WO2009113784A2 - Led drive device - Google Patents

Led drive device Download PDF

Info

Publication number
WO2009113784A2
WO2009113784A2 PCT/KR2009/001160 KR2009001160W WO2009113784A2 WO 2009113784 A2 WO2009113784 A2 WO 2009113784A2 KR 2009001160 W KR2009001160 W KR 2009001160W WO 2009113784 A2 WO2009113784 A2 WO 2009113784A2
Authority
WO
WIPO (PCT)
Prior art keywords
led
power
switching
semiconductor switching
unit
Prior art date
Application number
PCT/KR2009/001160
Other languages
French (fr)
Korean (ko)
Other versions
WO2009113784A3 (en
Inventor
한보현
박진표
이정주
Original Assignee
주식회사 에이엠오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080023854A external-priority patent/KR20090098451A/en
Priority claimed from KR1020080026782A external-priority patent/KR20090101570A/en
Priority claimed from KR1020080042102A external-priority patent/KR100958435B1/en
Priority claimed from KR1020080082970A external-priority patent/KR100971789B1/en
Priority claimed from KR1020080094458A external-priority patent/KR100978388B1/en
Application filed by 주식회사 에이엠오 filed Critical 주식회사 에이엠오
Publication of WO2009113784A2 publication Critical patent/WO2009113784A2/en
Publication of WO2009113784A3 publication Critical patent/WO2009113784A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits

Definitions

  • the present invention relates to an LED driving device, and more particularly, to an apparatus for efficiently driving an LED used as a light source of a luminaire.
  • FIG. 1 A configuration of an LED luminaire for directly applying a commercial power source (eg, AC 220V) to an LED module is shown in FIG. 1.
  • An LED module in which a plurality of LEDs D1 to DN are arrayed in series is connected to a commercial power supply input line (AC input).
  • One of the two commercial power input lines is directly connected to one end of the LED module.
  • the other commercial power input line is connected to the other end of the LED module via the switch 50.
  • the LED module is arrayed in a metal PCB (PCB) 20.
  • PCB metal PCB
  • reference numeral 10 denotes a heat sink grounded at the bottom of the metal PC
  • reference numeral 30 denotes an insulating layer made of epoxy
  • reference numeral 40 denotes a copper layer on which a circuit pattern is formed. .
  • a typical LED luminaire that directly applies commercial power to the LED module is turned on / off through a switch 50 installed only on one of two commercial power input lines.
  • the switch 50 when the switch 50 is turned off, the plurality of LEDs D1 to DN are not turned off immediately but are lightly turned on for a predetermined time. That is, although the switch 50 is turned off, a current is leaked to the ground GND through the metal PC 20 and the heat sink 10, and a plurality of LEDs D1 to DN are found to be finely lit. It was. In other words, as a result of measuring the leakage waveform by installing an oscillator between the base or heat sink 10 of the LED module and ground (GND), it was confirmed that about 140 Vrms (200 V peak) of about 60 Hz frequency was measured.
  • the metal PC 20 plays the role of a capacitor. That is, the metal PC 20 is basically composed of a base layer 22 and a circuit layer 24 (copper) and a dielectric layer 26 interposed between the base layer 22 and the circuit layer 24 as shown in FIG. do.
  • the metal PC 20 since the base layer 22 and the circuit layer 24 serve as electrodes, and the intermediate dielectric layer 26 acts as a dielectric, the metal PC 20 has a capacitor structure. Capacitors have a characteristic of capacitive impedance and microleakage occurs due to the use of AC voltage in the withstand voltage test. In particular, it has been found that the leakage current increases in proportion to the area of the opposite electrode of the capacitor.
  • the conventional LED luminaire having the switch 50 installed only in one of two commercial power supply input lines is difficult to guarantee the reliability of operation due to leakage current. That is, even though the switch 50 is turned off, the LEDs D1 to DN are lightly turned on, making it difficult to guarantee the reliability of the operation and causing unnecessary power loss.
  • FIG. 3 is a circuit diagram illustrating a power consumption leak in a conventional switch-off.
  • the method of controlling the LED (red LED 64, green LED 66, blue LED 68) used as a light source of the luminaire as shown in Figure 4 pulse width modulation to control the brightness by adjusting the pulse width (PWM: Pulse Width Modulation) is the most common method.
  • a switching mode power supply (SMPS) unit 60 and a PWM controller 62 are required.
  • the SMPS unit 60 converts the AC input power into a DC output voltage so as to match the operating power of the luminaire and outputs it.
  • the PWM controller 62 is based on a control signal inputted with an amplitude of the input voltage in order to maintain a constant voltage or a constant current state at all times without a change in the output voltage due to a change in the input voltage (DC voltage) from the SMPS unit 60. Modulate the width of the pulse to a constant amplitude.
  • the red LED 64, the green LED 66, and the blue LED 68 are driven by signals output from the PWM control unit 62.
  • the SMPS unit 60 performs intermittent control at a high frequency by using a high-speed power semiconductor device and obtains various stable DC voltages through an internal rectifying circuit and a smoothing circuit. That is, the SMPS unit 60 should have various components internally, and in particular, it should have a high-speed power semiconductor device for switching.
  • the SMPS unit 60 should be frequently replaced by causing frequent failures.
  • connection state of a plurality of AC LEDs driven by receiving an AC commercial power is as illustrated in FIG. 5.
  • a plurality of AC LEDs L1 to L8 are connected in series and used as a light source.
  • Luminaires that require a low-voltage power source must change their power source accordingly.
  • a converter capable of outputting a normal high voltage power may be used as it is, but the number of parts increases more than necessary, and the size of the transformer also increases, leading to increased manufacturing cost and lower reliability.
  • the present invention has been proposed to solve the above-described problems, and an object of the present invention is to provide an LED driving device capable of blocking leakage current and smoothly driving the LED.
  • the present invention prevents leakage current caused by the characteristics of capacitors in the metal PCB in the LED luminaire employing the metal PCB, and does not cause loss due to leakage current even if the switch is turned off in the AC LED luminaire, Allows the user to drive the LED without using the AC power.Allows the other AC LEDs to light continuously even when one of the AC powers connected in series using the AC commercial power is opened. It is intended to be convertible to.
  • the LED driving device is a device connected to a plurality of commercial power input line LED module arrayed in a metal PC,
  • It includes a blocking element is installed on all input lines of the LED module connected to the plurality of commercial power input lines, respectively, to block the commercial power input to all input lines of the LED module.
  • the interruption element is composed of an AC relay provided with a switch on each of the input lines of the semiconductor switching element or the LED module.
  • a bridge diode may be further included at the rear end of the blocking element, and a filter for blocking noise flowing into the input line of the LED module may be further included in the input line of the LED module.
  • An LED driving apparatus for rectifying the commercial power from the power supply stage; A first switching driver and a second switching driver driven on / off based on an output signal of the rectifier and including a photo triac; A first semiconductor switching element installed between the first switching driver and one end of the load and forming a power supply path between the power supply terminal and one end of the load as the first switching driver is turned on; And a second semiconductor switching element installed between the second switching driver and the other end of the load and forming a power supply path between the power supply terminal and the other end of the load as the second switching driver is turned on.
  • the time constant section is provided between the power supply stage and the rectifying section, and includes a variable resistor and a capacitor.
  • an LED driving device including: a first switching driver and a second switching driver including a photo triac, which are driven on / off based on an input signal; A first semiconductor switching element installed between the power supply terminal and one end of the load and forming a power supply path between the power supply terminal and one end of the load as the first switching driver is turned on; A second semiconductor switching element installed between the power supply terminal and the other end of the load and forming a power supply path between the power supply terminal and the other end of the load as the second switching driver is turned on; A phase sensing unit sensing a phase of an input external signal and outputting an AC signal corresponding thereto; And a rectifying unit rectifying the AC signal from the phase sensing unit and sending the rectified AC signal to the first switching driver and the second switching driver.
  • the external signal input to the phase sensing unit is input in the form of a PWM wave or a square wave.
  • the rectifier for rectifying the commercial power from the power supply stage;
  • a switching driver driven on / off based on an output signal of the rectifier and including a photo triac;
  • a semiconductor switching element installed between the power supply terminal and one end of the load and forming a power supply path from the power supply terminal to the load as the switching driver is turned on;
  • a selection switch unit provided between the power supply terminal and both ends of the load, and switching off the switching driver by operation to cut off the power supply path from the power supply terminal to the load.
  • the semiconductor switching element includes a triac.
  • An LED driving device according to another embodiment of the present invention, a device for driving the LED,
  • a switching unit including a rectifier including a semiconductor switching element turned on / off according to an input control signal, and rectifying the input AC commercial power and outputting the rectified AC power to an LED; And a control unit generating a control signal for turning on / off the semiconductor switching element and outputting the control signal to the switching unit.
  • Semiconductor switching elements include thyristors or triacs.
  • the transformer unit further includes a transformer unit connected between the switching unit and the AC commercial power input terminal to drop the input AC commercial power to the switching unit.
  • the switching unit comprises: a first switching unit connected to the first secondary side of the transformer unit; And second and third switching units connected to the second secondary side of the transformer unit, wherein the number of coil windings on the first secondary side of the transformer unit is smaller than the number of coil windings on the second secondary side of the transformer unit.
  • an LED driving device is a device having a unidirectional power supply passage path in which a plurality of AC LEDs receiving AC commercial power are connected in series.
  • a plurality of closed-circuit holding portions connected one to one to each of the plurality of alternating current LEDs
  • Each of the plurality of closed-circuit holders may be electrically connected as the first AC switching element is turned on and the first semiconductor switching element is turned on when the corresponding AC LED is opened and the voltage applied to both ends is greater than or equal to a predetermined value. And a second semiconductor switching element.
  • the first semiconductor switching element is composed of a zener diode.
  • the second semiconductor switching element is composed of a silicon controlled rectifier (SCR) or a triac whose control stage is connected to one end of the zener diode.
  • SCR silicon controlled rectifier
  • an LED driving device is a device having a bidirectional power passage path in which a plurality of pairs of AC LEDs receiving AC commercial power are arrayed.
  • a plurality of closed-circuit holding portions connected one to one to each of the pair of alternating LEDs
  • Each of the plurality of closed-circuit holding portions is a semiconductor switching element that is electrically connected as one AC LED of a corresponding pair of AC LEDs is opened and the voltage applied to both ends thereof is greater than or equal to a predetermined value, thereby forming a power passage path.
  • the semiconductor switching element is composed of a sidak.
  • the semiconductor switching device is electrically connected as the first semiconductor switching device is turned on when one of the corresponding AC LEDs is opened and the voltage applied to both ends thereof is greater than or equal to a predetermined value, and the first semiconductor switching device is turned on. And a second semiconductor switching element for forming a power passage path.
  • the first semiconductor switching element consists of a first Zener diode and a second Zener diode connected between a corresponding pair of alternating LEDs.
  • the second semiconductor switching element is composed of a triac with a control terminal connected between the first zener diode and the second zener diode.
  • An LED drive device is a device for converting a commercial AC power source to a low-voltage AC power source for outputting,
  • a time constant element installed between both ends of the rectifier for rectifying the commercial AC power source, one end of which is connected to one end of the primary side of the transformer having a predetermined turns ratio together with one end of the rectifier; And one end of which is connected to the time constant element and the other end of which is connected to the other end of the primary side of the transformer having a predetermined turns ratio, and switching driven by an external PWM signal to output an oscillation signal for outputting a low voltage AC power of the transformer.
  • the switching unit includes: a photo coupler driven on / off in accordance with the input PWM signal; And a switching device that switches according to the on / off driving of the photo coupler.
  • An LED drive device is a device for converting a commercial AC power source to a low-voltage AC power source for outputting,
  • a time constant element connected to an output end of the rectifying unit for rectifying commercial AC power and a primary side of a transformer having a predetermined winding ratio, and for performing variable time constant control; And a switching unit which is driven on / off according to a variable time constant in the time constant element and outputs an oscillation signal for outputting a low voltage AC power of the transformer.
  • the time constant element includes a variable resistor and is connected between the output end of the rectifier and the primary side of the transformer.
  • the switching unit includes a first switching element and a second switching element which are installed between the output other end of the time constant element and the rectifying unit and the primary side of the transformer, and whose control stage is connected to the time constant element, respectively.
  • the leakage current can be completely cut off when switching off the AC LED luminaire, thereby achieving an energy saving effect and increasing safety.
  • the rectifier by thyristor or the like replaces the role of SMPS and AC switch, so it is possible to control the brightness of RGB LEDs by phase control rather than pulse width modulation method.
  • the efficiency is approximately 98% or more at rated power, resulting in less power loss compared to devices using conventional SMPS.
  • the output of the transformer can be easily controlled by the frequency and pulse width of the pulse width modulation (PWM) signal from the outside.
  • PWM pulse width modulation
  • variable resistor makes it easy to control the output of the transformer. Even in this case, when the AC LED is connected to the secondary side of the transformer or the AC LED is connected instead of the transformer, dimming of the corresponding AC LED is possible with a variable resistor.
  • 1 is a view adopted to explain the operation of the LED module of the conventional LED lamp.
  • FIG. 2 is a view showing the basic structure of the metal PCB shown in FIG.
  • FIG. 3 is a circuit diagram illustrating a power consumption leak in a conventional switch-off.
  • FIG. 4 is a block diagram illustrating a conventional LED driving apparatus.
  • FIG. 5 is a diagram illustrating a problem that occurs when a plurality of LEDs, which are light sources of an LED module using AC commercial power, are connected in series.
  • FIG. 6 is a circuit diagram of the LED driving apparatus according to the first embodiment of the present invention.
  • FIG. 13 is a circuit diagram of the LED driving apparatus according to the second embodiment of the present invention.
  • FIG. 14 is a circuit diagram of the LED driving apparatus according to the third embodiment of the present invention.
  • 15 is a circuit diagram of the LED driving apparatus according to the fourth embodiment of the present invention.
  • 16 is a circuit diagram of the LED driving apparatus according to the fifth embodiment of the present invention.
  • FIG. 17 is a block diagram of an LED driving apparatus according to a sixth embodiment of the present invention.
  • FIG. 18 is an internal circuit diagram of the block diagram of FIG. 17.
  • 19 is a circuit diagram of the LED driving apparatus according to the seventh embodiment of the present invention.
  • Fig. 20 is a diagram in which the LED driving circuit of the eighth embodiment of the present invention is adopted in a line in which a plurality of LEDs are connected in series in a single direction.
  • Fig. 21 is a diagram in which the LED driving circuit of the eighth embodiment of the present invention is adopted in a line in which a plurality of LEDs are interconnected in both directions.
  • FIG. 22 is a diagram illustrating an example of a semiconductor switching element that can be employed in the closed circuit holding unit shown in FIG. 20.
  • FIG. 23 is a circuit diagram in which the semiconductor switching device of FIG. 22 is connected to a line in which a plurality of LEDs are connected in series in a single direction.
  • FIG. 24 is a diagram showing another example of the semiconductor switching element employable in the closed-circuit holding portion shown in FIG. 20.
  • 25 and 26 show an example of a semiconductor switching element that can be employed in the closed-circuit holding portion shown in FIG. 21.
  • Fig. 27 is a circuit diagram of the LED driving apparatus according to the ninth embodiment of the present invention, and is a circuit diagram showing the configuration of a low voltage AC power converter.
  • Fig. 28 is a circuit diagram of the LED driving apparatus according to the tenth embodiment of the present invention, and shows a configuration of a low voltage AC power converter.
  • 29 and 30 are waveform diagrams illustrating output signal waveforms of the circuit diagram of FIG. 28.
  • FIG. 6 is a circuit diagram of the LED driving apparatus according to the first embodiment of the present invention, and more specifically, it may be viewed as a circuit diagram illustrating the concept of a device for completely blocking current leaking from the LED luminaire.
  • the same components as in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
  • the switch 70a is installed at one of the two commercial power input lines, and the switch 70b is connected to the other commercial power input line.
  • the installation is different. That is, in FIG. 6, blocking devices (that is, switches 70a and 70b) are respectively provided in the plurality of commercial power input lines, thereby turning on / off both of the commercial power input lines.
  • FIGS. 7 to 12 A detailed circuit configuration for implementing the first embodiment of the present invention will be described with reference to FIGS. 7 to 12.
  • Figure 7 is to control the two commercial power input line by using an AC relay.
  • the switches 70a and 70b of the AC relay are installed together with the plurality of LEDs in the LED module 80.
  • the AC relay may be provided at the front end of the LED module 80.
  • the switches 70a and 70b of the AC relay are installed in input lines (eg, two input lines) of the LED module 80 including a plurality of LEDs connected in series with each other.
  • AC relay means a relay whose power of the input unit is AC.
  • reference numeral 70 denotes a body of an AC relay connected to both input lines of the LED module 80.
  • the body 70 of the ac relay includes a coil (not shown).
  • an AC relay may be understood to include a body 70 and switches 70a and 70b.
  • Reference numeral 70 is referred to as the body of an AC relay, but is also commonly referred to as a relay.
  • the switch 50 of FIG. 7 may be understood as a conventional power switch.
  • FIG. 8 is to control two commercial power supply input lines by using a semiconductor switching device (triac).
  • Triacs 90a and 90b are installed on input lines (eg, two input lines) of the LED module 80 including a plurality of LEDs connected in series with each other.
  • the triacs 90a and 90b are bidirectional three-terminal rectifiers and are mainly used for AC control. Triacs 90a and 90b each have two thyristors connected in parallel in the forward and reverse directions.
  • a module for applying a signal for turning on (eg, a gate current) to the gates of the triacs 90a and 90b (in this module, applies a signal for turning off the triacs 90a and 90b). May be installed).
  • a resistor is provided between the triacs 90a and 90b and the plurality of LEDs. The resistance prevents the LEDs from breaking due to overvoltage application.
  • the switch 50 of FIG. 8 may be understood as a conventional power switch.
  • 9 is to control the two commercial power input line by using the AC relay and the bridge diode.
  • 9 is a configuration in which the bridge diode 100 is added to the configuration of FIG. 7. In FIG. 9, the same elements as in FIG. 7 will be omitted.
  • the bridge diode 100 is provided at the rear end of the switches 70a and 70b of the AC relay.
  • the switch 50 When the switch 50 is turned on, the bridge diode 100 receives a predetermined commercial power through an AC relay and converts it into a DC component. In other words, the AC power is converted into DC power by the bridge diode 100 to drive the LED module.
  • FIG. 10 is to control two commercial power input lines using a triac and a bridge diode. 10 is a configuration in which the bridge diode 100 is added to the configuration of FIG. 8. In FIG. 10, the same components as in FIG. 8 will be omitted.
  • the bridge diode 100 is provided at the rear ends of the triacs 90a and 90b.
  • FIG. 10 is a circuit for converting AC power into DC power by the bridge diode 100 to drive the LED module as shown in FIG. 9.
  • the on / off characteristic is superior to that of FIG. 9 using the AC relay. That is, the configuration of FIG. 10 enables faster operation control than the configuration of FIG. 9.
  • a module for applying a signal for turning on (eg, a gate current) to the gates of the triacs 90a and 90b (in this module, applies a signal for turning off the triacs 90a and 90b). May be installed).
  • FIG. 11 is to control two commercial power input lines using the bridge thyristor 110.
  • Bridge thyristor 110 is a bridge made of four thyristors.
  • the bridge thyristor 110 is installed at an input line of the LED module 80 including a plurality of LEDs connected in series.
  • a module for applying a signal for turning on (eg, a gate current) to the gate of each thyristor of the bridge thyristor 110 (in this module, applies a signal for turning off the bridge thyristor 110). May be installed).
  • FIG. 11 since the bridge thyristor 110 is used, the on / off characteristic is superior to FIG. 7 using the AC relay. That is, the configuration of FIG. 11 enables faster operation control than the configuration of FIG. 7.
  • FIG. 12 illustrates a configuration in which an EMI filter 120 is added to the configuration of FIG. 8.
  • FIG. 12 the same components as in FIG. 8 will be omitted.
  • the EMS filter 120 removes noise carried by commercial power input into the LED module 80.
  • a predetermined commercial power source AC is input to the LED module 80 and the triacs 90a and 90b are turned on.
  • the EM filter 120 in the LED module 80 removes the noise carried in the commercial power supply.
  • a module for applying a signal for turning on (eg, a gate current) to the gates of the triacs 90a and 90b (in this module, applies a signal for turning off the triacs 90a and 90b). May be installed).
  • FIG. 12 when the switch 50 that is on is turned off, the forward anode current of each of the triacs 90a and 90b that is on is lowered below the holding current.
  • the turn-off signal is input to the gates of the triacs 90a and 90b when the switch 50 is turned off. Accordingly, the triacs 90a and 90b are turned off to cut off commercial power input to both input lines of the LED module 80. Therefore, no electric potential is generated in the circuit layer (copper foil) of the metal PC 20, so that no leakage current is generated.
  • FIG. 12 additionally obtains the noise removing effect by having the EM filter 120 more than FIG. 8.
  • FIG. 13 is a circuit diagram of the LED driving apparatus according to the second embodiment of the present invention. More specifically, it is a circuit diagram of the leakage current interruption device at the time of switching off in an AC LED luminaire.
  • reference numeral 122 denotes an input terminal (for example, two-wire type) to which a commercial power supply (alternating current) is input, hereinafter referred to as a power supply terminal for convenience.
  • Reference numeral 124 denotes an output terminal (for example, two-wire type) connected to a load (not shown; for example, an LED), hereinafter referred to as a load for convenience.
  • the second embodiment includes a rectifier 126, a first switching driver 128, a second switching driver 130, a first semiconductor switching element Q1, and a second semiconductor switching element Q2.
  • the rectifier 126 rectifies the commercial power input through the power stage 122.
  • the rectifier 126 includes a bridge diode.
  • the first switching driver 128 is driven on / off based on the output signal (DC power supply) of the rectifier 126.
  • the first switching driver 128 includes a photo triac including a light emitting element and a light receiving element. That is, the first switching driver 128 is turned on as the light emitting device is turned on and emits light.
  • the second switching driver 130 is driven on / off based on the output signal (DC power supply) of the rectifier 126.
  • the second switching driver 130 includes a photo triac including a light emitting element and a light receiving element. That is, the second switching driver 130 is turned on as the light emitting device is turned on and emits light.
  • An anode of a light emitting element (eg, a light emitting diode) of the first switching driver 128 is connected to any connection portion of the rectifier 126.
  • the cathode of the light emitting element (eg, a light emitting diode) of the first switching driver 128 is connected to the anode of the light emitting element (eg, a light emitting diode) of the second switching driver 130.
  • the cathode of the light emitting element (eg, the light emitting diode) of the second switching driver 130 is connected to the other connection portion of the rectifier 126 through the resistor R3.
  • the first semiconductor switching element Q1 is installed between one end of the power supply stage 122 and one end of the load 124, and a control terminal (gate) is connected to the first switching driver 128.
  • the first semiconductor switching element Q1 is turned on as the first switching driver 128 is turned on, so that the first semiconductor switching element Q1 turns on a power supply path (ie, a path through which current can flow) between the power supply 122 and one end of the load 124.
  • the first semiconductor switching element Q1 comprises a triac.
  • the second semiconductor switching element Q2 is installed between the other end of the power supply stage 122 and the other end of the load 124, and a control terminal (gate) is connected to the second switching driver 130.
  • the second semiconductor switching element Q2 is turned on as the second switching driver 130 is turned on, so that the second semiconductor switching element Q2 turns on a power supply path (ie, a path through which current can flow) between the power supply 122 and the other end of the load 124.
  • the second semiconductor switching element Q2 comprises a triac.
  • Triacs as examples of the first and second semiconductor switching elements Q1 and Q2 are bidirectional three-terminal rectifying elements, which are mainly used for AC control. Triac is a structure in which two thyristors are connected in parallel in the forward and reverse directions, respectively.
  • the resistor R1 prevents damage of the light receiving element of the first switching driver 128 due to overvoltage application.
  • the resistor R2 prevents damage of the light receiving element of the second switching driver 130 due to overvoltage application.
  • the resistor R3 controls the current of the line in which the light emitting elements of the first and second switching drivers 128 and 130 and the rectifier 126 are connected to each other.
  • the commercial power (AC) input from the power supply stage 122 while the switch (not shown) is turned on is converted into direct current by the rectifier 126.
  • the first and second switching drivers 128 and 130 are turned on by the signal of the DC component output from the rectifier 126. Accordingly, a predetermined AC signal is input to the gates of the first and second semiconductor switching elements Q1 and Q2 through the light receiving elements of the first and second switching drivers 128 and 130.
  • the first and second semiconductor switching elements Q1 and Q2 are turned on to supply commercial power from the power stage 122. Is applied to the load 124.
  • the first and second switching drivers 128 and 130 are turned off. That is, since the light emitting element and the light receiving element of the first and second switching drivers 128 and 130 are completely insulated and the first and second semiconductor switching elements Q1 and Q2 are turned off, the potential at the load 124 is reduced. No level is generated and no leakage current is generated. Accordingly, fine lighting of a load (eg, a lamp, an LED, etc.) is not generated, thereby minimizing standby power loss, and preventing an electric shock due to inadvertent human contact when switching off.
  • a load eg, a lamp, an LED, etc.
  • FIG. 14 is a circuit diagram of the LED driving apparatus according to the third embodiment of the present invention. More specifically, it is a circuit diagram of the leakage current interruption device at the time of switching off in an AC LED luminaire.
  • the third embodiment is almost the same as the configuration of the second embodiment, except that the time constant part 132 is further configured.
  • the same reference numerals are assigned to the same elements in FIG. 13, and description thereof will be omitted.
  • the time constant 132 is installed between the power supply stage 122 and the rectifier 126.
  • the time constant 132 controls the phases of the first and second semiconductor switching elements Q1 and Q2.
  • the time constant part 132 includes resistors R4 and R5 and a capacitor C connected in series with each other.
  • Resistor R5 is a variable resistor.
  • the node between the resistor R5 of the time constant portion 132 and the capacitor C is connected to any connection portion of the rectifier 126.
  • the current is approximately 90 degrees out of phase with the voltage.
  • the resistance value of the resistor R5 variable resistor
  • the resistance value of the resistor R5 is adjusted (for example, 0 (low resistance) to 90 (high resistance)
  • the phases of the first and second semiconductor switching elements Q1 and Q2 are adjusted.
  • the first and second switching drivers 128 and 130 may be turned off to turn off the first and second semiconductor switching elements Q1 and Q2.
  • the operation of the third embodiment is substantially the same as the operation of the second embodiment except for the operation of the time constant unit 132, description thereof will be omitted.
  • the effect of the third embodiment is controlled by the time constant part 132 (ie, the phases of the first and second semiconductor switching elements Q1 and Q2 at will) in addition to the effect of the second embodiment. So you can adjust the output to your liking).
  • 15 is a circuit diagram of the LED driving apparatus according to the fourth embodiment of the present invention. More specifically, it is a circuit diagram of the leakage current interruption device at the time of switching off in an AC LED luminaire.
  • the time constant part 132 is connected to the power supply stage 122 so that the phases of the first and second semiconductor switching elements Q1 and Q2 are adjusted.
  • the phase sensing unit 134 senses a phase of an external signal (for example, a PWM wave or square wave type signal) input from the outside regardless of the power supply stage 122, and outputs a corresponding signal to the rectifier 126. To be sent to) is different from the third embodiment.
  • the fourth embodiment is characterized in that the first and second semiconductor switching elements Q1 and Q2 can be turned on and off and the output can be converted by an external signal.
  • reference numeral 134 denotes an input of an external signal. Receiving external signal input.
  • phase sensing unit 134 senses the phase of the input external signal to determine on / off timing points for the first and second semiconductor switching elements Q1 and Q2, and generates an AC signal corresponding thereto. To (126).
  • FIG. 15 the same or similar components as those of the components of FIG. 13 or 14 are denoted by the same reference numerals, and description thereof will be omitted. That is, in FIG. 15, the rectifier 126, the first and second switching drivers 128 and 130, and the first and second semiconductor switching elements Q1 and Q2 are functionally equivalent to the corresponding components in FIG. 13 or 14. Works the same.
  • commercial power (AC) input from the power supply stage 122 is input to the first and second semiconductor switching elements Q1 and Q2.
  • the phase sensing unit 134 senses the phase of the input external signal.
  • the phase sensing unit 134 determines on / off timing points of the first and second semiconductor switching elements Q1 and Q2, and then generates an AC signal corresponding thereto and sends it to the rectifier 126.
  • the first and second switching drivers 128 and 130 are turned on / off by the signal of the DC component output from the rectifier 126.
  • the first and second switching drivers 128 and 130 When the first and second switching drivers 128 and 130 are turned on, the first and second semiconductor switching elements Q1 and Q2 are turned on, and commercial power from the power stage 122 is applied to the load 124.
  • the first and second switching drivers 128 and 130 are turned off by an external signal meaning "0"
  • the light emitting device and the light receiving device of the first and second switching drivers 128 and 130 are completely separated. Insulated and the first and second semiconductor switching elements Q1 and Q2 are turned off.
  • the potential level does not occur in the load 124, so that no leakage current is generated. This prevents fine lighting of the load (eg, lamps, LEDs, etc.) from occurring, thereby minimizing standby power loss and preventing electric shock due to inadvertent human contact when the switch is turned off.
  • 16 is a circuit diagram of the LED driving apparatus according to the fifth embodiment of the present invention. More specifically, it is a circuit diagram of the leakage current interruption device at the time of switching off in an AC LED luminaire.
  • manually shutting off the power supply path by operating the selector switch 136 is different from the above embodiments.
  • the fifth embodiment includes a rectifier 126, a switching driver 140, a semiconductor switching element Q1, and a selection switch unit 136.
  • the rectifier 126 rectifies the commercial power input through the power stage 122 as in the above embodiments.
  • the structure and function of the rectifier are the same as in the above embodiments, and the same reference numerals are used for the sake of convenience.
  • the switching driver 140 is driven on / off based on the output signal (DC power supply) of the rectifier 126.
  • the switching driver 140 includes a photo triac including a light emitting element and a light receiving element. That is, the switching driver 140 turns on the light receiving device as the light emitting device is turned on and emits light.
  • the semiconductor switching element Q1 is installed between one end of the power supply terminal 122 and one end of the load 124, and a control terminal (gate) is connected to the switching driver 140.
  • the semiconductor switching element Q1 is turned on as the switching driver 140 is turned on to form a power supply path (that is, a path through which current can flow) between the power supply 122 and one end of the load 124.
  • semiconductor switching element Q1 includes a triac as in the previous embodiments.
  • the reference numeral of the semiconductor switching element is referred to as Q1, which is provided at the same position as the first semiconductor switching element in the above-described embodiments and has the same reference numeral for convenience.
  • the selector switch 136 is installed between the power supply stage 122 and both ends of the load 124 at the front end of the rectifier 126.
  • the selection switch unit 136 turns off the switching driver 140 by a user's manipulation to block the power supply path from the power supply stage 122 to the load 124.
  • the selection switch unit 136 is operated such that the switch SW is connected to the contacts 1 and 4 in the initial state (power on state), and the switch SW is connected to the contacts 3 and 6 in the power off state. It is operated to be connected to each.
  • Such operation is performed by the user. That is, when it is confirmed that the load (for example, lamp, LED, etc.) is finely lit even though the power is off, the user operates the switch SW to be connected to the contacts 3 and 6.
  • reference numeral S denotes a power on / off switch connected to a commercial power supply line (not shown)
  • reference numeral 138 denotes a power supply stage 122 serving as a jack as an inlet connected to the switch S.
  • the inlet 138 and the power supply stage 122 are not shown in FIG. 16, and the switch S and the selection switch unit 136 may be simply connected.
  • the switch S is turned on and the switch SW of the selection switch unit 136 is connected to the contacts 1 and 4, the commercial power input from the power supply stage 122. (AC) is converted into DC by the rectifier 126.
  • the switching driver 140 is turned on by the signal of the DC component output from the rectifier 126. Accordingly, a predetermined AC signal is input to the gate of the semiconductor switching element Q1 through the light receiving element of the switching driver 140.
  • the semiconductor switching element Q1 As a predetermined AC signal is input to the gate of the semiconductor switching element Q1, the semiconductor switching element Q1 is turned on to apply commercial power from the power supply stage 122 to the load 124.
  • the switch (SW) of the existing contact state is changed. That is, when the switch S is in the on state, the switch SW is connected to the contacts 1 and 4, and when a fine lighting of the load is found when the switch S is turned off, the switch SW is connected to the contacts 3 and 6. Operate to be connected. In this case, the switching driver 140 is turned off.
  • the potential level does not occur in the load 124, and thus no leakage current is generated. This eliminates fine lighting of the load (eg, lamps, LEDs, etc.), thereby minimizing standby power loss and preventing electric shock due to inadvertent human contact when switching off.
  • FIG. 17 is a block diagram of an LED driving apparatus according to a sixth embodiment of the present invention.
  • the sixth embodiment includes a switching unit 150 and a control unit 152.
  • the switching unit 150 is composed of a rectifier composed of a semiconductor switching element that is turned on / off according to the input control signal.
  • the switching unit 150 rectifies the input AC commercial power and outputs the same to the red LED 154, the green LED 156, and the blue LED 158.
  • the controller 152 generates a control signal for turning on / off the semiconductor switching element and applies it to the switching unit 150.
  • FIG. 18 is an internal circuit diagram of the block diagram of FIG. 17.
  • the switching unit 150 includes a first switching unit 150a, a second switching unit 150b, and a third switching unit 150c.
  • the first to third switching portions 150a to 150c are each composed of four thyristors (rectifiers) coupled in a bridge form.
  • the first to third switching units 150a to 150c are configured by using a thyristor, but a triac may be used if necessary.
  • the thyristor is referred to as an example of a semiconductor switching device.
  • Thyristors in the first to third switching units 150a to 150c are turned on / off by a control signal (on / off signal) from the controller 152.
  • the thyristor in the first to third switching units 150a to 150c adopt a gate turn-off thyristor which can be turned off at a free timing.
  • the first switching unit 150a rectifies and transmits the AC commercial power provided from the AC commercial power terminals AC1 and AC2 to the red LED 154.
  • the red LED 154 is composed of a plurality of red LEDs RD1 to RDN connected in series with each other.
  • the red LED 154 may be referred to as a red LED module.
  • the second switching unit 150b rectifies and transmits the AC commercial power provided from the AC commercial power stages AC1 and AC2 to the green LED 156.
  • the green LED 156 is composed of a plurality of green LEDs GD1 to GDN connected in series with each other.
  • the green LED 156 may be referred to as a green LED module.
  • the third switching unit 150c rectifies and transmits the AC commercial power provided from the AC commercial power terminals AC1 and AC2 to the blue LED 158.
  • the blue LED 158 is composed of a plurality of blue LEDs BD1 to BDN connected in series with each other.
  • the blue LED 158 may be referred to as a blue LED module.
  • the resistors R are installed in the red LEDs 154, the green LEDs 156, and the blue LEDs 158, respectively. Since constant current cannot be used in AC, a resistor (R) is used to control the current of the corresponding LED line.
  • the number of LEDs of the red LEDs 154 is approximately 1.5 times larger than the number of LEDs of the green LEDs 156 and the blue LEDs 158.
  • the voltage at both ends is about 2.1 to 2.4V when checking the power consumption of 1W (350mA) of the red LED when driving the LED RGB, and the voltage at both ends when checking the power consumption of 1W (350mA) of the green and blue LED is approximately. It is about 3.1 to 3.5V.
  • the number of LEDs of the red LED 154 is adjusted to match the voltage of the blue LED and to equalize the power consumption of the red LED 154, the green LED 156, and the blue LED 158.
  • the number of LEDs of the green LED 156 and the blue LED 158 is approximately 1.5 times greater.
  • the switching unit 150 may further include a filter circuit for removing a surge component such as a transient peak current generated when an AC commercial power is applied.
  • the AC commercial power is directly converted into a direct current by the rectifier in the switching unit 150 and sent to the red LED 154, the green LED 156, and the blue LED 158. It becomes.
  • the output power can be controlled by changing the phase by the timing of turning on the thyristor by using the thyristor element of the rectifier. Accordingly, the luminance control for the red LED 154, the green LED 156, and the blue LED 158 is possible.
  • the efficiency is approximately 98% or more at rated power, resulting in less power loss compared to devices using conventional SMPS.
  • 19 is a circuit diagram of the LED driving apparatus according to the seventh embodiment of the present invention.
  • the transformer part is further provided in the configuration of FIG. 17 described above. Therefore, the block diagram for explaining the seventh embodiment is not shown separately, but instead the circuit diagram of FIG.
  • the seventh embodiment includes a transformer 160, a switching unit 150 (150a, 150b, 150c) and a controller 152.
  • the transformer 160 drops the AC commercial power input thereto.
  • the switching unit 150 is configured as a rectifier including a semiconductor switching element connected to the secondary side of the transformer unit 160 and turned on / off according to an input control signal.
  • the switching unit 150 rectifies AC power from the secondary side of the transformer unit 160 and sends the rectified power to the red LED 154, the green LED 156, and the blue LED 158.
  • the controller 152 performs the same function as the controller 152 described with reference to FIG. 17.
  • the switching unit 150 may include a first switching unit 150a connected to the first secondary side 5-9 of the transformer unit 160; And second and third switching units 150b and 150c connected to the second secondary side 8-10 of the transformer unit 160.
  • An internal configuration of the first to third switching parts 150a to 150c of FIG. 19 is the same as that of the first to third switching parts 150a to 150c of FIG. 18.
  • the first switching unit 150a rectifies and transmits the AC power (which is a voltage drop AC power) from the first secondary side 5-9 of the transformer unit 160 to the red LED 154.
  • the red LED 154 is composed of a plurality of red LEDs RD1 to RDN connected in series with each other.
  • the red LED 154 may be referred to as a red LED module.
  • the second switching unit 150b rectifies and transmits the AC power (which is the voltage-falling AC power) from the second secondary side 8-10 of the transformer unit 160 to the green LED 156.
  • the green LED 156 is composed of a plurality of green LEDs GD1 to GDN connected in series with each other.
  • the green LED 156 may be referred to as a green LED module.
  • the third switching unit 150c rectifies and transmits the AC power supply (which is the voltage-falling AC power supply) from the second secondary side 8-10 of the transformer unit 160 to the blue LED 158.
  • the blue LED 158 is composed of a plurality of blue LEDs BD1 to BDN connected in series with each other.
  • the blue LED 158 may be referred to as a blue LED module.
  • a resistor R is installed in each of the red LED 154, the green LED 156, and the blue LED 158. Since constant current cannot be used in AC, a resistor (R) is used to control the current of the corresponding LED line.
  • the number of LEDs of the red LED 154, the green LED 156, and the blue LED 158 is the same.
  • voltage of both ends is about 2.1 ⁇ 2.4V, and voltage of both ends is about 3.1 ⁇ 3.5 when checking power consumption of 1W (350mA) level of green and blue LED.
  • V is about. If 12 LEDs are used for each RGB, the red LED is about 25.2 to 28.8V, and the green and blue LEDs are about 37.2 to 42V.
  • the same power source can be used, so that the second secondary side 8-10 of the transformer unit 160 is used together, and the red LED has a blue LED and a green LED at power consumption. Since it is different from the first secondary side 5-9 of the transformer unit 160.
  • the paths for supplying driving power to the red LEDs 154 are provided.
  • the number of coil turns on the first secondary side 5-9 of the transformer unit 160 located is smaller than the number of coil turns on the second secondary side 8-10. That is, when the number of windings of the first secondary side coil and the second secondary side coil is the same and the number of LEDs in each of the RGB is the same, the power consumption of the green and blue LEDs is larger than that of the red LEDs.
  • the number of coil turns on the first secondary side 5-9 of 160 is smaller than the number of coil turns on the second secondary side 8-10 of the transformer 160, power consumption of each other becomes similar. This is because the voltage induced in the secondary coil is proportional to the number of turns of the secondary coil.
  • the voltage excited on the first secondary side 5-9 and the voltage excited on the second secondary side 8-10 of the transformer 160 are determined by the number of series of LEDs.
  • the number of coil turns (the number of turns) of the first secondary side 5-9 of the transformer unit 160 and the number of coil turns (the number of turns) of the second secondary side 8-10 correspond to the voltage determined for each. Will be decided.
  • the AC commercial power is first reduced in voltage by the transformer 160, and then converted into a DC by a rectifier in the switching unit 150. 156, to the blue LED 158.
  • the output power can be controlled by changing the phase by the timing of turning on the thyristor by using the thyristor element of the rectifier. Accordingly, the luminance control for the red LED 154, the green LED 156, and the blue LED 158 is possible.
  • the efficiency is approximately 98% or more at rated power, resulting in less power loss compared to devices using conventional SMPS.
  • Fig. 20 is a diagram in which the LED driving circuit of the eighth embodiment of the present invention is adopted in a line in which a plurality of LEDs are connected in series in a single direction.
  • a plurality of AC LEDs LD1 to LD6 receiving AC commercial power are connected in series to each other to have a one-way power passage.
  • One closed circuit holder is connected to each alternating LED.
  • the closed loop holding part 161 is connected between the anode and the cathode of the AC LED LD1.
  • the closed loop holding part 162 is connected between the anode and the cathode of the AC LED LD2.
  • the closed loop holding part 163 is connected between the anode and the cathode of the AC LED LD3.
  • the closed loop holding part 164 is connected between the anode and the cathode of the AC LED LD4.
  • the closed loop holding part 165 is connected between the anode and the cathode of the AC LED LD5.
  • the closed loop holding part 166 is connected between the anode and the cathode of the AC LED LD6.
  • the number of alternating LEDs is expressed as six, but the number may be added or subtracted, and the number of closed circuit holding units is also correspondingly added or reduced according to the number of alternating LEDs.
  • Fig. 21 is a diagram in which the LED driving circuit of the eighth embodiment of the present invention is adopted in a line in which a plurality of LEDs are interconnected in both directions.
  • a pair of AC LEDs receiving AC commercial power is arrayed to form a bidirectional power passage.
  • One closed loop holder is connected to the pair of AC LEDs.
  • the closed circuit holding unit 171 is connected between the pair of AC LEDs LD1 and LD11.
  • the closed loop holding part 172 is connected between the pair of AC LEDs LD2 and LD22.
  • the closed loop holding part 173 is connected between the pair of AC LEDs LD3 and LD33.
  • the closed loop holding part 174 is connected between the pair of AC LEDs LD4 and LD44.
  • the closed loop holding part 175 is connected between the pair of AC LEDs LD5 and LD55.
  • the closed loop holding part 176 is connected between the pair of AC LEDs LD6 and LD66.
  • the number of pairs of alternating LEDs is represented as six, but the number can be added or subtracted, and the number of closed loop holding portions is also correspondingly added or reduced according to the number of pairs of alternating LEDs.
  • FIG. 22 is a diagram illustrating an example of a semiconductor switching element that can be employed in the closed circuit holding unit shown in FIG. 20. Since the internal configurations of the plurality of closed loop holders of FIG. 20 are the same, one closed circuit holder 161 will be described below as an example.
  • the closed-circuit holding unit 161 of FIG. 22 includes a Zener diode 1b which is turned on when a corresponding AC LED (eg, LD1) is opened and a voltage equal to or higher than a zener voltage is applied to the anode and cathode of the AC LED LD1, and Zener.
  • a corresponding AC LED eg, LD1
  • Zener As the diode 1b is turned on, it is provided with a silicon controlled rectifier (SCR) 1a for conducting a power supply path that bypasses the alternating LED LD1 to maintain a closed circuit.
  • SCR silicon controlled rectifier
  • the control terminal (e.g., gate) of the silicon controlled rectifier 1a is connected to one end of the zener diode 1b.
  • the silicon controlled rectifier 1a is a unidirectional element in which current always flows from anode to cathode.
  • the Zener diode 1b and the silicon controlled rectifier 1a may be regarded as an example of the semiconductor switching element described in the claims of the present invention.
  • FIG. 24 is a diagram showing another example of the semiconductor switching element employable in the closed-circuit holding portion shown in FIG. 20. Since the internal configurations of the plurality of closed loop holders of FIG. 20 are the same, one closed circuit holder 161 will be described below as an example.
  • the closed-circuit holding unit 161 of FIG. 24 has a Zener diode 2b which is turned on when a corresponding AC LED (eg, LD1) is opened and a voltage equal to or higher than a zener voltage is applied to the anode and cathode of the AC LED LD1, and Zener.
  • a corresponding AC LED eg, LD1
  • Zener diode 2b As the diode 2b is turned on, it is provided with a triac 2a that conducts and forms a power passage path bypassing the alternating LED LD1 to maintain a closed circuit.
  • the control terminal (e.g., gate) of the triac 2a is connected to one end of the zener diode 2b.
  • the triac 2a is a bidirectional element, but can be employed in a unidirectional circuit as shown in FIG.
  • the Zener diode 2b and the triac 2a may be regarded as an example of the semiconductor switching element described in the claims of
  • a zener diode for surge absorption is used to maintain a closed circuit.
  • an overvoltage greater than or equal to the zener voltage of the corresponding zener diode is applied to both ends of the zener diode.
  • this is suitable for a short time, but after a certain time, the zener diode is opened by overcurrent.
  • Zener diodes are very inefficient at high currents and are often burned out.
  • the silicon controlled rectifier SCR 1a is initially provided through the zener diodes 1b and 2b.
  • the triac 2a is conducted, and then a voltage between the anode and the cathode flows through the silicon controlled rectifier (SCR) 1a or the triac 2a. Therefore, even if the closed-circuit holding unit 10 operates for a long time, the zener diodes 1b and 2b are not destroyed.
  • FIG. 25 is a diagram showing an example of a semiconductor switching element that can be employed in the closed circuit holding portion shown in FIG. 21. Since the internal configurations of the plurality of closed loop holders of FIG. 21 are the same, the following description will be given with reference to any one of the closed loop holders 171.
  • the closed circuit holding part 171 of FIG. 25 is formed of a silicon diode for alternating current (SIDAC) that is a semiconductor switching element.
  • the closed-circuit holding unit 171 is energized when any one of the pair of corresponding AC LEDs LD1 and LD11 is opened and the voltage applied to the anode and the cathode of the corresponding AC LED is equal to or greater than the breakover voltage. Then, the closed circuit holding unit 171 forms a power passage path bypassing the open AC LED to maintain the closed circuit.
  • Saidak is a bidirectional two-terminal thyristor, and has a structure similar to that of a shockley diode connected in anti-parallel.
  • the closed circuit holding unit 171 is configured as a sid, it is not only possible to maintain the closed circuit by bypassing the alternating current LED when the alternating current LED is opened, and is also used to protect the surge voltage of the AC line by being strong against high voltage and high current.
  • FIG. 26 is a diagram showing another example of the semiconductor switching element employable in the closed-circuit holding portion shown in FIG. 21. Since the internal configurations of the plurality of closed loop holders of FIG. 21 are the same, the following description will be given with reference to any one of the closed loop holders 171.
  • the closed circuit holding unit 171 of FIG. 26 is turned on as one of the pair of AC LEDs LD1 and LD11 is opened and a voltage applied to the anode and the cathode of the AC LED is greater than or equal to the Zener voltage.
  • a power passage path is conducted to bypass the open AC LED. It is provided with a triac (Triac) 171a for maintaining a closed circuit.
  • the anode of the first zener diode 171b and the anode of the second zener diode 171c are connected to each other, and the node between the anode of the first zener diode 171b and the anode of the second zener diode 171c is a triac ( It is connected to the control terminal (gate) of 171a.
  • the cathode of the first zener diode 171b and the second zener diode 171c is connected to different terminals of the triac 171a and is connected to the anode and cathode of the AC LED LD1 and the AC LED LD11. do.
  • FIG. 27 is a circuit diagram of the LED driving apparatus according to the ninth embodiment of the present invention. In more detail, it is a circuit diagram which shows the structure of the low voltage alternating current power converter.
  • the ninth embodiment includes a rectifier 182, an oscillator 184, and a transformer 186.
  • the rectifier 182 is connected to the input terminal 180 to which commercial AC power is input.
  • the rectifier 182 full-wave rectifies the commercial AC power input from the input terminal 180.
  • the rectifier 182 is configured of a bridge diode BD.
  • the oscillator 184 is installed between the rectifier 182 and the transformer 186.
  • the oscillator 184 is installed between both ends of the output of the rectifier 182, one end of which is connected to one end of the primary side of the transformer 186 having a predetermined winding ratio together with one end of the output of the rectifier 182. ); And one end is connected to the time constant elements (R1, C1) and the other end is connected to the other end of the primary side of the transformer 186, switching driven by a pulse width modulation (PWM) signal from the outside to output the output of the transformer 186 And a switching unit (185, Q1) for outputting the oscillation signal for.
  • PWM pulse width modulation
  • the switching units 185 and Q1 may include: a photo coupler 185 driven on / off in accordance with an input pulse width modulation (PWM) signal; And a first stage (eg, a collector) is connected to the other end of the primary side of the transformer 186, and a second stage (eg, an emitter) is connected to an output end of the rectifier 182 and a time constant element, and a control stage (eg, The base) is connected to the output terminal of the photo coupler 185, and includes a switching element Q1 that switches according to the on / off driving of the photo coupler 185. Since the photo coupler 185 uses light, the photo coupler 185 is resistant to noise and has a very fast response speed.
  • PWM pulse width modulation
  • the photo coupler 185 does not transmit an output signal to the input side because the light emitting part and the light receiving part are electrically insulated from each other and signal transmission is unidirectional. Due to the characteristics of the photo coupler 185, the switching operation of the switching element Q1 can be performed more reliably.
  • the switching element Q1 is used as a transistor, but may be a FET or an IGBT (Insulated Gate Bipolar Transistor).
  • the transformer 186 has a winding ratio and size that can generate, for example, a low voltage AC power of approximately 24 V or less based on a predetermined AC power applied to the primary side.
  • the commercial AC power (for example, AC 220V) input to the input terminal 180 is full-wave rectified by the rectifier 182 and applied to the primary side of the oscillator 184 and the transformer 186.
  • the transformer 186 outputs a power source having a waveform shape almost similar to that of the power source applied to the primary side (full wave rectified power source) on the secondary side, but based on the oscillation signal from the oscillator 184, the frequency of one cycle The signal is separated into a plurality of detailed on / off signals and output.
  • the photo coupler 185 of the oscillator 184 is turned on / off according to the pulse width modulation (PWM) signal input to the external control signal input terminal 190, and the photo coupler 185 is turned on / off by The switching element Q1 is turned on / off. Based on the on / off state of the switching element Q1, the voltage excited on the secondary side of the transformer 186 is output through the output terminal 188 as shown in FIG. Signal separated into a detailed on / off signal).
  • the frequency and pulse width of the pulse width modulation (PWM) signal is adjusted, the output voltage (low voltage AC voltage) of the transformer 186 outputted through the output terminal 188 can be easily adjusted with a combination of small elements. do.
  • transformer 186 is inversely proportional to frequency. If the frequency of the output voltage of the transformer 186 can be increased in the same circuit configuration, the desired circuit can be realized even by reducing the size of the transformer 186. Thus, the frequency and pulse width of the pulse width modulation (PWM) signal are adjusted. Is very useful.
  • the output of the transformer 186 may be easily controlled by the frequency and pulse width of the pulse width modulation (PWM) signal input to the external control signal input terminal 190.
  • PWM pulse width modulation
  • the pulse width modulation (PWM) signal input to the external control signal input terminal 190
  • the dimming of the corresponding AC LED (load) is possible by means of the frequency and pulse width.
  • FIG. 28 is a circuit diagram of the LED driving apparatus according to the tenth embodiment of the present invention.
  • it is a circuit diagram which shows the structure of the low voltage alternating current power converter.
  • 29 and 30 are waveform diagrams illustrating output signal waveforms of the circuit diagram of FIG. 28.
  • the same components as those of the ninth embodiment described above among the components of the tenth embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the tenth embodiment differs from the ninth embodiment described above in that the output of the transformer can be controlled by a variable resistor without receiving a pulse width modulation (PWM) signal from the outside.
  • PWM pulse width modulation
  • the tenth embodiment includes a rectifier 182, an oscillator 192, and a transformer 186 as in the ninth embodiment described above.
  • the oscillator 192 is connected to one end of the output of the rectifier 182 and one end of the primary side of the transformer 186, and performs time constant control by the variable resistor VR to perform time constant elements R10, R11, R12, and VR. , C10, C11); And switching units Q10 and Q11 that are driven on / off according to variable time constants in the time constant elements R10, R11, R12, VR, C10, and C11 to output an oscillation signal for the output of the transformer 186. It includes. More specifically, one end of the resistors R10, R11, and R12 is connected between one end of the output of the rectifying unit 182 and one end of the primary side of the transformer 186.
  • the capacitor C10 is connected between the resistor R10 and the resistor R11, and the connection node between the capacitor C10 and the resistor R11 is a control terminal (eg, a base) of the second switching element Q11 of the switching unit. Is connected to.
  • the other end of the resistor R12 is connected to a control terminal (eg, a gate) of the first switching element Q10 of the switching unit through the variable resistor VR.
  • the capacitor C11 is connected between the variable resistor VR and the other end of the primary side of the transformer 186.
  • the first stage (eg, collector) of the first switching element Q10 is connected to the connection node of the resistor R10 and the capacitor C10, and the second stage (eg, emitter) of the first switching element Q10.
  • the first end (eg, collector) of the second switching element Q11 is connected to the connection node between the other end of the primary side of the transformer 186 and the condenser C11, and the second end (eg, of the second switching element Q11).
  • Emitter is connected to the other end of the rectifying unit 182 together with the second end of the first switching element Q10.
  • the first and second switching elements Q10 and Q11 are transistors, but they may be FETs or Insulated Gate Bipolar Transistors (IGBTs).
  • IGBTs Insulated Gate Bipolar Transistors
  • the commercial AC power (for example, AC 220V) input to the input terminal 180 is full-wave rectified by the rectifying unit 182 and applied to the primary side of the oscillator 192 and the transformer 186.
  • the transformer 186 outputs the power excited by the power source (the full wave rectified power source) applied to the primary side on the secondary side, based on the oscillation signal from the oscillation unit 192.
  • the oscillation signal according to the time constant determined by the resistance value adjustment of the variable resistor VR is provided to the transformer 186. Accordingly, when the resistance of the variable resistor VR is minimized, a voltage having the waveform as shown in FIG. 29A is generated at the point A of the primary side of the transformer 186, and 2 of the transformer 186 is generated. A voltage (low voltage AC voltage) having a waveform as shown in FIG. 29B is output to the output terminal 188 through the vehicle side. On the contrary, when the resistance value of the variable resistor VR is maximized, the voltage having the waveform as shown in FIG. 30A is generated at the point A of the primary side of the transformer 186, and the secondary side of the transformer 186 is generated.
  • the output terminal 188 outputs a voltage (low voltage AC voltage) having a waveform as shown in FIG.
  • the variable resistor VR when the variable resistor VR is adjusted, the output voltage of the transformer 186 outputted through the output terminal 188 may be easily adjusted by a combination of less elements.
  • the size of transformer 186 is inversely proportional to frequency. If the frequency of the output voltage of the transformer 186 can be increased in the same circuit configuration, since the desired circuit can be implemented even by reducing the size of the transformer 186, the variable resistor VR is very useful.
  • LED dimming is possible at AC low pressure and high pressure, and RGB control is also possible.

