointment, aerosol, powder, liquid, emulsion, suspension, syrup, injection etc.) containing a compound of the invention as an active ingredient, which is suitable for selected mode of administration.
  • the pharmaceutical compositions are administered orally, and are thus formulated in a form suitable for oral administration, i.e., as a solid or a liquid preparation.
  • suitable solid oral formulations include tablets, capsules, pills, granules, pellets, sachets and effervescent, powders, and the like.
  • Suitable liquid oral formulations include solutions, suspensions, dispersions, emulsions, oils and the like.
  • the composition is formulated in a capsule.
  • the compositions of the present invention comprise in addition to the active compound and the inert carrier or diluent, a hard gelatin capsule.
  • any inert excipient that is commonly used as a carrier or diluent may be used in the formulations of the present invention, such as for example, a gum, a starch, a sugar, a cellulosic material, an acrylate, or mixtures thereof.
  • a preferred diluent is microcrystalline cellulose.
  • compositions may further comprise a disintegrating agent (e.g., croscarmellose sodium) and a lubricant (e.g., magnesium stearate), and may additionally comprise one or more additives selected from a binder, a buffer, a protease inhibitor, a surfactant, a solubilizing agent, a plasticizer, an emulsifier, a stabilizing agent, a viscosity increasing agent, a sweetener, a film forming agent, or any combination thereof.
  • a disintegrating agent e.g., croscarmellose sodium
  • a lubricant e.g., magnesium stearate
  • additives selected from a binder, a buffer, a protease inhibitor, a surfactant, a solubilizing agent, a plasticizer, an emulsifier, a stabilizing agent, a viscosity increasing agent, a sweetener, a film forming agent, or any combination thereof.
  • non-aqueous solvents examples include propylene glycol, polyethylene glycol, and injectable organic esters such as ethyl oleate.
  • Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media.
  • oils are those of petroleum, animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil, mineral oil, olive oil, sunflower oil, and fish- liver oil.
  • Solutions or suspensions can also include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid (EDTA); buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose.
  • the pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
  • compositions may further comprise binders (e.g., acacia, cornstarch, gelatin, carbomer, ethyl cellulose, guar gum, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, povidone), disintegrating agents (e.g., cornstarch, potato starch, alginic acid, silicon dioxide, croscarmellose sodium, crospovidone, guar gum, sodium starch glycolate, Primogel), buffers (e.g., tris-HCL, acetate, phosphate) of various pH and ionic strength, additives such as albumin or gelatin to prevent absorption to surfaces, detergents (e.g., Tween 20, Tween 80, Pluronic F68, bile acid salts), protease inhibitors, surfactants (e.g., sodium lauryl sulfate), permeation enhancers, solubilizing agents (e.g., glycerol, polyethylene glycerol
  • the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
  • a controlled release formulation including implants and microencapsulated delivery systems.
  • Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art.
  • the materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc.
  • Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat No. 4,522,811.
  • Dosage unit form refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
  • the specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.
  • the pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.
  • Daily administration may be repeated continuously for a period of several days to several years.
  • Oral treatment may continue for between one week and the life of the patient.
  • Preferably the administration may take place for five consecutive days after which time the patient can be evaluated to determine if further administration is required.
  • the administration can be continuous or intermittent, e.g., treatment for a number of consecutive days followed by a rest period.
  • the compounds of the present invention may be administered intravenously on the first day of treatment, with oral administration on the second day and all consecutive days thereafter.
  • compositions that contain an active component are well understood in the art, for example, by mixing, granulating, or tablet- forming processes.
  • the active therapeutic ingredient is often mixed with excipients that are pharmaceutically acceptable and compatible with the active ingredient.
  • the active agents are mixed with additives customary for this purpose, such as vehicles, stabilizers, or inert diluents, and converted by customary methods into suitable forms for administration, such as tablets, coated tablets, hard or soft gelatin capsules, aqueous, alcoholic or oily solutions and the like as detailed above.
  • the amount of the compound administered to the patient is less than an amount that would cause toxicity in the patient. In certain embodiments, the amount of the compound that is administered to the patient is less than the amount that causes a concentration of the compound in the patient's plasma to equal or exceed the toxic level of the compound.
  • the concentration of the compound in the patient's plasma is maintained at about 10 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 25 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 50 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 100 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 500 nM.
  • the concentration of the compound in the patient's plasma is maintained at about 1000 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 2500 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 5000 nM.
  • the optimal amount of the compound that should be administered to the patient in the practice of the present invention will depend on the particular compound used and the type of cancer being treated.
  • an "aliphatic group” or “aliphatic” is non-aromatic moiety that may be saturated (e.g. single bond) or contain one or more units of unsaturation, e.g., double and/or triple bonds.
  • An aliphatic group may be straight chained, branched or cyclic, contain carbon, hydrogen or, optionally, one or more heteroatoms and may be substituted or unsubstituted.
  • An aliphatic group, when used as a linker preferably contains between about 1 and about 24 atoms, more preferably between about 4 to about 24 atoms, more preferably between about 4-12 atoms, more typically between about 4 and about 8 atoms.
  • An aliphatic group when used as a substituent, preferably contains between about 1 and about 24 atoms, more preferably between about 1 to about 10 atoms, more preferably between about 1-8 atoms, more typically between about 1 and about 6 atoms.
  • aliphatic groups include, for example, polyalkoxyalkyls, such as polyalkylene glycols, polyamines, and polyimines, for example. Such aliphatic groups may be further substituted. It is understood that aliphatic groups may be used in place of the alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl groups described herein.
  • substituted carbonyl includes compounds and moieties which contain a carbon connected with a double bond to an oxygen atom, and tautomeric forms thereof.
  • moieties that contain a substituted carbonyl include aldehydes, ketones, carboxylic acids, amides, esters, anhydrides, etc.
  • carbonyl moiety refers to groups such as “alkylcarbonyl” groups wherein an alkyl group is covalently bound to a carbonyl group, "alkenylcarbonyl” groups wherein an alkenyl group is covalently bound to a carbonyl group, "alkynylcarbonyl” groups wherein an alkynyl group is covalently bound to a carbonyl group, “arylcarbonyl” groups wherein an aryl group is covalently attached to the carbonyl group.
  • the term also refers to groups wherein one or more heteroatoms are covalently bonded to the carbonyl moiety.
  • the term includes moieties such as, for example, aminocarbonyl moieties, (wherein a nitrogen atom is bound to the carbon of the carbonyl group, e.g., an amide).
  • acyl refers to hydrogen, alkyl, partially saturated or fully saturated cycloalkyl, partially saturated or fully saturated heterocycle, aryl, and heteroaryl substituted carbonyl groups.
  • acyl includes groups such as (Ci-C 6 )alkanoyl (e.g., formyl, acetyl, propionyl, butyryl, valeryl, caproyl, t- butylacetyl, etc.), (C 3 -Ce)cycloalkylcarbonyl (e.g., cyclopropylcarbonyl, cyclobutylcarbonyl, cyclopentylcarbonyl, cyclohexylcarbonyl, etc.), heterocyclic carbonyl (e.g., pyrrolidinylcarbonyl, pyrrolid-2-one-5 -carbonyl, piperidinylcarbonyl, piperazinylcarbonyl, tetrahydrofuranylcarbonyl, etc.
  • alkyl, cycloalkyl, heterocycle, aryl and heteroaryl portion of the acyl group may be any one of the groups described in the respective definitions.
  • the acyl group may be unsubstituted or optionally substituted with one or more substituents (typically, one to three substituents) independently selected from the group of substituents listed below in the definition for "substituted” or the alkyl, cycloalkyl, heterocycle, aryl and heteroaryl portion of the acyl group may be substituted as described above in the preferred and more preferred list of substituents, respectively.
  • alkyl embraces linear or branched radicals having one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkyl radicals are "lower alkyl” radicals having one to about ten carbon atoms. Most preferred are lower alkyl radicals having one to about eight carbon atoms. Examples of such radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, hexyl and the like.
  • alkenyl embraces linear or branched radicals having at least one carbon-carbon double bond of two to about twenty carbon atoms or, preferably, two to about twelve carbon atoms. More preferred alkenyl radicals are "lower alkenyl” radicals having two to about ten carbon atoms and more preferably about two to about eight carbon atoms. Examples of alkenyl radicals include ethenyl, allyl, propenyl, butenyl and 4-methylbutenyl.
  • alkenyl and “lower alkenyl” embrace radicals having "cis” and “trans” orientations, or alternatively, "E” and "Z” orientations.
  • alkynyl embraces linear or branched radicals having at least one carbon-carbon triple bond of two to about twenty carbon atoms or, preferably, two to about twelve carbon atoms. More preferred alkynyl radicals are "lower alkynyl” radicals having two to about ten carbon atoms and more preferably about two to about eight carbon atoms. Examples of alkynyl radicals include propargyl, 1- propynyl, 2-propynyl, 1-butyne, 2-butynyl and 1-pentynyl.
  • cycloalkyl embraces saturated carbocyclic radicals having three to about twelve carbon atoms.
  • cycloalkyl embraces saturated carbocyclic radicals having three to about twelve carbon atoms.
  • More preferred cycloalkyl radicals are "lower cycloalkyl” radicals having three to about eight carbon atoms. Examples of such radicals include cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • cycloalkenyl embraces partially unsaturated carbocyclic radicals having three to twelve carbon atoms. Cycloalkenyl radicals that are partially unsaturated carbocyclic radicals that contain two double bonds (that may or may not be conjugated) can be called “cycloalkyldienyl". More preferred cycloalkenyl radicals are "lower cycloalkenyl” radicals having four to about eight carbon atoms. Examples of such radicals include cyclobutenyl, cyclopentenyl and cyclohexenyl.
  • alkoxy embraces linear or branched oxy-containing radicals each having alkyl portions of one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkoxy radicals are "lower alkoxy" radicals having one to about ten carbon atoms and more preferably having one to about eight carbon atoms. Examples of such radicals include methoxy, ethoxy, propoxy, butoxy and tert-butoxy.
  • alkoxyalkyl embraces alkyl radicals having one or more alkoxy radicals attached to the alkyl radical, that is, to form monoalkoxyalkyl and dialkoxyalkyl radicals.
  • aryl alone or in combination, means a carbocyclic aromatic system containing one, two or three rings wherein such rings may be attached together in a pendent manner or may be fused.
  • aryl embraces aromatic radicals such as phenyl, naphthyl, tetrahydronaphthyl, indane and biphenyl.
  • heterocyclyl "heterocycle” “heterocyclic” or “heterocyclo” embrace saturated, partially unsaturated and unsaturated heteroatom-containing ring- shaped radicals, which can also be called “heterocyclyl”, “heterocycloalkenyl” and “heteroaryl” correspondingly, where the heteroatoms may be selected from nitrogen, sulfur and oxygen.
  • saturated heterocyclyl radicals include saturated 3 to 6-membered heteromonocyclic group containing 1 to 4 nitrogen atoms (e.g.
  • pyrrolidinyl imidazolidinyl, piperidino, piperazinyl, etc.
  • saturated 3 to 6- membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms e.g. morpholinyl, etc.
  • saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms e.g., thiazolidinyl, etc.
  • partially unsaturated heterocyclyl radicals include dihydrothiophene, dihydropyran, dihydrofuran and dihydrothiazole.
  • Heterocyclyl radicals may include a pentavalent nitrogen, such as in tetrazolium and pyridinium radicals.
  • the term “heterocycle” also embraces radicals where heterocyclyl radicals are fused with aryl or cycloalkyl radicals. Examples of such fused bicyclic radicals include benzofuran, benzothiophene, and the like.
  • the term “heteroaryl” embraces unsaturated heterocyclyl radicals.
  • heteroaryl radicals include unsaturated 3 to 6 membered heteromonocyclic group containing 1 to 4 nitrogen atoms, for example, pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazolyl (e.g., 4H- 1,2,4- triazolyl, lH-l,2,3-triazolyl, 2H-l,2,3-triazolyl, etc.) tetrazolyl (e.g.
  • unsaturated condensed heterocyclyl group containing 1 to 5 nitrogen atoms for example, indolyl, isoindolyl, indolizinyl, benzimidazolyl, quinolyl, isoquinolyl, indazolyl, benzotriazolyl, tetrazolopyridazinyl (e.g., tetrazolo[l,5-b]pyridazinyl, etc.), etc.
  • unsaturated 3 to 6-membered heteromonocyclic group containing an oxygen atom for example, pyranyl, furyl, etc.
  • unsaturated 3 to 6-membered heteromonocyclic group containing a sulfur atom for example, thienyl, etc.
  • benzoxazolyl, benzoxadiazolyl, etc. unsaturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms, for example, thiazolyl, thiadiazolyl (e.g., 1,2,4- thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl, etc.) etc.; unsaturated condensed heterocyclyl group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms (e.g., benzothiazolyl, benzothiadiazolyl, etc.) and the like.
  • thiazolyl, thiadiazolyl e.g., 1,2,4- thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl, etc.
  • unsaturated condensed heterocyclyl group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms e.g., be
  • heterocycloalkyl embraces heterocyclo-substituted alkyl radicals. More preferred heterocycloalkyl radicals are “lower heterocycloalkyl” radicals having one to six carbon atoms in the heterocyclo radicals.
  • alkylthio embraces radicals containing a linear or branched alkyl radical, of one to about ten carbon atoms attached to a divalent sulfur atom. Preferred alkylthio radicals have alkyl radicals of one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkylthio radicals have alkyl radicals are "lower alkylthio" radicals having one to about ten carbon atoms.
  • alkylthio radicals having lower alkyl radicals of one to about eight carbon atoms.
  • Examples of such lower alkylthio radicals are methylthio, ethylthio, propylthio, butylthio and hexylthio.
  • aralkyl or "arylalkyl” embrace aryl-substituted alkyl radicals such as benzyl, diphenylmethyl, triphenylmethyl, phenylethyl, and diphenylethyl.
  • aryloxy embraces aryl radicals attached through an oxygen atom to other radicals.
  • aminoalkyl embraces alkyl radicals substituted with amino radicals.
  • Preferred aminoalkyl radicals have alkyl radicals having about one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred aminoalkyl radicals are "lower aminoalkyl” that have alkyl radicals having one to about ten carbon atoms. Most preferred are aminoalkyl radicals having lower alkyl radicals having one to eight carbon atoms. Examples of such radicals include aminomethyl, aminoethyl, and the like.
  • alkylamino denotes amino groups which are substituted with one or two alkyl radicals.
  • Preferred alkylamino radicals have alkyl radicals having about one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkylamino radicals are "lower alkylamino” that have alkyl radicals having one to about ten carbon atoms. Most preferred are alkylamino radicals having lower alkyl radicals having one to about eight carbon atoms.
  • Suitable lower alkylamino may be monosubstituted N-alkylamino or disubstituted N,N-alkylamino, such as N-methylamino, N-ethylamino, N,N-dimethylamino, N,N-diethylamino or the like.
  • linker means an organic moiety that connects two parts of a compound.
  • Linkers typically comprise a direct bond or an atom such as oxygen or sulfur, a unit such as NR 8 , C(O), C(O)NH, SO, SO 2 , SO 2 NH or a chain of atoms, such as substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, aryl, heteroaryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkylarylalkyl, alkylarylalkenyl, alkylarylalkynyl, alkenyl
  • the linker B is between 1-24 atoms, preferably 4-24 atoms, preferably 4-18 atoms, more preferably 4-12 atoms, and most preferably about 4-10 atoms. In some embodiments, the linker is a C(O)NH(alkyl) chain or an alkoxy chain.
  • substituted refers to the replacement of one or more hydrogen radicals in a given structure with the radical of a specified substituent including, but not limited to: halo, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, thiol, alkylthio, arylthio, alkylthioalkyl, arylthioalkyl, alkylsulfonyl, alkylsulfonylalkyl, arylsulfonylalkyl, alkoxy, aryloxy, aralkoxy, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkyl, amino, trifluoromethyl, cyano, nitro, alkylamino, arylamino, alkylaminoalkyl, arylaminoalkyl, aminoalkylamino, hydroxy
  • chemical moieties are defined and referred to throughout can be univalent chemical moieties (e.g., alkyl, aryl, etc.) or multivalent moieties under the appropriate structural circumstances clear to those skilled in the art.
  • an "alkyl” moiety can be referred to a monovalent radical (e.g.
  • a bivalent linking moiety can be "alkyl,” in which case those skilled in the art will understand the alkyl to be a divalent radical (e.g., -CH 2 -CH 2 -), which is equivalent to the term “alkylene.”
  • divalent moieties are required and are stated as being “alkoxy”, “alkylamino”, “aryloxy”, “alkylthio”, “aryl”, “heteroaryl”, “heterocyclic", “alkyl” “alkenyl", “alkynyl”, “aliphatic”, or “cycloalkyl”
  • alkoxy", alkylamino", “aryloxy”, “alkylthio”, “aryl”, “heteroaryl”, “heterocyclic”, “alkyl”, “alkenyl”, “alkynyl”, “aliphatic”, or “cycloalkyl” refer to the terms
  • halogen refers to an atom selected from fluorine, chlorine, bromine and iodine.
  • the term "aberrant proliferation” refers to abnormal cell growth.
  • adjunct therapy encompasses treatment of a subject with agents that reduce or avoid side effects associated with the combination therapy of the present invention, including, but not limited to, those agents, for example, that reduce the toxic effect of anticancer drugs, e.g., bone resorption inhibitors, cardioprotective agents; prevent or reduce the incidence of nausea and vomiting associated with chemotherapy, radiotherapy or operation; or reduce the incidence of infection associated with the administration of myelosuppressive anticancer drugs.
  • angiogenesis refers to the formation of blood vessels. Specifically, angiogenesis is a multi-step process in which endothelial cells focally degrade and invade through their own basement membrane, migrate through interstitial stroma toward an angiogenic stimulus, proliferate proximal to the migrating tip, organize into blood vessels, and reattach to newly synthesized basement membrane (see Folkman et al., Adv. Cancer Res., Vol. 43, pp. 175-203 (1985)). Anti-angiogenic agents interfere with this process.
  • agents that interfere with several of these steps include thrombospondin-1, angiostatin, endostatin, interferon alpha and compounds such as matrix metalloproteinase (MMP) inhibitors that block the actions of enzymes that clear and create paths for newly forming blood vessels to follow; compounds, such as .alpha.v.beta.3 inhibitors, that interfere with molecules that blood vessel cells use to bridge between a parent blood vessel and a tumor; agents, such as specific COX-2 inhibitors, that prevent the growth of cells that form new blood vessels; and protein-based compounds that simultaneously interfere with several of these targets.
  • MMP matrix metalloproteinase
  • apoptosis refers to programmed cell death as signaled by the nuclei in normally functioning human and animal cells when age or state of cell health and condition dictates.
  • An “apoptosis inducing agent” triggers the process of programmed cell death.
  • cancer denotes a class of diseases or disorders characterized by uncontrolled division of cells and the ability of these cells to invade other tissues, either by direct growth into adjacent tissue through invasion or by implantation into distant sites by metastasis.
  • the term “dysplasia” refers to abnormal cell growth, and typically refers to the earliest form of pre-cancerous lesion recognizable in a biopsy by a pathologist.
  • the term “effective amount of the subject compounds,” with respect to the subject method of treatment refers to an amount of the subject compound which, when delivered as part of desired dose regimen, brings about, e.g. a change in the rate of cell proliferation and/or state of differentiation and/or rate of survival of a cell to clinically acceptable standards.
  • This amount may further relieve to some extent one or more of the symptoms of a neoplasia disorder, including, but is not limited to: 1) reduction in the number of cancer cells; 2) reduction in tumor size; 3) inhibition (i.e., slowing to some extent, preferably stopping) of cancer cell infiltration into peripheral organs; 4) inhibition (i.e., slowing to some extent, preferably stopping) of tumor metastasis; 5) inhibition, to some extent, of tumor growth; 6) relieving or reducing to some extent one or more of the symptoms associated with the disorder; and/or 7) relieving or reducing the side effects associated with the administration of anticancer agents.
  • hypoplasia refers to excessive cell division or growth.
  • an "immunotherapeutic agent” refers to agents used to transfer the immunity of an immune donor, e.g., another person or an animal, to a host by inoculation.
  • the term embraces the use of serum or gamma globulin containing performed antibodies produced by another individual or an animal; nonspecific systemic stimulation; adjuvants; active specific immunotherapy; and adoptive immunotherapy.
  • Adoptive immunotherapy refers to the treatment of a disease by therapy or agents that include host inoculation of sensitized lymphocytes, transfer factor, immune RNA, or antibodies in serum or gamma globulin.
  • inhibitors in the context of neoplasia, tumor growth or tumor cell growth, may be assessed by delayed appearance of primary or secondary tumors, slowed development of primary or secondary tumors, decreased occurrence of primary or secondary tumors, slowed or decreased severity of secondary effects of disease, arrested tumor growth and regression of tumors, among others. In the extreme, complete inhibition, is referred to herein as prevention or chemoprevention.
  • Neoplasm refers to an abnormal mass of tissue that results from excessive cell division. Neoplasms may be benign (not cancerous), or malignant (cancerous) and may also be called a tumor.
  • neoplasia is the pathological process that results in tumor formation. As used herein, the term “pre-cancerous” refers to a condition that is not malignant, but is likely to become malignant if left untreated.
  • proliferation refers to cells undergoing mitosis.
  • HSP90 related disease or disorder refers to a disease or disorder characterized by inappropriate HSP90 activity or over-activity of the HSP90. Inappropriate activity refers to either; (i) HSP90 expression in cells which normally do not express HSP90; (ii) increased HSP90 expression leading to unwanted cell proliferation, differentiation and/or growth; or, (iii) decreased HSP90 expression leading to unwanted reductions in cell proliferation, differentiation and/or growth.
  • Over-activity of HSP90 refers to either amplification of the gene encoding a particular HSP90 or production of a level of HSP90 activity which can correlate with a cell proliferation, differentiation and/or growth disorder (that is, as the level of the HSP90 increases, the severity of one or more of the symptoms of the cellular disorder increases).
  • a "radio therapeutic agent” refers to the use of electromagnetic or particulate radiation in the treatment of neoplasia.
  • recurrence refers to the return of cancer after a period of remission. This may be due to incomplete removal of cells from the initial cancer and may occur locally (the same site of initial cancer), regionally (in vicinity of initial cancer, possibly in the lymph nodes or tissue), and/or distally as a result of metastasis.
  • treatment refers to any process, action, application, therapy, or the like, wherein a mammal, including a human being, is subject to medical aid with the object of improving the mammal's condition, directly or indirectly.
  • vaccine includes agents that induce the patient's immune system to mount an immune response against the tumor by attacking cells that express tumor associated antigens (Teas).
  • the term "effective amount of the subject compounds,” with respect to the subject method of treatment, refers to an amount of the subject compound which, when delivered as part of desired dose regimen, brings about, e.g. a change in the rate of cell proliferation and/or state of differentiation and/or rate of survival of a cell to clinically acceptable standards.
  • This amount may further relieve to some extent one or more of the symptoms of a neoplasia disorder, including, but is not limited to: 1) reduction in the number of cancer cells; 2) reduction in tumor size; 3) inhibition (i.e., slowing to some extent, preferably stopping) of cancer cell infiltration into peripheral organs; 4) inhibition (i.e., slowing to some extent, preferably stopping) of tumor metastasis; 5) inhibition, to some extent, of tumor growth; 6) relieving or reducing to some extent one or more of the symptoms associated with the disorder; and/or 7) relieving or reducing the side effects associated with the administration of anticancer agents.
  • the term "pharmaceutically acceptable salt” refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio.
  • Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge, et al. describes pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 66: 1-19 (1977).
  • the salts can be prepared in situ during the final isolation and purification of the compounds of the invention, or separately by reacting the free base function with a suitable organic acid or inorganic acid.
  • nontoxic acid addition salts include, but are not limited to, salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, maleic acid, tartaric acid, citric acid, succinic acid lactobionic acid or malonic acid or by using other methods used in the art such as ion exchange.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid
  • organic acids such as acetic acid, maleic acid, tartaric acid, citric acid, succinic acid lactobionic acid or malonic acid or by using other methods used in the art such as ion exchange.
  • salts include, but are not limited to, adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamo
  • alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like.
  • Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, alkyl having from 1 to 6 carbon atoms, sulfonate and aryl sulfonate.
  • ester refers to esters which hydrolyze in vivo and include those that break down readily in the human body to leave the parent compound or a salt thereof.
  • Suitable ester groups include, for example, those derived from pharmaceutically acceptable aliphatic carboxylic acids, particularly alkanoic, alkenoic, cycloalkanoic and alkanedioic acids, in which each alkyl or alkenyl moiety advantageously has not more than 6 carbon atoms.
  • esters include, but are not limited to, formates, acetates, propionates, butyrates, acrylates and ethylsuccinates.
  • prodrugs refers to those prodrugs of the compounds of the present invention which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals with undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of the present invention.
  • Prodrug as used herein means a compound which is convertible in vivo by metabolic means (e.g. by hydrolysis) to a compound of the invention.
  • prodrugs are known in the art, for example, as discussed in Bundgaard, (ed.), Design of Prodrugs, Elsevier (1985); Widder, et al. (ed.), Methods in Enzymology, vol. 4, Academic Press (1985); Krogsgaard-Larsen, et al., (ed). "Design and Application of Prodrugs, Textbook of Drug Design and Development, Chapter 5, 113-191 (1991); Bundgaard, et al., Journal of Drug Deliver Reviews, 8:1-38(1992); Bundgaard, J. of Pharmaceutical Sciences, 77:285 et seq. (1988); Higuchi and Stella (eds.) Prodrugs as Novel Drug Delivery Systems, American Chemical Society (1975); and Bernard Testa & Joachim Mayer,
  • pharmaceutically acceptable carrier is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration, such as sterile pyrogen-free water. Suitable carriers are described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in the field, which is incorporated herein by reference. Preferred examples of such carriers or diluents include, but are not limited to, water, saline, finger's solutions, dextrose solution, and 5% human serum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.
  • pre-cancerous refers to a condition that is not malignant, but is likely to become malignant if left untreated.
  • subject refers to an animal.
