WO2009112624A1 - Captación de gases en fase líquida - Google Patents

Captación de gases en fase líquida Download PDF

Info

Publication number
WO2009112624A1
WO2009112624A1 PCT/ES2009/070058 ES2009070058W WO2009112624A1 WO 2009112624 A1 WO2009112624 A1 WO 2009112624A1 ES 2009070058 W ES2009070058 W ES 2009070058W WO 2009112624 A1 WO2009112624 A1 WO 2009112624A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid phase
gases
gas
values
combustion
Prior art date
Application number
PCT/ES2009/070058
Other languages
English (en)
French (fr)
Inventor
Francisco Gabriel ACIÉN FERNÁNDEZ
Emilio Molina Grima
José María FERNÁNDEZ SEVILLA
Cynthia Victoria GONZÁLEZ LÓPEZ
Bernardo Llamas Moya
Juan Carlos Ballesteros Aparicio
Original Assignee
Endesa Generación, S. A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endesa Generación, S. A. filed Critical Endesa Generación, S. A.
Priority to EP09720493.7A priority Critical patent/EP2258463B1/en
Priority to US12/996,056 priority patent/US20110159575A1/en
Publication of WO2009112624A1 publication Critical patent/WO2009112624A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1462Removing mixtures of hydrogen sulfide and carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12FRECOVERY OF BY-PRODUCTS OF FERMENTED SOLUTIONS; DENATURED ALCOHOL; PREPARATION THEREOF
    • C12F3/00Recovery of by-products
    • C12F3/02Recovery of by-products of carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention is framed within chemistry, chemical engineering and the environment. It refers to a process of capturing gases in the liquid phase, and the subsequent recovery of this phase, coupling the process to a biological system.
  • the solution can be approached either by developing new, less polluting technologies, or by developing systems and processes capable of capturing those gaseous emissions and, if possible, converting them.
  • CO2 which is the main gas causing the greenhouse effect, is involved in the carbon cycle, where the process of photosynthesis acts as a natural sink, allowing its conversion into organic matter, and maintaining the atmospheric levels of this gas ( 0.03% v / v).
  • this process of transformation of inorganic carbon into organic, which occurs naturally, is very slow.
  • Physical adsorption processes employ materials capable of absorbing CO2, which is then "desorbed” by changes in T or P ⁇ pressure and temperature swing adsorption, PTSA).
  • absorbent materials are: active carbon, mesoporous materials, zeolites, aluminas and hydrotalcites.
  • active carbon mesoporous materials
  • zeolites zeolites
  • aluminas aluminas
  • hydrotalcites hydrotalcites.
  • the disadvantages are that it requires an increase in temperature in the desorption phase (50-100 0 C), the low adsorption capacity per unit of bed volume, and that subsequently either the material is discarded or desorbed, so that CO2 is reincorporated into the atmosphere.
  • the selectivity of the membranes to the different gases is related to the material from which they are manufactured (polymers, metals, ceramic materials).
  • the separation is improved with high pressure currents.
  • the advantage of using membranes lies in the improvement of the area of matter transfer and eliminating the problems associated with the gas-liquid contact. In this application the membrane does not perform the separation operation but is done with ethanolamines. To avoid the destruction or deterioration of the membrane it must be constructed in Polytetrafluoroethylene (PTFE).
  • the cryogenic distillation takes place through a series of compression, cooling and expansion stages, after which the gas components can be separated in a distillation column.
  • This technology is primarily used to remove impurities from a stream of CO 2 of high purity.
  • the drawback is that has not yet been used to scale Ia and conditions, in terms of availability and cost, is needed for the systems CO2 capture large emission sources.
  • Table 1 shows a summary of the different chemical absorption processes:
  • the most widespread method currently is the absorption in the aqueous phase enriched in ethanolamines.
  • This is an absorption with chemical reaction that achieves efficiencies CO2 capture much higher than those achieved by physical adsorption without chemical reaction, which can only be reached concentrations equal to the solubility of CO 2 in the medium considered ( 10 ⁇ 5 molCO 2 / L, 0.5 mgCO 2 / L).
