WO2009113436A1 - Method for enhancing the anti-cancer activity of radioactive ray by using fgf33 gene inhibitor in combination with irradiation with the radioactive ray, and method for reducing adverse side effects of radioactive ray - Google Patents

Method for enhancing the anti-cancer activity of radioactive ray by using fgf33 gene inhibitor in combination with irradiation with the radioactive ray, and method for reducing adverse side effects of radioactive ray Download PDF

Info

Publication number
WO2009113436A1
WO2009113436A1 PCT/JP2009/054104 JP2009054104W WO2009113436A1 WO 2009113436 A1 WO2009113436 A1 WO 2009113436A1 JP 2009054104 W JP2009054104 W JP 2009054104W WO 2009113436 A1 WO2009113436 A1 WO 2009113436A1
Authority
WO
WIPO (PCT)
Prior art keywords
fgfr3
inhibitor
radiation
gene
cancer
Prior art date
Application number
PCT/JP2009/054104
Other languages
French (fr)
Japanese (ja)
Inventor
丹沢秀樹
Original Assignee
国立大学法人千葉大学
高信化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人千葉大学, 高信化学株式会社 filed Critical 国立大学法人千葉大学
Priority to JP2010502783A priority Critical patent/JPWO2009113436A1/en
Publication of WO2009113436A1 publication Critical patent/WO2009113436A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to a method for enhancing the anticancer effect of radiation and a method for reducing side effects by using a FGFR3 gene inhibitor in combination with irradiation.
  • radiation therapy As part of cancer treatment, radiation therapy is known that uses the ionizing action of radiation such as X-rays and ⁇ -rays to control malignant tumors. Radiation therapy aims to focus the cancer locally without complications by concentrating the dose locally on the cancer and reducing the dose to surrounding normal tissue. Radiation therapy is effective not only for radical radiation therapy but also for palliative and symptomatic treatment. In any case, in order to achieve the above objectives, an appropriate radiation treatment plan including the irradiation field, irradiation method, dose splitting method, combination therapy, etc. will be established for each case. When planning radiation therapy, the patient's age, general condition (PS), primary lesion, stage, histopathology, extent of lesion development, risk organ location, radical or symptomatic or palliative, Consider the details of treatment, complications, etc.
  • PS general condition
  • the FGFR family 1 is classified in terms of connectivity and tissue distribution.
  • the FGFR protein is located in the extracellular region and consists of three immunoglobulin-like domains, a cytoplasmic tyrosine kinase, and a hydrophobic signal.
  • Fibroblast growth factor receptor 3 (FGFR3) has been shown to inhibit chondrocyte proliferation and differentiation. It is.
  • FGFR3 active mutations are known to develop soft bone dysplasia and lethal osteodysplasia, which are short stature chondrogenic dysplasias. There have also been reports of cases of skull fusion due to FGFR3 mutations.
  • FGFR3 gene has been reported to be increased in squamous cell carcinoma, bladder cancer and hepatocellular carcinoma, and when it is overexpressed in multiple myeloma, apoptosis is suppressed and proliferation is increased. Disclosure of the invention
  • an object of the present invention is to provide a radiation therapy effect enhancing agent combined radiotherapy capable of enhancing an anticancer effect by radiation therapy.
  • the inventors succeeded in identifying a gene group involved in radiation resistance, and focusing on a specific gene from these groups, It has been found that the combined use of the inhibitor of the gene product enables enhancement of the radiotherapy effect and reduction of side effects, and the present invention has been completed.
  • the present invention includes the following.
  • a radiation therapeutic effect enhancer comprising a fibroblast growth factor receptor 3 (FGFR3) inhibitor as an active ingredient.
  • FGFR3 fibroblast growth factor receptor 3
  • the above FGFR3 inhibitor is N-2-[[4- (Jetylamino) butyl] amino-6- (3,5-dimethoxyphenyl) pyrid [2,3_d] pyrimidine-7-yl] _N
  • the present invention also includes a method for treating cancer.
  • the cancer treatment method according to the present invention includes a step of administering a composition comprising a fibroblast growth factor receptor 3 (FGFR3) inhibitor as an active ingredient to a radiation treatment target patient.
  • FGFR3 inhibitor a substance that inhibits autophosphorylation of FGFR3 is preferably used.
  • N-2 _ [[4- (Jetylamino) ptyl] amino-6- (3,5-dimethyl) It is more preferable to use toxiphenyl) pyrid [2,3-d] pyrimidine-7-yl] _] '-(1,1-dimethylethyl) urea.
  • the administration method and administration route of the FGFR3 inhibitor are not particularly limited.
  • the radiotherapy for the patient may be performed before the administration of the FGFR3 inhibitor, at the same time as the administration of the FGFR3 inhibitor, or after the administration of the FGFR3 inhibitor.
  • the cancer to be treated is not particularly limited.
  • Examples include sarcomas, soft tissue sarcomas, neuroblastomas, Wilms tumors, retinoblastomas, melanomas, and daliomas.
  • FIG. 1 is a characteristic diagram showing the relationship between the survival rate and the X-ray irradiation dose of squamous cell carcinoma cell lines HSC2, HSC3, HSC4, Ca9-22, 0K92, and HO-1-u-1.
  • Figure 2 shows the results of a pathway analysis of 1 67 genes as a group of genes in which a 5-fold or higher expression was observed in the radiation resistant strain (HSC2) compared to the radiation sensitive strain (HSC3). It is a characteristic view which shows a network.
  • FIG. 3 is a characteristic diagram showing the network obtained as a result of further narrowing down the network shown in FIG. 2 by the cancer function.
  • FIG. 4 is a characteristic diagram showing the relationship between the irradiation dose and the elapsed time after irradiation and the expression level of the FGFR3 gene.
  • FIG. 5 is a characteristic diagram (A) showing the inhibition of FGFR3 gene expression by siRNA against the FGFR3 gene, and a photograph showing the protein expression level.
  • Figure 6 shows the results for the radiation-resistant strain when PD173074, an inhibitor of FGFR3, was administered. It is a characteristic view which shows the X-ray sensitivity enhancement effect.
  • FIG. 7 is a characteristic diagram showing the effect of enhancing X-ray sensitivity in a cell line showing moderate resistance to radiation when PD173074, an inhibitor of FGFR3, is administered.
  • FIG. 8 is a characteristic diagram showing the X-ray sensitivity enhancement effect in a radiation-sensitive strain when PD173074, an inhibitor of FGFR3, was administered.
  • FIG. 9 is a characteristic diagram showing the tumor cell growth inhibitory effect when combined with administration of PD173074, an FGFR3 inhibitor, and X-ray irradiation for mouse transplantation radiation-resistant cancer.
  • the radiotherapy capable of enhancing the radiotherapy effect includes, for example, X-ray, gamma ray, electron beam, proton beam, helium beam, carbon ion beam, neon ion beam, argon ion beam, silicon ion beam, A treatment method in which radiation such as negative pion beams or neutron beams is irradiated directly or in a divided manner (eg, several times a day, several times over a period of 1 to 2 months). It is.
  • the initial energy of radiation can be appropriately selected according to the size, condition, or location of the tumor of the patient, etc., or the surrounding conditions, but is usually about 100 to 500 Me V / n. Preferably about 200-300 Me VZn, most preferably about 29 OMe V, n.
  • the radiation dose to the patient can be appropriately selected according to the size, state or location of the tumor of the patient, etc., or the surrounding conditions, but is usually about 0.1 to 100 Gy.
  • the irradiation rate of radiation to a patient or the like is usually about 0.05 to 50 Gy / "min, preferably Is about 0.5-1 OGy / min, most preferably about 3 Gy / min, and the energy (linear energy transfer: LET) that the radiation gives to the tissue is the size and condition of the patient's tumor Or it can be appropriately selected according to the site, etc., but is usually about 50 to 70 ke VZ / m, preferably about 50 to 60 ke ⁇ , and most preferably about 50 ke V m.
  • the tumor to be treated by radiation therapy is not particularly limited.
  • the radiotherapeutic effect enhancer according to the present invention can increase the therapeutic effect in the radiotherapy as described above. Therefore, since the therapeutic agent for enhancing radiotherapy effect according to the present invention can increase the therapeutic effect in the radiotherapy as described above, a high therapeutic effect can be expected even when the radiation dose is reduced.
  • the radiotherapy effect-enhancing agent according to the present invention comprises a fibroblast growth factor receptor 1 3 (FGFR3) inhibitor as an active ingredient.
  • FGFR3 fibroblast growth factor receptor 1 3
  • the present invention can further enhance the radiosensitivity by inhibiting the activity of the FGFR3 gene product, FGFR3, even in patients who have moderate tolerance to radiation and patients who are sensitive to radiation. Based on these new findings.
  • An FGFR3B inhibitor is a substance that significantly inhibits FGFR3 signaling.
  • any substance may be used as the FGFR3B inhibitor as long as it can significantly reduce FGFR3B signal transduction.
  • examples of the FGFR3 inhibitor include substances that reduce the expression level of the FGFR3 gene, substances that inhibit the mRNA of the FGFR3 gene, substances that inhibit the FGFR3 gene at the protein level, and the like.
  • known substances that are currently clinically used as FGFR3 inhibitors can be used.
  • FGFR3 inhibitors include, for example, N-2-[[4- (Jetylamino) butyl] amino-6- (3,5-dimethoxyphenyl) pyrid [2,3-d] pyrimidine-7- -N '-(1,1-dimethylethyl) urea, ie PD173074
  • the IC 5 of PD173074 Is known to inhibit the cell cycle of G0 / G1 phase and to inhibit FGFR3 autophosphorylation in FGFR3-expressing cells.
  • the selectivity of PD173074 for FGFR3 is about 100 times higher than VEGF receptor, IGF-1 receptor, and MAPKs.
  • PD173074 inhibits autophosphorylation of endogenous FGFRl (IC 5 ⁇ 5 ⁇ M) and overexpressed VEGFR2 (IC 50 ⁇ 200 ⁇ M) in vitro in ⁇ 3 ⁇ 3 cells, and FGF in mice in vivo. And have been shown to inhibit VEGF-induced angiogenesis.
  • PD173074 is described in Koziczak, M., et al. 2004. Oncogene 23, 3501. Trudel, S., et al. 2004. Blood 103, 3521. Skaper, SD, et al. 2000. J. Neurochera. 75, 1520 Reference can be made to Mohammadi, M., et al. 1998. E B0 J. 17, 5896.
  • FGFR3 inhibitor examples include siRNA (small interfering RNA), antisense RNA, ribozyme, and all vector DNAs capable of producing these RNAs for the FGFR3 gene.
  • siRNA small interfering RNA
  • antisense RNA antisense RNA
  • ribozyme ribozyme
  • all vector DNAs capable of producing these RNAs for the FGFR3 gene can inhibit or suppress the expression of the FGFR3 gene.
  • the siRNA used as an FGFR3 inhibitor is a small double-stranded RNA containing a sequence that is complementary to the mRNA corresponding to the FGFR3 gene (that is, the mRNA encoded by the gene) or its alternatively spliced mRNA.
  • the mRNA or its alternatively spliced mRNA is selectively processed through the formation of an RNA-nuclease complex (RNA induced silencing complex or RISC).
  • RNA-nuclease complex RNA induced silencing complex or RISC
  • siRNA may be derived from its precursor double-stranded RNA (shRNA) through processing by Dicer, an intracellular RNase.
  • shRNA is Double-stranded RNA having a loop between the sense strand sequence and the antisense strand sequence of siRNA, preferably 1-6, preferably 2-4 polyU overhangs at its 3 'end including.
  • the shRNA is processed into siRNA by a dicer belonging to the RNase III family, and then siRNA is stranded, and its sense strand RNA forms a complex (RISC) with RNase H, thereby siRNA.
  • RISC complex
  • the target mRNA having a sequence complementary to the sequence is cleaved, and as a result, the expression of the FGFR3 gene is suppressed.
  • both the above siRNA and its precursor shRNA can be used as the FGFR3 inhibitor in the present invention.
  • siRNA or vectors can be complexed with and used with ribosomes such as lipofectamine, lipofectin, selfectin and other positively charged ribosomes (eg, positively charged cholesterol) or microcapsules (eg, Nakanishi Mamoru et al., Protein Nucleic Acid Enzymes, 44, 11, 48-54, 1999; Clinical Cancer research 59: 4325-4333, 1999; Wu et al., J. Biol. Chem. 262: 4429, 1987).
  • ribosomes such as lipofectamine, lipofectin, selfectin and other positively charged ribosomes (eg, positively charged cholesterol) or microcapsules (eg, Nakanishi Mamoru et al., Protein Nucleic Acid Enzymes, 44, 11, 48-54, 1999; Clinical Cancer research 59: 4325-4333, 1999; Wu et al., J. Biol. Chem. 262: 4429, 1987).
  • Positively charged ribosomes are preferably used because the cell membrane is negatively charged, but it is assumed that the positively charged ribosome-nucleic acid complex is transferred into the cytoplasm or nucleus after being incorporated into the cell by endocytosis. Is done.
  • the therapeutic nucleic acid is about
  • nanoparticles can also be encapsulated in nanoparticles of 500 nm or less.
  • nanoparticles include hollow nanoparticles formed from hepatitis B virus envelope L particles.
  • Nucleic acids are encapsulated in the particles by an electrical mouth position. In this case, the nucleic acid-encapsulated particles are Can be delivered to the liver (T. Yamada et al.,
  • nucleic acid When encapsulating a nucleic acid in a liposome, the nucleic acid is treated with protamine sulfate to cause condensation to form a nucleic acid-protein complex, and then encapsulated in a positively charged lipid or polymer micelle.
  • Ribosome-nucleic acid complexes can be obtained, for example, by the reverse phase evaporation method (F. Szoka et al., Biochim. Biophys.
  • nucleic acid examples include an expression vector containing a DNA sequence encoding the siRNA or a precursor thereof under the control of a promoter.
  • an expression vector is a hairpin vector. This vector includes DNA encoding a hairpin RNA in which the sense strand RNA sequence and the antisense strand RNA sequence are covalently linked via a single-stranded loop sequence, wherein the DNA is transcribed in a cell. Is a vector that forms the hairpin RNA and is processed by Dicer to form the siRNA.
  • Short hairpin RNA (shRNA) as a siRNA precursor transcribed from vector DNA should have an overhang consisting of 2 to 4 U at the 3 ′ end of its antisense strand, and due to the presence of the overhang, Sense strand RNA and antisense strand RNA can increase stability against degradation by nucleases.
  • a plasmid vector contains a drug resistance gene (for example, nemycin resistance gene, ampicillin resistance gene, puromycin resistance gene, hygromycin resistance gene), transcription, in addition to the siRNA-encoding DNA sequence and promoter. It can contain stop sequences, unique restriction sites or multiple cloning sites, replication origins, etc.
  • a drug resistance gene for example, nemycin resistance gene, ampicillin resistance gene, puromycin resistance gene, hygromycin resistance gene