Abstract

The present invention concerns an LED drive device which is arranged in such a way as to be able to block leakage current and which is also arranged in such a way as to be able to smoothly drive the LED. The LED drive device of the present invention is one in which LED modules arrayed on a metal PCB are connected to a plurality of regular-power-source input lines, and it comprises cut-off elements which are respectively provided on all of the input lines of the LED modules connected to the plurality of regular-power-source input lines and which are for cutting off the regular-power-source input to all of the input lines of the LED modules. When switched off, both sides of the regular-power-source input line are turned off. Consequently, in principle, there is no scope to produce any leakage current since there is no way that an electrical potential could be generated in the circuit layer (copper foil) of the metal PCB. More specifically, when it is switched off, the LED module (alternating-current LED module) is immediately turned off and thus not only can operational reliability be ensured but also unnecessary power loss is prevented.

Description

엘이디 구동장치LED drive
본 발명은 엘이디 구동장치에 관한 것으로, 보다 상세하게는 조명기구의 광원으로 사용되는 엘이디를 효율적으로 구동하도록 한 장치에 관한 것이다.The present invention relates to an LED driving device, and more particularly, to an apparatus for efficiently driving an LED used as a light source of a luminaire.
상용전원(예컨대, AC 220V 등)을 엘이디 모듈에 직접 가하는 엘이디 등기구의 구성을 개략적으로 살펴보면 도 1과 같다. 복수개의 엘이디(D1 ~ DN)가 직렬로 어레이된 엘이디 모듈이 상용전원 입력라인(AC 입력)에 연결된다. 두 개의 상용전원 입력라인중 어느 한 라인이 엘이디 모듈의 일단과 직접 연결된다. 다른 하나의 상용전원 입력라인은 스위치(50)를 매개로 엘이디 모듈의 다른 단과 연결된다. 엘이디 모듈은 메탈 피씨비(PCB)(20)에 어레이된다. 도 1에서, 미설명 부호 10은 메탈 피씨비(20)의 저면에서 접지된 히트 싱크(heat sink)이고, 미설명 부호 30은 에폭시에 의한 절연막이며, 미설명 부호 40은 회로패턴이 형성된 구리층이다.A configuration of an LED luminaire for directly applying a commercial power source (eg, AC 220V) to an LED module is shown in FIG. 1. An LED module in which a plurality of LEDs D1 to DN are arrayed in series is connected to a commercial power supply input line (AC input). One of the two commercial power input lines is directly connected to one end of the LED module. The other commercial power input line is connected to the other end of the LED module via the switch 50. The LED module is arrayed in a metal PCB (PCB) 20. In FIG. 1, reference numeral 10 denotes a heat sink grounded at the bottom of the metal PC 20, reference numeral 30 denotes an insulating layer made of epoxy, and reference numeral 40 denotes a copper layer on which a circuit pattern is formed. .
이와 같이 상용전원을 엘이디 모듈에 직접 가하는 통상적인 엘이디 등기구는 두 개의 상용전원 입력라인중에서 하나의 라인에만 설치된 스위치(50)를 통해 온/오프된다. As such, a typical LED luminaire that directly applies commercial power to the LED module is turned on / off through a switch 50 installed only on one of two commercial power input lines.
그런데, 스위치(50)를 오프시키게 되면 복수의 엘이디(D1 ~ DN)가 바로 소등되는 것이 아니라 소정시간동안 미세하게나마 점등된다. 즉, 스위치(50)를 오프시켰음에도 불구하고 전류가 메탈 피씨비(20) 및 히트 싱크(10)를 통해 그라운드(GND)로 누설되어 복수의 엘이디(D1 ~ DN)가 미세하게 점등되는 현상을 발견하였다. 다시 말해서, 엘이디 모듈의 베이스 또는 히트 싱크(10)와 그라운드(GND) 사이에 오실레이터를 설치하고서 누설 파형을 측정하여 본 결과, 대략 60Hz주파수의 140Vrms(200V peak) 정도가 측정됨을 확인하였다.However, when the switch 50 is turned off, the plurality of LEDs D1 to DN are not turned off immediately but are lightly turned on for a predetermined time. That is, although the switch 50 is turned off, a current is leaked to the ground GND through the metal PC 20 and the heat sink 10, and a plurality of LEDs D1 to DN are found to be finely lit. It was. In other words, as a result of measuring the leakage waveform by installing an oscillator between the base or heat sink 10 of the LED module and ground (GND), it was confirmed that about 140 Vrms (200 V peak) of about 60 Hz frequency was measured.
누설전류의 발생 원인을 파악해 본 결과, 메탈 피씨비(20)가 캐패시터의 역할을 수행함을 알게 되었다. 즉, 메탈 피씨비(20)는 도 2에서와 같이 기본적으로 베이스층(22)과 회로층(24; 구리) 및 베이스층(22)과 회로층(24) 사이에 개재된 유전체층(26)으로 구성된다. 여기서, 베이스층(22)과 회로층(24)이 전극이 되고 중간의 유전체층(26)이 유전체로서 작용하므로, 메탈 피씨비(20)는 캐패시터의 구조를 갖게 된다. 캐패시터는 용량성 임피던스를 갖는 특성이 있으며 내전압 시험시 교류전압을 사용하므로 미세 누설이 발생한다. 특히, 캐패시터의 대향된 전극의 면적에 비례하여 누설 전류가 증가됨을 파악하였다.As a result of identifying the cause of leakage current, it was found that the metal PC 20 plays the role of a capacitor. That is, the metal PC 20 is basically composed of a base layer 22 and a circuit layer 24 (copper) and a dielectric layer 26 interposed between the base layer 22 and the circuit layer 24 as shown in FIG. do. Here, since the base layer 22 and the circuit layer 24 serve as electrodes, and the intermediate dielectric layer 26 acts as a dielectric, the metal PC 20 has a capacitor structure. Capacitors have a characteristic of capacitive impedance and microleakage occurs due to the use of AC voltage in the withstand voltage test. In particular, it has been found that the leakage current increases in proportion to the area of the opposite electrode of the capacitor.
따라서, 두 개의 상용전원 입력라인중에서 하나의 라인에만 스위치(50)를 설치한 종래의 엘이디 등기구는 누설 전류로 인해 동작의 신뢰성을 보장하기 어렵다. 즉, 스위치(50)를 오프시켰음에도 불구하고 엘이디(D1 ~ DN)가 미세하게 점등되는 현상으로 인해 동작의 신뢰성을 보장하기 어려울 뿐만 아니라 불필요한 전력 손실이 발생하게 된다.Therefore, the conventional LED luminaire having the switch 50 installed only in one of two commercial power supply input lines is difficult to guarantee the reliability of operation due to leakage current. That is, even though the switch 50 is turned off, the LEDs D1 to DN are lightly turned on, making it difficult to guarantee the reliability of the operation and causing unnecessary power loss.
또한, 교류 엘이디 등기구와 같이 상용전원을 사용하는 모든 부하는 교류전원 인가를 위한 스위치 오프시 소비전력의 누수가 발생된다. 도 3은 종래의 스위치 오프시의 소비전력 누수를 설명하기 위한 회로도이다.In addition, all loads using a commercial power source, such as an AC LED luminaire, generate a leakage of power consumption when switched off for AC power application. 3 is a circuit diagram illustrating a power consumption leak in a conventional switch-off.
스위치(SW)를 온(ON)시키게 되면 전원단(54)과 부하(56)간에는 폐회로가 형성되어 전원단(54)으로부터의 상용 전원(교류)이 대부분 트라이악(52)을 통해 부하(56)에 인가된다. When the switch SW is turned on, a closed circuit is formed between the power supply stage 54 and the load 56 so that a commercial power supply (alternating current) from the power supply stage 54 is mostly loaded through the triac 52. Is applied.
그런데, 스위치(SW)를 오프(OFF)시키게 되면 화살표("a")방향으로의 미세한 전류흐름이 있게 된다. 즉, 스위치(SW) 오프시에는 트라이악(52)이 완전히 절연되는 것이 아니라 트라이악(52)의 게이트를 통해 전류가 부하(56)에게로 넘어간다.However, when the switch SW is turned off, there is a minute current flow in the direction of the arrow "a". That is, when the switch SW is off, the current is transferred to the load 56 through the gate of the triac 52 instead of being completely insulated from the triac 52.
이와 같이 교류 엘이디 등기구에서 스위치(SW) 오프시에 미세한 누설전류의 발생으로 대기전력의 손실이 발생된다. 그리고, 스위치(SW) 오프시에 미세한 누설전류가 부하(56)에게로 제공됨을 모르고 있는 상태에서 부주의하여 부하(56)에 신체의 일부가 접촉되면 감전될 수도 있다. 즉, 종래의 교류 엘이디 등기구에서 스위치 오프시에는 누설 전류의 발생으로 인해 미세점등이 발생하고 동작의 신뢰성을 보장하기 어렵다. As described above, when the switch SW is turned off in the AC LED luminaire, a loss of standby power occurs due to the generation of minute leakage current. In addition, when a part of the body inadvertently contacts the load 56 in a state where a minute leakage current is not provided to the load 56 when the switch SW is turned off, an electric shock may occur. That is, in the conventional AC LED luminaire, when the switch is off, the minute light is generated due to the generation of leakage current, it is difficult to ensure the reliability of the operation.
한편, 도 4에서와 같이 조명기구의 광원으로 사용되는 엘이디(적색 LED(64), 녹색 LED(66), 청색 LED(68))를 제어하는 방식은 펄스 폭을 조절하여 휘도 제어하는 펄스폭변조(PWM:Pulse Width Modulation) 방식이 대부분이다.On the other hand, the method of controlling the LED (red LED 64, green LED 66, blue LED 68) used as a light source of the luminaire as shown in Figure 4 pulse width modulation to control the brightness by adjusting the pulse width (PWM: Pulse Width Modulation) is the most common method.
통상적인 펄스폭변조 방식에서는 SMPS(Switching Mode Power Supply)부(60)와 PWM 제어부(62)를 필요로 한다. SMPS부(60)는 교류 입력 전원을 해당 조명기구의 동작전원에 맞도록 직류 출력 전압으로 변환시켜 출력시킨다. PWM 제어부(62)는 SMPS부(60)로부터의 입력 전압(직류 전압)의 변동 등에 따른 출력 전압의 변동이 없이 항상 정전압 또는 정전류 상태를 유지하도록 하기 위해 입력 전압의 진폭을 입력되는 제어신호에 근거하여 진폭이 일정한 펄스의 폭으로 변조한다. 적색 LED(64), 녹색 LED(66), 및 청색 LED(68)는 PWM 제어부(62)에서 출력되는 신호에 의해 구동된다. In a typical pulse width modulation method, a switching mode power supply (SMPS) unit 60 and a PWM controller 62 are required. The SMPS unit 60 converts the AC input power into a DC output voltage so as to match the operating power of the luminaire and outputs it. The PWM controller 62 is based on a control signal inputted with an amplitude of the input voltage in order to maintain a constant voltage or a constant current state at all times without a change in the output voltage due to a change in the input voltage (DC voltage) from the SMPS unit 60. Modulate the width of the pulse to a constant amplitude. The red LED 64, the green LED 66, and the blue LED 68 are driven by signals output from the PWM control unit 62.
여기서, SMPS부(60)는 고속 전력 반도체 소자를 이용하여 높은 주파수로 단속 제어를 하고 내부의 정류 회로와 평활 회로를 거쳐 안정된 각종의 직류 전압을 얻어낸다. 즉, SMPS부(60)는 내부적으로 다양한 부품을 갖추어야 하고, 특히 스위칭을 위한 고속 전력 반도체 소자를 갖추어야 한다. Here, the SMPS unit 60 performs intermittent control at a high frequency by using a high-speed power semiconductor device and obtains various stable DC voltages through an internal rectifying circuit and a smoothing circuit. That is, the SMPS unit 60 should have various components internally, and in particular, it should have a high-speed power semiconductor device for switching.
그런데, 스위칭 주파수를 고주파화하면 스위칭 손실, 인덕터 손실 등으로 전력 손실이 증대되고, 스위칭에 의해 서지 및 노이즈가 발생한다. 그에 따라, SMPS부(60)는 잦은 고장을 일으켜 교체를 자주 해 주어야 한다.However, when the switching frequency is increased, power loss is increased due to switching loss, inductor loss, and the like, and surge and noise are generated by switching. Accordingly, the SMPS unit 60 should be frequently replaced by causing frequent failures.
그리고, AC 상용전원을 인가받아 구동되는 다수의 교류 엘이디의 연결 상태를 살펴보면 도 5에 예시된 바와 같다. 도 5에 예시된 바와 같이 다수개의 교류 엘이디(L1 ~ L8)를 직렬 연결하여 광원으로 사용한다. In addition, the connection state of a plurality of AC LEDs driven by receiving an AC commercial power is as illustrated in FIG. 5. As illustrated in FIG. 5, a plurality of AC LEDs L1 to L8 are connected in series and used as a light source.
도 5에서 다수개의 교류 엘이디(L1 ~ L8)가 모두 정상적인 경우에는 전원단(Vcc)에서 AC 상용전원을 인가하게 되면 다수개의 교류 엘이디(L1 ~ L8)는 모두 온(ON)되어 발광하게 된다. In FIG. 5, when the plurality of AC LEDs L1 to L8 are all normal, when AC commercial power is applied from the power supply terminal Vcc, the plurality of AC LEDs L1 to L8 are all turned on to emit light.
그러나, 어느 한 교류 엘이디(도 1에서는 L5)에서 오픈(open)이 발생된 경우에는 해당 엘이디만 소등되는 것이 아니라 직렬 라인의 모든 교류 엘이디가 점등되지 않는다는 문제점이 발생한다.However, when an open occurs in any one AC LED (L5 in FIG. 1), not only the corresponding LED is turned off but also all AC LEDs of the serial line are not lit.
가정이나 사무실 등에서 사용되는 예컨대, 3 ~ 4개 정도의 LED가 직렬로 접속된 LED모듈이 광원으로 채용된 조명기구와 같은 가전제품은 저압의 전원(예컨대, 대략 AC 24V 이하의 전원)을 요구한다. 저압의 전원이 필요한 조명기구는 파워부분을 그에 맞게 바꾸어 주어야 한다. 예를 들어, 통상의 고압의 전원 출력이 가능한 변환장치를 그대로 사용할 수도 있겠으나, 그리하면 부품수가 필요이상으로 많아지고 트랜스포머의 사이즈 역시 커지게 되어 제조단가가 상승되고 신뢰성이 저하된다. For example, home appliances such as lighting fixtures, which are used as a light source, for example, an LED module having three to four LEDs connected in series, such as a home or office, requires a low voltage power supply (for example, a power supply of approximately 24V or less). . Luminaires that require a low-voltage power source must change their power source accordingly. For example, a converter capable of outputting a normal high voltage power may be used as it is, but the number of parts increases more than necessary, and the size of the transformer also increases, leading to increased manufacturing cost and lower reliability.
그에 따라, 현재에는 저압의 전원을 필요로 하는 조명기구 등에 적합한 변환장치의 필요성이 높아지고 있는 실정이다. Accordingly, there is a growing need for a converter suitable for a luminaire requiring a low voltage power supply.
본 발명은 상기한 종래의 문제점을 해결하기 위해 제안된 것으로, 누설 전류를 차단할 수 있도록 함과 더불어 엘이디의 구동을 원활하게 할 수 있도록 한 엘이디 구동장치를 제공함에 그 목적이 있다.The present invention has been proposed to solve the above-described problems, and an object of the present invention is to provide an LED driving device capable of blocking leakage current and smoothly driving the LED.
즉, 본 발명은 메탈 PCB를 채용한 엘이디 등기구에서 메탈 피씨비에 캐패시터 특성에 의한 누설 전류가 발생하지 않도록 하고, 교류 엘이디 등기구에서 스위치가 오프되더라도 누설전류로 인한 손실 등이 발생되지 않도록 하고, SMPS를 사용하지 않고 엘이디를 구동할 수 있도록 하고, AC 상용전원을 사용하는 상호 직렬 연결된 다수의 교류 엘이디중 어느 한 교류 엘이디가 오픈되더라고 다른 교류 엘이디들이 계속 점등되도록 하고, 상용 교류전원을 저압의 교류전원으로 변환가능하도록 함을 목적으로 한다. That is, the present invention prevents leakage current caused by the characteristics of capacitors in the metal PCB in the LED luminaire employing the metal PCB, and does not cause loss due to leakage current even if the switch is turned off in the AC LED luminaire, Allows the user to drive the LED without using the AC power.Allows the other AC LEDs to light continuously even when one of the AC powers connected in series using the AC commercial power is opened. It is intended to be convertible to.
상기와 같은 목적을 달성하기 위하여 본 발명의 바람직한 실시양태에 따른 엘이디 구동장치는, 메탈 피씨비에 어레이된 엘이디 모듈이 복수의 상용전원 입력 라인에 연결된 장치로서,In order to achieve the above object, the LED driving device according to the preferred embodiment of the present invention is a device connected to a plurality of commercial power input line LED module arrayed in a metal PC,
복수의 상용전원 입력 라인에 연결되는 엘이디 모듈의 모든 입력 라인에 각각 설치되어, 엘이디 모듈의 모든 입력 라인으로의 상용전원 입력을 차단시키는 차단 소자를 포함한다.It includes a blocking element is installed on all input lines of the LED module connected to the plurality of commercial power input lines, respectively, to block the commercial power input to all input lines of the LED module.
차단 소자는, 반도체 스위칭 소자 또는 엘이디 모듈의 모든 입력 라인의 각각에 스위치가 설치된 교류 릴레이로 구성된다.The interruption element is composed of an AC relay provided with a switch on each of the input lines of the semiconductor switching element or the LED module.
차단 소자의 후단에 브리지 다이오드를 추가로 포함하여도 되고, 엘이디 모듈의 입력 라인으로 유입되는 노이즈를 차단하기 위한 필터를 엘이디 모듈의 입력 라인에 추가로 포함하여도 된다.A bridge diode may be further included at the rear end of the blocking element, and a filter for blocking noise flowing into the input line of the LED module may be further included in the input line of the LED module.
본 발명의 다른 실시양태에 따른 엘이디 구동장치는, 전원단으로부터의 상용전원을 정류하는 정류부; 정류부의 출력신호에 근거하여 온/오프 구동되고, 포토 트라이악을 포함하는 제 1스위칭 구동부 및 제 2스위칭 구동부; 제 1스위칭 구동부와 부하의 일단 사이에 설치되고, 제 1스위칭 구동부가 온됨에 따라 전원단과 부하의 일단 사이의 전원 공급 경로를 형성하는 제 1반도체 스위칭 소자; 및 제 2스위칭 구동부와 상기 부하의 타단 사이에 설치되고, 제 2스위칭 구동부가 온됨에 따라 전원단과 부하의 타단 사이의 전원 공급 경로를 형성하는 제 2반도체 스위칭 소자를 포함한다.An LED driving apparatus according to another embodiment of the present invention, the rectifier for rectifying the commercial power from the power supply stage; A first switching driver and a second switching driver driven on / off based on an output signal of the rectifier and including a photo triac; A first semiconductor switching element installed between the first switching driver and one end of the load and forming a power supply path between the power supply terminal and one end of the load as the first switching driver is turned on; And a second semiconductor switching element installed between the second switching driver and the other end of the load and forming a power supply path between the power supply terminal and the other end of the load as the second switching driver is turned on.
제 1 및 제 2반도체 스위칭 소자의 위상을 제어하는 시정수부를 추가로 포함한다.And a time constant portion for controlling phases of the first and second semiconductor switching elements.
시정수부는 전원단과 정류부 사이에 설치되고, 가변저항 및 콘덴서를 포함한다.The time constant section is provided between the power supply stage and the rectifying section, and includes a variable resistor and a capacitor.
본 발명의 또 다른 실시양태에 따른 엘이디 구동장치는, 입력되는 신호에 근거하여 온/오프 구동되고, 포토 트라이악을 포함하는 제 1스위칭 구동부 및 제 2스위칭 구동부; 전원단과 부하의 일단 사이에 설치되고, 제 1스위칭 구동부가 온됨에 따라 전원단과 부하의 일단 사이의 전원 공급 경로를 형성하는 제 1반도체 스위칭 소자; 전원단과 부하의 타단 사이에 설치되고, 제 2스위칭 구동부가 온됨에 따라 전원단과 부하의 타단 사이의 전원 공급 경로를 형성하는 제 2반도체 스위칭 소자; 입력되는 외부신호의 위상을 센싱하고 그에 상응하는 교류신호를 출력하는 위상 센싱부; 및 위상 센싱부로부터의 교류신호를 정류하여 제 1스위칭 구동부 및 제 2스위칭 구동부에게로 보내는 정류부를 포함한다.According to still another aspect of the present invention, there is provided an LED driving device including: a first switching driver and a second switching driver including a photo triac, which are driven on / off based on an input signal; A first semiconductor switching element installed between the power supply terminal and one end of the load and forming a power supply path between the power supply terminal and one end of the load as the first switching driver is turned on; A second semiconductor switching element installed between the power supply terminal and the other end of the load and forming a power supply path between the power supply terminal and the other end of the load as the second switching driver is turned on; A phase sensing unit sensing a phase of an input external signal and outputting an AC signal corresponding thereto; And a rectifying unit rectifying the AC signal from the phase sensing unit and sending the rectified AC signal to the first switching driver and the second switching driver.
위상 센싱부에게로 입력되는 외부신호는 PWM파 또는 구형파의 형태로 입력된다.The external signal input to the phase sensing unit is input in the form of a PWM wave or a square wave.
본 발명의 또 다른 실시양태에 따른 엘이디 구동장치는, 전원단으로부터의 상용전원을 정류하는 정류부; 정류부의 출력신호에 근거하여 온/오프 구동되고, 포토 트라이악을 포함하는 스위칭 구동부; 전원단과 부하의 일단 사이에 설치되고, 스위칭 구동부가 온됨에 따라 전원단으로부터 부하로의 전원 공급 경로를 형성하는 반도체 스위칭 소자; 및 전원단과 부하의 양 단 사이에 설치되고, 조작에 의해 스위칭 구동부를 오프시켜서 전원단으로부터 부하로의 전원 공급 경로를 차단하는 선택 스위치부를 포함한다.LED driving apparatus according to another embodiment of the present invention, the rectifier for rectifying the commercial power from the power supply stage; A switching driver driven on / off based on an output signal of the rectifier and including a photo triac; A semiconductor switching element installed between the power supply terminal and one end of the load and forming a power supply path from the power supply terminal to the load as the switching driver is turned on; And a selection switch unit provided between the power supply terminal and both ends of the load, and switching off the switching driver by operation to cut off the power supply path from the power supply terminal to the load.
반도체 스위칭 소자는 트라이악을 포함한다.The semiconductor switching element includes a triac.
본 발명의 또 다른 실시양태에 따른 엘이디 구동장치는, 엘이디를 구동하는 장치로서,An LED driving device according to another embodiment of the present invention, a device for driving the LED,
입력되는 제어신호에 따라 온/오프되는 반도체 스위칭 소자를 포함하는 정류기를 포함하고, 입력되는 교류 상용 전원을 정류하여 엘이디에게로 출력하는 스위칭부; 및 반도체 스위칭 소자의 온/오프에 대한 제어신호를 생성하여 스위칭부에게로 출력하는 제어부를 포함한다.A switching unit including a rectifier including a semiconductor switching element turned on / off according to an input control signal, and rectifying the input AC commercial power and outputting the rectified AC power to an LED; And a control unit generating a control signal for turning on / off the semiconductor switching element and outputting the control signal to the switching unit.
반도체 스위칭 소자는 사이리스터 또는 트라이악을 포함한다.Semiconductor switching elements include thyristors or triacs.
스위칭부와 교류 상용 전원 입력단 사이에 연결되어, 입력되는 교류 상용 전원을 전압 강하시켜 스위칭부에게로 보내는 변압부를 추가로 포함한다.The transformer unit further includes a transformer unit connected between the switching unit and the AC commercial power input terminal to drop the input AC commercial power to the switching unit.
스위칭부는 변압부의 제 1 이차측에 연결된 제 1스위칭부; 및 변압부의 제 2 이차측에 연결된 제 2 및 제 3스위칭부를 포함하고, 변압부의 제 1 이차측의 코일 권선수가 변압부의 제 2 이차측의 코일 권선수에 비해 적은 것을 특징으로 한다. The switching unit comprises: a first switching unit connected to the first secondary side of the transformer unit; And second and third switching units connected to the second secondary side of the transformer unit, wherein the number of coil windings on the first secondary side of the transformer unit is smaller than the number of coil windings on the second secondary side of the transformer unit.
본 발명의 또 다른 실시양태에 따른 엘이디 구동장치는, 교류 상용전원을 인가받는 다수의 교류 엘이디가 상호 직렬로 접속되어 단방향의 전원 통과 경로를 갖는 장치로서,According to another embodiment of the present invention, an LED driving device is a device having a unidirectional power supply passage path in which a plurality of AC LEDs receiving AC commercial power are connected in series.
다수의 교류 엘이디의 각각에 일대일로 접속된 다수의 폐회로 유지부를 포함하고,A plurality of closed-circuit holding portions connected one to one to each of the plurality of alternating current LEDs,
다수의 폐회로 유지부의 각각은 해당하는 교류 엘이디가 오픈되어 양단에 걸리는 전압이 소정치 이상임에 따라 턴온되는 제 1반도체 스위칭 소자, 및 제 1반도체 스위칭 소자가 턴온됨에 따라 도통되어 전원 통과 경로를 형성시키는 제 2반도체 스위칭 소자를 구비한다.Each of the plurality of closed-circuit holders may be electrically connected as the first AC switching element is turned on and the first semiconductor switching element is turned on when the corresponding AC LED is opened and the voltage applied to both ends is greater than or equal to a predetermined value. And a second semiconductor switching element.
제 1반도체 스위칭 소자는 제너 다이오드로 구성된다.The first semiconductor switching element is composed of a zener diode.
제 2반도체 스위칭 소자는 제어단이 제너 다이오드의 일단에 접속된 실리콘 제어 정류기(SCR) 또는 트라이악으로 구성된다.The second semiconductor switching element is composed of a silicon controlled rectifier (SCR) or a triac whose control stage is connected to one end of the zener diode.
본 발명의 또 다른 실시양태에 따른 엘이디 구동장치는, 교류 상용전원을 인가받는 한 쌍의 교류 엘이디가 다수개 어레이되어 양방향의 전원 통과 경로를 갖는 장치로서,According to another embodiment of the present invention, an LED driving device is a device having a bidirectional power passage path in which a plurality of pairs of AC LEDs receiving AC commercial power are arrayed.
한 쌍의 교류 엘이디의 각각에 일대일로 접속된 다수의 폐회로 유지부를 포함하고,A plurality of closed-circuit holding portions connected one to one to each of the pair of alternating LEDs,
다수의 폐회로 유지부의 각각은 해당하는 한 쌍의 교류 엘이디중 어느 하나의 교류 엘이디가 오픈되어 양단에 걸리는 전압이 소정치 이상임에 따라 도통되어 전원 통과 경로를 형성시키는 반도체 스위칭 소자인 것을 특징으로 한다.Each of the plurality of closed-circuit holding portions is a semiconductor switching element that is electrically connected as one AC LED of a corresponding pair of AC LEDs is opened and the voltage applied to both ends thereof is greater than or equal to a predetermined value, thereby forming a power passage path.
반도체 스위칭 소자는 사이닥으로 구성된다.The semiconductor switching element is composed of a sidak.
반도체 스위칭 소자는 해당하는 한 쌍의 교류 엘이디중 어느 하나의 교류 엘이디가 오픈되어 양단에 걸리는 전압이 소정치 이상임에 따라 턴온되는 제 1반도체 스위칭 소자, 및 제 1반도체 스위칭 소자가 턴온됨에 따라 도통되어 전원 통과 경로를 형성시키는 제 2반도체 스위칭 소자를 구비한다.The semiconductor switching device is electrically connected as the first semiconductor switching device is turned on when one of the corresponding AC LEDs is opened and the voltage applied to both ends thereof is greater than or equal to a predetermined value, and the first semiconductor switching device is turned on. And a second semiconductor switching element for forming a power passage path.
제 1반도체 스위칭 소자는 해당하는 한 쌍의 교류 엘이디 사이에 연결된 제 1제너 다이오드와 제 2제너 다이오드로 구성된다.The first semiconductor switching element consists of a first Zener diode and a second Zener diode connected between a corresponding pair of alternating LEDs.
제 2반도체 스위칭 소자는 제어단이 제 1제너 다이오드와 제 2제너 다이오드의 사이에 접속된 트라이악으로 구성된다.The second semiconductor switching element is composed of a triac with a control terminal connected between the first zener diode and the second zener diode.
본 발명의 또 다른 실시양태에 따른 엘이디 구동장치는, 상용 교류전원을 저압의 교류전원으로 변환시켜 출력하는 장치로서,An LED drive device according to another embodiment of the present invention is a device for converting a commercial AC power source to a low-voltage AC power source for outputting,
상용 교류전원을 정류하는 정류부의 출력 양단 사이에 설치되되, 일단이 정류부의 출력 일단과 함께 소정의 권선비를 갖는 트랜스포머의 1차측 일단에 접속된 시정수 소자; 및 일단이 시정수 소자에 연결되고 타단은 소정의 권선비를 갖는 트랜스포머의 1차측 타단에 연결되고, 외부로부터의 PWM신호에 의해 스위칭 구동되어 트랜스포머의 저압의 교류전원 출력을 위한 발진신호를 출력하는 스위칭부를 포함한다.A time constant element installed between both ends of the rectifier for rectifying the commercial AC power source, one end of which is connected to one end of the primary side of the transformer having a predetermined turns ratio together with one end of the rectifier; And one end of which is connected to the time constant element and the other end of which is connected to the other end of the primary side of the transformer having a predetermined turns ratio, and switching driven by an external PWM signal to output an oscillation signal for outputting a low voltage AC power of the transformer. Contains wealth.