  • concentrations equal to the solubility of CO 2 in the medium considered ( 10 ⁇ 5 molCO 2 / L, 0.5 mgCO 2 / L).
  • the process consists in passing the stream of gas to be purified through a watered absorption tower with solutions of ethanolamines so that CO 2 reacts with said ethanolamines and is retained in the solution.
  • the energy consumption of the process is greater than 3.3 MJ / kgC02 compared to 4-5 MJ / kg CO2 of the non-optimized processes (Gambini M. and Vellini M., 2000, CO 2 emission abatement from fossil fuel power plants by exhaust gas treatment, Proceedings of 2000 International Joint Power Generation Conference Miami Beach, Florida, July 23-26, 2000).
  • the most commonly used alternative process is the use of concentrated carbonate solutions, mainly potassium, which in a first stage absorb the CO2 by chemical reaction, to later be regenerated by means of heat, releasing the CO2 in the form of a pure gas stream.
  • This process is commercially called the Benfield process.
  • the solubility and reaction of CO2 in concentrated solutions of potassium carbonate has been extensively studied (Benson, HE, Field, JH, Jimeson, RM, 1954. CO 2 absorption employing hot potassium carbonate solutions. Chemical Engineering Progress 50 (7), 356- 364; Tosh, JS, Field, JH, Benson, HE, Haynes, WP, 1959. Equilibrium study of the system potassium carbonate, potassium Bicarbonate, carbon dioxide, and water.
  • CO 2 such as membrane separation, cryogenic fractionation or adsorption with molecular sieves
  • CO 2 are less energy efficient and economically efficient (Herzog H., 1999, An introduction to CO 2 separation and capture Technologies. Energy Laboratory Working Paper. Massachusetts Institute of Technology, Cambridge) it is necessary to develop new processes capable of accelerating CO2 uptake, and facilitating its subsequent regeneration. Studies are being carried out worldwide by different groups and organizations, analyzing from oxy-combustion, to the fixation of CO2 by forest masses, to its retention at sea or the photosynthetic fixation of CO2.
  • photosynthetic microorganisms such as micro algae or cyanobacteria
  • they are unique and valuable because they are the largest transformers CO2 O2 planet, with yields of carbon fixation over five times corn plantings also of being the main source of biomass and one of the most variable ecological groups in the world (PuIz O., 2001, Photobioreactors: production systems for phototrophic microorganisms).
  • the use of some microorganisms for this purpose has been patented (WO 2006/120278).
  • the concentrations necessary to optimize this process are not specified and, like other patents, it is based on the direct injection of combustion gases. This implies numerous problems of adaptation of the organisms and if the reactor is open, the possibility of CO2 release (desorption of dissolved CO2), reducing the benefits of the system.
  • This process manages to capture concentrations of CO 2 , and other gases, similar to other processes (ethanolamines, Benefield), with lower energy consumption, without the need for treatments at different pressures and / or temperatures, also allowing reconverting these gases from combustion , and in particular the inorganic carbon of CO2.
  • the fundamental thing is to achieve adequate pH ranges, compatible with the concentrations of inorganic carbon, sodium carbonate and bicarbonate necessary for the absorption of high concentrations of CO2, and compatible with the appropriate culture conditions of photosynthetic microorganisms. It implies, therefore, two differentiated stages that are optimized separately, although considering the necessary coupling between them.
  • the process is based, therefore, on the buffer capacity of the carbonate and bicarbonate solutions, which allow to reconcile moderately high concentrations of inorganic carbon with suitable pH ranges to incorporate the liquid phase into a culture of photosynthetic organisms.
  • a first aspect of the invention refers to a procedure, hereinafter the method of the invention, for the capture of
  • CO2 as well as other gases from combustion such as NO x y SO x
  • the concentration of inorganic carbon has values between 2 and 12 g / L. In another more preferred embodiment of this aspect of the invention, the inorganic carbon concentration values are between 3 and 8 g / l. In a particular embodiment, the concentration of inorganic carbon is approximately 4 g / L.
  • the pH values are between 9 and 11. In a particular embodiment of the invention, the pH values are around 10.
  • the pH concentrations could be achieved, for example, by adding NaHC03 in the liquid phase between 5 and 22 g / L and Na 2 COs in concentrations between 10 and 44 g / L.