  • the animal is a mammal. More preferably the mammal is a human.
  • a subject also refers to, for example, dogs, cats, horses, cows, pigs, guinea pigs, fish, birds and the like.
  • the compounds of this invention may be modified by appending appropriate functionalities to enhance selective biological properties.
  • modifications are known in the art and may include those which increase biological penetration into a given biological system (e.g., blood, lymphatic system, central nervous system), increase oral availability, increase solubility to allow administration by injection, alter metabolism and alter rate of excretion.
  • the synthesized compounds can be separated from a reaction mixture and further purified by a method such as column chromatography, high pressure liquid chromatography, or recrystallization.
  • a method such as column chromatography, high pressure liquid chromatography, or recrystallization.
  • further methods of synthesizing the compounds of the formulae herein will be evident to those of ordinary skill in the art. Additionally, the various synthetic steps may be performed in an alternate sequence or order to give the desired compounds.
  • Synthetic chemistry transformations and protecting group methodologies (protection and deprotection) useful in synthesizing the compounds described herein are known in the art and include, for example, those such as described in R. Larock, Comprehensive Organic Transformations, VCH Publishers (1989); T.W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 2d.
  • Optical isomers may be prepared from their respective optically active precursors by the procedures described above, or by resolving the racemic mixtures.
  • the resolution can be carried out in the presence of a resolving agent, by chromatography or by repeated crystallization or by some combination of these techniques which are known to those skilled in the art. Further details regarding resolutions can be found in Jacques, et al, Enantiomers, Racemates, and Resolutions (John Wiley & Sons, 1981).
  • the compounds described herein contain olefmic double bonds, other unsaturation, or other centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers and/or cis- and trans- isomers.
  • compositions of the present invention comprise a therapeutically effective amount of a compound of the present invention formulated together with one or more pharmaceutically acceptable carriers or excipients.
  • the term "pharmaceutically acceptable carrier or excipient” means a non-toxic, inert solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type.
  • materials which can serve as pharmaceutically acceptable carriers are sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols such as propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid;
  • compositions of this invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir, preferably by oral administration or administration by injection.
  • the pharmaceutical compositions of this invention may contain any conventional non-toxic pharmaceutically-acceptable carriers, adjuvants or vehicles.
  • the pH of the formulation may be adjusted with pharmaceutically acceptable acids, bases or buffers to enhance the stability of the formulated compound or its delivery form.
  • parenteral as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques.
  • Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs.
  • the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
  • the oral compositions can also include adjuvants such as wetting agents, e
  • Injectable preparations for example, sterile injectable aqueous or oleaginous suspensions, may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents.
  • the sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol.
  • the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S. P. and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil can be employed including synthetic mono- or diglycerides.
  • fatty acids such as oleic acid are used in the preparation of injectables.
  • the injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
  • compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
  • Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules.
  • the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or: a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and g
  • Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
  • the solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner.
  • Examples of embedding compositions that can be used include polymeric substances and waxes.
  • Dosage forms for topical or transdermal administration of a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches.
  • the active component is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required.
  • Ophthalmic formulation, ear drops, eye ointments, powders and solutions are also contemplated as being within the scope of this invention.
  • the ointments, pastes, creams and gels may contain, in addition to an active compound of this invention, excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
  • excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
  • Powders and sprays can contain, in addition to the compounds of this invention, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances.
  • Sprays can additionally contain customary propellants such as chlorofluorohydrocarbons.
  • Transdermal patches have the added advantage of providing controlled delivery of a compound to the body. Such dosage forms can be made by dissolving or dispensing the compound in the proper medium.
  • Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel.
  • a therapeutic composition of the invention is formulated and administered to the patient in solid or liquid particulate form by direct administration e.g., inhalation into the respiratory system.
  • Solid or liquid particulate forms of the active compound prepared for practicing the present invention include particles of respirable size: that is, particles of a size sufficiently small to pass through the mouth and larynx upon inhalation and into the bronchi and alveoli of the lungs. Delivery of aerosolized therapeutics, particularly aerosolized antibiotics, is known in the art (see, for example U.S. Pat. No. 5,767,068 to VanDevanter et al, U.S. Pat. No.
  • a “therapeutically effective amount” of a compound of the invention is meant an amount of the compound which confers a therapeutic effect on the treated subject, at a reasonable benefit/risk ratio applicable to any medical treatment.
  • the therapeutic effect may be objective (i.e., measurable by some test or marker) or subjective (i.e., subject gives an indication of or feels an effect).
  • An effective amount of the compound described above may range from about 0.1 mg/Kg to about 500 mg/Kg, preferably from about 1 to about 50 mg/Kg. Effective doses will also vary depending on route of administration, as well as the possibility of co-usage with other agents. It will be understood, however, that the total daily usage of the compounds and compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment.
  • the specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or contemporaneously with the specific compound employed; and like factors well known in the medical arts.
  • the total daily dose of the compounds of this invention administered to a human or other animal in single or in divided doses can be in amounts, for example, from 0.01 to 50 mg/kg body weight or more usually from 0.1 to 25 mg/kg body weight.
  • Single dose compositions may contain such amounts or submultiples thereof to make up the daily dose.
  • treatment regimens according to the present invention comprise administration to a patient in need of such treatment from about 10 mg to about 1000 mg of the compound(s) of this invention per day in single or multiple doses.
  • the compounds of the formulae described herein can, for example, be administered by injection, intravenously, intraarterially, subdermally, intraperitoneally, intramuscularly, or subcutaneously; or orally, buccally, nasally, transmucosally, topically, in an ophthalmic preparation, or by inhalation, with a dosage ranging from about 0.1 to about 500 mg/kg of body weight, alternatively dosages between 1 mg and 1000 mg/dose, every 4 to 120 hours, or according to the requirements of the particular drug.
  • the methods herein contemplate administration of an effective amount of compound or compound composition to achieve the desired or stated effect.
  • the pharmaceutical compositions of this invention will be administered from about 1 to about 6 times per day or alternatively, as a continuous infusion.
  • Such administration can be used as a chronic or acute therapy.
  • the amount of active ingredient that may be combined with pharmaceutically excipients or carriers to produce a single dosage form will vary depending upon the host treated and the particular mode of administration.
  • a typical preparation will contain from about 5% to about 95% active compound (w/w).
  • such preparations may contain from about 20% to about 80% active compound.
  • a maintenance dose of a compound, composition or combination of this invention may be administered, if necessary. Subsequently, the dosage or frequency of administration, or both, may be reduced, as a function of the symptoms, to a level at which the improved condition is retained when the symptoms have been alleviated to the desired level. Patients may, however, require intermittent treatment on a long-term basis upon any recurrence of disease symptoms.
  • the compounds of formula I, or a pharmaceutically-acceptable salt thereof may be prepared by any process known to be applicable to the preparation of chemically-related compounds. Suitable processes for making certain intermediates include, for example, those illustrated in PCT publication numbers WO2006133634 and WO2007101156. Necessary starting materials may be obtained by standard procedures of organic chemistry. The preparation of such starting materials is described within the accompanying non-limiting Examples. Alternatively, necessary starting materials are obtainable by analogous procedures to those illustrated which are within the ordinary skill of a chemist.
  • Step Ia 2-Acetyl-5,5-dimethylcyclohexane-l,3-dione (Compound 0102) 5,5-Dimethyl-l,3-cyclohexanedione (28 g, 200 mol) and pyridine (17.4 g,
  • NH 2 OKHCl (4.17 g, 0.06 mol) was suspended in 15 mL methanol. The mixture was placed in an ice-bath and stirred. A solution of KOH (3.87 g, 0.069 mol) in 15 mL methanol was added dropwise. After addition, the mixture was stirred for additional 10 minutes and then filtered. The filtrate was used directly to the next step as a 2 mol/L NH 2 OH/MeOH solution.
  • Step 2a Ethyl 6-(2-carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol- l-yl)phenylamino)hexanoate (Compound 0109-3)
  • Step 2b 2-(6-(Hydroxyamino)-6-oxohexylamino)-4-(3,6,6-trimethyl-4-oxo-4,5,6,7- tetrahydroindazol-l-yl)benzamide (Compound 3)
  • Step 3a Ethyl 7-(2-carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol- l-yl)phenylamino)heptanoate (Compound 0109-4)
  • Step 4b N 1 -(2-carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l- yl)phenyl)-N 7 -hydroxyheptanediamide (Compound 8)
  • the title compound 0110-9 was prepared as a brown solid (370 mg, 38%) from compound 0108 (625 mg, 2mmol), 8-methoxy-8-oxooctanoic acid (753 mg, 4 mmol), EDCI (767 mg, 4 mmol) and DMAP (20 mg) in dichloromethane (30 ml) using a procedure similar to that described for compound 0110-8 (Example 4):
  • Step 5b N 1 -(2-Carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l- yl)phenyl)-N 8 - hydroxyoctanediamide (Compound 9)
  • Step 6a Ethyl 6-(2-carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol- 1-yl) phenylamino) -6-oxohexanoate (Compound 0110-7)
  • Step 6b Nl-(2-carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l-yl) phenyl)-N6-hydroxyadipamide (compound 7)
  • the title compound 7 was prepared as a pale white solid (16 mg, 15%) from compound 0110-7 (110 mg, 0.23 mmol) and freshly prepared 2 mol/L NH 2 OH/MeOH (10 mL, 20 mmol) using a procedure similar to that described for compound 2 (Example 1): LCMS: 456 [M+l] + .
  • Step 7b Ethyl 2-oxo-l,2,3,4-tetrahydropyrimidine-5-carboxylate (Compound 0203) A mixture of 0202 (21.4 g, 0.11 mol), urea (5.70 g, 0.095 mol), and hydrochloric acid (5 mL) in ethanol (300 mL) was heated to reflux overnight.
  • Step 7c Ethyl 2-oxo-l,2-dihydropyrimidine-5-carboxylate (Compound 0204)
  • Step 7e 2-(Piperazin-l-yl)-4-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l- yl)benzonitrile (Compound 0209- 14)
  • Step 7f Ethyl 2-(4-(2-cyano-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l- yl)phenyl)piperazin- 1 -yl)pyrimidine-5 -carboxylate (Compound 0210- 14)
  • Step 7g Ethyl 2-(4-(2-carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7- tetrahydroindazol- 1 -yl) phenyl)piperazin- 1 -yl)pyrimidine-5 -carboxylate(Compound 0211-14)
  • Step 7h 2-(4-(2-Carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l- yl) phenyl)piperazin-l-yl)-N-hydroxypyrimidine-5-carboxamide (Compound 14)
  • the title compound 14 was prepared as a pale white solid (23 mg, 11%) from compound 0211 (110 mg, 0.23 mmol) and freshly prepared 2 mol/L NH 2 OH/MeOH (10 mL, 20 mmol) using a procedure similar to that described for compound 2 (Example 1): LCMS: 519 [M+l] + , 1 U NMR (400 MHz, DMSO-J 6 ) ⁇ 1.01 (s, 6H), 2.33 (s, 2H), 2.40 (s, 3H), 2.94 (s, 2H), 3.09 (m, 4H), 4.01 (m, 4H), 7.29 (m, 2H), 7.67 (s,
  • EXAMPLE 8 Preparation of 2-(4-((2-carbamoyl-5-(3,6,6-trimethyl-4-oxo- 4,5,6,7-tetrahydroindazol-l-yl)phenylamino)methyl)piperidin-l-yl)-N- hydroxypyrimidine-5-carboxamide (Compound 15)
  • Step 8a Ethyl 2-(4-(aminomethyl)piperidin-l-yl)pyrimidine-5-carboxylate (Compound 0206)
  • Step 8b Ethyl 2-(4-((2-cyano-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l- yl)- phenylamino)methyl)piperidin- 1 -yl)pyrimidine-5-carboxylate (Compound 0207-15)
  • Step 8c Ethyl 2-(4-((2-carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7- tetrahydroindazol- 1 -yl)phenylamino)methyl)piperidin- 1 -yl)pyrimidine-5 - carboxylate (Compound 0208-15)
  • the title compound 0208-15 was prepared as a brown solid (190 mg, 46%) from compound 0207-15 (400 mg, 0.74 mmol), 5 N NaOH (0.5 mL), and H 2 O 2 (15 mL) using a procedure similar to that described for compound 0211-14 (Example 7).
  • Step 8d 2-(4-((2-Carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l- yl)-phenylamino)methyl)piperidin- 1 -yl)-N-hydroxypyrimidine-5 -carboxamide (Compound 15)
  • the title compound 15 was prepared as a pale white solid (22 mg, 12%) from compound 0208 (190 mg, 0.34 mmol) and freshly prepared 2 mol/L NH 2 OH/MeOH (10 mL, 20 mmol) using a procedure similar to that described for compound 2 (Example 1): LCMS: 547 [M+l] + , 1 H NMR (400 MHz, DMSO-J 6 ) ⁇ 1.01 (s, 6H), 1.17 (m, 2H), 1.82 (m, 2H), 1.94 (m, IH), 2.33 (s, 2H), 2.40 (s, 3H), 2.98 (m, 4H), 3.10 (m, 2H), 4.75 (m, 2H), 6.68 (m, IH), 6.79 (m, IH), 7.29 (s, IH), 7.74 (m, IH), 7.96 (s, IH), 8.59 (m, IH), 8.65 (s, 2H), 9.00 (s, IH), 11.05 (s, IH).
  • Step 9c 2-Bromo-4-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7- tetrahydroindazol-l-yl)benzonitrile (Compound 0105-18)
  • Step 9d Ethyl 2-(4-((2-cyano-5-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7- tetrahydroindazol- 1 -yl)phenylamino)methyl)piperidin- 1 -yl)pyrimidine-5 - carboxylate (Compound 0207-18)
  • the title compound 0207-18 was prepared as a brown solid (600 mg, 51%) from compound 0206 (824 mg, 2 mmol), Pd(OAc) 2 (64 mg), DPPF (256 mg), NaO 1 Bu (414 mg) and 0105-18 (634 mg, 2.4 mmol) in toluene (30 mL) using a procedure similar to that described for compound 0207-15 (Example 8): LCMS: 596 [M+ 1] + .
  • Step 9e Ethyl 2-(4-((2-carbamoyl-5-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)- 4,5,6,7-tetrahydroindazol-l-yl)phenylamino)methyl)piperidin-l-yl)pyrimidine-5- carboxylate(Compound 0208-18)
  • Step 9f 2-(4-((2-Carbamoyl-5-(6,6-dimethyl-4-oxo-3-(trifiuoromethyl)-4,5,6,7- tetra-hydroindazol- 1 -yl)phenylamino)methyl)piperidin- 1 -yl)-N-hydroxypyrimidine- 5-carboxamide(Compound 18)
  • the title compound 18 was prepared as a pale white solid (30 mg, 31%) from compound 0208-18 (100 mg, 0.16 mmol) and freshly prepared 2 mol/L NH 2 OH/MeOH (5 mL, 10 mmol) using a procedure similar to that described for compound 2 (Example 1): Mp.: 170-171 0 C.
  • Step 10a Ethyl 6-(2-carbamoyl-5-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7- tetrahydroindazol-l-yl)phenylamino)hexanoate (Compound 0109-22)
  • the title compound 0109-22 was prepared as a brown solid (400 mg, 78%) from compound 0108-22 (366 mg, 1 mmol), NaBH 3 CN (188 mg, 3 mmol), HOAc (to pH 5 ⁇ 6) and ethyl 6-oxohexanoate (190 mg, 1.2 mmol) in MeOH (10 mL) using a procedure similar to that described for compound 0109-2 (Example 1): LCMS: 509 [M+l] + .
  • Step 10b 4-(6,6-Dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7-tetrahydroindazol-l- yl)-2-(6-(hydroxyamino)-6-oxohexylamino)benzamide (Compound 22)
  • the title compound 22 was prepared as a white solid (80 mg, 44%) from compound 0109-22 (230 mg, 0.45 mmol) and freshly prepared 2 mol/L NH 2 OHZMeOH (4.5 mL, 9 mmol) using a procedure similar to that described for compound 2 (Example 1): Mp.: 150-151 0 C. LCMS: 496 [M+l] + .
  • Step lla Ethyl 7-(2-carbamoyl-5-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7- tetra-hydroindazol- 1 -yl)phenylamino)heptanoate (Compound 0109-23)
  • the title compound 0109-23 was prepared as a brown solid (180 mg, 34%) from compound 0108-22 (366 mg, 1 mmol), NaBH 3 CN (188 mg, 3 mmol), HOAc (to pH 5 ⁇ 6) and ethyl 7-oxoheptanoate (206 mg, 1.2 mmol) in MeOH (10 mL) using a procedure similar to that described for compound 0109-2 (Example 1): LCMS: 523 [M+l] + .
  • Step lib 4-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7-tetrahydroindazol-l- yl)-2-(7-(hydroxyamino)-7-oxoheptylamino)benzamide (Compound 23)
  • the title compound 23 was prepared as a brown solid (44 mg, 20%) from compound 0109-23 (230 mg, 0.44 mmol) and freshly prepared 2 mol/L NH 2 OHZMeOH (4 mL, 8 mmol) using a procedure similar to that described for compound 2 (Example 1): Mp.: 130-131 0 C.
  • Step 12a Methyl 5-(2-carbamoyl-5-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)- 4,5,6,7-tetrahydroindazol-l-yl)phenylamino)-5-oxopentanoate (Compound 0110-27)
  • the title compound 0110-27 was prepared as a yellow solid (320 mg, 30%) from compound 0108-22 (732 mg, 2 mmol), 8-methoxy-oxooctamoicacid (753 mg, 4 mmol), EDCI (766 mg, 4 mmol), and DMAP (20 mg) in dichloromethane (30 mL) using a procedure similar to that described for compound 0110-7 (Example 6): LCMS: 537 [M+l] + .
  • Step 12b Nl-(2-carbamoyl-5-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7-tetra- hydroindazol-l-yl)phenyl)-N8 -hydroxyoctanediamide (Compound 27)
  • the title compound 27 was prepared as a yellow solid (50 mg, 29%) from compound 0110-27 (170 mg, 0.32 mmol) and freshly prepared 2 mol/L NH 2 OH/MeOH (10 mL, 20 mmol) using a procedure similar to that described for compound 2 (Example 1): Mp.: 113-115 0 C. LCMS: 538 [M+l] + .
  • Step 13a Tert-butyl 4-(2-cyano-5-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7- tetra-hydroindazol- 1 -yl)phenylamino)piperidine- 1 -carboxylate (Compound 0301 - 32)
  • the title compound 0301-32 was prepared as a yellow solid (1.7 g, 64%) from compound 0105-18 (2.05 g, 5 mmol), Pd(OAc) 2 (100 mg), DPPF (400 mg), NaO 1 Bu (0.96 g, 10 mmol), and tert-butyl 4-aminopiperidine-l -carboxylate (2.5 g, 12.5 mmol) in toluene (20 mL) using a procedure similar to that described for compound 0106 (Example 1): LCMS: 532 [M+l] + .
  • Step 13b 4-(6,6-Dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7-tetrahydroindazol-l- yl)-2-(piperidin-4-ylamino)benzonitrile (Compound 0302-32)
  • a mixture of 0301-32 (1.7 g, 3.2 mmol) and 2,2,2-trifluoroacetic acid (10 mL) was stirred at ambient temperature for 30 min, 2,2,2-trifluoroacetic acid was removed. The residue was dispersed in water, filtered and dried to give title compound 0302-32 (1.21 g, 88%) as a white solid: LCMS: 432 [M+l] + .
  • Step 13c 4-(6,6-Dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7-tetrahydroindazol-l- yl)-2-(piperidin-4-ylamino)benzamide (Compound 0303-32)
  • the title compound 0303-32 was prepared as a yellow solid (1.09 g, 87%) from compound 0302-32 (1.2 g, 2.8 mmol), 5 N NaOH (1.1 mL), and H 2 O 2 (10 mL) using a procedure similar to that described for compound 0211-14 (Example 7): LCMS: 450 [M+l] + .
  • Step 13d Ethyl 5-(4-(2-carbamoyl-5-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)- 4,5 ,6,7-tetrahydroindazol- 1 -yl)phenylamino)piperidin- 1 -yl)pentanoate (Compound 0304-32)
  • Step 13e 4-(6,6-Dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7-tetrahydroindazol-l- yl)-2-( 1 -(5 -(hydroxyamino)-5 -oxopentyl)piperidin-4-ylamino)benzamide (Compound 32)
  • the title compound 32 was prepared as a white solid (30 mg, 15%) from compound 0304-32 (200 mg, 0.35 mmol) and freshly prepared 2 mol/L NH 2 OHZMeOH (10 mL, 20 mmol) using a procedure similar to that described for compound 2 (Example 1): M.p.: 220-221 0 C. LCMS: 565 [M+l] + .
  • the title compound 0304-33 was prepared as a yellow solid (260 mg, 56%) from compound 0303-32 (322 mg, 0.71 mmol) and ethyl 6-bromohexanoate (174 mg, 0.78 mmol) using a procedure similar to that described for compound 0304-32 (Example 13): LCMS: 592 [M+l] + .
  • Step 14b 4-(6,6-Dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7-tetrahydroindazol-l- yl)-2-( 1 -(6-(hydroxyamino)-6-oxohexyl)piperidin-4-y lamino)benzamid (Compound 33)
  • the title compound 33 was prepared as a white solid (37 mg, 29%) from compound 0304-33 (130 mg, 0.22 mmol) and freshly prepared 2 mol/L NH 2 OHZMeOH (10 mL, 20 mmol) using a procedure similar to that described for compound 2 (Example 1): Mp.: 215-216 0 C.
  • Step 15a Ethyl 7-(4-(2-carbamoyl-5-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)-
  • the title compound 34 was prepared as a white solid (50 mg, 22%) from compound 0304-34 (230 mg, 0.39 mmol) and freshly prepared 2 mol/L
  • Step 16a l-(5,5-Dimethyl-3-oxocyclohex-l-enyl) 7-methyl heptanedioate (Compound 0401-40)
  • Step 16b Methyl 7-(4,4-dimethyl-2,6-dioxocyclohexyl)-7-oxoheptanoate (Compound 0402-40)
  • Step 16c 4-Fluoro-2-((lr, 4r)-4-hydroxycyclohexylamino)benzonitrile (Compound 0404)
  • Step 16e Methyl 6-(l-(4-cyano-3-((lr, 4r)-4-hydroxycyclohexylamino)phenyl)-6,6- dimethyl-4-oxo-4,5,6,7-tetrahydro-lH-indol-3-yl)hexanoate (Compound 0406-40) A mixture of 0405 (485 mg, 1.97 mmol), 0402-40 (0.583 g, 1.97 mmol),
  • Step 16f Methyl 6-(l-(4-carbamoyl-3-((lr, 4r)-4-hydroxycyclohexylamino)phenyl)- 6,6-dimethyl-4-oxo-4,5,6,7-tetrahydro-lH-indol-3-yl)hexanoate (Compound 0407- 40)
  • Step 16g 4-(3-(6-(Hydroxyamino)-6-oxohexyl)-6,6-dimethyl-4-oxo-4,5,6,7- tetrahydro-indol- 1 -yl)-2-(( lr,4r)-4-hydroxycyclohexylamino)benzamide (Compound 40)
  • the title compound 40 was prepared as a yellow solid (46 mg, 27%) from compound 0407-40 (170 mg, 0.32 mmol) and freshly prepared 2 mol/L NH 2 OH/MeOH (10 mL, 20 mmol) using a procedure similar to that described for compound 2 (Example 1): M.p.: 120-122 0 C. LCMS: 526.1[M+1] + .
  • Step 17a l-(5,5-Dimethyl-3-oxocyclohex-l-enyl) 8-methyl octanedioate (Compound 0401-41)
  • the title compound 0401-41 was prepared as a yellow solid (3.40 g, 99%) from compound 0101(1.55 g, 11.1 mmol), pyridine (0.97 g, 12.2 mmol), and methyl 8-chloro-8-oxooctanoate (2.51 g, 12.2 mmol) in CH 2 Cl 2 (22 mL) using a procedure similar to that described for compound 0401-40 (Example 16).
  • LCMS 311 [M+l] + .
  • Step 17b Methyl 8-(4,4-dimethyl-2,6-dioxocyclohexyl)-8-oxooctanoate(Compound 0402-41)
  • the title compound 0402-41 was prepared as a yellow solid (489 mg, 14%) from compound 0401-41(3.40 g, 11 mmol), AlCl 3 (2.93 g, 22 mmol) in CH 2 Cl 2 (29 mL) in CH 2 Cl 2 (20 mL) using a procedure similar to that described for compound 0402-40 (Example 16): LCMS: 311 [M+l] + .
  • Step 17c Methyl 7-(l-(4-cyano-3-((ls, 4s)-4-hydroxycyclohexylamino)phenyl)-6,6- dimethyl-4-oxo-4,5,6,7-tetrahydro-lH-indazol-3-yl)heptanoate (Compound 0406- 41)
  • the title compound 0406-41 was prepared as a yellow solid (190 mg, 60%) from compound 0405 (389 mg, 1.6 mmol), 0402-41 (489 mg, 1.6 mmol), and AcOH (189 mg, 3.2 mmol) in EtOH (33 mL) using a procedure similar to that described for compound 0406-40 (Example 16): LCMS: 521 [M+ 1] + .
  • Step 17d Methyl 7-(l-(4-carbamoyl-3-((ls,4s)-4- hydroxycyclohexylamino)phenyl)-6,6-dimethyl-4-oxo-4,5 ,6,7-tetrahydro- 1 H- indazol-3-yl)heptanoate (Compound 0407-41)
  • the title compound 0407-41 was prepared as a yellow solid (280 mg, 62%) from compound 0406-41 (404 mg, 0.8 mmol), 5 N NaOH (0.3 mL), and H 2 O 2 (12 mL) using a procedure similar to that described for compound 0211-14 (Example 7): LCMS: 539 [M+l] + .
  • Step 17e (E)-ethyl 4-(3-(7-(hydroxyamino)-7-oxoheptyl)-6,6-dimethyl-4-oxo- 4,5,6,7-tetrahydroindazol-l-yl)-2-((ls,4s)-4-hydroxycyclohexylamino)benzamide (Compound 41)
  • the title compound 41 was prepared as a yellow solid (24 mg, 9%) from compound 0407-41 (280 mg, 0.5 mmol) and freshly prepared 2 mol/L NH 2 OH/MeOH (5 mL, 10 mmol) using a procedure similar to that described for compound 2 (Example 1): Mp.: 112-119 0 C. LCMS: 540 [M+l] + .
  • Step 18a l-(5,5-Dimethyl-3-oxocyclohex-l-enyl) 9-methyl nonanedioate (Compound 0401-42)
  • the title compound 0401-42 was prepared as an oil (12.5 g, 82.6%) from compound 0101 (6.92 g, 49.4 mmol), pyridine (4.3 g, 54.3 mmol), and methyl 9- chloro-9-oxononanoate (10.1 g, 49.4 mmol) in CH 2 Cl 2 (40 mL) using a procedure similar to that described for compound 0401-40 (Example 16): LCMS: 325.1 [M+ 1] + .
  • Step 18b l-(4,4-Dimethyl-2,6-dioxocyclohexyl) 9-methyl nonanedioate (compound 0402-42)
  • the title compound 0402-42 was prepared as a white solid (5.50 g, 44%) from compound 0401-42 (12.5 g, 38.52 mmol), AlCl 3 (11.10 g, 83.20 mmol) in (CH 2 ) 2 C1 2 (110 mL) using a procedure similar to that described for compound 0402- 40 (Example 16): LCMS: 325.1 [M+ 1] + .
  • Step 18c Methyl 8-(l-(4-cyano-3-((lr, 4r)-4-hydroxycyclohexylamino)phenyl)-6,6- dimethyl-4-oxo-4,5,6,7-tetrahydro-lH-indol-3-yl)octanoate (Compound 0406-42)
  • the title compound 0406-42 was prepared as a yellow solid (0.6 g, 54.7%) from compound 0405 (506 mg, 2.06 mmol), 0402-42 (666 mg, 2.06 mmol), and AcOH (246 mg, 4.1 mmol) in ethanol (100 mL) using a procedure similar to that described for compound 0406-40 (Example 16): LCMS: 535.1 [M+l] + .
  • Step 18d Methyl 8-(l-(4-carbamoyl-3-((lr, 4r)-4- hydroxycyclohexylamino)phenyl)-6,6-dimethyl-4-oxo-4,5 ,6,7-tetrahydro- 1 H-indol- 3-yl)octanoate (Compound 0407-42)
  • Step 18e 4-(3-(8-(Hydroxyamino)-8-oxooctyl)-6,6-dimethyl-4-oxo-4,5,6,7- tetrahydro-indol- 1 -yl)-2-(( lr,4r)-4-hydroxycyclohexylamino)benzamide (compound 42)
  • the title compound 42 was prepared as a yellow solid (50 mg, 25%) from compound 0407-42 (200 mg, 0.36mmol) and freshly prepared 2 mol/L NH 2 OH/MeOH (10 mL, 20 mmol) using a procedure similar to that described for compound 2 (Example 1): LCMS: 554.1[M+1] + .
  • the derivatives defined in the present invention possess anti-proliferation activity. These properties may be assessed, for example, using one or more of the procedures set out below: (a) An in vitro assay which determines the ability of a test compound to inhibit Hsp90 chaperone activity.
  • Hsp90 chaperone assay was performed to measure the ability of HSP90 protein to refold the heat-denatured luciferase protein.
  • HSP90 was first incubated with different concentrations of test compounds in denaturation buffer (25 mM Tris, pH7.5, 8 mM MgSO4, 0.01% bovine gamma globulin and 10% glycerol) at room temperature for 30 min. Luciferase protein was added to denaturation mix and incubated at 50 0 C for 8 min. The final concentration of HSP90 and luciferase in denaturation mixture were 0.375 ⁇ M and 0.125 ⁇ M respectively.
  • a 5 ⁇ l sample of the denatured mix was diluted into 25 ⁇ l of renaturation buffer (25 mM Tris, pH7.5, 8 mM MgSO4, 0.01% bovine gamma globulin and 10% glycerol, 0.5 mM ATP, 2 mM DTT, 5 mM KCl, 0.3 ⁇ M HSP70 and 0.15 ⁇ M HSP40).
  • the renaturation reaction was incubated at room temperature for 150 min, followed by dilution of lO ⁇ l of the renatured sample into 90 ⁇ l of luciferin reagent (Luclite, PerkinElmer Life Science). The mixture was incubated at dark for 5 min before reading the luminescence signal on a TopCount plate reader (PerkinElmer Life Science).
  • HSP90 Competition Binding Fluorescence Polarization
  • a fluorescein isothiocyanate (FITC) labeled GM was purchase from InvivoGen (ant-fgl-1). The interaction between HSP90 and labeled GM forms the basis for the fluorescence polarization assay. A free and fast-tumbling FITC labeled GM emits random light with respect to the plane of polarization plane of excited light, resulting in a lower polarization degree (mP) value. When GM is bound to HSP90, the complex tumble slower and the emitted light is polarized, resulting in a higher mP value.
  • mP polarization degree
  • This competition binding assay was performed in 96-well plate and with each assay contained 10 and 5OnM of labeled GM and purified HSP90 protein (Assay Design, SPP-776F) respectively.
  • the assay buffer contained 2OmM HEPES (pH 7.3), 5OmM KCl, ImM DTT, 5OmM MgCl 2 , 2OmM Na 2 MoO 4 , 0.01% NP40 with O.lmg/ml bovine gamma-globulin.
  • Compounds are diluted in DMSO and added to the final assay before labeled GM with concentration range from 2OuM to 2nM.
  • mP value was determined by BioTek Synergy II with background subtraction after 24 hours of incubation at 4 0 C.
  • HDAC inhibitors were screened using an HDAC fluorimetric assay kit (AK- 500, Biomol, Plymouth Meeting, PA). Test compounds were dissolved in dimethylsulphoxide (DMSO) to give a 20 mM working stock concentration. Fluorescence was measured on a WALLAC Victor 2 plate reader and reported as relative fluorescence units (RFU). Data were plotted using GraphPad Prism (v4.0a) and IC50's calculated using a sigmoidal dose response curve fitting algorithm. Each assay was setup as follows: Defrosted all kit components and kept on ice until use.
  • DMSO dimethylsulphoxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to tetrahydroindole and tetrahydroindazole as HSP90 inhibitors containing a zinc binding moiety and their use in the treatment of cell proliferative diseases such as cancer. The said derivatives may further act as HDAC inhibitors.