  • transcription in addition to the siRNA-encoding DNA sequence and promoter. It can contain stop sequences, unique restriction sites or multiple cloning sites, replication origins, etc.
  • an adenovirus vector for example, an adenovirus vector, an adeno-associated virus vector, a lentiwinores vector, a retroui / res vector (leukemia winores vector, etc.), a herpes virus vector and the like can be used.
  • the virus vector is preferably of a type lacking self-replicating ability, for example, so as not to cause disease when used in humans.
  • a self-replication ability-deficient adenovirus vector lacking the E1 gene and E3 gene for example, pAdeno-X from Invitrogen
  • Virus vectors can be constructed using methods described in the literature (US Pat. No. 5,252,479, International publication W094 / 13788 etc.).
  • the plasmid vector of the present invention can be introduced into a patient's body in the form of a complex formed with a positively charged liposome such as lipophectamine, lipofectin, self-actin, positively charged cholesterol, etc. (Mr. Nakanishi et al., Supra). Wu et al., Supra).
  • viral vectors can be introduced into cells by introducing them into affected areas and infecting cells (L. Zender et al., Proc. Natl. Acad. Sci. USA (2003), 100: 77797-7802; H. Xia et al., Nature Biotech. (2002), 20: 1006-1010; XF Qin et al., Proc. Natl.
  • adenovirus vectors or adeno-associated virus vectors can introduce genes into various cell types with very high efficiency. This vector is also not integrated into the genome, so its effect is transient and safer than other viral vectors.
  • the antisense nucleic acid used as the FGFR3 inhibitor is either RNA or DNA containing a sequence of mRNA corresponding to the FGFR3 gene, or a sequence complementary to a partial sequence thereof.
  • the partial sequence may include a sequence consisting of about 30 or more, 50 or more, 70 or more, 100 or more, 150 or more, 200 or more, or 250 or more and less than full length nucleotides in the sequence of FGFR3 gene or mRNA.
  • antisense nucleic acid nucleotides In addition to natural nucleotides, antisense nucleic acid nucleotides, antisense nucleic acid nucleotides, antisense nucleic acid nucleotides, antisense nucleic acid nucleotides, antisense nucleic acid nucleotides, antisense nucleic acid nucleotides, antisense nucleic acid nucleotides
  • nucleotides having groups such as (fluorine, chlorine, bromine or iodine), methyl, carboxymethyl or thio groups can be included.
  • Antisense nucleic acids are well-known
  • vector DNA containing the base sequence of the FGFR3 gene is converted into a saddle shape and subjected to polymerase chain reaction (PCR) using primers that sandwich the sequence to be amplified, and then the target sequence.
  • PCR polymerase chain reaction
  • the thus obtained DNA having the amplified target sequence is inserted into a vector, the vector is introduced into a eukaryotic or prokaryotic cell, and antisense RNA can be obtained using the transcription system.
  • the antisense nucleic acid of the present invention can inhibit or suppress transcription or translation by binding to the FGFR3 gene or corresponding mRNA.
  • the antisense nucleic acid may be encapsulated in a positively charged ribosome as described above, or the antisense nucleic acid may be, for example, a strong pol II or pol III promoter. It can be incorporated into a vector (the above mentioned plasmid or viral vector) as controlled.
  • the ribozyme used as an FGFR3 inhibitor is an RNA having catalytic activity and has an activity of cleaving mRNA corresponding to the target FGFR3 gene.
  • Ribozymes include hammerhead ribozymes.
  • the hammerhead ribozyme is a nucleotide sequence that includes a nucleotide sequence that constitutes a sensor site, a nucleotide sequence that can form a cavity that can stably capture Mg 2+ ions only when RNA is bound to the sensor site, and a target RNA cleavage site. Nucleotide sequences comprising regions that are complementary to surrounding sequences can be included.
  • a drug delivery system is constructed by a method such as encapsulating the ribozyme in a ribosome (preferably, a positively charged ribosome) or incorporating it into a virus vector such as an adeno-associated virus. That's right.
  • a ribozyme can be incorporated into a vector so that it can be expressed.
  • Promoters for expressing ribozymes include pol II or pol III promoters.
  • Preferred promoters are pol III promoters, such as tRNA promoters from mammals, more preferably tRNAVal promoters.
  • an antibody used as an FGFR3 inhibitor means an antibody or a functional fragment thereof that inhibits or suppresses the in vivo function of the FGFR3 protein encoded by the FGFR3 gene or a variant thereof.
  • antibodies against FGFR3 protein include monoclonal antibodies, recombinantly produced antibodies, human antibodies, humanized antibodies, chimeric antibodies, single chain antibodies, bispecific antibodies, and synthetic antibodies.
  • functional fragments of the antibody include Fab fragments, F (ab ′) 2 fragments, scFv, and the like.
  • Preferred antibodies suitable for use in the present invention are human or humanized antibodies, particularly human or humanized monoclonal antibodies, that cause little or no side effects from anaphylaxis.
  • the antibody class and subclass can be of any type.
  • IgG, IgM, IgE, IgD, and IgA are included as antibody classes
  • IgG1, IgG2, IgG3, IgG4, IgAl, and IgA2 are included as subclasses.
  • Antibodies may also be derivatized by pegylation, acetylation, glycosylation, amidation, etc.
  • the human antibody can be obtained, for example, by a phage display library method (T. Thomas et al., Mol. Immunol. 33: 1389-1401, 1996) or a method using a human antibody-producing mouse (I. Ishida et al., Cloning Stem Cell 4: 91-102, 2002).
  • a human antibody-producing mouse for example, introduces a human chromosome fragment containing a human antibody-producing gene into a human artificial chromosome, and then incorporates the artificial chromosome into, for example, the mouse embryonic stem cell genome using the microcell method. Transplant into the uterus, give birth to chimeric mice, and create a homozygous offspring mouse that contains the human antibody gene by mating male and female chimeric mice and can therefore produce human antibodies. Therefore, it can be produced.
  • the human antibody-producing transgenic mouse is immunized with the FGFR3 protein as an antigen, and then the spleen is removed, and the spleen cells and mouse myeloma cells are fused to form a hybridoma, and the desired monoclonal antibody is selected. be able to.
  • Delivery of the antibody or fragment thereof to the patient can be accomplished either alone or in the form of the antibody or fragment thereof encapsulated in, for example, ribosomes (preferably positively charged ribosomes), microcapsules or nanoparticles, usually with a suitable carrier (shaped In combination with a non-oral route (for example, intravenous administration or topical administration).
  • ribosomes preferably positively charged ribosomes
  • microcapsules or nanoparticles usually with a suitable carrier (shaped In combination with a non-oral route (for example, intravenous administration or topical administration).
  • the above FGFR3 inhibitors can significantly enhance the anti-cancer effect of radiation therapy when administered together with radiation therapy for patients diagnosed as requiring radiation therapy. Therefore, anticancer effects of radiation therapy can be expected even for carcinoma cases where the effect of radiation therapy has been low.
  • FGFR3 inhibitors reduce the level of radiation resistance, so the dose of irradiated radiation has been reduced. It is possible to expect a therapeutic effect equivalent to or better than. Therefore, side effects caused by radiation therapy can be reduced, or it can be applied to non-indication cases of radiation therapy for reasons such as general condition, and an effective treatment method can be provided for the patient.
  • the FGFR3 inhibitor is preferably administered to patients prior to radiation therapy.
  • the FGFR3 inhibitor can be administered by any appropriate route.
  • Suitable routes include oral, rectal, intranasal, topical (including buccal and sublingual), intravaginal, and parenteral (subcutaneous, intramuscular, intravenous, intradermal, intrathecal and dura mater) Including the outside).
  • the FGFR3 inhibitor can be administered directly or locally to, for example, a tissue in which a tumor is present, or can be administered intravenously, artery, subcutaneously, intramuscularly or intraperitoneally.
  • a tumor can be imaged using any device available in the art, such as nuclear magnetic resonance imaging or computed tomography, and administered directly, for example, by stereotaxic injection.
  • the dose of FGFR3 inhibitor can be 10 to 100 mg / m 2 (body surface area), preferably 10 to It can be 50 mg / tn 2 (body surface area), more preferably 20 to 50 mg / m 2 (body surface area). .
  • Microarray analysis using radiation-resistant and radiation-sensitive strains identified genes that specifically enhanced expression in resistant strains.
  • Affymetrix U133 Plus 2.0 on which 54675 types of probes were immobilized was used.
  • GeneChip Operating Software 1.1 (Affymetrix) and GeneSpring 6.1 (Silicon Genetics) were used as analysis software.
  • HSC2 radiation resistant strain
  • HSC3 radiation sensitive strain
  • Pathway analysis was performed on 1 6 7 genes identified as genes related to radiation resistance narrowed down by microarray analysis, and 1 6 7 genes Then, what kind of network was formed was examined. Specifically, the pathway analysis used software, Ingenuity Pathway Analysis (manufactured by Ingenuity systems). As a result, 40 genes out of 1 6 7 genes
  • the FGFR3 gene was selected as an apparent gene expression inhibitor gene.
  • the raRNA expression status of the FGFR3 gene in the resistant strain (HSC2) and the susceptible strain (HSC3) was confirmed by the Quantitative real-time RT-PCR method with respect to the X-ray irradiation dose and the elapsed time after irradiation (Fig. 4).
  • Fig. 4A shows the relationship between X-ray irradiation dose and mRNA expression level
  • Fig. 4B shows the relationship between elapsed time after X-ray irradiation and mRNA expression level.
  • Figure 4 Shown in A and B
  • the expression of the FGFR3 gene was always increased in the HSC2 resistant strain under X-ray irradiation conditions.
  • siRNA was introduced to examine changes in X-ray resistance.
  • DhamaFECT Dermatacon
  • FGFR3 gene siRNA was introduced into HSC2, and after 96 hours, 200 / 4ml raediura / di sh (0, 2 or 4Gy), 400 / 4ml medium / di sh (6Gy), 800 / Cells were transferred to three 6cra dishes at a rate of 4ml medium / di sh. (8Gy) 24 hours later, irradiated with X-rays, incubated for 8-10 days, and then clonogenic survival assay.
  • clonogenic survival assay cells were stained and fixed with a crystal violet solution (25% methanol added) (Sigma Chemical Co.) on 6 cm dishes after incubation for 8-10 days. Count the number of cell colonies (consisting of more than 50 cells), and set the plating eff iciency to (average viable cell colony number) I (number of cells spread in one dish) of the cells in three dishes.
  • Fig. 5 A As shown in Fig. 5 A, cells transfected with s siRNA against the FGFR3 gene were included in the control group. In comparison, the resistance to X-rays was reduced, and it was considered that the sensitivity to X-rays was increased by suppressing the expression of the FGFR3 gene. This is shown in Fig. B. As can be seen from Fig. 5 B, it was confirmed that the expression of the FGFR3 gene protein was suppressed in the siRNA-transfected cells against the FGFR3 gene, which was considered to be a radiation resistance gene. .
  • DMS0 As the inhibitor solvent, DMS0 was used to dissolve the inhibitor. In the experiment, the DMS0 concentration in the medium was adjusted to 0.1% or less, and the inhibitor was mixed. The inhibitor concentration was 5 nM, 10 nM, 25 nM, 50 nM or ⁇ ⁇ ⁇ .
  • the efficiency obtained by dividing the plating efficiency after irradiation with each dose by the plating efficiency of OGy was plotted as the survival fraction (Clonogenic fractions). Since the inhibitor was dissolved in 0.1% or less of DMS0, 0.1% DMS0 added and untreated HSC2, HSC3 or Ca9_22 cells were used as controls.
  • the results of plotting the survival rate are shown in Figs. Fig. 6 shows the results for the radiation-resistant strain HSC2, Fig. 7 shows the results for Ca9-22, which shows moderate resistance to radiation, and Fig.
  • FIG. 8 shows the results for the radiation-sensitive strain HSC3. is there.
  • Fig. 6 when the function of FGFR3 was inhibited by administration of an FGFR3 inhibitor, it was considered that the sensitivity to X-rays in the radiation resistant strain increased.
  • Fig. 7 it was considered that the sensitivity to X-rays also increased in cell lines that showed moderate resistance to radiation.
  • Fig. 8 it was considered that the sensitivity to X-rays was also increased in the radiation-sensitive strain.
  • HSC2 strain was prepared to 5 ⁇ 10 6 and inoculated subcutaneously into the right thigh of a mouse using a 29G needle (Myjector 1: TERUM0). The mice were bred while observing, and X-ray irradiation and administration of an FGFR3 inhibitor were started when the tumor diameter reached 8-9 mm.
  • FGFR3 inhibitor was administered intraperitoneally at 25 mg / kg.
  • X-ray (4Gy) irradiation was started 2 hours after administration of the FGFR3 inhibitor.
  • Administration of FGFR3 inhibitor and X-ray (4Gy) irradiation were performed once a day for 5 days.
  • a group in which no treatment was performed, a group in which only FGFR3 inhibitor was administered, and a group in which only X-ray (4Gy) irradiation was performed were used as comparison targets.
  • 4Gy indicates X-ray.
  • the growth of tumor cells can be significantly suppressed.
  • the effect of inhibiting the growth of tumor cells when FGFR3 inhibitor administration and X-ray (4Gy) irradiation are used in combination is the effect of tumor cells when FGFR3 inhibitor administration or X-ray (4Gy) irradiation is performed alone. It was so remarkable that it could not be predicted from the growth inhibitory effect.
  • 25 genes with higher reliability were selected as genes related to X-ray resistance. Quantitative for the 25 genes The mRNA expression was confirmed by real-time RT-PCR, and the FGFR3 gene that was highly expressed in the resistant strain and in which the inhibitor was present was selected.
  • the anticancer effect by radiation therapy can be enhanced. Therefore, by using the radiotherapy effect enhancer according to the present invention, for example, a radiotherapy can be performed with a low dose, and a treatment method that reduces the burden on the patient can be provided. Moreover, by using the radiotherapy effect enhancer according to the present invention, for example, radiotherapy with a low dose becomes possible, and side effects due to radiotherapy can be reduced. Furthermore, an effective therapeutic effect overcoming the radiation therapy resistance can be obtained by increasing the radiation therapy effect on the tumor having radiation resistance.

