WO2009113821A2 - Iron-based sintered body with high strength and high elongation and preparation method thereof - Google Patents

Iron-based sintered body with high strength and high elongation and preparation method thereof Download PDF

Info

Publication number
WO2009113821A2
WO2009113821A2 PCT/KR2009/001247 KR2009001247W WO2009113821A2 WO 2009113821 A2 WO2009113821 A2 WO 2009113821A2 KR 2009001247 W KR2009001247 W KR 2009001247W WO 2009113821 A2 WO2009113821 A2 WO 2009113821A2
Authority
WO
WIPO (PCT)
Prior art keywords
powder
sintered body
iron
sintering
based sintered
Prior art date
Application number
PCT/KR2009/001247
Other languages
French (fr)
Korean (ko)
Other versions
WO2009113821A3 (en
Inventor
박동규
석세훈
김상석
Original Assignee
가야에이엠에이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가야에이엠에이 주식회사 filed Critical 가야에이엠에이 주식회사
Publication of WO2009113821A2 publication Critical patent/WO2009113821A2/en
Publication of WO2009113821A3 publication Critical patent/WO2009113821A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron

Definitions

  • the present invention relates to a sintered body made of an iron base alloy widely used in automobile parts and the like, and a manufacturing method thereof.
  • Small alloys manufactured by powder metallurgy are widely used as automotive parts, and the need for small alloys having high strength and toughness is increasing according to the demand for light weight and high strength of such components.
  • iron-based sintered alloy products manufactured by powder metallurgy are advantageous in terms of quality and cost as compared to products manufactured through a forging or rolling process.
  • pores are inevitably formed in the product, and the residual pores have an effect of lowering the mechanical properties of the sintered powder metallurgy product compared to a fully dense alloy such as forging. This is because the pores act as stress concentration regions, and the pores also reduce the effective volume under stress.
  • a powder mainly used to increase the tensile strength is a metal alloy powder containing 1 to 8% by weight of nickel.
  • Nickel is an alloying element commonly contained in the composition of iron base alloy powder in order to increase the tensile strength in powder metallurgy field, and the iron base alloy product manufactured by iron base alloy powder containing up to 8% of nickel has its tensile strength. Improves by nickel is described in US Pat. No. 6620218, "IRON POWDER COMPOSITIONS,” as a prior art incorporated herein.
  • Nickel also promotes sintering, increases hardenability, and affects elongation, but when used with molybdenum, copper, or the like, the effect is greater.
  • Such a metal alloy powder contains a large amount of expensive alloying elements nickel, molybdenum and copper, so that the price of the metal alloy powder is very expensive.
  • chromium requires strict control of the sintering atmosphere due to the high affinity with chromium, as confirmed by the oxygen affinity according to the alloying elements of FIG. 1.
  • Fe-Mn-Si-based mother alloy or master alloy is used to make EP 0,097,737B1 "Powder metallurgy process for producing parts having high strength and hardness from Si-Mn or Si-Mn -C alloyed steel "has been disclosed.
  • the prior art is considered to be incorporated herein.
  • the sintering using the master alloy as described above can reduce the oxygen affinity of the components, it is difficult to produce an alloy having a uniform structure.
  • the present invention is to provide a method for producing an iron-based sintered body having a low cost, high strength and high toughness using manganese and an iron-based sintered body having a tensile strength of 1100MPa or more and a hardness of HRC 25 or more.
  • the present invention allows manganese to be added as a powder in elemental form to the mixture before press molding so that manganese can be uniformly distributed in the alloy and is prevented from being oxidized during sintering.
  • By controlling the sintering atmosphere it is possible to obtain an iron-based sintered body having high strength and high toughness.
  • the present invention after mixing at least two or more kinds of powders and lubricants to form a mixture, the mixture is press-molded to form a molded body, and then after the pre-sintering the molded body after the main sintering
  • the powder is composed of Cr 1.0 ⁇ 2.5wt%, Mo 0.1 ⁇ 0.8wt%, Mn 1.0 ⁇ 2.5wt%, C 0.1 ⁇ 1.1wt% and the balance Fe and other unavoidable impurities Mn in the powder is present as an elemental powder;
  • the molded body has a molding density of at least 7.0 g / cm 3 ;
  • the main sintering is sintering for 15 minutes to 90 minutes at a temperature of 1150 °C to 1350 °C in a reducing or neutral protective atmosphere in which the dew point below -30 °C is maintained; It is characterized by.
  • Cr, Mo, and Fe in the powder is present as an alloy powder of Fe-Cr-Mo, C in the powder is preferably present as a graphite powder.
  • the elemental Mn powder preferably has an average particle size of 10 ⁇ m to 20 ⁇ m.
  • the iron-based sintered body consisting of Cr 1.0 ⁇ 2.5wt%, Mo 0.1 ⁇ 0.8wt%, Mn 1.0 ⁇ 2.5wt%, C 0.1 ⁇ 1.1wt% and the balance Fe and other unavoidable impurities, 1100Mpa It provides an iron-based sintered body having a high strength and high toughness, characterized in that the tensile strength and HRC 25 or more.
  • the present invention allows manganese to be added as a powder in elemental form to the mixture before press molding so that manganese can be uniformly distributed in the alloy and is prevented from being oxidized during sintering.
  • an iron-based sintered body having high strength and high toughness can be obtained.
  • a method for producing a sintered body by metal powder comprises the steps of uniformly mixing two or more powders and lubricants to form a mixture, forming a molded body by pressing the mixture to form a molded body, the pre-sintering of the molded body After sintering, it is cooled to obtain a sintered body.
  • heat treatment may be involved in order to increase the mechanical properties of the sintered body thus obtained.
  • the formation of the mixture is appropriately mixing two or more powders and a lubricant.
  • composition of two or more powders is composed of Cr 1.0 ⁇ 2.5wt%, Mo 0.1 ⁇ 0.8wt%, Mn 1.0 ⁇ 2.5wt%, C 0.1 ⁇ 1.1wt% and the balance Fe and other unavoidable impurities, and the lubricant is powder metallurgy It is understood that any lubricants commonly used in the art can be applied as appropriate.
  • the method of forming the mixture may be used a conventional mixing method for sintering, and the specific matters are the ratio of the components constituting the mixture, the particle size of manganese, the form of manganese and the like.
  • Cr, Mo, and Fe may each be added to the mixture as a powder in elemental form, but are preferably added as pre-alloy powders of Fe—Cr—Mo in order to prevent oxidation of Cr.
  • the alloy powder of Fe-Cr-Mo preferably has an average particle size of 45 ⁇ m to 150 ⁇ m.
  • Chromium (Cr) provides excellent crush strength and hardness in the final sintered body.
  • chromium should contain at least 1.0 wt% or more, preferably 1.5 wt% or more.
  • the chromium content is 2.5 wt% or more, the compressibility of the powder is remarkably reduced, which is not only a problem in forming, but also the brittleness of the sintered body after sintering, thereby reducing the strength. Therefore, the content of chromium may vary between 1.0 and 2.5 wt%.
  • Molybdenum (Mo) provides excellent hardenability in the final sintered body.
  • the content of molybdenum is to be present between 0.1 and 0.8% by weight.
  • the content of molybdenum is less than 0.1%, the effect of addition is insignificant, and the addition amount increases the hardenability, but the compressibility of the powder is lowered and the amount of molybdenum should be limited to within 0.8% by weight because molybdenum is an expensive metal over nickel.
  • Manganese (Mn) is an elemental powder, i.e., manganese powder, in which manganese flakes are broken into particles having an average particle size of 10 ⁇ m to 20 ⁇ m, and are added to the mixture, and preferably in a weight ratio of 1.0% or more and 2.5% or less.
  • Manganese powder in the above and below elemental form means manganese powder consisting of pure manganese, not manganese in a compound or alloy form. Of course, even in the case of pure manganese powder, inevitable impurities may be added.
  • Manganese has an additive effect similar to that of nickel and has a higher hardenability than nickel (see the hardenability index according to the alloying elements of FIG. 2).
  • the molded body of the mixture containing manganese is sintered at a high temperature of 1150 ° C. or higher, the melting point of the alloy powder is lowered and the diffusibility of the alloy powder is improved, which helps to improve the sinterability.
  • the content of manganese is 1.0wt% or less by weight ratio, the effect of addition is drastically reduced, and when it is 2.5% or more by weight ratio, dimensional stability and toughness are reduced, and also high oxidation is likely to cause a problem that the tensile strength of the sintered body is reduced.
  • nickel in contrast to manganese, has a slow diffusion rate with iron and a difference in diffusion rate, resulting in a nickel-rich phase in which nickel is not diffused or Kirkendall pores. Done.
  • nickel in order to reduce such a problem, use fine nickel of 10 ⁇ m or less, or prepare an alloy powder.
  • the size of manganese added to reduce such non-uniformity of tissue should be adjusted.
  • the added manganese is completely alloyed at a sintering temperature of 1150 ° C. or more when added to a particle size of 150 mesh or less.
  • the particle size is larger than 150 mesh, the manganese rich phase exists. Therefore, the average particle size of manganese added is limited to 20 ⁇ m or less.
  • the amount of powder having a size of 10 ⁇ m or less needs to be limited to 15% or less.
  • Use of manganese powder of this size can reduce tissue non-uniformity.
  • Manganese is preferably added in an amount ratio of 1.0% or more and 2.5% or less.
  • the change in the elongation of the final prepared sintered body according to the amount of manganese added is shown in FIG. 3.
  • test piece 1 is an iron-based small alloy (Fe-4wt% Ni-1.5wt% Cu-0.5wt% Mo-0.3wt% C) containing nickel, and test piece 2 (Fe-1.5wt% Cr-0.2wt%). Mo-1.0wt% Mn-0.3wt% C), 3 (Fe-1.5wt% Cr-0.2wt% Mo-1.5wt% Mn-0.3wt% C), 4 (Fe-1.5wt% Cr-0.2wt% Mo-2.0wt% Mn-0.3wt% C), 5 (Fe1.5wt% Cr-0.2wt% Mo-2.5wt% Mn-0.3wt% C) have Mn content of 1.0%, 1.5%, 2.0%, It is a 2.5% iron base alloy.
  • the toughness test measured the displacement until the test piece failed while increasing the crush strength.
  • test pieces 2 and 3 have better toughness than the test piece 1, and the test pieces 4 and 5 have a greater pressure-reducing strength than the test piece 1.
  • Carbon (C) is added as graphite powder, and the amount of carbon added is 0.1 to 1.1% by weight.
  • the amount of carbon added is preferably 0.1 wt or more because the amount of carbon added affects the tensile strength, and when toughness is required, a composition of about 0.3 wt% is preferable as in a conventional powder alloy material.
  • surface treatment such as carburization is required.
  • the carbon content is 0.6 ⁇ 0.7wt% when a simple high strength material is required. In this case, the wear resistance is excellent and some toughness is retained.
  • carbon When carbon is 0.7 wt% or more and 1.1 wt%, it is mainly used when a high wear resistance is required regardless of the toughness of the material. If the carbon content is 1.1 wt% or more, brittleness is increased, so its use is limited.
  • unavoidable impurities may include Cu, Sn, P, Si, and S in an amount of 0.1 wt% or less.
  • Lubricants are added to facilitate molding, and conventional powder metallurgy lubricants are sufficient to be used. The lubricant is later removed from the preliminary results.
  • a representative example of a lubricant is stearic acid. Stearic acid may usually be added in an amount of about 0.5 wt% to 1.0 wt% based on the total weight of the powder.
  • the alloy powder of Fe-Cr-Mo is added, and manganese and carbon are added to the alloy powder of Fe-Cr-Mo before the mixing process together with a lubricant added to facilitate molding. After mixing, mix evenly to form a mixture.
  • the mixture of the metal alloy powders obtained by the above mixing is molded at a pressure of 400 to 700 MPa or more to prepare a molded body having a molding density of 7.1 to 7.15 g / cm 3 . Since the molding density of the molded article is directly related to the tensile strength and the like, it depends on the required tensile strength, but in order to have a strength of 1100 MPa or more, it is preferable to have a molding density of at least 7.1 g / cm 3 .
  • the sintering step can be divided into the main sintering and the pre-sintering for removing the lubricant, but the pre-sintering is naturally solved in the process of raising the temperature in the sintering furnace for the main sintering, and thus cannot be regarded as the core of the present invention.
  • the molded article prepared as described above is subjected to 10 minutes to 60 minutes at a temperature of 450 ° C to 900 ° C in a reducing or neutral protective atmosphere in which a dew point of -30 ° C or lower (preferably -40 ° C to -60 ° C) is maintained.
  • a dew point of -30 ° C or lower (preferably -40 ° C to -60 ° C) is maintained.
  • cooling is performed at a cooling rate of 0.5 to 6.0 ° C / s to obtain a final sintered body.
  • Presintering conditions vary depending on the amount and type of lubricant. It is understood that the presintering is naturally performed in the process of raising the temperature of the sintering furnace for the main sintering, so that the process conditions of the presintering may be appropriately modified by those skilled in the art.
  • oxidation of chromium and manganese is prevented by using a mixed atmosphere in which nitrogen and hydrogen are properly mixed.
  • a mixed atmosphere in which nitrogen and hydrogen are properly mixed.
  • Usually used atmosphere is a nitrogen atmosphere containing 0 to 95% hydrogen by volume ratio.
  • the dew point should also be kept below -30 ° C to prevent oxidation.
  • the protective atmosphere usually maintains a mixed atmosphere of nitrogen and hydrogen in a volume ratio of 90:10 to 80:20 for economical considerations and to maintain a low dew point.
  • Another reason for the high use of nitrogen is conventionally liquid liquefied nitrogen, which has been disadvantageous in that the dew point gradually increases due to several exposures in the air during the transfer from the gas supplier to the consumer at high pressure.
  • As the purification technology to obtain high-purity nitrogen by directly separating and purifying with molecular sieves has been developed, it is possible to supply nitrogen with high purity in a dew point of -75 ° C or lower from the nitrogen generator to the line to facilitate the atmosphere control. to be. By mixing a small amount of hydrogen having reducibility with such high purity nitrogen and keeping the dew point below -30 ° C, sintering of manganese powder which is difficult to control becomes possible.
  • Iron-based small alloys sintered by this process have a density of 0.10 to 0.20 g / cm 3 higher than the molding density, and have a tensile strength of 1100 MPa or more and a hardness of HRC 25 or more at a sintered density of 7.1 to 7.15 g / cm 3 or more. .
  • the iron-based sintered body manufactured according to the present embodiment has characteristics of high strength and high toughness having excellent strength and hardness, that is, tensile strength of 1100 MPa or more and hardness of HRC 25 or more.
  • Experimental Example 1 was used by mixing a variety of materials as shown in Table 1, 0.8 wt% stearic acid was added to the total weight of the powder as a lubricant.
  • the figures in Table 1 are based on weight ratio.
  • the materials 1 to 8 were made of Fe-1.5wt% Cr-0.2wt% Mo alloy powder, and the manganese powder of elemental form was 0.2, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 were added at a weight ratio and the graphite powder was added at 0.3%.
  • Materials 9 to 16 were made of Fe-3.0wt% Cr-0.5wt% Mo alloy powder as the known powder, and the manganese powder in elemental form was 0.2, 0.3, 0.5, 1.0, 1.5, 2.0, It was added in the weight ratio of 2.5 and 3.0, and 0.3% of graphite powder was added.
  • Material 17 to Material 24 were made of Fe-1.5wt% Cr-0.2wt% Mo alloy powder and Fe-3.0wt% Cr-0.5wt% Mo alloy powder as known powders. It was added at a weight ratio of 0.2, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0, respectively, and the graphite powder was added to 0.3%.
  • the sintered body of the iron base alloy composed of Cr 1.0-2.5wt%, Mo 0.1-0.8wt%, Mn 1.0-2.5wt%, C 0.1-1.1wt% and the balance Fe and other unavoidable impurities has very good rolling strength and tensile strength. It was confirmed to have strength and hardness.
  • a low chromium alloy powder of Fe-1.5 wt% Cr-0.2 wt% Mo was used as a reference weight of 100, and 2.0 wt% manganese powder and 0.3 wt% graphite powder were mixed.
  • As the lubricant 0.8 wt% of stearic acid was added to the total weight of the powder and used. These materials were mixed in a Dubucon mixer for 40 minutes, press-molded in a cylindrical form at a pressure of 700 MPa in a mechanical press, and then sintered at 1250 ° C. for 40 minutes in a mixed atmosphere of 90:10 to 80:20 nitrogen and hydrogen. After cooling, a sintered body was produced.
  • the sintered body of the iron-based small alloy obtained as described above was tested for the rolling strength, toughness, hardness, tensile strength, appearance, and the like, and the results shown in Table 3 were obtained.
  • the toughness test measured the displacement (mm) until the test piece broke while increasing the crush strength.
  • the sintered body sintered by maintaining the dew point at -30 ° C or less was found to have excellent mechanical properties, that is, a crushing strength of at least 1861 MPa, a hardness of at least 31.3 HRC, a tensile strength of at least 1298 MPa, and excellent toughness.
  • a crushing strength of at least 1861 MPa a hardness of at least 31.3 HRC
  • a tensile strength of at least 1298 MPa and excellent toughness.
  • the ring strength, toughness, tensile strength, and appearance were poor. Therefore, it is very important to maintain the dew point at -30 ° C or lower, preferably -40 ° C or lower during sintering.
  • automobile parts requiring high strength and high hardness can be manufactured at low cost.