스위칭부는, 입력되는 PWM신호에 따라 온/오프 구동되는 포토 커플러; 및 포토 커플러의 온/오프 구동에 따라 스위칭동작하는 스위칭소자를 포함한다.The switching unit includes: a photo coupler driven on / off in accordance with the input PWM signal; And a switching device that switches according to the on / off driving of the photo coupler.
본 발명의 또 다른 실시양태에 따른 엘이디 구동장치는, 상용 교류전원을 저압의 교류전원으로 변환시켜 출력하는 장치로서,An LED drive device according to another embodiment of the present invention is a device for converting a commercial AC power source to a low-voltage AC power source for outputting,
상용 교류전원을 정류하는 정류부의 출력단과 소정의 권선비를 갖는 트랜스포머의 1차측에 접속되고, 가변적인 시정수 제어를 행하는 시정수 소자; 및 시정수 소자에서의 가변적인 시정수에 따라 온/오프 구동되어 트랜스포머의 저압의 교류전원 출력을 위한 발진신호를 출력하는 스위칭부를 포함한다.A time constant element connected to an output end of the rectifying unit for rectifying commercial AC power and a primary side of a transformer having a predetermined winding ratio, and for performing variable time constant control; And a switching unit which is driven on / off according to a variable time constant in the time constant element and outputs an oscillation signal for outputting a low voltage AC power of the transformer.
시정수 소자는, 가변저항을 포함하고 정류부의 출력 일단과 트랜스포머의 1차측 사이에 연결된다.The time constant element includes a variable resistor and is connected between the output end of the rectifier and the primary side of the transformer.
스위칭부는 시정수 소자와 정류부의 출력 타단과 상기 트랜스포머의 1차측 사이에 설치되되, 제어단이 시정수 소자에 각각 접속된 제 1스위칭소자 및 제 2스위칭소자를 포함한다.The switching unit includes a first switching element and a second switching element which are installed between the output other end of the time constant element and the rectifying unit and the primary side of the transformer, and whose control stage is connected to the time constant element, respectively.
이러한 구성의 본 발명에 따르면, 스위치 오프시 상용전원 입력 라인 양쪽을 모두 오프시키므로, 메탈 피씨비의 회로층(동박)에 전위가 생성될 수가 없어 누설전류가 발생될 여지를 원천적으로 차단하게 된다. 즉, 스위치를 오프시키게 되면 엘이디 모듈(교류 엘이디 모듈)이 바로 오프되므로 동작 신뢰성을 얻을 수 있게 될 뿐만 아니라 불필요한 전력 손실을 방지하게 된다.According to the present invention having such a configuration, since both of the commercial power supply input lines are turned off at the time of switching off, potentials cannot be generated in the circuit layer (copper foil) of the metal PC, and thus, there is a possibility of blocking the possibility of leakage current. In other words, when the switch is turned off, the LED module (AC module) is immediately turned off, thereby obtaining operational reliability and preventing unnecessary power loss.
교류 엘이디 등기구에서의 스위치 오프시 부하의 양단으로의 전원 패스 경로를 완전히 차단하므로 종래에 비해 대기 전력 손실이 최소화되고 감전사고 등을 방지할 수 있게 된다. 즉, 교류 엘이디 등기구에서의 스위치 오프시 누설전류를 완전하게 차단할 수 있게 되어 에너지 절감 효과를 얻게 되고, 안전성이 높아지게 된다.When the AC LED luminaire is switched off, the power path path to both ends of the load is completely blocked, thereby minimizing standby power loss and preventing electric shock. That is, the leakage current can be completely cut off when switching off the AC LED luminaire, thereby achieving an energy saving effect and increasing safety.
교류 상용 전원을 직접 정류기(사이리스터, 트라이악 등으로 구성)로 정류하거나 변압부를 통해 전압 강하후 정류기로 정류하여 직류 전원을 엘이디(R, G, B)에게로 보냄으로써, 엘이디 구동을 위한 회로 구현이 간단한다. 그리고, SMPS를 사용하지 않게 되므로 잦은 고장으로 인한 교체의 번거러움을 해소시킨다. SMPS를 사용하지 않게 되므로 비용적으로도 효과가 있다. Implement the circuit for LED driving by rectifying AC commercial power directly with rectifier (consisting of thyristor, triac, etc.) or by rectifying the rectifier after voltage drop through transformer and directing DC power to LEDs (R, G, B). This is simple. In addition, since the SMPS is not used, the trouble of replacement due to frequent failures is eliminated. It does not use SMPS, so it is cost effective.
많은 내부 부품이 필요한 SMPS 대신에 사이리스터 등에 의한 정류기가 SMPS의 역할 및 AC 스위치 역할을 대신하게 되어 펄스폭변조방식이 아닌 위상제어로 RGB 엘이디의 휘도제어가 가능하게 된다. Instead of SMPS, which requires a lot of internal parts, the rectifier by thyristor or the like replaces the role of SMPS and AC switch, so it is possible to control the brightness of RGB LEDs by phase control rather than pulse width modulation method.
또한, 효율은 정격에서 대략 98%이상이서 종래 SMPS를 사용하는 장치에 비해 전력 손실이 적다.In addition, the efficiency is approximately 98% or more at rated power, resulting in less power loss compared to devices using conventional SMPS.
교류 상용전원을 인가받는 다수의 교류 엘이디가 상호 직렬로 접속되어 단방향 또는 양방향의 전원 통과 경로를 갖도록 형성된 회로에서 어느 한 교류 엘이디가 오픈되면 브레이크 오버를 통해 폐회로를 유지시켜 준다. 이로 인해, 직렬 라인의 다른 교류 엘이디들이 계속 점등을 유지하게 된다.When a plurality of AC LEDs receiving AC commercial power are connected in series to have a one-way or two-way power passage path, when one of the AC LEDs is opened, a closed circuit is maintained through the break-over. This keeps the other alternating current LEDs on the serial line continuously lit.
상용 교류전원을 저압의 교류전원으로 변환시키기 위해 사용되는 회로소자가 많지 않아 매우 간단하게 회로구현이 가능할 뿐만 아니라 저가의 가격으로 회로구현이 가능하다. Since there are not many circuit elements used to convert commercial AC power to low voltage AC power, it is very simple to implement the circuit and at low cost.
외부로부터의 펄스폭변조(PWM)신호의 주파수 및 펄스폭에 의해 트랜스포머의 출력을 쉽게 제어할 수 있게 된다. 또한, 트랜스포머의 이차측에 AC LED를 연결하거나 트랜스포머 대신에 AC LED를 연결하게 되면 외부로부터의 펄스폭변조(PWM)신호에 의해 해당 AC LED에 대한 디밍(dimming)이 가능하다.The output of the transformer can be easily controlled by the frequency and pulse width of the pulse width modulation (PWM) signal from the outside. In addition, when the AC LED is connected to the secondary side of the transformer or the AC LED is connected instead of the transformer, the dimming of the corresponding AC LED is possible by a pulse width modulation (PWM) signal from the outside.
가변저항에 의해 트랜스포머의 출력을 쉽게 제어할 수 있게 된다. 이 경우에도, 트랜스포머의 이차측에 AC LED를 연결하거나 트랜스포머 대신에 AC LED를 연결하게 되면 가변저항으로 해당 AC LED에 대한 디밍(dimming)이 가능하다.The variable resistor makes it easy to control the output of the transformer. Even in this case, when the AC LED is connected to the secondary side of the transformer or the AC LED is connected instead of the transformer, dimming of the corresponding AC LED is possible with a variable resistor.
도 1은 종래의 엘이디 등기구의 엘이디 모듈의 동작을 설명하기 위해 채용된 도면이다.1 is a view adopted to explain the operation of the LED module of the conventional LED lamp.
도 2는 도 1에 도시된 메탈 PCB의 기본 구조를 나타낸 도면이다.2 is a view showing the basic structure of the metal PCB shown in FIG.
도 3은 종래의 스위치 오프시의 소비전력 누수를 설명하기 위한 회로도이다.3 is a circuit diagram illustrating a power consumption leak in a conventional switch-off.
도 4는 종래의 엘이디 구동장치를 설명하기 위한 블럭도이다.4 is a block diagram illustrating a conventional LED driving apparatus.
도 5는 AC 상용전원을 사용하는 엘이디 모듈의 광원인 다수개의 엘이디를 직렬 연결하였을 경우에 발생되는 문제점을 설명하기 위한 도면이다.FIG. 5 is a diagram illustrating a problem that occurs when a plurality of LEDs, which are light sources of an LED module using AC commercial power, are connected in series.
도 6은 본 발명의 제 1실시예에 따른 엘이디 구동장치의 회로도이다.6 is a circuit diagram of the LED driving apparatus according to the first embodiment of the present invention.
도 7 내지 도 12는 본 발명의 제 1실시예를 구현하기 위한 세부적인 회로예를 도시한 도면이다.7 to 12 show detailed circuit examples for implementing the first embodiment of the present invention.
도 13은 본 발명의 제 2실시예에 따른 엘이디 구동장치의 회로도이다.13 is a circuit diagram of the LED driving apparatus according to the second embodiment of the present invention.
도 14는 본 발명의 제 3실시예에 따른 엘이디 구동장치의 회로도이다.14 is a circuit diagram of the LED driving apparatus according to the third embodiment of the present invention.
도 15는 본 발명의 제 4실시예에 따른 엘이디 구동장치의 회로도이다.15 is a circuit diagram of the LED driving apparatus according to the fourth embodiment of the present invention.
도 16은 본 발명의 제 5실시예에 따른 엘이디 구동장치의 회로도이다.16 is a circuit diagram of the LED driving apparatus according to the fifth embodiment of the present invention.
도 17은 본 발명의 제 6실시예에 따른 엘이디 구동장치의 블럭도이다.17 is a block diagram of an LED driving apparatus according to a sixth embodiment of the present invention.
도 18은 도 17의 블럭도의 내부 회로도이다.18 is an internal circuit diagram of the block diagram of FIG. 17.
도 19는 본 발명의 제 7실시예에 따른 엘이디 구동장치의 회로도이다.19 is a circuit diagram of the LED driving apparatus according to the seventh embodiment of the present invention.
도 20은 다수의 엘이디가 단방향으로 상호 직렬 접속된 라인에 본 발명의 제 8실시예의 엘이디 구동회로를 채용한 경우의 도면이다.Fig. 20 is a diagram in which the LED driving circuit of the eighth embodiment of the present invention is adopted in a line in which a plurality of LEDs are connected in series in a single direction.
도 21은 다수의 엘이디가 양방향으로 상호 접속된 라인에 본 발명의 제 8실시예의 엘이디 구동회로를 채용한 경우의 도면이다.Fig. 21 is a diagram in which the LED driving circuit of the eighth embodiment of the present invention is adopted in a line in which a plurality of LEDs are interconnected in both directions.
도 22는 도 20에 도시된 폐회로 유지부에 채용가능한 반도체 스위칭 소자의 예를 나타낸 도면이다.FIG. 22 is a diagram illustrating an example of a semiconductor switching element that can be employed in the closed circuit holding unit shown in FIG. 20.
도 23은 도 22의 반도체 스위칭 소자를 다수의 엘이디가 단방향으로 상호 직렬 접속된 라인에 연결시킨 회로도이다.FIG. 23 is a circuit diagram in which the semiconductor switching device of FIG. 22 is connected to a line in which a plurality of LEDs are connected in series in a single direction.
도 24는 도 20에 도시된 폐회로 유지부에 채용가능한 반도체 스위칭 소자의 다른 예를 나타낸 도면이다.FIG. 24 is a diagram showing another example of the semiconductor switching element employable in the closed-circuit holding portion shown in FIG. 20.
도 25 및 도 26은 도 21에 도시된 폐회로 유지부에 채용가능한 반도체 스위칭 소자의 예를 나타낸 도면이다.25 and 26 show an example of a semiconductor switching element that can be employed in the closed-circuit holding portion shown in FIG. 21.
도 27은 본 발명의 제 9실시예에 따른 엘이디 구동장치의 회로도로서, 저압 교류전원 변환장치의 구성을 나타낸 회로도이다.Fig. 27 is a circuit diagram of the LED driving apparatus according to the ninth embodiment of the present invention, and is a circuit diagram showing the configuration of a low voltage AC power converter.
도 28은 본 발명의 제 10실시예에 따른 엘이디 구동장치의 회로도로서, 저압 교류전원 변환장치의 구성을 나타낸 회로도이다.Fig. 28 is a circuit diagram of the LED driving apparatus according to the tenth embodiment of the present invention, and shows a configuration of a low voltage AC power converter.
도 29 및 도 30은 도 28의 회로도의 출력신호 파형을 예시한 파형도이다.29 and 30 are waveform diagrams illustrating output signal waveforms of the circuit diagram of FIG. 28.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 따른 엘이디 구동장치에 대하여 설명하면 다음과 같다.Hereinafter, an LED driving apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings.
도 6은 본 발명의 제 1실시예에 따른 엘이디 구동장치의 회로도로서, 보다 상세하게는 엘이디 등기구에서 누설되는 전류를 완전히 차단하는 장치의 개념을 설명하는 회로도로 보면 된다. 도 1과 동일한 구성요소에 대해서는 참조부호를 동일하게 부여하면서 그에 대한 설명은 생략한다.FIG. 6 is a circuit diagram of the LED driving apparatus according to the first embodiment of the present invention, and more specifically, it may be viewed as a circuit diagram illustrating the concept of a device for completely blocking current leaking from the LED luminaire. The same components as in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
도 6을 도 1과 비교하여 보면, 도 6에서는 두 개의 상용전원(AC) 입력라인중 어느 한 상용전원 입력라인에는 스위치(70a)를 설치하고, 다른 한 상용전원 입력라인에는 스위치(70b)를 설치한 것이 차이난다. 즉, 도 6에서는 복수의 상용전원 입력라인에 각각 차단 소자(즉, 스위치(70a, 70b)를 의미함)를 설치함으로써, 상용전원 입력라인 양쪽을 함께 온/오프시키게 된다. 6, the switch 70a is installed at one of the two commercial power input lines, and the switch 70b is connected to the other commercial power input line. The installation is different. That is, in FIG. 6, blocking devices (that is, switches 70a and 70b) are respectively provided in the plurality of commercial power input lines, thereby turning on / off both of the commercial power input lines.
도 6과 같이 하게 되면 스위치(60a, 60b) 오프시 메탈 피씨비(20)를 통해 그라운드(GND)로의 전류 경로를 원천적으로 차단하게 되므로, 메탈 피씨비(20)에 캐패시터 특성에 의한 누설 전류의 발생을 차단하고 불필요한 전력 손실을 방지하게 된다. As shown in FIG. 6, when the switches 60a and 60b are turned off, the current path to the ground GND is cut off through the metal PC 20 so that the metal PC 20 generates a leakage current due to the capacitor characteristic. Shut off and avoid unnecessary power loss.
본 발명의 제 1실시예를 구현하기 위한 세부적인 회로 구성에 대해서는 도 7 내지 도 12를 참조하여 설명한다.A detailed circuit configuration for implementing the first embodiment of the present invention will be described with reference to FIGS. 7 to 12.
도 7은 교류 릴레이를 이용하여 두 개의 상용전원 입력라인을 제어하도록 한 것이다. Figure 7 is to control the two commercial power input line by using an AC relay.
교류 릴레이의 스위치(70a, 70b)는 엘이디 모듈(80)내에서 복수의 엘이디와 함께 설치된다. 물론, 복수의 엘이디만을 엘이디 모듈(80)이라고 칭하고, 교류 릴레이는 엘이디 모듈(80)의 전단에 설치되는 것으로 하여도 무방하다. 교류 릴레이의 스위치(70a, 70b)는 상호 직렬 연결된 복수의 엘이디를 포함하는 엘이디 모듈(80)의 입력 라인(예컨대, 두 개의 입력 라인)에 설치된다. 교류 릴레이는 입력부의 전원이 교류인 릴레이를 의미한다. 도 7에서 미설명 부호 70은 엘이디 모듈(80)의 양 입력라인에 연결된 교류 릴레이의 몸체이다. 교류 릴레이의 몸체(70)는 코일(도시 생략)을 포함한다. The switches 70a and 70b of the AC relay are installed together with the plurality of LEDs in the LED module 80. Of course, only a plurality of LEDs may be referred to as the LED module 80, and the AC relay may be provided at the front end of the LED module 80. The switches 70a and 70b of the AC relay are installed in input lines (eg, two input lines) of the LED module 80 including a plurality of LEDs connected in series with each other. AC relay means a relay whose power of the input unit is AC. In FIG. 7, reference numeral 70 denotes a body of an AC relay connected to both input lines of the LED module 80. The body 70 of the ac relay includes a coil (not shown).
도 7에서 교류 릴레이라 함은 몸체(70) 및 스위치(70a, 70b)를 포함하는 것으로 이해하면 된다. 참조부호 70을 교류 릴레이의 몸체라고 하였으나, 보통 릴레이라고 불리우기도 한다.In FIG. 7, an AC relay may be understood to include a body 70 and switches 70a and 70b. Reference numeral 70 is referred to as the body of an AC relay, but is also commonly referred to as a relay.
도 7에서, 참조부호를 부여하지 않았으나 스위치(70a, 70b)와 엘이디 모듈(80) 사이에는 저항이 있다. 그 저항은 과전압 인가로 인한 엘이디들이 파손되는 것을 방지한다. 저항에 대해서는 이하의 다른 실시예에서도 마찬가지이다. 도 7의 스위치(50)는 통상적인 전원 스위치로 이해하면 된다.In FIG. 7, the reference numerals are not given, but there is a resistance between the switches 70a and 70b and the LED module 80. The resistance prevents the LEDs from breaking due to overvoltage application. Regarding the resistance, the same applies to other examples described below. The switch 50 of FIG. 7 may be understood as a conventional power switch.
도 7의 경우는, 온되어 있던 스위치(50)를 오프시키게 되면 교류 릴레이의 스위치(70a, 70b)가 오프되므로 엘이디 모듈(80)의 양 입력 라인으로의 상용전원 입력이 차단된다. 그에 따라, 메탈 피씨비(20)의 회로층(동박)에 전위가 생성되지 않게 되어 누설 전류가 발생되지 않게 된다.In the case of FIG. 7, when the switch 50 that is on is turned off, the switches 70a and 70b of the AC relay are turned off, so that input of commercial power to both input lines of the LED module 80 is blocked. As a result, no electric potential is generated in the circuit layer (copper foil) of the metal PC 20, and no leakage current is generated.
도 8은 반도체 스위칭소자(트라이악)을 이용하여 두 개의 상용전원 입력라인을 제어하도록 한 것이다. FIG. 8 is to control two commercial power supply input lines by using a semiconductor switching device (triac).
트라이악(triac)(90a, 90b)은 상호 직렬 연결된 복수의 엘이디를 포함하는 엘이디 모듈(80)의 입력라인(예컨대, 두 개의 입력라인)에 설치된다. Triacs 90a and 90b are installed on input lines (eg, two input lines) of the LED module 80 including a plurality of LEDs connected in series with each other.
트라이악(90a, 90b)은 쌍방향 3단자 정류소자로서 주로 교류제어에 사용된다. 트라이악(90a, 90b)은 각각 두 개의 사이리스터가 정,역방향으로 병렬 연결된 구조이다. The triacs 90a and 90b are bidirectional three-terminal rectifiers and are mainly used for AC control. Triacs 90a and 90b each have two thyristors connected in parallel in the forward and reverse directions.
도면으로 도시하지 않았으나, 트라이악(90a, 90b)의 게이트에 턴온을 위한 신호(예컨대, 게이트 전류)를 인가하는 모듈(이 모듈에서 트라이악(90a, 90b)의 턴오프를 위한 신호를 인가하게 할 수도 있음)이 갖추어진다.Although not shown in the drawings, a module for applying a signal for turning on (eg, a gate current) to the gates of the triacs 90a and 90b (in this module, applies a signal for turning off the triacs 90a and 90b). May be installed).
도 8에서, 참조부호를 부여하지 않았으나 트라이악(90a, 90b)과 복수의 엘이디 사이에는 저항이 설치된다. 그 저항은 과전압 인가로 인한 엘이디들이 파손되는 것을 방지한다. 도 8의 스위치(50)는 통상적인 전원 스위치로 이해하면 된다.In FIG. 8, although not given a reference numeral, a resistor is provided between the triacs 90a and 90b and the plurality of LEDs. The resistance prevents the LEDs from breaking due to overvoltage application. The switch 50 of FIG. 8 may be understood as a conventional power switch.
도 8의 경우는, 온되어 있던 스위치(50)를 오프시키게 되면 온되어 있던 트라이악(90a, 90b) 각각의 사이리스터의 순방향 애노드 전류가 유지전류 이하로 낮아지게 된다. 물론, 스위치(50)를 오프시킬 때 트라이악(90a, 90b)의 게이트에게로 턴오프 신호가 입력된다. 그에 따라, 트라이악(90a, 90b)이 오프되어 엘이디 모듈(80)의 양 입력라인으로의 상용전원 입력이 차단된다. 그래서, 메탈 피씨비(20)의 회로층(동박)에 전위가 생성되지 않게 되어 누설 전류가 발생되지 않게 된다. In the case of FIG. 8, when the switch 50 that is on is turned off, the forward anode current of the thyristors of each of the triacs 90a and 90b that is on is lowered below the holding current. Of course, the turn-off signal is input to the gates of the triacs 90a and 90b when the switch 50 is turned off. Accordingly, the triacs 90a and 90b are turned off to cut off commercial power input to both input lines of the LED module 80. Therefore, no electric potential is generated in the circuit layer (copper foil) of the metal PC 20, so that no leakage current is generated.
또한, 도 8에서는 트라이악을 차단 소자로 사용하므로 온/오프 특성이 교류 릴레이에 비해 우수하다. 그에 따라, 도 8의 회로구성이 도 7의 회로구성에 비해 보다 신속한 동작 제어가 가능하다. In addition, in FIG. 8, since the triac is used as the blocking element, the on / off characteristic is superior to the AC relay. As a result, the circuit configuration of FIG. 8 enables faster operation control than the circuit configuration of FIG. 7.
도 9는 교류 릴레이와 브리지 다이오드를 이용하여 두 개의 상용전원 입력라인을 제어하도록 한 것이다. 도 9는 도 7의 구성에 브리지 다이오드(100)를 추가시킨 구성이다. 도 9에서 도 7과 동일한 구성요소에 대해서는 설명을 생략한다.9 is to control the two commercial power input line by using the AC relay and the bridge diode. 9 is a configuration in which the bridge diode 100 is added to the configuration of FIG. 7. In FIG. 9, the same elements as in FIG. 7 will be omitted.
브리지 다이오드(100)는 교류 릴레이의 스위치(70a, 70b)의 후단에 설치된다. 브리지 다이오드(100)는 스위치(50)가 온되면 소정의 상용전원을 교류 릴레이를 통해 입력받아 직류성분으로 변환시킨다. 즉, 교류전원을 브리지 다이오드(100)에 의해 직류전원으로 변환하여 엘이디 모듈을 구동시키는 회로이다.The bridge diode 100 is provided at the rear end of the switches 70a and 70b of the AC relay. When the switch 50 is turned on, the bridge diode 100 receives a predetermined commercial power through an AC relay and converts it into a DC component. In other words, the AC power is converted into DC power by the bridge diode 100 to drive the LED module.
도 9의 경우는, 온되어 있던 스위치(50)를 오프시키게 되면 교류 릴레이의 스위치(70a, 70b)가 오프되므로 엘이디 모듈(80)의 양 입력라인으로의 상용전원 입력이 차단된다. 그에 따라, 메탈 피씨비(20)의 회로층(동박)에 전위가 생성되지 않게 되어 누설 전류가 발생되지 않게 된다.In the case of Fig. 9, when the switch 50 that is on is turned off, the switches 70a and 70b of the AC relay are turned off, so that input of commercial power to both input lines of the LED module 80 is blocked. As a result, no electric potential is generated in the circuit layer (copper foil) of the metal PC 20, and no leakage current is generated.
도 10은 트라이악과 브리지 다이오드를 이용하여 두 개의 상용전원 입력라인을 제어하도록 한 것이다. 도 10은 도 8의 구성에 브리지 다이오드(100)를 추가시킨 구성이다. 도 10에서 도 8과 동일한 구성요소에 대해서는 설명을 생략한다. FIG. 10 is to control two commercial power input lines using a triac and a bridge diode. 10 is a configuration in which the bridge diode 100 is added to the configuration of FIG. 8. In FIG. 10, the same components as in FIG. 8 will be omitted.
브리지 다이오드(100)는 트라이악(90a, 90b)의 후단에 설치된다. The bridge diode 100 is provided at the rear ends of the triacs 90a and 90b.
도 10은 도 9에서와 같이 교류전원을 브리지 다이오드(100)에 의해 직류전원으로 변환하여 엘이디 모듈을 구동시키는 회로이다. 도 10에서는 트라이악을 사용하므로 교류 릴레이를 사용하는 도 9에 비해 온/오프 특성이 우수하다. 즉, 도 10의 구성이 도 9의 구성에 비해 보다 신속한 동작 제어가 가능하다.FIG. 10 is a circuit for converting AC power into DC power by the bridge diode 100 to drive the LED module as shown in FIG. 9. In FIG. 10, since the triac is used, the on / off characteristic is superior to that of FIG. 9 using the AC relay. That is, the configuration of FIG. 10 enables faster operation control than the configuration of FIG. 9.
도면으로 도시하지 않았으나, 트라이악(90a, 90b)의 게이트에 턴온을 위한 신호(예컨대, 게이트 전류)를 인가하는 모듈(이 모듈에서 트라이악(90a, 90b)의 턴오프를 위한 신호를 인가하게 할 수도 있음)이 갖추어진다.Although not shown in the drawings, a module for applying a signal for turning on (eg, a gate current) to the gates of the triacs 90a and 90b (in this module, applies a signal for turning off the triacs 90a and 90b). May be installed).
도 10의 경우는, 온되어 있던 스위치(50)를 오프시키게 되면 온되어 있던 트라이악(90a, 90b) 각각의 사이리스터의 순방향 애노드 전류가 유지전류 이하로 낮아지게 된다. 물론, 스위치(50)를 오프시킬 때 트라이악(90a, 90b)의 게이트에게로 턴오프 신호가 입력된다. 그에 따라, 트라이악(90a, 90b)이 오프되어 엘이디 모듈(80)의 양 입력 라인으로의 상용전원 입력이 차단된다. 그래서, 메탈 피씨비(20)의 회로층(동박)에 전위가 생성되지 않게 되어 누설 전류가 발생되지 않게 된다. In the case of FIG. 10, when the switch 50 that is on is turned off, the forward anode current of each of the triacs 90a and 90b that is on is lowered below the holding current. Of course, the turn-off signal is input to the gates of the triacs 90a and 90b when the switch 50 is turned off. Accordingly, the triacs 90a and 90b are turned off to cut off commercial power input to both input lines of the LED module 80. Therefore, no electric potential is generated in the circuit layer (copper foil) of the metal PC 20, so that no leakage current is generated.
도 11은 브리지 사이리스터(110)를 이용하여 두 개의 상용전원 입력라인을 제어하도록 한 것이다. 브리지 사이리스터(110)는 네 개의 사이리스터를 브리지 형태로 만든 것이다. FIG. 11 is to control two commercial power input lines using the bridge thyristor 110. Bridge thyristor 110 is a bridge made of four thyristors.
브리지 사이리스터(110)는 상호 직렬 연결된 복수의 엘이디를 포함하는 엘이디 모듈(80)의 입력라인에 설치된다. The bridge thyristor 110 is installed at an input line of the LED module 80 including a plurality of LEDs connected in series.
도면으로 도시하지 않았으나, 브리지 사이리스터(110)의 각각의 사이리스터의 게이트에 턴온을 위한 신호(예컨대, 게이트 전류)를 인가하는 모듈(이 모듈에서 브리지 사이리스터(110)의 턴오프를 위한 신호를 인가하게 할 수도 있음)이 갖추어진다. Although not shown in the drawings, a module for applying a signal for turning on (eg, a gate current) to the gate of each thyristor of the bridge thyristor 110 (in this module, applies a signal for turning off the bridge thyristor 110). May be installed).
도 11의 경우는, 온되어 있던 스위치(50)를 오프시키게 되면 브리지 사이리스터(110)의 순방향 애노드 전류가 유지전류 이하로 낮아지게 된다. 물론, 스위치(50)를 오프시킬 때 브리지 사이리스터(110)의 각각의 사이리스터의 게이트에게로 턴오프 신호가 입력된다. 그에 따라, 브리지 사이리스터(110)가 오프되어 엘이디 모듈(80)의 양 입력 라인으로의 상용전원 입력이 차단된다. 그래서, 메탈 피씨비(20)의 회로층(동박)에 전위가 생성되지 않게 되어 누설 전류가 발생되지 않게 된다. In the case of FIG. 11, when the switch 50 which is on is turned off, the forward anode current of the bridge thyristor 110 is lowered below the holding current. Of course, when the switch 50 is turned off, a turn-off signal is input to the gate of each thyristor of the bridge thyristor 110. Accordingly, the bridge thyristor 110 is turned off to block the commercial power input to both input lines of the LED module 80. Therefore, no electric potential is generated in the circuit layer (copper foil) of the metal PC 20, so that no leakage current is generated.
도 11에서는 브리지 사이리스터(110)를 사용하므로 교류 릴레이를 사용하는 도 7에 비해 온/오프 특성이 우수하다. 즉, 도 11의 구성은 도 7의 구성에 비해 보다 신속한 동작 제어가 가능하다. In FIG. 11, since the bridge thyristor 110 is used, the on / off characteristic is superior to FIG. 7 using the AC relay. That is, the configuration of FIG. 11 enables faster operation control than the configuration of FIG. 7.
도 12는 도 8의 구성에 이엠아이(EMI) 필터(120)를 추가시킨 구성이다. 도 12에서 도 8과 동일한 구성요소에 대해서는 설명을 생략한다. FIG. 12 illustrates a configuration in which an EMI filter 120 is added to the configuration of FIG. 8. In FIG. 12, the same components as in FIG. 8 will be omitted.
이엠아이 필터(120)는 엘이디 모듈(80)내로 입력되는 상용전원에 실린 노이즈를 제거해 준다. 스위치(50)가 온되면 엘이디 모듈(80)측으로 소정의 상용전원(AC)이 입력되고 트라이악(90a, 90b)은 온된다. 이때, 엘이디 모듈(80)내의 이엠아이 필터(120)는 상용전원에 실린 노이즈를 제거해 준다. The EMS filter 120 removes noise carried by commercial power input into the LED module 80. When the switch 50 is turned on, a predetermined commercial power source AC is input to the LED module 80 and the triacs 90a and 90b are turned on. At this time, the EM filter 120 in the LED module 80 removes the noise carried in the commercial power supply.
도면으로 도시하지 않았으나, 트라이악(90a, 90b)의 게이트에 턴온을 위한 신호(예컨대, 게이트 전류)를 인가하는 모듈(이 모듈에서 트라이악(90a, 90b)의 턴오프를 위한 신호를 인가하게 할 수도 있음)이 갖추어진다.Although not shown in the drawings, a module for applying a signal for turning on (eg, a gate current) to the gates of the triacs 90a and 90b (in this module, applies a signal for turning off the triacs 90a and 90b). May be installed).