Abstract

The object is to enhance the anti-cancer activity of radiation therapy. A group of genes involved in the resistance to a radioactive ray are successfully identified. Attention is directed to a specific gene among the group of genes, and it is found that the therapeutic effect of radiation therapy can be enhanced and the adverse side effects of radiation therapy can be reduced by using an inhibitor of a product of the gene in combination with the radiation therapy. An enhancer of the therapeutic effect of radiation therapy comprises an inhibitor of fibroblast growth factor receptor-3 (FGFR3) as an active ingredient.

Description

FGFR3遺伝子阻害剤の放射線照射併用による放射線の抗癌作用増強法および 副作用軽減法 技術分野  Methods for enhancing the anticancer effects and reducing side effects of radiation using FGFR3 gene inhibitor in combination with radiation
本発明は、 FGFR3 遺伝子阻害剤の放射線照射併用による放射線の抗癌作用増強 法および副作用軽減法に関する。  The present invention relates to a method for enhancing the anticancer effect of radiation and a method for reducing side effects by using a FGFR3 gene inhibitor in combination with irradiation.
明 背景技術  Background art
 book
癌治療の一環として、 X線や γ線といった放射線による電離作用を利用して悪 性腫瘍を制御する放射線療法が知られている。 放射線療法は、 癌の局所に線量を 集中し、 かつ周囲正常組織への線量を少なくし、 合併症なく癌を根治することを 目的としている。 根治的放射線療法だけでなく、 緩和,対症療法としても放射線 療法は有効である。 いずれにしても上記の目的を達成するために、 症例ごとに、 照射野、 照射法、 線量分割法、 併用療法などを含めた適切な放射線治療計画がた てられる。放射線治療計画をたてるにあたっては、患者の年齢、一般状態( P S )、 原発巣、病期、病理組織型、病巣の進展範囲、 リスク臓器の位置、根治的か対症 · 姑息的か、 過去に行われた治療内容、 合併症の有無などの点を考慮する。  As part of cancer treatment, radiation therapy is known that uses the ionizing action of radiation such as X-rays and γ-rays to control malignant tumors. Radiation therapy aims to focus the cancer locally without complications by concentrating the dose locally on the cancer and reducing the dose to surrounding normal tissue. Radiation therapy is effective not only for radical radiation therapy but also for palliative and symptomatic treatment. In any case, in order to achieve the above objectives, an appropriate radiation treatment plan including the irradiation field, irradiation method, dose splitting method, combination therapy, etc. will be established for each case. When planning radiation therapy, the patient's age, general condition (PS), primary lesion, stage, histopathology, extent of lesion development, risk organ location, radical or symptomatic or palliative, Consider the details of treatment, complications, etc.
放射線治療の副作用としては、 射線冶療している期間における副作用 (急性放 射線障害) と放射線治療終了後しばらくしてから生じる副作用 (晚発性放射線障 害) がある。 具体的には、 症例毎にも異なるが、 一般的な副作用 (急性放射線障 害) として倦怠感、 皮膚の変化、 及び食欲不振が挙げられる。 また、 一般的な副 作用 (晚発性放射線障害) としては、 照射される範囲内に消化管が含まれる場合 における消化管出血が挙げられる。  As side effects of radiation therapy, there are side effects during the period of radiation therapy (acute radiation damage) and side effects that occur after radiation therapy (spontaneous radiation damage). Specifically, although it varies from case to case, common side effects (acute radiation damage) include fatigue, skin changes, and loss of appetite. In addition, a common side effect (spontaneous radiation damage) is gastrointestinal bleeding when the gastrointestinal tract is included within the irradiated range.
ところで、 FGFR ファミリ一は、 結合性、 組織での分布の点で分類されている。 By the way, the FGFR family 1 is classified in terms of connectivity and tissue distribution.
FGFRタンパクは、 細胞外領域にあり、 3個の免疫グロブリン様ドメイン、 細胞質 チロシンキナーゼ、 疎水性シグナルから構成されている。 線維芽細胞増殖因子レ セプター 3 (FGFR3) は、軟骨細胞の増殖および分化を抑制することが明らかとな つている。 また、 FGFR3 の活性型変異は、 低身長を示す軟骨形成不全症である軟 骨無形成症や致死性骨異形成症を発症することが知られている。 また、 FGFR3 変 異に起因して頭蓋骨癒合症を示す症例も報告されている The FGFR protein is located in the extracellular region and consists of three immunoglobulin-like domains, a cytoplasmic tyrosine kinase, and a hydrophobic signal. Fibroblast growth factor receptor 3 (FGFR3) has been shown to inhibit chondrocyte proliferation and differentiation. It is. In addition, FGFR3 active mutations are known to develop soft bone dysplasia and lethal osteodysplasia, which are short stature chondrogenic dysplasias. There have also been reports of cases of skull fusion due to FGFR3 mutations.
また、 FGFR3遺伝子については扁平上皮癌、膀胱がん及び肝細胞癌での発現上昇、 また、 多発性骨髄腫にて過剰発現させると、 アポトーシス抑制及び増殖亢進の報 告がある。 発明の開示 In addition, the expression of FGFR3 gene has been reported to be increased in squamous cell carcinoma, bladder cancer and hepatocellular carcinoma, and when it is overexpressed in multiple myeloma, apoptosis is suppressed and proliferation is increased. Disclosure of the invention
ところが、放射線治療の奏功と FGFR3遺伝子の発現との相関関係、並びに FGFR3 阻害剤存在下における放射線治療への影響といったことは知られていない。 そこ で、 本発明は、 上述した実情に鑑み、 放射線治療による抗癌作用を増強できる放 射線治療効果増強剤併用放射線療法を提供することを目的とする。  However, there is no known correlation between the success of radiotherapy and the expression of the FGFR3 gene, and the effect on radiotherapy in the presence of FGFR3 inhibitors. Therefore, in view of the above-described circumstances, an object of the present invention is to provide a radiation therapy effect enhancing agent combined radiotherapy capable of enhancing an anticancer effect by radiation therapy.
上述した目的を達成するため、 本発明者らが鋭意検討した結果、 放射線耐性に 関与する遺伝子群を同定することに成功し、 また、 これら群のなかから特定の遺 伝子に着目して、 当該遺伝子産物の阻害剤を併用することにより、 放射線治療効 果の増強 ·副作用の軽減を可能にすることを見いだし、 本発明を完成するに至つ た。  As a result of intensive studies by the present inventors in order to achieve the above-mentioned object, the inventors succeeded in identifying a gene group involved in radiation resistance, and focusing on a specific gene from these groups, It has been found that the combined use of the inhibitor of the gene product enables enhancement of the radiotherapy effect and reduction of side effects, and the present invention has been completed.
本発明は以下を包含する。  The present invention includes the following.
( 1 ) 線維芽細胞増殖因子レセプター 3 (FGFR3) 阻害剤を有効成分とする放射 線治療効果増強剤。  (1) A radiation therapeutic effect enhancer comprising a fibroblast growth factor receptor 3 (FGFR3) inhibitor as an active ingredient.
( 2 ) 上記 FGFR3阻害剤は、 FGFR3の自己リン酸化を阻害する物質であること を特徴とする (1 ) 記載の放射線治療効果増強剤。  (2) The radiotherapy effect enhancer according to (1), wherein the FGFR3 inhibitor is a substance that inhibits autophosphorylation of FGFR3.
( 3 ) 上記 FGFR3阻害剤は、 N- 2- [ [4 -(ジェチルァミノ)ブチル]ァミノ- 6- (3, 5- ジメ トキシフエニル)ピリ ド [2,3_d]ピリ ミジン- 7-ィル] _N' _ (1,1-ジメチルェチ ル)ゥレアであること特徴とする (1 ) 記載の放射線治療効果増強剤。  (3) The above FGFR3 inhibitor is N-2-[[4- (Jetylamino) butyl] amino-6- (3,5-dimethoxyphenyl) pyrid [2,3_d] pyrimidine-7-yl] _N The agent for enhancing radiotherapeutic effect according to (1), which is' _ (1,1-dimethylethyl) urea.
また、 本発明は、 癌の治療方法を包含する。  The present invention also includes a method for treating cancer.
すなわち、 本発明に係る癌の治療方法は、 放射線治療対象患者に対して、 線維 芽細胞増殖因子レセプター 3 (FGFR3)阻害剤を有効成分とする組成物を投与する 工程を含む。 ここで、 上記 FGFR3阻害剤としては、 FGFR3の自己リン酸化を阻害する物質を 使用することが好ましく、 特に、 N- 2_ [ [4 -(ジェチルァミノ)プチル]ァミノ - 6- (3, 5 -ジメ トキシフエ-ル)ピリ ド [2, 3- d]ピリ ミジン- 7-ィル] _Ν' - (1, 1 -ジメ チルェチル)ゥレアを使用することがより好ましい。 FGFR3阻害剤の投与方法及び 投与経路としては、 特に限定されない。 また、 上記患者に対する放射線治療は、 FGFR3阻害剤の投与の前でもよいし、 FGFR3阻害剤の投与と同時でも良いし、 FGFR3 阻害剤の投与の後でもよい。 That is, the cancer treatment method according to the present invention includes a step of administering a composition comprising a fibroblast growth factor receptor 3 (FGFR3) inhibitor as an active ingredient to a radiation treatment target patient. Here, as the FGFR3 inhibitor, a substance that inhibits autophosphorylation of FGFR3 is preferably used. In particular, N-2 _ [[4- (Jetylamino) ptyl] amino-6- (3,5-dimethyl) It is more preferable to use toxiphenyl) pyrid [2,3-d] pyrimidine-7-yl] _] '-(1,1-dimethylethyl) urea. The administration method and administration route of the FGFR3 inhibitor are not particularly limited. In addition, the radiotherapy for the patient may be performed before the administration of the FGFR3 inhibitor, at the same time as the administration of the FGFR3 inhibitor, or after the administration of the FGFR3 inhibitor.
本発明に係る癌の治療方法において、治療対象となる癌は特に限定されないが、 例えば、 肺癌、 卵巣癌、 塍臓癌、 胃癌、 胆嚢癌、 腎臓癌、 前立腺癌、 乳癌、 食道 癌、 肝臓癌、 口腔癌、 結腸癌、 大腸癌、 子宮癌、 胆管癌、 腌島細胞癌、 副腎皮質 癌、 膀胱癌、 精巣癌、 睾丸腫瘍、 甲状腺癌、 皮膚癌、 悪性カルチノィド腫瘍、 悪 性黒色腫、 骨肉腫、 軟部組織肉腫、 神経芽細胞腫、 ウィルムス腫瘍、 網膜芽細胞 腫、 メラノーマ及びダリオ一マ等を挙げることができる。  In the cancer treatment method according to the present invention, the cancer to be treated is not particularly limited. For example, lung cancer, ovarian cancer, pancreas cancer, stomach cancer, gallbladder cancer, kidney cancer, prostate cancer, breast cancer, esophageal cancer, liver cancer Oral cancer, colon cancer, colon cancer, uterine cancer, bile duct cancer, islet cell cancer, adrenal cortex cancer, bladder cancer, testicular cancer, testicular tumor, thyroid cancer, skin cancer, malignant carcinoid tumor, malignant melanoma, bone Examples include sarcomas, soft tissue sarcomas, neuroblastomas, Wilms tumors, retinoblastomas, melanomas, and daliomas.
本明細書は本願の優先権の基礎である日本国特許出願 2008-066443号の明細書 および Ζまたは図面に記載される内容を包含する。 図面の簡単な説明  This specification includes the contents described in the specification of Japanese Patent Application No. 2008-066443, which is the basis of the priority of the present application, and in the drawings or drawings. Brief Description of Drawings
図 1は、 扁平上皮癌細胞株 HSC2、 HSC3、 HSC4、 Ca9- 22、 0K92及び HO- 1- u- 1の 生存率と X線照射量との関係を示す特性図である。  FIG. 1 is a characteristic diagram showing the relationship between the survival rate and the X-ray irradiation dose of squamous cell carcinoma cell lines HSC2, HSC3, HSC4, Ca9-22, 0K92, and HO-1-u-1.
図 2は、 放射線耐性株 (HSC2) において放射線感受性株 (HSC3) と比較して 5 倍以上の発現が観察された遺伝子群として 1 6 7遺伝子についてパスウェイ解析 を行った結果として得られた 3つのネットワークを示す特性図である。  Figure 2 shows the results of a pathway analysis of 1 67 genes as a group of genes in which a 5-fold or higher expression was observed in the radiation resistant strain (HSC2) compared to the radiation sensitive strain (HSC3). It is a characteristic view which shows a network.
図 3は、 図 2に示したネットワークを癌機能でさらに絞り込んだ結果として得 られたネットワークを示す特性図である。  FIG. 3 is a characteristic diagram showing the network obtained as a result of further narrowing down the network shown in FIG. 2 by the cancer function.
図 4は、 放射線照射量及び照射後経過時間と FGFR3遺伝子の発現量との関係を 示す特性図である。  FIG. 4 is a characteristic diagram showing the relationship between the irradiation dose and the elapsed time after irradiation and the expression level of the FGFR3 gene.
図 5は、 FGFR3遺伝子に対する siRNAによる FGFR3遺伝子の発現阻害を示す特 性図 (A) 及びタンパク質発現量を示す写真である。  FIG. 5 is a characteristic diagram (A) showing the inhibition of FGFR3 gene expression by siRNA against the FGFR3 gene, and a photograph showing the protein expression level.
図 6は、 FGFR3の阻害剤である PD173074を投与した時の、 放射線耐性株におけ る X線感受性増強効果を示す特性図である。 Figure 6 shows the results for the radiation-resistant strain when PD173074, an inhibitor of FGFR3, was administered. It is a characteristic view which shows the X-ray sensitivity enhancement effect.
図 7は、 FGFR3の阻害剤である PD173074を投与した時の、 放射線に対して中程 度の耐性を示す細胞株における X線感受性増強効果を示す特性図である。  FIG. 7 is a characteristic diagram showing the effect of enhancing X-ray sensitivity in a cell line showing moderate resistance to radiation when PD173074, an inhibitor of FGFR3, is administered.
図 8は、 FGFR3の阻害剤である PD173074を投与した時の、 放射線感受性株にお ける X線感受性増強効果を示す特性図である。  FIG. 8 is a characteristic diagram showing the X-ray sensitivity enhancement effect in a radiation-sensitive strain when PD173074, an inhibitor of FGFR3, was administered.
図 9は、マウス移植放射線耐性癌に対する FGFR3阻害剤である PD173074の投与 及び X線照射を併用した時の、 腫瘍細胞の増殖抑制効果を示す特性図である。 発明を実施するための最良の形態  FIG. 9 is a characteristic diagram showing the tumor cell growth inhibitory effect when combined with administration of PD173074, an FGFR3 inhibitor, and X-ray irradiation for mouse transplantation radiation-resistant cancer. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係る放射線治療効果増強剤に関して詳細に説明する。 本発明に おいて放射線治療効果を増強させることができる放射線治療は、 例えば、 X線、 ガンマ線、 電子線、 陽子線、 ヘリウム線、 炭素イオン線、 ネオンイオン線、 アル ゴンイオン線、 シリコンイオン線、 負パイ中間子線、 中性子線等の放射線を、 患 者における腫瘍に対し直接的に、 又は分割的 (例えば、 1日に数分間、 1〜2ケ 月間にわたつて複数回) に照射する治療方法である。  Hereinafter, the radiotherapy effect enhancer according to the present invention will be described in detail. In the present invention, the radiotherapy capable of enhancing the radiotherapy effect includes, for example, X-ray, gamma ray, electron beam, proton beam, helium beam, carbon ion beam, neon ion beam, argon ion beam, silicon ion beam, A treatment method in which radiation such as negative pion beams or neutron beams is irradiated directly or in a divided manner (eg, several times a day, several times over a period of 1 to 2 months). It is.