Description

TETRAHYDROINDOLE AND TETRAHDYROINDAZOLE AS HSP90 INHIBITORS CONTAINING A ZINC BINDING MOIETY
RELATED APPLICATION
This application claims the benefit of U.S. Provisional Application No. 61/035,196, filed on March 10, 2008. The entire teachings of the above application are incorporated herein by reference.
BACKGROUND OF THE INVENTION
HSP90s are ubiquitous chaperone proteins that are involved in proper protein folding and stabilization of a wide range of proteins, including key proteins involved in signal transduction, cell cycle control and transcriptional regulation. Researchers have reported that HSP90 chaperone proteins are associated with important signaling proteins, such as steroid hormone receptors and protein kinases, ( e.g., Raf- 1, EGFR, v-Src family kinases, Cdk4, and ErbB-2), many of which are overexpressed or mutated in various cancers (Buchner J. TIBS, 1999, 24, 136-141; Stepanova, L. et al. Genes Dev. 1996, 10, 1491-502; Dai, K. et al. J. Biol. Chem. 1996, 271, 22030-4). Studies further indicate that certain co-chaperones, e.g., HSP70, p60/Hop/Stil, Hip, Bagl, HSP40/Hdj2/Hsjl, immunophilins, p23, and p50, may assist HSP90 in its function (Caplan, A. Trends in Cell Biol. 1999, 9, 262-68). HSP90 has been shown by mutational analysis to be necessary for the survival of normal eukaryotic cells. However, HSP90 is overexpressed in many tumor types indicating that it may play a significant role in the survival of cancer cells and that cancer cells may be more sensitive to inhibition of HSP90 than normal cells. In fact, cancer cells typically have a large number of mutated and overexpressed oncoproteins that are dependent on HSP90 for folding. In addition, because the environment of a tumor is typically hostile due to hypoxia, nutrient deprivation, acidosis, etc., tumor cells may be especially dependent on HSP90 for survival. Moreover, inhibition of HSP90 causes simultaneous inhibition of a number of client oncoproteins, as well as hormone receptors and transcription factors making it an attractive target for an anti-cancer agent. The two main classes of HSP90 inhibitors that are currently pursued by many companies are based on the natural antibiotic geldanamycin and synthetic purine-scaffold. Several promising geldanamycin related HSP90 inhibitors are currently in clinical trial namely, 17-allylamino 17-demethoxygeldanamycin (17- AAG), 17-dimethylaminoethylamino- 17-demethoxygeldanamycin (17-DMAG) and IPI-504. Furthermore, many of the purine-scaffold HSP90 inhibitors are showing positive preclinical results. Currently, the frontrunner in the purine-scaffold is CNF- 2024, which is currently in phase 1 clinical trial.
Elucidation of the complex and multifactorial nature of various diseases that involve multiple pathogenic pathways and numerous molecular components suggests that multi-targeted therapies may be advantageous over mono-therapies. Recent combination therapies with two or more agents for many such diseases in the areas of oncology, infectious disease, cardiovascular disease and other complex pathologies demonstrate that this combinatorial approach may provide advantages with respect to overcoming drug resistance, reduced toxicity and, in some circumstances, a synergistic therapeutic effect compared to the individual components.
Certain cancers have been effectively treated with such a combinatorial approach; however, treatment regimes using a cocktail of cytotoxic drugs often are limited by dose limiting toxicities and drug-drug interactions. More recent advances with molecularly targeted drugs have provided new approaches to combination treatment for cancer, allowing multiple targeted agents to be used simultaneously, or combining these new therapies with standard chemotherapeutics or radiation to improve outcome without reaching dose limiting toxicities. However, the ability to use such combinations currently is limited to drugs that show compatible pharmacologic and pharmacodynamic properties. In addition, the regulatory requirements to demonstrate safety and efficacy of combination therapies can be more costly and lengthy than corresponding single agent trials. Once approved, combination strategies may also be associated with increased costs to patients, as well as decreased patient compliance owing to the more intricate dosing paradigms required.
In the field of protein and polypeptide-based therapeutics it has become commonplace to prepare conjugates or fusion proteins that contain most or all of the amino acid sequences of two different proteins/polypeptides and that retain the individual binding activities of the separate proteins/polypeptides. This approach is made possible by independent folding of the component protein domains and the large size of the conjugates that permits the components to bind their cellular targets in an essentially independent manner. Such an approach is not, however, generally feasible in the case of small molecule therapeutics, where even minor structural modifications can lead to major changes in target binding and/or the pharmacokinetic/pharmacodynamic properties of the resulting molecule.
The use of HSP90 inhibitors in combination with histone deacetylases (HDAC) has been shown to produce synergistic effects. Histone acetylation is a reversible modification, with deacetylation being catalyzed by a family of enzymes termed HDACs. HDACs are represented by X genes in humans and are divided into four distinct classes {J MoI Biol, 2004, 338:1, 17-31). In mammalians class I HDACs (HDACl-3, and HDAC8) are related to yeast RPD3 HDAC, class 2 (HDAC4-7, HDAC9 and HDAClO) related to yeast HDAl, class 4 (HDACl 1), and class 3 (a distinct class encompassing the sirtuins which are related to yeast Sir2). Histone acetylation is a reversible modification, with deacetylation being catalyzed by a family of enzymes termed HDACs. HDACs are represented by X genes in humans and are divided into four distinct classes {J MoI Biol, 2004, 338:1, 17-31). In mammalians class I HDACs (HDAC 1-3, and HDAC8) are related to yeast RPD3 HDAC, class 2 (HDAC4-7, HDAC9 and HDAC 10) related to yeast HDAl, class 4 (HDACl 1), and class 3 (a distinct class encompassing the sirtuins which are related to yeast Sir2).
Csordas, Biochem. J, 1990, 286: 23-38 teaches that histones are subject to post-translational acetylation of the, ε-amino groups of N-terminal lysine residues, a reaction that is catalyzed by histone acetyl transferase (HATl). Acetylation neutralizes the positive charge of the lysine side chain, and is thought to impact chromatin structure. Indeed, access of transcription factors to chromatin templates is enhanced by histone hyperacetylation, and enrichment in underacetylated histone H4 has been found in transcriptionally silent regions of the genome (Taunton et al., Science, 1996, 272:408-411). In the case of tumor suppressor genes, transcriptional silencing due to histone modification can lead to oncogenic transformation and cancer.
Several classes of HDAC inhibitors currently are being evaluated by clinical investigators. The first FDA approved HDAC inhibitor is Suberoylanilide hydroxamic acid (SAHA, Zolinza®) for the treatment of cutaneous T-cell lymphoma (CTCL). Other HDAC inhibitors include hydroxamic acid derivatives, PXDlOl, LBH589 and LAQ824, are currently in the clinical development. In the benzamide class of HDAC inhibitors, MS-275, MGCDO 103 and CI-994 have reached clinical trials. Mourne et al. (Abstract #4725, AACR 2005), demonstrate that thiophenyl modification of benzamides significantly enhance HDAC inhibitory activity against HDACl .
Recent advances suggest that HSP90 inhibitors in combination with HDAC inhibitors may provide advantageous results in the treatment of cancer. For example, co-treatment with HDAC inhibitor SAHA and HSP90 inhibitor 17-AAG synergistically induces apoptosis in Bcr-Abl+ cells sensitive and resistant to STI571 (imatinib mesylate) (Rahmani, M., et al, MoI Pharmacol, 2005, 67:1166-1176). In addition, combination of the histone deacetylase inhibitor LBH589 and the HSP90 inhibitor 17-AAG was found to be highly active against human CML-BC cells and AML cells with activating mutation of FLT-3 (George, P., et al., BLOOD, 2005, 105(4), 1768-1776).
Current therapeutic regimens of the types described above attempt to address the problem of drug resistance by the administration of multiple agents. However, the combined toxicity of multiple agents due to off-target side effects as well as drug-drug interactions often limits the effectiveness of this approach. Moreover, it often is difficult to combine compounds having differing pharmacokinetics into a single dosage form, and the consequent requirement of taking multiple medications at different time intervals leads to problems with patient compliance that can undermine the efficacy of the drug combinations. In addition, the health care costs of combination therapies may be greater than for single molecule therapies.
Furthermore, it may be more difficult to obtain regulatory approval of a combination therapy since the burden for demonstrating activity/safety of a combination of two agents may be greater than for a single agent (Dancey J & Chen H, Nat. Rev. Drug Dis., 2006, 5:649). The development of novel agents that target multiple therapeutic targets selected not by virtue of cross reactivity, but through rational design will help improve patient outcome while avoiding these limitations. Thus, enormous efforts are still directed to the development of selective anti-cancer drugs as well as to new and more efficacious combinations of known anti-cancer drugs. SUMMARY OF THE INVENTION
The present invention relates to HSP90 inhibitors containing zinc-binding moiety based derivatives that have enhanced and unexpected properties as inhibitors of HSP90 and their use in the treatment of HSP90 related diseases and disorders such as cancer.
The compounds of the present invention may further act as HDAC or matrix metalloproteinase (MMP) inhibitors by virtue of their ability to bind zinc ions. Surprisingly these compounds are active at multiple therapeutic targets and are effective for treating disease. Moreover, in some cases it has even more surprisingly been found that the compounds have enhanced activity when compared to the activities of combinations of separate molecules individually having the HSP90 and HDAC activities. In other words, the combination of pharmacophores into a single molecule may provide a synergistic effect as compared to the individual pharmacophores. More specifically, it has been found that it is possible to prepare compounds that simultaneously contain a first portion of the molecule that binds zinc ions and thus permits inhibition of HDAC and/or matrix metalloproteinase (MMP) activity and at least a second portion of the molecule that permits binding to a separate and distinct target that inhibits HSP90 and thus provides therapeutic benefit. Preferably, the compounds of the present invention inhibit both HSP90 and HDAC activity.
Accordingly, the present invention provides a compound having a general formula I or formula II:
Figure imgf000006_0001
and geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof, wherein:
Yi and Y2 are independently selected from N or CRi; where Ri is independently selected from hydrogen, substituted or unsubstituted hydroxy, substituted or unsubstituted amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, substituted or unsubstituted thiol, CF3, CN, substituted carbonyl, sulfonyl, acyl, aliphatic, and substituted aliphatic; A1, A2 and A3 are independently O, NR2, CR3R4, where R2 is hydrogen, acyl, aliphatic or substituted aliphatic, R3 and R4 are independently hydrogen, aliphatic or substituted aliphatic;
Z is O, S, NOR5, CHGR5; where G is absent, O, CO, SO2, NH, NH(C=O),
NH(C=O)NH or NHSO2, R5 is independently hydrogen, aliphatic, substituted aliphatic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic;
Xi-X5 are independently N, C, or CR6, where R6 is independently selected from hydrogen, substituted or unsubstituted hydroxy, substituted or unsubstituted amino, halogen, alkoxy, substituted alkoxy, alkylamino, substituted alkylamino, dialkylamino, substituted dialkylamino, substituted or unsubstituted alkylthio, substituted or unsubstituted alkylsulfonyl, substituted or unsubstituted thiol, substituted or unsubstituted carboxamido, CF3, CN, NO2, N3, substituted carbonyl, sulfonyl, acyl, aliphatic, substituted aliphatic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
B is a linker;
C is selected from:
Figure imgf000007_0001
; where Wi is O or S; Yi is absent, N, or CH; Zi is N or
CH; R7 and R9 are independently hydrogen, OR', aliphatic or substituted aliphatic, wherein R' is hydrogen, aliphatic, substituted aliphatic or acyl; provided that if R7 and R9 are both present, one of R7 or R9 must be OR' and if Y is absent, R9 must be OR'; and Rs is hydrogen, acyl, aliphatic or substituted aliphatic;
Figure imgf000007_0002
; where Wi is O or S; J is O, NH or NCH3; and Ri0 is hydrogen or lower alkyl;
Figure imgf000008_0001
; where Wi is O or S; Y2 and Z2 are independently N, C or
CH; and
Figure imgf000008_0002
; where Zi, Yi, and Wi are as previously defined; Rn and Ri2 are independently selected from hydrogen or aliphatic; R1, R2 and R3 are independently selected from hydrogen, hydroxy, amino, halogen, alkoxy, substituted alkoxy, alkylamino, substituted alkylamino, dialkylamino, substituted dialkylamino, substituted or unsubstituted alkylthio, substituted or unsubstituted alkylsulfonyl, CF3, CN, NO2, N3, sulfonyl, acyl, aliphatic, substituted aliphatic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
DETAILED DESCRIPTION OF THE INVENTION
In a first embodiment of the compounds of the present invention are compounds represented by formula (I) and formula (II) as illustrated above, and geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof.
In one embodiment of the compounds of the present invention are compounds represented by formula (III) or formula (IV) as illustrated below, or geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:
Figure imgf000008_0003
Figure imgf000009_0001
wherein Bi is absent, O, S, SO, SO2, N(R8), CO, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic or aryl; B2 is absent, O, S, SO, SO2, N(Rg) or CO; B3 is absent, O, S, SO, SO2, N(R8), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B4 is absent, O, S, SO, SO2, N(Rg), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B5 is absent, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; X1-X5, Y1, Y2, R' and Rs are as previously defined. In one embodiment, Y2 is CRi, where Ri is substituted or unsubstituted Ci-Cs-alkyl, preferably Ci-C4-alkyl. In a preferred embodiment, Ri is methyl or methyl substituted by one, two or three halogen atoms, such as trifluoromethyl.
In one embodiment of the compounds of the present invention are compounds represented by formula (V) or formula (VI) as illustrated below, or geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:
Figure imgf000009_0002
Figure imgf000010_0001
wherein Bi is absent, O, S, SO, SO2, N(R8), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic or aryl; B2 is absent, O, S, SO, SO2, N(R8) or CO; B3 is absent, O, S, SO, SO2, N(R8), CO, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B4 is absent, O, S, SO, SO2, N(R8), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B5 is absent, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; R' and R8 are as previously defined.
In one embodiment of the compounds of the present invention are compounds represented by formula (VII) as illustrated below, or geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:
Figure imgf000010_0002
wherein Bi is absent, O, S, SO, SO2, N(R8), CO, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic or aryl; B2 is absent, O, S, SO, SO2, N(R8) or CO; B3 is absent, O, S, SO, SO2, N(R8), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B4 is absent, O, S, SO, SO2, N(Rg), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B5 is absent, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; R' and Rs are as previously defined.
Representative compounds according to the invention are those selected from the Table A below or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:
TABLE A
Figure imgf000011_0001
Figure imgf000012_0001
Figure imgf000013_0001
12
Figure imgf000014_0001
Figure imgf000015_0001
Figure imgf000016_0001
Figure imgf000017_0001
Figure imgf000018_0001
The invention further provides methods for the prevention or treatment of diseases or conditions involving aberrant proliferation, differentiation or survival of cells. In one embodiment, the invention further provides for the use of one or more compounds of the invention in the manufacture of a medicament for halting or decreasing diseases involving aberrant proliferation, differentiation, or survival of cells. In preferred embodiments, the disease is cancer. In one embodiment, the invention relates to a method of treating cancer in a subject in need of treatment comprising administering to said subject a therapeutically effective amount of a compound of the invention.
The term "cancer" refers to any cancer caused by the proliferation of malignant neoplastic cells, such as tumors, neoplasms, carcinomas, sarcomas, leukemias, lymphomas and the like. For example, cancers include, but are not limited to, mesothelioma, leukemias and lymphomas such as cutaneous T-cell lymphomas (CTCL), noncutaneous peripheral T-cell lymphomas, lymphomas associated with human T-cell lymphotrophic virus (HTLV) such as adult T-cell leukemia/lymphoma (ATLL), B-cell lymphoma, acute nonlymphocytic leukemias, chronic lymphocytic leukemia, chronic myelogenous leukemia, acute myelogenous leukemia, lymphomas, and multiple myeloma, non-Hodgkin lymphoma, acute lymphatic leukemia (ALL), chronic lymphatic leukemia (CLL), Hodgkin's lymphoma, Burkitt lymphoma, adult T-cell leukemia lymphoma, acute-myeloid leukemia (AML), chronic myeloid leukemia (CML), or hepatocellular carcinoma. Further examples include myelodisplastic syndrome, childhood solid tumors such as brain tumors, neuroblastoma, retinoblastoma, Wilms' tumor, bone tumors, and soft- tissue sarcomas, common solid tumors of adults such as head and neck cancers (e.g., oral, laryngeal, nasopharyngeal and esophageal), genitourinary cancers (e.g., prostate, bladder, renal, uterine, ovarian, testicular), lung cancer (e.g., small-cell and non small cell), breast cancer, pancreatic cancer, melanoma and other skin cancers, stomach cancer, brain tumors, tumors related to Gorlin's syndrome (e.g., medulloblastoma, meningioma, etc.), and liver cancer. Additional exemplary forms of cancer which may be treated by the subject compounds include, but are not limited to, cancer of skeletal or smooth muscle, stomach cancer, cancer of the small intestine, rectum carcinoma, cancer of the salivary gland, endometrial cancer, adrenal cancer, anal cancer, rectal cancer, parathyroid cancer, and pituitary cancer.
Additional cancers that the compounds described herein may be useful in preventing, treating and studying are, for example, colon carcinoma, familiary adenomatous polyposis carcinoma and hereditary non-polyposis colorectal cancer, or melanoma. Further, cancers include, but are not limited to, labial carcinoma, larynx carcinoma, hypopharynx carcinoma, tongue carcinoma, salivary gland carcinoma, gastric carcinoma, adenocarcinoma, thyroid cancer (medullary and papillary thyroid carcinoma, renal carcinoma, kidney parenchyma carcinoma, cervix carcinoma, uterine corpus carcinoma, endometrium carcinoma, chorion carcinoma, testis carcinoma, urinary carcinoma, melanoma, brain tumors such as glioblastoma, astrocytoma, meningioma, medulloblastoma and peripheral neuroectodermal tumors, gall bladder carcinoma, bronchial carcinoma, multiple myeloma, basalioma, teratoma, retinoblastoma, choroidea melanoma, seminoma, rhabdomyosarcoma, craniopharyngeoma, osteosarcoma, chondrosarcoma, myosarcoma, liposarcoma, fibrosarcoma, Ewing sarcoma, and plasmocytoma. In one aspect of the invention, the present invention provides for the use of one or more compounds of the invention in the manufacture of a medicament for the treatment of cancer.
In one embodiment, the present invention includes the use of one or more compounds of the invention in the manufacture of a medicament that prevents further aberrant proliferation, differentiation, or survival of cells. For example, compounds of the invention may be useful in preventing tumors from increasing in size or from reaching a metastatic state. The subject compounds may be administered to halt the progression or advancement of cancer or to induce tumor apoptosis or to inhibit tumor angiogenesis. In addition, the instant invention includes use of the subject compounds to prevent a recurrence of cancer.
This invention further embraces the treatment or prevention of cell proliferative disorders such as hyperplasias, dysplasias and pre-cancerous lesions. Dysplasia is the earliest form of pre-cancerous lesion recognizable in a biopsy by a pathologist. The subject compounds may be administered for the purpose of preventing said hyperplasias, dysplasias or pre-cancerous lesions from continuing to expand or from becoming cancerous. Examples of pre-cancerous lesions may occur in skin, esophageal tissue, breast and cervical intra-epithelial tissue.
"Combination therapy" includes the administration of the subject compounds in further combination with other biologically active ingredients (such as, but not limited to, a second and different antineoplastic agent) and non-drug therapies (such as, but not limited to, surgery or radiation treatment). For instance, the compounds of the invention can be used in combination with other pharmaceutically active compounds, preferably compounds that are able to enhance the effect of the compounds of the invention. The compounds of the invention can be administered simultaneously (as a single preparation or separate preparation) or sequentially to the other drug therapy. In general, a combination therapy envisions administration of two or more drugs during a single cycle or course of therapy. In one aspect of the invention, the subject compounds may be administered in combination with one or more separate agents that modulate protein kinases involved in various disease states. Examples of such kinases may include, but are not limited to: serine/threonine specific kinases, receptor tyrosine specific kinases and non-receptor tyrosine specific kinases. Serine/threonine kinases include mitogen activated protein kinases (MAPK), meiosis specific kinase (MEK), RAF and aurora kinase. Examples of receptor kinase families include epidermal growth factor receptor (EGFR) (e.g. HER2/neu, HER3, HER4, ErbB, ErbB2, ErbB3, ErbB4, Xmrk, DER, Let23); fibroblast growth factor (FGF) receptor (e.g. FGF- R1,GFF-R2/BEK/CEK3, FGF-R3/CEK2, FGF-R4/TKF, KGF-R); hepatocyte growth/scatter factor receptor (HGFR) (e.g, MET, RON, SEA, SEX); insulin receptor (e.g. IGFI-R); Eph (e.g. CEK5, CEK8, EBK, ECK, EEK, EHK-I, EHK-2, ELK, EPH, ERK, HEK, MDK2, MDK5, SEK); AxI (e.g. Mer/Nyk, Rse); RET; and platelet-derived growth factor receptor (PDGFR) (e.g. PDGFα-R, PDGβ-R, CSFl- R/FMS, SCF-R/C-KIT, VEGF-R/FLT, NEK/FLK1, FLT3/FLK2/STK-1). Nonreceptor tyrosine kinase families include, but are not limited to, BCR-ABL (e.g. p43abl, ARG); BTK (e.g. ITK/EMT, TEC); CSK, FAK, FPS, JAK, SRC, BMX, FER, CDK and SYK.
In another aspect of the invention, the subject compounds may be administered in combination with one or more separate agents that modulate non- kinase biological targets or processes. Such targets include histone deacetylases (HDAC), DNA methyltransferase (DNMT), heat shock proteins (e.g. HSP90), and proteosomes.
In a preferred embodiment, subject compounds may be combined with antineoplastic agents (e.g. small molecules, monoclonal antibodies, antisense RNA, and fusion proteins) that inhibit one or more biological targets such as Zolinza, Tarceva, Iressa, Tykerb, Gleevec, Sutent, Sprycel, Nexavar, Sorafϊnib, CNF2024, RG108, BMS387032, Affinitak, Avastin, Herceptin, Erbitux, AG24322, PD325901, ZD6474, PD 184322, Obatodax, ABT737 and AEE788. Such combinations may enhance therapeutic efficacy over efficacy achieved by any of the agents alone and may prevent or delay the appearance of resistant mutational variants.
In certain preferred embodiments, the compounds of the invention are administered in combination with a chemotherapeutic agent. Chemotherapeutic agents encompass a wide range of therapeutic treatments in the field of oncology. These agents are administered at various stages of the disease for the purposes of shrinking tumors, destroying remaining cancer cells left over after surgery, inducing remission, maintaining remission and/or alleviating symptoms relating to the cancer or its treatment. Examples of such agents include, but are not limited to, alkylating agents such as mustard gas derivatives (Mechlorethamine, cylophosphamide, chlorambucil, melphalan, ifosfamide), ethylenimines (thiotepa, hexamethylmelanine), Alkylsulfonates (Busulfan), Hydrazines and Triazines (Altretamine, Procarbazine, Dacarbazine and Temozolomide), Nitrosoureas (Carmustine, Lomustine and Streptozocin), Ifosfamide and metal salts (Carboplatin, Cisplatin, and Oxaliplatin); plant alkaloids such as Podophyllotoxins (Etoposide and Tenisopide), Taxanes (Paclitaxel and Docetaxel), Vinca alkaloids (Vincristine, Vinblastine, Vindesine and Vinorelbine), and Camptothecan analogs (Irinotecan and Topotecan); anti-tumor antibiotics such as Chromomycins (Dactinomycin and Plicamycin), Anthracyclines (Doxorubicin, Daunorubicin, Epirubicin, Mitoxantrone, Valrubicin and Idarubicin), and miscellaneous antibiotics such as Mitomycin, Actinomycin and Bleomycin; anti-metabolites such as folic acid antagonists (Methotrexate, Pemetrexed, Raltitrexed, Aminopterin), pyrimidine antagonists (5- Fluorouracil, Floxuridine, Cytarabine, Capecitabine, and Gemcitabine), purine antagonists (6-Mercaptopurine and 6-Thioguanine) and adenosine deaminase inhibitors (Cladribine, Fludarabine, Mercaptopurine, Clofarabine, Thioguanine, Nelarabine and Pentostatin); topoisomerase inhibitors such as topoisomerase I inhibitors (Ironotecan, topotecan) and topoisomerase II inhibitors (Amsacrine, etoposide, etoposide phosphate, teniposide); monoclonal antibodies (Alemtuzumab, Gemtuzumab ozogamicin, Rituximab, Trastuzumab, Ibritumomab Tioxetan, Cetuximab, Panitumumab, Tositumomab, Bevacizumab); and miscellaneous antineoplastics such as ribonucleotide reductase inhibitors (Hydroxyurea); adrenocortical steroid inhibitor (Mitotane); enzymes (Asparaginase and Pegaspargase); anti-microtubule agents (Estramustine); and retinoids (Bexarotene, Isotretinoin, Tretinoin (ATRA). In certain preferred embodiments, the compounds of the invention are administered in combination with a chemoprotective agent. Chemoprotective agents act to protect the body or minimize the side effects of chemotherapy. Examples of such agents include, but are not limited to, amfostine, mesna, and dexrazoxane. In one aspect of the invention, the subject compounds are administered in combination with radiation therapy. Radiation is commonly delivered internally (implantation of radioactive material near cancer site) or externally from a machine that employs photon (x-ray or gamma-ray) or particle radiation. Where the combination therapy further comprises radiation treatment, the radiation treatment may be conducted at any suitable time so long as a beneficial effect from the co- action of the combination of the therapeutic agents and radiation treatment is achieved. For example, in appropriate cases, the beneficial effect is still achieved when the radiation treatment is temporally removed from the administration of the therapeutic agents, perhaps by days or even weeks.
It will be appreciated that compounds of the invention can be used in combination with an immunotherapeutic agent. One form of immunotherapy is the generation of an active systemic tumor-specific immune response of host origin by administering a vaccine composition at a site distant from the tumor. Various types of vaccines have been proposed, including isolated tumor-antigen vaccines and antiidiotype vaccines. Another approach is to use tumor cells from the subject to be treated, or a derivative of such cells (reviewed by Schirrmacher et al. (1995) J. Cancer Res. Clin. Oncol. 121 :487). In U.S. Pat. No. 5,484,596, Hanna Jr. et al. claim a method for treating a resectable carcinoma to prevent recurrence or metastases, comprising surgically removing the tumor, dispersing the cells with collagenase, irradiating the cells, and vaccinating the patient with at least three consecutive doses of about 107 cells.