도 12의 경우는, 온되어 있던 스위치(50)를 오프시키게 되면 온되어 있던 트라이악(90a, 90b) 각각의 사이리스터의 순방향 애노드 전류가 유지전류 이하로 낮아지게 된다. 물론, 스위치(50)를 오프시킬 때 트라이악(90a, 90b)의 게이트에게로 턴오프 신호가 입력된다. 그에 따라, 트라이악(90a, 90b)이 오프되어 엘이디 모듈(80)의 양 입력 라인으로의 상용전원 입력이 차단된다. 그래서, 메탈 피씨비(20)의 회로층(동박)에 전위가 생성되지 않게 되어 누설 전류가 발생되지 않게 된다. 또한, 도 12는 도 8에 비해 이엠아이 필터(120)를 더 갖춤으로써 노이즈 제거 효과를 부수적으로 얻게 된다. In the case of FIG. 12, when the switch 50 that is on is turned off, the forward anode current of each of the triacs 90a and 90b that is on is lowered below the holding current. Of course, the turn-off signal is input to the gates of the triacs 90a and 90b when the switch 50 is turned off. Accordingly, the triacs 90a and 90b are turned off to cut off commercial power input to both input lines of the LED module 80. Therefore, no electric potential is generated in the circuit layer (copper foil) of the metal PC 20, so that no leakage current is generated. In addition, FIG. 12 additionally obtains the noise removing effect by having the EM filter 120 more than FIG. 8.
(제 2실시예)(Second embodiment)
도 13은 본 발명의 제 2실시예에 따른 엘이디 구동장치의 회로도이다. 보다 상세하게는, 교류 엘이디 등기구에서의 스위치 오프시의 누설전류 차단 장치의 회로도이다.13 is a circuit diagram of the LED driving apparatus according to the second embodiment of the present invention. More specifically, it is a circuit diagram of the leakage current interruption device at the time of switching off in an AC LED luminaire.
도 13에서, 참조부호 122는 상용전원(교류)이 입력되는 입력단자(예컨대, 2선식)로서 이하에서는 편의상 전원단이라고 칭한다. 참조부호 124는 부하(도시 생략; 예컨대, 엘이디)와 연결된 출력단자(예컨대, 2선식)로서 이하에서는 편의상 부하라고 칭한다. In Fig. 13, reference numeral 122 denotes an input terminal (for example, two-wire type) to which a commercial power supply (alternating current) is input, hereinafter referred to as a power supply terminal for convenience. Reference numeral 124 denotes an output terminal (for example, two-wire type) connected to a load (not shown; for example, an LED), hereinafter referred to as a load for convenience.
제 2실시예는 정류부(126), 제 1스위칭 구동부(128), 제 2스위칭 구동부(130), 제 1반도체 스위칭 소자(Q1), 제 2반도체 스위칭 소자(Q2)를 포함한다.The second embodiment includes a rectifier 126, a first switching driver 128, a second switching driver 130, a first semiconductor switching element Q1, and a second semiconductor switching element Q2.
정류부(126)는 전원단(122)을 통해 입력되는 상용전원을 정류한다. 예를 들어, 정류부(126)는 브리지 다이오드를 포함한다.The rectifier 126 rectifies the commercial power input through the power stage 122. For example, the rectifier 126 includes a bridge diode.
제 1스위칭 구동부(128)는 정류부(126)의 출력신호(직류전원)에 근거하여 온/오프 구동된다. 예를 들어, 제 1스위칭 구동부(128)는 발광소자와 수광소자로 이루어진 포토 트라이악을 포함한다. 즉, 제 1스위칭 구동부(128)는 발광소자가 온되어 발광함에 따라 수광소자가 온된다.The first switching driver 128 is driven on / off based on the output signal (DC power supply) of the rectifier 126. For example, the first switching driver 128 includes a photo triac including a light emitting element and a light receiving element. That is, the first switching driver 128 is turned on as the light emitting device is turned on and emits light.
제 2스위칭 구동부(130)는 정류부(126)의 출력신호(직류전원)에 근거하여 온/오프 구동된다. 예를 들어, 제 2스위칭 구동부(130)는 발광소자와 수광소자로 이루어진 포토 트라이악을 포함한다. 즉, 제 2스위칭 구동부(130)는 발광소자가 온되어 발광함에 따라 수광소자가 온된다.The second switching driver 130 is driven on / off based on the output signal (DC power supply) of the rectifier 126. For example, the second switching driver 130 includes a photo triac including a light emitting element and a light receiving element. That is, the second switching driver 130 is turned on as the light emitting device is turned on and emits light.
제 1스위칭 구동부(128)의 발광소자(예컨대, 발광 다이오드)의 애노드는 정류부(126)의 어느 한 접속부위에 접속된다. 제 1스위칭 구동부(128)의 발광소자(예컨대, 발광 다이오드)의 캐소드는 제 2스위칭 구동부(130)의 발광소자(예컨대, 발광 다이오드)의 애노드에 접속된다. 제 2스위칭 구동부(130)의 발광소자(예컨대, 발광 다이오드)의 캐소드는 저항(R3)을 통해 정류부(126)의 다른 한 접속부위에 접속된다.An anode of a light emitting element (eg, a light emitting diode) of the first switching driver 128 is connected to any connection portion of the rectifier 126. The cathode of the light emitting element (eg, a light emitting diode) of the first switching driver 128 is connected to the anode of the light emitting element (eg, a light emitting diode) of the second switching driver 130. The cathode of the light emitting element (eg, the light emitting diode) of the second switching driver 130 is connected to the other connection portion of the rectifier 126 through the resistor R3.
제 1반도체 스위칭 소자(Q1)는 전원단(122)의 일단과 부하(124)의 일단 사이에 설치되되 제어단(게이트)이 제 1스위칭 구동부(128)와 연결된다. 제 1반도체 스위칭 소자(Q1)는 제 1스위칭 구동부(128)가 온됨에 따라 온되어 전원단(122)과 부하(124)의 일단 사이의 전원 공급 경로(즉, 전류가 흐를 수 있는 경로)를 형성한다. 예를 들어, 제 1반도체 스위칭 소자(Q1)는 트라이악을 포함한다.The first semiconductor switching element Q1 is installed between one end of the power supply stage 122 and one end of the load 124, and a control terminal (gate) is connected to the first switching driver 128. The first semiconductor switching element Q1 is turned on as the first switching driver 128 is turned on, so that the first semiconductor switching element Q1 turns on a power supply path (ie, a path through which current can flow) between the power supply 122 and one end of the load 124. Form. For example, the first semiconductor switching element Q1 comprises a triac.
제 2반도체 스위칭 소자(Q2)는 전원단(122)의 타단과 부하(124)의 타단 사이에 설치되되 제어단(게이트)이 제 2스위칭 구동부(130)와 연결된다. 제 2반도체 스위칭 소자(Q2)는 제 2스위칭 구동부(130)가 온됨에 따라 온되어 전원단(122)과 부하(124)의 타단 사이의 전원 공급 경로(즉, 전류가 흐를 수 있는 경로)를 형성한다. 예를 들어, 제 2반도체 스위칭 소자(Q2)는 트라이악을 포함한다.The second semiconductor switching element Q2 is installed between the other end of the power supply stage 122 and the other end of the load 124, and a control terminal (gate) is connected to the second switching driver 130. The second semiconductor switching element Q2 is turned on as the second switching driver 130 is turned on, so that the second semiconductor switching element Q2 turns on a power supply path (ie, a path through which current can flow) between the power supply 122 and the other end of the load 124. Form. For example, the second semiconductor switching element Q2 comprises a triac.
제 1 및 제 2반도체 스위칭 소자(Q1, Q2)의 예로 든 트라이악은 쌍방향 3단자 정류소자로서 주로 교류제어에 사용된다. 트라이악은 각각 두 개의 사이리스터가 정,역방향으로 병렬 연결된 구조이다. Triacs as examples of the first and second semiconductor switching elements Q1 and Q2 are bidirectional three-terminal rectifying elements, which are mainly used for AC control. Triac is a structure in which two thyristors are connected in parallel in the forward and reverse directions, respectively.
도 13에서, 저항(R1)은 과전압 인가로 인한 제 1스위칭 구동부(128)의 수광소자의 파손을 방지한다. 저항(R2)은 과전압 인가로 인한 제 2스위칭 구동부(130)의 수광소자의 파손을 방지한다. 저항(R3)은 제 1 및 제 2스위칭 구동부(128, 130)의 발광소자와 정류부(126)가 서로 연결된 라인의 전류를 제어한다.In FIG. 13, the resistor R1 prevents damage of the light receiving element of the first switching driver 128 due to overvoltage application. The resistor R2 prevents damage of the light receiving element of the second switching driver 130 due to overvoltage application. The resistor R3 controls the current of the line in which the light emitting elements of the first and second switching drivers 128 and 130 and the rectifier 126 are connected to each other.
이와 같이 구성된 제 2실시예에 따르면, 스위치(도시 생략)가 온된 상태에서 전원단(122)으로부터 입력되는 상용전원(교류)은 정류부(126)에서 직류로 변환된다. 정류부(126)에서 출력되는 직류 성분의 신호에 의해 제 1 및 제 2스위칭 구동부(128, 130)가 턴온된다. 그에 따라, 제 1 및 제 2스위칭 구동부(128, 130)의 수광소자를 통해 제 1 및 제 2반도체 스위칭 소자(Q1, Q2)의 게이트에는 소정의 교류신호가 입력된다. According to the second embodiment configured as described above, the commercial power (AC) input from the power supply stage 122 while the switch (not shown) is turned on is converted into direct current by the rectifier 126. The first and second switching drivers 128 and 130 are turned on by the signal of the DC component output from the rectifier 126. Accordingly, a predetermined AC signal is input to the gates of the first and second semiconductor switching elements Q1 and Q2 through the light receiving elements of the first and second switching drivers 128 and 130.
제 1 및 제 2반도체 스위칭 소자(Q1, Q2)의 게이트에 소정의 교류신호가 입력됨에 따라 해당 제 1 및 제 2반도체 스위칭 소자(Q1, Q2)는 턴온되어 전원단(122)으로부터의 상용전원을 부하(124)에게로 인가시킨다. As a predetermined AC signal is inputted to the gates of the first and second semiconductor switching elements Q1 and Q2, the first and second semiconductor switching elements Q1 and Q2 are turned on to supply commercial power from the power stage 122. Is applied to the load 124.
반대로, 전원단(122)으로부터의 상용전원 입력을 차단하게 되면(스위치(도시 생략)를 오프시키면) 제 1 및 제 2스위칭 구동부(128, 130)가 턴오프된다. 즉, 제 1 및 제 2스위칭 구동부(128, 130)의 발광소자와 수광소자의 사이는 완전히 절연되고 제 1 및 제 2반도체 스위칭 소자(Q1, Q2)는 턴오프되므로, 부하(124)에 전위 레벨이 발생하지 않게 되어 누설전류가 발생되지 않게 된다. 그에 따라, 부하(예컨대, 램프, LED 등)의 미세점등이 발생되지 않게 되어 대기전력 손실이 최소화되고, 스위치 오프시에 부주의한 인체 접촉으로 인한 감전사고를 방지할 수 있게 된다.On the contrary, when the commercial power input from the power supply stage 122 is blocked (off the switch (not shown)), the first and second switching drivers 128 and 130 are turned off. That is, since the light emitting element and the light receiving element of the first and second switching drivers 128 and 130 are completely insulated and the first and second semiconductor switching elements Q1 and Q2 are turned off, the potential at the load 124 is reduced. No level is generated and no leakage current is generated. Accordingly, fine lighting of a load (eg, a lamp, an LED, etc.) is not generated, thereby minimizing standby power loss, and preventing an electric shock due to inadvertent human contact when switching off.
(제 3실시예)(Third Embodiment)
도 14는 본 발명의 제 3실시예에 따른 엘이디 구동장치의 회로도이다. 보다 상세하게는, 교류 엘이디 등기구에서의 스위치 오프시의 누설전류 차단 장치의 회로도이다.14 is a circuit diagram of the LED driving apparatus according to the third embodiment of the present invention. More specifically, it is a circuit diagram of the leakage current interruption device at the time of switching off in an AC LED luminaire.
제 3실시예는 제 2실시예의 구성과 거의 대동소이하고, 다만 시정수부(132)가 더 구성됨이 차이난다. 도 14에서는 도 13에서의 구성요소가 동일한 구성요소에 대해서는 동일한 참조부호를 부여하면서 그에 대한 설명은 생략한다.The third embodiment is almost the same as the configuration of the second embodiment, except that the time constant part 132 is further configured. In FIG. 14, the same reference numerals are assigned to the same elements in FIG. 13, and description thereof will be omitted.
시정수부(132)는 전원단(122)과 정류부(126) 사이에 설치된다. 시정수부(132)는 제 1 및 제 2반도체 스위칭 소자(Q1, Q2)의 위상을 제어한다.The time constant 132 is installed between the power supply stage 122 and the rectifier 126. The time constant 132 controls the phases of the first and second semiconductor switching elements Q1 and Q2.
시정수부(132)는 상호 직렬 접속된 저항(R4, R5)과 콘덴서(C)를 포함한다. 저항(R5)은 가변저항이다. 시정수부(132)의 저항(R5)과 콘덴서(C) 사이의 노드는 정류부(126)의 어느 한 접속부위에 접속된다. 시정수부(132)의 경우, 콘덴서(C)에 교류신호를 입력하게 되면 전류는 전압보다 대략 90도 정도 위상이 앞서게 된다. 여기서, 저항(R5; 가변저항)의 저항값을 조절(예컨대, 0(저항이 낮은 경우) ~ 90(저항이 높은 경우))하게 되면 제 1 및 제 2반도체 스위칭 소자(Q1, Q2)의 위상을 제어하여 출력을 조절할 수 있게 된다. 물론, 저항(R5)의 저항값을 최대로 조절할 경우 제 1 및 제 2스위칭 구동부(128, 130)가 오프되어 제 1 및 제 2반도체 스위칭 소자(Q1, Q2)를 오프시키는 것으로 하여도 된다. The time constant part 132 includes resistors R4 and R5 and a capacitor C connected in series with each other. Resistor R5 is a variable resistor. The node between the resistor R5 of the time constant portion 132 and the capacitor C is connected to any connection portion of the rectifier 126. In the case of the time constant part 132, when an AC signal is input to the capacitor C, the current is approximately 90 degrees out of phase with the voltage. Here, when the resistance value of the resistor R5 (variable resistor) is adjusted (for example, 0 (low resistance) to 90 (high resistance)), the phases of the first and second semiconductor switching elements Q1 and Q2 are adjusted. To control the output. Of course, when the resistance value of the resistor R5 is adjusted to the maximum, the first and second switching drivers 128 and 130 may be turned off to turn off the first and second semiconductor switching elements Q1 and Q2.
제 3실시예의 동작은 시정수부(132)의 동작을 제외하고는 상술한 제 2실시예의 동작과 대동소이하므로 설명을 생략한다. 그리고, 제 3실시예에 의한 효과는 상술한 제 2실시예에서의 효과와 함께 시정수부(132)에 의한 효과(즉, 제 1 및 제 2반도체 스위칭 소자(Q1, Q2)의 위상을 마음대로 제어할 수 있으므로 출력을 원하는 대로 조절할 수 있게 됨)가 있다.Since the operation of the third embodiment is substantially the same as the operation of the second embodiment except for the operation of the time constant unit 132, description thereof will be omitted. In addition, the effect of the third embodiment is controlled by the time constant part 132 (ie, the phases of the first and second semiconductor switching elements Q1 and Q2 at will) in addition to the effect of the second embodiment. So you can adjust the output to your liking).
(제 4실시예)(Example 4)
도 15는 본 발명의 제 4실시예에 따른 엘이디 구동장치의 회로도이다. 보다 상세하게는, 교류 엘이디 등기구에서의 스위치 오프시의 누설전류 차단 장치의 회로도이다.15 is a circuit diagram of the LED driving apparatus according to the fourth embodiment of the present invention. More specifically, it is a circuit diagram of the leakage current interruption device at the time of switching off in an AC LED luminaire.
제 4실시예를 상술한 제 3실시예와 비교하여 보면, 제 3실시예에서는 전원단(122)에 시정수부(132)를 연결하여 제 1 및 제 2반도체 스위칭 소자(Q1, Q2)의 위상을 제어할 수 있도록 하였다. 제 4실시예에서는 전원단(122)과 무관하게 외부로부터 입력되는 외부신호(예컨대, PWM파 또는 구형파 형태의 신호)의 위상을 위상 센싱부(134)에서 센싱하여 그에 상응하는 신호를 정류부(126)에게로 보내도록 하는 것이 제 3실시예와 차이난다. 제 4실시예는 외부신호에 의해 제 1 및 제 2반도체 스위칭 소자(Q1, Q2)를 온/오프시키고 출력을 변환시킬 수 있다는 점이 특징이다.도 15에서, 미설명 부호 134는 외부신호를 입력받는 외부신호 입력단이다.Comparing the fourth embodiment to the above-described third embodiment, in the third embodiment, the time constant part 132 is connected to the power supply stage 122 so that the phases of the first and second semiconductor switching elements Q1 and Q2 are adjusted. To control. In the fourth exemplary embodiment, the phase sensing unit 134 senses a phase of an external signal (for example, a PWM wave or square wave type signal) input from the outside regardless of the power supply stage 122, and outputs a corresponding signal to the rectifier 126. To be sent to) is different from the third embodiment. The fourth embodiment is characterized in that the first and second semiconductor switching elements Q1 and Q2 can be turned on and off and the output can be converted by an external signal. In Fig. 15, reference numeral 134 denotes an input of an external signal. Receiving external signal input.
즉, 위상 센싱부(134)에서는 입력되는 외부신호의 위상을 센싱하여 제 1 및 제 2반도체 스위칭 소자(Q1, Q2)에 대한 온/오프 타이밍 시점을 결정하고 그에 상응하는 교류신호를 생성하여 정류부(126)에게로 보낸다.That is, the phase sensing unit 134 senses the phase of the input external signal to determine on / off timing points for the first and second semiconductor switching elements Q1 and Q2, and generates an AC signal corresponding thereto. To (126).
도 15에서는 기능적으로 도 13 또는 도 14에서의 구성요소의 기능과 동일 내지는 유사한 구성요소에 대해서는 동일한 참조부호를 부여하면서 그에 대한 설명은 생략한다. 즉, 도 15에서, 정류부(126), 제 1 및 제 2스위칭 구동부(128, 130), 제 1 및 제 2반도체 스위칭 소자(Q1, Q2)는 도 13 또는 도 14에서 상응하는 구성요소와 기능적으로 동일하게 작용한다.In FIG. 15, the same or similar components as those of the components of FIG. 13 or 14 are denoted by the same reference numerals, and description thereof will be omitted. That is, in FIG. 15, the rectifier 126, the first and second switching drivers 128 and 130, and the first and second semiconductor switching elements Q1 and Q2 are functionally equivalent to the corresponding components in FIG. 13 or 14. Works the same.
이와 같이 구성된 제 4실시예에 따르면, 전원단(122)으로부터 입력되는 상용전원(교류)은 제 1 및 제 2반도체 스위칭 소자(Q1, Q2)에게로 입력된다. 이때, 외부신호 입력단(134)으로 외부신호가 입력됨에 따라 위상 센싱부(134)에서는 입력되는 외부신호의 위상을 센싱한다. 그리고, 위상 센싱부(134)는 제 1 및 제 2반도체 스위칭 소자(Q1, Q2)에 대한 온/오프 타이밍 시점을 결정한 후에 그에 상응하는 교류신호를 생성하여 정류부(126)에게로 보낸다. 정류부(126)에서 출력되는 직류 성분의 신호에 의해 제 1 및 제 2스위칭 구동부(128, 130)가 턴온/턴오프된다. According to the fourth embodiment configured as described above, commercial power (AC) input from the power supply stage 122 is input to the first and second semiconductor switching elements Q1 and Q2. At this time, as the external signal is input to the external signal input terminal 134, the phase sensing unit 134 senses the phase of the input external signal. The phase sensing unit 134 determines on / off timing points of the first and second semiconductor switching elements Q1 and Q2, and then generates an AC signal corresponding thereto and sends it to the rectifier 126. The first and second switching drivers 128 and 130 are turned on / off by the signal of the DC component output from the rectifier 126.
제 1 및 제 2스위칭 구동부(128, 130)가 턴온되면 제 1 및 제 2반도체 스위칭 소자(Q1, Q2)가 턴온되어 전원단(122)으로부터의 상용전원이 부하(124)에게로 인가된다.When the first and second switching drivers 128 and 130 are turned on, the first and second semiconductor switching elements Q1 and Q2 are turned on, and commercial power from the power stage 122 is applied to the load 124.
반대로, "0"을 의미하는 외부신호에 의해 제 1 및 제 2스위칭 구동부(128, 130)가 턴오프되면 제 1 및 제 2스위칭 구동부(128, 130)의 발광소자와 수광소자의 사이는 완전히 절연되고 제 1 및 제 2반도체 스위칭 소자(Q1, Q2)는 턴오프된다. 그에 따라, 부하(124)에 전위 레벨이 발생하지 않게 되어 누설전류가 발생되지 않게 된다. 이는 부하(예컨대, 램프, LED 등)의 미세점등이 발생되지 않게 되어 대기전력 손실이 최소화되고, 스위치 오프시에 부주의한 인체 접촉으로 인한 감전사고를 방지할 수 있게 된다.On the contrary, when the first and second switching drivers 128 and 130 are turned off by an external signal meaning "0", the light emitting device and the light receiving device of the first and second switching drivers 128 and 130 are completely separated. Insulated and the first and second semiconductor switching elements Q1 and Q2 are turned off. As a result, the potential level does not occur in the load 124, so that no leakage current is generated. This prevents fine lighting of the load (eg, lamps, LEDs, etc.) from occurring, thereby minimizing standby power loss and preventing electric shock due to inadvertent human contact when the switch is turned off.
(제 5실시예)(Example 5)
도 16은 본 발명의 제 5실시예에 따른 엘이디 구동장치의 회로도이다. 보다 상세하게는, 교류 엘이디 등기구에서의 스위치 오프시의 누설전류 차단 장치의 회로도이다.16 is a circuit diagram of the LED driving apparatus according to the fifth embodiment of the present invention. More specifically, it is a circuit diagram of the leakage current interruption device at the time of switching off in an AC LED luminaire.
제 5실시예에서는 선택 스위치(136)를 조작하여 전원 공급 경로를 수동적으로 차단시키는 것이 앞서의 실시예들과 차이난다.In the fifth embodiment, manually shutting off the power supply path by operating the selector switch 136 is different from the above embodiments.
제 5실시예는 정류부(126), 스위칭 구동부(140), 반도체 스위칭 소자(Q1), 선택 스위치부(136)를 포함한다.The fifth embodiment includes a rectifier 126, a switching driver 140, a semiconductor switching element Q1, and a selection switch unit 136.
정류부(126)는 앞서의 실시예들에서와 같이 전원단(122)을 통해 입력되는 상용전원을 정류한다. 정류부의 구성 및 기능이 앞서의 실시예들과 동일하여 편의상 참조부호를 동일하게 부여하였다.The rectifier 126 rectifies the commercial power input through the power stage 122 as in the above embodiments. The structure and function of the rectifier are the same as in the above embodiments, and the same reference numerals are used for the sake of convenience.
스위칭 구동부(140)는 정류부(126)의 출력신호(직류전원)에 근거하여 온/오프 구동된다. 예를 들어, 스위칭 구동부(140)는 발광소자와 수광소자로 이루어진 포토 트라이악을 포함한다. 즉, 스위칭 구동부(140)는 발광소자가 온되어 발광함에 따라 수광소자가 온된다.The switching driver 140 is driven on / off based on the output signal (DC power supply) of the rectifier 126. For example, the switching driver 140 includes a photo triac including a light emitting element and a light receiving element. That is, the switching driver 140 turns on the light receiving device as the light emitting device is turned on and emits light.
반도체 스위칭 소자(Q1)는 전원단(122)의 일단과 부하(124)의 일단 사이에 설치되되 제어단(게이트)이 스위칭 구동부(140)와 연결된다. 반도체 스위칭 소자(Q1)는 스위칭 구동부(140)가 온됨에 따라 온되어 전원단(122)과 부하(124)의 일단 사이의 전원 공급 경로(즉, 전류가 흐를 수 있는 경로)를 형성한다. 예를 들어, 반도체 스위칭 소자(Q1)는 앞서의 실시예들에서와 같이 트라이악을 포함한다. 도 16에서, 반도체 스위칭 소자의 참조부호를 Q1으로 하였는데, 이는 앞서 설명한 실시예들에서의 제 1반도체 스위칭 소자와 동일 위치에 설치되어 동일한 기능을 수행하기 때문에 편의상 동일한 참조부호를 부여하였다.The semiconductor switching element Q1 is installed between one end of the power supply terminal 122 and one end of the load 124, and a control terminal (gate) is connected to the switching driver 140. The semiconductor switching element Q1 is turned on as the switching driver 140 is turned on to form a power supply path (that is, a path through which current can flow) between the power supply 122 and one end of the load 124. For example, semiconductor switching element Q1 includes a triac as in the previous embodiments. In FIG. 16, the reference numeral of the semiconductor switching element is referred to as Q1, which is provided at the same position as the first semiconductor switching element in the above-described embodiments and has the same reference numeral for convenience.
선택 스위치부(136)는 정류부(126)의 앞단에서 전원단(122)과 부하(124)의 양 단 사이에 설치된다. 선택 스위치부(136)는 사용자의 조작에 의해 스위칭 구동부(140)를 오프시켜서 전원단(122)에서 부하(124)로의 전원 공급 경로를 차단한다. 선택 스위치부(136)는 예를 들어 초기상태(전원 온상태)에서는 스위치(SW)가 접점(1,4)에 각각 접속되게 조작되고 전원 오프상태에서는 스위치(SW)가 접점(3,6)에 각각 접속되게 조작된다. 이와 같은 조작은 사용자가 행하는 것이다. 즉, 전원 오프상태인데도 불구하고 부하(예컨대, 램프, LED 등)가 미세점등되어 있는 것으로 확인되면 사용자는 스위치(SW)를 조작하여 접점(3,6)에 접속되게 한다. The selector switch 136 is installed between the power supply stage 122 and both ends of the load 124 at the front end of the rectifier 126. The selection switch unit 136 turns off the switching driver 140 by a user's manipulation to block the power supply path from the power supply stage 122 to the load 124. For example, the selection switch unit 136 is operated such that the switch SW is connected to the contacts 1 and 4 in the initial state (power on state), and the switch SW is connected to the contacts 3 and 6 in the power off state. It is operated to be connected to each. Such operation is performed by the user. That is, when it is confirmed that the load (for example, lamp, LED, etc.) is finely lit even though the power is off, the user operates the switch SW to be connected to the contacts 3 and 6.
도 16에서, 미설명 부호 S는 도시하지 않은 상용전원 공급선과 연결된 전원 온/오프용 스위치이고, 미설명 부호 138은 스위치(S)와 연결된 인입구로서 잭(jack) 역할을 하는 전원단(122)과 연결된다. 물론, 도 16에서 인입구(138) 및 전원단(122)을 도시하지 않고 스위치(S)와 선택 스위치부(136)를 그냥 연결되게 표시하여도 무방하다.In FIG. 16, reference numeral S denotes a power on / off switch connected to a commercial power supply line (not shown), and reference numeral 138 denotes a power supply stage 122 serving as a jack as an inlet connected to the switch S. Connected with Of course, the inlet 138 and the power supply stage 122 are not shown in FIG. 16, and the switch S and the selection switch unit 136 may be simply connected.
이와 같이 구성된 제5 실시예에 따르면, 스위치(S)가 온되어 있고 선택 스위치부(136)의 스위치(SW)가 접점(1,4)에 접속되어 있다면 전원단(122)으로부터 입력되는 상용전원(교류)은 정류부(126)에서 직류로 변환된다. 정류부(126)에서 출력되는 직류 성분의 신호에 의해 스위칭 구동부(140)는 턴온된다. 그에 따라, 스위칭 구동부(140)의 수광소자를 통해 반도체 스위칭 소자(Q1)의 게이트에는 소정의 교류신호가 입력된다. According to the fifth embodiment configured as described above, if the switch S is turned on and the switch SW of the selection switch unit 136 is connected to the contacts 1 and 4, the commercial power input from the power supply stage 122. (AC) is converted into DC by the rectifier 126. The switching driver 140 is turned on by the signal of the DC component output from the rectifier 126. Accordingly, a predetermined AC signal is input to the gate of the semiconductor switching element Q1 through the light receiving element of the switching driver 140.
반도체 스위칭 소자(Q1)의 게이트에 소정의 교류신호가 입력됨에 따라 해당 반도체 스위칭 소자(Q1)는 턴온되어 전원단(122)으로부터의 상용전원을 부하(124)에게로 인가시킨다. As a predetermined AC signal is input to the gate of the semiconductor switching element Q1, the semiconductor switching element Q1 is turned on to apply commercial power from the power supply stage 122 to the load 124.
그런데, 필요에 의해 스위치(S)를 오프시켰음에도 불구하고 부하(124)(예컨대, 램프, LED 등)가 미세점등(즉, 누설전류에 의한 미세점등)되어 있다면 사용자는 선택 스위치부(136)의 스위치(SW)를 조작하여 기존의 접점상태를 바꾸게 된다. 즉, 스위치(S) 온 상태에서는 스위치(SW)가 접점(1,4)과 접속되어 있었는데, 스위치(S) 오프시 부하의 미세점등이 발견되면 스위치(SW)가 접점(3,6)과 접속되게 조작한다. 이와 같이 하게 되면 스위칭 구동부(140)가 턴오프된다. 즉, 스위칭 구동부(140)의 발광소자와 수광소자의 사이는 완전히 절연되고 반도체 스위칭 소자(Q1)는 턴오프되므로, 부하(124)에 전위 레벨이 발생하지 않게 되어 누설전류가 발생되지 않게 된다. 이는 부하(예컨대, 램프, LED 등)의 미세점등을 제거하여 대기전력 손실이 최소화되고, 스위치 오프시에 부주의한 인체 접촉으로 인한 감전사고를 방지할 수 있게 된다.However, if the load 124 (eg, a lamp, an LED, etc.) is finely lit (that is, finely lit by leakage current) despite the need to turn off the switch S as necessary, the user may select the switch unit 136. By operating the switch (SW) of the existing contact state is changed. That is, when the switch S is in the on state, the switch SW is connected to the contacts 1 and 4, and when a fine lighting of the load is found when the switch S is turned off, the switch SW is connected to the contacts 3 and 6. Operate to be connected. In this case, the switching driver 140 is turned off. That is, since the light emitting element of the switching driver 140 and the light receiving element are completely insulated and the semiconductor switching element Q1 is turned off, the potential level does not occur in the load 124, and thus no leakage current is generated. This eliminates fine lighting of the load (eg, lamps, LEDs, etc.), thereby minimizing standby power loss and preventing electric shock due to inadvertent human contact when switching off.