また、 放射線治療において、 放射線の初期エネルギーは、 患者等の腫瘍の大き さ、 状態若しくは部位またはその周辺の状況等に応じて適宜選択することができ るが、 通常、 約 100〜500Me V/ nであり、 好ましくは約 200〜 300 Me VZnであり、 最も好ましくは約 29 OMe V,nである。 また、 患者等へ の放射線の照射量は、 患者等の腫瘍の大きさ、 状態若しくは部位またはその周辺 の状況等に応じて適宜選択することができるが、 通常、 約 0. l〜100Gyで あり、好ましくは約 1〜 10 G yであり、最も好ましくは約 5 G yであり、また、 患者等への放射線の照射割合は、 通常、 約 0. 05〜50Gy /"分であり、 好ま しくは約 0. 5〜1 OGy/分であり、 最も好ましくは約 3Gy/分である。 さ らに、 放射線が組織に対して与えるエネルギー ( l i n e a r e n e r g y t r a n s f e r : LET) は、 患者の腫瘍の大きさ、 状態または部位等に応じて 適宜選択することができるが、 通常、 約 50〜70 k e VZ/ mであり、 好まし くは約 50〜60 k e νΖμπιであり、 最も好ましくは約 50 k e V mであ る。 放射線治療による治療対象の腫瘍としては、 特に限定されないが、 例えば、 肺 癌、 卵巣癌、 滕臓癌、 胃癌、 胆嚢癌、 腎臓癌、 前立腺癌、 乳癌、 食道癌、 肝臓癌、 口腔癌、 結腸癌、 大腸癌、 子宮癌、 胆管癌、 膝島細胞癌、 副腎皮質癌、 膀胱癌、 精巣癌、 睾丸腫瘍、 甲状腺癌、 皮膚癌、 悪性カルチノィド腫瘍、 悪性黒色腫、 骨 肉腫、 軟部組織肉腫、 神経芽細胞腫、 ウィルムス腫瘍、 網膜芽細胞腫、 メラノ一 マまたはダリオ一マ等が挙げられる。 In radiation therapy, the initial energy of radiation can be appropriately selected according to the size, condition, or location of the tumor of the patient, etc., or the surrounding conditions, but is usually about 100 to 500 Me V / n. Preferably about 200-300 Me VZn, most preferably about 29 OMe V, n. The radiation dose to the patient can be appropriately selected according to the size, state or location of the tumor of the patient, etc., or the surrounding conditions, but is usually about 0.1 to 100 Gy. , Preferably about 1 to 10 Gy, most preferably about 5 Gy, and the irradiation rate of radiation to a patient or the like is usually about 0.05 to 50 Gy / "min, preferably Is about 0.5-1 OGy / min, most preferably about 3 Gy / min, and the energy (linear energy transfer: LET) that the radiation gives to the tissue is the size and condition of the patient's tumor Or it can be appropriately selected according to the site, etc., but is usually about 50 to 70 ke VZ / m, preferably about 50 to 60 ke νΖμπι, and most preferably about 50 ke V m. The The tumor to be treated by radiation therapy is not particularly limited. For example, lung cancer, ovarian cancer, pancreas cancer, stomach cancer, gallbladder cancer, kidney cancer, prostate cancer, breast cancer, esophageal cancer, liver cancer, oral cancer, colon Cancer, colon cancer, uterine cancer, cholangiocarcinoma, knee cell carcinoma, adrenal cortical cancer, bladder cancer, testicular cancer, testicular tumor, thyroid cancer, skin cancer, malignant carcinoid tumor, malignant melanoma, osteosarcoma, soft tissue sarcoma, Neuroblastoma, Wilms tumor, retinoblastoma, melanoma or darioma.
本発明に係る放射線治療効果増強剤は、 上述したような放射線治療における治 療効果を増大することができる。 したがって、 本発明に係る放射線治療効果増強 剤は、 上述したような放射線治療における治療効果を増大できることから、 放射 線の線量を低減しても高い治療効果を期待できる。  The radiotherapeutic effect enhancer according to the present invention can increase the therapeutic effect in the radiotherapy as described above. Therefore, since the therapeutic agent for enhancing radiotherapy effect according to the present invention can increase the therapeutic effect in the radiotherapy as described above, a high therapeutic effect can be expected even when the radiation dose is reduced.
本発明に係る放射線治療効果増強剤は、 線維芽細胞増殖因子レセプタ一 3 (FGFR3) 阻害剤を有効成分とするものである。 これは、放射線耐性を示す患者群 においては、 放射線感受性を示す患者群と比較して FGFR3遺伝子の発現亢進が認 められ、 FGFR3遺伝子産物である FGFR3 の活性を阻害することによって放射線感 受性を増強できるといった新規知見に基づいている。 また、 本発明は、 放射線に 対して中程度の耐性を示す患者、 放射線に対して感受性を示す患者においても、 FGFR3遺伝子産物である FGFR3の活性を阻害することによって放射線感受性を更 に一層増強できるといった新規知見にも基づいている。  The radiotherapy effect-enhancing agent according to the present invention comprises a fibroblast growth factor receptor 1 3 (FGFR3) inhibitor as an active ingredient. This is because, in the patient group showing radiation resistance, an increase in the expression of the FGFR3 gene was observed compared to the patient group showing radiosensitivity, and the activity of FGFR3, which is the FGFR3 gene product, was inhibited. It is based on new knowledge that it can be enhanced. Furthermore, the present invention can further enhance the radiosensitivity by inhibiting the activity of the FGFR3 gene product, FGFR3, even in patients who have moderate tolerance to radiation and patients who are sensitive to radiation. Based on these new findings.
FGFR3B阻害剤とは、 FGFR3のシグナル伝達を有意に阻害する物質である。 本発 明において、 FGFR3B阻害剤どしては、 FGFR3Bのシグナル伝達を有意に低減させる ことができれば、 特に限定されず如何なる物質を使用しても良い。 また、 本発明 において、 FGFR3阻害剤とは、 FGFR3遺伝子の発現量を低下させる物質、 FGFR3遺 伝子の mRNAを阻害する物質、 FGFR3遺伝子をタンパク質レベルで阻害する物質等 を挙げることができる。 また、 FGFR3阻害剤としては、 FGFR3阻害薬として現在、 臨床的に使用されている公知の物質を使用することができる。  An FGFR3B inhibitor is a substance that significantly inhibits FGFR3 signaling. In the present invention, any substance may be used as the FGFR3B inhibitor as long as it can significantly reduce FGFR3B signal transduction. In the present invention, examples of the FGFR3 inhibitor include substances that reduce the expression level of the FGFR3 gene, substances that inhibit the mRNA of the FGFR3 gene, substances that inhibit the FGFR3 gene at the protein level, and the like. As the FGFR3 inhibitor, known substances that are currently clinically used as FGFR3 inhibitors can be used.
特に、 本発明において FGFR3阻害剤としては、 従来公知の FGFR3阻害剤を使用 することが好ましい。 従来公知の FGFR3阻害剤は、例えば、 N-2- [ [4- (ジェチルァ ミノ)ブチル]ァミノ- 6- (3, 5 -ジメ トキシフヱニル)ピリ ド [2, 3- d]ピリ ミジン - 7- ィル] - N' - (1, 1-ジメチルェチル)ゥレア、 すなわち PD173074を挙げることができ る。 PD173074の IC5。は 5nMであり、 FGFR3発現細胞で G0/G1期のセルサイクルを 阻害し、 FGFR3 の自己リン酸化を阻害することが知られている。 また、 PD173074 の FGFR3に対する選択性は、 VEGFレセプターや IGF- 1 レセプター、 MAPKsよりも 100倍程度高いことが知られている。 In particular, it is preferable to use a conventionally known FGFR3 inhibitor as the FGFR3 inhibitor in the present invention. Conventionally known FGFR3 inhibitors include, for example, N-2-[[4- (Jetylamino) butyl] amino-6- (3,5-dimethoxyphenyl) pyrid [2,3-d] pyrimidine-7- -N '-(1,1-dimethylethyl) urea, ie PD173074 The IC 5 of PD173074. Is known to inhibit the cell cycle of G0 / G1 phase and to inhibit FGFR3 autophosphorylation in FGFR3-expressing cells. In addition, it is known that the selectivity of PD173074 for FGFR3 is about 100 times higher than VEGF receptor, IGF-1 receptor, and MAPKs.
また、 PD173074については、 細胞透過性のピリ ドピリミジン化合物であること が知られている。 PD173074は、 FGF及び VEGF受容体に対して、 強力かつ可逆的な ATP競合阻害剤として作用(FGFR1に対する IC50 = 21. 5 M)することが知られてい る。 また、 PD173074は、 非常に高い濃度でのみ PDGFR及び c_Srcを阻害し(それ ぞれ、 IC50= 17. 6 / M及び 19. 8 μ Μ)、 EGFR、 InsR、 MEK及び cPKCに対しては 50 μ Μの高濃度でもほとんど影響しないことが知られている。 さらに、 PD173074は、 ΝΙΗ3Τ3 細胞において in vitro で内在性の FGFRl (IC5。< 5 μ M)と過剰発現された VEGFR2 (IC50く 200 M)の自己リン酸化を阻害し、マウス in vivoで FGFおよび VEGF 誘導性の血管新生を阻害することが示されている。 PD173074 については、 Koziczak, M. , et al. 2004. Oncogene 23, 3501. Trudel, S. , et al. 2004. Blood 103, 3521. Skaper, S. D., et al. 2000. J. Neurochera. 75, 1520. Mohammadi, M. , et al. 1998. E B0 J. 17, 5896.を参照することができる。 PD173074 is known to be a cell-permeable pyridopyrimidine compound. PD173074 is known to act as a potent and reversible ATP competitive inhibitor for FGF and VEGF receptors (IC 50 = 21.5 M for FGFR1). PD173074 also inhibits PDGFR and c_Src only at very high concentrations (IC 50 = 17.6 / M and 19.8 μΜ, respectively) and 50 for EGFR, InsR, MEK and cPKC. It is known that even a high concentration of μΜ has little effect. In addition, PD173074 inhibits autophosphorylation of endogenous FGFRl (IC 5 <5 μM) and overexpressed VEGFR2 (IC 50 <200 μM) in vitro in ΝΙΗ3Τ3 cells, and FGF in mice in vivo. And have been shown to inhibit VEGF-induced angiogenesis. PD173074 is described in Koziczak, M., et al. 2004. Oncogene 23, 3501. Trudel, S., et al. 2004. Blood 103, 3521. Skaper, SD, et al. 2000. J. Neurochera. 75, 1520 Reference can be made to Mohammadi, M., et al. 1998. E B0 J. 17, 5896.
また、 FGFR3B阻害剤としては、 PD173074以外にも CHIR258、 SU5402、 PRU- 001、 PKC412といった従来公知の化合物を使用することができる。  In addition to PD173074, conventionally known compounds such as CHIR258, SU5402, PRU-001, and PKC412 can be used as the FGFR3B inhibitor.
また、 FGFR3阻害剤としては、 FGFR3遺伝子に対する siRNA (small interfering RNA)、 アンチセンス RNA、 リボザィム、 これらの RNAを生成することができるす ベてのベクター DNAなどが含まれる。 このような核酸は、 FGFR3遺伝子の発現を阻 害又は抑制することができる。  Examples of the FGFR3 inhibitor include siRNA (small interfering RNA), antisense RNA, ribozyme, and all vector DNAs capable of producing these RNAs for the FGFR3 gene. Such a nucleic acid can inhibit or suppress the expression of the FGFR3 gene.
FGFR3阻害剤として使用する siRNAは、 FGFR3遺伝子に対応する mRNA (すなわ ち、 該遺伝子によってコードされる mRNA) 又はその選択的スプライス型 mRNAに 相捕的な配列を含む小さな二本鎖 RNA であり、 RNA -ヌクレアーゼ複合体(RNA induced si lencing complex又は RISC)の形成を介して該 mRNA又はその選択的ス プライス型 mRNAが選択的にプロセシングされる。  The siRNA used as an FGFR3 inhibitor is a small double-stranded RNA containing a sequence that is complementary to the mRNA corresponding to the FGFR3 gene (that is, the mRNA encoded by the gene) or its alternatively spliced mRNA. The mRNA or its alternatively spliced mRNA is selectively processed through the formation of an RNA-nuclease complex (RNA induced silencing complex or RISC).
また、 siRNAは、 その前駆体である二本鎖 RNA (shRNA)から、 細胞内 RNァ一ゼで あるダイサー(Dicer)によるプロセシングを介して誘導されてもよい。 shRNA は、 siRNA のセンス鎖配列とアンチセンス鎖配列との間にループを有する二本鎖 RNA であり、好ましくはその 3 '末端に 1〜 6個、好ましくは 2〜4個のポリ Uからな るオーバーハングを含む。 shRNAは、 RNァーゼ IIIファミ リーに属するダイサー によって siRNAにプロセシングされたのち、 siRNAがー本鎖化され、 そのセンス 鎖 RNAが RNァーゼ Hと複合体 (RISC) を形成し、 これによつて siRNA配列に相補 的な配列を持つ標的 mRNAが切断され、 その結果、 FGFR3遺伝子の発現が抑制され る。 Alternatively, siRNA may be derived from its precursor double-stranded RNA (shRNA) through processing by Dicer, an intracellular RNase. shRNA is Double-stranded RNA having a loop between the sense strand sequence and the antisense strand sequence of siRNA, preferably 1-6, preferably 2-4 polyU overhangs at its 3 'end including. The shRNA is processed into siRNA by a dicer belonging to the RNase III family, and then siRNA is stranded, and its sense strand RNA forms a complex (RISC) with RNase H, thereby siRNA. The target mRNA having a sequence complementary to the sequence is cleaved, and as a result, the expression of the FGFR3 gene is suppressed.
したがって、 上記 siRNA 及びその前駆体 shRNA はいずれも、 本発明における FGFR3阻害剤として使用することができる。  Therefore, both the above siRNA and its precursor shRNA can be used as the FGFR3 inhibitor in the present invention.
本発明の siRNAを体内に導入するときには、 siRNAを患部に直接注入するか、 又は siRNA の発現が可能なベクターを使用することが好ましい。 或いは、 siRNA 又はベクターを、 リボソーム、 例えばリポフエクタミン、 リポフエクチン、 セル フエクチン及びその他の正電荷リボソーム (例えば、 正電荷コレステロール)、 又 はマイクロカプセル、 と複合体形成し、 これを使用することもできる(例えば、 中 西守ら, 蛋白質 核酸 酵素, 44巻 11号, 48〜54頁, 1999年; Cl inical Cancer research 59 : 4325-4333, 1999 ; Wu ら, J. Biol. Chem. 262 : 4429, 1987)。 細胞 膜が負電荷を帯びているため、 正電荷リボソームが好ましく使用されるが、 正電 荷リボソーム-核酸複合体はェンドサイ トーシスにより細胞内に取り込まれたの ち核酸は細胞質又は核へ移行すると推定される。 或いは、 治療用核酸を粒径約 When introducing the siRNA of the present invention into the body, it is preferable to directly inject the siRNA into the affected area or to use a vector capable of expressing the siRNA. Alternatively, siRNA or vectors can be complexed with and used with ribosomes such as lipofectamine, lipofectin, selfectin and other positively charged ribosomes (eg, positively charged cholesterol) or microcapsules (eg, Nakanishi Mamoru et al., Protein Nucleic Acid Enzymes, 44, 11, 48-54, 1999; Clinical Cancer research 59: 4325-4333, 1999; Wu et al., J. Biol. Chem. 262: 4429, 1987). Positively charged ribosomes are preferably used because the cell membrane is negatively charged, but it is assumed that the positively charged ribosome-nucleic acid complex is transferred into the cytoplasm or nucleus after being incorporated into the cell by endocytosis. Is done. Alternatively, the therapeutic nucleic acid is about
500nm以下のナノ粒子中に封入することもできる。 ナノ粒子として、 例えば B型 肝炎ウィルスエンベロープ L 粒子から形成されるホロ一ナノ粒子(hollow nanoparticles)が例示され、 核酸は、 エレク ト口ポレーシヨンによってこの粒子 内に封入され、 この場合、 核酸封入粒子は肝臓に送達されうる (T. Yamada ら,It can also be encapsulated in nanoparticles of 500 nm or less. Examples of nanoparticles include hollow nanoparticles formed from hepatitis B virus envelope L particles. Nucleic acids are encapsulated in the particles by an electrical mouth position. In this case, the nucleic acid-encapsulated particles are Can be delivered to the liver (T. Yamada et al.,