  • the concentrations were 11 g / L of NaHC 3 and 22 g / L of Na 2 COs. Under these conditions it can reach a purification efficiency of 80% CO2 and purification efficiencies for NO x and SO x 50% and 95% respectively.
  • the composition of the aqueous phase can be modified by increasing the Na 2 CO 3 content, which increases the pH and improves the capture efficiency of CO 2 , although it has the disadvantage of hindering the subsequent regeneration of the aqueous phase by biological treatment.
  • aqueous phases enriched in carbonate-bicarbonate allows to achieve purification yields of gases analogous to those obtained through the use of aqueous phases enriched in ethanolamines, although without the energy consumptions necessary for their regeneration. Likewise, it is necessary to work at carbonate and bicarbonate concentrations lower than the constant of the solubility product of the precipitated salts that could give rise to the cations present in the medium.
  • the contact between the gaseous phase to be purified and the liquid phase can be made by any commonly used technique, such as random, ordered or structured filling columns, spray columns, floor columns, or bubble columns.
  • the use of the latter is preferable since they offer the best purification yields with the minimum energy consumption and volume of liquid phase necessary.
  • the recommended residence time of the aqueous phase is between
  • a bubble column of 100 L is sufficient to purify a gas stream of 200 L / min, capturing 80% of the CO2 contained therein, by means of the circulation of 4 L / min of an aqueous phase enriched in carbonate-bicarbonate.
  • This process is compatible with the use of both fresh water and sea or brackish water for the preparation of the aqueous phase enriched in carbonate-bicarbonate, and even from water from agricultural uses or from secondary treatment of wastewater, with which an additional environmental and economic advantage is obtained.
  • the gas stream preferably comes from, but is not limited to, combustion processes of fossil fuels (coal, oil, natural gas). These combustion processes mostly come from stationary combustion sources, such as incinerators, cement plants, installations of the metallurgical industry, and particularly from electricity generating plants.
  • the ratio of carbonate: bicarbonate in the liquid phase is preferably about 2: 1.
  • This phase of CO 2 uptake is prior, and is performed separately, to the phase of coupling to the biological system, which allows the optimization of both processes to obtain higher performance.
  • the conditions of both processes pH, temperature, concentration of salts and ions, ...) have to be adequate to be integrated in a single procedure.
  • a more preferred embodiment of the invention refers to the introduction of the liquid phase in which CO 2 has been captured, in a bioreactor where there are photosynthetic microorganisms capable of transforming inorganic C into organic C.
  • both cyanobacteria Bacteria; Cyanobacteria can be used, preferably but not limited to them)
  • green algae Eukaryota; Viridiplantae; Chlorophyta
  • Cyanobacteria are preferably used because of their lower risk of contamination, nitrogen fixation capacity atmospheric, higher pH tolerance and high concentrations of inorganic carbon, as well as ease of settling and harvesting. Spirulina and Anabaena species would meet these requirements and give good results.
  • both open and closed reactors can be used, although preferably open reactors are used for their lower cost, or low-cost vertical flat reactors. Preferably, using vertical flat reactors in flexible materials.
  • the necessary surface of the bioreactor is a function of the biological purification performance, which depends on the microorganism, reactor design and its operating conditions.
  • Another aspect refers to the process of the invention for the purification of gases that come from the combustion of fossil fuels.
  • Said gases may come from sectors as diverse as transport, domestic consumption or, more preferably, from industrial combustion processes.
  • Gases with high proportions of CO 2 can come from power generation plants, cement plants or any other industrial plant that develops CO 2 generating processes.
  • Another aspect refers to the process of the invention for the purification of gases from electricity generation plants.
  • Microalgae, cyanobacteria, or other photosynthetic organisms found in the photobioreactor can use CO2, which has previously captured the liquid phase, to produce biomass.
  • the biomass is periodically extracted from it.
  • the extracted biomass can be dried, evaporating at least a portion of the water it contains. This water can be subsequently condensed, and reused to prepare the liquid phase that will be used in the CO2 uptake stage.