(제 6실시예)(Sixth Embodiment)
도 17은 본 발명의 제 6실시예에 따른 엘이디 구동장치의 블럭도이다.17 is a block diagram of an LED driving apparatus according to a sixth embodiment of the present invention.
제 6실시예는 스위칭부(150) 및 제어부(152)를 포함한다.The sixth embodiment includes a switching unit 150 and a control unit 152.
스위칭부(150)는 입력되는 제어신호에 따라 온/오프되는 반도체 스위칭 소자로 구성된 정류기로 구성된다. 스위칭부(150)는 입력되는 교류 상용 전원을 정류하여 적색 LED(154)와 녹색 LED(156) 및 청색 LED(158)에게로 출력한다.The switching unit 150 is composed of a rectifier composed of a semiconductor switching element that is turned on / off according to the input control signal. The switching unit 150 rectifies the input AC commercial power and outputs the same to the red LED 154, the green LED 156, and the blue LED 158.
제어부(152)는 반도체 스위칭 소자의 온/오프에 대한 제어신호를 생성하여 스위칭부(150)에게로 인가한다.The controller 152 generates a control signal for turning on / off the semiconductor switching element and applies it to the switching unit 150.
도 18은 도 17의 블럭도의 내부 회로도이다.18 is an internal circuit diagram of the block diagram of FIG. 17.
스위칭부(150)는 제 1스위칭부(150a), 제 2스위칭부(150b), 및 제 3스위칭부(150c)로 구성된다. 제 1 내지 제 3스위칭부(150a ~ 150c)는 각각 브리지 형태로 결합된 4개의 사이리스터(정류기가 됨)로 구성된다. 도 18에서는 제 1 내지 제 3스위칭부(150a ~ 150c)를 사이리스터를 이용하여 구성시켰으나, 필요에 따라서는 트라이악을 사용하여도 무방하다. 여기서, 사이리스터를 반도체 스위칭 소자의 일 예라고 한다. 제 1 내지 제 3스위칭부(150a ~ 150c)내의 사이리스터는 제어부(152)에서의 제어신호(온/오프 신호)에 의해 온/오프된다. 엘이디의 휘도제어를 위해, 제 1 내지 제 3스위칭부(150a ~ 150c)내의 사이리스터는 자유로운 타이밍으로 오프가능한 게이트 턴오프 사이리스터를 채택함이 바람직하다.The switching unit 150 includes a first switching unit 150a, a second switching unit 150b, and a third switching unit 150c. The first to third switching portions 150a to 150c are each composed of four thyristors (rectifiers) coupled in a bridge form. In FIG. 18, the first to third switching units 150a to 150c are configured by using a thyristor, but a triac may be used if necessary. Here, the thyristor is referred to as an example of a semiconductor switching device. Thyristors in the first to third switching units 150a to 150c are turned on / off by a control signal (on / off signal) from the controller 152. In order to control the brightness of the LED, it is preferable that the thyristor in the first to third switching units 150a to 150c adopt a gate turn-off thyristor which can be turned off at a free timing.
제 1스위칭부(150a)는 교류 상용 전원단(AC1, AC2)으로부터 제공되는 교류 상용 전원을 정류하여 적색 LED(154)에게로 보낸다. 적색 LED(154)는 상호 직렬 접속된 복수의 적색 LED(RD1 ~ RDN)로 구성된다. 여기서, 적색 LED(154)를 적색 LED 모듈이라고 하여도 무방하다.The first switching unit 150a rectifies and transmits the AC commercial power provided from the AC commercial power terminals AC1 and AC2 to the red LED 154. The red LED 154 is composed of a plurality of red LEDs RD1 to RDN connected in series with each other. Here, the red LED 154 may be referred to as a red LED module.
제 2스위칭부(150b)는 교류 상용 전원단(AC1, AC2)으로부터 제공되는 교류 상용 전원을 정류하여 녹색 LED(156)에게로 보낸다. 녹색 LED(156)는 상호 직렬 접속된 복수의 녹색 LED(GD1 ~ GDN)로 구성된다. 여기서, 녹색 LED(156)를 녹색 LED 모듈이라고 하여도 무방하다.The second switching unit 150b rectifies and transmits the AC commercial power provided from the AC commercial power stages AC1 and AC2 to the green LED 156. The green LED 156 is composed of a plurality of green LEDs GD1 to GDN connected in series with each other. Here, the green LED 156 may be referred to as a green LED module.
제 3스위칭부(150c)는 교류 상용 전원단(AC1, AC2)으로부터 제공되는 교류 상용 전원을 정류하여 청색 LED(158)에게로 보낸다. 청색 LED(158)는 상호 직렬 접속된 복수의 청색 LED(BD1 ~ BDN)로 구성된다. 여기서, 청색 LED(158)를 청색 LED 모듈이라고 하여도 무방하다.The third switching unit 150c rectifies and transmits the AC commercial power provided from the AC commercial power terminals AC1 and AC2 to the blue LED 158. The blue LED 158 is composed of a plurality of blue LEDs BD1 to BDN connected in series with each other. Here, the blue LED 158 may be referred to as a blue LED module.
도 18에서, 적색 LED(154), 녹색 LED(156), 청색 LED(158)에는 각각 저항(R)이 설치된다. 교류에서는 정전류를 사용할 수 없으므로 해당 엘이디 라인의 전류를 제어하기 위해 저항(R)을 사용한다. In FIG. 18, the resistors R are installed in the red LEDs 154, the green LEDs 156, and the blue LEDs 158, respectively. Since constant current cannot be used in AC, a resistor (R) is used to control the current of the corresponding LED line.
그리고, 도 18에서는 적색 LED(154)의 엘이디의 수를 녹색 LED(156), 청색 LED(158)의 엘이디의 수보다 대략 1.5배 정도 많게 하였다. 통상적으로, LED RGB 구동시 적색 LED의 1W(350mA)급의 소비전력 체크시 양단 전압이 대략 2.1 ~ 2.4V 정도이고, 녹색 및 청색 LED의 1W(350mA)급의 소비전력 체크시 양단 전압이 대략 3.1 ~ 3.5V 정도이다. 하나의 전원을 사용할 경우에는 청색 LED의 전압에 맞추고, 적색 엘이디(154)와 녹색 엘이디(156) 및 청색 엘이디(158)에서의 소비전력을 동일하게 하기 위해 적색 LED(154)의 엘이디의 수를 녹색 LED(156), 청색 LED(158)의 엘이디의 수보다 대략 1.5배 정도 많게 한 것이다. In FIG. 18, the number of LEDs of the red LEDs 154 is approximately 1.5 times larger than the number of LEDs of the green LEDs 156 and the blue LEDs 158. In general, the voltage at both ends is about 2.1 to 2.4V when checking the power consumption of 1W (350mA) of the red LED when driving the LED RGB, and the voltage at both ends when checking the power consumption of 1W (350mA) of the green and blue LED is approximately. It is about 3.1 to 3.5V. When using a single power supply, the number of LEDs of the red LED 154 is adjusted to match the voltage of the blue LED and to equalize the power consumption of the red LED 154, the green LED 156, and the blue LED 158. The number of LEDs of the green LED 156 and the blue LED 158 is approximately 1.5 times greater.
한편, 도 17 및 도 18에는 도시하지 않았으나, 예를 들어 교류 상용 전원 인가에 따라 발생되는 과도 피크 전류 등의 서지 성분을 제거하기 위한 필터 회로를 스위칭부(150)에 추가로 갖추어도 무방하다.Although not shown in FIGS. 17 and 18, for example, the switching unit 150 may further include a filter circuit for removing a surge component such as a transient peak current generated when an AC commercial power is applied.
도 18과 같은 회로 구성으로 된 제 6실시예는 교류 상용 전원을 직접 스위칭부(150)내의 정류기에서 직류로 변환하여 적색 LED(154), 녹색 LED(156), 청색 LED(158)에게로 보내게 된다. 이때, 정류기의 소자를 사이리스터를 사용함으로 사이리스터를 온시키는 타이밍에 의해 위상을 바꾸는 것으로 출력 전력을 제어할 수 있게 된다. 그에 따라, 적색 LED(154), 녹색 LED(156), 청색 LED(158)에 대한 휘도 제어가 가능하게 된다.In the sixth embodiment having the circuit configuration as shown in FIG. 18, the AC commercial power is directly converted into a direct current by the rectifier in the switching unit 150 and sent to the red LED 154, the green LED 156, and the blue LED 158. It becomes. At this time, the output power can be controlled by changing the phase by the timing of turning on the thyristor by using the thyristor element of the rectifier. Accordingly, the luminance control for the red LED 154, the green LED 156, and the blue LED 158 is possible.
이와 같이 하게 되면, 엘이디 구동을 위한 회로 구현이 간단할 뿐만 아니라 SMPS를 사용하지 않게 되므로 잦은 고장으로 인한 교체의 번거러움을 해소시킨다. This not only simplifies the circuit implementation for LED driving but also eliminates the need for SMPS, thus eliminating the hassle of replacement due to frequent failures.
SMPS를 사용하지 않게 되므로 비용적으로도 효과가 있다. 많은 내부 부품이 필요한 SMPS 대신에 사이리스터 등에 의한 정류기가 SMPS의 역할 및 AC 스위치 역할을 대신하게 되어 펄스폭변조방식이 아닌 위상제어로 RGB 엘이디의 휘도제어가 가능하게 된다. It does not use SMPS, so it is cost effective. Instead of SMPS, which requires a lot of internal parts, the rectifier by thyristor or the like replaces the role of SMPS and AC switch, so it is possible to control the brightness of RGB LEDs by phase control rather than pulse width modulation method.
또한, 효율은 정격에서 대략 98%이상이서 종래 SMPS를 사용하는 장치에 비해 전력 손실이 적다.In addition, the efficiency is approximately 98% or more at rated power, resulting in less power loss compared to devices using conventional SMPS.
(제 7실시예)(Example 7)
도 19는 본 발명의 제 7실시예에 따른 엘이디 구동장치의 회로도이다.19 is a circuit diagram of the LED driving apparatus according to the seventh embodiment of the present invention.
제 7실시예는 앞서 설명한 도 17의 구성에서 변압부를 더 갖춤이 크게 차이난다. 따라서, 제 7실시예를 설명하기 위한 블럭도는 별도로 도시하지 않고 도 19의 회로도로 대신하고자 한다.In the seventh embodiment, the transformer part is further provided in the configuration of FIG. 17 described above. Therefore, the block diagram for explaining the seventh embodiment is not shown separately, but instead the circuit diagram of FIG.
제 7실시예는 변압부(160), 스위칭부(150; 150a, 150b, 150c) 및 제어부(152)를 포함한다.The seventh embodiment includes a transformer 160, a switching unit 150 (150a, 150b, 150c) and a controller 152.
변압부(160)는 입력되는 교류 상용 전원을 전압 강하시킨다.The transformer 160 drops the AC commercial power input thereto.
스위칭부(150)는 변압부(160)의 이차측에 연결되고 입력되는 제어신호에 따라 온/오프되는 반도체 스위칭 소자로 구성된 정류기로 구성된다. 스위칭부(150)는 변압부(160)의 이차측으로부터의 교류 전원을 정류하여 적색 LED(154), 녹색 LED(156), 청색 LED(158)에게로 보낸다. 제어부(152)는 도 17에서 설명한 제어부(152)와 동일한 기능을 수행한다. The switching unit 150 is configured as a rectifier including a semiconductor switching element connected to the secondary side of the transformer unit 160 and turned on / off according to an input control signal. The switching unit 150 rectifies AC power from the secondary side of the transformer unit 160 and sends the rectified power to the red LED 154, the green LED 156, and the blue LED 158. The controller 152 performs the same function as the controller 152 described with reference to FIG. 17.
스위칭부(150)는 변압부(160)의 제 1 이차측(5-9)에 연결된 제 1스위칭부(150a); 및 변압부(160)의 제 2 이차측(8-10)에 연결된 제 2 및 제 3스위칭부(150b, 150c)를 포함한다. 도 19의 제 1 내지 제 3스위칭부(150a ~ 150c)의 내부 구성은 도 18의 제 1 내지 제 3스위칭부(150a ~ 150c)와 동일하다.The switching unit 150 may include a first switching unit 150a connected to the first secondary side 5-9 of the transformer unit 160; And second and third switching units 150b and 150c connected to the second secondary side 8-10 of the transformer unit 160. An internal configuration of the first to third switching parts 150a to 150c of FIG. 19 is the same as that of the first to third switching parts 150a to 150c of FIG. 18.
제 1스위칭부(150a)는 변압부(160)의 제 1 이차측(5-9)으로부터의 교류 전원(전압강하된 교류 전원임)을 정류하여 적색 LED(154)에게로 보낸다. 적색 LED(154)는 상호 직렬 접속된 복수의 적색 LED(RD1 ~ RDN)로 구성된다. 여기서, 적색 LED(154)를 적색 LED 모듈이라고 하여도 무방하다.The first switching unit 150a rectifies and transmits the AC power (which is a voltage drop AC power) from the first secondary side 5-9 of the transformer unit 160 to the red LED 154. The red LED 154 is composed of a plurality of red LEDs RD1 to RDN connected in series with each other. Here, the red LED 154 may be referred to as a red LED module.
제 2스위칭부(150b)는 변압부(160)의 제 2 이차측(8-10)으로부터의 교류 전원(전압강하된 교류 전원임)을 정류하여 녹색 LED(156)에게로 보낸다. 녹색 LED(156)는 상호 직렬 접속된 복수의 녹색 LED(GD1 ~ GDN)로 구성된다. 여기서, 녹색 LED(156)를 녹색 LED 모듈이라고 하여도 무방하다.The second switching unit 150b rectifies and transmits the AC power (which is the voltage-falling AC power) from the second secondary side 8-10 of the transformer unit 160 to the green LED 156. The green LED 156 is composed of a plurality of green LEDs GD1 to GDN connected in series with each other. Here, the green LED 156 may be referred to as a green LED module.
제 3스위칭부(150c)는 변압부(160)의 제 2 이차측(8-10)으로부터의 교류 전원(전압강하된 교류 전원임)을 정류하여 청색 LED(158)에게로 보낸다. 청색 LED(158)는 상호 직렬 접속된 복수의 청색 LED(BD1 ~ BDN)로 구성된다. 여기서, 청색 LED(158)를 청색 LED 모듈이라고 하여도 무방하다.The third switching unit 150c rectifies and transmits the AC power supply (which is the voltage-falling AC power supply) from the second secondary side 8-10 of the transformer unit 160 to the blue LED 158. The blue LED 158 is composed of a plurality of blue LEDs BD1 to BDN connected in series with each other. Here, the blue LED 158 may be referred to as a blue LED module.
도 19에서, 적색 LED(154), 녹색 LED(156), 청색 LED(158)에는 각각 저항(R)이 설치된다. 교류에서는 정전류를 사용할 수 없으므로 해당 엘이디 라인의 전류를 제어하기 위해 저항(R)을 사용한다. In FIG. 19, a resistor R is installed in each of the red LED 154, the green LED 156, and the blue LED 158. Since constant current cannot be used in AC, a resistor (R) is used to control the current of the corresponding LED line.
그리고, 도 19에서는 도 18에서와 달리 적색 LED(154), 녹색 LED(156), 청색 LED(158)의 엘이디의 수를 모두 동일하게 하였다. LED RGB 구동시 적색 LED의 1W(350mA)급의 소비전력 체크시 양단 전압이 대략 2.1 ~ 2.4V 정도이고, 녹색 및 청색 LED의 1W(350mA)급의 소비전력 체크시 양단 전압이 대략 3.1 ~ 3.5V 정도이다. 만약, RGB 각각의 엘이디를 12개로 하여 사용했다면 적색 LED는 대략 25.2 ~ 28.8V 정도이고, 녹색 및 청색 LED는 대략 37.2 ~ 42V 정도이다. 청색 LED와 녹색 LED는 소비전력이 비슷하여 동일 전원을 사용하는 것이 가능하여 변압부(160)의 제 2 이차측(8-10)을 함께 이용하고, 적색 LED는 소비전력에서 청색 LED와 녹색 LED와 차이가 나서 변압부(160)의 제 1이차측(5-9)을 이용한다. In FIG. 19, unlike in FIG. 18, the number of LEDs of the red LED 154, the green LED 156, and the blue LED 158 is the same. When checking the power consumption of 1W (350mA) level of red LED when driving LED RGB, voltage of both ends is about 2.1 ~ 2.4V, and voltage of both ends is about 3.1 ~ 3.5 when checking power consumption of 1W (350mA) level of green and blue LED. V is about. If 12 LEDs are used for each RGB, the red LED is about 25.2 to 28.8V, and the green and blue LEDs are about 37.2 to 42V. Since the blue LED and the green LED have similar power consumption, the same power source can be used, so that the second secondary side 8-10 of the transformer unit 160 is used together, and the red LED has a blue LED and a green LED at power consumption. Since it is different from the first secondary side 5-9 of the transformer unit 160.
그래서, 적색 LED(154)와 녹색 LED(156) 및 청색 LED(158)의 개수를 동일하게 하면서 서로간의 소비전력의 동일하게 해 주기 위해서, 적색 LED(154)에게로 구동전원을 공급하는 경로에 위치한 변압부(160)의 제 1 이차측(5-9)의 코일 권선수를 제 2 이차측(8-10)의 코일 권선수에 비해 적게 하였다. 즉, 제 1 이차측 및 제 2 이차측 코일의 권선수가 동일하고 RGB각각의 LED의 수가 동일할 경우에는 녹색 및 청색 LED에서의 소비전력이 적색 LED에서의 소비전력에 비해 크므로, 변압부(160)의 제 1 이차측(5-9)의 코일 권선수를 변압부(160)의 제 2 이차측(8-10)의 코일 권선수에 비해 적게 해야 서로간의 소비전력이 비슷해지게 된다. 이는 이차측 코일에 유도되는 전압은 이차측 코일의 권선수에 비례함을 이용한 것이다.Thus, in order to equalize the number of the red LEDs 154, the green LEDs 156, and the blue LEDs 158 with the same power consumption, the paths for supplying driving power to the red LEDs 154 are provided. The number of coil turns on the first secondary side 5-9 of the transformer unit 160 located is smaller than the number of coil turns on the second secondary side 8-10. That is, when the number of windings of the first secondary side coil and the second secondary side coil is the same and the number of LEDs in each of the RGB is the same, the power consumption of the green and blue LEDs is larger than that of the red LEDs. When the number of coil turns on the first secondary side 5-9 of 160 is smaller than the number of coil turns on the second secondary side 8-10 of the transformer 160, power consumption of each other becomes similar. This is because the voltage induced in the secondary coil is proportional to the number of turns of the secondary coil.
여기서, 변압부(160)의 제 1 이차측(5-9)에 여기되는 전압과 제 2 이차측(8-10)에 여기되는 전압은 LED의 직렬 개수에 의해 결정된다. 변압부(160)의 제 1 이차측(5-9)의 코일 권선수(감긴 수)와 제 2 이차측(8-10)의 코일 권선수(감긴 수)는 각각에 결정되는 전압에 상응하도록 결정될 것이다. Here, the voltage excited on the first secondary side 5-9 and the voltage excited on the second secondary side 8-10 of the transformer 160 are determined by the number of series of LEDs. The number of coil turns (the number of turns) of the first secondary side 5-9 of the transformer unit 160 and the number of coil turns (the number of turns) of the second secondary side 8-10 correspond to the voltage determined for each. Will be decided.
도 19와 같은 회로 구성으로 된 제 7실시예는 교류 상용 전원을 변압부(160)에서 일차적으로 전압 강하시킨 후에 스위칭부(150)내의 정류기에서 직류로 변환하여 적색 LED(154), 녹색 LED(156), 청색 LED(158)에게로 보내게 된다. 이때, 정류기의 소자를 사이리스터를 사용함으로 사이리스터를 온시키는 타이밍에 의해 위상을 바꾸는 것으로 출력 전력을 제어할 수 있게 된다. 그에 따라, 적색 LED(154), 녹색 LED(156), 청색 LED(158)에 대한 휘도 제어가 가능하게 된다.In the seventh exemplary embodiment having the circuit configuration as shown in FIG. 19, the AC commercial power is first reduced in voltage by the transformer 160, and then converted into a DC by a rectifier in the switching unit 150. 156, to the blue LED 158. At this time, the output power can be controlled by changing the phase by the timing of turning on the thyristor by using the thyristor element of the rectifier. Accordingly, the luminance control for the red LED 154, the green LED 156, and the blue LED 158 is possible.
이와 같이 하게 되면, 엘이디 구동을 위한 회로 구현이 간단할 뿐만 아니라 SMPS를 사용하지 않게 되므로 잦은 고장으로 인한 교체의 번거러움을 해소시킨다. This not only simplifies the circuit implementation for LED driving but also eliminates the need for SMPS, thus eliminating the hassle of replacement due to frequent failures.
SMPS를 사용하지 않게 되므로 비용적으로도 효과가 있다. 많은 내부 부품이 필요한 SMPS 대신에 사이리스터 등에 의한 정류기가 SMPS의 역할 및 AC 스위치 역할을 대신하게 되어 펄스폭변조방식이 아닌 위상제어로 RGB 엘이디의 휘도제어가 가능하게 된다. It does not use SMPS, so it is cost effective. Instead of SMPS, which requires a lot of internal parts, the rectifier by thyristor or the like replaces the role of SMPS and AC switch, so it is possible to control the brightness of RGB LEDs by phase control rather than pulse width modulation method.
또한, 효율은 정격에서 대략 98%이상이서 종래 SMPS를 사용하는 장치에 비해 전력 손실이 적다.In addition, the efficiency is approximately 98% or more at rated power, resulting in less power loss compared to devices using conventional SMPS.
(제 8실시예)(Example 8)
도 20은 다수의 엘이디가 단방향으로 상호 직렬 접속된 라인에 본 발명의 제 8실시예의 엘이디 구동회로를 채용한 경우의 도면이다.Fig. 20 is a diagram in which the LED driving circuit of the eighth embodiment of the present invention is adopted in a line in which a plurality of LEDs are connected in series in a single direction.
교류 상용전원을 인가받는 다수의 교류 엘이디(LD1 ~ LD6)가 상호 직렬로 접속되어 단방향의 전원 통과 경로를 갖는다. 각각의 교류 엘이디에는 하나씩의 폐회로 유지부가 접속된다. 예를 들어, 교류 엘이디(LD1)의 애노드와 캐소드 사이에는 폐회로 유지부(161)가 연결된다. 교류 엘이디(LD2)의 애노드와 캐소드 사이에는 폐회로 유지부(162)가 연결된다. 교류 엘이디(LD3)의 애노드와 캐소드 사이에는 폐회로 유지부(163)가 연결된다. 교류 엘이디(LD4)의 애노드와 캐소드 사이에는 폐회로 유지부(164)가 연결된다. 교류 엘이디(LD5)의 애노드와 캐소드 사이에는 폐회로 유지부(165)가 연결된다. 교류 엘이디(LD6)의 애노드와 캐소드 사이에는 폐회로 유지부(166)가 연결된다. A plurality of AC LEDs LD1 to LD6 receiving AC commercial power are connected in series to each other to have a one-way power passage. One closed circuit holder is connected to each alternating LED. For example, the closed loop holding part 161 is connected between the anode and the cathode of the AC LED LD1. The closed loop holding part 162 is connected between the anode and the cathode of the AC LED LD2. The closed loop holding part 163 is connected between the anode and the cathode of the AC LED LD3. The closed loop holding part 164 is connected between the anode and the cathode of the AC LED LD4. The closed loop holding part 165 is connected between the anode and the cathode of the AC LED LD5. The closed loop holding part 166 is connected between the anode and the cathode of the AC LED LD6.
도 20에서는 교류 엘이디의 수를 6개로 하여 표현하였으나, 그 수는 가감될 수 있고, 교류 엘이디의 수에 따라 폐회로 유지부의 수 역시 그에 상응하여 가감된다.In FIG. 20, the number of alternating LEDs is expressed as six, but the number may be added or subtracted, and the number of closed circuit holding units is also correspondingly added or reduced according to the number of alternating LEDs.
도 21은 다수의 엘이디가 양방향으로 상호 접속된 라인에 본 발명의 제 8실시예의 엘이디 구동회로를 채용한 경우의 도면이다.Fig. 21 is a diagram in which the LED driving circuit of the eighth embodiment of the present invention is adopted in a line in which a plurality of LEDs are interconnected in both directions.
교류 상용전원을 인가받는 한 쌍의 교류 엘이디가 다수개 어레이되어 양방향의 전원 통과 경로를 갖도록 형성된다. 한 쌍의 교류 엘이디에는 하나씩의 폐회로 유지부가 접속된다. 예를 들어, 한 쌍의 교류 엘이디(LD1, LD11) 사이에는 폐회로 유지부(171)가 연결된다. 한 쌍의 교류 엘이디(LD2, LD22) 사이에는 폐회로 유지부(172)가 연결된다. 한 쌍의 교류 엘이디(LD3, LD33) 사이에는 폐회로 유지부(173)가 연결된다. 한 쌍의 교류 엘이디(LD4, LD44) 사이에는 폐회로 유지부(174)가 연결된다. 한 쌍의 교류 엘이디(LD5, LD55) 사이에는 폐회로 유지부(175)가 연결된다. 한 쌍의 교류 엘이디(LD6, LD66) 사이에는 폐회로 유지부(176)가 연결된다. A pair of AC LEDs receiving AC commercial power is arrayed to form a bidirectional power passage. One closed loop holder is connected to the pair of AC LEDs. For example, the closed circuit holding unit 171 is connected between the pair of AC LEDs LD1 and LD11. The closed loop holding part 172 is connected between the pair of AC LEDs LD2 and LD22. The closed loop holding part 173 is connected between the pair of AC LEDs LD3 and LD33. The closed loop holding part 174 is connected between the pair of AC LEDs LD4 and LD44. The closed loop holding part 175 is connected between the pair of AC LEDs LD5 and LD55. The closed loop holding part 176 is connected between the pair of AC LEDs LD6 and LD66.
도 21에서는 교류 엘이디의 쌍의 수를 6개로 하여 표현하였으나, 그 수는 가감될 수 있고, 교류 엘이디의 쌍의 수에 따라 폐회로 유지부의 수 역시 그에 상응하여 가감된다.In FIG. 21, the number of pairs of alternating LEDs is represented as six, but the number can be added or subtracted, and the number of closed loop holding portions is also correspondingly added or reduced according to the number of pairs of alternating LEDs.
이하에서는 도 20의 폐회로 유지부 및 도 21의 폐회로 유지부에 채용가능한 반도체 스위칭 소자에 대해 설명한다.Hereinafter, a semiconductor switching element that may be employed in the closed circuit holder of FIG. 20 and the closed circuit holder of FIG. 21 will be described.
도 22는 도 20에 도시된 폐회로 유지부에 채용가능한 반도체 스위칭 소자의 예를 나타낸 도면이다. 도 20의 다수의 폐회로 유지부의 내부 구성은 서로 동일하므로, 이하에서는 어느 한 폐회로 유지부(161)를 예를 들어 설명한다.FIG. 22 is a diagram illustrating an example of a semiconductor switching element that can be employed in the closed circuit holding unit shown in FIG. 20. Since the internal configurations of the plurality of closed loop holders of FIG. 20 are the same, one closed circuit holder 161 will be described below as an example.
도 22의 폐회로 유지부(161)는 해당하는 교류 엘이디(예컨대, LD1)가 오픈되어 교류 엘이디(LD1)의 애노드와 캐소드에 제너전압 이상의 전압이 인가됨에 따라 턴온되는 제너 다이오드(1b), 및 제너 다이오드(1b)가 턴온됨에 따라 도통되어 그 교류 엘이디(LD1)를 우회하는 전원 통과 경로를 형성시켜 폐회로를 유지하는 실리콘 제어 정류기(SCR)(1a)를 구비한다. 실리콘 제어 정류기(1a)의 제어단(예컨대, 게이트)이 제너 다이오드(1b)의 일단에 접속된다. 실리콘 제어 정류기(1a)는 전류가 항상 애노드에서 캐소드로 흐르는 단방향성 소자이다. 여기서, 제너 다이오드(1b) 및 실리콘 제어 정류기(1a)는 본 발명의 청구항에 기재된 반도체 스위칭 소자의 일 예로 보면 된다. The closed-circuit holding unit 161 of FIG. 22 includes a Zener diode 1b which is turned on when a corresponding AC LED (eg, LD1) is opened and a voltage equal to or higher than a zener voltage is applied to the anode and cathode of the AC LED LD1, and Zener. As the diode 1b is turned on, it is provided with a silicon controlled rectifier (SCR) 1a for conducting a power supply path that bypasses the alternating LED LD1 to maintain a closed circuit. The control terminal (e.g., gate) of the silicon controlled rectifier 1a is connected to one end of the zener diode 1b. The silicon controlled rectifier 1a is a unidirectional element in which current always flows from anode to cathode. Here, the Zener diode 1b and the silicon controlled rectifier 1a may be regarded as an example of the semiconductor switching element described in the claims of the present invention.
이와 같은 제너 다이오드(1b) 및 실리콘 제어 정류기(1a)를 구비한 폐회로 유지부를 각각의 엘이디에 일대일로 연결시켜 보면 도 23의 회로도와 같게 된다.When the closed-circuit holding part including the zener diode 1b and the silicon controlled rectifier 1a is connected to each LED one by one, the circuit diagram of FIG.
도 24는 도 20에 도시된 폐회로 유지부에 채용가능한 반도체 스위칭 소자의 다른 예를 나타낸 도면이다. 도 20의 다수의 폐회로 유지부의 내부 구성은 서로 동일하므로, 이하에서는 어느 한 폐회로 유지부(161)를 예를 들어 설명한다.FIG. 24 is a diagram showing another example of the semiconductor switching element employable in the closed-circuit holding portion shown in FIG. 20. Since the internal configurations of the plurality of closed loop holders of FIG. 20 are the same, one closed circuit holder 161 will be described below as an example.
도 24의 폐회로 유지부(161)는 해당하는 교류 엘이디(예컨대, LD1)가 오픈되어 교류 엘이디(LD1)의 애노드와 캐소드에 제너전압 이상의 전압이 인가됨에 따라 턴온되는 제너 다이오드(2b), 및 제너 다이오드(2b)가 턴온됨에 따라 도통되어 그 교류 엘이디(LD1)를 우회하는 전원 통과 경로를 형성시켜 폐회로를 유지하는 트라이악(Triac)(2a)을 구비한다. 트라이악(2a)의 제어단(예컨대, 게이트)이 제너 다이오드(2b)의 일단에 접속된다. 트라이악(2a)은 양방향성 소자이지만 도 24에서와 같이 단방향의 회로에도 채용가능하다. 여기서, 제너 다이오드(2b) 및 트라이악(2a)은 본 발명의 청구항에 기재된 반도체 스위칭 소자의 일 예로 보면 된다.The closed-circuit holding unit 161 of FIG. 24 has a Zener diode 2b which is turned on when a corresponding AC LED (eg, LD1) is opened and a voltage equal to or higher than a zener voltage is applied to the anode and cathode of the AC LED LD1, and Zener. As the diode 2b is turned on, it is provided with a triac 2a that conducts and forms a power passage path bypassing the alternating LED LD1 to maintain a closed circuit. The control terminal (e.g., gate) of the triac 2a is connected to one end of the zener diode 2b. The triac 2a is a bidirectional element, but can be employed in a unidirectional circuit as shown in FIG. Here, the Zener diode 2b and the triac 2a may be regarded as an example of the semiconductor switching element described in the claims of the present invention.