Nature Biotech 21 (8) : 885-890, 2003)。核酸をリポソーム中に封入するときには、 核酸を硫酸プロタミンで処理して凝縮を起こし核酸一タンパク質複合体としたの ち、 正電荷脂質又は高分子ミセル中に封入することもできる。 Nature Biotech 21 (8): 885-890, 2003). When encapsulating a nucleic acid in a liposome, the nucleic acid is treated with protamine sulfate to cause condensation to form a nucleic acid-protein complex, and then encapsulated in a positively charged lipid or polymer micelle.
リボソーム-核酸複合体は、例えば逆相蒸発法(F. Szokaら, Biochim. Biophys. Ribosome-nucleic acid complexes can be obtained, for example, by the reverse phase evaporation method (F. Szoka et al., Biochim. Biophys.
Acta, 601 : 559, 1980)、 ボルテックス振とう法、 カルシウム融合- E D T Aキレー ト法 (金田安史,実験医学 22巻 14号 (増刊) , 147〜1 5 2頁, 2004年) などの 公知の方法によって製造できる。 Acta, 601: 559, 1980), vortex shaking method, calcium fusion-EDTA chelate method (Yasushi Kaneda, Experimental Medicine Vol.22, No.14 (extra), 147-15 2 pages, 2004), etc. It can be produced by a known method.
本発明で使用可能な核酸として、 前記 siRNA又はその前駆体をコードする DNA 配列をプロモーターの調節下に含む発現ベクターが含まれる。 発現ベクターの 1 つの例は、 ヘアピン型ベクターである。 このベクターは、 前記センス鎖 RNA配列 と前記ァンチセンス鎖 RNA配列とがー本鎖ループ配列を介して共有結合されてい るヘアピン型 RNAをコードする DNAを含み、 ここで該 DNAは、 細胞内で転写によ り該ヘアピン型 RNAを形成し、 ダイサ一によりプロセシングされて前記 siRNAを 形成するベクターである。 siRNAをコードするヘアピン型 DNAの 3,末端には、 転 写停止シグナル配列として、 或いはオーバーハングのために、 1〜6個、 好まし くは 1〜 5個の Tからなるポリ T配列、 例えば 4個又は 5個のポリ T配列が連結 される。 ベクター DNA から転写された siRNA 前駆体としてのショートヘアピン RNA (shRNA)は、そのアンチセンス鎖の 3 '末端に 2〜 4個の Uからなるオーバーハ ングを有することが望ましく、 オーバーハングの存在によって、 センス鎖 RNA及 びアンチセンズ鎖 RNAはヌクレアーゼによる分解に対して安定性を増すことがで きる。 ヒ トには内在性のダイサ一が 1つ存在し、 これが長鎖 dsRNAや前駆体マイ ク口 RNA (miRNA) をそれぞれ siRNAと成熟 miRNAに変換する役割をもつ。  Examples of the nucleic acid that can be used in the present invention include an expression vector containing a DNA sequence encoding the siRNA or a precursor thereof under the control of a promoter. One example of an expression vector is a hairpin vector. This vector includes DNA encoding a hairpin RNA in which the sense strand RNA sequence and the antisense strand RNA sequence are covalently linked via a single-stranded loop sequence, wherein the DNA is transcribed in a cell. Is a vector that forms the hairpin RNA and is processed by Dicer to form the siRNA. A poly-T sequence consisting of 1 to 6, preferably 1 to 5, T at the end of the hairpin DNA encoding siRNA, as a transcription stop signal sequence or for overhang, for example Four or five poly T sequences are linked. Short hairpin RNA (shRNA) as a siRNA precursor transcribed from vector DNA should have an overhang consisting of 2 to 4 U at the 3 ′ end of its antisense strand, and due to the presence of the overhang, Sense strand RNA and antisense strand RNA can increase stability against degradation by nucleases. There is one endogenous dicer in humans, which plays a role in converting long dsRNA and precursor micking RNA (miRNA) into siRNA and mature miRNA, respectively.
プラスミ ドベクターは一般に、 上記 siRNAをコードする DNA配列及ぴプロモー ターの俾に、 薬剤耐性遺伝子 (例えば、 ネ才マイシン耐性遺伝子、 アンピシリン 耐性遺伝子、 ピューロマイシン耐性遺伝子、 ハイグロマイシン耐性遺伝子など)、 転写停止配列、 ユニーク制限部位もしくはマルチプルクローユングサイ ト、 複製 開始点などを含むことができる。  In general, a plasmid vector contains a drug resistance gene (for example, nemycin resistance gene, ampicillin resistance gene, puromycin resistance gene, hygromycin resistance gene), transcription, in addition to the siRNA-encoding DNA sequence and promoter. It can contain stop sequences, unique restriction sites or multiple cloning sites, replication origins, etc.
ウィルスベクターは、 たとえばアデノウイルスベクター、 アデノ随伴ウィルス ベクター、 レンチウイノレスベクター、 レ トロウイ/レスベクター (白血病ウイノレス ベクターなど)、ヘルぺスウィルスベクターなどを使用することができる。 ウィル スベクターは、 ヒ トに使用する際に疾病を引き起こさないように例えば自己複製 能を欠損したタイプのものが好ましい。 たとえばアデノウィルスベクターの場合 には、 E1遺伝子及び E3遺伝子を欠失した自己複製能欠損型アデノウィルスべク ター (例えば Invitrogen社の pAdeno-X)を使用することができる。 ウィルスべク ターの構築は、文献記載の方法を利用することができる(米国特許第 5252479号、 国際公開 W094/13788など)。 As the viral vector, for example, an adenovirus vector, an adeno-associated virus vector, a lentiwinores vector, a retroui / res vector (leukemia winores vector, etc.), a herpes virus vector and the like can be used. The virus vector is preferably of a type lacking self-replicating ability, for example, so as not to cause disease when used in humans. For example, in the case of an adenovirus vector, a self-replication ability-deficient adenovirus vector lacking the E1 gene and E3 gene (for example, pAdeno-X from Invitrogen) can be used. Virus vectors can be constructed using methods described in the literature (US Pat. No. 5,252,479, International publication W094 / 13788 etc.).
本発明のプラスミ ドベクターは、 例えばリポフエクタミン、 リポフエクチン、 セルフヱクチン、 正電荷コレステロールなどの正電荷リポソームと複合体を形成 しカプセル化された状態で患者の体内に導入することができる (中西守ら, 上 記; Wu ら, 上記)。 また、 ウィルスベクターは患部に導入し細胞感染させること によって細胞内に遺伝子導入することができる(L. Zenderら, Proc. Natl. Acad. Sci. USA (2003), 100 : 77797-7802 ; H. Xia ら, Nature Biotech. (2002) , 20 : 1006-1010 ; X. F. Qin ら, Proc. Natl. Acad. Sci. USA (2003), 100 : 183-188 ; G. M. Bartonら, Pro Natl. Acad. , Sci. USA (2002) , 99: 14943-14945; J. D. Hommel ら, Nature Med. (2003), 9 : 1539-1544)。 特にアデノウイルスベクター又 はアデノ随伴ウィルスベクターは種々の細胞種に非常に高い効率で遺伝子導入可 能であることが確認されている。 このベクターはまた、 ゲノム中に組み込まれる ことがないため、 その効果は一過性であり安全性も他のウィルスベクターと比べ て高いと考えられる。  The plasmid vector of the present invention can be introduced into a patient's body in the form of a complex formed with a positively charged liposome such as lipophectamine, lipofectin, self-actin, positively charged cholesterol, etc. (Mr. Nakanishi et al., Supra). Wu et al., Supra). In addition, viral vectors can be introduced into cells by introducing them into affected areas and infecting cells (L. Zender et al., Proc. Natl. Acad. Sci. USA (2003), 100: 77797-7802; H. Xia et al., Nature Biotech. (2002), 20: 1006-1010; XF Qin et al., Proc. Natl. Acad. Sci. USA (2003), 100: 183-188; GM Barton et al., Pro Natl. Acad., Sci. USA (2002), 99: 14943-14945; JD Hommel et al., Nature Med. (2003), 9: 1539-1544). In particular, it has been confirmed that adenovirus vectors or adeno-associated virus vectors can introduce genes into various cell types with very high efficiency. This vector is also not integrated into the genome, so its effect is transient and safer than other viral vectors.
また、 FGFR3阻害剤として使用するアンチセンス核酸は、 FGFR3遺伝子に対応す る mRNAの配列、 又はその部分配列に相補的な配列を含む RNA又は DNAのいずれ かである。前記部分配列は、 FGFR3遺伝子又は mRNAの配列において連続する約 30 以上、 50以上、 70以上、 100以上、 150以上、 200以上又は 250以上から全長以 下のヌクレオチドからなる配列を含むことができる。  The antisense nucleic acid used as the FGFR3 inhibitor is either RNA or DNA containing a sequence of mRNA corresponding to the FGFR3 gene, or a sequence complementary to a partial sequence thereof. The partial sequence may include a sequence consisting of about 30 or more, 50 or more, 70 or more, 100 or more, 150 or more, 200 or more, or 250 or more and less than full length nucleotides in the sequence of FGFR3 gene or mRNA.
アンチセンス核酸のヌクレオチドは、 天然のヌクレオチドに加えて、 ハロゲン In addition to natural nucleotides, antisense nucleic acid nucleotides
(フッ素、 塩素、 臭素又はヨウ素)、 メチル、 カルボキシメチル又はチォ基などの 基を有する修飾ヌクレオチドを含むことができる。 アンチセンス核酸は、 周知のModified nucleotides having groups such as (fluorine, chlorine, bromine or iodine), methyl, carboxymethyl or thio groups can be included. Antisense nucleic acids are well-known
DNA/RNA合成技術又は DNA組換え技術を用いて合成することができる。 DNA組換え 技術によつて合成する場合、 FGFR3遺伝子の塩基配列を含むベクター DNAを铸型に して、 増幅しようとする配列を挟み込むプライマーを用いてポリメラーゼ連鎖反 応 (PCR) を行って標的配列を増幅し、 必要に応じてベクター中にクローニングし て、 アンチセンス DNAを生成することができる。 或いは、 このようにして得られ た増幅標的配列を有する DNAをベクターに挿入し、 該ベクターを真核又は原核細 胞に導入し、 その転写系を利用してアンチセンス RNAを得ることができる。 本発明のアンチセンス核酸は、 それが DNAであっても RNAであっても、 FGFR3 遺伝子又は対応の mRNAに結合することによって、転写又は翻訳を阻害又は抑制す ることができる。 本発明のアンチセンス核酸を患者に送達するために、 アンチセ ンス核酸を、 上述したように正電荷リボソームに封入してもよいし、 或いはアン チセンス核酸を、 例えば強力な pol II又は pol IIIプロモーターの調節下にある ようにベクター(上述のプラスミ ド又はウィルスベクター)に組み込んでもよレ、。 さらに、 FGFR3阻害剤として使用するリボザィムは、 触媒活性をもつ RNAであ り、標的とする FGFR3遺伝子に対応する mRNAを切断する活性を有している。 この 切断によって FGFR3遺伝子の発現が阻害又は抑制される。 リボザィムの切断可能 な標的配列は、 一般には NUX (N=A, G, C, U; X=A, C, U)、 例えば GUC トリプレッ トを 含む配列であることが知られている。 リボザィムには、 ハンマーヘッド型リボザ ィムが含まれる。 ハンマーヘッド型リボザィムは、 センサー部位を構成するヌク レオチド配列、 センサー部位に RNAが結合したときのみ安定に Mg2+イオンを捕捉 する空洞を形成しうる領域を含むヌクレオチド配列、 及び標的 RNAの切断部位周 辺の配列に相補的である領域を含むヌクレオチド配列を含むことができる。 It can be synthesized using DNA / RNA synthesis technology or DNA recombination technology. When synthesizing by DNA recombination technology, vector DNA containing the base sequence of the FGFR3 gene is converted into a saddle shape and subjected to polymerase chain reaction (PCR) using primers that sandwich the sequence to be amplified, and then the target sequence. Can be amplified and cloned into a vector as necessary to produce antisense DNA. Alternatively, the thus obtained DNA having the amplified target sequence is inserted into a vector, the vector is introduced into a eukaryotic or prokaryotic cell, and antisense RNA can be obtained using the transcription system. Whether it is DNA or RNA, the antisense nucleic acid of the present invention can inhibit or suppress transcription or translation by binding to the FGFR3 gene or corresponding mRNA. In order to deliver the antisense nucleic acid of the present invention to a patient, the antisense nucleic acid may be encapsulated in a positively charged ribosome as described above, or the antisense nucleic acid may be, for example, a strong pol II or pol III promoter. It can be incorporated into a vector (the above mentioned plasmid or viral vector) as controlled. Furthermore, the ribozyme used as an FGFR3 inhibitor is an RNA having catalytic activity and has an activity of cleaving mRNA corresponding to the target FGFR3 gene. This cleavage inhibits or suppresses the expression of the FGFR3 gene. Ribozyme-cleavable target sequences are generally known to be sequences containing NUX (N = A, G, C, U; X = A, C, U), eg, GUC triplets. Ribozymes include hammerhead ribozymes. The hammerhead ribozyme is a nucleotide sequence that includes a nucleotide sequence that constitutes a sensor site, a nucleotide sequence that can form a cavity that can stably capture Mg 2+ ions only when RNA is bound to the sensor site, and a target RNA cleavage site. Nucleotide sequences comprising regions that are complementary to surrounding sequences can be included.
本発明のリボザィムを患者に送達するために、 リボザィムをリボソーム (好ま しくは、 正電荷リボソーム) に封入する、 アデノ随伴ウィルスなどのウィルスべ クタ一に組み込むなどの方法によってドラッグデリバリ一系を構築することがで さる。  In order to deliver the ribozyme of the present invention to a patient, a drug delivery system is constructed by a method such as encapsulating the ribozyme in a ribosome (preferably, a positively charged ribosome) or incorporating it into a virus vector such as an adeno-associated virus. That's right.
リボザィムは、 それが発現可能なようにベクターに組み込むことができる。 リ ボザィムを発現するためのプロモーターには、 pol II又は pol IIIプロモーター が含まれる。 好ましいプロモーターは、 pol III プロモーター、 例えば哺乳動物 由来の tRNAプロモーター、 より好ましくは tRNAValプロモーターである。  A ribozyme can be incorporated into a vector so that it can be expressed. Promoters for expressing ribozymes include pol II or pol III promoters. Preferred promoters are pol III promoters, such as tRNA promoters from mammals, more preferably tRNAVal promoters.
さらにまた、 FGFR3阻害剤として使用する抗体は、 FGFR3遺伝子によってコード される FGFR3タンパク質又はその変異体のインビボ機能を阻害もしくは抑制する 抗体又はその機能断片を意味する。 FGFR3 タンパク質に対する抗体としては、 モ ノクローナル抗体、 組換え産生抗体、 ヒ ト抗体、 ヒ ト化抗体、 キメラ抗体、 単鎖 抗体、 二重特異抗体及び合成抗体を挙げることができる。 また、 当該抗体の機能 断片としては、 Fab断片、 F (ab' ) 2断片、 scFvなどが含まれる。 本発明での使用に適する好ましい抗体は、 アナフィラキシーによる副作用を全 く又はほとんど起こさないヒ ト抗体又はヒ ト化抗体、 特にヒ ト又はヒ ト化モノク ローナル抗体である。 また、 抗体のクラス、 サブクラスは任意のタイプのもので よレ、。 例えば、 抗体のクラスとして IgG, IgM, IgE, IgD, IgAが含まれ、 サブク ラスとして IgGl, IgG2, IgG3, IgG4, IgAl, IgA2が含まれる。 抗体はまた、 ぺグ 化、 ァセチル化、 グリコシル化、 アミ ド化などによって誘導体化されていてもよ レ、。 Furthermore, an antibody used as an FGFR3 inhibitor means an antibody or a functional fragment thereof that inhibits or suppresses the in vivo function of the FGFR3 protein encoded by the FGFR3 gene or a variant thereof. Examples of antibodies against FGFR3 protein include monoclonal antibodies, recombinantly produced antibodies, human antibodies, humanized antibodies, chimeric antibodies, single chain antibodies, bispecific antibodies, and synthetic antibodies. In addition, functional fragments of the antibody include Fab fragments, F (ab ′) 2 fragments, scFv, and the like. Preferred antibodies suitable for use in the present invention are human or humanized antibodies, particularly human or humanized monoclonal antibodies, that cause little or no side effects from anaphylaxis. The antibody class and subclass can be of any type. For example, IgG, IgM, IgE, IgD, and IgA are included as antibody classes, and IgG1, IgG2, IgG3, IgG4, IgAl, and IgA2 are included as subclasses. Antibodies may also be derivatized by pegylation, acetylation, glycosylation, amidation, etc.