Abstract

Disclosed is a method for preparing an iron-based sintered body, which comprises: mixing a lubricant and at least two kinds of powder to prepare a mixture; press-molding the mixture to form a molding; and pre-sintering the molding, then sintering and cooling the molding. The powder includes Cr 1.0~2.5wt%, Mo 0.1~0.8wt%, Mn 1.0~2.5wt%, C 0.1~1.1wt% and the balance of Fe and inevitable impurities, wherein Mn in the powder is present in an elemental form. Also, the sintered body has a sintering density of 7.0g/cm3 or more. In the disclosed method, the sintering is carried out at a temperature of 1150℃-1350℃ for 15-90 minutes in a reductive or neutral atmosphere which maintains a dew point of -30℃ or less. Accordingly, an iron-based sintered body with high strength and high elongation can be obtained through the method.

Description

[규칙 제26조에 의한 보정 26.05.2009] 고강도 및 고인성을 가지는 철계 소결체 및 그 제조 방법[Correction 26.05.2009 by Rule 26] (철) Iron-based sintered body having high strength and toughness and manufacturing method thereof
본 발명은 자동차 부품 등으로 널리 이용되고 있는 철계 소결합금으로 된 소결체 및 그 제조 방법에 관한 것이다.The present invention relates to a sintered body made of an iron base alloy widely used in automobile parts and the like, and a manufacturing method thereof.
자동차 부품으로 분말 야금에 의하여 제조되는 소결합금이 널리 이용되고 있으며, 이러한 부품의 경량화 및 고강도화 요구에 따라 더욱더 고강도 및 고인성을 가지는 소결합금의 필요성이 증대하고 있다.Small alloys manufactured by powder metallurgy are widely used as automotive parts, and the need for small alloys having high strength and toughness is increasing according to the demand for light weight and high strength of such components.
일반적으로 분말야금에 의하여 제조된 철계 소결 합금 제품은 단조 또는 압연 공정을 거쳐 제조되는 제품에 비하여 품질은 물론 비용면에서도 유리하다. 그러나 소결 합금 제품은 그 제조 과정의 특성상 필연적으로 제품 내에 기공이 형성되며, 이러한 잔류 기공은 소결된 분말야금 제품의 기계적 특성을 단조와 같은 완전 조밀 합금에 비하여 저하시키는 효과를 가진다. 이는 기공이 응력집중부로서 작용하기 때문이며, 또한 기공이 응력을 받는 유효부피를 감소시키기 때문이다.Generally, iron-based sintered alloy products manufactured by powder metallurgy are advantageous in terms of quality and cost as compared to products manufactured through a forging or rolling process. However, due to the nature of the manufacturing process of the sintered alloy product, pores are inevitably formed in the product, and the residual pores have an effect of lowering the mechanical properties of the sintered powder metallurgy product compared to a fully dense alloy such as forging. This is because the pores act as stress concentration regions, and the pores also reduce the effective volume under stress.
따라서 이러한 기공에 의한 특성 저하를 방지하기 위하여 철계 소결 합금의 경우, 니켈(Ni), 크롬(Cr), 몰리브덴(Mo), 구리(Cu) 등이 첨가된 합금강 분말을 이용하는 기술이 많이 개발되고 있다.Therefore, in order to prevent such deterioration of properties due to pores, in the case of iron-based sintered alloys, many techniques using alloy steel powders to which nickel (Ni), chromium (Cr), molybdenum (Mo), copper (Cu), etc. are added have been developed. .
그 중 인장강도를 증가시키기 위하여 주로 사용되고 있는 분말이 1 내지 8중량%의 니켈을 함유한 금속합금분말이다.Among them, a powder mainly used to increase the tensile strength is a metal alloy powder containing 1 to 8% by weight of nickel.
니켈은 분말야금분야에서 인장강도를 증가시키기 위하여 철기지 합금분말의 조성물 내에 통상적으로 함유되는 합금원소이고, 니켈을 8%까지 함유한 철기지 합금분말에 의하여 제조되는 철계 소결합금 제품은 그 인장강도가 니켈에 의하여 향상된다는 것은 본 명세서에 일체화된 종래의 기술로서 미국특허 제6620218호 "IRON POWDER COMPOSITIONS"에 기술되어 있다.Nickel is an alloying element commonly contained in the composition of iron base alloy powder in order to increase the tensile strength in powder metallurgy field, and the iron base alloy product manufactured by iron base alloy powder containing up to 8% of nickel has its tensile strength. Improves by nickel is described in US Pat. No. 6620218, "IRON POWDER COMPOSITIONS," as a prior art incorporated herein.
또한 니켈은 소결을 촉진시키고 경화능을 증가시키는 동시에 인성(elongation)에 영향을 미치나, 니켈 단독으로 사용하기 보다는 몰리브덴, 구리 등과 같이 사용될 경우 그 효과가 더욱 커진다.Nickel also promotes sintering, increases hardenability, and affects elongation, but when used with molybdenum, copper, or the like, the effect is greater.
그러나 이와 같은 금속합금분말의 경우 고가의 합금원소인 니켈, 몰리브덴, 구리를 다량 함유하고 있으므로, 그 금속합금분말의 가격이 매우 고가이다.However, such a metal alloy powder contains a large amount of expensive alloying elements nickel, molybdenum and copper, so that the price of the metal alloy powder is very expensive.
최근 자동차 부품의 사용 추세를 살피면, 제품 가격 중 원재료가 차지하는 비중이 지속적으로 증가하고 있다. 특히 니켈은 매우 고가이며 그 단가가 상승하고 있으므로 이러한 니켈을 함유한 금속합금분말로 인하여 제품 가격 대비 원재료가 차지하는 비중은 계속 증가하고 있다.In light of recent trends in the use of automotive parts, the proportion of raw materials in product prices continues to increase. In particular, since nickel is very expensive and its unit price is rising, the proportion of raw materials to product prices continues to increase due to the metal alloy powder containing nickel.
따라서 고강도 및 고인성의 기계적 특성을 구비하면서도 저렴하게 자동차 부품 등으로 제조될 수 있는 소결합금이 절실히 요구되고 있다.Therefore, there is an urgent need for a small-alloy alloy that can be manufactured at low cost while having high mechanical strength and high mechanical properties.
한편, 크롬계 합금분말을 사용하는 기술로서 미국특허 WO/2005/120749 "SINTERED METAL PARTS AND METHOD FOR THE MANUFACTURING THEREOF"에 개시된 바 있다. 상기 종래 기술은 본 명세서에 일체화된 것으로 본다.On the other hand, as a technique using a chromium-based alloy powder has been disclosed in US Patent WO / 2005/120749 "SINTERED METAL PARTS AND METHOD FOR THE MANUFACTURING THEREOF". The prior art is considered to be incorporated herein.
그러나 도 1의 합금원소에 따른 산소친화도에서 확인되는 바와 같이 크롬의 경우 높은 산소와의 친화성 때문에 소결 분위기의 엄격한 제어가 필요하다.However, chromium requires strict control of the sintering atmosphere due to the high affinity with chromium, as confirmed by the oxygen affinity according to the alloying elements of FIG. 1.
또한 크롬계 합금분말의 경우 성형성이 매우 낮기 때문에 이로 인하여 성형체가 높은 밀도를 가지기 어렵고 또한 기공의 함량이 증가되어 전체적으로 고강도화를 실현시키기가 매우 어렵다.In addition, in the case of chromium-based alloy powder, since the moldability is very low, it is difficult for the molded body to have a high density, and the content of pores is increased, so that it is very difficult to realize high strength as a whole.
또한 상당량의 몰리브덴과 구리를 함유한 분말을 사용하는 기술로서 미국특허 제7329380호 "METHOD OF CONTROLLING THE DIMENSIONAL CHANGE WHEN SINTERING AN IRON-BASED POWDER MIXTURE"가 개시된 바 있다. 상기 종래 기술은 본 명세서에 일체화된 것으로 본다. 몰리브덴의 경우는 성형성이 낮아지는 문제는 해결이 되지만, 몰리브덴만으로는 강도의 향상이 어려워 몰리브덴을 1.0% 이상 첨가하고도 강도가 낮아지는 문제가 있어서 1.0% 내외의 니켈을 추가로 첨가하여야 하는 문제가 있다.In addition, U.S. Pat.No., 7329380, "METHOD OF CONTROLLING THE DIMENSIONAL CHANGE WHEN SINTERING AN IRON-BASED POWDER MIXTURE", has been disclosed as a technique using a powder containing a large amount of molybdenum and copper. The prior art is considered to be incorporated herein. In the case of molybdenum, the problem of low moldability can be solved. However, it is difficult to improve the strength with molybdenum alone. Therefore, even if molybdenum is added more than 1.0%, the strength is lowered. have.
이러한 단점을 극복하기 위하여 Fe-Mn-Si계 모합금(mother alloy or master alloy)을 만들어 사용하는 기술로서 EP 0,097,737B1 "Powder metallurgy process for producing parts having high strength and hardness from Si-Mn or Si-Mn-C alloyed steel"가 개시된 바 있다. 상기 종래 기술은 본 명세서에 일체화된 것으로 본다. 이와 같이 모합금을 사용하여 소결하는 경우 구성 성분의 산소친화력은 줄일 수 있지만 균일한 조직을 가진 합금의 제조가 어렵다.In order to overcome this disadvantage, Fe-Mn-Si-based mother alloy or master alloy is used to make EP 0,097,737B1 "Powder metallurgy process for producing parts having high strength and hardness from Si-Mn or Si-Mn -C alloyed steel "has been disclosed. The prior art is considered to be incorporated herein. When the sintering using the master alloy as described above can reduce the oxygen affinity of the components, it is difficult to produce an alloy having a uniform structure.
상기와 같은 과제를 해결하기 위하여 본 발명은, 망간을 이용하여 저렴하면서도 고강도 및 고인성을 가지는 철계 소결체를 제조하는 방법 및 1100MPa 이상의 인장강도 및 HRC 25 이상의 경도를 가지는 철계 소결체을 제공하고자 한다.In order to solve the above problems, the present invention is to provide a method for producing an iron-based sintered body having a low cost, high strength and high toughness using manganese and an iron-based sintered body having a tensile strength of 1100MPa or more and a hardness of HRC 25 or more.