기존에도 서지 흡수를 위한 제너 다이오드만을 사용하여 폐회로를 유지시키기도 하였다. 이 경우에는 예를 들어 교류 엘이디(LD1)가 오픈(open)되면 해당 제너 다이오드의 제너전압 이상의 과전압이 해당 제너 다이오드의 양단에 걸리게 된다. 이로 인해 과전류에 의해 해당 제너 다이오드가 쇼트되어 마치 해당 교류 엘이디(LD1)가 오픈되더라도 쇼트된 해당 제너 다이오드를 통해 폐회로를 유지하는 것처럼 보여진다. 그러나, 이는 단시간 동안일 경우에는 적당하지만 어느 정도의 시간이 지나면 과전류에 의해 제너 다이오드가 오픈되어 버린다. 특히, 제너 다이오드는 고전류에는 매우 약하여 타버리는 경우가 많이 발생하므로 비효율적이다.Conventionally, only a zener diode for surge absorption is used to maintain a closed circuit. In this case, for example, when the AC LED LD1 is opened, an overvoltage greater than or equal to the zener voltage of the corresponding zener diode is applied to both ends of the zener diode. This causes the corresponding zener diode to be shorted due to overcurrent, so that even if the AC LED (LD1) is opened, it seems to maintain the closed circuit through the shorted zener diode. However, this is suitable for a short time, but after a certain time, the zener diode is opened by overcurrent. In particular, Zener diodes are very inefficient at high currents and are often burned out.
그런데, 도 22 및 도 24에서와 같이, 교류 엘이디(LD1)가 오픈되어 애노드와 캐소드에 제너전압 이상의 전압이 인가되면 초기에는 제너 다이오드(1b, 2b)를 통해 실리콘 제어 정류기(SCR)(1a) 또는 트라이악(2a)을 도통시켜 주고 그 다음부터는 애노드와 캐소드 사이의 전압이 실리콘 제어 정류기(SCR)(1a) 또는 트라이악(2a)을 통해 흐르게 된다. 그래서, 장시간동안 폐회로 유지부(10)가 동작하더라도 제너 다이오드(1b, 2b)가 파괴되지 않는다. However, as shown in FIGS. 22 and 24, when the AC LED LD1 is opened and a voltage equal to or greater than the zener voltage is applied to the anode and the cathode, the silicon controlled rectifier SCR 1a is initially provided through the zener diodes 1b and 2b. Alternatively, the triac 2a is conducted, and then a voltage between the anode and the cathode flows through the silicon controlled rectifier (SCR) 1a or the triac 2a. Therefore, even if the closed-circuit holding unit 10 operates for a long time, the zener diodes 1b and 2b are not destroyed.
다시 말해서, 도 22 및 도 24에서와 같이 폐회로 유지부(161)를 구성시키게 되면 제너 다이오드(1b, 2b)의 오픈, 파괴 등이 발생되지 않을 뿐만 아니라 제너 전압에 의해 실리콘 제어 정류기(1a) 또는 트라이악(2a)의 동작 및 서지 흡수 능력이 제너 다이오드만의 회로에 비해 우수하게 된다.In other words, when the closed-circuit holding unit 161 is constituted as shown in FIGS. 22 and 24, not only the opening and breaking of the zener diodes 1b and 2b are generated, but also the silicon controlled rectifier 1a or the zener voltage. The operation and surge absorption capability of the triac 2a is superior to the circuit of the zener diode alone.
도 25는 도 21에 도시된 폐회로 유지부에 채용가능한 반도체 스위칭 소자의 예를 나타낸 도면이다. 도 21의 다수의 폐회로 유지부의 내부 구성은 서로 동일하므로, 이하에서는 어느 한 폐회로 유지부(171)를 예를 들어 설명한다.FIG. 25 is a diagram showing an example of a semiconductor switching element that can be employed in the closed circuit holding portion shown in FIG. 21. Since the internal configurations of the plurality of closed loop holders of FIG. 21 are the same, the following description will be given with reference to any one of the closed loop holders 171.
도 25의 폐회로 유지부(171)는 반도체 스위칭 소자인 사이닥(SIDAC; Silicon Diode for Alternating Current)으로 구성된다. 폐회로 유지부(171)는 해당하는 한 쌍의 교류 엘이디(LD1, LD11)중 어느 하나의 교류 엘이디가 오픈되어 해당 교류 엘이디의 애노드와 캐소드에 걸리는 전압이 브레이크 오버 전압 이상이면 도통된다. 그리고, 폐회로 유지부(171)는 그 오픈된 교류 엘이디를 우회하는 전원 통과 경로를 형성시켜 폐회로를 유지한다. 사이닥은 양방향성 2단자 사이리스터로서, 쇼클리 다이오드(shockley diode)를 역병렬로 접속한 것과 같은 구조로 되어 있다. The closed circuit holding part 171 of FIG. 25 is formed of a silicon diode for alternating current (SIDAC) that is a semiconductor switching element. The closed-circuit holding unit 171 is energized when any one of the pair of corresponding AC LEDs LD1 and LD11 is opened and the voltage applied to the anode and the cathode of the corresponding AC LED is equal to or greater than the breakover voltage. Then, the closed circuit holding unit 171 forms a power passage path bypassing the open AC LED to maintain the closed circuit. Saidak is a bidirectional two-terminal thyristor, and has a structure similar to that of a shockley diode connected in anti-parallel.
사이닥으로 폐회로 유지부(171)를 구성시켰을 경우 교류 엘이디의 오픈시 그 교류 엘이디를 우회하여 폐회로를 유지시킴이 가능할 뿐만 아니라 고전압 및 고전류에도 강하여 AC라인의 서지 전압 보호에도 유용하게 사용된다.When the closed circuit holding unit 171 is configured as a sid, it is not only possible to maintain the closed circuit by bypassing the alternating current LED when the alternating current LED is opened, and is also used to protect the surge voltage of the AC line by being strong against high voltage and high current.
도 26은 도 21에 도시된 폐회로 유지부에 채용가능한 반도체 스위칭 소자의 다른 예를 나타낸 도면이다. 도 21의 다수의 폐회로 유지부의 내부 구성은 서로 동일하므로, 이하에서는 어느 한 폐회로 유지부(171)를 예를 들어 설명한다.FIG. 26 is a diagram showing another example of the semiconductor switching element employable in the closed-circuit holding portion shown in FIG. 21. Since the internal configurations of the plurality of closed loop holders of FIG. 21 are the same, the following description will be given with reference to any one of the closed loop holders 171.
도 26의 폐회로 유지부(171)는, 한 쌍의 교류 엘이디(LD1, LD11)중 어느 하나의 교류 엘이디가 오픈되어 그 교류 엘이디의 애노드와 캐소드에 걸리는 전압이 제너 전압 이상의 전압이 인가됨에 따라 턴온되는 제 1제너 다이오드(171b) 또는 제 2제너 다이오드(171c), 및 제 1제너 다이오드(171b) 또는 제 2제너 다이오드(171c)가 턴온됨에 따라 도통되어 그 오픈된 교류 엘이디를 우회하는 전원 통과 경로를 형성시켜 폐회로를 유지하는 트라이악(Triac)(171a)을 구비한다.The closed circuit holding unit 171 of FIG. 26 is turned on as one of the pair of AC LEDs LD1 and LD11 is opened and a voltage applied to the anode and the cathode of the AC LED is greater than or equal to the Zener voltage. As the first Zener diode 171b or the second Zener diode 171c and the first Zener diode 171b or the second Zener diode 171c are turned on, a power passage path is conducted to bypass the open AC LED. It is provided with a triac (Triac) 171a for maintaining a closed circuit.
제 1제너 다이오드(171b)의 애노드와 제 2제너 다이오드(171c)의 애노드는 서로 접속되고, 제 1제너 다이오드(171b)의 애노드와 제 2제너 다이오드(171c)의 애노드 사이의 노드가 트라이악(171a)의 제어단(게이트)에 연결된다. 그리고, 제 1제너 다이오드(171b)와 제 2제너 다이오드(171c)의 캐소드는 트라이악(171a)의 각기 다른 단자에 연결됨과 더불어 교류 엘이디(LD1) 및 교류 엘이디(LD11)의 애노드와 캐소드에 접속된다. The anode of the first zener diode 171b and the anode of the second zener diode 171c are connected to each other, and the node between the anode of the first zener diode 171b and the anode of the second zener diode 171c is a triac ( It is connected to the control terminal (gate) of 171a. The cathode of the first zener diode 171b and the second zener diode 171c is connected to different terminals of the triac 171a and is connected to the anode and cathode of the AC LED LD1 and the AC LED LD11. do.
도 26에서, 예를 들어 교류 엘이디(LD1)를 구동시키는 도중에 교류 엘이디(LD1)가 오픈되어 애노드와 캐소드에 제너전압 이상의 전압이 인가되면 초기에는 제너 다이오드(171c)를 통해 트라이악(171a)을 도통시켜 주고 그 다음부터는 애노드와 캐소드 사이의 전압이 트라이악(171a)을 통해 흐르게 된다. 그래서, 장시간동안 폐회로 유지부(171)가 동작하더라도 해당 제너 다이오드(171c)가 파괴되지 않는다. 이는 교류 엘이디(LD11)를 구동시키는 도중에 교류 엘이디(LD11)가 오픈되어 제너 다이오드(171b)가 턴온된 경우에도 마찬가지이다.In FIG. 26, for example, when the AC LED LD1 is opened while driving the AC LED LD1 and a voltage equal to or greater than the zener voltage is applied to the anode and the cathode, the triac 171a is initially transferred through the zener diode 171c. After that, the voltage between the anode and the cathode flows through the triac 171a. Therefore, even if the closed-circuit holding unit 171 operates for a long time, the corresponding zener diode 171c is not destroyed. The same applies to the case where the AC LED LD11 is opened while the Zener diode 171b is turned on while driving the AC LED LD11.
다시 말해서, 도 26에서와 같은 폐회로 유지부(171)를 양방향 라인에 구성시키게 되면 제너 다이오드(171b, 171c)의 오픈, 파괴 등이 발생되지 않을 뿐만 아니라 앞서 설명한 바와 같이 제너 전압에 의해 트라이악(171a)의 동작 및 서지 흡수 능력이 제너 다이오드만의 회로에 비해 우수하게 된다.In other words, when the closed-circuit holding unit 171 as shown in FIG. 26 is configured in the bidirectional line, the opening and destruction of the zener diodes 171b and 171c are not generated, and as described above, the triac ( The operation and surge absorption capability of 171a is superior to that of the zener diode alone circuit.
(제 9실시예)(Example 9)
도 27은 본 발명의 제 9실시예에 따른 엘이디 구동장치의 회로도이다. 보다 상세하게는, 저압 교류전원 변환장치의 구성을 나타낸 회로도이다.27 is a circuit diagram of the LED driving apparatus according to the ninth embodiment of the present invention. In more detail, it is a circuit diagram which shows the structure of the low voltage alternating current power converter.
제 9실시예는 정류부(182), 발진부(184), 및 트랜스포머(186)를 포함한다.The ninth embodiment includes a rectifier 182, an oscillator 184, and a transformer 186.
정류부(182)는 상용 교류전원이 입력되는 입력단(180)에 접속된다. 정류부(182)는 입력단(180)으로부터 입력된 상용 교류전원을 전파 정류한다. 정류부(182)는 브리지 다이오드(BD)로 구성된다.The rectifier 182 is connected to the input terminal 180 to which commercial AC power is input. The rectifier 182 full-wave rectifies the commercial AC power input from the input terminal 180. The rectifier 182 is configured of a bridge diode BD.
발진부(184)는 정류부(182)와 트랜스포머(186) 사이에 설치된다. 발진부(184)는 정류부(182)의 출력 양단 사이에 설치되되 일단이 정류부(182)의 출력 일단과 함께 소정의 권선비를 갖는 트랜스포머(186)의 1차측 일단에 접속된 시정수 소자(R1, C1); 및 일단이 시정수 소자(R1, C1)에 연결되고 타단은 트랜스포머(186)의 1차측 타단에 연결되고, 외부로부터의 펄스폭변조(PWM)신호에 의해 스위칭 구동되어 트랜스포머(186)의 출력을 위한 발진신호를 출력하는 스위칭부(185, Q1)를 포함한다. The oscillator 184 is installed between the rectifier 182 and the transformer 186. The oscillator 184 is installed between both ends of the output of the rectifier 182, one end of which is connected to one end of the primary side of the transformer 186 having a predetermined winding ratio together with one end of the output of the rectifier 182. ); And one end is connected to the time constant elements (R1, C1) and the other end is connected to the other end of the primary side of the transformer 186, switching driven by a pulse width modulation (PWM) signal from the outside to output the output of the transformer 186 And a switching unit (185, Q1) for outputting the oscillation signal for.
스위칭부(185, Q1)는, 입력되는 펄스폭변조(PWM)신호에 따라 온/오프 구동되는 포토 커플러(185); 및 제 1단(예컨대, 컬렉터)이 트랜스포머(186)의 1차측 타단에 연결되고 제 2단(예컨대, 에미터)이 정류부(182)의 출력 타단과 시정수 소자에 연결되고 제어단(예컨대, 베이스)이 포토 커플러(185)의 출력단에 연결되어, 포토 커플러(185)의 온/오프 구동에 따라 스위칭동작하는 스위칭소자(Q1)를 포함한다. 포토 커플러(185)는 빛을 이용하기 때문에 잡음에 강하고, 응답속도가 매우 빠르다. 포토 커플러(185)는 발광부와 수광부가 서로 전기적으로 절연되어 있고 신호 전달이 단방향이므로 출력측 신호가 입력측으로 전송되지 않는다. 이와 같은 포토 커플러(185)의 특징으로 인해 스위칭소자(Q1)의 스위칭 동작이 보다 신뢰성있게 행해지게 한다. The switching units 185 and Q1 may include: a photo coupler 185 driven on / off in accordance with an input pulse width modulation (PWM) signal; And a first stage (eg, a collector) is connected to the other end of the primary side of the transformer 186, and a second stage (eg, an emitter) is connected to an output end of the rectifier 182 and a time constant element, and a control stage (eg, The base) is connected to the output terminal of the photo coupler 185, and includes a switching element Q1 that switches according to the on / off driving of the photo coupler 185. Since the photo coupler 185 uses light, the photo coupler 185 is resistant to noise and has a very fast response speed. The photo coupler 185 does not transmit an output signal to the input side because the light emitting part and the light receiving part are electrically insulated from each other and signal transmission is unidirectional. Due to the characteristics of the photo coupler 185, the switching operation of the switching element Q1 can be performed more reliably.
도 27에서, 스위칭소자(Q1)를 트랜지스터로 하였으나, FET 또는 IGBT(Insulated Gate Bipolar Transistor)로 하여도 무방하다.In FIG. 27, the switching element Q1 is used as a transistor, but may be a FET or an IGBT (Insulated Gate Bipolar Transistor).
트랜스포머(186)는 1차측에 인가된 소정의 교류전원을 근거로 예컨대 대략 24V 이하의 저압 교류전원을 생성해 낼 수 있는 권선비 및 사이즈 등을 갖는다.The transformer 186 has a winding ratio and size that can generate, for example, a low voltage AC power of approximately 24 V or less based on a predetermined AC power applied to the primary side.
상술한 바와 같이 구성된 제 9실시예의 동작에 대해 설명하면 다음과 같다.The operation of the ninth embodiment configured as described above will now be described.
입력단(180)으로 입력된 상용 교류전원(예컨대, AC 220V)은 정류부(182)에서 전파 정류되어 발진부(184) 및 트랜스포머(186)의 1차측으로 인가된다. The commercial AC power (for example, AC 220V) input to the input terminal 180 is full-wave rectified by the rectifier 182 and applied to the primary side of the oscillator 184 and the transformer 186.
그에 따라, 트랜스포머(186)는 1차측에 인가된 전원(전파 정류된 전원)과 거의 유사한 파형 모양을 갖는 전원을 2차측에서 출력시키되, 발진부(184)에서의 발진신호에 근거하여 1사이클의 주파수신호를 다수개의 세부 온/오프신호로 분리시켜서 출력시킨다. Accordingly, the transformer 186 outputs a power source having a waveform shape almost similar to that of the power source applied to the primary side (full wave rectified power source) on the secondary side, but based on the oscillation signal from the oscillator 184, the frequency of one cycle The signal is separated into a plurality of detailed on / off signals and output.
즉, 외부 제어신호 입력단(190)으로 입력되는 펄스폭변조(PWM)신호에 따라 발진부(184)의 포토 커플러(185)가 온/오프 구동되고, 포토 커플러(185)의 온/오프 구동에 의해 스위칭소자(Q1)가 온/오프된다. 스위칭소자(Q1)의 온/오프에 근거하여 트랜스포머(186)의 2차측에 여기된 전압은 출력단(188)을 통해 도 27에서와 같은 형태의 출력신호(즉, 1사이클의 주파수신호를 다수개의 세부 온/오프신호로 분리시킨 신호)로 출력된다. 여기서, 펄스폭변조(PWM)신호의 주파수 및 펄스폭 등을 조정하게 되면 출력단(188)을 통해 출력되는 트랜스포머(186)의 출력전압(저압의 교류전압)을 적은 소자의 조합으로 손쉽게 조절할 수 있게 된다. 보통 트랜스포머(186)의 사이즈는 주파수에 반비례한다. 동일한 회로구성에서 트랜스포머(186)의 출력전압의 주파수를 가변시켜 높일 수 있다면 트랜스포머(186)의 사이즈를 그만큼 줄이고서도 원하는 회로를 구현할 수 있게 되므로, 펄스폭변조(PWM)신호의 주파수 및 펄스폭 조정은 매우 유용하게 사용된다.That is, the photo coupler 185 of the oscillator 184 is turned on / off according to the pulse width modulation (PWM) signal input to the external control signal input terminal 190, and the photo coupler 185 is turned on / off by The switching element Q1 is turned on / off. Based on the on / off state of the switching element Q1, the voltage excited on the secondary side of the transformer 186 is output through the output terminal 188 as shown in FIG. Signal separated into a detailed on / off signal). Here, if the frequency and pulse width of the pulse width modulation (PWM) signal is adjusted, the output voltage (low voltage AC voltage) of the transformer 186 outputted through the output terminal 188 can be easily adjusted with a combination of small elements. do. Usually the size of transformer 186 is inversely proportional to frequency. If the frequency of the output voltage of the transformer 186 can be increased in the same circuit configuration, the desired circuit can be realized even by reducing the size of the transformer 186. Thus, the frequency and pulse width of the pulse width modulation (PWM) signal are adjusted. Is very useful.
상술한 제 9실시예의 경우, 상용 교류전원을 저압의 교류전원으로 변환시키기 위해 사용되는 회로소자가 많지 않아 매우 간단하게 회로구현이 가능할 뿐만 아니라 저가의 가격으로 회로구현이 가능하다. 그리고, 외부 제어신호 입력단(190)으로 입력되는 펄스폭변조(PWM)신호의 주파수 및 펄스폭에 의해 트랜스포머(186)의 출력을 쉽게 제어할 수 있게 된다. In the ninth embodiment described above, there are not many circuit elements used to convert a commercial AC power source to a low voltage AC power source, so that the circuit can be implemented very simply and at low cost. In addition, the output of the transformer 186 may be easily controlled by the frequency and pulse width of the pulse width modulation (PWM) signal input to the external control signal input terminal 190.
또한, 트랜스포머(186)의 이차측에 AC LED(부하)를 연결하거나 트랜스포머(186) 대신에 AC LED(부하)를 연결하게 되면 외부 제어신호 입력단(190)으로 입력되는 펄스폭변조(PWM)신호의 주파수 및 펄스폭에 의해 해당 AC LED(부하)에 대한 디밍(dimming)이 가능하다.In addition, when the AC LED (load) is connected to the secondary side of the transformer 186 or AC LED (load) instead of the transformer 186, the pulse width modulation (PWM) signal input to the external control signal input terminal 190 The dimming of the corresponding AC LED (load) is possible by means of the frequency and pulse width.
(제 10실시예)(Example 10)
도 28은 본 발명의 제 10실시예에 따른 엘이디 구동장치의 회로도이다. 보다 상세하게는, 저압 교류전원 변환장치의 구성을 나타낸 회로도이다. 도 29 및 도 30은 도 28의 회로도의 출력신호 파형을 예시한 파형도이다. 제 10실시예의 구성요소중 상술한 제 9실시예와 동일한 구성요소에 대해서는 참조부호를 동일하게 부여하면서 그에 대한 설명은 생략한다. 28 is a circuit diagram of the LED driving apparatus according to the tenth embodiment of the present invention. In more detail, it is a circuit diagram which shows the structure of the low voltage alternating current power converter. 29 and 30 are waveform diagrams illustrating output signal waveforms of the circuit diagram of FIG. 28. The same components as those of the ninth embodiment described above among the components of the tenth embodiment are denoted by the same reference numerals, and description thereof will be omitted.
제 10실시예는 외부로부터 펄스폭변조(PWM)신호를 입력받지 않고 가변저항에 의해 트랜스포머의 출력을 제어할 수 있다는 점에서 상술한 제 9실시예와 차이난다.The tenth embodiment differs from the ninth embodiment described above in that the output of the transformer can be controlled by a variable resistor without receiving a pulse width modulation (PWM) signal from the outside.
제 10실시예는 상술한 제 9실시예에서와 같이 정류부(182), 발진부(192), 및 트랜스포머(186)를 포함한다.The tenth embodiment includes a rectifier 182, an oscillator 192, and a transformer 186 as in the ninth embodiment described above.
발진부(192)는 정류부(182)의 출력 일단과 트랜스포머(186)의 1차측의 일단에 접속되고 가변저항(VR)에 의해 가변적인 시정수 제어를 행하는 시정수 소자(R10, R11, R12, VR, C10, C11); 및 시정수 소자(R10, R11, R12, VR, C10, C11)에서의 가변적인 시정수에 따라 온/오프 구동되어 트랜스포머(186)의 출력을 위한 발진신호를 출력하는 스위칭부(Q10, Q11)를 포함한다. 보다 자세하게는, 정류부(182)의 출력 일단과 트랜스포머(186)의 1차측의 일단 사이에 저항(R10, R11, R12)의 일단이 접속된다. 저항(R10)과 저항(R11) 사이에 콘덴서(C10)가 접속되고, 콘덴서(C10)와 저항(R11)과의 접속노드는 스위칭부의 제 2스위칭소자(Q11)의 제어단(예컨대, 베이스)에 연결된다. 저항(R12)의 타단은 가변저항(VR)을 통해 스위칭부의 제 1스위칭소자(Q10)의 제어단(예컨대, 게이트)에 접속된다. 콘덴서(C11)는 가변저항(VR)과 트랜스포머(186)의 1차측 타단 사이에 접속된다. 제 1스위칭소자(Q10)의 제 1단(예컨대, 컬렉터)은 저항(R10)과 콘덴서(C10)와의 접속노드에 연결되고, 제 1스위칭소자(Q10)의 제 2단(예컨대, 에미터)은 정류부(182)의 출력 타단에 접속된다. 제 2스위칭소자(Q11)의 제 1단(예컨대, 컬렉터)은 트랜스포머(186)의 1차측 타단과 콘덴서(C11)와의 접속노드에 연결되고, 제 2스위칭소자(Q11)의 제 2단(예컨대, 에미터)은 제 1스위칭소자(Q10)의 제 2단과 함께 정류부(182)의 출력 타단에 접속된다.The oscillator 192 is connected to one end of the output of the rectifier 182 and one end of the primary side of the transformer 186, and performs time constant control by the variable resistor VR to perform time constant elements R10, R11, R12, and VR. , C10, C11); And switching units Q10 and Q11 that are driven on / off according to variable time constants in the time constant elements R10, R11, R12, VR, C10, and C11 to output an oscillation signal for the output of the transformer 186. It includes. More specifically, one end of the resistors R10, R11, and R12 is connected between one end of the output of the rectifying unit 182 and one end of the primary side of the transformer 186. The capacitor C10 is connected between the resistor R10 and the resistor R11, and the connection node between the capacitor C10 and the resistor R11 is a control terminal (eg, a base) of the second switching element Q11 of the switching unit. Is connected to. The other end of the resistor R12 is connected to a control terminal (eg, a gate) of the first switching element Q10 of the switching unit through the variable resistor VR. The capacitor C11 is connected between the variable resistor VR and the other end of the primary side of the transformer 186. The first stage (eg, collector) of the first switching element Q10 is connected to the connection node of the resistor R10 and the capacitor C10, and the second stage (eg, emitter) of the first switching element Q10. Is connected to the other end of the output of the rectifier 182. The first end (eg, collector) of the second switching element Q11 is connected to the connection node between the other end of the primary side of the transformer 186 and the condenser C11, and the second end (eg, of the second switching element Q11). Emitter) is connected to the other end of the rectifying unit 182 together with the second end of the first switching element Q10.
도 28에서, 제 1 및 제 2스위칭소자(Q10, Q11)를 트랜지스터로 하였으나, FET 또는 IGBT(Insulated Gate Bipolar Transistor)로 하여도 무방하다.In Fig. 28, the first and second switching elements Q10 and Q11 are transistors, but they may be FETs or Insulated Gate Bipolar Transistors (IGBTs).
상술한 바와 같이 구성된 제 10실시예의 동작에 대해 설명하면 다음과 같다.The operation of the tenth embodiment configured as described above will be described below.
입력단(180)으로 입력된 상용 교류전원(예컨대, AC 220V)은 정류부(182)에서 전파 정류되어 발진부(192) 및 트랜스포머(186)의 1차측으로 인가된다. The commercial AC power (for example, AC 220V) input to the input terminal 180 is full-wave rectified by the rectifying unit 182 and applied to the primary side of the oscillator 192 and the transformer 186.
그에 따라, 트랜스포머(186)는 1차측에 인가된 전원(전파 정류된 전원)에 의해 여기된 전원을 2차측에서 출력시키되, 발진부(192)에서의 발진신호에 근거하여 출력시킨다. As a result, the transformer 186 outputs the power excited by the power source (the full wave rectified power source) applied to the primary side on the secondary side, based on the oscillation signal from the oscillation unit 192.
즉, 가변저항(VR)의 저항치 조절에 의해 결정된 시정수에 따른 발진신호가 트랜스포머(186)에게로 제공된다. 그에 따라, 가변저항(VR)의 저항치를 최소로 하였을 경우에는 트랜스포머(186)의 1차측의 A점에서는 도 29의 (a)에서와 같은 파형을 갖는 전압을 생성하고, 트랜스포머(186)의 2차측을 통해 출력단(188)으로 도 29의 (b)와 같은 파형의 전압(저압의 교류전압)을 출력시킨다. 반대로, 가변저항(VR)의 저항치를 최대로 하였을 경우에는 트랜스포머(186)의 1차측의 A점에서는 도 30의 (a)에서와 같은 파형을 갖는 전압을 생성하고, 트랜스포머(186)의 2차측을 통해 출력단(188)으로 도 30의 (b)와 같은 파형의 전압(저압의 교류전압)을 출력시킨다. 여기서, 가변저항(VR)을 조절하게 되면 출력단(188)을 통해 출력되는 트랜스포머(186)의 출력전압을 적은 소자의 조합으로 손쉽게 조절할 수 있게 된다. 보통 트랜스포머(186)의 사이즈는 주파수에 반비례한다. 동일한 회로구성에서 트랜스포머(186)의 출력전압의 주파수를 가변시켜 높일 수 있다면 트랜스포머(186)의 사이즈를 그만큼 줄이고서도 원하는 회로를 구현할 수 있게 되므로, 가변저항(VR)은 매우 유용하게 사용된다. That is, the oscillation signal according to the time constant determined by the resistance value adjustment of the variable resistor VR is provided to the transformer 186. Accordingly, when the resistance of the variable resistor VR is minimized, a voltage having the waveform as shown in FIG. 29A is generated at the point A of the primary side of the transformer 186, and 2 of the transformer 186 is generated. A voltage (low voltage AC voltage) having a waveform as shown in FIG. 29B is output to the output terminal 188 through the vehicle side. On the contrary, when the resistance value of the variable resistor VR is maximized, the voltage having the waveform as shown in FIG. 30A is generated at the point A of the primary side of the transformer 186, and the secondary side of the transformer 186 is generated. The output terminal 188 outputs a voltage (low voltage AC voltage) having a waveform as shown in FIG. In this case, when the variable resistor VR is adjusted, the output voltage of the transformer 186 outputted through the output terminal 188 may be easily adjusted by a combination of less elements. Usually the size of transformer 186 is inversely proportional to frequency. If the frequency of the output voltage of the transformer 186 can be increased in the same circuit configuration, since the desired circuit can be implemented even by reducing the size of the transformer 186, the variable resistor VR is very useful.
상술한 제 10실시예의 경우, 상용 교류전원을 저압의 교류전원으로 변환시키기 위해 사용되는 회로소자가 많지 않아 매우 간단하게 회로구현이 가능할 뿐만 아니라 저가의 가격으로 회로구현이 가능하다. 그리고, 가변저항(VR)에 의해 트랜스포머(186)의 출력을 쉽게 제어할 수 있게 된다. In the case of the tenth embodiment described above, there are not many circuit elements used to convert a commercial AC power source to a low voltage AC power source, so that the circuit can be implemented very simply and the circuit can be implemented at a low price. The output of the transformer 186 can be easily controlled by the variable resistor VR.
또한, 트랜스포머(186)의 이차측에 AC LED(부하)를 연결하거나 트랜스포머(186) 대신에 AC LED(부하)를 연결하게 되면 가변저항(VR)으로 해당 AC LED(부하)에 대한 디밍(dimming)이 가능하다.In addition, when the AC LED (load) is connected to the secondary side of the transformer 186 or the AC LED (load) instead of the transformer 186, dimming (dimming) for the corresponding AC LED (load) with a variable resistor (VR) Is possible.
상술한 본 발명의 제 9 및 제 10실시예는 AC저압, 고압에서 LED 디밍을 할 수 있으며, RGB 컨트롤도 가능하다. 회로구현을 위한 부품소자가 적어서 신뢰성을 높이게 되고, AC-AC 컨버터에도 적용가능하다. 특히, SMPS를 사용하는 DC 사용회로보다 높은 효율을 가지게 되므로, AC LED 시장 특히 저압분야에서 큰 경쟁력을 확보할 수 있게 된다.In the ninth and tenth embodiments of the present invention described above, LED dimming is possible at AC low pressure and high pressure, and RGB control is also possible. There are few component elements for circuit realization, which improves reliability and can be applied to AC-AC converters. In particular, since it has a higher efficiency than the DC circuit using SMPS, it is possible to secure a great competitive advantage in the AC LED market, especially low voltage.
한편, 본 발명은 상술한 실시예로만 한정되는 것이 아니라 본 발명의 요지를 벗어나지 않는 범위내에서 수정 및 변형하여 실시할 수 있고, 그러한 수정 및 변형이 가해진 기술사상 역시 이하의 특허청구범위에 속하는 것으로 보아야 한다.On the other hand, the present invention is not limited only to the above-described embodiment, but can be modified and modified within the scope not departing from the gist of the present invention, and the technical spirit to which such modifications and variations are applied also belong to the following claims Must see