ヒ ト抗体は、 例えばファージディスプレイライブラリー(pharge display library)法(T. Thomas ら, Mol. Immunol. 33 : 1389-1401, 1996)又はヒ ト抗体産 生マウスを用いる方法(I. Ishida ら, Cloning Stem Cell 4 : 91- 102, 2002)によ つて製造できる。  The human antibody can be obtained, for example, by a phage display library method (T. Thomas et al., Mol. Immunol. 33: 1389-1401, 1996) or a method using a human antibody-producing mouse (I. Ishida et al., Cloning Stem Cell 4: 91-102, 2002).
ヒ ト抗体産生マウスは、 例えば、 ヒ ト人工染色体にヒ ト抗体産生遺伝子を含む ヒ ト染色体断片を導入したのち、 ミクロセル法を用いて例えばマウス胚性幹細胞 ゲノムに人工染色体を組み込み、 仮親マウスの子宮に移植し、 キメラマウスを出 産し、 雌雄のキメラマウスの交配によって、 ヒ ト抗体遺伝子を含み、 したがって ヒ ト抗体の産生が可能である、 ホモ型の子孫マウスを作出するなどの方法によつ て作製することができる。 このヒ ト抗体産生トランスジエニックマウスに、 FGFR3 タンパク質を抗原として免疫したのち、 脾臓を摘出し、 この脾臓細胞とマウスミ エローマ細胞とを融合してハイプリ ドーマを形成し、 目的のモノクローナル抗体 を選抜することができる。  A human antibody-producing mouse, for example, introduces a human chromosome fragment containing a human antibody-producing gene into a human artificial chromosome, and then incorporates the artificial chromosome into, for example, the mouse embryonic stem cell genome using the microcell method. Transplant into the uterus, give birth to chimeric mice, and create a homozygous offspring mouse that contains the human antibody gene by mating male and female chimeric mice and can therefore produce human antibodies. Therefore, it can be produced. The human antibody-producing transgenic mouse is immunized with the FGFR3 protein as an antigen, and then the spleen is removed, and the spleen cells and mouse myeloma cells are fused to form a hybridoma, and the desired monoclonal antibody is selected. be able to.
患者への抗体又はその断片の送達は、 単独か又は例えばリボソーム (好ましく は、正電荷リボソーム)、マイクロカプセル又はナノ粒子中に抗体又はその断片を 封入した形態で、 通常は適当な担体 (賦形剤又は希釈剤) と組み合わせて、 非経 口経路 (例えば、 静脈内投与又は局所投与) にて行うことができる。  Delivery of the antibody or fragment thereof to the patient can be accomplished either alone or in the form of the antibody or fragment thereof encapsulated in, for example, ribosomes (preferably positively charged ribosomes), microcapsules or nanoparticles, usually with a suitable carrier (shaped In combination with a non-oral route (for example, intravenous administration or topical administration).
以上の FGFR3阻害剤は、 放射線治療が必要と診断された患者に対して放射線治 療と併用投与することによって、 放射線治療による抗癌作用を大幅に増強するこ とができる。 したがって、 従来、 放射線治療の効果が低かった癌腫症例に対して も、 放射線療法による抗癌効果が期待できる。 また、 FGFR3 阻害剤は、 放射線へ の耐性度を低下させることから、 照射する放射線の線量を少なく しながらも従来 と同等以上の治療効果を期待することが可能となる。 よって、 放射線療法に起因 する副作用を軽減し、 または全身状態等の理由から放射線治療の非適応症例にも 応用が可能となり、 当該患者にとつて有効な治療法を提供することができる。 なお、 FGFR3 阻害剤は、 放射線療法に先立って患者に投与されることが好まし い。 FGFR3 阻害剤は、 あらゆる適切な経路で投与できる。 好適な経路としては、 経口、直腸内、鼻腔内、局所(口腔内および舌下を含む)、膣内、および非経口 (皮 下、 筋肉内、 静脈内、 皮内、 髄腔内および硬膜外を含む) が挙げられる。 また、 FGFR3 阻害剤は、 例えば、 腫瘍が存在する組織に直接投与若しくは局所投与する こともできるし、 また静脈、 動脈、 皮下、 筋肉内または腹腔内等に投与すること もできる。 また、 核磁気共鳴撮像又はコンピューター断層撮影等の当該技術分野 で利用できる任意の機器を使用して腫瘍を撮影して、 例えば、 定位注射により直 接投与することもできる。 The above FGFR3 inhibitors can significantly enhance the anti-cancer effect of radiation therapy when administered together with radiation therapy for patients diagnosed as requiring radiation therapy. Therefore, anticancer effects of radiation therapy can be expected even for carcinoma cases where the effect of radiation therapy has been low. In addition, FGFR3 inhibitors reduce the level of radiation resistance, so the dose of irradiated radiation has been reduced. It is possible to expect a therapeutic effect equivalent to or better than. Therefore, side effects caused by radiation therapy can be reduced, or it can be applied to non-indication cases of radiation therapy for reasons such as general condition, and an effective treatment method can be provided for the patient. The FGFR3 inhibitor is preferably administered to patients prior to radiation therapy. The FGFR3 inhibitor can be administered by any appropriate route. Suitable routes include oral, rectal, intranasal, topical (including buccal and sublingual), intravaginal, and parenteral (subcutaneous, intramuscular, intravenous, intradermal, intrathecal and dura mater) Including the outside). In addition, the FGFR3 inhibitor can be administered directly or locally to, for example, a tissue in which a tumor is present, or can be administered intravenously, artery, subcutaneously, intramuscularly or intraperitoneally. Alternatively, a tumor can be imaged using any device available in the art, such as nuclear magnetic resonance imaging or computed tomography, and administered directly, for example, by stereotaxic injection.
ここで、 FGFR3 阻害剤を投与することによって放射線治療の効果を増強するた めには、 FGFR3阻害剤投与量を 10〜100mg/m2 (体表面積)とすることができ、 好ま しくは 10〜50mg/tn2 (体表面積)、 より好ましくは 20〜50mg/m2 (体表面積)とするこ とができる。 . Here, in order to enhance the effect of radiotherapy by administering an FGFR3 inhibitor, the dose of FGFR3 inhibitor can be 10 to 100 mg / m 2 (body surface area), preferably 10 to It can be 50 mg / tn 2 (body surface area), more preferably 20 to 50 mg / m 2 (body surface area). .
以下、 実施例を用いて本発明を詳細に説明するが、 本発明に係る技術的範囲は 以下の実施例に限定されるものではない。  EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, the technical scope which concerns on this invention is not limited to a following example.
〔実施例 1〕  Example 1
<放射線感受性細胞株と放射線耐性細胞株の選別 >  <Selection of radiation-sensitive and radiation-resistant cell lines>
(放射線感受性試験)  (Radiosensitivity test)
放射線感受性の異なる細胞株を選別するために、扁平上皮癌細胞株 HSC2、 HSC3、 HSC4、 Ca9- 22、 0K92及び H0-l_u_lに対して、 X線を 2Gy、 4Gy及び 6Gy照射し、 生存曲線を作成した。 その結果、 放射線耐性株として HSC2を、 また、 放射線感受 性株として HSC3を選別した。 (図 1 )  To select cell lines with different radiosensitivity, X-rays were irradiated at 2Gy, 4Gy and 6Gy against squamous cell carcinoma cell lines HSC2, HSC3, HSC4, Ca9-22, 0K92 and H0-l_u_l, and a survival curve was obtained. Created. As a result, HSC2 was selected as a radiation resistant strain and HSC3 was selected as a radiation sensitive strain. (Figure 1 )
<放射線感受性細胞株と放射線耐性細胞株における遺伝子発現状態の比較 > (マイクロアレイ解析)  <Comparison of gene expression status between radiation-sensitive and radiation-resistant cell lines> (Microarray analysis)
放射線耐性株及び放射線感受性株を用いたマイクロアレイ解析によって、 耐性 株において特異的に発現増強している遺伝子を同定した。 マイクロアレイとして 54675種類のプローブが固定化された Affymetrix U133 Plus 2. 0を使用した。 ま た、 マイクロアレイ解析には、 解析ソフトウェアとして GeneChip Operating Software 1. 1 (Affymetrix社製)及び GeneSpring 6. 1 (Si l icon Genetics社製)を 使用した。 Microarray analysis using radiation-resistant and radiation-sensitive strains identified genes that specifically enhanced expression in resistant strains. As a microarray Affymetrix U133 Plus 2.0 on which 54675 types of probes were immobilized was used. For microarray analysis, GeneChip Operating Software 1.1 (Affymetrix) and GeneSpring 6.1 (Silicon Genetics) were used as analysis software.
その結果、 放射線耐性株 (HSC2) において放射線感受性株 (HSC3) と比較して 5 倍以上の発現が観察された遺伝子群として 1 6 7遺伝子を同定した。 これらの 遺伝子群は放射線耐性株において特異的に発現増強している遺伝子群であり、 扁 平上皮癌細胞における放射線耐性関連遺伝子と考えられた。  As a result, 16.7 genes were identified as a gene group in which expression of 5 times or more was observed in the radiation resistant strain (HSC2) compared to the radiation sensitive strain (HSC3). These genes are genes that are specifically enhanced in radiation-resistant strains, and are considered to be radiation-resistance-related genes in squamous cell carcinoma cells.
<放射線耐性遺伝子の絞込み > <Narrowing down radiation resistance genes>
(パスゥヱイ解析および Quantitative real-time RT-PCR 法による解析) マイクロアレイ解析にて絞り込まれた放射線耐性に関連する遺伝子として同定 された 1 6 7個の遺伝子についてパスウェイ解析を行い、 1 6 7個の遺伝子で如 何なるネットワークが形成されるかを検討した。具体的に、パスウェイ解析には、 ソフトウエアとし飞 Ingenuity Pathway Analys i s (Ingenuity systems社製) を 使用した。 その結果、 1 6 7個の遺伝子のうち 4 0個の遺伝子が 3つのネットヮ (Analysis by Pathway analysis and Quantitative real-time RT-PCR method) Pathway analysis was performed on 1 6 7 genes identified as genes related to radiation resistance narrowed down by microarray analysis, and 1 6 7 genes Then, what kind of network was formed was examined. Specifically, the pathway analysis used software, Ingenuity Pathway Analysis (manufactured by Ingenuity systems). As a result, 40 genes out of 1 6 7 genes
—クを形成しており、 これら 3つのネットワークが更に大きな 1つのネットヮー クを形成していることが判明した (図 2 )。 一方、 1 6 7遺伝子を機能的な観点か ら分類すると、 癌に関する機能の遺伝子がもっとも有意に関係していることがわ かり、 癌機能に関するネットワークを形成すると、 1 6 7個の遺伝子のうち 2 5 個の遺伝子が癌機能に関するネットワークを形成しており、 その 2 5遺伝子は先 ほどのパスウェイ解析から得られた 4 0個の遺伝子の中にすべて含まれていた。 つまり、 この 2 5遺伝子は、 扁平上皮癌細胞において放射線耐性に強く関連する 遺伝子と考えられた (図 3)。 It was found that these three networks formed one larger network (Fig. 2). On the other hand, if we classify 16 7 genes from a functional viewpoint, we can see that the genes related to cancer function are most significantly related. The 25 genes formed a network related to cancer function, and the 25 genes were all included in the 40 genes obtained from the previous pathway analysis. In other words, this 25 gene was considered to be a gene strongly associated with radiation resistance in squamous cell carcinoma cells (Fig. 3).
これらマイクロアレイ解析、 パスウェイ解析にて絞り込まれた 2 5遺伝子のう ちから、 遺伝子発現阻害剤の明らかな遺伝子として FGFR3遺伝子を選び出した。 耐性株 (HSC2) と感受性株(HSC3)における FGFR3遺伝子の raRNA発現状態を、 X線 照射線量と照射後経過時間に関して、 Quantitative real-time RT-PCR 法により 確認した (図 4)。 図 4 Aには X線照射線量と mRNA発現量との関係を示し、 図 4 B には X線照射後経過時間と mRNA発現量との関係を示した。図 4 A及ぴ Bに示した ように、 HSC3株に比較して HSC2耐性株で X線照射条件下で常に FGFR3遺伝子の 発現上昇が確認できた。 From the 25 genes selected by these microarray analysis and pathway analysis, the FGFR3 gene was selected as an apparent gene expression inhibitor gene. The raRNA expression status of the FGFR3 gene in the resistant strain (HSC2) and the susceptible strain (HSC3) was confirmed by the Quantitative real-time RT-PCR method with respect to the X-ray irradiation dose and the elapsed time after irradiation (Fig. 4). Fig. 4A shows the relationship between X-ray irradiation dose and mRNA expression level, and Fig. 4B shows the relationship between elapsed time after X-ray irradiation and mRNA expression level. Figure 4 Shown in A and B Thus, compared to the HSC3 strain, it was confirmed that the expression of the FGFR3 gene was always increased in the HSC2 resistant strain under X-ray irradiation conditions.
< FGFR3遺伝子の遺伝子学的機能解析 > <Genetic analysis of FGFR3 gene>
(s iRNAによる FGFR3遺伝子発現の抑制)  (Suppression of FGFR3 gene expression by iRNA)
FGFR3遺伝子が高発現している放射線耐性株 HSC2を用いて、 s iRNAを導入して X線耐性の変動を検討した。導入試薬には、 DhamaFECT (Dharmacon社)を使用した。 HSC2に FGFR3遺伝子の siRNA ( (Dharmacon社)を導入し、 96時間後に、 200個 /4ml raediura/di sh (0、 2又は 4Gy)、 400個 /4ml medium/ di sh (6Gy)、 800個 /4ml medium/di sh . (8Gy) の割合でそれぞれ 3枚ずつの 6craディッシュに細胞を移した。 その 24時 間後に X線を照射し、 8〜10 日間インキュベートした後に clonogenic survival assayにて細胞の生存率を評価した。 clonogenic survival assay は 8〜10 日間 ィンキュベート後の 6cmディッシュの細胞にクリスタルバイオレツト溶液 (メタ ノール 25%添加) (Sigma Chemical社)にて細胞を染色固定した。 各ディッシュの 生存細胞コロニー (50個以上の細胞からなるもの) 数をカウントし、 3枚のディ ッシュの細胞の、 (平均生存細胞コロニー数) I ( 1 ディッシュに撒いた細胞数) を plating eff iciencyとし、各線直照、射後の plating eff ic iencyを OGyの plating eff iciencyで割った値を生存率 (Clonogenic fract ions) としグラフにプロッ ト した。 コントロールには無処理の細胞、 s iRNAAを含まない導入試薬のみを添加し た細胞 (Vehicle)、 non-target s iRNA (siNT) を用いた。 生存率をプロットした 結果を図 5 Aに示した。 図 5 Aに示すように、 FGFR3遺伝子に対する s iRNAを導入 した細胞では、 コント口ール群に比較して X線への耐性が低下した。 FGFR3遺伝 子の発現を抑制することにより、 X 線に対する感受性が増加したと考えられた。 また、 タンパク発現状態を Western Blottingで観察した結果を図 5 Bに示した。 図 5 Bから判るように、 FGFR3遺伝子に対する siRNA導入細胞においては FGFR3 遺伝子タンパクの発現が抑制されていることが確認できた。 この結果 FGFR3遺伝 子は放射線耐性遺伝子と考えられた。  Using a radiation-resistant strain HSC2 in which the FGFR3 gene is highly expressed, siRNA was introduced to examine changes in X-ray resistance. DhamaFECT (Dharmacon) was used as the introduction reagent. FGFR3 gene siRNA (Dharmacon) was introduced into HSC2, and after 96 hours, 200 / 4ml raediura / di sh (0, 2 or 4Gy), 400 / 4ml medium / di sh (6Gy), 800 / Cells were transferred to three 6cra dishes at a rate of 4ml medium / di sh. (8Gy) 24 hours later, irradiated with X-rays, incubated for 8-10 days, and then clonogenic survival assay. In the clonogenic survival assay, cells were stained and fixed with a crystal violet solution (25% methanol added) (Sigma Chemical Co.) on 6 cm dishes after incubation for 8-10 days. Count the number of cell colonies (consisting of more than 50 cells), and set the plating eff iciency to (average viable cell colony number) I (number of cells spread in one dish) of the cells in three dishes. Direct lighting, plating eff ic iency after shooting The value divided by the plating eff iciency of OGy was plotted in the graph as the survival rate (Clonogenic fract ions) The control cells were untreated, the cells to which only the introduction reagent without siRNAA was added (Vehicle), non -target s iRNA (siNT) was used Plots of survival rates are shown in Fig. 5 A. As shown in Fig. 5 A, cells transfected with s siRNA against the FGFR3 gene were included in the control group. In comparison, the resistance to X-rays was reduced, and it was considered that the sensitivity to X-rays was increased by suppressing the expression of the FGFR3 gene. This is shown in Fig. B. As can be seen from Fig. 5 B, it was confirmed that the expression of the FGFR3 gene protein was suppressed in the siRNA-transfected cells against the FGFR3 gene, which was considered to be a radiation resistance gene. .