특히 본 발명은 가압성형되기 전의 혼합물에 망간이 원소 형태의 분말로서 첨가되도록 하여 망간이 합금내에 균일하게 분포될 수 있도록 하고, 원소 형태의 분말로서 첨가된 망간이 소결 중에 산화되는 것을 방지하기 위하여 적절하게 소결 분위기를 제어함으로써, 고강도 및 고인성을 가지는 철계 소결체를 얻을 수 있도록 한다.In particular, the present invention allows manganese to be added as a powder in elemental form to the mixture before press molding so that manganese can be uniformly distributed in the alloy and is prevented from being oxidized during sintering. By controlling the sintering atmosphere, it is possible to obtain an iron-based sintered body having high strength and high toughness.
이에 의하여 고가의 니켈을 함유한 철계 소결합금보다 우수한 강도 및 인성을 가지는 망간을 함유한 철계 소결합금을 제공하게 된다.As a result, it is possible to provide an iron base alloy containing manganese having strength and toughness superior to that of the iron base alloy containing expensive nickel.
상기의 과제를 해결하기 위하여 본 발명은, 적어도 2종 이상의 분말 및 윤활제를 혼합하여 혼합물을 형성한 후, 상기 혼합물을 가압 성형하여 성형체를 형성한 후, 상기 성형체를 예비소결을 거쳐 본소결한 후 냉각하여 철계 소결체을 제조하는 방법에 있어서 : 상기 분말은 Cr 1.0~2.5wt%, Mo 0.1~0.8wt%, Mn 1.0~2.5wt%, C 0.1~1.1wt% 및 잔부 Fe와 기타 불가피한 불순물로 이루어지되, 상기 분말 중 Mn은 원소 형태의 분말로 존재하며 ; 상기 성형체는 7.0g/cm3 이상의 성형밀도를 가지며 ; 상기 본소결은 -30℃ 이하의 이슬점이 유지되는 환원성 또는 중성의 보호분위기에서 1150℃ 내지 1350℃의 온도에서 15분 내지 90분간 소결하는 것 ; 을 특징으로 한다.In order to solve the above problems, the present invention, after mixing at least two or more kinds of powders and lubricants to form a mixture, the mixture is press-molded to form a molded body, and then after the pre-sintering the molded body after the main sintering In the method for producing an iron-based sintered body by cooling: The powder is composed of Cr 1.0 ~ 2.5wt%, Mo 0.1 ~ 0.8wt%, Mn 1.0 ~ 2.5wt%, C 0.1 ~ 1.1wt% and the balance Fe and other unavoidable impurities Mn in the powder is present as an elemental powder; The molded body has a molding density of at least 7.0 g / cm 3 ; The main sintering is sintering for 15 minutes to 90 minutes at a temperature of 1150 ℃ to 1350 ℃ in a reducing or neutral protective atmosphere in which the dew point below -30 ℃ is maintained; It is characterized by.
상기에 있어서, 상기 분말 중 Cr, Mo, 및 Fe는 Fe-Cr-Mo의 합금 분말로 존재하며, 상기 분말 중 C는 흑연 분말로 존재하는 것이 바람직하다.In the above, Cr, Mo, and Fe in the powder is present as an alloy powder of Fe-Cr-Mo, C in the powder is preferably present as a graphite powder.
상기에 있어서, 상기 원소 형태의 Mn 분말은 평균 입자 크기가 10μm~20μm인 것이 바람직하다.In the above, the elemental Mn powder preferably has an average particle size of 10 μm to 20 μm.
본 발명의 다른 사상으로, 철계 소결체 중에서 Cr 1.0~2.5wt%와, Mo 0.1~0.8wt%, Mn 1.0~2.5wt%, C 0.1~1.1wt% 및 잔부 Fe와 기타 불가피한 불순물로 이루어지되, 1100Mpa 이상의 인장강도 및 HRC 25 이상의 경도를 가지는 것을 특징으로 하는 고강도 및 고인성을 가진 철계 소결체를 제공한다.In another aspect of the present invention, in the iron-based sintered body consisting of Cr 1.0 ~ 2.5wt%, Mo 0.1 ~ 0.8wt%, Mn 1.0 ~ 2.5wt%, C 0.1 ~ 1.1wt% and the balance Fe and other unavoidable impurities, 1100Mpa It provides an iron-based sintered body having a high strength and high toughness, characterized in that the tensile strength and HRC 25 or more.
상기와 같은 본 발명에 의하여, 망간을 이용하여 저렴하면서도 고강도 및 고인성을 가지는 철계 소결체를 제조하는 방법 및 1100MPa 이상의 인장강도 및 HRC 25 이상의 경도를 가지는 망간을 함유한 철계 소결체를 제공할 수 있다.According to the present invention as described above, it is possible to provide a method for producing an iron-based sintered body having low cost, high strength and high toughness using manganese, and an iron-based sintered body containing manganese having a tensile strength of 1100 MPa or more and a hardness of HRC 25 or more.
특히 본 발명은 가압성형되기 전의 혼합물에 망간이 원소 형태의 분말로서 첨가되도록 하여 망간이 합금 내에 균일하게 분포될 수 있도록 하고, 원소 형태의 분말로서 첨가된 망간이 소결 중에 산화되는 것을 방지하기 위하여 적절하게 소결 분위기를 제어함으로써, 고강도 및 고인성을 가지는 철계 소결체를 얻을 수 있다.In particular, the present invention allows manganese to be added as a powder in elemental form to the mixture before press molding so that manganese can be uniformly distributed in the alloy and is prevented from being oxidized during sintering. By controlling the sintering atmosphere, an iron-based sintered body having high strength and high toughness can be obtained.
도 1은 합금원소에 따른 산소친화도.1 is an oxygen affinity according to the alloying elements.
도 2는 합금원소에 따른 경화능지수.2 is a hardenability index according to the alloying elements.
도 3은 합금원소 첨가량에 따른 소결체의 인성 변화도.3 is a change in the toughness of the sintered body according to the alloying element addition amount.
이하 본 발명에 의한 일 실시례에 따라 그 구성과 작용을 상세히 설명한다.Hereinafter, the configuration and operation according to an embodiment of the present invention will be described in detail.
일반적으로 금속 분말에 의하여 소결체를 제조하는 방법은 2종 이상의 분말과 윤활제를 골고루 혼합하여 혼합물을 형성하는 단계와, 상기 혼합물을 가압 성형하여 성형체를 형성하는 단계와, 상기 성형체를 예비소결을 거쳐 본소결한 후 냉각하여 소결체를 얻게 된다. 또한 이와 같이 얻은 소결체의 기계적 특성을 높이기 위하여 열처리를 수반할 수 있다.In general, a method for producing a sintered body by metal powder comprises the steps of uniformly mixing two or more powders and lubricants to form a mixture, forming a molded body by pressing the mixture to form a molded body, the pre-sintering of the molded body After sintering, it is cooled to obtain a sintered body. In addition, in order to increase the mechanical properties of the sintered body thus obtained, heat treatment may be involved.
이하에서는 일반적인 소결체 제조 방법에 대한 설명은 가급적 생략하며, 본 발명의 실시례에서 특이하거나 유의하여야 할 점들을 주로 설명한다. Hereinafter, a description of a general method for manufacturing a sintered body will be omitted as much as possible, and the following will mainly describe specific or significant points in an embodiment of the present invention.
(1) 혼합물 형성 단계(1) Mixture Formation Step
분말야금에 있어서 혼합물의 형성은 2종 이상의 분말과 윤활제를 적절히 혼합하게 된다.In powder metallurgy, the formation of the mixture is appropriately mixing two or more powders and a lubricant.
2종 이상의 분말의 조성은 Cr 1.0~2.5wt%, Mo 0.1~0.8wt%, Mn 1.0~2.5wt%, C 0.1~1.1wt% 및 잔부 Fe와 기타 불가피한 불순물로 이루어지도록 하며, 윤활제는 분말야금에서 일반적으로 사용되는 윤활제라면 적절히 적용될 수 있을 것이라 이해된다.The composition of two or more powders is composed of Cr 1.0 ~ 2.5wt%, Mo 0.1 ~ 0.8wt%, Mn 1.0 ~ 2.5wt%, C 0.1 ~ 1.1wt% and the balance Fe and other unavoidable impurities, and the lubricant is powder metallurgy It is understood that any lubricants commonly used in the art can be applied as appropriate.
혼합물 형성 방법은 소결을 위한 통상적인 혼합 방법이 사용될 수 있으며, 특이한 사항은 혼합물을 이루는 구성 성분들의 비율, 망간의 입자 크기, 망간의 형태 등이다.The method of forming the mixture may be used a conventional mixing method for sintering, and the specific matters are the ratio of the components constituting the mixture, the particle size of manganese, the form of manganese and the like.
Cr, Mo, 및 Fe는 각각 원소 형태의 분말로 혼합물에 첨가될 수도 있지만, Cr의 산화를 방지하기 위하여 Fe-Cr-Mo의 예비 합금 분말로서 첨가되는 것이 바람직하다. Fe-Cr-Mo의 합금 분말은 평균 입자 크기가 45μm~150μm를 가지는 것이 바람직하다.Cr, Mo, and Fe may each be added to the mixture as a powder in elemental form, but are preferably added as pre-alloy powders of Fe—Cr—Mo in order to prevent oxidation of Cr. The alloy powder of Fe-Cr-Mo preferably has an average particle size of 45 μm to 150 μm.
크롬(Cr)은 최종 제조된 소결체에서 우수한 압환강도와 경도를 제공한다. 소결체에 적정한 강도를 제공하기 위하여 크롬은 적어도 1.0wt% 이상, 바람직하게는 1.5wt%이상이 함유되어야 한다. 크롬 함량이 2.5wt% 이상이 되면 분말의 압축성이 현저히 떨어져 성형에 문제가 될 뿐만 아니라 소결 후의 소결체가 취성을 가지게 되며 이로 인하여 강도가 감소된다. 따라서 크롬의 함량은 1.0~2.5wt% 사이에서 변화될 수 있다.Chromium (Cr) provides excellent crush strength and hardness in the final sintered body. In order to provide adequate strength to the sintered body, chromium should contain at least 1.0 wt% or more, preferably 1.5 wt% or more. When the chromium content is 2.5 wt% or more, the compressibility of the powder is remarkably reduced, which is not only a problem in forming, but also the brittleness of the sintered body after sintering, thereby reducing the strength. Therefore, the content of chromium may vary between 1.0 and 2.5 wt%.
몰리브덴(Mo)은 최종 제조된 소결체에서 우수한 경화능을 제공한다.Molybdenum (Mo) provides excellent hardenability in the final sintered body.
몰리브덴의 함량은 중량비로 0.1 내지 0.8% 사이에서 존재하도록 한다. 몰리브덴의 함량이 0.1% 이하이면 첨가 효과가 미미하고, 첨가량이 많을수록 경화능이 향상되나 분말의 압축성을 낮추고 몰리브덴 또한 니켈 이상으로 고가의 금속인 관계로 사용량을 중량비로 0.8% 이내로 제한하여야 한다. The content of molybdenum is to be present between 0.1 and 0.8% by weight. When the content of molybdenum is less than 0.1%, the effect of addition is insignificant, and the addition amount increases the hardenability, but the compressibility of the powder is lowered and the amount of molybdenum should be limited to within 0.8% by weight because molybdenum is an expensive metal over nickel.