  • the biomass recovered from the photobioreactor can be used directly as solid fuel or converted, for example, into biodiesel or other organic fuel, by means of pyrolysis processes and / or thermochemical liquefaction. These processes are well known in the state of the art, and are described, for example, in Yutaka et al., 1994 (Recoven / of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction, "Fuel 73 (12): 1855- 1857) Biomass can also be used for gasification and produce flammable organic gases that can be used in power plants.
  • gases from combustion gases generated mostly by combustion processes of fossil fuels (coal, oil, natural gas). It mainly refers to CO 2 , but also, and not limited to these, nitrogen oxides NO x (monoxide and nitrogen dioxide, NO and NO 2 respectively) and sulfur oxides or SO x (dioxide and trioxide sulfur, SO 2 and SO 3 ).
  • the solution of carbonate-bicarbonate buffer salts "in an approximate ratio of 2: 1" implies that the salt concentrations are adequate to capture the gases coming from the combustion, mainly CO 2 , of the gas stream, at the same time as the Buffering capacity is sufficient to maintain an adequate pH that allows the incorporation of the liquid phase enriched in gases into a biological system.
  • this suitable relationship is achieved by adding soluble salts of carbonate and bicarbonate, in this case sodium carbonate and bicarbonate, at concentrations between 5 and 22 g / L for NaHCO 3 and between 10 and 44 g / L for Na 2 CO 3 .
  • photobioreactor is understood as a bioreactor dependent on sunlight.
  • a “bioreactor” as understood herein is a vessel or system that maintains a biologically active environment.
  • the photobioreactor is, therefore, a vessel in which a process is carried out that involves photosynthetic organisms and that seeks to maintain certain favorable environmental conditions (pH, temperature, oxygen concentration, etc.) to the element that is grown.
  • the photobioreactor contains, or is configured to contain, a liquid medium comprising at least one kind of photosynthetic organism and having either a light source capable of stimulating photosynthesis, or a surface with at least a portion transparent to the light of a wavelength capable of stimulating photosynthesis (for example, a light of wavelength between 400 and 700 nm).
  • photosynthetic organisms or “biomass”, as used herein, includes all organisms capable of performing photosynthesis, such as plants (or their cells) in a broad sense, algae (including, but not limited to, those belonging to the taxonomic classifications Chlorophyta, Rhodophyta and Phaeophyta) and cyanobacteria, or other photosynthetic bacteria, in unicellular or multicellular form, which are capable of growing in a liquid phase (except when the term "biomass” it is used in other documents incorporated herein, which can be used in a broader sense, including also organic matter from a wide variety of plants and / or animals).
  • the term also includes artificially modified organisms or genetic engineering.
  • Green algae means, in this report, all organisms that can be classified within the Phylum Chlorophyta.
  • microalgae refers to a photosynthetic organism, preferably of the Phylum Chlorophyta, of a single cell.
  • cyanobacteria includes all species of the Phylum Cyanobacteria.
  • Fig. 1.- Represents a possible flow diagram of the process of the invention, by capturing contaminants in the aqueous phase by absorption with chemical reaction and subsequent regeneration of the aqueous phase. by biological treatment with photosynthetic microorganisms in photobioreactors.
  • Fig. 2. Shows the variation of the SO2 and NO ⁇ purification with the concentration of the compound in the inlet gas and the liquid / gas ratio used
  • Fig. 3. Represents the comparison of the efficiency of CO2 purification using carbonated solutions or solutions of ethanolamines depending on the operating conditions.
  • the inventors have designed a demonstration plant that allows testing the process of the invention, with a 250 L bubble column, for the purification of gases from a gas-oil boiler.
  • the CO2 capture was carried out in a 250 I bubble column, moistening the gas stream with the liquid phase.
  • the system tolerates flooding flows of 20 L / min of liquid and 350 L / min of gases, the minimum flow for wetting the column of 4 L / min of liquid (experimental data).
  • the liquid phase was prepared by adding about 11 g / L of NaHC ⁇ 3 and 22 g / L of Na2C ⁇ 3, achieving a pH of 10.
  • the total inorganic carbon concentration was 4.0 g / L.