< FGFR3遺伝子発現阻害剤による放射線増強効果- -in vitro > <Radiation enhancement effect of FGFR3 gene expression inhibitor--in vitro>
(FGFR3阻害剤と X線併用による癌殺傷能力増強) FGFR3の阻害剤である PD173074 (s igma- aldrich社) について、 X線と併用する ことにより放射線耐性株 HSC2に対して併用作用を示すか in vitroにおいて検討 した。また、放射線感受性株 HSC3及び放射線に対して中程度の耐性を示す Ca9 - 22 (図 1参照) についても、 PD173074と X線との併用効果を検討した。 (Enhancement of cancer killing ability by combined use of FGFR3 inhibitor and X-ray) In vitro, we examined whether PD173074 (sigma-aldrich), an inhibitor of FGFR3, can be used in combination with X-rays against radiation-resistant HSC2. We also examined the combined effects of PD173074 and X-rays on the radiation-sensitive strain HSC3 and Ca9-22 (see Fig. 1), which is moderately resistant to radiation.
阻害剤の溶媒として、 DMS0を使用し阻害剤を溶解した。 実験では medium中の DMS0 濃度が、 0. 1%以下になるよう調整し、 阻害剤を混合した。 阻害剤の濃度は、 5nM、 10nM、 25nM、 50nM又は ΙΟΟηΜとした。  As the inhibitor solvent, DMS0 was used to dissolve the inhibitor. In the experiment, the DMS0 concentration in the medium was adjusted to 0.1% or less, and the inhibitor was mixed. The inhibitor concentration was 5 nM, 10 nM, 25 nM, 50 nM or 又 は ηΙΟΟ.
実験は、 放射線耐性株 HSC2、 HSC3又は Ca9-22を 6cmディッシュに 200個 /4ml mediura/di sh (0、 2又は 4Gy)、權個 /4ml medium/di sh (6Gy)、 800個 /4ml medium/dish (8Gy) の割合でまき、 翌日に阻害剤をそれぞれの濃度で添加した mediumを混合 した。 その 1〜2 時間後に X 線を照射し、 8〜10 間培養したものを clonogenic survival assayで平価しに。 clonogenic survival assayは 8〜10 曰 コインャュ ベート後の 6cmディッシュの細胞にクリスタルバイオレツト溶液(メタノール 25% 添加) (Sigma Chemical社)にて細胞を染色固定した。 各ディッシュの生存細胞コ ロニー (50個以上の細胞からなるもの) 数をカウントし、 3枚のディッシュの細 胞の、 (平均生存細胞コロニー数) I ( 1 ディッシュに撒いた細胞数) を plating effic iency と し、 各線量照射後の plating efficiency を OGy の plat ing eff iciencyで割った値を生存率 (Clonogenic fractions) としグラフにプロット した。 阻害剤は、 0. 1%以下の DMS0に溶解しているため、 コントロールには 0. 1% の DMS0を添加したものと無処理の HSC2、 HSC3又は Ca9_22細胞を用いた。生存率 をプロッ トした結果を図 6〜8に示した。図 6は放射線耐性株 HSC2について行つ た結果であり、図 7は放射線に対して中程度の耐性を示す Ca9-22について行った 結果であり、図 8は放射線感受性株 HSC3について行った結果である。図 6から判 るように、 FGFR3阻害剤を投与することによって FGFR3の機能を阻害した場合に は、 放射線耐性株における X線に対する感受性が増加したと考えられた。 また、 図 7に示したように、 放射線に対して中程度の耐性を示す細胞株においても X線 に対する感受性が増加したと考えられた。 さらに、 図 8に示したように、 放射線 感受性株においても X線に対する感受性がより増加したと考えられた。 く FGFR3遺伝子発現阻害剤による放射線増強効果-- in vivo > Experiments were carried out by using 200 radiation resistant strains HSC2, HSC3 or Ca9-22 in a 6cm dish / 4ml mediura / di sh (0, 2 or 4Gy), sputum / 4ml medium / di sh (6Gy), 800 / 4ml medium / dish (8Gy), and the medium was added the next day with inhibitors added at various concentrations. After 1-2 hours of irradiation, X-rays were irradiated and cultured for 8-10 hours to obtain a level by clonogenic survival assay. In the clonogenic survival assay, cells were stained and fixed with a crystal violet solution (25% methanol added) (Sigma Chemical) on 6 cm dishes of cells after 8-10 曰 coin-cuvette. Count the number of viable cell colonies (consisting of 50 or more cells) in each dish, and plating (average viable cell colony number) I (number of cells spread in one dish) of three dish cells The efficiency obtained by dividing the plating efficiency after irradiation with each dose by the plating efficiency of OGy was plotted as the survival fraction (Clonogenic fractions). Since the inhibitor was dissolved in 0.1% or less of DMS0, 0.1% DMS0 added and untreated HSC2, HSC3 or Ca9_22 cells were used as controls. The results of plotting the survival rate are shown in Figs. Fig. 6 shows the results for the radiation-resistant strain HSC2, Fig. 7 shows the results for Ca9-22, which shows moderate resistance to radiation, and Fig. 8 shows the results for the radiation-sensitive strain HSC3. is there. As can be seen from Fig. 6, when the function of FGFR3 was inhibited by administration of an FGFR3 inhibitor, it was considered that the sensitivity to X-rays in the radiation resistant strain increased. In addition, as shown in Fig. 7, it was considered that the sensitivity to X-rays also increased in cell lines that showed moderate resistance to radiation. Furthermore, as shown in Fig. 8, it was considered that the sensitivity to X-rays was also increased in the radiation-sensitive strain. <Radiation enhancement effect by FGFR3 gene expression inhibitor--in vivo>
FGFR3の阻害剤である PD173074 (sigma-aldrich社) について、 X線と併用する ことにより放射線耐性株 HSC2に対して併用作用を示すか in vivoにおいて検討し た。 動物実験に際しては、 Canadian Counci l on Animal Care (CCAC)の基準に準 じて行った。マウスは全例早で、 4週齢で購入し 6週齢より実験に供した。先ず、 HSC2株を 5 X 106となるように調製し、 29G針 (マイジヱクタ一 : TERUM0) を用い てマウスの右太腿皮下に接種した。 マウスを観察しながら飼育し、 腫瘍径径が 8 〜9mmになったところで X線照射及び FGFR3阻害剤の投与を開始した。 We examined whether PD173074 (sigma-aldrich), an inhibitor of FGFR3, was used in combination with X-rays to show a combined action against radiation-resistant strain HSC2. Animal experiments were conducted in accordance with the standards of Canadian Council Animal Care (CCAC). All mice were premature, purchased at 4 weeks of age, and used for experiments from 6 weeks of age. First, the HSC2 strain was prepared to 5 × 10 6 and inoculated subcutaneously into the right thigh of a mouse using a 29G needle (Myjector 1: TERUM0). The mice were bred while observing, and X-ray irradiation and administration of an FGFR3 inhibitor were started when the tumor diameter reached 8-9 mm.
FGFR3阻害剤は 25mg/kgをマウス腹腔内に投与した。 FGFR3阻害剤の投与から 2 時間後、 X線(4Gy)照射を開始した。 FGFR3阻害剤の投与と X線(4Gy)照射とを 1 日一回、 5日間行った。 また、 何も処置していない群、 FGFR3阻害剤の投与のみ行 つた群、 X線(4Gy)照射のみ行った群を比較対象とした。  FGFR3 inhibitor was administered intraperitoneally at 25 mg / kg. X-ray (4Gy) irradiation was started 2 hours after administration of the FGFR3 inhibitor. Administration of FGFR3 inhibitor and X-ray (4Gy) irradiation were performed once a day for 5 days. In addition, a group in which no treatment was performed, a group in which only FGFR3 inhibitor was administered, and a group in which only X-ray (4Gy) irradiation was performed were used as comparison targets.
結果を図 9に示す。 図 9において、 "control" は何も処置していない群 (n=5) を示し、 "PD173074" は FGFR3阻害剤の投与のみ行った群 (n=5) を示し、 "4Gy" は X線(4Gy)照射のみ行った群 (n=5) を示し、 "PD173074 + 4Gy" は FGFR3阻害剤 の投与と X線(4Gy)照射を併用した群 (n=5) を示している。 図 9に示した結果か ら、 FGFR3阻害剤の投与と X線(4Gy)照射を併用した場合、 FGFR3阻害剤投与或い は X線 (4Gy)照射を単独で行った場合と比較して、腫瘍細胞の増殖を有意に抑制で きることが明らかとなった。 特に、 FGFR3阻害剤の投与と X線(4Gy)照射を併用し た場合の腫瘍細胞の増殖抑制効果は、 FGFR3阻害剤投与或いは X線(4Gy)照射を単 独で行った場合における腫瘍細胞の増殖抑制効果から予測できない程に顕著であ つた。  The results are shown in FIG. In Fig. 9, "control" indicates the group that did not treat anything (n = 5), "PD173074" indicates the group that received only FGFR3 inhibitor administration (n = 5), and "4Gy" indicates X-ray. (4Gy) shows the group (n = 5) that received only irradiation, and “PD173074 + 4Gy” shows the group (n = 5) that combined administration of FGFR3 inhibitor and X-ray (4Gy) irradiation. From the results shown in Fig. 9, it can be seen that when FGFR3 inhibitor administration and X-ray (4Gy) irradiation are used in combination, compared with FGFR3 inhibitor administration or X-ray (4Gy) irradiation alone. It was revealed that the growth of tumor cells can be significantly suppressed. In particular, the effect of inhibiting the growth of tumor cells when FGFR3 inhibitor administration and X-ray (4Gy) irradiation are used in combination is the effect of tumor cells when FGFR3 inhibitor administration or X-ray (4Gy) irradiation is performed alone. It was so remarkable that it could not be predicted from the growth inhibitory effect.
<結果のまとめ > <Summary of results>
最初に (マイクロアレイ解析) の結果から、 シスブラチン耐性に関連する遺伝 子として信頼性の高い 167個の遺伝子を同定した。 マイクロアレイ解析で絞り込 んだ 167 個の遺伝子に対して (パスウェイ角军析および Quantitative real-time First, from the results of (microarray analysis), we identified 167 highly reliable genes as genes related to cisbratin resistance. 167 genes selected by microarray analysis (pathway angle analysis and Quantitative real-time
RT-PCR 法による解析) の結果から、 X線耐性に関連する遺伝子として更に信頼性 の高い 25個の遺伝子を絞り込んだ。その 25個の遺伝子群に対して、 Quantitative real-time RT-PCR 法にて mRNAの発現確認を行い、 耐性株で高発現しおり、 阻害 剤が存在する FGFR3遺伝子を選び出した。 Based on the results of RT-PCR analysis, 25 genes with higher reliability were selected as genes related to X-ray resistance. Quantitative for the 25 genes The mRNA expression was confirmed by real-time RT-PCR, and the FGFR3 gene that was highly expressed in the resistant strain and in which the inhibitor was present was selected.
さらに、 FGFR3遺伝子が高発現している耐性株 HSC2 を用いて、 (siRNAによる FGFR3遺伝子発現の抑制) を試みた。 siRNAを導入した耐性株では、 コントロール 群に比較して X線への耐性が低下した。 FGFR3遺伝子の発現を抑制することによ り、 X線に対する感受性が増加したと考えられた。  In addition, we attempted (suppression of FGFR3 gene expression by siRNA) using a resistant strain HSC2 in which the FGFR3 gene was highly expressed. In resistant strains into which siRNA had been introduced, resistance to X-rays decreased compared to the control group. It was considered that the sensitivity to X-rays was increased by suppressing the expression of the FGFR3 gene.
また化学物質による FGFR3の機能抑制を確認した。 FGFR3阻害剤と X線併用に よる耐性株への効果を確認するため、 まず FGFR3遺伝子の阻害剤である PD173074 を使用し、 耐性株 HSC2に対する X線との併用作用を検討した。 その結果として、 FGFR3阻害剤を投与することによって X線に対する感受性を向上させるといった 効果が認められた。 また、 放射線耐性株ではないその他の扁平上皮癌細胞株につ いても、 FGFR3阻害剤を投与することによって X線に対する感受性を向上させる といった効果が認められた。  In addition, the suppression of FGFR3 function by chemical substances was confirmed. In order to confirm the effect of FGFR3 inhibitors and X-rays on resistant strains, we first used PD173074, an inhibitor of the FGFR3 gene, and examined the combined effects of X-rays on resistant strains HSC2. As a result, the effect of improving the sensitivity to X-rays by administering an FGFR3 inhibitor was recognized. In addition, other squamous cell carcinoma cell lines that are not radiation-resistant strains were also effective in improving sensitivity to X-rays by administering FGFR3 inhibitors.
さらに、 in vivoの実験結果から、 FGFR3阻害剤の投与と X線照射の併用による 腫瘍細胞の増殖抑制が動物実験レベルで実証された。  Furthermore, in vivo experimental results demonstrated that the suppression of tumor cell growth by the combined use of FGFR3 inhibitor and X-ray irradiation at the level of animal experiments.
これらの結果から、 FGFR3遺伝子は重要な X線耐性遺伝子であることが明らか となった。 さらに FGFR3阻害剤である PD173074と X線を併用することにより、 X 線の作用が増強されることが認められた。 産業上の利用可能性  These results revealed that the FGFR3 gene is an important X-ray resistance gene. Furthermore, it was confirmed that the action of X-rays was enhanced by using PD173074, an FGFR3 inhibitor, together with X-rays. Industrial applicability
本発明に係る放射線治療効果増強剤によれば、 放射線療法による抗癌効果を増 強することができる。 したがって、 本発明に係る放射線治療効果増強剤を使用す ることによって、 例えば低い線量での放射線治療が可能となり、 患者への負担を 軽減した治療方法を提供することができる。 また、 本発明に係る放射線治療効果 増強剤を使用することによって、 例えば低い線量での放射線治療が可能となり、 放射線療法による副作用を軽減することができる。 さらに、 放射線耐性を有する 腫瘍に対する放射線治療効果を上げることにより、 放射線治療耐性を克服した有 効な治療効果を得ることができる。  According to the radiation therapy effect enhancer according to the present invention, the anticancer effect by radiation therapy can be enhanced. Therefore, by using the radiotherapy effect enhancer according to the present invention, for example, a radiotherapy can be performed with a low dose, and a treatment method that reduces the burden on the patient can be provided. Moreover, by using the radiotherapy effect enhancer according to the present invention, for example, radiotherapy with a low dose becomes possible, and side effects due to radiotherapy can be reduced. Furthermore, an effective therapeutic effect overcoming the radiation therapy resistance can be obtained by increasing the radiation therapy effect on the tumor having radiation resistance.
本明細書で引用した全ての刊行物、 特許および特許出願をそのまま参考として 本明細書にとり入れるものとする All publications, patents and patent applications cited in this specification are used as is for reference. Incorporated in this specification