It will be appreciated that the compounds of the invention may advantageously be used in conjunction with one or more adjunctive therapeutic agents. Examples of suitable agents for adjunctive therapy include a 5HTi agonist, such as a triptan (e.g. sumatriptan or naratriptan); an adenosine Al agonist; an EP ligand; an NMDA modulator, such as a glycine antagonist; a sodium channel blocker (e.g. lamotrigine); a substance P antagonist (e.g. an NKi antagonist); a cannabinoid; acetaminophen or phenacetin; a 5-lipoxygenase inhibitor; a leukotriene receptor antagonist; a DMARD (e.g. methotrexate); gabapentin and related compounds; a tricyclic antidepressant (e.g. amitryptilline); a neurone stabilising antiepileptic drug; a mono-aminergic uptake inhibitor (e.g. venlafaxine); a matrix metalloproteinase inhibitor; a nitric oxide synthase (NOS) inhibitor, such as an iNOS or an nNOS inhibitor; an inhibitor of the release, or action, of tumour necrosis factor .alpha.; an antibody therapy, such as a monoclonal antibody therapy; an antiviral agent, such as a nucleoside inhibitor (e.g. lamivudine) or an immune system modulator (e.g. interferon); an opioid analgesic; a local anaesthetic; a stimulant, including caffeine; an H2-antagonist (e.g. ranitidine); a proton pump inhibitor (e.g. omeprazole); an antacid (e.g. aluminium or magnesium hydroxide; an antiflatulent (e.g. simethicone); a decongestant (e.g. phenylephrine, phenylpropanolamine, pseudoephedrine, oxymetazoline, epinephrine, naphazoline, xylometazoline, propylhexedrine, or levo-desoxyephedrine); an antitussive (e.g. codeine, hydrocodone, carmiphen, carbetapentane, or dextramethorphan); a diuretic; or a sedating or non-sedating antihistamine.
Matrix metalloproteinases (MMPs) are a family of zinc-dependent neutral endopeptidases collectively capable of degrading essentially all matrix components. Over 20 MMP modulating agents are in pharmaceutical develop, almost half of which are indicated for cancer. The University of Toronto researchers have reported that HDACs regulate MMP expression and activity in 3T3 cells. In particular, inhibition of HDAC by trichostatin A (TSA), which has been shown to prevent tumorigenesis and metastasis, decreases mRNA as well as zymographic activity of gelatinase A (MMP2; Type IV collagenase), a matrix metalloproteinase, which is itself, implicated in tumorigenesis and metastasis (Ailenberg M., Silverman M., Biochem Biophys Res Commun. 2002 , 298: 110-115). Another recent article that discusses the relationship of HDAC and MMPs can be found in Young D.A., et al., Arthritis Research & Therapy, 2005, 7: 503. Furthermore, the commonality between HDAC and MMPs inhibitors is their zinc-binding functionality. Therefore, in one aspect of the invention, compounds of the invention can be used as MMP inhibitors and may be of use in the treatment of disorders relating to or associated with dysregulation of MMP. The overexpression and activation of MMPs are known to induce tissue destruction and are also associated with a number of specific diseases including rheumatoid arthritis, periodontal disease, cancer and atherosclerosis. The compounds may also be used in the treatment of a disorder involving, relating to or, associated with dysregulation of histone deacetylase (HDAC). There are a number of disorders that have been implicated by or known to be mediated at least in part by HDAC activity, where HDAC activity is known to play a role in triggering disease onset, or whose symptoms are known or have been shown to be alleviated by HDAC inhibitors. Disorders of this type that would be expected to be amenable to treatment with the compounds of the invention include the following but not limited to: Anti-proliferative disorders (e.g. cancers); Neurodegenerative diseases including Huntington's Disease, Polyglutamine disease, Parkinson's Disease, Alzheimer's Disease, Seizures, Striatonigral degeneration, Progressive supranuclear palsy, Torsion dystonia, Spasmodic torticollis and dyskinesis, Familial tremor, Gilles de Ia Tourette syndrome, Diffuse Lewy body disease, Progressive supranuclear palsy, Pick's disease, intracerebral hemorrhage, Primary lateral sclerosis, Spinal muscular atrophy, Amyotrophic lateral sclerosis, Hypertrophic interstitial polyneuropathy, Retinitis pigmentosa, Hereditary optic atrophy, Hereditary spastic paraplegia, Progressive ataxia and Shy-Drager syndrome; Metabolic diseases including Type 2 diabetes; Degenerative Diseases of the Eye including Glaucoma, Age-related macular degeneration, Rubeotic glaucoma; Inflammatory diseases and/or Immune system disorders including Rheumatoid Arthritis (RA), Osteoarthritis, Juvenile chronic arthritis, Graft versus Host disease, Psoriasis, Asthma, Spondyloarthropathy, Crohn's Disease, inflammatory bowel disease Colitis Ulcerosa, Alcoholic hepatitis, Diabetes, Sjoegrens's syndrome, Multiple Sclerosis, Ankylosing spondylitis, Membranous glomerulopathy, Discogenic pain, Systemic Lupus Erythematosus; Disease involving angiogenesis including cancer, psoriasis, rheumatoid arthritis; Psychological disorders including bipolar disease, schizophrenia, mania, depression and dementia; Cardiovascular Diseases including the prevention and treatment of ischemia-related or reperfusion- related vascular and myocardial tissue damage,, heart failure, restenosis and arteriosclerosis; Fibrotic diseases including liver fibrosis, cystic fibrosis and angiofibroma; Infectious diseases including Fungal infections, such as candidiasis or Candida Albicans, Bacterial infections, Viral infections, such as Herpes Simplex, poliovirus, rhinovirus and coxsackievirus, Protozoal infections, such as Malaria, Leishmania infection, Trypanosoma brucei infection, Toxoplasmosis and coccidlosis and Haematopoietic disorders including thalassemia, anemia and sickle cell anemia. In one embodiment, compounds of the invention can be used to induce or inhibit apoptosis, a physiological cell death process critical for normal development and homeostasis. Alterations of apoptotic pathways contribute to the pathogenesis of a variety of human diseases. Compounds of the invention, as modulators of apoptosis, will be useful in the treatment of a variety of human diseases with aberrations in apoptosis including cancer (particularly, but not limited to, follicular lymphomas, carcinomas with p53 mutations, hormone dependent tumors of the breast, prostate and ovary, and precancerous lesions such as familial adenomatous polyposis), viral infections (including, but not limited to, herpes virus, poxvirus, Epstein-Barr virus, Sindbis virus and adenovirus), autoimmune diseases (including, but not limited to, systemic lupus, erythematosus, immune mediated glomerulonephritis, rheumatoid arthritis, psoriasis, inflammatory bowel diseases, and autoimmune diabetes mellitus), neurodegenerative disorders (including, but not limited to, Alzheimer's disease, AIDS-related dementia, Parkinson's disease, amyotrophic lateral sclerosis, retinitis pigmentosa, spinal muscular atrophy and cerebellar degeneration), AIDS, myelodysplastic syndromes, aplastic anemia, ischemic injury associated myocardial infarctions, stroke and reperfusion injury, arrhythmia, atherosclerosis, toxin-induced or alcohol induced liver diseases, hematological diseases (including, but not limited to, chronic anemia and aplastic anemia), degenerative diseases of the musculoskeletal system (including, but not limited to, osteoporosis and arthritis), aspirin-sensitive rhinosinusitis, cystic fibrosis, multiple sclerosis, kidney diseases, and cancer pain.
In one aspect, the invention provides the use of compounds of the invention for the treatment and/or prevention of immune response or immune -mediated responses and diseases, such as the prevention or treatment of rejection following transplantation of synthetic or organic grafting materials, cells, organs or tissue to replace all or part of the function of tissues, such as heart, kidney, liver, bone marrow, skin, cornea, vessels, lung, pancreas, intestine, limb, muscle, nerve tissue, duodenum, small-bowel, pancreatic-islet-cell, including xeno-transplants, etc.; to treat or prevent graft-versus-host disease, autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, thyroiditis, Hashimoto's thyroiditis, multiple sclerosis, myasthenia gravis, type I diabetes uveitis, juvenile-onset or recent-onset diabetes mellitus, uveitis, Graves disease, psoriasis, atopic dermatitis, Crohn's disease, ulcerative colitis, vasculitis, auto-antibody mediated diseases, aplastic anemia, Evan's syndrome, autoimmune hemolytic anemia, and the like; and further to treat infectious diseases causing aberrant immune response and/or activation, such as traumatic or pathogen induced immune disregulation, including for example, that which are caused by hepatitis B and C infections, HIV, staphylococcus aureus infection, viral encephalitis, sepsis, parasitic diseases wherein damage is induced by an inflammatory response (e.g., leprosy); and to prevent or treat circulatory diseases, such as arteriosclerosis, atherosclerosis, vasculitis, polyarteritis nodosa and myocarditis. In addition, the present invention may be used to prevent/suppress an immune response associated with a gene therapy treatment, such as the introduction of foreign genes into autologous cells and expression of the encoded product. Thus in one embodiment, the invention relates to a method of treating an immune response disease or disorder or an immune-mediated response or disorder in a subject in need of treatment comprising administering to said subject a therapeutically effective amount of a compound of the invention. In one aspect, the invention provides the use of compounds of the invention in the treatment of a variety of neurodegenerative diseases, a non-exhaustive list of which includes: I. Disorders characterized by progressive dementia in the absence of other prominent neurologic signs, such as Alzheimer's disease; Senile dementia of the Alzheimer type; and Pick's disease (lobar atrophy); II. Syndromes combining progressive dementia with other prominent neurologic abnormalities such as A) syndromes appearing mainly in adults (e.g., Huntington's disease, Multiple system atrophy combining dementia with ataxia and/or manifestations of Parkinson's disease, Progressive supranuclear palsy (Steel-Richardson-Olszewski), diffuse Lewy body disease, and corticodentatonigral degeneration); and B) syndromes appearing mainly in children or young adults (e.g., Hallervorden-Spatz disease and progressive familial myoclonic epilepsy); III. Syndromes of gradually developing abnormalities of posture and movement such as paralysis agitans (Parkinson's disease), striatonigral degeneration, progressive supranuclear palsy, torsion dystonia (torsion spasm; dystonia musculorum deformans), spasmodic torticollis and other dyskinesis, familial tremor, and Gilles de Ia Tourette syndrome; IV. Syndromes of progressive ataxia such as cerebellar degenerations (e.g., cerebellar cortical degeneration and olivopontocerebellar atrophy (OPCA)); and spinocerebellar degeneration (Friedreich's atazia and related disorders); V. Syndrome of central autonomic nervous system failure (Shy-Drager syndrome); VI. Syndromes of muscular weakness and wasting without sensory changes (motorneuron disease such as amyotrophic lateral sclerosis, spinal muscular atrophy (e.g., infantile spinal muscular atrophy (Werdnig-Hoffman), juvenile spinal muscular atrophy (Wohlfart- Kugelberg-Welander) and other forms of familial spinal muscular atrophy), primary lateral sclerosis, and hereditary spastic paraplegia; VII. Syndromes combining muscular weakness and wasting with sensory changes (progressive neural muscular atrophy; chronic familial polyneuropathies) such as peroneal muscular atrophy (Charcot-Marie-Tooth), hypertrophic interstitial polyneuropathy (Dejerine-Sottas), and miscellaneous forms of chronic progressive neuropathy; VIII Syndromes of progressive visual loss such as pigmentary degeneration of the retina (retinitis pigmentosa), and hereditary optic atrophy (Leber's disease). Furthermore, compounds of the invention can be implicated in chromatin remodeling.
The invention encompasses pharmaceutical compositions comprising pharmaceutically acceptable salts of the compounds of the invention as described above. The invention also encompasses pharmaceutical compositions comprising hydrates of the compounds of the invention. The term "hydrate" includes but is not limited to hemihydrate, monohydrate, dihydrate, trihydrate and the like. The invention further encompasses pharmaceutical compositions comprising any solid or liquid physical form of the compound of the invention. For example, the compounds can be in a crystalline form, in amorphous form, and have any particle size. The particles may be micronized, or may be agglomerated, particulate granules, powders, oils, oily suspensions or any other form of solid or liquid physical form.
The compounds of the invention, and derivatives, fragments, analogs, homo logs, pharmaceutically acceptable salts or hydrate thereof can be incorporated into pharmaceutical compositions suitable for administration, together with a pharmaceutically acceptable carrier or excipient. Such compositions typically comprise a therapeutically effective amount of any of the compounds above, and a pharmaceutically acceptable carrier. Preferably, the effective amount when treating cancer is an amount effective to selectively induce terminal differentiation of suitable neoplastic cells and less than an amount which causes toxicity in a patient.
Compounds of the invention may be administered by any suitable means, including, without limitation, parenteral, intravenous, intramuscular, subcutaneous, implantation, oral, sublingual, buccal, nasal, pulmonary, transdermal, topical, vaginal, rectal, and transmucosal administrations or the like. Topical administration can also involve the use of transdermal administration such as transdermal patches or iontophoresis devices. Pharmaceutical preparations include a solid, semisolid or liquid preparation (tablet, pellet, troche, capsule, suppository, cream, ointment, aerosol, powder, liquid, emulsion, suspension, syrup, injection etc.) containing a compound of the invention as an active ingredient, which is suitable for selected mode of administration. In one embodiment, the pharmaceutical compositions are administered orally, and are thus formulated in a form suitable for oral administration, i.e., as a solid or a liquid preparation. Suitable solid oral formulations include tablets, capsules, pills, granules, pellets, sachets and effervescent, powders, and the like. Suitable liquid oral formulations include solutions, suspensions, dispersions, emulsions, oils and the like. In one embodiment of the present invention, the composition is formulated in a capsule. In accordance with this embodiment, the compositions of the present invention comprise in addition to the active compound and the inert carrier or diluent, a hard gelatin capsule.
Any inert excipient that is commonly used as a carrier or diluent may be used in the formulations of the present invention, such as for example, a gum, a starch, a sugar, a cellulosic material, an acrylate, or mixtures thereof. A preferred diluent is microcrystalline cellulose. The compositions may further comprise a disintegrating agent (e.g., croscarmellose sodium) and a lubricant (e.g., magnesium stearate), and may additionally comprise one or more additives selected from a binder, a buffer, a protease inhibitor, a surfactant, a solubilizing agent, a plasticizer, an emulsifier, a stabilizing agent, a viscosity increasing agent, a sweetener, a film forming agent, or any combination thereof. Furthermore, the compositions of the present invention may be in the form of controlled release or immediate release formulations. For liquid formulations, pharmaceutically acceptable carriers may be aqueous or non-aqueous solutions, suspensions, emulsions or oils. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Examples of oils are those of petroleum, animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil, mineral oil, olive oil, sunflower oil, and fish- liver oil. Solutions or suspensions can also include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid (EDTA); buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
In addition, the compositions may further comprise binders (e.g., acacia, cornstarch, gelatin, carbomer, ethyl cellulose, guar gum, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, povidone), disintegrating agents (e.g., cornstarch, potato starch, alginic acid, silicon dioxide, croscarmellose sodium, crospovidone, guar gum, sodium starch glycolate, Primogel), buffers (e.g., tris-HCL, acetate, phosphate) of various pH and ionic strength, additives such as albumin or gelatin to prevent absorption to surfaces, detergents (e.g., Tween 20, Tween 80, Pluronic F68, bile acid salts), protease inhibitors, surfactants (e.g., sodium lauryl sulfate), permeation enhancers, solubilizing agents (e.g., glycerol, polyethylene glycerol), a glidant (e.g., colloidal silicon dioxide), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite, butylated hydroxyanisole), stabilizers (e.g., hydroxypropyl cellulose, hydroxypropylmethyl cellulose), viscosity increasing agents (e.g., carbomer, colloidal silicon dioxide, ethyl cellulose, guar gum), sweeteners (e.g., sucrose, aspartame, citric acid), flavoring agents (e.g., peppermint, methyl salicylate, or orange flavoring), preservatives (e.g., Thimerosal, benzyl alcohol, parabens), lubricants (e.g., stearic acid, magnesium stearate, polyethylene glycol, sodium lauryl sulfate), flow-aids (e.g., colloidal silicon dioxide), plasticizers (e.g., diethyl phthalate, triethyl citrate), emulsifiers (e.g., carbomer, hydroxypropyl cellulose, sodium lauryl sulfate), polymer coatings (e.g., poloxamers or poloxamines), coating and film forming agents (e.g., ethyl cellulose, acrylates, polymethacrylates) and/or adjuvants.
In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat No. 4,522,811.
It is especially advantageous to formulate oral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.
The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration. Daily administration may be repeated continuously for a period of several days to several years. Oral treatment may continue for between one week and the life of the patient. Preferably the administration may take place for five consecutive days after which time the patient can be evaluated to determine if further administration is required. The administration can be continuous or intermittent, e.g., treatment for a number of consecutive days followed by a rest period. The compounds of the present invention may be administered intravenously on the first day of treatment, with oral administration on the second day and all consecutive days thereafter.
The preparation of pharmaceutical compositions that contain an active component is well understood in the art, for example, by mixing, granulating, or tablet- forming processes. The active therapeutic ingredient is often mixed with excipients that are pharmaceutically acceptable and compatible with the active ingredient. For oral administration, the active agents are mixed with additives customary for this purpose, such as vehicles, stabilizers, or inert diluents, and converted by customary methods into suitable forms for administration, such as tablets, coated tablets, hard or soft gelatin capsules, aqueous, alcoholic or oily solutions and the like as detailed above.
The amount of the compound administered to the patient is less than an amount that would cause toxicity in the patient. In certain embodiments, the amount of the compound that is administered to the patient is less than the amount that causes a concentration of the compound in the patient's plasma to equal or exceed the toxic level of the compound. Preferably, the concentration of the compound in the patient's plasma is maintained at about 10 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 25 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 50 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 100 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 500 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 1000 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 2500 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 5000 nM. The optimal amount of the compound that should be administered to the patient in the practice of the present invention will depend on the particular compound used and the type of cancer being treated.
DEFINITIONS
Listed below are definitions of various terms used to describe this invention. These definitions apply to the terms as they are used throughout this specification and claims, unless otherwise limited in specific instances, either individually or as part of a larger group.
An "aliphatic group" or "aliphatic" is non-aromatic moiety that may be saturated (e.g. single bond) or contain one or more units of unsaturation, e.g., double and/or triple bonds. An aliphatic group may be straight chained, branched or cyclic, contain carbon, hydrogen or, optionally, one or more heteroatoms and may be substituted or unsubstituted. An aliphatic group, when used as a linker, preferably contains between about 1 and about 24 atoms, more preferably between about 4 to about 24 atoms, more preferably between about 4-12 atoms, more typically between about 4 and about 8 atoms. An aliphatic group, when used as a substituent, preferably contains between about 1 and about 24 atoms, more preferably between about 1 to about 10 atoms, more preferably between about 1-8 atoms, more typically between about 1 and about 6 atoms. In addition to aliphatic hydrocarbon groups, aliphatic groups include, for example, polyalkoxyalkyls, such as polyalkylene glycols, polyamines, and polyimines, for example. Such aliphatic groups may be further substituted. It is understood that aliphatic groups may be used in place of the alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl groups described herein. The term "substituted carbonyl" includes compounds and moieties which contain a carbon connected with a double bond to an oxygen atom, and tautomeric forms thereof. Examples of moieties that contain a substituted carbonyl include aldehydes, ketones, carboxylic acids, amides, esters, anhydrides, etc. The term "carbonyl moiety" refers to groups such as "alkylcarbonyl" groups wherein an alkyl group is covalently bound to a carbonyl group, "alkenylcarbonyl" groups wherein an alkenyl group is covalently bound to a carbonyl group, "alkynylcarbonyl" groups wherein an alkynyl group is covalently bound to a carbonyl group, "arylcarbonyl" groups wherein an aryl group is covalently attached to the carbonyl group. Furthermore, the term also refers to groups wherein one or more heteroatoms are covalently bonded to the carbonyl moiety. For example, the term includes moieties such as, for example, aminocarbonyl moieties, (wherein a nitrogen atom is bound to the carbon of the carbonyl group, e.g., an amide).
The term "acyl" refers to hydrogen, alkyl, partially saturated or fully saturated cycloalkyl, partially saturated or fully saturated heterocycle, aryl, and heteroaryl substituted carbonyl groups. For example, acyl includes groups such as (Ci-C6)alkanoyl (e.g., formyl, acetyl, propionyl, butyryl, valeryl, caproyl, t- butylacetyl, etc.), (C3-Ce)cycloalkylcarbonyl (e.g., cyclopropylcarbonyl, cyclobutylcarbonyl, cyclopentylcarbonyl, cyclohexylcarbonyl, etc.), heterocyclic carbonyl (e.g., pyrrolidinylcarbonyl, pyrrolid-2-one-5 -carbonyl, piperidinylcarbonyl, piperazinylcarbonyl, tetrahydrofuranylcarbonyl, etc.), aroyl (e.g., benzoyl) and heteroaroyl (e.g., thiophenyl-2-carbonyl, thiophenyl-3 -carbonyl, furanyl-2-carbonyl, furanyl-3 -carbonyl, lH-pyrroyl-2-carbonyl, lH-pyrroyl-3 -carbonyl, benzo[b]thiophenyl-2-carbonyl, etc.). In addition, the alkyl, cycloalkyl, heterocycle, aryl and heteroaryl portion of the acyl group may be any one of the groups described in the respective definitions. When indicated as being "optionally substituted", the acyl group may be unsubstituted or optionally substituted with one or more substituents (typically, one to three substituents) independently selected from the group of substituents listed below in the definition for "substituted" or the alkyl, cycloalkyl, heterocycle, aryl and heteroaryl portion of the acyl group may be substituted as described above in the preferred and more preferred list of substituents, respectively.
The term "alkyl" embraces linear or branched radicals having one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkyl radicals are "lower alkyl" radicals having one to about ten carbon atoms. Most preferred are lower alkyl radicals having one to about eight carbon atoms. Examples of such radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, hexyl and the like.
The term "alkenyl" embraces linear or branched radicals having at least one carbon-carbon double bond of two to about twenty carbon atoms or, preferably, two to about twelve carbon atoms. More preferred alkenyl radicals are "lower alkenyl" radicals having two to about ten carbon atoms and more preferably about two to about eight carbon atoms. Examples of alkenyl radicals include ethenyl, allyl, propenyl, butenyl and 4-methylbutenyl. The terms "alkenyl", and "lower alkenyl", embrace radicals having "cis" and "trans" orientations, or alternatively, "E" and "Z" orientations.
The term "alkynyl" embraces linear or branched radicals having at least one carbon-carbon triple bond of two to about twenty carbon atoms or, preferably, two to about twelve carbon atoms. More preferred alkynyl radicals are "lower alkynyl" radicals having two to about ten carbon atoms and more preferably about two to about eight carbon atoms. Examples of alkynyl radicals include propargyl, 1- propynyl, 2-propynyl, 1-butyne, 2-butynyl and 1-pentynyl.
The term "cycloalkyl" embraces saturated carbocyclic radicals having three to about twelve carbon atoms. The term "cycloalkyl" embraces saturated carbocyclic radicals having three to about twelve carbon atoms. More preferred cycloalkyl radicals are "lower cycloalkyl" radicals having three to about eight carbon atoms. Examples of such radicals include cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
The term "cycloalkenyl" embraces partially unsaturated carbocyclic radicals having three to twelve carbon atoms. Cycloalkenyl radicals that are partially unsaturated carbocyclic radicals that contain two double bonds (that may or may not be conjugated) can be called "cycloalkyldienyl". More preferred cycloalkenyl radicals are "lower cycloalkenyl" radicals having four to about eight carbon atoms. Examples of such radicals include cyclobutenyl, cyclopentenyl and cyclohexenyl. The term "alkoxy" embraces linear or branched oxy-containing radicals each having alkyl portions of one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkoxy radicals are "lower alkoxy" radicals having one to about ten carbon atoms and more preferably having one to about eight carbon atoms. Examples of such radicals include methoxy, ethoxy, propoxy, butoxy and tert-butoxy.
The term "alkoxyalkyl" embraces alkyl radicals having one or more alkoxy radicals attached to the alkyl radical, that is, to form monoalkoxyalkyl and dialkoxyalkyl radicals. The term "aryl", alone or in combination, means a carbocyclic aromatic system containing one, two or three rings wherein such rings may be attached together in a pendent manner or may be fused. The term "aryl" embraces aromatic radicals such as phenyl, naphthyl, tetrahydronaphthyl, indane and biphenyl.
The terms "heterocyclyl", "heterocycle" "heterocyclic" or "heterocyclo" embrace saturated, partially unsaturated and unsaturated heteroatom-containing ring- shaped radicals, which can also be called "heterocyclyl", "heterocycloalkenyl" and "heteroaryl" correspondingly, where the heteroatoms may be selected from nitrogen, sulfur and oxygen. Examples of saturated heterocyclyl radicals include saturated 3 to 6-membered heteromonocyclic group containing 1 to 4 nitrogen atoms (e.g. pyrrolidinyl, imidazolidinyl, piperidino, piperazinyl, etc.); saturated 3 to 6- membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms (e.g. morpholinyl, etc.); saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms (e.g., thiazolidinyl, etc.). Examples of partially unsaturated heterocyclyl radicals include dihydrothiophene, dihydropyran, dihydrofuran and dihydrothiazole.