Claims (28)

  1. 메탈 피씨비에 어레이된 엘이디 모듈이 복수의 상용전원 입력 라인에 연결된 장치로서,An LED module arrayed in a metal PC is connected to a plurality of commercial power input lines.
    상기 복수의 상용전원 입력 라인에 연결되는 상기 엘이디 모듈의 모든 입력 라인에 각각 설치되어, 상기 엘이디 모듈의 모든 입력 라인으로의 상용전원 입력을 차단시키는 차단 소자;를 포함하는 것을 특징으로 하는 엘이디 구동장치. And a blocking device installed on all input lines of the LED module connected to the plurality of commercial power input lines, respectively, to block the commercial power input to all the input lines of the LED module. .
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 차단 소자는, 반도체 스위칭 소자 또는 상기 엘이디 모듈의 모든 입력 라인의 각각에 스위치가 설치된 교류 릴레이로 구성되는 것을 특징으로 하는 엘이디 구동장치.The blocking device is an LED driving device, characterized in that composed of a semiconductor switching element or an AC relay provided with a switch on each of all the input lines of the LED module.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 차단 소자의 후단에 브리지 다이오드를 추가로 포함하는 것을 특징으로 하는 엘이디 구동장치.LED driving device further comprises a bridge diode at the rear end of the blocking element.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 엘이디 모듈의 입력 라인으로 유입되는 노이즈를 차단하기 위한 필터를 상기 엘이디 모듈의 입력 라인에 추가로 포함하는 것을 특징으로 하는 엘이디 구동장치.The LED driving device, characterized in that it further comprises a filter for blocking the noise flowing into the input line of the LED module to the input line of the LED module.
  5. 전원단으로부터의 상용전원을 정류하는 정류부;Rectifier for rectifying commercial power from the power stage;
    상기 정류부의 출력신호에 근거하여 온/오프 구동되고, 포토 트라이악을 포함하는 제 1스위칭 구동부 및 제 2스위칭 구동부;A first switching driver and a second switching driver driven on / off based on the output signal of the rectifier and including a photo triac;
    상기 제 1스위칭 구동부와 부하의 일단 사이에 설치되고, 상기 제 1스위칭 구동부가 온됨에 따라 상기 전원단과 상기 부하의 일단 사이의 전원 공급 경로를 형성하는 제 1반도체 스위칭 소자; 및A first semiconductor switching element installed between the first switching driver and one end of the load and forming a power supply path between the power supply terminal and one end of the load as the first switching driver is turned on; And
    상기 제 2스위칭 구동부와 상기 부하의 타단 사이에 설치되고, 상기 제 2스위칭 구동부가 온됨에 따라 상기 전원단과 상기 부하의 타단 사이의 전원 공급 경로를 형성하는 제 2반도체 스위칭 소자를 포함하는 것을 특징으로 하는 엘이디 구동장치.And a second semiconductor switching element installed between the second switching driver and the other end of the load and forming a power supply path between the power supply terminal and the other end of the load as the second switching driver is turned on. LED drive.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 제 1 및 제 2반도체 스위칭 소자의 위상을 제어하는 시정수부를 추가로 포함하는 것을 특징으로 하는 엘이디 구동장치.And a time constant part for controlling phases of the first and second semiconductor switching elements.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 시정수부는 상기 전원단과 상기 정류부 사이에 설치되고, 가변저항 및 콘덴서를 포함하는 것을 특징으로 하는 엘이디 구동장치.The time constant unit is installed between the power supply stage and the rectifier, LED drive device characterized in that it comprises a variable resistor and a capacitor.
  8. 입력되는 신호에 근거하여 온/오프 구동되고, 포토 트라이악을 포함하는 제 1스위칭 구동부 및 제 2스위칭 구동부;A first switching driver and a second switching driver driven on / off based on the input signal and including a photo triac;
    전원단과 부하의 일단 사이에 설치되고, 상기 제 1스위칭 구동부가 온됨에 따라 상기 전원단과 상기 부하의 일단 사이의 전원 공급 경로를 형성하는 제 1반도체 스위칭 소자;A first semiconductor switching element installed between a power supply terminal and one end of a load and forming a power supply path between the power supply terminal and one end of the load as the first switching driver is turned on;
    상기 전원단과 상기 부하의 타단 사이에 설치되고, 상기 제 2스위칭 구동부가 온됨에 따라 상기 전원단과 상기 부하의 타단 사이의 전원 공급 경로를 형성하는 제 2반도체 스위칭 소자;A second semiconductor switching element installed between the power supply terminal and the other end of the load and forming a power supply path between the power supply terminal and the other end of the load as the second switching driver is turned on;
    입력되는 외부신호의 위상을 센싱하고 그에 상응하는 교류신호를 출력하는 위상 센싱부; 및A phase sensing unit sensing a phase of an input external signal and outputting an AC signal corresponding thereto; And
    상기 위상 센싱부로부터의 교류신호를 정류하여 상기 제 1스위칭 구동부 및 제 2스위칭 구동부에게로 보내는 정류부를 포함하는 것을 특징으로 하는 엘이디 구동장치.And a rectifier for rectifying the AC signal from the phase sensing unit and sending the rectified AC signal to the first switching driver and the second switching driver.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 위상 센싱부에게로 입력되는 외부신호는 PWM파 또는 구형파의 형태로 입력되는 것을 특징으로 하는 엘이디 구동장치.The LED driving device, characterized in that the external signal input to the phase sensing unit is input in the form of a PWM wave or a square wave.
  10. 전원단으로부터의 상용전원을 정류하는 정류부;Rectifier for rectifying commercial power from the power stage;
    상기 정류부의 출력신호에 근거하여 온/오프 구동되고, 포토 트라이악을 포함하는 스위칭 구동부;A switching driver driven on / off based on the output signal of the rectifier and including a photo triac;
    상기 전원단과 부하의 일단 사이에 설치되고, 상기 스위칭 구동부가 온됨에 따라 상기 전원단으로부터 상기 부하로의 전원 공급 경로를 형성하는 반도체 스위칭 소자; 및A semiconductor switching element disposed between the power supply terminal and one end of the load and forming a power supply path from the power supply terminal to the load as the switching driver is turned on; And
    상기 전원단과 상기 부하의 양 단 사이에 설치되고, 조작에 의해 상기 스위칭 구동부를 오프시켜서 상기 전원단으로부터 상기 부하로의 전원 공급 경로를 차단하는 선택 스위치부를 포함하는 것을 특징으로 하는 엘이디 구동장치.And a selection switch unit disposed between the power supply terminal and both ends of the load, and configured to turn off the switching driving unit by an operation to block a power supply path from the power supply terminal to the load.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 반도체 스위칭 소자는 트라이악을 포함하는 것을 특징으로 하는 엘이디 구동장치.And the semiconductor switching device comprises a triac.
  12. 엘이디를 구동하는 장치로서,As a device for driving the LED,
    입력되는 제어신호에 따라 온/오프되는 반도체 스위칭 소자를 포함하는 정류기를 포함하고, 입력되는 교류 상용 전원을 정류하여 상기 엘이디에게로 출력하는 스위칭부; 및A switching unit including a rectifier including a semiconductor switching element turned on / off according to an input control signal, and rectifying an input AC commercial power and outputting the rectified AC power to the LED; And
    상기 반도체 스위칭 소자의 온/오프에 대한 제어신호를 생성하여 상기 스위칭부에게로 출력하는 제어부를 포함하는 것을 특징으로 하는 엘이디 구동장치.And a control unit for generating a control signal for turning on / off the semiconductor switching element and outputting the control signal to the switching unit.
  13. 청구항 12에 있어서,The method according to claim 12,
    상기 반도체 스위칭 소자는 사이리스터 또는 트라이악을 포함하는 것을 특징으로 하는 엘이디 구동장치.And the semiconductor switching device comprises a thyristor or a triac.
  14. 청구항 12에 있어서,The method according to claim 12,
    상기 스위칭부와 교류 상용 전원 입력단 사이에 연결되어, 입력되는 교류 상용 전원을 전압 강하시켜 상기 스위칭부에게로 보내는 변압부를 추가로 포함하는 것을 특징으로 하는 엘이디 구동장치.An LED driving device is connected between the switching unit and the AC commercial power input terminal, characterized in that further comprising a transformer for sending a voltage drop to the AC commercial power input to the switching unit.
  15. 청구항 14에 있어서,The method according to claim 14,
    상기 스위칭부는 상기 변압부의 제 1 이차측에 연결된 제 1스위칭부; 및 상기 변압부의 제 2 이차측에 연결된 제 2 및 제 3스위칭부를 포함하고,The switching unit may include a first switching unit connected to the first secondary side of the transformer unit; And second and third switching parts connected to the second secondary side of the transformer part.
    상기 변압부의 제 1 이차측의 코일 권선수가 상기 변압부의 제 2 이차측의 코일 권선수에 비해 적은 것을 특징으로 하는 엘이디 구동장치.The number of coil windings on the first secondary side of the transformer unit is smaller than the number of coil turns on the second secondary side of the transformer unit.
  16. 교류 상용전원을 인가받는 다수의 교류 엘이디가 상호 직렬로 접속되어 단방향의 전원 통과 경로를 갖는 장치로서, A device having a one-way power passage path in which a plurality of AC LEDs receiving AC commercial power are connected in series with each other.
    상기 다수의 교류 엘이디의 각각에 일대일로 접속된 다수의 폐회로 유지부를 포함하고,A plurality of closed-circuit holding portions connected one to one to each of the plurality of alternating current LEDs,
    상기 다수의 폐회로 유지부의 각각은 해당하는 교류 엘이디가 오픈되어 양단에 걸리는 전압이 소정치 이상임에 따라 턴온되는 제 1반도체 스위칭 소자, 및 상기 제 1반도체 스위칭 소자가 턴온됨에 따라 도통되어 전원 통과 경로를 형성시키는 제 2반도체 스위칭 소자를 구비하는 것을 특징으로 하는 엘이디 구동장치.Each of the plurality of closed-circuit holders is connected to a first semiconductor switching device that is turned on when a corresponding AC LED is opened and a voltage applied to both ends is greater than or equal to a predetermined value. And a second semiconductor switching element to be formed.
  17. 청구항 16에 있어서,The method according to claim 16,
    상기 제 1반도체 스위칭 소자는 제너 다이오드로 구성된 것을 특징으로 하는 엘이디 구동장치.And the first semiconductor switching element is composed of a zener diode.
  18. 청구항 17에 있어서,The method according to claim 17,
    상기 제 2반도체 스위칭 소자는 제어단이 상기 제너 다이오드의 일단에 접속된 실리콘 제어 정류기(SCR) 또는 트라이악으로 구성된 것을 특징으로 하는 엘이디 구동장치.And said second semiconductor switching element comprises a silicon controlled rectifier (SCR) or a triac with a control end connected to one end of said zener diode.
  19. 교류 상용전원을 인가받는 한 쌍의 교류 엘이디가 다수개 어레이되어 양방향의 전원 통과 경로를 갖는 장치로서,As a device having a bi-directional power passage path by arraying a plurality of AC LEDs receiving an AC commercial power,
    상기 한 쌍의 교류 엘이디의 각각에 일대일로 접속된 다수의 폐회로 유지부를 포함하고,A plurality of closed-circuit holding portions connected one to one to each of the pair of alternating LEDs,
    상기 다수의 폐회로 유지부의 각각은 해당하는 한 쌍의 교류 엘이디중 어느 하나의 교류 엘이디가 오픈되어 양단에 걸리는 전압이 소정치 이상임에 따라 도통되어 전원 통과 경로를 형성시키는 반도체 스위칭 소자인 것을 특징으로 하는 엘이디 구동장치.Each of the plurality of closed-circuit holding portions is a semiconductor switching element that is electrically connected as one of the corresponding pair of AC LEDs is opened and the voltage applied to both ends thereof is greater than or equal to a predetermined value, thereby forming a power passage path. LED drive.
  20. 청구항 19에 있어서,The method according to claim 19,
    상기 반도체 스위칭 소자는 사이닥으로 구성된 것을 특징으로 하는 엘이디 구동장치.LED driving device, characterized in that the semiconductor switching element is composed of a side.
  21. 청구항 19에 있어서,The method according to claim 19,
    상기 반도체 스위칭 소자는 해당하는 한 쌍의 교류 엘이디중 어느 하나의 교류 엘이디가 오픈되어 양단에 걸리는 전압이 소정치 이상임에 따라 턴온되는 제 1반도체 스위칭 소자, 및 상기 제 1반도체 스위칭 소자가 턴온됨에 따라 도통되어 전원 통과 경로를 형성시키는 제 2반도체 스위칭 소자를 구비하는 것을 특징으로 하는 엘이디 구동장치.The semiconductor switching device may include a first semiconductor switching device that is turned on when an AC LED of a corresponding pair of AC LEDs is opened and a voltage applied to both ends thereof is greater than or equal to a predetermined value, and as the first semiconductor switching device is turned on. And a second semiconductor switching element that is electrically connected to form a power passage path.
  22. 청구항 21에 있어서,The method according to claim 21,
    상기 제 1반도체 스위칭 소자는 해당하는 한 쌍의 교류 엘이디 사이에 연결된 제 1제너 다이오드와 제 2제너 다이오드로 구성된 것을 특징으로 하는 엘이디 구동장치.And said first semiconductor switching element comprises a first zener diode and a second zener diode connected between a corresponding pair of alternating LEDs.
  23. 청구항 22에 있어서,The method according to claim 22,
    상기 제 2반도체 스위칭 소자는 제어단이 상기 제 1제너 다이오드와 제 2제너 다이오드의 사이에 접속된 트라이악으로 구성된 것을 특징으로 하는 엘이디 구동장치.And said second semiconductor switching element comprises a triac with a control terminal connected between said first and second zener diodes.
  24. 상용 교류전원을 저압의 교류전원으로 변환시켜 출력하는 장치로서,A device for converting commercial AC power into low-voltage AC power and outputting
    상기 상용 교류전원을 정류하는 정류부의 출력 양단 사이에 설치되되, 일단이 상기 정류부의 출력 일단과 함께 소정의 권선비를 갖는 트랜스포머의 1차측 일단에 접속된 시정수 소자; 및A time constant element installed between both ends of the rectifier for rectifying the commercial AC power source, one end of which is connected to one end of a primary side of a transformer having a predetermined turns ratio together with an output end of the rectifier; And
    일단이 상기 시정수 소자에 연결되고 타단은 소정의 권선비를 갖는 트랜스포머의 1차측 타단에 연결되고, 외부로부터의 PWM신호에 의해 스위칭 구동되어 상기 트랜스포머의 저압의 교류전원 출력을 위한 발진신호를 출력하는 스위칭부를 포함하는 것을 특징으로 하는 엘이디 구동장치.One end is connected to the time constant element, the other end is connected to the other end of the primary side of the transformer having a predetermined turns ratio, and is switched by a PWM signal from the outside to output an oscillation signal for outputting a low voltage AC power of the transformer. LED drive device comprising a switching unit.
  25. 청구항 24에 있어서,The method of claim 24,
    상기 스위칭부는,The switching unit,
    상기 입력되는 PWM신호에 따라 온/오프 구동되는 포토 커플러; 및 A photo coupler driven on / off according to the input PWM signal; And
    상기 포토 커플러의 온/오프 구동에 따라 스위칭동작하는 스위칭소자를 포함하는 것을 특징으로 하는 엘이디 구동장치.And a switching device for switching according to the on / off driving of the photo coupler.
  26. 상용 교류전원을 저압의 교류전원으로 변환시켜 출력하는 장치로서,A device for converting commercial AC power into low-voltage AC power and outputting
    상기 상용 교류전원을 정류하는 정류부의 출력단과 소정의 권선비를 갖는 트랜스포머의 1차측에 접속되고, 가변적인 시정수 제어를 행하는 시정수 소자; 및A time constant element connected to an output end of the rectifying unit for rectifying the commercial AC power source and a primary side of a transformer having a predetermined winding ratio, and performing variable time constant control; And
    상기 시정수 소자에서의 가변적인 시정수에 따라 온/오프 구동되어 상기 트랜스포머의 저압의 교류전원 출력을 위한 발진신호를 출력하는 스위칭부를 포함하는 것을 특징으로 하는 엘이디 구동장치.And a switching unit which is driven on / off according to a variable time constant in the time constant element and outputs an oscillation signal for outputting an AC power at a low voltage of the transformer.
  27. 청구항 26에 있어서,The method of claim 26,
    상기 시정수 소자는, 가변저항을 포함하고 상기 정류부의 출력 일단과 상기 트랜스포머의 1차측 사이에 연결된 것을 특징으로 하는 엘이디 구동장치.And the time constant element includes a variable resistor and is connected between an output end of the rectifying unit and a primary side of the transformer.
  28. 청구항 27에 있어서,The method of claim 27,
    상기 스위칭부는 상기 시정수 소자와 상기 정류부의 출력 타단과 상기 트랜스포머의 1차측 사이에 설치되되, 제어단이 상기 시정수 소자에 각각 접속된 제 1스위칭소자 및 제 2스위칭소자를 포함하는 것을 특징으로 하는 엘이디 구동장치.The switching unit is provided between the output end of the time constant element and the rectifier and the primary side of the transformer, the control stage comprises a first switching element and a second switching element connected to the time constant element, respectively LED drive.
PCT/KR2009/001160 2008-03-14 2009-03-09 Led drive device WO2009113784A2 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR1020080023854A KR20090098451A (en) 2008-03-14 2008-03-14 Apparatus for breaking leakage current of led lighting fixture
KR10-2008-0023854 2008-03-14
KR1020080026782A KR20090101570A (en) 2008-03-24 2008-03-24 Apparatus for driving led
KR10-2008-0026782 2008-03-24
KR1020080042102A KR100958435B1 (en) 2008-05-07 2008-05-07 Apparatus for breaking leakage current when switch is off in AC ??? lighting fixture
KR10-2008-0042102 2008-05-07
KR10-2008-0082970 2008-08-25
KR1020080082970A KR100971789B1 (en) 2008-08-25 2008-08-25 AC LED driving circuit
KR10-2008-0094458 2008-09-26
KR1020080094458A KR100978388B1 (en) 2008-09-26 2008-09-26 Low voltage AC power transducing apparatus