Claims

請求の範囲 The scope of the claims
1 . 線維芽細胞増殖因子レセプター 3 (FGFR3) 阻害剤を有効成分とする放射 線治療効果増強剤。 1. A radiation therapeutic effect enhancer comprising a fibroblast growth factor receptor 3 (FGFR3) inhibitor as an active ingredient.
2 . 上記 FGFR3阻害剤は、 FGFR3の自己リン酸化を阻害する物質であること を特徴とする請求項 1記載の放射線治療効果増強剤。  2. The radiotherapeutic effect enhancer according to claim 1, wherein the FGFR3 inhibitor is a substance that inhibits autophosphorylation of FGFR3.
3 . 上記 FGFR3阻害剤は、 N_2_ [ [4- (ジェチルァミノ)ブチル]アミノ _6_ (3, 5 - ジメ トキシフ: ニル)ピリ ド [2, 3-d]ピリ ミジン- 7 -ィル] - Ν' - (1, 1-ジメチルェチ ル)ゥレアであること特徴とする請求項 1記載の放射線治療効果増強剤。  3. The above FGFR3 inhibitor is N_2 _ [[4- (Jetylamino) butyl] amino _6_ (3,5-dimethoxif: nyl) pyrid [2,3-d] pyrimidine-7-yl]--' 2. The radiotherapeutic effect enhancer according to claim 1, which is (1,1-dimethylethyl) urea.
PCT/JP2009/054104 2008-03-14 2009-02-26 Method for enhancing the anti-cancer activity of radioactive ray by using fgf33 gene inhibitor in combination with irradiation with the radioactive ray, and method for reducing adverse side effects of radioactive ray WO2009113436A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010502783A JPWO2009113436A1 (en) 2008-03-14 2009-02-26 Method for enhancing anticancer effect of radiation and reducing side effect by combined use of FGFR3 gene inhibitor irradiation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-066443 2008-03-14
JP2008066443 2008-03-14

Publications (1)

Publication Number Publication Date
WO2009113436A1 true WO2009113436A1 (en) 2009-09-17

Family

ID=41065105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054104 WO2009113436A1 (en) 2008-03-14 2009-02-26 Method for enhancing the anti-cancer activity of radioactive ray by using fgf33 gene inhibitor in combination with irradiation with the radioactive ray, and method for reducing adverse side effects of radioactive ray

Country Status (2)

Country Link
JP (1) JPWO2009113436A1 (en)
WO (1) WO2009113436A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014051022A1 (en) * 2012-09-27 2016-08-22 中外製薬株式会社 FGFR3 fusion gene and drug targeting the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005047244A2 (en) * 2003-11-07 2005-05-26 Chiron Corporation Inhibition of fgfr3 and treatment of multiple myeloma

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080100838A (en) * 2006-04-04 2008-11-19 화이자 프로덕츠 인코포레이티드 Combination therapy of (2r,z)-2-amino-2-cyclohexyl-n-(5-(1-methyl-1h-pyrazol-4-yl)-1-oxo-2,6-dihydro-1h-[1,2]diazepino[4,5,6-cd]indol-8-yl)acetamide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005047244A2 (en) * 2003-11-07 2005-05-26 Chiron Corporation Inhibition of fgfr3 and treatment of multiple myeloma

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
BERNARD, ROSANNE ST. ET AL.: "Fibroblast Growth Factor Receptors as Molecular Targets in Thyroid Carcinoma.", ENDOCRINOLOGY, vol. 146, 2005, pages 1145 - 1153 *
CHIARUGI, VINCENZO. ET AL.: "Dominant oncogenes, tumor suppressors, and radiosensitivity.", CELLULAR AND MOLECULAR BIOLOGY RESEARCH, vol. 41, 1995, pages 161 - 166 *
ESWARAKUMAR, V.P. ET AL.: "Cellular signaling by fibroblast growth factor receptors.", CYTOKINE & GROWTH FACTOR REVIEWS, vol. 16, 2005, pages 139 - 149 *
GRAND, E.K. ET AL.: "Targeting FGFR3 in multiple myeloma: inhibition of t(4;14)-positive cells by SU5402 and PD173074.", LEUKEMIA, vol. 18, 2004, pages 962 - 966 *
KAMMASUD, NAPARAT. ET AL.: "Novel inhibitor for fibroblast growth factor receptor tyrosine kinase.", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 17, 2007, pages 4812 - 4818 *
KOZICZAK, MAGDALENA ET AL.: "Blocking of FGFR signaling inhibits breast cancer cell proliferation through downregulation of D-type cyclins.", ONCOGENE, vol. 23, 2004, pages 3501 - 3508 *
LI, RONGRONG. ET AL.: "Enhancing radiosensitivity of Hela cells by combining transfection of bcl-2 c-myc ASODNs.", BULLETIN DU CANCER, vol. 93, 2006, pages E119 - E125 *
MOHAMMADI, MOOSA. ET AL.: "Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain.", THE EMBO JOURNAL, vol. 17, 1998, pages 5896 - 5904 *
TRUDEL, SUZANNE. ET AL.: "Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t(4;14) myeloma.", BLOOD, vol. 103, 2004, pages 3521 - 3528 *
ZHU, LIJUN ET AL.: "Fibroblast growth factor receptor 3 inhibition by short hairpin RNAs leads to apoptosis in multiple myeloma.", MOLECULAR CANCER THERAPEUTICS, vol. 4, 2005, pages 787 - 798 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014051022A1 (en) * 2012-09-27 2016-08-22 中外製薬株式会社 FGFR3 fusion gene and drug targeting the same
US10689705B2 (en) 2012-09-27 2020-06-23 Chugai Seiyaku Kabushiki Kaisha FGFR3 fusion gene and pharmaceutical drug targeting same

Also Published As

Publication number Publication date
JPWO2009113436A1 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
Takigami et al. Synthetic siRNA targeting the breakpoint of EWS/Fli‐1 inhibits growth of Ewing sarcoma xenografts in a mouse model
US20080145313A1 (en) Compositions and Methods for the Treatment and Prevention of Neoplastic Disorders
US20210139997A1 (en) Treatment of angiogenesis disorders
CA2308565A1 (en) Sequences for targeting metastatic cells
US20080085279A1 (en) Cancer Treatment
Nyati et al. High and selective expression of yeast cytosine deaminase under a carcinoembryonic antigen promoter-enhancer
CN111304249B (en) Novel CRISPR Cas13a-gRNA expression vector and application thereof
KR20100077160A (en) Use of trim72 as a target for muscle and heart enhancer
JP2007530431A (en) Compositions and methods for treating pancreatic cancer
WO1999046385A2 (en) Compositions and methods for the treatment and prevention of metastatic disorders
Miyake et al. Integrated stress response regulates GDF15 secretion from adipocytes, preferentially suppresses appetite for a high-fat diet and improves obesity
JP2023123748A (en) Methods for diagnosing and treating metastatic cancer
JP4467559B2 (en) Compositions and methods for inhibiting cell proliferation
Lee et al. Adenovirus expressing shRNA to IGF-1R enhances the chemosensitivity of lung cancer cell lines by blocking IGF-1 pathway
WO2009113436A1 (en) Method for enhancing the anti-cancer activity of radioactive ray by using fgf33 gene inhibitor in combination with irradiation with the radioactive ray, and method for reducing adverse side effects of radioactive ray
JP5467259B2 (en) Cisplatin effect enhancer and anticancer agent kit
JP5578498B2 (en) Anticancer agent kit and anticancer agent effect enhancer
KR20050103305A (en) Induction of methylation of cpg sequence by dsrna in mammalian cell
CN115141827B (en) Application of Gal-9 as target in screening or preparing medicine for treating B cell lymphoma
EP4286518A1 (en) Cancer-specific trans-splicing ribozyme expressing immune checkpoint inhibitor, and use thereor
JP2011500867A (en) Methods for inhibiting angiogenesis or treating cancer
JP4797159B2 (en) Composition for inhibiting cancer metastasis
Lee et al. IGF-1R blockade strategies in human cancers
WO2014129895A1 (en) Means and method for increasing the sensitivity of cancers for radiotherapy
WO2017159739A1 (en) Anticancer agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09720202

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010502783

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09720202

Country of ref document: EP

Kind code of ref document: A1