Heterocyclyl radicals may include a pentavalent nitrogen, such as in tetrazolium and pyridinium radicals. The term "heterocycle" also embraces radicals where heterocyclyl radicals are fused with aryl or cycloalkyl radicals. Examples of such fused bicyclic radicals include benzofuran, benzothiophene, and the like. The term "heteroaryl" embraces unsaturated heterocyclyl radicals. Examples of heteroaryl radicals include unsaturated 3 to 6 membered heteromonocyclic group containing 1 to 4 nitrogen atoms, for example, pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazolyl (e.g., 4H- 1,2,4- triazolyl, lH-l,2,3-triazolyl, 2H-l,2,3-triazolyl, etc.) tetrazolyl (e.g. lH-tetrazolyl, 2H-tetrazolyl, etc.), etc.; unsaturated condensed heterocyclyl group containing 1 to 5 nitrogen atoms, for example, indolyl, isoindolyl, indolizinyl, benzimidazolyl, quinolyl, isoquinolyl, indazolyl, benzotriazolyl, tetrazolopyridazinyl (e.g., tetrazolo[l,5-b]pyridazinyl, etc.), etc.; unsaturated 3 to 6-membered heteromonocyclic group containing an oxygen atom, for example, pyranyl, furyl, etc.; unsaturated 3 to 6-membered heteromonocyclic group containing a sulfur atom, for example, thienyl, etc.; unsaturated 3- to 6-membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, for example, oxazolyl, isoxazolyl, oxadiazolyl (e.g., 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,5- oxadiazolyl, etc.) etc.; unsaturated condensed heterocyclyl group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms (e.g. benzoxazolyl, benzoxadiazolyl, etc.); unsaturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms, for example, thiazolyl, thiadiazolyl (e.g., 1,2,4- thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl, etc.) etc.; unsaturated condensed heterocyclyl group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms (e.g., benzothiazolyl, benzothiadiazolyl, etc.) and the like.
The term "heterocycloalkyl" embraces heterocyclo-substituted alkyl radicals. More preferred heterocycloalkyl radicals are "lower heterocycloalkyl" radicals having one to six carbon atoms in the heterocyclo radicals. The term "alkylthio" embraces radicals containing a linear or branched alkyl radical, of one to about ten carbon atoms attached to a divalent sulfur atom. Preferred alkylthio radicals have alkyl radicals of one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkylthio radicals have alkyl radicals are "lower alkylthio" radicals having one to about ten carbon atoms. Most preferred are alkylthio radicals having lower alkyl radicals of one to about eight carbon atoms. Examples of such lower alkylthio radicals are methylthio, ethylthio, propylthio, butylthio and hexylthio.
The terms "aralkyl" or "arylalkyl" embrace aryl-substituted alkyl radicals such as benzyl, diphenylmethyl, triphenylmethyl, phenylethyl, and diphenylethyl. The term "aryloxy" embraces aryl radicals attached through an oxygen atom to other radicals.
The terms "aralkoxy" or "arylalkoxy" embrace aralkyl radicals attached through an oxygen atom to other radicals. The term "aminoalkyl" embraces alkyl radicals substituted with amino radicals. Preferred aminoalkyl radicals have alkyl radicals having about one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred aminoalkyl radicals are "lower aminoalkyl" that have alkyl radicals having one to about ten carbon atoms. Most preferred are aminoalkyl radicals having lower alkyl radicals having one to eight carbon atoms. Examples of such radicals include aminomethyl, aminoethyl, and the like.
The term "alkylamino" denotes amino groups which are substituted with one or two alkyl radicals. Preferred alkylamino radicals have alkyl radicals having about one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkylamino radicals are "lower alkylamino" that have alkyl radicals having one to about ten carbon atoms. Most preferred are alkylamino radicals having lower alkyl radicals having one to about eight carbon atoms. Suitable lower alkylamino may be monosubstituted N-alkylamino or disubstituted N,N-alkylamino, such as N-methylamino, N-ethylamino, N,N-dimethylamino, N,N-diethylamino or the like.
The term "linker" means an organic moiety that connects two parts of a compound. Linkers typically comprise a direct bond or an atom such as oxygen or sulfur, a unit such as NR8, C(O), C(O)NH, SO, SO2, SO2NH or a chain of atoms, such as substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, aryl, heteroaryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkylarylalkyl, alkylarylalkenyl, alkylarylalkynyl, alkenylarylalkyl, alkenylarylalkenyl, alkenylarylalkynyl, alkynylarylalkyl, alkynylarylalkenyl, alkynylarylalkynyl, alkylheteroarylalkyl, alkylheteroarylalkenyl, alkylheteroarylalkynyl, alkenylheteroarylalkyl, alkenylheteroarylalkenyl, alkenylheteroarylalkynyl, alkynylheteroarylalkyl, alkynylheteroarylalkenyl, alkynylheteroarylalkynyl, alkylheterocyclylalkyl, alkylheterocyclylalkenyl, alkylhererocyclylalkynyl, alkenylheterocyclylalkyl, alkenylheterocyclylalkenyl, alkenylheterocyclylalkynyl, alkynylheterocyclylalkyl, alkynylheterocyclylalkenyl, alkynylheterocyclylalkynyl, alkylaryl, alkenylaryl, alkynylaryl, alkylheteroaryl, alkenylheteroaryl, alkynylhereroaryl, which one or more methylenes can be interrupted or terminated by O, S, S(O), SO2, N(Rg), C(O), substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heterocyclic; where Rg is hydrogen, acyl, aliphatic or substituted aliphatic. In one embodiment, the linker B is between 1-24 atoms, preferably 4-24 atoms, preferably 4-18 atoms, more preferably 4-12 atoms, and most preferably about 4-10 atoms. In some embodiments, the linker is a C(O)NH(alkyl) chain or an alkoxy chain.
The term "substituted" refers to the replacement of one or more hydrogen radicals in a given structure with the radical of a specified substituent including, but not limited to: halo, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, thiol, alkylthio, arylthio, alkylthioalkyl, arylthioalkyl, alkylsulfonyl, alkylsulfonylalkyl, arylsulfonylalkyl, alkoxy, aryloxy, aralkoxy, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkyl, amino, trifluoromethyl, cyano, nitro, alkylamino, arylamino, alkylaminoalkyl, arylaminoalkyl, aminoalkylamino, hydroxy, alkoxyalkyl, carboxyalkyl, alkoxycarbonylalkyl, aminocarbonylalkyl, acyl, aralkoxycarbonyl, carboxylic acid, sulfonic acid, sulfonyl, phosphonic acid, aryl, heteroaryl, heterocyclic, and aliphatic. It is understood that the substituent may be further substituted.
For simplicity, chemical moieties are defined and referred to throughout can be univalent chemical moieties (e.g., alkyl, aryl, etc.) or multivalent moieties under the appropriate structural circumstances clear to those skilled in the art. For example, an "alkyl" moiety can be referred to a monovalent radical (e.g. CH3-CH2-), or in other instances, a bivalent linking moiety can be "alkyl," in which case those skilled in the art will understand the alkyl to be a divalent radical (e.g., -CH2-CH2-), which is equivalent to the term "alkylene." Similarly, in circumstances in which divalent moieties are required and are stated as being "alkoxy", "alkylamino", "aryloxy", "alkylthio", "aryl", "heteroaryl", "heterocyclic", "alkyl" "alkenyl", "alkynyl", "aliphatic", or "cycloalkyl", those skilled in the art will understand that the terms alkoxy", "alkylamino", "aryloxy", "alkylthio", "aryl", "heteroaryl", "heterocyclic", "alkyl", "alkenyl", "alkynyl", "aliphatic", or "cycloalkyl" refer to the corresponding divalent moiety.
The terms "halogen" or "halo" as used herein, refers to an atom selected from fluorine, chlorine, bromine and iodine.
As used herein, the term "aberrant proliferation" refers to abnormal cell growth. The phrase "adjunctive therapy" encompasses treatment of a subject with agents that reduce or avoid side effects associated with the combination therapy of the present invention, including, but not limited to, those agents, for example, that reduce the toxic effect of anticancer drugs, e.g., bone resorption inhibitors, cardioprotective agents; prevent or reduce the incidence of nausea and vomiting associated with chemotherapy, radiotherapy or operation; or reduce the incidence of infection associated with the administration of myelosuppressive anticancer drugs.
The term "angiogenesis," as used herein, refers to the formation of blood vessels. Specifically, angiogenesis is a multi-step process in which endothelial cells focally degrade and invade through their own basement membrane, migrate through interstitial stroma toward an angiogenic stimulus, proliferate proximal to the migrating tip, organize into blood vessels, and reattach to newly synthesized basement membrane (see Folkman et al., Adv. Cancer Res., Vol. 43, pp. 175-203 (1985)). Anti-angiogenic agents interfere with this process. Examples of agents that interfere with several of these steps include thrombospondin-1, angiostatin, endostatin, interferon alpha and compounds such as matrix metalloproteinase (MMP) inhibitors that block the actions of enzymes that clear and create paths for newly forming blood vessels to follow; compounds, such as .alpha.v.beta.3 inhibitors, that interfere with molecules that blood vessel cells use to bridge between a parent blood vessel and a tumor; agents, such as specific COX-2 inhibitors, that prevent the growth of cells that form new blood vessels; and protein-based compounds that simultaneously interfere with several of these targets.
The term "apoptosis" as used herein refers to programmed cell death as signaled by the nuclei in normally functioning human and animal cells when age or state of cell health and condition dictates. An "apoptosis inducing agent" triggers the process of programmed cell death.
The term "cancer" as used herein denotes a class of diseases or disorders characterized by uncontrolled division of cells and the ability of these cells to invade other tissues, either by direct growth into adjacent tissue through invasion or by implantation into distant sites by metastasis.
As used herein, the term "dysplasia" refers to abnormal cell growth, and typically refers to the earliest form of pre-cancerous lesion recognizable in a biopsy by a pathologist. As used herein, the term "effective amount of the subject compounds," with respect to the subject method of treatment, refers to an amount of the subject compound which, when delivered as part of desired dose regimen, brings about, e.g. a change in the rate of cell proliferation and/or state of differentiation and/or rate of survival of a cell to clinically acceptable standards. This amount may further relieve to some extent one or more of the symptoms of a neoplasia disorder, including, but is not limited to: 1) reduction in the number of cancer cells; 2) reduction in tumor size; 3) inhibition (i.e., slowing to some extent, preferably stopping) of cancer cell infiltration into peripheral organs; 4) inhibition (i.e., slowing to some extent, preferably stopping) of tumor metastasis; 5) inhibition, to some extent, of tumor growth; 6) relieving or reducing to some extent one or more of the symptoms associated with the disorder; and/or 7) relieving or reducing the side effects associated with the administration of anticancer agents.
The term "hyperplasia," as used herein, refers to excessive cell division or growth.
The phrase an "immunotherapeutic agent" refers to agents used to transfer the immunity of an immune donor, e.g., another person or an animal, to a host by inoculation. The term embraces the use of serum or gamma globulin containing performed antibodies produced by another individual or an animal; nonspecific systemic stimulation; adjuvants; active specific immunotherapy; and adoptive immunotherapy. Adoptive immunotherapy refers to the treatment of a disease by therapy or agents that include host inoculation of sensitized lymphocytes, transfer factor, immune RNA, or antibodies in serum or gamma globulin.
The term "inhibition," in the context of neoplasia, tumor growth or tumor cell growth, may be assessed by delayed appearance of primary or secondary tumors, slowed development of primary or secondary tumors, decreased occurrence of primary or secondary tumors, slowed or decreased severity of secondary effects of disease, arrested tumor growth and regression of tumors, among others. In the extreme, complete inhibition, is referred to herein as prevention or chemoprevention.
The term "metastasis," as used herein, refers to the migration of cancer cells from the original tumor site through the blood and lymph vessels to produce cancers in other tissues. Metastasis also is the term used for a secondary cancer growing at a distant site. The term "neoplasm," as used herein, refers to an abnormal mass of tissue that results from excessive cell division. Neoplasms may be benign (not cancerous), or malignant (cancerous) and may also be called a tumor. The term "neoplasia" is the pathological process that results in tumor formation. As used herein, the term "pre-cancerous" refers to a condition that is not malignant, but is likely to become malignant if left untreated.
The term "proliferation" refers to cells undergoing mitosis.
The phrase "HSP90 related disease or disorder" refers to a disease or disorder characterized by inappropriate HSP90 activity or over-activity of the HSP90. Inappropriate activity refers to either; (i) HSP90 expression in cells which normally do not express HSP90; (ii) increased HSP90 expression leading to unwanted cell proliferation, differentiation and/or growth; or, (iii) decreased HSP90 expression leading to unwanted reductions in cell proliferation, differentiation and/or growth. Over-activity of HSP90 refers to either amplification of the gene encoding a particular HSP90 or production of a level of HSP90 activity which can correlate with a cell proliferation, differentiation and/or growth disorder (that is, as the level of the HSP90 increases, the severity of one or more of the symptoms of the cellular disorder increases).
The phrase a "radio therapeutic agent" refers to the use of electromagnetic or particulate radiation in the treatment of neoplasia.
The term "recurrence" as used herein refers to the return of cancer after a period of remission. This may be due to incomplete removal of cells from the initial cancer and may occur locally (the same site of initial cancer), regionally (in vicinity of initial cancer, possibly in the lymph nodes or tissue), and/or distally as a result of metastasis.
The term "treatment" refers to any process, action, application, therapy, or the like, wherein a mammal, including a human being, is subject to medical aid with the object of improving the mammal's condition, directly or indirectly.
The term "vaccine" includes agents that induce the patient's immune system to mount an immune response against the tumor by attacking cells that express tumor associated antigens (Teas).
As used herein, the term "effective amount of the subject compounds," with respect to the subject method of treatment, refers to an amount of the subject compound which, when delivered as part of desired dose regimen, brings about, e.g. a change in the rate of cell proliferation and/or state of differentiation and/or rate of survival of a cell to clinically acceptable standards. This amount may further relieve to some extent one or more of the symptoms of a neoplasia disorder, including, but is not limited to: 1) reduction in the number of cancer cells; 2) reduction in tumor size; 3) inhibition (i.e., slowing to some extent, preferably stopping) of cancer cell infiltration into peripheral organs; 4) inhibition (i.e., slowing to some extent, preferably stopping) of tumor metastasis; 5) inhibition, to some extent, of tumor growth; 6) relieving or reducing to some extent one or more of the symptoms associated with the disorder; and/or 7) relieving or reducing the side effects associated with the administration of anticancer agents.
As used herein, the term "pharmaceutically acceptable salt" refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge, et al. describes pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 66: 1-19 (1977). The salts can be prepared in situ during the final isolation and purification of the compounds of the invention, or separately by reacting the free base function with a suitable organic acid or inorganic acid. Examples of pharmaceutically acceptable nontoxic acid addition salts include, but are not limited to, salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, maleic acid, tartaric acid, citric acid, succinic acid lactobionic acid or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include, but are not limited to, adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p- toluenesulfonate, undecanoate, valerate salts, and the like. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, alkyl having from 1 to 6 carbon atoms, sulfonate and aryl sulfonate.
As used herein, the term "pharmaceutically acceptable ester" refers to esters which hydrolyze in vivo and include those that break down readily in the human body to leave the parent compound or a salt thereof. Suitable ester groups include, for example, those derived from pharmaceutically acceptable aliphatic carboxylic acids, particularly alkanoic, alkenoic, cycloalkanoic and alkanedioic acids, in which each alkyl or alkenyl moiety advantageously has not more than 6 carbon atoms. Examples of particular esters include, but are not limited to, formates, acetates, propionates, butyrates, acrylates and ethylsuccinates. The term "pharmaceutically acceptable prodrugs" as used herein refers to those prodrugs of the compounds of the present invention which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals with undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of the present invention. "Prodrug", as used herein means a compound which is convertible in vivo by metabolic means (e.g. by hydrolysis) to a compound of the invention. Various forms of prodrugs are known in the art, for example, as discussed in Bundgaard, (ed.), Design of Prodrugs, Elsevier (1985); Widder, et al. (ed.), Methods in Enzymology, vol. 4, Academic Press (1985); Krogsgaard-Larsen, et al., (ed). "Design and Application of Prodrugs, Textbook of Drug Design and Development, Chapter 5, 113-191 (1991); Bundgaard, et al., Journal of Drug Deliver Reviews, 8:1-38(1992); Bundgaard, J. of Pharmaceutical Sciences, 77:285 et seq. (1988); Higuchi and Stella (eds.) Prodrugs as Novel Drug Delivery Systems, American Chemical Society (1975); and Bernard Testa & Joachim Mayer,
"Hydrolysis In Drug And Prodrug Metabolism: Chemistry, Biochemistry And Enzymology," John Wiley and Sons, Ltd. (2002).
As used herein, "pharmaceutically acceptable carrier" is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration, such as sterile pyrogen-free water. Suitable carriers are described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in the field, which is incorporated herein by reference. Preferred examples of such carriers or diluents include, but are not limited to, water, saline, finger's solutions, dextrose solution, and 5% human serum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.
As used herein, the term "pre-cancerous" refers to a condition that is not malignant, but is likely to become malignant if left untreated.
The term "subject" as used herein refers to an animal. Preferably the animal is a mammal. More preferably the mammal is a human. A subject also refers to, for example, dogs, cats, horses, cows, pigs, guinea pigs, fish, birds and the like.
The compounds of this invention may be modified by appending appropriate functionalities to enhance selective biological properties. Such modifications are known in the art and may include those which increase biological penetration into a given biological system (e.g., blood, lymphatic system, central nervous system), increase oral availability, increase solubility to allow administration by injection, alter metabolism and alter rate of excretion.
The synthesized compounds can be separated from a reaction mixture and further purified by a method such as column chromatography, high pressure liquid chromatography, or recrystallization. As can be appreciated by the skilled artisan, further methods of synthesizing the compounds of the formulae herein will be evident to those of ordinary skill in the art. Additionally, the various synthetic steps may be performed in an alternate sequence or order to give the desired compounds. Synthetic chemistry transformations and protecting group methodologies (protection and deprotection) useful in synthesizing the compounds described herein are known in the art and include, for example, those such as described in R. Larock, Comprehensive Organic Transformations, VCH Publishers (1989); T.W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 2d. Ed., John Wiley and Sons (1991); L. Fieser and M. Fieser, Fieser and Fieser's Reagents for Organic Synthesis, John Wiley and Sons (1994); and L. Paquette, ed., Encyclopedia of Reagents for Organic Synthesis, John Wiley and Sons (1995), and subsequent editions thereof. The compounds described herein contain one or more asymmetric centers and thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)-, or as (D)- or (L)- for amino acids. The present invention is meant to include all such possible isomers, as well as their racemic and optically pure forms. Optical isomers may be prepared from their respective optically active precursors by the procedures described above, or by resolving the racemic mixtures. The resolution can be carried out in the presence of a resolving agent, by chromatography or by repeated crystallization or by some combination of these techniques which are known to those skilled in the art. Further details regarding resolutions can be found in Jacques, et al, Enantiomers, Racemates, and Resolutions (John Wiley & Sons, 1981). When the compounds described herein contain olefmic double bonds, other unsaturation, or other centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers and/or cis- and trans- isomers. Likewise, all tautomeric forms are also intended to be included. The configuration of any carbon-carbon double bond appearing herein is selected for convenience only and is not intended to designate a particular configuration unless the text so states; thus a carbon-carbon double bond or carbon- heteroatom double bond depicted arbitrarily herein as trans may be cis, trans, or a mixture of the two in any proportion. Pharmaceutical Compositions
The pharmaceutical compositions of the present invention comprise a therapeutically effective amount of a compound of the present invention formulated together with one or more pharmaceutically acceptable carriers or excipients.
As used herein, the term "pharmaceutically acceptable carrier or excipient" means a non-toxic, inert solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. Some examples of materials which can serve as pharmaceutically acceptable carriers are sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols such as propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol, and phosphate buffer solutions, as well as other non-toxic compatible lubricants such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the composition, according to the judgment of the formulator.
The pharmaceutical compositions of this invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir, preferably by oral administration or administration by injection. The pharmaceutical compositions of this invention may contain any conventional non-toxic pharmaceutically-acceptable carriers, adjuvants or vehicles. In some cases, the pH of the formulation may be adjusted with pharmaceutically acceptable acids, bases or buffers to enhance the stability of the formulated compound or its delivery form. The term parenteral as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques. Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions, may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S. P. and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid are used in the preparation of injectables.
The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
In order to prolong the effect of a drug, it is often desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution, which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle. Injectable depot forms are made by forming microencapsule matrices of the drug in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions that are compatible with body tissues. Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or: a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, h) absorbents such as kaolin and bentonite clay, and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may also comprise buffering agents.
Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes.
Dosage forms for topical or transdermal administration of a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches. The active component is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required. Ophthalmic formulation, ear drops, eye ointments, powders and solutions are also contemplated as being within the scope of this invention.
The ointments, pastes, creams and gels may contain, in addition to an active compound of this invention, excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
Powders and sprays can contain, in addition to the compounds of this invention, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants such as chlorofluorohydrocarbons. Transdermal patches have the added advantage of providing controlled delivery of a compound to the body. Such dosage forms can be made by dissolving or dispensing the compound in the proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel.
For pulmonary delivery, a therapeutic composition of the invention is formulated and administered to the patient in solid or liquid particulate form by direct administration e.g., inhalation into the respiratory system. Solid or liquid particulate forms of the active compound prepared for practicing the present invention include particles of respirable size: that is, particles of a size sufficiently small to pass through the mouth and larynx upon inhalation and into the bronchi and alveoli of the lungs. Delivery of aerosolized therapeutics, particularly aerosolized antibiotics, is known in the art (see, for example U.S. Pat. No. 5,767,068 to VanDevanter et al, U.S. Pat. No. 5,508,269 to Smith et al., and WO 98/43,650 by Montgomery, all of which are incorporated herein by reference). A discussion of pulmonary delivery of antibiotics is also found in U.S. Pat. No. 6,014,969, incorporated herein by reference.
By a "therapeutically effective amount" of a compound of the invention is meant an amount of the compound which confers a therapeutic effect on the treated subject, at a reasonable benefit/risk ratio applicable to any medical treatment.
The therapeutic effect may be objective (i.e., measurable by some test or marker) or subjective (i.e., subject gives an indication of or feels an effect). An effective amount of the compound described above may range from about 0.1 mg/Kg to about 500 mg/Kg, preferably from about 1 to about 50 mg/Kg. Effective doses will also vary depending on route of administration, as well as the possibility of co-usage with other agents. It will be understood, however, that the total daily usage of the compounds and compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or contemporaneously with the specific compound employed; and like factors well known in the medical arts.
The total daily dose of the compounds of this invention administered to a human or other animal in single or in divided doses can be in amounts, for example, from 0.01 to 50 mg/kg body weight or more usually from 0.1 to 25 mg/kg body weight. Single dose compositions may contain such amounts or submultiples thereof to make up the daily dose. In general, treatment regimens according to the present invention comprise administration to a patient in need of such treatment from about 10 mg to about 1000 mg of the compound(s) of this invention per day in single or multiple doses.
The compounds of the formulae described herein can, for example, be administered by injection, intravenously, intraarterially, subdermally, intraperitoneally, intramuscularly, or subcutaneously; or orally, buccally, nasally, transmucosally, topically, in an ophthalmic preparation, or by inhalation, with a dosage ranging from about 0.1 to about 500 mg/kg of body weight, alternatively dosages between 1 mg and 1000 mg/dose, every 4 to 120 hours, or according to the requirements of the particular drug. The methods herein contemplate administration of an effective amount of compound or compound composition to achieve the desired or stated effect. Typically, the pharmaceutical compositions of this invention will be administered from about 1 to about 6 times per day or alternatively, as a continuous infusion. Such administration can be used as a chronic or acute therapy. The amount of active ingredient that may be combined with pharmaceutically excipients or carriers to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. A typical preparation will contain from about 5% to about 95% active compound (w/w). Alternatively, such preparations may contain from about 20% to about 80% active compound.
Lower or higher doses than those recited above may be required. Specific dosage and treatment regimens for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health status, sex, diet, time of administration, rate of excretion, drug combination, the severity and course of the disease, condition or symptoms, the patient's disposition to the disease, condition or symptoms, and the judgment of the treating physician.