망간(Mn)은 원소 형태의 분말, 즉 망간 플레이크를 평균입자크기 10μm~20μm로 파쇄한 망간 분말로서 혼합물에 첨가되며, 중량비로 1.0% 이상 2.5%이하로 첨가하는 것이 바람직하다. 상기 및 이하에서 원소 형태의 망간 분말이란, 망간이 화합물 또는 합금 형태로 존재하는 것이 아니라 순수하게 망간으로 이루어진 망간 분말을 의미한다. 물론 순수한 망간 분말이라 하여도 불가피한 불순물이 첨가될 수 있다.Manganese (Mn) is an elemental powder, i.e., manganese powder, in which manganese flakes are broken into particles having an average particle size of 10 µm to 20 µm, and are added to the mixture, and preferably in a weight ratio of 1.0% or more and 2.5% or less. Manganese powder in the above and below elemental form means manganese powder consisting of pure manganese, not manganese in a compound or alloy form. Of course, even in the case of pure manganese powder, inevitable impurities may be added.
망간은 니켈과 유사한 첨가 효과가 있으며 경화능이 니켈에 비하여 더 우수하다(도 2 합금원소에 따른 경화능지수 참조). 망간을 첨가한 혼합물의 성형체를 1150℃이상의 고온에서 소결할 경우 합금분말의 융점이 낮아지고 합금분말의 확산성이 개선되어 소결성 향상에 도움이 된다. 망간의 함량이 중량비로 1.0wt% 이하인 경우 첨가 효과가 급격히 감소하고, 중량비로 2.5%이상인 경우 치수안정성과 인성을 감소시키며, 또한 산화 발생가능성이 높아 소결체의 인장강도가 감소되는 문제점을 초래한다. Manganese has an additive effect similar to that of nickel and has a higher hardenability than nickel (see the hardenability index according to the alloying elements of FIG. 2). When the molded body of the mixture containing manganese is sintered at a high temperature of 1150 ° C. or higher, the melting point of the alloy powder is lowered and the diffusibility of the alloy powder is improved, which helps to improve the sinterability. If the content of manganese is 1.0wt% or less by weight ratio, the effect of addition is drastically reduced, and when it is 2.5% or more by weight ratio, dimensional stability and toughness are reduced, and also high oxidation is likely to cause a problem that the tensile strength of the sintered body is reduced.
한편, 망간과 대비되는 니켈의 경우 철과의 확산 속도가 느리고 확산속도의 차이가 발생해서 니켈이 미처 확산되지 않은 니켈리치상(Ni-rich phase)이 존재하거나 커켄달 기공(Kirkendall pore)이 존재하게 된다. 니켈의 경우 이와 같은 문제점을 줄이기 위하여 10μm 이하의 미세한 니켈을 사용하거나 혹은 합금상태의 분말을 제조하여 사용한다. On the other hand, nickel, in contrast to manganese, has a slow diffusion rate with iron and a difference in diffusion rate, resulting in a nickel-rich phase in which nickel is not diffused or Kirkendall pores. Done. In the case of nickel, in order to reduce such a problem, use fine nickel of 10 μm or less, or prepare an alloy powder.
망간의 경우도 이와 같은 조직상의 불균일을 줄이기 위하여 첨가되는 망간의 크기를 조절하여야 한다. 본 발명자의 연구에 의하면 첨가되는 망간은 입자 크기 150 메쉬 이하의 크기로 첨가되면 1150℃ 이상의 소결 온도에서 완전하게 합금화가 된다. 그러나 입자 크기가 150 메쉬 이상의 크기가 되면 망간리치상이 존재하게 된다. 따라서 첨가되는 망간의 평균입자크기는 20μm 이하로 제한된다. 또한 너무 미세한 크기를 갖게 되면 성형 중에 분말의 흐름을 나쁘게 하고 소결 중에도 쉽게 산화되기 때문에 10μm 이하의 크기를 갖는 분말의 양은 15%이하로 제한할 필요가 있다. 이와 같은 크기의 망간 분말을 사용하면 조직의 불균일을 줄일 수 있다.In the case of manganese, the size of manganese added to reduce such non-uniformity of tissue should be adjusted. According to the research of the inventors, the added manganese is completely alloyed at a sintering temperature of 1150 ° C. or more when added to a particle size of 150 mesh or less. However, when the particle size is larger than 150 mesh, the manganese rich phase exists. Therefore, the average particle size of manganese added is limited to 20 μm or less. In addition, if the particle size is too small, the flow of the powder is bad during molding and easily oxidized during sintering, so the amount of powder having a size of 10 μm or less needs to be limited to 15% or less. Use of manganese powder of this size can reduce tissue non-uniformity.
한편, 망간을 페로망간(Fe-Mn)이나 Fe-Mn-Si의 예비합금의 분말 형태로서 첨가하는 경우에도 전체적인 불균일은 줄일 수 있으나 미세적인 불균일은 피하기 어렵다.Meanwhile, even when manganese is added in the form of a powder of a prealloy of ferro-manganese (Fe-Mn) or Fe-Mn-Si, the overall nonuniformity can be reduced, but microscopic nonuniformity is difficult to avoid.
망간을 원소 형태의 분말로서 혼합물에 첨가할 경우 소결 중에 산소와의 친화력으로 망간이 산화되는 것을 막기 위하여 소결 분위기를 적절하게 제어할 필요가 있다. When manganese is added to the mixture as an elemental powder, it is necessary to properly control the sintering atmosphere in order to prevent the manganese from being oxidized by the affinity with oxygen during sintering.
망간은 중량비로 1.0% 이상 2.5%이하로 첨가하는 것이 바람직하다. 망간의 첨가량 변화에 따라 최종 제조된 소결체의 인성(elongation) 변화를 도 3에 도시하였다.Manganese is preferably added in an amount ratio of 1.0% or more and 2.5% or less. The change in the elongation of the final prepared sintered body according to the amount of manganese added is shown in FIG. 3.
도 3에서 시험편 1은 니켈을 함유한 철계 소결합금(Fe-4wt%Ni-1.5wt%Cu-0.5wt%Mo-0.3wt%C)이며, 시험편 2(Fe-1.5wt%Cr-0.2wt%Mo-1.0wt%Mn-0.3wt%C), 3(Fe-1.5wt%Cr-0.2wt%Mo-1.5wt%Mn-0.3wt%C), 4(Fe-1.5wt%Cr-0.2wt%Mo-2.0wt%Mn-0.3wt%C), 5(Fe1.5wt%Cr-0.2wt%Mo-2.5wt%Mn-0.3wt%C)는 Mn 함량이 각각 1.0%, 1.5%, 2.0%, 2.5%인 철계 소결합금이다.In FIG. 3, test piece 1 is an iron-based small alloy (Fe-4wt% Ni-1.5wt% Cu-0.5wt% Mo-0.3wt% C) containing nickel, and test piece 2 (Fe-1.5wt% Cr-0.2wt%). Mo-1.0wt% Mn-0.3wt% C), 3 (Fe-1.5wt% Cr-0.2wt% Mo-1.5wt% Mn-0.3wt% C), 4 (Fe-1.5wt% Cr-0.2wt% Mo-2.0wt% Mn-0.3wt% C), 5 (Fe1.5wt% Cr-0.2wt% Mo-2.5wt% Mn-0.3wt% C) have Mn content of 1.0%, 1.5%, 2.0%, It is a 2.5% iron base alloy.
인성 시험은 압환 강도를 증가시키면서 시험편이 파괴될 때까지의 변위를 측정하였다.The toughness test measured the displacement until the test piece failed while increasing the crush strength.
도 3에서 확인되는 바와 같이 시험편 2, 3은 시험편 1보다 인성이 좋으며, 또한 시험편 4, 5는 시험편 1보다 압환 강도가 크다.As confirmed in FIG. 3, the test pieces 2 and 3 have better toughness than the test piece 1, and the test pieces 4 and 5 have a greater pressure-reducing strength than the test piece 1.
탄소(C)는 흑연 분말로 첨가되며, 첨가되는 탄소의 양은 중량비로 0.1~1.1%이다.Carbon (C) is added as graphite powder, and the amount of carbon added is 0.1 to 1.1% by weight.
탄소가 첨가되는 양은, 탄소 첨가량이 인장강도에 영향을 미치므로 0.1wt이상인 것이 바람직하며, 인성을 필요로 하는 경우는 통상의 분말합금재료에서와 같이 0.3wt% 내외의 조성이 바람직하다. 물론 C가 0.3wt% 내외의 조성인 재료의 경우 인성과 내마모성을 같이 요구받는 경우는 침탄 등의 표면처리가 필요하다. The amount of carbon added is preferably 0.1 wt or more because the amount of carbon added affects the tensile strength, and when toughness is required, a composition of about 0.3 wt% is preferable as in a conventional powder alloy material. Of course, in the case of a material having a composition of about 0.3 wt% C, when toughness and abrasion resistance are required together, surface treatment such as carburization is required.
또한 단순하게 고강도의 재료가 필요한 경우 탄소량은 0.6~0.7wt%가 된다. 이 경우는 내마모성이 우수하고 어느 정도의 인성을 보유하게 된다. In addition, the carbon content is 0.6 ~ 0.7wt% when a simple high strength material is required. In this case, the wear resistance is excellent and some toughness is retained.
탄소가 0.7wt%이상 1.1wt%의 경우는 재료의 인성과 상관없이 고도의 내마모성을 요구하는 경우에 주로 사용된다. 1.1wt% 이상의 탄소를 함유하는 경우에는 취성이 증가하므로 그 사용이 제한된다.When carbon is 0.7 wt% or more and 1.1 wt%, it is mainly used when a high wear resistance is required regardless of the toughness of the material. If the carbon content is 1.1 wt% or more, brittleness is increased, so its use is limited.
기타 불가피한 불순물로는 Cu, Sn, P, Si, S 등이 각 0.1중량%이하로 포함될 수 있다. Other unavoidable impurities may include Cu, Sn, P, Si, and S in an amount of 0.1 wt% or less.
윤활제는 성형이 용이하게 이루어지도록 첨가되며, 통상의 분말야금용 윤활제가 사용되는 것으로 족하다. 윤활제는 추후 예비소결과정에서 제거된다. 윤활제의 대표적인 예는 스테아린산(stearic acid)이다. 스테아린산은 보통 분말 전체 중량에 대하여 약 0.5wt%~1.0wt% 첨가될 수 있다.Lubricants are added to facilitate molding, and conventional powder metallurgy lubricants are sufficient to be used. The lubricant is later removed from the preliminary results. A representative example of a lubricant is stearic acid. Stearic acid may usually be added in an amount of about 0.5 wt% to 1.0 wt% based on the total weight of the powder.
상기와 같이 크롬과 몰리브덴의 경우는 Fe-Cr-Mo의 합금 분말 상태로 하고, 망간과 탄소는 성형이 용이하게 이루어지도록 첨가되는 윤활제와 함께 혼합 공정 전에 상기 Fe-Cr-Mo의 합금 분말에 첨가된 후, 골고루 혼합하여 혼합물을 형성한다.In the case of chromium and molybdenum as described above, the alloy powder of Fe-Cr-Mo is added, and manganese and carbon are added to the alloy powder of Fe-Cr-Mo before the mixing process together with a lubricant added to facilitate molding. After mixing, mix evenly to form a mixture.
(2) 성형체 성형 단계(2) molding body forming step