  • Photosynthesizing microorganisms can be, preferably, of two types: cyanobacteria and algae (preferably microalgae). Depending on the microorganism and the culture conditions, different products can be obtained. Trials have been performed with Anabaena, Synechocystis, Chlorococcum, Botryococcus, Spirulina and Chlorella. The ones that a priori have shown a better behavior are Synechocysitis and Chlorococcum. Botryococcus It has shown a low growth rate although it is interesting because of its high lipid content. For its part, Chlorella has shown a correct growth, as has Spirulina, although Spirulina has the advantage of being perfectly adapted to carbonate rich media and high pH.
  • the tests have been carried out in flat photobioreactors in laboratory conditions, although simulating external conditions by means of the solar cycle operation, using as a culture medium the liquid phase from the gas absorption stage, after having been used for the purification of real combustion gas from a diesel boiler. Due to the use of artificial lighting, the maximum photosynthetic radiation used has been 850 ⁇ E / m 2 s, which is three times lower than the maximum value in external conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

Procedimiento para capturar gases procedentes de la combustión, que comprende: a) poner en contacto una fase líquida con una corriente gaseosa que contiene dichos gases, donde la fase líquida contiene sales 5tampón de carbonato-bicarbonato en una relación aproximada de 2:1, con una concentración de carbono inorgánico total menor o igual a 25 g/L y valores de pH comprendidos entre 8 y 12, y b) recuperar la fase líquida enriquecida en CO2 obtenida en el paso a).

Description

CAPTACIÓN DE GASES EN FASE LIQUIDA
La presente invención se enmarca dentro de Ia química, Ia ingeniería química y del medio ambiente. Se refiere a un proceso de captura de gases en fase líquida, y a Ia posterior recuperación de esta fase, acoplando el proceso a un sistema biológico.
ESTADO DE LA TÉCNICA ANTERIOR
El aumento de Ia emisión de gases contaminantes, generados en su mayor parte por procesos de combustión, en especial de combustibles fósiles (carbón, petróleo, gas natural), puede conllevar al sobrecalentamiento de Ia superficie terrestre (efecto invernadero). Esto supone un problema económico y medioambiental para los países desarrollados, pero sobretodo para aquellos países en vía de desarrollo, cuyo elevado nivel de emisiones de CO2 puede suponerles importantes sanciones a nivel internacional, retrasando su incorporación a los países del primer mundo.
La solución se puede abordar bien mediante el desarrollo de nuevas tecnologías menos contaminantes, o bien desarrollando sistemas y procesos capaces de captar esas emisiones gaseosas y, a ser posible, reconvertirlas. El CO2, que es el principal gas causante del efecto invernadero, se encuentra implicado en el ciclo del carbono, donde el proceso de fotosíntesis actúa como sumidero natural, permitiendo Ia reconversión del mismo en materia orgánica, y manteniendo los niveles atmosféricos de este gas (0,03% v/v). Sin embargo, este proceso de transformación de carbono inorgánico en orgánico, que ocurre de forma natural, es muy lento.
Para Ia captura de CO2, y otros gases como NOx o SOx, se han desarrollado numerosos sistemas que se pueden clasificar en sistemas de adsorción física, separación con membranas, destilación criogénica y los de absorción química.
Los procesos de adsorción física emplean materiales capaces de absorber el CO2, que luego se "desorbe" mediante cambios de T ó P {pressure and temperature swing adsorption, PTSA). Entre los materiales absorbente se encuentran: carbón activo, materiales mesoporosos, zeolitas, alúminas e hidrotalcitas. Los inconvenientes son que necesita un aumento de temperatura en Ia fase de desorción (50-100 0C), Ia baja capacidad de adsorción por unidad de volumen de lecho, y que posteriormente o bien se desecha el material o se desorbe, con Io que el CO2 se reincorpora a Ia atmósfera.