Upon improvement of a patient's condition, a maintenance dose of a compound, composition or combination of this invention may be administered, if necessary. Subsequently, the dosage or frequency of administration, or both, may be reduced, as a function of the symptoms, to a level at which the improved condition is retained when the symptoms have been alleviated to the desired level. Patients may, however, require intermittent treatment on a long-term basis upon any recurrence of disease symptoms.
Synthetic Methods
The compounds of formula I, or a pharmaceutically-acceptable salt thereof, may be prepared by any process known to be applicable to the preparation of chemically-related compounds. Suitable processes for making certain intermediates include, for example, those illustrated in PCT publication numbers WO2006133634 and WO2007101156. Necessary starting materials may be obtained by standard procedures of organic chemistry. The preparation of such starting materials is described within the accompanying non-limiting Examples. Alternatively, necessary starting materials are obtainable by analogous procedures to those illustrated which are within the ordinary skill of a chemist.
The compounds and processes of the present invention will be better understood in connection with the following representative synthetic schemes that illustrate the methods by which the compounds of the invention may be prepared, which are intended as an illustration only and not limiting of the scope of the invention.
Figure imgf000052_0001
Figure imgf000053_0001
Figure imgf000054_0001
Figure imgf000055_0001
EXAMPLES
The compounds and processes of the present invention will be better understood in connection with the following examples, which are intended as an illustration only and not limiting of the scope of the invention. Various changes and modifications to the disclosed embodiments will be apparent to those skilled in the art and such changes and modifications including, without limitation, those relating to the chemical structures, substituents, derivatives, formulations and/or methods of the invention may be made without departing from the spirit of the invention and the scope of the appended claims.
EXAMPLE 1: Preparation of 2-(5-(hydroxyamino)-5-oxopentylamino)-4-(3,6,6- trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l-yl)benzamide (Compound 2)
Step Ia. 2-Acetyl-5,5-dimethylcyclohexane-l,3-dione (Compound 0102) 5,5-Dimethyl-l,3-cyclohexanedione (28 g, 200 mol) and pyridine (17.4 g,
220 mol) was suspended in CH2Cl2 (200 mL). This mixture was placed in an ice- bath, then a solution of acyl chloride (17.3 g, 220 mmol) in CH2Cl2 (100 mL) was added while keeping the temperature below 5 0C. The mixture was then warmed up to ambient temperature and stirred for 3 h. The solid was removed and the organic layer was washed with water, diluted (1+1) hydrochloric acid, saturated aqueous sodium hydrogen carbonate, dried over MgSO4 and concentrated to give brown oil 32g. This was dissolved in CH2Cl2 (500 mL) and AlCl3 (50.7 g, 380 mmol) was added. The reaction mixture was stirred at 10 0C for 2 hours and was then poured into 6 N HCl aqueous solution. The organics was separated, and the aqueous was extracted with hexane (200 mL x 5). The organics was washed with brine, dried over MgSO4 and concentrated to give the title compound 0102 as a colorless solid (27.8 g, 76%): LCMS: 183 [M+l]+; 1H NMR (DMSO-/) : δ 1.07 (s, 6H), 2.35 (s, 2H), 2.53 (s, 2H), 2.60 (s, 3H). Step Ib. 2-Bromo-4-hydrazinylbenzonitrile (Compound 0104) A mixture of 2-bromo-4-fluorobenzonitrile (0103) (40 g, 200 mmol), THF
(100 ml) and H2NNH2-H2O (300 mL) was stirred at 600C for 3 h. The resultant mixture was diluted with THF to dissolve the solids. The organic layer was washed with saturated sodium bicarbonate solution until the PH of organic layer approximately 8.5. The organic layer was isolated and the solvent was remove under reduce pressure. The precipitated was washed with water, followed by diethyl ether, and dried under reduce pressure to give the title compound 0104 as a white solid (40.4 g, 95%): LCMS: 213 [M+l]+; 1U NMR (DMSO-/) : δ 4.41 (s, 2H), 6.74 (dd, J1 = 2.1 Hz, J2 = 8.7 Hz, IH), 7.08 (d, J= 2.1 Hz, IH), 7.48 (d, J= 9.0 Hz, IH), 8.08 (s, IH).
Step Ic. 2-Bromo-4-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l- yl)benzonitrile (Compound 0105)
A mixture of 0104 (6.4 g, 30 mmol), 0102 (5.47 g, 30 mmol), HOAc (1. 8 g, 30 mmol) and ethanol (100 mL) was stirred under reflux for 3 h. The mixture was filtered and the precipitate was isolated and dried to give the title compound 0105 as a brown solid (10 g, 93%): LCMS: 358 [M+l]+; 1H NMR (DMSO-/): δ 1.03 (s, 6H), 2.35 (s, 2H), 2.41 (s, 3H), 3.02 (s, 2H), 7.81 (m, IH), 8.12 (m, 2H). Step Id. 2-(4-Methoxybenzylamino)-4-(3,6,6-trimethyl-4-oxo-4, 5,6,7- tetrahydroindazol- 1 -yl) benzonitrile (Compound 0106)
A mixture of compound 0105(6.45 g, 18 mmol), Pd(OAc)2 (200 mg), DPPF (800 mg), NaO1Bu (3.5 g, 36 mmol) and (4-methoxyphenyl)methanamine (4.9 g, 36 mmol) in toluene (80 mL) was stirred under reflux for 3 h under N2. The mixture was filtered and the solid was washed with EtOAc. The product was purified by column chromatography (EtO Ac/petroleum ether = 1/2) to give the title compound 0106 as a brown solid (5.0 g, 67%): LCMS: 415 [M+l]+; 1H NMR (DMSO-/): δ 0.86 (s, 6H), 2.24 (s, 2H), 2.33 (s, 3H), 2.47 (s, 2H), 3.69 (s, 3H), 4.39 (d, J= 5.7 Hz, 2H), 6.62 (d, J= 2.1 Hz, IH), 6.80 (dd, J1 = 2.1 Hz, J2 = 8.7 Hz, IH), 6.88 (d, J = 9.0 Hz, IH), 7.25 (m, 3H), 7.61 (d, J= 8.7 Hz, IH). Step Ie. 2-Amino-4-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l- yl)benzonitril (Compound 0107)
A mixture of 0106 (5.0 g, 12 mmol) and 2,2,2-trifluoroacetic acid was stirred for 30 min. The 2,2,2-trifluoroacetic acid was removed and the residue was dissolved with ethyl acetate and washed with water, NaHCO3 aqueous and brine, dried over Na2SO4 and concentrated to give the title product 0107 as a pale brown solid (3.2 g, 90%): LCMS: 295 [M+l]+; 1H NMR (DMSO-/): δ 1.02 (s, 6H), 2.34 (s, 2H), 2.39 (s, 3H), 2.92 (s, 2H), 6.40 (s, 2H), 6.80 (dd, J1 = 2.1 Hz, J2 = 8.7 Hz, IH), 7.05 (d, J= 2.1 Hz, IH), 7.54 (d, J= 8.4 Hz, IH). Step If. 2-Amino-4-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l- yl)benzamide (Compound 0108)
A mixture of 0107 (1.0 g, 3.4 mmol), ethanol (10 mL), NaOH aqueous (5N) (1.3 mL) and H2O2 (10 mL) was stirred at 400C for 5 h. The mixture was diluted with water and extracted with dichloromethane. The organic layer was washed with water, brine, dried over Na2SO4 and concentrated to give the title compound 0108 as a white solid (800 mg, 75%): LCMS: 313 [M+l]+; 1H NMR (DMSO-/): δ 1.03 (s, 6H), 2.34 (s, 2H), 2.39 (s, 3H), 2.91 (s, 2H), 6.68 (dd, J1 = 2.1 Hz, J2 = 8.7 Hz, IH), 6.92 (m, 3H), 7.21 (s, IH), 7.66 (d, J= 8.7 Hz, IH), 7.85 (s, IH). Step Ig. Ethyl 5-(2-carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol- l-yl)phenylamino) pentanoate (Compound 0109-2)
A mixture of compound 0108 (310 mg, 1 mmol), NaBH3CN (188 mg, 3 mmol), HOAc (to acidify the mixture pH=5~6) and ethyl 5-oxopentanoate (170 mg, 1.2 mmol) in MeOH (10 ml) was stirred at 60 0C for 8 h. The solvent was removed and the residue was dissolved with EtOAc. The organic layer was washed with water, NaHCO3 aqueous and brine, dried over Na2SO4 and concentrated. The resulting residue was purified by column chromatography (EA/PE = 1/2) to give the title compound 0109-2 as a brown solid (230 mg, 54%): LCMS: 441 [M+l]+. Step Ih. 2-(5-(Hydroxyamino)-5-oxopentylamino)-4-(3,6,6-trimethyl-4-oxo-4,5,6,7- tetrahydroindazol-l-yl)benzamide (Compound 2)
NH2OKHCl (4.17 g, 0.06 mol) was suspended in 15 mL methanol. The mixture was placed in an ice-bath and stirred. A solution of KOH (3.87 g, 0.069 mol) in 15 mL methanol was added dropwise. After addition, the mixture was stirred for additional 10 minutes and then filtered. The filtrate was used directly to the next step as a 2 mol/L NH2OH/MeOH solution.
A mixture of compound 0109-2 (230 mg, 0.52 mmol) and 2 mol/L NH2OH/MeOH (10 mL, 20 mmol) was stirred at 20 0C for 4 h. The reaction mixture was neutralized with HCl/MeOH. The solvent was removed and the residue was suspended in water, the precipitate was collected and dried. The solid was purified by column chromatography (MeOH/DCM = 5%) to give the title compound 2 as a pale white solid (50 mg, 22%): LCMS: 428 [M+l]+; 1U NMR (DMSO-/): δ 1.01 (s, 6H), 1.58 (m, 4H), 1.99 (m, 2H), 2.32 (s, 2H), 2.39 (s, 3H), 2.92 (s, 2H), 3.12 (m, 2H), 6.66 (d, J= 8.0 Hz, IH), 6.75 (s, IH), 7.26 (s, IH), 7.73 (d, J= 8.4 Hz, IH), 7.93 (s, IH), 8.38 (m, IH), 8.69 (s, IH), 10.36 (s, IH).
EXAMPLE 2: Preparation of 2-(6-(hydroxyamino)-6-oxohexylamino)-4-(3,6,6- trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l-yl)benzamide
(Compound 3)
Step 2a. Ethyl 6-(2-carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol- l-yl)phenylamino)hexanoate (Compound 0109-3)
The title compound 0109-3 was prepared as a brown solid (183 mg, 40%) from compound 0108 (312 mg, 1 mmol), NaBH3CN (188 mg, 3 mmol), HOAc (to acidify the mixture pH=5~6) and ethyl 6-oxohexanoate (237 mg, 1.5 mmol) in MeOH (10 ml) using a procedure similar to that described for compound 0109-2 (Example 1): LCMS: 455 [M+l]+.
Step 2b. 2-(6-(Hydroxyamino)-6-oxohexylamino)-4-(3,6,6-trimethyl-4-oxo-4,5,6,7- tetrahydroindazol-l-yl)benzamide (Compound 3)
The title compound 3 was prepared as a pale white solid (76 mg, 44%) from compound 0109-3 (180 mg, 0.39 mmol) and freshly prepared 2 mol/L NH2OHZMeOH (10 mL, 20 mmol) using a procedure similar to that described for compound 2 (Example 1): LCMS: 428 [M+l]+; 1U NMR (DMSO-/) : δ 1.00 (s, 6H), 1.34 (m, 2H), 1.55 (m, 4H), 1.95 (t, J = 7.2 Hz, 2H), 2.32 (s, 2H), 2.39 (s, 3H), 2.92 (s, 2H), 3.10 (m, 2H), 6.66 (d, J= 8.4 Hz, IH), 6.74 (s, IH), 7.26 (s, IH), 7.72 (d, J= 8.0 Hz, IH), 7.93 (s, IH), 8.38 (m, IH), 8.66 (s, IH), 10.34 (s, IH).
EXAMPLE 3: Preparation of 2-(7-(hydroxyamino)-7-oxoheptylamino)-4-(3,6,6- trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l-yl)benzamide
(Compound 4)
Step 3a. Ethyl 7-(2-carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol- l-yl)phenylamino)heptanoate (Compound 0109-4)
The title compound 0109-4 was prepared as a brown solid (250 mg, 53%) from compound 0108 (312 mg, 1 mmol), NaBH3CN (188 mg, 3 mmol), HOAc (to acidify the mixture pH=5~6) and ethyl 7-oxoheptanoate (207 mg, 1.2 mmol) in
MeOH (10 ml) using a procedure similar to that described for compound 0109-2
(Example 1): LCMS: 469 [M+l]+ . Step 3b. 2-(7-(Hydroxyamino)-7-oxoheptylamino)-4-(3,6,6-trimethyl-4-oxo-4,5,6,7- tetrahydroindazol-l-yl)benzamide (Compound 4)
The title compound 4 was prepared as a white solid (57 mg, 27%) from compound 0109-4 (220 mg, 0.47 mmol) and freshly prepared 2 mol/L NH2OHZMeOH (10 mL, 20 mmol) using a procedure similar to that described for compound 2 (Example 1): LCMS: 456 [M+l]+; 1H NMR (DMSO-/): δ 1.00 (s, 6H), 1.29 (m, 4H), 1.49 (m, 2H), 1.57 (m, 2H), 1.93 (m, J= 7.2 Hz, 2H), 2.32 (s, 2H), 2.39 (s, 3H), 2.92 (s, 2H), 3.10 (m, 2H), 6.67 (d, J= 8.4 Hz, IH), 6.74 (s, IH), 7.26 (s, IH), 7.72 (d, J= 8.4 Hz, IH), 7.92 (s, IH), 8.38 (m, IH), 8.64 (s, IH), 10.32 (s, IH).
EXAMPLE 4: Preparation of Nl-(2-carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7- tetrahydroindazol-l-yl)phenyl)-N7-hydroxyheptanediamide (Compound 8) Step 4a. Methyl 7-(2-carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol- l-yl)phenylamino) -7-oxoheptanoate (Compound 0110-8)
A mixture of compound 0108 (625 mg, 2mmol), 7-methoxy-7-oxoheptanoic acid (697 mg, 4 mmol), EDCI (767 mg, 4 mmol) and DMAP (20 mg) in dichloromethane (30 ml) was stirred at 25 0C for 24 h. The solvent was removed and the residue was purified by column chromatography (ethyl acetate/petroleum ether = 40%) to give the title compound 0110-8 as a brown solid (380 mg, 40%): LCMS: 469 [M+l]+; 1H NMR (DMSO-/) : δ 1.05 (s, 6H), 1.35 (m, 2H), 1.58 (m, 4H), 2.39 (m, 9H), 2.97 (s, 2H), 3.60 (s, 3H), 7.37 (dd, J1 = 2.0 Hz, J2 = 8.4 Hz, IH), 7.89 (s, IH), 7.97 (d, J= 8.4 Hz, IH), 8.42 (s, IH), 8.82 (d, J= 2.0 Hz, IH). Step 4b. N1-(2-carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l- yl)phenyl)-N7-hydroxyheptanediamide (Compound 8)
The title compound 8 was prepared as a pale white solid (29 mg, 12%) from compound 0110-8 (240 mg, 0.52 mmol) and freshly prepared 2 mol/L NH2OH/MeOH (10 mL, 20 mmol) using a procedure similar to that described for compound 2 (Example 1): LCMS: 470 [M+l]+; 1H NMR (DMSO-/) : δ 1.01 (s, 6H), 1.28 (m, 2H), 1.50 (m, 2H), 1.60 (m, 2H), 1.94 (m, 2H), 2.35 (m, 4H), 2.40 (s, 3H), 2.94 (s, 2H), 7.33 (d, J= 7.6 Hz, IH), 7.85 (s, IH), 7.95 (d, J= 8.0 Hz, IH), 8.39 (s, IH), 8.67 (s, IH), 8.77 (s, IH), 10.34 (s, IH), 11.92 (s, IH). EXAMPLE 5: Preparation of Nl-(2-carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7- tetrahydroindazol-l-yl)phenyl)-N8-hydroxyoctanediamide (Compound 9) Step 5a. Methyl 8-(2-carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol- l-yl)phenylamino)- 8-oxooctanoate (Compound 0110-9)
The title compound 0110-9 was prepared as a brown solid (370 mg, 38%) from compound 0108 (625 mg, 2mmol), 8-methoxy-8-oxooctanoic acid (753 mg, 4 mmol), EDCI (767 mg, 4 mmol) and DMAP (20 mg) in dichloromethane (30 ml) using a procedure similar to that described for compound 0110-8 (Example 4):
LCMS: 483 [M+l]+ ; 1H NMR (DMSO-/): δ 1.03 (s, 6H), 1.31 (m, 4H), 1.52 (m, 4H), 2.36 (m, 9H), 2.94 (s, 2H), 3.57 (s, 3H), 7.33 (m, IH), 7.87 (s, IH), 7.98 (d, J = 8.8 Hz, IH), 8.40 (s, IH), 8.80 (s, IH).
Step 5b. N1-(2-Carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l- yl)phenyl)-N8- hydroxyoctanediamide (Compound 9)
The title compound 9 was prepared as a pale white solid (24 mg, 17%) from compound 0110-9 (140 mg, 0.29 mmol) and freshly prepared 2 mol/L NH2OHZMeOH (10 mL, 20 mmol) using a procedure similar to that described for compound 2 (Example 1): LCMS: 484 [M+l]+; 1H NMR (DMSO-/) : δ 1.03 (s, 6H), 1.29 (m, 4H), 1.49 (m, 2H), 1.61 (m, 2H), 1.94 (m, 2H), 2.37 (m, 7H), 2.95 (s, 2H), 7.34 (dd, J1 = 2.4 Hz, J2 = 8.4 Hz, IH), 7.86 (s, IH), 7.95 (d, J= 8.8 Hz, IH), 8.40 (s, IH), 8.79 (d, J= 2.0 Hz, IH), 10.34 (s, IH), 11.92 (s, IH).
EXAMPLE 6: Preparation of Nl-(2-carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7- tetrahydroindazol-l-yl)phenyl)-N6-hydroxyadipamide (compound 7)
Step 6a: Ethyl 6-(2-carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol- 1-yl) phenylamino) -6-oxohexanoate (Compound 0110-7)
A mixture of compound 0108 (312 mg, 1 mmol), 6-ethoxy-6-oxohexanoic acid (348 mg, 2 mmol), EDCI (575 mg, 3 mmol) and DMAP (10 mg) in dichloromethane (20 mL) was stirred at 250C for 24 h. The solvent was removed and the residue was purified by column chromatography on silica gel eluting with ethyl acetate in petroleum ether (40% v/v) to give the title compound 0110-7 (180 mg, 38%) as a brown solid: LCMS: 469 [M+l]+ . 1H NMR (400 MHz, DMSO-4) δ 1.03 (s, 6H), 1.17 (t, J= 7.2 Hz, 3H), 1.61 (m, 4H), 2.36 (m, 9H), 2.95 (s, 2H), 4.06 (q, J = 7.2 Hz, 2H), 7.33 (dd, J= 2.0, 8.4 Hz, IH), 7.86 (s, IH), 7.96 (d, J= 8.8 Hz, IH), 8.40 (s, IH), 8.79 (d, J= 2.0 Hz, IH).
Step 6b: Nl-(2-carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l-yl) phenyl)-N6-hydroxyadipamide (compound 7)
The title compound 7 was prepared as a pale white solid (16 mg, 15%) from compound 0110-7 (110 mg, 0.23 mmol) and freshly prepared 2 mol/L NH2OH/MeOH (10 mL, 20 mmol) using a procedure similar to that described for compound 2 (Example 1): LCMS: 456 [M+l]+. 1U NMR (400 MHz, DMSO-J6) δ 1.02 (s, 6H), 1.56 (m, 4H), 1.98 (t, J= 6.8 Hz, 2H), 2.38 (m, 7H), 2.95 (s, 2H), 7.32 (m, IH), 7.86 (s, IH), 7.95 (m, IH), 8.40 (s, IH), 8.69 (s, IH), 8.79 (s, IH), 10.37 (s, IH), 11.91 (s, IH).
EXAMPLE 7: Preparation of 2-(4-(2-carbamoyl-5-(3,6,6-trimethyl-4-oxo- 4,5,6,7-tetrahydroindazol-l-yl)phenyl)piperazin-l-yl)-N-hydroxypyrimidine-5- carboxamide (Compound 14) Step 7a: (Z)-Ethyl-2-(ethoxymethyl)-3-methoxyacrylate (Compound 0202)
Sodium (13.8 g) was added to a mixed solvent of benzene (200 mL) and ethanol (27 g) at room temperature. To the mixture ethyl formate (45.0 g, 0.61 mol) and ethyl 3-ethoxypropionate (44.0 g, 0.30 mol) were added slowly at O0C, and stirred for 2 h. Dimethyl sulfate (76.0 g, 0.61 mol) was then added and the resulting mixture was heated to 5O0C and stirred for 3 h. The mixture was filtered and the filtrate was washed with water three times. Triethylammonium chloride (40.0 g, 0.29 mol) and sodium hydroxide (7.00 g, 0.175 mol) was added to the organic layer, and stirred for 4 h. The mixture was filtered and the organic layer was washed with water, dried over Na2SO4, and evaporated. The residue was distilled under reduced pressure to give product 0202 (18.8 g, 33%): 1H NMR (400 MHz, CDC13): <51.26 (m, 6H), 3.48 (m, 3H), 3.63 (m, JH), 4.20 (m, 2H). Step 7b: Ethyl 2-oxo-l,2,3,4-tetrahydropyrimidine-5-carboxylate (Compound 0203) A mixture of 0202 (21.4 g, 0.11 mol), urea (5.70 g, 0.095 mol), and hydrochloric acid (5 mL) in ethanol (300 mL) was heated to reflux overnight. After evaporation of solvents, the residue was recrystallized from ethanol to give product 0203 (7.80 g, 65%) as a colorless prisms: LCMS: 171 [M+l]+, 1H NMR (400 MHz, CDC13): δ 1.27 (t, J= 7.2 Hz , 3H), 4.19 (m, 4H), 5.28 (s, IH), 7.21 (d, J= 5.6 Hz ,
IH), 7.40 (s, IH) .
Step 7c: Ethyl 2-oxo-l,2-dihydropyrimidine-5-carboxylate (Compound 0204)
A solution of 0203 (2.50 g, 14.7 mmol) and bromine (2.40 g, 15 mmol) in acetic acid (55 mL) was heated to reflux for 1.5 h. Removal of the solvent afforded crude product 0204 (3.60 g, 99%): LCMS: 169 [M+l]+, 1H NMR (400 MHz, CDC13): δ 1.27 (t, J= 7.2 Hz , 3H), 4.28 (q, J= 7.2 Hz , 2H), 8.85 (s, 2H), 12.19 (ds, 2H). Step 7d: Ethyl 2-chloropyrimidine-5-carboxylate (Compound 0205) A mixture of 0204 (3.60 g, 21 mmol), phosphorus oxychloride (25 mL), and
N,N-dimethylaniline (2.5 mL) was heated to reflux for 1.5 h. After removal of the solvent, ice water (10 mL) was added to the residue. The mixture was added to 2 N NaOH (90 ml), and extracted with EtOAc. After work up the residue was purified by column chromatography on silica gel (ethyl acetate in petroleum ether, 5% v/v) to give product 0205 (1.20 g, 30%): LCMS: 187 [M+l]+, 1H NMR (300 MHz,
CDC13): δ 1.42 (t, J= 7.5 Hz , 3H), 4.48 (q, J= 7.5 Hz, 2H), 9.15 (s, 2H); 1H NMR
(400 MHz, DMSO-J6): δ 1.33 (t, J= 6.8 Hz, 3H); 4.37 (q, J= 6.8 Hz, 2H), 9.18 (s,
2H).
Step 7e: 2-(Piperazin-l-yl)-4-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l- yl)benzonitrile (Compound 0209- 14)
A mixture of compound 0105 (1.0 g, 2.8 mmol), Pd(OAc)2 (32 mg), DPPF (156 mg), NaOt-Bu (540 mg, 5.6 mmol) and piperazine (2.41 g, 28 mmol) in toluene (60 mL) was refluxed for 3 h under N2. The mixture was filtered and the solid was washed with ethyl acetate. The product was purified by column chromatography on silica gel eluting with ethyl acetate in petroleum ether (40% v/v)) to give the title compound 0209-14 (400 mg, 39%) as a brown solid: LCMS: 364 [M+l]+. Step 7f: Ethyl 2-(4-(2-cyano-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l- yl)phenyl)piperazin- 1 -yl)pyrimidine-5 -carboxylate (Compound 0210- 14)
A mixture of compound 0209-14 (400 mg, 1.1 mmol), 0205 (223 mg, 1.21 mmol), DMAP (269 mg, 2.2 mmol) and DMF (10 mL) was stirred at 250C for 5 h. The solvent was removed and the residue was purified by column chromatography on silica gel eluting with ethyl acetate in petroleum ether, 30% v/v to give compound 0210-14 (380 mg, 67%) as a white solid. LCMS: 514 [M+ 1]+. Step 7g: Ethyl 2-(4-(2-carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7- tetrahydroindazol- 1 -yl) phenyl)piperazin- 1 -yl)pyrimidine-5 -carboxylate(Compound 0211-14)
A mixture of compound 0210-14 (370 mg, 0.72 mmol), 5N NaOH (0.4 mL, 2.0 mmol), ethanol (10 mL), DMSO (1 mL) and H2O2 (20 mL) was stirred at 4O0C for 3 h. To the mixture water was added and extracted with ethyl acetate. The separated organic layer was washed with water, brine and dried over MgSO4. The solution was concentrated to give the title compound 0211-14 (380 mg, 99%) as a white solid: LCMS: 532 [M+l]+. 1H NMR (400 MHz, DMSO-J6) δ 1.03 (s, 6H), 1.30 (t, J= 6.8 Hz, 3H), 2.34 (s, 2H), 2.41 (s, 3H), 2.95 (s, 2H), 3.12 (m, 4H), 4.07 (m, 4H), 4.30 (q, J= 6.8 Hz, 2H), 7.30 (m, 2H), 7.68 (s, IH), 7.78 (m, IH), 8.27 (s, IH), 8.84 (s, 2H).
Step 7h: 2-(4-(2-Carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l- yl) phenyl)piperazin-l-yl)-N-hydroxypyrimidine-5-carboxamide (Compound 14) The title compound 14 was prepared as a pale white solid (23 mg, 11%) from compound 0211 (110 mg, 0.23 mmol) and freshly prepared 2 mol/L NH2OH/MeOH (10 mL, 20 mmol) using a procedure similar to that described for compound 2 (Example 1): LCMS: 519 [M+l]+, 1U NMR (400 MHz, DMSO-J6) δ 1.01 (s, 6H), 2.33 (s, 2H), 2.40 (s, 3H), 2.94 (s, 2H), 3.09 (m, 4H), 4.01 (m, 4H), 7.29 (m, 2H), 7.67 (s, IH), 7.77 (m, IH), 8.27 (s, IH), 8.71 (s, 2H), 9.04 (s, IH), 11.12 (s, IH).
EXAMPLE 8: Preparation of 2-(4-((2-carbamoyl-5-(3,6,6-trimethyl-4-oxo- 4,5,6,7-tetrahydroindazol-l-yl)phenylamino)methyl)piperidin-l-yl)-N- hydroxypyrimidine-5-carboxamide (Compound 15) Step 8a: Ethyl 2-(4-(aminomethyl)piperidin-l-yl)pyrimidine-5-carboxylate (Compound 0206)
A mixture of 0205 (1.10 g, 5.9 mmol), piperidin-4-ylmethanamine (1.35 g, 11.8 mmol) in 2-(dimethylamino)acetamide (50 mL) was stirred at room temperature for 1.5 h. After removal of the solvent, the residue was purified by column chromatography on silica gel (CH3OH in CH2C12 6% v/v) to give desired product 0206(1.27 g, 81%): LCMS: 265 [M+l]+, 1H NMR (400 MHz, CDC13): δ 1.16 (m, 2H), 1.22(m, 5H), 1.36 (m, IH), 1.64 (m, IB), 1.85 (d, J= 12 Hz, 2H), 2.62 (d, J= 6.42 Hz, 2H), 2.94 (ds, J= 12.8, 2.4 Hz ,2H), 4.91 (d, J= 11.2 Hz, 2H), 7.26(s, IH) , 8.82 (s, 2H) .
Step 8b: Ethyl 2-(4-((2-cyano-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l- yl)- phenylamino)methyl)piperidin- 1 -yl)pyrimidine-5-carboxylate (Compound 0207-15)
A mixture of compound 0105 (386 mg, 1.08 mmol), Pd(OAc)2 (32 mg), DPPF (128 mg), NaO1Bu (207 mg, 2.16 mmol) and 0206 (343 mg, 1.3 mmol) in toluene (20 mL) was refluxed for 3 h under N2. The mixture was filtered and the solid was washed with ethyl acetate. The filtrate was purified by column chromatography on silica gel eluting with ethyl acetate in petroleum ether (40% v/v) to give the title compound 0207-15 (400 mg, 68%) as a brown solid. LCMS: 542 [M+l]+. 1U NMR (400 MHz, DMSO-J6) δ 1.02 (s, 6H), 1.15 (m, 2H), 1.29 (t, J = 7.2 Hz, 4H), 1.87 (m, 2H), 1.98 (m, IH), 2.34 (s, 2H), 2.40 (s, 3H), 2.98 (m, 4H), 3.17 (m, 2H), 4.27 (q, J= 7.2 Hz, 2H), 4.78 (m, 2H), 6.67 (m, IH), 6.84 (dd, J= 1.6, 8.0 Hz, IH), 6.90 (s, IH), 7.62 (d, J= 8.4 Hz, IH), 8.77 (s, 2H).
Step 8c: Ethyl 2-(4-((2-carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7- tetrahydroindazol- 1 -yl)phenylamino)methyl)piperidin- 1 -yl)pyrimidine-5 - carboxylate (Compound 0208-15)
The title compound 0208-15 was prepared as a brown solid (190 mg, 46%) from compound 0207-15 (400 mg, 0.74 mmol), 5 N NaOH (0.5 mL), and H2O2 (15 mL) using a procedure similar to that described for compound 0211-14 (Example 7). LCMS: 560 [M+l]+.
Step 8d: 2-(4-((2-Carbamoyl-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l- yl)-phenylamino)methyl)piperidin- 1 -yl)-N-hydroxypyrimidine-5 -carboxamide (Compound 15)
The title compound 15 was prepared as a pale white solid (22 mg, 12%) from compound 0208 (190 mg, 0.34 mmol) and freshly prepared 2 mol/L NH2OH/MeOH (10 mL, 20 mmol) using a procedure similar to that described for compound 2 (Example 1): LCMS: 547 [M+l]+, 1H NMR (400 MHz, DMSO-J6) δ 1.01 (s, 6H), 1.17 (m, 2H), 1.82 (m, 2H), 1.94 (m, IH), 2.33 (s, 2H), 2.40 (s, 3H), 2.98 (m, 4H), 3.10 (m, 2H), 4.75 (m, 2H), 6.68 (m, IH), 6.79 (m, IH), 7.29 (s, IH), 7.74 (m, IH), 7.96 (s, IH), 8.59 (m, IH), 8.65 (s, 2H), 9.00 (s, IH), 11.05 (s, IH). EXAMPLE 9: Preparation of 2-(4-((2-carbamoyl-5-(6,6-dimethyl-4-oxo-3- (trifluoro-methyl)-4,5,6,7-tetrahydroindazol-l- yl)phenylamino)methyl)piperidin-l-yl)-N-hydroxypyrimidine-5- carboxamide(Compound 18) Step 9a: N'-(3,3-dimethyl-5-oxocyclohexylidene)-4- methylbenzenesulfonohydrazide (Compound 0112)
A mixture of 5,5-dimethyl-l,3-cyclohexanedione (64 g, 0.46 mol), p- toluenesulfon-hydrazide (85 g, 0.46 mol), and 4-methylbenzenesulfonic acid (784 mg, 4.6 mmol) in toluene (2.7 L) was refluxed. After 30 minutes, the reaction mixture was cooled and followed by the addition of toluene (390 mL). The mixture was then refluxed for 1 hour. The reaction mixture was cooled to ambient temperature. The precipitated solids were collected by filtration, washed three times with ether and dried under vacuum to give the title compound 0207 (138 g, 98%) as a light yellow solid: LCMS: 309.1 [M+l]+. Step 9b: 6,6-Dimethyl-3-(trifluoromethyl)-6,7-dihydro-lH-indazol-4(5H)-one (Compound 0113)
To a suspension of compound 0112 (120 g, 0.39 mol) and triethylamine (360 mL) in THF (1 L) was added trifluoroacetic anhydride (40.8 g, 0.39 mol). The resulting reaction mixture was heated to 550C for 15 min and formed a homogeneous mixture. After 2 h, the reaction mixture was cooled to ambient temperature. To the mixture methanol (480 mL) and a mixed solution of water and 1 M aqueous sodium hydroxide (1 :1, 480 mL) were added. After stirring for 3 h, the reaction mixture was diluted with saturated aqueous ammonium chloride (1.5 L), extracted with ethyl acetate (3 x 500 mL). The combined organic layers were washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuum. The residue was purified by column chromatography on silica gel eluting with ethyl acetate in petroleum ether (50% v/v) to give the title compound 0113 (22.2 g, 25%) as a yellow solid: LCMS: 233 [M+l]+. 1U NMR (400 MHz, DMSO-J6) δ 1.04 (s, 6H), 2.37 (s, 2H), 2.80 (s, 2H). Step 9c: 2-Bromo-4-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7- tetrahydroindazol-l-yl)benzonitrile (Compound 0105-18)
To a solution of compound 0113 (22.2 g, 95.7 mmol) in anhydrous dimethyl sulfoxide (476 mL) was added sodium hydride (2.29 g, 95.7 mmol). After 15 min, 2- bromo-4-fluorobenzonitrile (30.6 g, 0.15mol) was added. The reaction mixture was heated to 450C for 12 hours. The reaction mixture was cooled to ambient temperature, quenched with saturated aqueous ammonium chloride (136 mL), diluted with water and extracted with ethyl acetate (4 x 100 mL). The combined organic layers were washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuum. The residue was washed with ether (2 x 40 mL) to give the title compound 0105-18 (39.1 g, 99%) as a red solid: LCMS: 412 [M+l]+. 1H NMR (400 MHz, DMSO-J6) δ 1.05 (s, 6H), 2.46 (s, 2H), 3.06 (s, 2H), 8.20 (m, IH), 8.22 (d, J= 1.6 Hz, IH). Step 9d: Ethyl 2-(4-((2-cyano-5-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7- tetrahydroindazol- 1 -yl)phenylamino)methyl)piperidin- 1 -yl)pyrimidine-5 - carboxylate (Compound 0207-18)
The title compound 0207-18 was prepared as a brown solid (600 mg, 51%) from compound 0206 (824 mg, 2 mmol), Pd(OAc)2 (64 mg), DPPF (256 mg), NaO1Bu (414 mg) and 0105-18 (634 mg, 2.4 mmol) in toluene (30 mL) using a procedure similar to that described for compound 0207-15 (Example 8): LCMS: 596 [M+ 1]+. 1H NMR (400 MHz, DMSO-J6) δ 1.03 (s, 6H), 1.17 (m, 2H), 1.29 (t, J = 7.2 Hz, 3H), 1.86 (m, 2H), 1.99 (m, IH), 2.34 (s, 2H), 2.99 (m, 4H), 3.17 (m, 2H), 4.27 (q, 2H), 4.78 (m, 2H), 6.77 (m, IH), 6.84 (dd, J= 8.4, 2.0 Hz, IH), 7.01 (s, IH), 7.70 (d, J= 8.4 Hz, IH), 8.78 (s, 2H). Step 9e: Ethyl 2-(4-((2-carbamoyl-5-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)- 4,5,6,7-tetrahydroindazol-l-yl)phenylamino)methyl)piperidin-l-yl)pyrimidine-5- carboxylate(Compound 0208-18)
The title compound 0208-18 was prepared as a brown solid (100 mg, 16%) from compound 0207-18 (600 mg, 1.09 mmol), 5 N NaOH (1 mL), and H2O2 (20 mL) using a procedure similar to that described for compound 0211-14 (Example 7). LCMS: 614 [M+l]+.
Step 9f: 2-(4-((2-Carbamoyl-5-(6,6-dimethyl-4-oxo-3-(trifiuoromethyl)-4,5,6,7- tetra-hydroindazol- 1 -yl)phenylamino)methyl)piperidin- 1 -yl)-N-hydroxypyrimidine- 5-carboxamide(Compound 18) The title compound 18 was prepared as a pale white solid (30 mg, 31%) from compound 0208-18 (100 mg, 0.16 mmol) and freshly prepared 2 mol/L NH2OH/MeOH (5 mL, 10 mmol) using a procedure similar to that described for compound 2 (Example 1): Mp.: 170-171 0C. LCMS: 601 [M+l]+. 1H NMR (400 MHz, DMSO-J6) δ 1.04 (s, 6H), 1.17 (m, 2H), 1.62 (m, 2H), 1.80 (m, 2H), 2.44 (s, 2H), 2.86 (t, 2H), 2.98 (s, 2H), 3.10 (m, 2H), 4.72 (m, 2H), 6.72 (dd, J= 8.4, 2.0 Hz, IH), 6.87 (s, IH), 7.36 (s, IH), 7.80 (m, IH), 8.03 (s, IH), 8.60 (s, 2H).
EXAMPLE 10: Preparation of 4-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)- 4,5,6,7-tetrahydroindazol-l-yl)-2-(6-(hydroxyamino)-6- oxohexylamino)benzamide (Compound 22)