상기와 같은 혼합에 의하여 얻어진 금속합금 분말들의 혼합물을 400 내지 700MPa 이상의 압력으로 성형하여 7.1 ~ 7.15 g/cm3의 성형밀도를 가지는 성형체를 제조한다. 성형체의 성형밀도는 인장강도 등과 직접 연관되므로 요구되는 인장강도에 따라 다르나 1100MPa이상의 강도를 갖기 위해서는 적어도 7.1g/cm3이상의 성형밀도를 가지는 것이 바람직하다.The mixture of the metal alloy powders obtained by the above mixing is molded at a pressure of 400 to 700 MPa or more to prepare a molded body having a molding density of 7.1 to 7.15 g / cm 3 . Since the molding density of the molded article is directly related to the tensile strength and the like, it depends on the required tensile strength, but in order to have a strength of 1100 MPa or more, it is preferable to have a molding density of at least 7.1 g / cm 3 .
(3) 소결 단계(3) sintering step
소결 단계는 본소결과 윤활제 제거를 위한 예비소결로 구분될 수 있지만, 예비소결은 본소결을 위하여 소결로 내의 온도를 높이는 과정에서 자연스럽게 해결되므로 본 발명의 핵심이라고 볼 수 없다. The sintering step can be divided into the main sintering and the pre-sintering for removing the lubricant, but the pre-sintering is naturally solved in the process of raising the temperature in the sintering furnace for the main sintering, and thus cannot be regarded as the core of the present invention.
상기와 같이 제조된 성형체를 본소결할 경우 크롬 및 망간이 첨가된 금속합금분말의 경우에는 산화 발생률이 높기 때문에 적절한 소결조건을 맞추어 주어야 한다. In the case of main sintering the molded product prepared as described above, in the case of the metal alloy powder added with chromium and manganese, the oxidation incidence is high, so that the appropriate sintering conditions should be adjusted.
이를 위하여 상기와 같이 제조된 성형체를 -30℃이하(바람직하게는 -40℃ 내지 -60℃)의 이슬점이 유지되는 환원성 또는 중성의 보호분위기에서 450℃ 내지 900℃의 온도에서 10분 내지 60분간 예비소결하고 1150℃ 내지 1350℃의 온도에서 15분 내지 90분간 본소결한 후 0.5~6.0℃/s의 냉각속도로 냉각하여 최종 소결체를 얻게 된다.. 예비소결 조건은 윤활제의 양과 종류에 따라 달라질 수 있으며, 예비소결은 본소결을 위하여 소결로의 온도를 높이는 과정에서 자연스럽게 이루어지므로, 예비소결의 공정조건은 본 발명이 속하는 기술 분야에 종사하는 기술자라면 적절히 변형하여 사용할 수 있을 것이라 이해된다.To this end, the molded article prepared as described above is subjected to 10 minutes to 60 minutes at a temperature of 450 ° C to 900 ° C in a reducing or neutral protective atmosphere in which a dew point of -30 ° C or lower (preferably -40 ° C to -60 ° C) is maintained. After presintering and main sintering at a temperature of 1150 ° C to 1350 ° C for 15 minutes to 90 minutes, cooling is performed at a cooling rate of 0.5 to 6.0 ° C / s to obtain a final sintered body. Presintering conditions vary depending on the amount and type of lubricant. It is understood that the presintering is naturally performed in the process of raising the temperature of the sintering furnace for the main sintering, so that the process conditions of the presintering may be appropriately modified by those skilled in the art.
상기에서 보호분위기는 질소와 수소를 적절히 혼합한 혼합 분위기를 이용하여 크롬과 망간 등의 산화를 방지한다. 통상 사용되는 분위기는 부피비율로 0~95%수소가 포함된 질소분위기이다.In the above protective atmosphere, oxidation of chromium and manganese is prevented by using a mixed atmosphere in which nitrogen and hydrogen are properly mixed. Usually used atmosphere is a nitrogen atmosphere containing 0 to 95% hydrogen by volume ratio.
이슬점 또한 산화를 방지하기 위하여 -30℃ 이하로 유지되어야 한다.The dew point should also be kept below -30 ° C to prevent oxidation.
보호분위기는, 경제성을 고려하고 낮은 이슬점을 유지하기 위하여 보통 부피비 90:10 내지 80:20의 질소 및 수소의 혼합 분위기를 유지한다. 질소가 많이 사용되는 또 다른 이유는 종래에는 액화질소를 사용하였으나 이는 가스공급업자로부터 수요자까지 고압으로 이송하는 과정에서 공기 중에 수차례 노출되어 이슬점이 점차로 올라가게 되는 단점이 있어 왔으나 최근 공기 중의 질소를 분자체로 직접 분리하고 정제하여 고순도의 질소를 얻는 정제 기술이 발달하게 됨에 따라 질소발생기로부터 라인으로 이슬점이 -75℃ 이하인 고순도 상태의 질소를 로에 공급하는 것이 가능하게 되어 분위기 제어가 용이하게 되었기 때문이다. 이와 같은 고순도 질소에 환원성을 갖는 소량의 수소를 혼합하여 이슬점을 -30℃이하로 유지함으로써 제어가 곤란한 망간 분말의 소결이 가능하게 되었다. The protective atmosphere usually maintains a mixed atmosphere of nitrogen and hydrogen in a volume ratio of 90:10 to 80:20 for economical considerations and to maintain a low dew point. Another reason for the high use of nitrogen is conventionally liquid liquefied nitrogen, which has been disadvantageous in that the dew point gradually increases due to several exposures in the air during the transfer from the gas supplier to the consumer at high pressure. As the purification technology to obtain high-purity nitrogen by directly separating and purifying with molecular sieves has been developed, it is possible to supply nitrogen with high purity in a dew point of -75 ° C or lower from the nitrogen generator to the line to facilitate the atmosphere control. to be. By mixing a small amount of hydrogen having reducibility with such high purity nitrogen and keeping the dew point below -30 ° C, sintering of manganese powder which is difficult to control becomes possible.
이와 같은 공정으로 소결된 철계 소결합금은 그 밀도가 성형밀도보다 0.10~0.20g/cm3정도 증가되며, 소결밀도가 7.1~7.15g/cm3이상에서 1100MPa 이상의 인장강도와 HRC 25 이상의 경도를 가진다.Iron-based small alloys sintered by this process have a density of 0.10 to 0.20 g / cm 3 higher than the molding density, and have a tensile strength of 1100 MPa or more and a hardness of HRC 25 or more at a sintered density of 7.1 to 7.15 g / cm 3 or more. .
본 실시례에 의하여 제조된 철계 소결체는 우수한 강도와 경도, 즉 1100MPa 이상의 인장강도와 HRC 25 이상의 경도를 가진 고강도 및 고인성의 특징을 가진다.The iron-based sintered body manufactured according to the present embodiment has characteristics of high strength and high toughness having excellent strength and hardness, that is, tensile strength of 1100 MPa or more and hardness of HRC 25 or more.
(실험례1)Experimental Example 1
실험례 1은 표 1에 나타난 바와 같이 여러 가지 재료들을 혼합하여 사용하였으며, 윤활제로서는 분말 전체 중량에 대하여 스테아린산 0.8wt% 첨가하여 사용하였다. 표 1의 수치는 중량비 기준이다.Experimental Example 1 was used by mixing a variety of materials as shown in Table 1, 0.8 wt% stearic acid was added to the total weight of the powder as a lubricant. The figures in Table 1 are based on weight ratio.
표 1
구분 재료 조성비
Fe-1.5wt%Cr-0.2wt%Mo Fe-3wt%Cr-0.5wt%Mo Mn C
재료 1 99.5 - 0.2 0.3
재료 2 99.4 - 0.3 0.3
재료 3 99.2 - 0.5 0.3
재료 4 98.7 - 1.0 0.3
재료 5 98.2 - 1.5 0.3
재료 6 97.7 - 2.0 0.3
재료 7 97.2 - 2.5 0.3
재료 8 96.7 - 3.0 0.3
재료 9 - 99.5 0.2 0.3
재료 10 - 99.4 0.3 0.3
재료 11 - 99.2 0.5 0.3
재료 12 - 98.7 1.0 0.3
재료 13 - 98.2 1.5 0.3
재료 14 - 97.7 2.0 0.3
재료 15 - 97.2 2.5 0.3
재료 16 - 96.7 3.0 0.3
재료 17 49.75 49.75 0.2 0.3
재료 18 49.7 49.7 0.3 0.3
재료 19 49.6 49.6 0.5 0.3
재료 20 49.35 49.35 1.0 0.3
재료 21 49.1 49.1 1.5 0.3
재료 22 48.85 48.85 2.0 0.3
재료 23 48.6 48.6 2.5 0.3
재료 24 48.35 48.35 3.0 0.3
Table 1
division Material composition ratio
Fe-1.5wt% Cr-0.2wt% Mo Fe-3wt% Cr-0.5wt% Mo Mn C
Material
1 99.5 - 0.2 0.3
Material 2 99.4 - 0.3 0.3
Material 3 99.2 - 0.5 0.3
Material 4 98.7 - 1.0 0.3
Material 5 98.2 - 1.5 0.3
Material 6 97.7 - 2.0 0.3
Material 7 97.2 - 2.5 0.3
Material 8 96.7 - 3.0 0.3
Material 9 - 99.5 0.2 0.3
Material 10 - 99.4 0.3 0.3
Material 11 - 99.2 0.5 0.3
Material 12 - 98.7 1.0 0.3
Material 13 - 98.2 1.5 0.3
Material 14 - 97.7 2.0 0.3
Material 15 - 97.2 2.5 0.3
Material 16 - 96.7 3.0 0.3
Material 17 49.75 49.75 0.2 0.3
Material 18 49.7 49.7 0.3 0.3
Material 19 49.6 49.6 0.5 0.3
Material 20 49.35 49.35 1.0 0.3
Material 21 49.1 49.1 1.5 0.3
Material 22 48.85 48.85 2.0 0.3
Material 23 48.6 48.6 2.5 0.3
Material 24 48.35 48.35 3.0 0.3
표 1에 확인된 바와 같이, 재료 1 내지 재료 8은 Fe-1.5wt%Cr-0.2wt%Mo 합금분말을 기지 분말로 하여, 이에 대하여 원소 형태의 망간 분말이 전체 중량에 대하여 각 0.2, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0의 중량비로 첨가되고, 흑연 분말이 0.3% 첨가되도록 하였다.As confirmed in Table 1, the materials 1 to 8 were made of Fe-1.5wt% Cr-0.2wt% Mo alloy powder, and the manganese powder of elemental form was 0.2, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 were added at a weight ratio and the graphite powder was added at 0.3%.
재료 9 내지 재료 16은 Fe-3.0wt%Cr-0.5wt%Mo 합금 분말을 기지 분말로 하여, 이에 대하여 원소 형태의 망간 분말이 전체 중량에 대하여 각 0.2, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0의 중량비로 첨가되고, 흑연 분말이 0.3% 첨가되도록 하였다.Materials 9 to 16 were made of Fe-3.0wt% Cr-0.5wt% Mo alloy powder as the known powder, and the manganese powder in elemental form was 0.2, 0.3, 0.5, 1.0, 1.5, 2.0, It was added in the weight ratio of 2.5 and 3.0, and 0.3% of graphite powder was added.
재료 17 내지 재료 24는 Fe-1.5wt%Cr-0.2wt%Mo 합금분말과 Fe-3.0wt%Cr-0.5wt%Mo 합금 분말을 기지 분말로 하여, 이에 대하여 원소 형태의 망간 분말이 전체 중량에 대하여 각 0.2, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0의 중량비로 첨가되고, 흑연 분말이 0.3% 첨가되도록 하였다.Material 17 to Material 24 were made of Fe-1.5wt% Cr-0.2wt% Mo alloy powder and Fe-3.0wt% Cr-0.5wt% Mo alloy powder as known powders. It was added at a weight ratio of 0.2, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0, respectively, and the graphite powder was added to 0.3%.