La selectividad de las membranas a los diferentes gases está relacionada con el material de las que están fabricadas (polímeros, metales, materiales cerámicos). La separación se mejora con corrientes a altas presiones. La ventaja de utilizar membranas radica en Ia mejora del área de transferencia de materia y eliminar los problemas asociados con el contacto gas-liquido. En esta aplicación Ia membrana no realiza Ia operación de separación sino que se hace con etanolaminas. Para evitar Ia destrucción o deterioro de Ia membrana ésta debe construirse en Politetrafluoroetileno (PTFE). El uso de esta tecnología reduce el costo de instalación y operación del proceso en un 30-40%, independientemente de las mejoras que puedan introducirse en el empleo de las etanolaminas (Herzog H., Falk-Pedersen O., 2000, The Kvaerner membrane contactor: lessons from a case study in how to reduce capture costs. Fifth International Conference on Greenhouse Gas Control Technologies, Cairns Australia: 121-5). Presentan como inconveniente que todavía no se han utilizado a Ia escala y condiciones, en términos de disponibilidad y coste, que se necesita para los sistemas de captura de CO2 (y Ia fase de recuperación de CO2).
La destilación criogénica transcurre mediante una serie de etapas de compresión, enfriamiento y expansión, tras las cuales los componentes del gas se pueden separar en una columna de destilación. Esta tecnología se utiliza sobre todo para separar las impurezas de una corriente de CO2 de alta pureza. El inconveniente es que todavía no se ha utilizado a Ia escala y condiciones, en términos de disponibilidad y coste, que se necesita para los sistemas de captura de CO2 en grandes focos emisores.
La mayoría de los procesos de absorción química están basados en carbonato de potasio o en alcanolaminas. La monoetanol amina (MEA) y Ia dietanolamina (DEA) son álcalis más fuertes que el carbonato de potasio, por Io que reduce en mayor grado el contenido de los gases ácidos. La capacidad de de absorción es también mayor para las alcanolaminas. Se suelen utilizar aditivos para incrementar Ia capacidad de absorción de las soluciones de K2CO3, y presentan Ia desventaja de una menor eficacia de depuración de los gases.
En Ia tabla 1 se expone un resumen de los distintos procesos de absorción química:
Figure imgf000004_0001
Figure imgf000005_0001
Los principales inconvenientes de los procesos de captura de CO2 en fase líquida con etanolaminas son que se necesita mucha energía térmica para regenerar Ia solución de MEA o DEA debido a su afinidad por los ácidos. También ocurre que las aminas pueden dar lugar a reacciones químicas no deseadas (especialmente Ia metanol amina con COS y CS2), formándose productos que degradan Ia solución e incrementan Ia corrosión.
Así pues, el método más extendido actualmente es Ia absorción en fase acuosa enriquecida en etanolaminas. Se trata de una absorción con reacción química que permite alcanzar eficiencias de captura de CO2 muy superiores a las alcanzadas por absorción física, sin reacción química, en los que solo se pueden alcanzar concentraciones iguales a Ia solubilidad del CO2 en el medio considerado (10~5 molCO2/L, 0.5 mgCO2/L). Sin embargo, presenta serios inconvenientes medioambientales, puesto que es tóxico o nocivo, y no pueden regenerarse con facilidad. El proceso consiste en hacer pasar Ia corriente de gas a depurar por una torre de absorción regada con disoluciones de etanolaminas de forma que el CO2 reacciona con dichas etanolaminas y queda retenido en Ia disolución. La disolución con el dióxido de carbono retenido se hace pasar posteriormente por otra torre, en este caso de desorción, donde mediante el suministro de calor se desorbe el CO2, que puede ser comprimido o gestionado ya como compuesto independiente. Se regenera así Ia disolución de etanolaminas que se recircula a Ia columna de absorción. Pese a los problemas de corrosión y contaminación expuestos anteriormente, este proceso ha sido aplicado a Ia captura del CO2 contenido en los gases de combustión, existen métodos comerciales basados en esta tecnología para Ia captura del CO2 contenido en los gases de combustión, y actualmente son Ia única alternativa tecnológica disponible (Herzog H., 2001 , What future for carbón capture and sequestration? Environmental Science Technology, 35(7): 148A-53A).