Publications (2)

Publication Number Publication Date
WO2009113784A2 true WO2009113784A2 (en) 2009-09-17
WO2009113784A3 WO2009113784A3 (en) 2009-12-17

Family

ID=41065655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/001160 WO2009113784A2 (en) 2008-03-14 2009-03-09 Led drive device

Country Status (1)

Country Link
WO (1) WO2009113784A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104219825A (en) * 2013-05-29 2014-12-17 立锜科技股份有限公司 driving device of light emitting diode
WO2016117914A1 (en) * 2015-01-20 2016-07-28 주식회사 소프트커널 Leakage current interruption device for electrical load
CN109639140A (en) * 2019-01-11 2019-04-16 武汉精立电子技术有限公司 A kind of pcb board of DC-DC Switching Power Supply

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652341U (en) * 1993-04-09 1994-07-15 林原 健 Lighting equipment
KR20010079315A (en) * 2001-07-06 2001-08-22 이계선 The circute for the traffic signal lamps using LED
JP2004327152A (en) * 2003-04-23 2004-11-18 Toshiba Lighting & Technology Corp Led lighting device and led lighting fixture
JP2004335128A (en) * 2003-04-30 2004-11-25 Toshiba Lighting & Technology Corp Led lighting device and led marker light

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652341U (en) * 1993-04-09 1994-07-15 林原 健 Lighting equipment
KR20010079315A (en) * 2001-07-06 2001-08-22 이계선 The circute for the traffic signal lamps using LED
JP2004327152A (en) * 2003-04-23 2004-11-18 Toshiba Lighting & Technology Corp Led lighting device and led lighting fixture
JP2004335128A (en) * 2003-04-30 2004-11-25 Toshiba Lighting & Technology Corp Led lighting device and led marker light

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104219825A (en) * 2013-05-29 2014-12-17 立锜科技股份有限公司 driving device of light emitting diode
CN104219825B (en) * 2013-05-29 2016-06-01 立锜科技股份有限公司 driving device of light emitting diode
WO2016117914A1 (en) * 2015-01-20 2016-07-28 주식회사 소프트커널 Leakage current interruption device for electrical load
US20180013281A1 (en) * 2015-01-20 2018-01-11 Sunghyun E&C.,Ltd., Leakage current interruption device for electrical load
CN107636919A (en) * 2015-01-20 2018-01-26 (株)圣贤E&C Leakage current occluding device for electric loading
CN109639140A (en) * 2019-01-11 2019-04-16 武汉精立电子技术有限公司 A kind of pcb board of DC-DC Switching Power Supply

Also Published As

Publication number Publication date
WO2009113784A3 (en) 2009-12-17

Similar Documents

Publication Publication Date Title
WO2012081878A2 (en) Led lighting apparatus driven by alternating current
WO2013100736A1 (en) Led luminescence apparatus
WO2012144800A2 (en) Led driving device and led driving method using same
WO2011013906A2 (en) Dimming device for a lighting apparatus
WO2010104297A2 (en) Active constant power supply apparatus
WO2014104776A1 (en) Led driving circuit for continuously driving led, led lighting device comprising same and driving method
WO2014104843A1 (en) Control circuit of light-emitting diode lighting apparatus
WO2016093534A1 (en) Led drive circuit with improved flicker performance, and led lighting device comprising same
WO2015037949A1 (en) Charging control device, charging control method and wireless power receiving device equipped with same
WO2017160036A9 (en) Power-controlled communication device using power fluctuation of power line as communication signal
WO2017131436A1 (en) Cleaner and control method therefor
WO2014081145A1 (en) Led lighting device with improved modulation index
WO2013162308A1 (en) Led dimmer, led lighting device comprising same, and method for controlling dimming of led lighting device
WO2017069555A1 (en) Power supply device and power supply system including the same
WO2010137921A2 (en) Led driver
WO2016060465A2 (en) Led driver circuit having improved flicker performance and led lighting device including same
WO2015180136A1 (en) Dimming switch and dimming method therefor
WO2022119278A1 (en) Arrangement and method for discharging a dc link capacitor
WO2019172643A1 (en) Power supply
WO2009113784A2 (en) Led drive device
WO2022108339A1 (en) Smart converter for lighting control device, smart converter having improved thd and emi, and lighting control device including same
WO2015060644A1 (en) Zvzcs switching converter using single winding transformer
WO2016104940A1 (en) Device for driving light emitting element
WO2011159048A2 (en) Led fluorescent lamp
WO2015020463A1 (en) Power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09720899

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09720899

Country of ref document: EP

Kind code of ref document: A2