이들 재료들을 더불콘 혼합기에서 40분간 혼합하고 기계식 프레스에서 700MPa의 압력으로 실린더 상의 형태로 가압성형한 후, 90:10 내지 80:20의 질소와 수소의 혼합 분위기에서 이슬점을 -40℃ 이하로 유지한 상태로 1250℃에서 40분간 소결을 실시한 후 냉각하여 소결체를 제작하였다. 이렇게 얻어진 철계 소결합금의 소결체에 대하여 압환강도, 경도, 인장강도, 밀도, 외관 등의 검사를 실시하여 표 2의 결과를 얻었다. These materials were mixed in a Dubucon mixer for 40 minutes and press-molded in a cylindrical form at a pressure of 700 MPa in a mechanical press, then the dew point was kept below -40 ° C. in a mixed atmosphere of nitrogen and hydrogen between 90:10 and 80:20. Sintering was carried out at 1250 ° C. for 40 minutes in one state, followed by cooling to prepare a sintered body. The sintered compacts of the iron-based small alloys thus obtained were examined for the rolling strength, hardness, tensile strength, density, and appearance, and the results shown in Table 2 were obtained.
표 2
구분 소결체의 물리적 특성 외관
압환강도(MPa) 경도(HRC) 인장강도(MPa) 밀도(g/㎤)
재료 1 1013 19.8 990 7.25 양호
재료 2 1096 20.9 1000 7.25 양호
재료 3 1184 21.4 1010 7.25 양호
재료 4 1692 25.9 1150 7.25 양호
재료 5 1713 29.8 1220 7.25 양호
재료 6 1870 31.5 1240 7.25 양호
재료 7 1647 31.9 1280 7.25 양호
재료 8 1395 31.1 1150 7.25 양호
재료 9 1098 20.9 1010 7.25 양호
재료 10 1147 22 1030 7.25 양호
재료 11 1259 22.8 1090 7.25 양호
재료 12 1683 27.5 1230 7.25 양호
재료 13 1777 30.3 1250 7.25 양호
재료 14 1846 32.8 1300 7.25 양호
재료 15 2007 34.2 1340 7.25 양호
재료 16 1475 26.4 1190 7.25 양호
재료 17 1072 20.2 1000 7.25 양호
재료 18 1123 21.5 1010 7.25 양호
재료 19 1192 22.3 1030 7.25 양호
재료 20 1662 26.8 1210 7.25 양호
재료 21 1722 30.1 1230 7.25 양호
재료 22 1826 31.7 1290 7.25 양호
재료 23 1899 32.5 1310 7.25 양호
재료 24 1454 35.7 1170 7.25 양호
TABLE 2
division Physical Properties of Sintered Body Exterior
Rolling strength (MPa) Hardness (HRC) Tensile Strength (MPa) Density (g / cm 3)
Material 1 1013 19.8 990 7.25 Good
Material
2 1096 20.9 1000 7.25 Good
Material
3 1184 21.4 1010 7.25 Good
Material
4 1692 25.9 1150 7.25 Good
Material
5 1713 29.8 1220 7.25 Good
Material 6 1870 31.5 1240 7.25 Good
Material 7 1647 31.9 1280 7.25 Good
Material 8 1395 31.1 1150 7.25 Good
Material 9 1098 20.9 1010 7.25 Good
Material
10 1147 22 1030 7.25 Good
Material 11 1259 22.8 1090 7.25 Good
Material
12 1683 27.5 1230 7.25 Good
Material 13 1777 30.3 1250 7.25 Good
Material 14 1846 32.8 1300 7.25 Good
Material 15 2007 34.2 1340 7.25 Good
Material 16 1475 26.4 1190 7.25 Good
Material 17 1072 20.2 1000 7.25 Good
Material 18 1123 21.5 1010 7.25 Good
Material
19 1192 22.3 1030 7.25 Good
Material
20 1662 26.8 1210 7.25 Good
Material 21 1722 30.1 1230 7.25 Good
Material 22 1826 31.7 1290 7.25 Good
Material 23 1899 32.5 1310 7.25 Good
Material
24 1454 35.7 1170 7.25 Good
표 2에서 알 수 있는 바와 같이 동일한 소결조건에서 망간의 함유율이 1.0% 내지 2.5%인 재료 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23는 모두 압환강도 1662 MPa이상, 인장강도 1150MPa이상, 경도 HRC 25.9이상의 성능을 가지고 있으므로, 최소 1100MPa 이상의 인장강도와 HRC 25 이상의 경도를 가진다는 것을 확인할 수 있다.As can be seen from Table 2, the materials 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, and 23, all of which have a manganese content of 1.0% to 2.5% under the same sintering conditions, have been subjected to rolling strength. Since it has the performance of 1662 MPa or more, tensile strength of 1150 MPa or more, and hardness of HRC 25.9 or more, it can be confirmed that it has a tensile strength of 1100 MPa or more and hardness of HRC 25 or more.
이에 반하여 망간의 함유율이 1.0% 미만인 재료 1, 2, 3, 9, 10, 11, 17, 18, 19의 경우 압환강도, 경도, 인장강도가 모두 급격히 감소하였으며, 망간의 함유율이 3.0%인 재료 8, 16, 24의 경우 망간 함량 2.5%의 재료에 비하여 경도는 비슷한 상태이거나 조금 감소하거나 상승하지만 압환강도 및 인장강도가 급격히 감소하였다. On the other hand, in case of materials 1, 2, 3, 9, 10, 11, 17, 18, and 19 having a manganese content of less than 1.0%, the compressive strength, hardness, and tensile strength all decreased drastically. In case of 8, 16, and 24, the hardness was similar or slightly decreased or increased as compared with 2.5% manganese, but the compressive strength and tensile strength decreased drastically.
이와 같이 Cr 1.0~2.5wt%, Mo 0.1~0.8wt%, Mn 1.0~2.5wt%, C 0.1~1.1wt% 및 잔부 Fe와 기타 불가피한 불순물로 이루어지는 철계 소결합금의 소결체는 매우 우수한 압환강도와 인장강도, 경도를 가지는 것이 확인되었다.As such, the sintered body of the iron base alloy composed of Cr 1.0-2.5wt%, Mo 0.1-0.8wt%, Mn 1.0-2.5wt%, C 0.1-1.1wt% and the balance Fe and other unavoidable impurities has very good rolling strength and tensile strength. It was confirmed to have strength and hardness.
(실험례 2)(Experiment 2)
실험례 2는 Fe-1.5wt%Cr-0.2wt%Mo의 저크롬 합금분말을 기준중량 100으로 하여, 이에 대하여 2.0wt%의 원소 형태의 망간 분말 및 0.3wt%의 흑연분말을 혼합하여 사용하였으며, 윤활제로서는 분말 전체 중량에 대하여 스테아린산 0.8wt% 첨가하여 사용하였다. 이들 재료들을 더불콘 혼합기에서 40분간 혼합하고 기계식 프레스에서 700MPa의 압력으로 실린더 상의 형태로 가압성형한 후, 90:10 내지 80:20의 질소와 수소의 혼합 분위기에서 1250℃에서 40분간 소결을 실시한 후 냉각하여 소결체를 제작하였다. 이때 동일한 재료 각각에 대하여 소결로 내의 이슬점을 -10℃에서 -60℃로 변화시키면서 소결을 실시하여, 이슬점의 변화에 따른 소결체의 특성을 알 수 있도록 하였다.In Experimental Example 2, a low chromium alloy powder of Fe-1.5 wt% Cr-0.2 wt% Mo was used as a reference weight of 100, and 2.0 wt% manganese powder and 0.3 wt% graphite powder were mixed. As the lubricant, 0.8 wt% of stearic acid was added to the total weight of the powder and used. These materials were mixed in a Dubucon mixer for 40 minutes, press-molded in a cylindrical form at a pressure of 700 MPa in a mechanical press, and then sintered at 1250 ° C. for 40 minutes in a mixed atmosphere of 90:10 to 80:20 nitrogen and hydrogen. After cooling, a sintered body was produced. At this time, sintering was performed while changing the dew point in the sintering furnace from -10 ° C to -60 ° C for each of the same materials, so that the characteristics of the sintered body according to the change of the dew point could be known.
이렇게 얻어진 철계 소결합금의 소결체에 대하여 압환강도, 인성, 경도, 인장강도, 외관 등의 검사를 실시하여 표 3과 같은 결과를 얻었다. 인성 시험은 압환 강도를 증가시키면서 시험편이 파괴될 때까지의 변위(mm)를 측정하였다. The sintered body of the iron-based small alloy obtained as described above was tested for the rolling strength, toughness, hardness, tensile strength, appearance, and the like, and the results shown in Table 3 were obtained. The toughness test measured the displacement (mm) until the test piece broke while increasing the crush strength.
표 3
이슬점 압환강도(MPa) 변형량(mm) 경도(HRC) 인장강도(MPa) 외관
-10 ~ -20 778 0.6 33.2 520 불량
-20 ~ -30 211 0.7 34.6 640 불량
-30 ~ -40 1861 1.4 31.4 1298 양호
-40 ~ -50 1865 1.5 31.3 1299 양호
-50 ~ -60 1870 1.5 31.5 1300 양호
TABLE 3
dew point Rolling strength (MPa) Deformation amount (mm) Hardness (HRC) Tensile Strength (MPa) Exterior
-10 to -20 778 0.6 33.2 520 Bad
-20 to -30 211 0.7 34.6 640 Bad
-30 to -40 1861 1.4 31.4 1298 Good
-40 to -50 1865 1.5 31.3 1299 Good
-50 to -60 1870 1.5 31.5 1300 Good
표 3에서 확인되는 바와 같이 이슬점을 -30℃ 이하로 유지하여 소결된 소결체는 우수한 기계적 특성, 즉 1861MPa이상의 압환강도, 31.3 HRC 이상의 경도, 1298MPa 이상의 인장강도, 및 우수한 인성를 가지는 것으로 확인되었으며, 이슬점을 -30℃ 이상으로 유지한 경우에는 압환강도, 인성, 인장강도, 외관이 불량하였다. 따라서 소결시 이슬점을 -30℃ 이하, 바람직하게는 -40℃ 이하로 유지하는 것이 매우 중요하다.As shown in Table 3, the sintered body sintered by maintaining the dew point at -30 ° C or less was found to have excellent mechanical properties, that is, a crushing strength of at least 1861 MPa, a hardness of at least 31.3 HRC, a tensile strength of at least 1298 MPa, and excellent toughness. When maintained at -30 ° C or higher, the ring strength, toughness, tensile strength, and appearance were poor. Therefore, it is very important to maintain the dew point at -30 ° C or lower, preferably -40 ° C or lower during sintering.
상기의 실시례는 본 발명의 바람직한 실시례일 뿐이며, 본 발명의 기술적 사상은 당업자에 의하여 다양하게 변형 내지 조정되어 실시될 수 있다. 이러한 변형 내지 조정이 본 발명의 기술적 사상을 이용한다면 이는 본 발명의 범위에 속하는 것이다.The above embodiments are merely preferred embodiments of the present invention, and the technical idea of the present invention may be variously modified or adjusted by those skilled in the art. Such modifications and adjustments fall within the scope of the present invention if they use the technical idea of the present invention.
본 발명에 의하여 고강도 및 고경도를 요구하는 자동차 부품이 저렴하게 제조될 수 있다.According to the present invention, automobile parts requiring high strength and high hardness can be manufactured at low cost.