Step 10a: Ethyl 6-(2-carbamoyl-5-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7- tetrahydroindazol-l-yl)phenylamino)hexanoate (Compound 0109-22) The title compound 0109-22 was prepared as a brown solid (400 mg, 78%) from compound 0108-22 (366 mg, 1 mmol), NaBH3CN (188 mg, 3 mmol), HOAc (to pH 5~6) and ethyl 6-oxohexanoate (190 mg, 1.2 mmol) in MeOH (10 mL) using a procedure similar to that described for compound 0109-2 (Example 1): LCMS: 509 [M+l]+. Step 10b: 4-(6,6-Dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7-tetrahydroindazol-l- yl)-2-(6-(hydroxyamino)-6-oxohexylamino)benzamide (Compound 22)
The title compound 22 was prepared as a white solid (80 mg, 44%) from compound 0109-22 (230 mg, 0.45 mmol) and freshly prepared 2 mol/L NH2OHZMeOH (4.5 mL, 9 mmol) using a procedure similar to that described for compound 2 (Example 1): Mp.: 150-151 0C. LCMS: 496 [M+l]+. 1U NMR (400 MHz, DMSO-J6) δ 1.04 (s, 6H), 1.34 (m, 2H), 1.54 (m, 4H), 1.87 (t, 2H), 2.45 (s, 2H), 2.98 (s, 2H), 3.12 (m, 2H), 6.71 (dd, J= 8.4, 2.0 Hz, IH), 6.80 (s, IH), 7.36 (s, IH), 7.80 (d, J= 8.0 Hz, IH), 8.02 (s, IH), 8.40 (m, IH).
EXAMPLE 11 : Preparation of 4-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)- 4,5,6,7-tetrahydroindazol-l-yl)-2-(7-(hydroxyamino)-7- oxoheptylamino)benzamide (Compound 23)
Step lla: Ethyl 7-(2-carbamoyl-5-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7- tetra-hydroindazol- 1 -yl)phenylamino)heptanoate (Compound 0109-23) The title compound 0109-23 was prepared as a brown solid (180 mg, 34%) from compound 0108-22 (366 mg, 1 mmol), NaBH3CN (188 mg, 3 mmol), HOAc (to pH 5~6) and ethyl 7-oxoheptanoate (206 mg, 1.2 mmol) in MeOH (10 mL) using a procedure similar to that described for compound 0109-2 (Example 1): LCMS: 523 [M+l]+.
Step lib: 4-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7-tetrahydroindazol-l- yl)-2-(7-(hydroxyamino)-7-oxoheptylamino)benzamide (Compound 23) The title compound 23 was prepared as a brown solid (44 mg, 20%) from compound 0109-23 (230 mg, 0.44 mmol) and freshly prepared 2 mol/L NH2OHZMeOH (4 mL, 8 mmol) using a procedure similar to that described for compound 2 (Example 1): Mp.: 130-131 0C. LCMS: 510 [M+l]+. 1H NMR (400 MHz, DMSO-J6) δ 1.04 (s, 6H), 1.34 (m, 4H), 1.55 (m, 4H), 1.94 (t, J= 4.8 Hz, 2H), 2.45 (s, 2H), 2.97 (s, 2H), 3.13 (m, 2H), 6.72 (d, J= 6.8 Hz, IH), 6.81 (s, IH), 7.36 (s, IH), 7.80 (d, J= 6.8 Hz, IH), 8.01 (s, IH), 8.41 (m, IH).
EXAMPLE 12: Preparation of Nl-(2-carbamoyl-5-(6,6-dimethyl-4-oxo-3- (trifluoromethyl)-4,5,6,7-tetrahydroindazol-l-yl)phenyl)-N8- hydroxyoctanediamide (Compound 27)
Step 12a: Methyl 5-(2-carbamoyl-5-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)- 4,5,6,7-tetrahydroindazol-l-yl)phenylamino)-5-oxopentanoate (Compound 0110-27)
The title compound 0110-27 was prepared as a yellow solid (320 mg, 30%) from compound 0108-22 (732 mg, 2 mmol), 8-methoxy-oxooctamoicacid (753 mg, 4 mmol), EDCI (766 mg, 4 mmol), and DMAP (20 mg) in dichloromethane (30 mL) using a procedure similar to that described for compound 0110-7 (Example 6): LCMS: 537 [M+l]+. 1U NMR (400 MHz, CDCl3) «5 1.15 (s, 6H), 1.38-1.41 (m, 4H), 1.61-1.68 (m, 2H), 1.72-1.79 (m, 2H), 2.32 (t, J= 7.2 Hz, 2H), 2.45 (t, J= 7.6 Hz, 2H), 2.49 (s, 2H), 2.98 (s, 2H), 3.67 (s, 3H), 5.99 (s, IH), 6.38 (s, IH), 7.38 (dd, J= 8.4, 2.4 Hz, IH), 7.72 (d, J= 8.4 Hz, IH), 8.95 (d, J= 2.4 Hz, IH), 11.43 (s, IH).
Step 12b: Nl-(2-carbamoyl-5-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7-tetra- hydroindazol-l-yl)phenyl)-N8 -hydroxyoctanediamide (Compound 27)
The title compound 27 was prepared as a yellow solid (50 mg, 29%) from compound 0110-27 (170 mg, 0.32 mmol) and freshly prepared 2 mol/L NH2OH/MeOH (10 mL, 20 mmol) using a procedure similar to that described for compound 2 (Example 1): Mp.: 113-115 0C. LCMS: 538 [M+l]+. 1H NMR (400 MHz, DMSO-J6) δ 1.05 (s, 6H), 1.29 (s, 4H), 1.47-1.50 (m, 2H), 1.59-1.63 (m, 2H), 1.94 (t, J= 7.2 Hz, 2H), 2.39 (d, J= 7.2 Hz, 2H), 2.48 (s, 2H), 3.01 (s, 2H), 7.42 (d, J= 7.2 Hz, IH), 7.94 (s, IH), 8.02 (d, J= 8.8 Hz, IH), 8.46 (s, IH), 8.66 (s, IH), 8.8 (d, J= 0.8 Hz, IH), 10.33 (s, IH), 11.87 (s, IH).
EXAMPLE 13: Preparation of 4-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)- 4,5,6,7-tetrahydroindazol-l-yl)-2-(l-(5-(hydroxyamino)-5-oxopentyl)piperidin- 4-ylamino)benzamide (Compound 32)
Step 13a: Tert-butyl 4-(2-cyano-5-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7- tetra-hydroindazol- 1 -yl)phenylamino)piperidine- 1 -carboxylate (Compound 0301 - 32) The title compound 0301-32 was prepared as a yellow solid (1.7 g, 64%) from compound 0105-18 (2.05 g, 5 mmol), Pd(OAc)2 (100 mg), DPPF (400 mg), NaO1Bu (0.96 g, 10 mmol), and tert-butyl 4-aminopiperidine-l -carboxylate (2.5 g, 12.5 mmol) in toluene (20 mL) using a procedure similar to that described for compound 0106 (Example 1): LCMS: 532 [M+l]+. 1H NMR (400MHz, DMSO-J6) δ 1.03 (s, 6H), 1.39 (s, 9H), 1.45 (m, 2H), 1.86 (m, 2H), 2.43 (s, 2H), 2.83 (s, 2H), 3.66 (m, IH), 3.92 (t, J= 4.8 Hz, 2H), 6.28 (d, J= 8.0 Hz, IH), 6.87 (dd, J= 8.4, 2.4 Hz, IH), 7.06 (s, IH), 7.70 (d, J= 8.4 Hz, IH).
Step 13b: 4-(6,6-Dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7-tetrahydroindazol-l- yl)-2-(piperidin-4-ylamino)benzonitrile (Compound 0302-32) A mixture of 0301-32 (1.7 g, 3.2 mmol) and 2,2,2-trifluoroacetic acid (10 mL) was stirred at ambient temperature for 30 min, 2,2,2-trifluoroacetic acid was removed. The residue was dispersed in water, filtered and dried to give title compound 0302-32 (1.21 g, 88%) as a white solid: LCMS: 432 [M+l]+. 1H NMR (400 MHz, DMSO-J6) δ 1.03 (s, 6H), 1.60 (m, 2H), 1.95 (m, 2H), 2.45 (s, 2H), 2.79 (t, J= 12 Hz, 2H), 2.97 (s, 2H), 3.14 (m, 2H), 3.46 (m, IH), 3.66 (m, IH), 6.36 (d, J = 8.0 Hz, IH), 6.89 (dd, J= 8.4, 2.4 Hz, IH), 7.06 (s, IH), 7.70 (d, J= 8.4 Hz, IH). Step 13c: 4-(6,6-Dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7-tetrahydroindazol-l- yl)-2-(piperidin-4-ylamino)benzamide (Compound 0303-32)
The title compound 0303-32 was prepared as a yellow solid (1.09 g, 87%) from compound 0302-32 (1.2 g, 2.8 mmol), 5 N NaOH (1.1 mL), and H2O2 (10 mL) using a procedure similar to that described for compound 0211-14 (Example 7): LCMS: 450 [M+l]+. 1H NMR (400 MHz, DMSO-J6) δ 1.04 (s, 6H), 1.63 (m, 2H), 2.10 (m, 2H), 2.45 (s, 2H), 2.97 (m, 3H), 3.16 (m, 4H), 4.16 (m, IH), 6.76 (d, J = 8.0 Hz, IH), 6.96 (s, IH), 7.42 (s, IH), 7.86 (d, J= 8.8 Hz, IH), 8.12 (s, IH), 8.56 (d, J= 8.0 Hz, IH).
Step 13d: Ethyl 5-(4-(2-carbamoyl-5-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)- 4,5 ,6,7-tetrahydroindazol- 1 -yl)phenylamino)piperidin- 1 -yl)pentanoate (Compound 0304-32)
To a mixture of compound 0303-32 (500 mg, 1.1 mmol), K2CO3 (303 mg, 2 mmol) in DMF (10 mL) was added ethyl 5-bromopentanoate (250 mg, 1.2 mmol). The resulting mixture was heated to 6O0C and stirred over night. The reaction mixture was concentrated to remove the solvent, and the residue was dissolved in dichloromethane, washed by water, brine, filtered, concentrated and purified by column chromatography on silica gel eluting with methanol in dichloromethane (10% to 20% v/v) to give the title compound 0304-32 (450 mg, 70%) as a dark yellow solid: LCMS: 578 [M+l]+. 1H NMR (400 MHz, DMSO-J6) δ 1.04 (s, 6H), 1.18 (t, J= 7.2 Hz, 3H), 1.44 (m, 4H), 1.54 (m, 2H), 1.94 (m, 2H), 2.21 (m, 4H), 2.45 (s, 2H), 2.72 (s, 2H), 2.97 (3.16 (m, 4H), 4.16 (m, IH), 6.76 (d, J= 8.0 Hz, IH), 6.96 (s, IH), 7.42 (s, IH), 7.86 (d, J= 8.8 Hz, IH), 8.12 (s, IH), 8.56 (d, J = 8.0 Hz, IH).
Step 13e: 4-(6,6-Dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7-tetrahydroindazol-l- yl)-2-( 1 -(5 -(hydroxyamino)-5 -oxopentyl)piperidin-4-ylamino)benzamide (Compound 32)
The title compound 32 was prepared as a white solid (30 mg, 15%) from compound 0304-32 (200 mg, 0.35 mmol) and freshly prepared 2 mol/L NH2OHZMeOH (10 mL, 20 mmol) using a procedure similar to that described for compound 2 (Example 1): M.p.: 220-221 0C. LCMS: 565 [M+l]+. 1H NMR (400 MHz, DMSO-/) δ\ .04 (s, 6H), 1.50 (m, 6H), 1.99 (m, 4H), 2.45 (s, 2H), 2.96 (s, 2H), 3.17 (m, 4H), 3.50 (s, 2H),3.55 (m, IH), 4.12 (s, IH), 6.76 (d, J= 9.2 Hz, IH), 6.90 (s, IH), 7.39 (s, IH), 7.83 (d, J= 8.4 Hz, IH), 8.04 (s, IH), 8.54 (s, IH), 8.69 (s, IH), 10.39 (s, IH).
EXAMPLE 14: Preparation of 4-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)-
4,5,6,7-tetrahydroindazol-l-yl)-2-(l-(6-(hydroxyamino)-6-oxohexyl)piperidin-4- ylamino)benzamide (Compound 33) Step 14a: Ethyl 6-(4-(2-carbamoyl-5-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)- 4,5 ,6,7-tetrahydroindazol- 1 -yl)phenylamino)piperidin- 1 -yl)hexanoate (Compound 0304-33)
The title compound 0304-33 was prepared as a yellow solid (260 mg, 56%) from compound 0303-32 (322 mg, 0.71 mmol) and ethyl 6-bromohexanoate (174 mg, 0.78 mmol) using a procedure similar to that described for compound 0304-32 (Example 13): LCMS: 592 [M+l]+. 1H NMR (400 MHz, DMSO-J6) δ 1.04 (s, 6H), 1.17 (t, J= 7.2 Hz, 3H), 1.26 (m, 2H), 1.42 (m, 2H), 1.54 (m, 2H), 1.92 (m, 2H), 2.14 (m, 2H), 2.27 (m, 2H), 2.44 (s, 2H), 2.70 (m, 2H), 2.96 (s, 2H), 3.62 (m, IH), 4.04 (q, J= 7.2 Hz IH), 6.72 (d, J= 6.8 Hz, IH), 6.87 (s, IH), 7.34 (m, IH), 7.80 (d, J= 8.4Hz, IH), 8.00 (s, IH), 8.50 (d, J= 8.0 Hz, IH).
Step 14b: 4-(6,6-Dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7-tetrahydroindazol-l- yl)-2-( 1 -(6-(hydroxyamino)-6-oxohexyl)piperidin-4-y lamino)benzamid (Compound 33) The title compound 33 was prepared as a white solid (37 mg, 29%) from compound 0304-33 (130 mg, 0.22 mmol) and freshly prepared 2 mol/L NH2OHZMeOH (10 mL, 20 mmol) using a procedure similar to that described for compound 2 (Example 1): Mp.: 215-2160C. LCMS: 579 [M+l]+. 1U NMR (400 MHz, DMSO-J6) δ 1.04 (s, 6H), 1.23 (m, 2H), 1.47 (m, 6H), 1.94 (m, 4H), 2.13 (m 2H), 2.24 (m, 2H), 2.45 (s, 2H), 2.69 (m, 2H), 2.96 (s, 2H), 3.42 (m, IH), 6.72 (d, J = 7.6 Hz, IH), 6.87 (s, IH), 7.35 (s, IH), 7.81 (d, J= 8.4 Hz, IH), 8.01 (s, IH), 8.51 (s, IH), 8.72 (s, IH), 10.36 (s, IH).
EXAMPLE 15: Preparation of 4-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)- 4,5,6,7-tetrahydroindazol-l-yl)-2-(l-(7-(hydroxyamino)-7-oxoheptyl)piperidin-
4-ylamino)benzamide (Compound 34)
Step 15a: Ethyl 7-(4-(2-carbamoyl-5-(6,6-dimethyl-4-oxo-3-(trifluoromethyl)-
4,5 ,6,7-tetrahydroindazol- 1 -yl)phenylamino)piperidin- 1 -yl)heptanoate (Compound
0304-34) The title compound 0304-34 was prepared as a yellow solid (236 mg, 39%) from compound 0303-34 (413 mg, 0.91 mmol) and ethyl ethyl 7-bromoheptanoate
(237 mg, 1 mmol) using a procedure similar to that described for compound 0304-32
(Example 13). LCMS: 606 [M+ 1]+. Step 15b: 4-(6,6-Dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7-tetrahydroindazol-l- yl)-2-(l-(7-(hydroxyamino)-7-oxoheptyl)piperidin-4-ylamino)benzamide (Compound 34)
The title compound 34 was prepared as a white solid (50 mg, 22%) from compound 0304-34 (230 mg, 0.39 mmol) and freshly prepared 2 mol/L
NH2OHZMeOH (10 mL, 20 mmol) using a procedure similar to that described for compound 2 (Example 1): Mp.: 215-216 V LCMS: 593 [M+l]+. 1H NMR (400 MHz, DMSO-J6) δ 1.04 (s, 6H), 1.23 (m, 2H), 1.47 (m, 6H), 1.94 (m, 4H), 2.13 (m 2H), 2.24 (m, 2H), 2.45 (s, 2H), 2.69 (m, 2H), 2.96 (s, 2H), 3.42 (m, IH), 6.72 (d, J = 7.6 Hz, IH), 6.87 (s, IH), 7.35 (s, IH), 7.81 (d, J= 8.4 Hz, IH), 8.01 (s, IH), 8.51 (s, IH), 8.72 (s, IH), 10.36 (s, IH).
EXAMPLE 16: Preparation of 4-(3-(6-(hydroxyamino)-6-oxohexyl)-6,6- dimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l-yl)-2-((ls,4s)-4- hydroxy cyclohexylamino)benzamide (Compound 40)
Step 16a: l-(5,5-Dimethyl-3-oxocyclohex-l-enyl) 7-methyl heptanedioate (Compound 0401-40)
To a suspension of compound 0101 (3.458 g, 24.7 mmol) and pyridine (2.149 g, 27.2 mmol) in CH2Cl2 (20 mL) was added dropwise a solution of methyl 7-chloro-7-oxoheptanoate (4.76 g, 24.7 mmol) in CH2Cl2 (10 mL) at ice-bath temperature and maintained the temperature below 50C. The mixture was then warmed to room temperature and stirred for 3 hours. The solid was removed and the organic layer was washed with water, diluted aqueous hydrochloric acid, saturated NaHCO3, brine, dried over MgSO4 , filtered and concentrated to give the product 0401-40 (6.04 g, 82.6%) as an oil: LCMS: 297.0 [M+l]+.
Step 16b: Methyl 7-(4,4-dimethyl-2,6-dioxocyclohexyl)-7-oxoheptanoate (Compound 0402-40)
A mixture of compound 0401-40 (6.04 g, 20.40 mmol), AlCl3 (5.88 g, 44.06 mmol) in ClCH2CH2Cl (110 mL) was stirred at room temperature for 3 hours. The mixture was poured into 6 N HCl. The organic layer was separated, and the aqueous layer was extracted with hexane (5 x 60 mL). The combined organic layers were washed with brine, dried over MgSO4 and concentrated to give the title compound 0402-40 (2.66 g, 44%) as a white oil which was used in next step reaction without further purification: LCMS: 297.0 [M+l]+. 1H NMR (400 MHz, DMSO-J6) δ 0.99 (s, 6H), 1.30 (m, 2H), 1.53 (m, 4H), 2.30 (t, J= 7.6 Hz, 2H), 2.33 (s, 2H), 2.62 (s, 2H), 2.95 (t, J= 7.6 Hz, 2H), 3.58 (s, 3H), 4.67 (s,lH).
Step 16c: 4-Fluoro-2-((lr, 4r)-4-hydroxycyclohexylamino)benzonitrile (Compound 0404)
A mixture of compound 0403 (4 g, 20 mmol), trans-4-aminocyclohexanol (3 g, 26 mmol), Pd(OAc)2 (228 mg), DPPF (1.114 gl), NaO1Bu (3.86 g, 40.14 mmol) and toluene (50 mL) was stirred at refluxing temperature for 3 hours under N2. The mixture was filtered and the solid was washed with ethyl acetate. The filtrate was concentrated and the residue was purified by column chromatography on silica gel eluting with ethyl acetate in petroleum ether (25% v/v) to give the title compound
0404 (1.2 g, 26%) as a white solid: LCMS: 235.0 [M+l]+. 1U NMR (400 MHz, DMSO-J6) δ 1.32-1.47 (m, 4H), 2.05-2.15 (m, 4H), 3.28 (m, IH), 3.72 (m, IH), 6.32-6.39 (m, 2H), 7.34 (s, IH). Step 16d: 4-Hydrazinyl-2-((lr, 4r)-4-hydroxycyclohexylamino)benzonitrile
(Compound 0405)
A mixture of compound 0404 (600 mg, 2.56 mmol) in NH2NH2 H2O (10 mL) was stirred under microwave at 13O0C for 3 hours. Then the mixture was diluted with water and extracted with CH2Cl2 (3 x 50 mL). The organic layer was dried over MgSO4, filtered, concentrated to give a residue which was purified by column chromatography on silica gel eluting with ethyl acetate to give the title compound
0405 (1.2 g, 26%) as a yellow solid: LCMS: 247.1 [M+l]+.
Step 16e: Methyl 6-(l-(4-cyano-3-((lr, 4r)-4-hydroxycyclohexylamino)phenyl)-6,6- dimethyl-4-oxo-4,5,6,7-tetrahydro-lH-indol-3-yl)hexanoate (Compound 0406-40) A mixture of 0405 (485 mg, 1.97 mmol), 0402-40 (0.583 g, 1.97 mmol),
HOAc (236 mg, 3.94 mmol) in ethanol (10 mL) was stirred under refluxing temperature for 3 hours. The solvent was removed in vacuuo and the residue was purified by column chromatography on silica gel eluting with ethyl acetate in petroleum ether (30% v/v) to give the title compound 0406-40 (0.5 g, 50.1%): LCMS: 507.2 [M+l]+. 1U NMR (400 MHz, DMSO-J6) δ 1.11 (s, 6H), 1.45 (m, 6H), 1.69 (t, J= 7.6 Hz, 2H), 1.75 (t, J= 8.4 Hz, 2H), 2.12 (m, 4H), 2.32 (t, J= 7.2 Hz, 2H), 2.40 (s, 2H), 2.81 (s, 2H), 2.93 (t, J= 7.6 Hz, 2H), 3.43 (m, IH), 3.65 (s, 3H), 3.73 (m, IH), 4.58 (s,lH), 6.72 (dd, J= 8.4, 2.0 Hz, IH), 6.85 (s,lH), 7.47 (d, J = 8.4 Hz,lH).
Step 16f: Methyl 6-(l-(4-carbamoyl-3-((lr, 4r)-4-hydroxycyclohexylamino)phenyl)- 6,6-dimethyl-4-oxo-4,5,6,7-tetrahydro-lH-indol-3-yl)hexanoate (Compound 0407- 40)
The title compound 0407-40 was prepared as a yellow solid (180 mg, 34.8%) from compound 0406-40 (0.5 g, 0.99 mmol), 5 N NaOH (0.44 mL), and H2O2 (9 mL) using a procedure similar to that described for compound 0211-14 (Example 7): LCMS: 525.2 [M+ 1]+. 1H NMR (400 MHz, DMSO-J6) δ 1.11 (s, 6H), 1.44 (m, 6H), 1.69(t, J= 7.6 Hz, 2H), 1.75 (t, J= 8.0 Hz, 2H), 2.11 (m, 4H), 2.33 (t, J= 7.6 Hz, 2H), 2.40 (s, 2H), 2.82 (s, 2H), 2.93 (t, J= 7.6 Hz, 2H), 3.367 (m, IH), 3.65 (s, 3H),
3.74 (m, IH), 5.68 (s, IH), 6.65 (dd, J; = 8.0 Hz5 J2 = 1.6 Hz, IH), 6.79 (d, J= 1.6 Hz,lH), 7.47 (d, J= 8.8 Hz, IH), 8.12 (s, IH).
Step 16g: 4-(3-(6-(Hydroxyamino)-6-oxohexyl)-6,6-dimethyl-4-oxo-4,5,6,7- tetrahydro-indol- 1 -yl)-2-(( lr,4r)-4-hydroxycyclohexylamino)benzamide (Compound 40)
The title compound 40 was prepared as a yellow solid (46 mg, 27%) from compound 0407-40 (170 mg, 0.32 mmol) and freshly prepared 2 mol/L NH2OH/MeOH (10 mL, 20 mmol) using a procedure similar to that described for compound 2 (Example 1): M.p.: 120-122 0C. LCMS: 526.1[M+1]+. 1U NMR (400 MHz, DMSO-J6) δ 1.02 (s, 6H), 1.24 (t, J= 11.2 Hz, 2H), 1.33 (m, 2H), 1.526 (t, J = 7.6 Hz, 2H), 1.636 (t, J= 7.2 Hz, 2H), 1.84 (d, J= 12.4 Hz, 2H), 1.95 (t, J= 7.6 Hz, 2H), 2.01 (d, J= 10.8Hz, 2H), 2.349 (s, IH), 7.94 (s, 2H), 2.80 (t, J= 8.0 Hz,2H), 2.954 (s, 2H), 3.35 (s, 2H), 4.60 (d, J= 0.04 Hz,lH), 6.70 (dd, J= 8.4, 2.0 Hz, lH),6.79(d, J= 1.6 Hz, IH), 7.25 (s, IH), 7.75 (d, J= 8.8 Hz, IH), 7.92 (s, IH), 8.39 (d, J= 7.6 Hz, IH), 8.674 (s, IH), 10.34 (s, IH).
EXAMPLE 17: Preparation of 4-(3-(7-(hydroxyamino)-7-oxoheptyl)-6,6- dimethyl-4-oxo-4,5,6,7-tetrahydroindazol-l-yl)-2-((ls,4s)-4- hydroxycyclohexylamino)benzamide (Compound 41)
Step 17a: l-(5,5-Dimethyl-3-oxocyclohex-l-enyl) 8-methyl octanedioate (Compound 0401-41) The title compound 0401-41 was prepared as a yellow solid (3.40 g, 99%) from compound 0101(1.55 g, 11.1 mmol), pyridine (0.97 g, 12.2 mmol), and methyl 8-chloro-8-oxooctanoate (2.51 g, 12.2 mmol) in CH2Cl2 (22 mL) using a procedure similar to that described for compound 0401-40 (Example 16). LCMS: 311 [M+l]+. Step 17b: Methyl 8-(4,4-dimethyl-2,6-dioxocyclohexyl)-8-oxooctanoate(Compound 0402-41)
The title compound 0402-41 was prepared as a yellow solid (489 mg, 14%) from compound 0401-41(3.40 g, 11 mmol), AlCl3 (2.93 g, 22 mmol) in CH2Cl2 (29 mL) in CH2Cl2 (20 mL) using a procedure similar to that described for compound 0402-40 (Example 16): LCMS: 311 [M+l]+. 1U NMR (400 MHz, DMSO-J6) δ 0.99 (s, 6H), 1.28 (m, 4H), 1.52 (m, 4H), 2.31 (t, J= 7.2 Hz, 2H), 2.41 (s, IH), 2.62 (s, IH), 2.94 (t, J= 7.2 Hz, 2H), 3.58 (s, 2H), 3.92 (s, IH).
Step 17c: Methyl 7-(l-(4-cyano-3-((ls, 4s)-4-hydroxycyclohexylamino)phenyl)-6,6- dimethyl-4-oxo-4,5,6,7-tetrahydro-lH-indazol-3-yl)heptanoate (Compound 0406- 41)
The title compound 0406-41 was prepared as a yellow solid (190 mg, 60%) from compound 0405 (389 mg, 1.6 mmol), 0402-41 (489 mg, 1.6 mmol), and AcOH (189 mg, 3.2 mmol) in EtOH (33 mL) using a procedure similar to that described for compound 0406-40 (Example 16): LCMS: 521 [M+ 1]+. 1U NMR (400 MHz, DMSO-J6) δ 1.03 (s, 6H), 1.23 (s, 3H), 1.29 (m, 7H), 1.39 (d, J= 13.2 Hz, IH), 1.51 (m, 2H), 1.62 (m, 2H), 1.83 (d, J= 11.6 Hz, 2H), 1.91 (d, J= 14 Hz, 2H), 2.09 (t, IH), 2.28 (d, J= 7.6 Hz, 2H), 2.34 (s, 2H), 2.95 (s, IH), 3.43 (m, 2H), 3.57 (s, 3H), 4.53 (s, IH), 5.91 (d, J= 8 Hz, IH), 6.84 (m, IH), 6.93 (s, IH), 7.60 (d, J= 8.4 Hz, IH). Step 17d: Methyl 7-(l-(4-carbamoyl-3-((ls,4s)-4- hydroxycyclohexylamino)phenyl)-6,6-dimethyl-4-oxo-4,5 ,6,7-tetrahydro- 1 H- indazol-3-yl)heptanoate (Compound 0407-41)
The title compound 0407-41 was prepared as a yellow solid (280 mg, 62%) from compound 0406-41 (404 mg, 0.8 mmol), 5 N NaOH (0.3 mL), and H2O2 (12 mL) using a procedure similar to that described for compound 0211-14 (Example 7): LCMS: 539 [M+l]+. 1H NMR (400 MHz, DMSO-J6) δ 1.01 (s, 6H), 1.23 (s, 4H), 1.32 (m, 7H), 1.51 (t, J = 6.4 Hz, 3H), 1.63 (t, J = 7.6 Hz, 2H), 1.82 (d, J = 12 Hz, 2H), 2.28 (t, J= 7.6 Hz, 2H), 2.34 (s, IH), 2.79 (t, J= 8.0 Hz, 2H), 2.94 (s, 2H), 3.49 (m, IH), 3.57 (s, 2H), 4.56 (d, J= 4 Hz, IH), 6.67 (m, IH), 6.78 (d, J= 2 Hz, IH), 7.78 (d, J= 8 Hz, IH), 7.90 (s, IH), 8.36 (d, J= 7.6 Hz, IH). Step 17e: (E)-ethyl 4-(3-(7-(hydroxyamino)-7-oxoheptyl)-6,6-dimethyl-4-oxo- 4,5,6,7-tetrahydroindazol-l-yl)-2-((ls,4s)-4-hydroxycyclohexylamino)benzamide (Compound 41)
The title compound 41 was prepared as a yellow solid (24 mg, 9%) from compound 0407-41 (280 mg, 0.5 mmol) and freshly prepared 2 mol/L NH2OH/MeOH (5 mL, 10 mmol) using a procedure similar to that described for compound 2 (Example 1): Mp.: 112-1190C. LCMS: 540 [M+l]+. 1U NMR (400 MHz, DMSO-J6) δ 1.07 (s, 6H), 1.31 (m, 9H), 1.52 (m, 2H), 1.64 (m, 2H), 1.87 (d, J= 12 Hz, 2H), 1.99 (t, J= 7.2 Hz, 2H), 2.07 (d, J= 10 Hz, 2H), 2.60 (s, 2H), 2.85 (t, J= 7.2 Hz, 2H), 3.00 (s, 2H), 3.55 (s, IH), 4.65 (d, J= 3.2 Hz, 2H), 6.73 (d, J = 8.4 Hz, IH), 6.83 (s, 2H), 7.30 (s, IH), 7.78 (d, J= 8 Hz, IH), 7.97 (s, IH), 8.42 (d, J= 7.6 Hz, 2H), 8.71 (s, IH), 10.39 (s, IH).
EXAMPLE 18: Preparation of 4-(3-(8-(hydroxyamino)-8-oxooctyl)-6,6- dimethyl-4-oxo-4,5,6,7-tetrahydroindol-l-yl)-2-((lr,4r)-4- hydroxycyclohexylamino)benzamide (Compound 42)
Step 18a: l-(5,5-Dimethyl-3-oxocyclohex-l-enyl) 9-methyl nonanedioate (Compound 0401-42)
The title compound 0401-42 was prepared as an oil (12.5 g, 82.6%) from compound 0101 (6.92 g, 49.4 mmol), pyridine (4.3 g, 54.3 mmol), and methyl 9- chloro-9-oxononanoate (10.1 g, 49.4 mmol) in CH2Cl2 (40 mL) using a procedure similar to that described for compound 0401-40 (Example 16): LCMS: 325.1 [M+ 1]+. 1H NMR (400 MHz, CDCl3-J) δ 1.11 (s, 6H), 1.34 (m, 6H), 1.65 (m, 4H), 2.71(s, 2H), 2.3 l(t, J= 7.6 Hz, 2H), 2.41(s, 2H), 2.45(t,. J= 7.6 Hz, 2H), 3.67(s, 3H), 5.89(s, 2H).
Step 18b: l-(4,4-Dimethyl-2,6-dioxocyclohexyl) 9-methyl nonanedioate (compound 0402-42) The title compound 0402-42 was prepared as a white solid (5.50 g, 44%) from compound 0401-42 (12.5 g, 38.52 mmol), AlCl3 (11.10 g, 83.20 mmol) in (CH2)2C12 (110 mL) using a procedure similar to that described for compound 0402- 40 (Example 16): LCMS: 325.1 [M+ 1]+. 1U NMR (400 MHz, CDCl3-J) δ 1.08 (s, 6H), 1.34 (m, 6H), 1.57-1.65 (m, 4H), 2.30(t, J= 7.6 Hz 2H), 2.35(s, 2H), 2.53(s,2H), 3.01(t,. J= 7.6 Hz, 2H), 3.66(s, 3H).
Step 18c: Methyl 8-(l-(4-cyano-3-((lr, 4r)-4-hydroxycyclohexylamino)phenyl)-6,6- dimethyl-4-oxo-4,5,6,7-tetrahydro-lH-indol-3-yl)octanoate (Compound 0406-42) The title compound 0406-42 was prepared as a yellow solid (0.6 g, 54.7%) from compound 0405 (506 mg, 2.06 mmol), 0402-42 (666 mg, 2.06 mmol), and AcOH (246 mg, 4.1 mmol) in ethanol (100 mL) using a procedure similar to that described for compound 0406-40 (Example 16): LCMS: 535.1 [M+l]+. 1H NMR (400 MHz, CDCl3) δ 1.11 (s, 6H), 1.33-1.43 (m, 10H), 1.62(m, 2H), 1.72 (m, 2H), 2.05 (s, IH), 2.08 (d, J= 11.2 Hz, 2H), 2.17 (d, J= 11.6 Hz, 2H), 2.298 (t, J= 7.6 Hz, 2H), 2.41 (s, 2H), 2.82 (s, 2H), 2.92 (t, J= 8 Hz, 2H), 3.38-3.47 (m, 2H), 3.66 (s, 3H), 3.73 (m, IH), 4.58 (d, J= 7.6 Hz, IH), 6.72 (dd, Ji = 8.4, Hz, IH), 6.85 (d, J= 1.6 Hz, IH), 7.47 (d, J= 8 Hz, IH). Step 18d: Methyl 8-(l-(4-carbamoyl-3-((lr, 4r)-4- hydroxycyclohexylamino)phenyl)-6,6-dimethyl-4-oxo-4,5 ,6,7-tetrahydro- 1 H-indol- 3-yl)octanoate (Compound 0407-42)
The title compound 0407-42 was prepared as a yellow solid (200 mg, 32.2%) from compound 0406-42 (0.6 g, 1.12 mmol), 5 N NaOH (0.44 mL), and H2O2 (12 mL) using a procedure similar to that described for compound 0211-14 (Example 7): LCMS: 553.3 [M+l]+. 1H NMR (400 MHz, COCh-d) δ 1.04 (s, 6H), 1.27-1.37 (m, 10H), 1.55(m, 2H), 1.65 (m, 2H), 1.98 (m, 2H), 2.08 (m, 2H), 2.23 (t, J= 7.6 Hz, 2H), 2.33 (s, ,2H), 2.76 (s, 2H), 2.85 (t, J= 7.6 Hz, 2H), 3.30 (s, IH), 3.59 (s, 3H), 3.67(m, IH), 5.61 (s, 2H), 6.58 (dd, Ji = 8.4 Hz, J2 = 2 Hz, IH), 6.72 (d, J= 2 Hz, IH), 7.40 (d, J= 8.4 Hz, IH), 8.05 (s, IH). Step 18e: 4-(3-(8-(Hydroxyamino)-8-oxooctyl)-6,6-dimethyl-4-oxo-4,5,6,7- tetrahydro-indol- 1 -yl)-2-(( lr,4r)-4-hydroxycyclohexylamino)benzamide (compound 42)
The title compound 42 was prepared as a yellow solid (50 mg, 25%) from compound 0407-42 (200 mg, 0.36mmol) and freshly prepared 2 mol/L NH2OH/MeOH (10 mL, 20 mmol) using a procedure similar to that described for compound 2 (Example 1): LCMS: 554.1[M+1]+. 1U NMR (400MHz, DMSO-J6) δ 1.01 (s, 6H), 1.26-1.35 (m, 10H), 1.47 (m, 2H), 1.63 (m, 2H), 1.92 (m, 2H), 1.93 (t, J= 7.6 Hz, 2H), 2.34 (s, 2H), 2.80 (t, J= 7.6 Hz, 2H), 3.49 (m, IH), 4.60 (d, J= 2 Hz, IH), 6.68 (dd, Ji = 8.4 Hz, J2 = 2 Hz, IH), 6.78 (d, J= 1.6 Hz, IH), 7.23 (s, IH), 7.73 (d, J= 8.4 Hz, IH), 7.90 (s, IH), 8.37(d, J= 7.6 Hz, IH), 8.65 (s, IH), 10.32 (s, IH).
Biological Assays:
As stated hereinbefore the derivatives defined in the present invention possess anti-proliferation activity. These properties may be assessed, for example, using one or more of the procedures set out below: (a) An in vitro assay which determines the ability of a test compound to inhibit Hsp90 chaperone activity.
The Hsp90 chaperone assay was performed to measure the ability of HSP90 protein to refold the heat-denatured luciferase protein. HSP90 was first incubated with different concentrations of test compounds in denaturation buffer (25 mM Tris, pH7.5, 8 mM MgSO4, 0.01% bovine gamma globulin and 10% glycerol) at room temperature for 30 min. Luciferase protein was added to denaturation mix and incubated at 50 0C for 8 min. The final concentration of HSP90 and luciferase in denaturation mixture were 0.375 μM and 0.125 μM respectively. A 5 μl sample of the denatured mix was diluted into 25 μl of renaturation buffer (25 mM Tris, pH7.5, 8 mM MgSO4, 0.01% bovine gamma globulin and 10% glycerol, 0.5 mM ATP, 2 mM DTT, 5 mM KCl, 0.3 μM HSP70 and 0.15 μM HSP40). The renaturation reaction was incubated at room temperature for 150 min, followed by dilution of lOμl of the renatured sample into 90 μl of luciferin reagent (Luclite, PerkinElmer Life Science). The mixture was incubated at dark for 5 min before reading the luminescence signal on a TopCount plate reader (PerkinElmer Life Science). (b) HSP90 Competition Binding (Fluorescence Polarization) Assay.
A fluorescein isothiocyanate (FITC) labeled GM was purchase from InvivoGen (ant-fgl-1). The interaction between HSP90 and labeled GM forms the basis for the fluorescence polarization assay. A free and fast-tumbling FITC labeled GM emits random light with respect to the plane of polarization plane of excited light, resulting in a lower polarization degree (mP) value. When GM is bound to HSP90, the complex tumble slower and the emitted light is polarized, resulting in a higher mP value. This competition binding assay was performed in 96-well plate and with each assay contained 10 and 5OnM of labeled GM and purified HSP90 protein (Assay Design, SPP-776F) respectively. The assay buffer contained 2OmM HEPES (pH 7.3), 5OmM KCl, ImM DTT, 5OmM MgCl2, 2OmM Na2MoO4, 0.01% NP40 with O.lmg/ml bovine gamma-globulin. Compounds are diluted in DMSO and added to the final assay before labeled GM with concentration range from 2OuM to 2nM. mP value was determined by BioTek Synergy II with background subtraction after 24 hours of incubation at 40C.
(c) An in vitro assay which determines the ability of a test compound to inhibit HDAC enzymatic activity.
HDAC inhibitors were screened using an HDAC fluorimetric assay kit (AK- 500, Biomol, Plymouth Meeting, PA). Test compounds were dissolved in dimethylsulphoxide (DMSO) to give a 20 mM working stock concentration. Fluorescence was measured on a WALLAC Victor 2 plate reader and reported as relative fluorescence units (RFU). Data were plotted using GraphPad Prism (v4.0a) and IC50's calculated using a sigmoidal dose response curve fitting algorithm. Each assay was setup as follows: Defrosted all kit components and kept on ice until use. Diluted HeLa nuclear extract 1 :29 in Assay Buffer (50 mM Tris/Cl, pH 8.0, 137 mM NaCl, 2.7 mM KCl, 1 mM MgC12). Prepared dilutions of Trichostatin A (TSA, positive control) and tested compounds in assay buffer (5x of final concentration). Diluted Fluor de LysTM Substrate in assay buffer to 100 uM (50 fold = 2x final). Diluted Fluor de LysTM developer concentrate 20-fold (e.g. 50 μl plus 950 μl Assay Buffer) in cold assay buffer. Second, diluted the 0.2 mM Trichostatin A 100-fold in the Ix Developer (e.g. 10 μl in 1 ml; final Trichostatin A concentration in the Ix Developer = 2 μM; final concentration after addition to HDAC/Substrate reaction = 1 μM). Added Assay buffer, diluted trichostatin A or test inhibitor to appropriate wells of the microtiter plate. Added diluted HeLa extract or other HDAC sample to all wells except for negative controls. Allowed diluted Fluor de LysTM Substrate and the samples in the microtiter plate to equilibrate to assay temperature (e.g. 25 or 37°C. Initiated HDAC reactions by adding diluted substrate (25 μl) to each well and mixing thoroughly. Allowed HDAC reactions to proceed for 1 hour and then stopped them by addition of Fluor de LysTM Developer (50 μl). Incubated plate at room temperature (25°C) for 10-15 min. Read samples in a microtiter-plate reading fluorimeter capable of excitation at a wavelength in the range 350-380 nm and detection of emitted light in the range 440- 460 nm.
The following TABLE B lists compounds representative of the invention and their activity in HDAC and HSP90 assays. In these assays, the following grading was used: I > 10 μM, 10 μM > II > 1 μM, 1 μM > III > 0.1 μM, and IV < 0.1 μM for IC50.
TABLE B
Figure imgf000081_0001
The patent and scientific literature referred to herein establishes the knowledge that is available to those with skill in the art. All United States patents and published or unpublished United States patent applications cited herein are incorporated by reference. All published foreign patents and patent applications cited herein are hereby incorporated by reference. All other published references, documents, manuscripts and scientific literature cited herein are hereby incorporated by reference.
While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