Claims (4)

  1. 적어도 2종 이상의 분말 및 윤활제를 혼합하여 혼합물을 형성한 후, 상기 혼합물을 가압성형하여 성형체를 형성한 후, 상기 성형체를 예비소결을 거쳐 본소결한 후 냉각하여 철계 소결체을 제조하는 방법에 있어서 :In the method for producing an iron-based sintered body by mixing at least two or more powders and lubricants to form a mixture, the mixture is press-molded to form a molded body, and then the molded body is pre-sintered and then cooled to produce an iron-based sintered body:
    상기 분말은 Cr 1.0~2.5wt%, Mo 0.1~0.8wt%, Mn 1.0~2.5wt%, C 0.1~1.1wt% 및 잔부 Fe와 기타 불가피한 불순물로 이루어지되, 상기 분말 중 Mn은 원소 형태의 분말로 존재하며 ;The powder is composed of Cr 1.0 ~ 2.5wt%, Mo 0.1 ~ 0.8wt%, Mn 1.0 ~ 2.5wt%, C 0.1 ~ 1.1wt% and the balance Fe and other unavoidable impurities, where Mn is an elemental powder Exists as;
    상기 성형체는 7.1g/cm3 이상의 성형밀도를 가지며 ;The molded body has a molding density of at least 7.1 g / cm 3 ;
    상기 본소결은 -30℃ 이하의 이슬점이 유지되는 환원성 또는 중성의 보호분위기에서 1150℃ 내지 1350℃의 온도에서 15분 내지 90분간 소결하는 것 ;The main sintering is a sintering for 15 minutes to 90 minutes at a temperature of 1150 ℃ to 1350 ℃ in a reducing or neutral protective atmosphere in which the dew point below -30 ℃ is maintained;
    을 특징으로 하는 고강도 및 고인성을 가지는 철계 소결체의 제조 방법.Method for producing an iron-based sintered body having high strength and high toughness, characterized in that.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 분말 중 Cr, Mo, 및 Fe는 Fe-Cr-Mo의 합금 분말로 존재하며, 상기 분말 중 C는 흑연 분말로 존재하는 것을 특징으로 하는 고강도 및 고인성을 가지는 철계 소결체의 제조 방법.Cr, Mo, and Fe in the powder is present as an alloy powder of Fe-Cr-Mo, C in the powder is a method for producing an iron-based sintered body having high strength and high toughness, characterized in that present as a graphite powder.
  3. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2,
    상기 원소 형태의 Mn 분말은 평균 입자 크기가 10μm~20μm인 것을 특징으로 하는 고강도 및 고인성을 가지는 철계 소결체의 제조 방법.The method of producing an iron-based sintered body having high strength and high toughness, characterized in that the Mn powder of the element form has an average particle size of 10μm ~ 20μm.
  4. Cr 1.0~2.5wt%와, Mo 0.1~0.8wt%, Mn 1.0~2.5wt%, C 0.1~1.1wt% 및 잔부 Fe와 기타 불가피한 불순물로 이루어지되, 1100Mpa 이상의 인장강도 및 HRC 25 이상의 경도를 가지는 것을 특징으로 하는 고강도 및 고인성을 가진 철계 소결체.It consists of Cr 1.0 ~ 2.5wt%, Mo 0.1 ~ 0.8wt%, Mn 1.0 ~ 2.5wt%, C 0.1 ~ 1.1wt% and the balance Fe and other unavoidable impurities, having tensile strength of 1100Mpa or more and hardness of HRC 25 or more Iron-based sintered body having high strength and high toughness, characterized in that.
PCT/KR2009/001247 2008-03-12 2009-03-12 Iron-based sintered body with high strength and high elongation and preparation method thereof WO2009113821A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080023032A KR20090097715A (en) 2008-03-12 2008-03-12 Fe-based sintered body with high strength and high elongation and manufacturing method thereof
KR10-2008-0023032 2008-03-12

Publications (2)

Publication Number Publication Date
WO2009113821A2 true WO2009113821A2 (en) 2009-09-17
WO2009113821A3 WO2009113821A3 (en) 2009-12-10

Family

ID=41065673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/001247 WO2009113821A2 (en) 2008-03-12 2009-03-12 Iron-based sintered body with high strength and high elongation and preparation method thereof

Country Status (2)

Country Link
KR (1) KR20090097715A (en)
WO (1) WO2009113821A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200007080A (en) * 2017-10-30 2020-01-21 티피알 가부시키가이샤 Iron guide sintered alloy valve guide and its manufacturing method
CN111155036A (en) * 2018-11-07 2020-05-15 现代自动车株式会社 Sliding member for variable oil pump for vehicle and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR980009491A (en) * 1996-07-19 1998-04-30 남주형 Wear-resistant iron alloy for rotary compressor vane and its manufacturing method
JP3258765B2 (en) * 1993-06-02 2002-02-18 川崎製鉄株式会社 Manufacturing method of high-strength iron-based sintered body
KR20020018169A (en) * 2000-08-31 2002-03-07 에모또 간지 Iron-based sintered powder metal body, manufacturing method thereof and manufacturing method of iron-based sintered component with high strength and high density

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3258765B2 (en) * 1993-06-02 2002-02-18 川崎製鉄株式会社 Manufacturing method of high-strength iron-based sintered body
KR980009491A (en) * 1996-07-19 1998-04-30 남주형 Wear-resistant iron alloy for rotary compressor vane and its manufacturing method
KR20020018169A (en) * 2000-08-31 2002-03-07 에모또 간지 Iron-based sintered powder metal body, manufacturing method thereof and manufacturing method of iron-based sintered component with high strength and high density

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200007080A (en) * 2017-10-30 2020-01-21 티피알 가부시키가이샤 Iron guide sintered alloy valve guide and its manufacturing method
KR102210213B1 (en) 2017-10-30 2021-01-29 티피알 가부시키가이샤 Iron-based sintered alloy valve guide and its manufacturing method
US11951547B2 (en) 2017-10-30 2024-04-09 Tpr Co., Ltd. Valve guide made of iron-based sintered alloy and method of producing same
CN111155036A (en) * 2018-11-07 2020-05-15 现代自动车株式会社 Sliding member for variable oil pump for vehicle and method for manufacturing same
US11668298B2 (en) 2018-11-07 2023-06-06 Hyundai Motor Company Slide of variable oil pump for vehicle and method of manufacturing the same

Also Published As

Publication number Publication date
WO2009113821A3 (en) 2009-12-10
KR20090097715A (en) 2009-09-16

Similar Documents

Publication Publication Date Title
EP2176019B1 (en) Iron-based powder combination and process for producing it
JP5958144B2 (en) Iron-based mixed powder for powder metallurgy, high-strength iron-based sintered body, and method for producing high-strength iron-based sintered body
KR20110099336A (en) A method of producing a diffusion alloyed iron or iron-based powder, a diffusional alloyed powder, a composition including the diffusion alloyed powder, and a compacted and sintered part produced from the composition
WO2018053940A1 (en) Non-magnetic steel product and powder metallurgy manufacturing method therefor
CA1337468C (en) Alloyed steel powder for powder metallurgy
KR101918431B1 (en) Iron-based alloy powder for powder metallurgy, and sinter-forged member
JP2001073002A (en) Iron-graphite composite powder and sintered body thereof
WO2009113821A2 (en) Iron-based sintered body with high strength and high elongation and preparation method thereof
CN114318060A (en) Corrosion-resistant metal ceramic powder, application and corrosion-resistant metal ceramic
KR100978901B1 (en) MANUFACTURING METHOD OF Fe-BASED SINTERED BODY WITH HIGH TENSILE STRENGTH AND HIGH HARDNESS
KR20100117180A (en) Manufacturing method of maganese added sintered ferrous alloy
KR100991993B1 (en) Manufacturing method of Fe-based sintered body for filter and Fe-based sintered body for filter
JP5125158B2 (en) Alloy steel powder for powder metallurgy
SE528421C2 (en) Steel powder alloyed with molybdenum for powder metallurgy
WO2019111834A1 (en) Partial diffusion alloyed steel powder
EP2045346B1 (en) Method for producing a sintered composite sliding part
CN111902556B (en) Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy
US6652618B1 (en) Iron based mixed power high strength sintered parts
JPH10501299A (en) Iron-based powder containing Mo, P, C
EP3778067A1 (en) Powder metallurgy alloy steel powder and powder metallurgy iron-based powder mixture
KR20200081813A (en) Iron-based powder for powder metallurgy and method for producing same
JP5923023B2 (en) Mixed powder for powder metallurgy and method for producing sintered material
JPS61295302A (en) Low-alloy iron powder for sintering
JP3392228B2 (en) Alloy steel powder for powder metallurgy
JPH07138602A (en) Low alloy steel powder for powder metallurgy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09720745

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09720745

Country of ref document: EP

Kind code of ref document: A2