Claims

CLAIMSWhat is claimed is:
1. A compound represented by formula I or formula II:
Figure imgf000082_0001
or a geometric isomer, enantiomer, diastereomer, racemate, pharmaceutically acceptable salt, prodrug or solvate thereof, wherein:
Yi and Y2 are independently selected from N or CRi; where Ri is independently selected from hydrogen, substituted or unsubstituted hydroxy, substituted or unsubstituted amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, substituted or unsubstituted thiol, CF3, CN, substituted carbonyl, sulfonyl, acyl, aliphatic, and substituted aliphatic; A1, A2 and A3 are independently O, NR2, CR3R4, where R2 is hydrogen, acyl, aliphatic or substituted aliphatic, R3 and R4 are independently hydrogen, aliphatic or substituted aliphatic;
Z is O, S, NOR5, CHGR5; where G is absent, O, CO, SO2, NH, NH(C=O), NH(C=O)NH or NHSO2, R5 is independently hydrogen, aliphatic, substituted aliphatic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic;
Xi-X5 are independently N, C, or CR6, where R6 is independently selected from hydrogen, substituted or unsubstituted hydroxy, substituted or unsubstituted amino, halogen, alkoxy, substituted alkoxy, alkylamino, substituted alkylamino, dialkylamino, substituted dialkylamino, substituted or unsubstituted alkylthio, substituted or unsubstituted alkylsulfonyl, substituted or unsubstituted thiol, substituted or unsubstituted carboxamido; CF3, CN, NO2, N3, substituted carbonyl, sulfonyl, acyl, aliphatic, substituted aliphatic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic;
B is a linker;
C is selected from:
Figure imgf000083_0001
; where Wi is O or S; Yi is absent, N, or CH; Zi is N or
CH; R7 and R9 are independently hydrogen, OR', aliphatic or substituted aliphatic, wherein R' is hydrogen, aliphatic, substituted aliphatic or acyl; provided that if R7 and R9 are both present, one of R7 or R9 must be OR' and if Y is absent, R9 must be OR'; and Rg is hydrogen, acyl, aliphatic or substituted aliphatic;
Figure imgf000083_0002
; where Wi is O or S; J is O, NH or NCH3; and Ri0 is hydrogen or lower alkyl;
Figure imgf000083_0003
; where Wi is O or S; Yi and Zi are independently N, C or CH; and
Figure imgf000083_0004
; where Zi, Yi, and Wi are as previously defined; Rn and R12 are independently selected from hydrogen or aliphatic; R1, R2 and R3 are independently selected from hydrogen, hydroxy, amino, halogen, alkoxy, substituted alkoxy, alkylamino, substituted alkylamino, dialkylamino, substituted dialkylamino, substituted or unsubstituted alkylthio, substituted or unsubstituted alkylsulfonyl, CF3, CN, NO2, N3, sulfonyl, acyl, aliphatic, substituted aliphatic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
2. A compound according to Claim 1 represented by formula III or formula IV:
Figure imgf000084_0001
Figure imgf000084_0002
or a geometric isomer, enantiomer, diastereomer, racemate, pharmaceutically acceptable salt, prodrug or solvate thereof, wherein Bi is absent, O, S, SO, SO2, N(Rg), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic or aryl; B2 is absent, O, S, SO, SO2, N(R8) or CO; B3 is absent, O, S, SO, SO2, N(R8), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B4 is absent, O, S, SO, SO2, N(R8), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2- C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B5 is absent, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; X1-X5, Yi, Y2, R' and R8 are as previously defined in Claim 1.
3. A compound according to Claim 1 represented by formula (V) or formula (VI):
Figure imgf000085_0001
or a geometric isomer, enantiomer, diastereomer, racemate, pharmaceutically acceptable salt, prodrug or solvate thereof, wherein Bi is absent, O, S, SO, SO2, N(Rg), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic or aryl; B2 is absent, O, S, SO, SO2, N(R8) or CO; B3 is absent, O, S, SO, SO2, N(R8), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B4 is absent, O, S, SO, SO2, N(R8), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2- C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B5 is absent, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; R' and R8 are as previously defined in Claim 1.
4. A compound according to Claim 1 represented by formula (VII):
Figure imgf000086_0001
or a geometric isomer, enantiomer, diastereomer, racemate, pharmaceutically acceptable salt, prodrug or solvate thereof, wherein Bi is absent, O, S, SO, SO2, N(R8), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic or aryl; B2 is absent, O, S, SO, SO2, N(R8) or CO; B3 is absent, O, S, SO, SO2, N(R8), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B4 is absent, O, S, SO, SO2, N(R8), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2- C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B5 is absent, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; R' and R8 are as previously defined in Claim 1.
5. A compound according to Claim 1 selected from the compounds delineated in Table A or a geometric isomer, enantiomer, diastereomer, racemate, pharmaceutically acceptable salt, prodrug or solvate thereof:
TABLE A
Figure imgf000086_0002
Figure imgf000087_0001
Figure imgf000088_0001
Figure imgf000089_0001
Figure imgf000090_0001
Figure imgf000091_0001
Figure imgf000092_0001
Figure imgf000093_0001
Figure imgf000094_0001
6. A pharmaceutical composition comprising as an active ingredient a compound of Claim 1 and a pharmaceutical acceptable carrier.
7. A method of treating cell proliferative disorder that requires or is facilitated by expression of an HSP90 protein in a subject in need thereof, the method comprising administering to the subject a therapeutically effective amount of the pharmaceutical composition of Claim 6.
8. The method of Claim 7, wherein said cell proliferative disorder is selected from the group consisting of cancer, an autoimmune disease or a neurodegenerative disease.
9. The method of Claim 8, wherein said cancer selected from the group consisting of papilloma, blastoglioma, Kaposi's sarcoma, melanoma, non-small cell lung cancer, ovarian cancer, prostate cancer, colon cancer, squamous cell carcinoma, astrocytoma, head cancer, neck cancer, bladder cancer, breast cancer, lung cancer, colorectal cancer, thyroid cancer, pancreatic cancer, renal cell carcinoma, gastric cancer, hepatocellular carcinoma, neuroblastoma, leukemia, lymphoma, vulvar cancer, Hodgkin's disease and Burkitt's disease.
10. The method of Claim 8, wherein said neurodegenerative disorder is selected from the group consisting of Parkinson's Disease, Alzheimer's Disease, Huntington's Disease, Polyglutamine disease, Seizures, Striatonigral degeneration, Progressive supranuclear palsy, Torsion dystonia, Spasmodic torticollis and dyskinesis, Familial tremor, Gilles de Ia Tourette syndrome, Diffuse Lewy body disease, Progressive supranuclear palsy, Pick's disease, intracerebral hemorrhage, Primary lateral sclerosis, Spinal muscular atrophy, Amyotrophic lateral sclerosis, Hypertrophic interstitial polyneuropathy, Retinitis pigmentosa, Hereditary optic atrophy, Hereditary spastic paraplegia, Progressive ataxia and Shy-Drager syndrome.
11. A method for the treatment or prophylaxis of cancer in a subject in need thereof, comprising administering to the subject a compound of Claim 6.
12. A method for the treatment or prophylaxis of a neurodegenerative disease in a subject in need thereof, comprising administering to the subject a compound of Claim 6.
PCT/US2009/036531 2008-03-10 2009-03-09 Tetrahydroindole and tetrahdyroindazole as hsp90 inhibitors containing a zinc binding moiety WO2009114470A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US3519608P 2008-03-10 2008-03-10
US61/035,196 2008-03-10

Publications (2)

Publication Number Publication Date
WO2009114470A2 true WO2009114470A2 (en) 2009-09-17
WO2009114470A3 WO2009114470A3 (en) 2010-01-14

Family

ID=41065780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/036531 WO2009114470A2 (en) 2008-03-10 2009-03-09 Tetrahydroindole and tetrahdyroindazole as hsp90 inhibitors containing a zinc binding moiety

Country Status (1)

Country Link
WO (1) WO2009114470A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311389A (en) * 2010-06-29 2012-01-11 王小龙 A kind of nitrogen fragrance substituted pyrazole derivative and synthetic and anti-cancer applications
US9382246B2 (en) 2013-12-05 2016-07-05 Pharmacyclics Llc Inhibitors of Bruton's tyrosine kinase
US9533002B2 (en) 2012-05-25 2017-01-03 Berg Llc Methods of treating a metabolic syndrome by modulating heat shock protein (HSP) 90-β
US10023864B2 (en) 2014-06-06 2018-07-17 Berg Llc Methods of treating a metabolic syndrome by modulating heat shock protein (HSP) 90-beta
US10246421B2 (en) 2014-09-11 2019-04-02 Esanex, Inc. Indazolyl- and indolyl-benzamide derivatives
WO2022012482A1 (en) * 2020-07-17 2022-01-20 沈阳中化农药化工研发有限公司 Method for preparing mesotrione herbicide
US11827627B2 (en) 2021-06-04 2023-11-28 Vertex Pharmaceuticals Incorporated N-(hydroxyalkyl (hetero)aryl) tetrahydrofuran carboxamides as modulators of sodium channels
US11834441B2 (en) 2019-12-06 2023-12-05 Vertex Pharmaceuticals Incorporated Substituted tetrahydrofurans as modulators of sodium channels

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028434A2 (en) * 2003-09-18 2005-03-31 Conforma Therapeutics Corporation Novel heterocyclic compounds as hsp90-inhibitors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028434A2 (en) * 2003-09-18 2005-03-31 Conforma Therapeutics Corporation Novel heterocyclic compounds as hsp90-inhibitors

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ACHARYA ET AL.: 'Rational Development of Histone Deacetylase Inhibitors as Anticancer' AGENTS: A REVIEW, MOL PHARMACOL vol. 68, no. 4, 2005, pages 917 - 932 *
COLLINS ET AL.: 'New approaches to molecular cancer therapeutics' NATURE CHEMICAL BIOLOGY vol. 2, no. 12, 15 November 2006, pages 689 - 700 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311389A (en) * 2010-06-29 2012-01-11 王小龙 A kind of nitrogen fragrance substituted pyrazole derivative and synthetic and anti-cancer applications
US9533002B2 (en) 2012-05-25 2017-01-03 Berg Llc Methods of treating a metabolic syndrome by modulating heat shock protein (HSP) 90-β
US9382246B2 (en) 2013-12-05 2016-07-05 Pharmacyclics Llc Inhibitors of Bruton's tyrosine kinase
US9656988B2 (en) 2013-12-05 2017-05-23 Pharmacyclics Llc Inhibitors of Bruton's tyrosine kinase
US10023864B2 (en) 2014-06-06 2018-07-17 Berg Llc Methods of treating a metabolic syndrome by modulating heat shock protein (HSP) 90-beta
US10246421B2 (en) 2014-09-11 2019-04-02 Esanex, Inc. Indazolyl- and indolyl-benzamide derivatives
US11834441B2 (en) 2019-12-06 2023-12-05 Vertex Pharmaceuticals Incorporated Substituted tetrahydrofurans as modulators of sodium channels
US11919887B2 (en) 2019-12-06 2024-03-05 Vertex Pharmaceuticals Incorporated Substituted tetrahydrofurans as modulators of sodium channels
WO2022012482A1 (en) * 2020-07-17 2022-01-20 沈阳中化农药化工研发有限公司 Method for preparing mesotrione herbicide
US11827627B2 (en) 2021-06-04 2023-11-28 Vertex Pharmaceuticals Incorporated N-(hydroxyalkyl (hetero)aryl) tetrahydrofuran carboxamides as modulators of sodium channels

Also Published As

Publication number Publication date
WO2009114470A3 (en) 2010-01-14

Similar Documents

Publication Publication Date Title
US7928136B2 (en) Substituted 2-indolinone as PTK inhibitors containing a zinc binding moiety
AU2008299008B2 (en) VEGFR inhibitors containing a zinc binding moiety
US8426419B2 (en) Tyrosine kinase inhibitors containing a zinc binding moiety
US20080234297A1 (en) HSP90 Inhibitors Containing a Zinc Binding Moiety
AU2007349284B2 (en) Raf kinase inhibitors containing a zinc binding moiety
US20090076006A1 (en) Hsp90 inhibitors containing a zinc binding moiety
WO2009036016A1 (en) Cdk inhibitors containing a zinc binding moiety
WO2009036057A1 (en) Antiproliferative agents containing a zinc binding moiety
WO2009036066A1 (en) Vegfr inhibitors containing a zinc binding moiety
WO2009036020A1 (en) Mek inhibitors containing a zinc binding moiety
WO2009114470A2 (en) Tetrahydroindole and tetrahdyroindazole as hsp90 inhibitors containing a zinc binding moiety
WO2009036051A1 (en) Bcl-2 inhibitors containing a zinc binding moiety
WO2009086012A1 (en) Aurora inhibitors containing a zinc binding moiety
AU2012261533A1 (en) Substituted 2-indolinone as ptk inhibitors containing a zinc binding moiety
AU2012268819A1 (en) Raf kinase inhibitors containing a zinc binding moiety
AU2012202431A1 (en) Tyrosine kinase inhibitors containing a zinc binding moiety

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09718976

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09718976

Country of ref document: EP

Kind code of ref document: A2