Para mejorar Ia eficacia de los procesos basados en etanolaminas se han propuesto modificaciones mediante el empleo de otros absorbentes (dietanolaminas, mezclas de etanolaminas, aditivos, KS-1 , etc.) que mejoran Ia capacidad de absorción de Ia fase líquida, y el empleo de columnas de relleno estructurado que mejoran Ia capacidad de transferencia reduciendo los consumos de potencia y el tamaño de los equipos (Yagi Y., Mimura T., lijima M., Yoshiyama R., Kamijo T., Yonekawa T., 2004, Improvements of carbón dioxide capture technology from flue gas. GHGT, International Conference on Greenhouse Gas Control Technology, Tokio, 2003.). A pesar de estas mejoras, el consumo de energía del proceso es superior a los 3.3 MJ/kgC02 frente a los 4-5 MJ/kg CO2 de los procesos no optimizados (Gambini M. y Vellini M., 2000, CO2 emission abatement from fossil fuel power plants by exhaust gas treatment. Proceedings of 2000 International Joint Power Generation Conference Miami Beach, Florida, JuIy 23-26, 2000).
El proceso alternativo más utilizado es el empleo de soluciones concentradas de carbonato, principalmente de potasio, que en una primera etapa absorben el CO2 por reacción química, para posteriormente ser regenerados mediante aporte de calor, liberándose el CO2 en forma de corriente pura gaseosa. Este proceso se denomina comercialmente proceso Benfield. La solubilidad y reacción del CO2 en disoluciones concentradas de carbonato potásico ha sido ampliamente estudiada (Benson, H. E., Field, J. H., Jimeson, R. M., 1954. CO2 absorption employing hot potassium carbonate solutions. Chemical Engineering Progress 50 (7), 356-364; Tosh, J.S., Field, J. H., Benson, H. E., Haynes, W.P., 1959. Equilibrium study of the system potassium carbonate, potassium bicarbonate, carbón dioxide, and water. United States Bureau of Mines, 5484). Estos estudios indican que el carbonato potásico tiene un calor de regeneración más bajo que las etanolaminas pero su velocidad de reacción es lenta comparada con el empleo de etanolaminas. El proceso Benfield utiliza concentraciones de carbonato potásico de alrededor del 20% en peso (200 gK2C03/L). El uso de altas concentraciones de carbonatos alcalinos ha sido propuesto también para Ia precipitación de compuestos contaminantes como óxidos de nitrógeno y azufre en gases de combustión mediante "scrubbing" (US 5100633 A). En este caso el consumo de álcali es equivalente a Ia cantidad de contaminantes a retirar, siendo estos obtenidos en forma de precipitado que puede ser posteriormente utilizado en Ia fabricación de cementos. Otra modificación basada en el empleo de carbonatos alcalinos es Ia utilización de disoluciones diluidas de dichas sales, de pH inicial a 8, que tras ser puestas en contacto con gases de combustión absorben CO2 y reducen su pH hasta valores de 4, vertiéndose Ia fase líquida resultante a grandes masas de agua, previa dilución si esta fuera necesaria (US 6890497 B2). En todos estos casos el carbonato reacciona de forma directa con el CO2 para dar bicarbonato, produciéndose importantes variaciones de pH y trabajando a elevadas concentraciones de carbonato, o bien muy bajas concentraciones para que el producto resultante pueda ser vertido al medio natural. Por otro lado, solo en el proceso Benfield se realiza una regeneración térmica de Ia fase acuosa, mientras que en el resto de procesos Ia fase acuosa no se regenera sino que se añade tanto carbonato mineral como hubiera sido consumido anteriormente o bien se vierte al medio natural sin regeneración.
Puesto que las otras alternativas a los procesos de absorción química de
CO2 (como Ia separación por membranas, el fraccionamiento criogénico o Ia adsorción con tamices moleculares) son menos eficientes tanto energética como económicamente (Herzog H., 1999, An introduction to CO2 separation and capture Technologies. Energy Laboratory Working Paper. Massachusetts Institute of Technology, Cambridge) es necesario desarrollar nuevos procesos capaces de acelerar Ia captación de CO2, y que faciliten su posterior regeneración. Se están llevando a cabo estudios a nivel mundial por diferentes grupos y organismos, analizando desde Ia oxicombustión, a Ia fijación del CO2 por masas forestales, a su retención en el mar o Ia fijación fotosintética del CO2. En este sentido, los microorganismos fotosintéticos, como microalgas o cianobacterias, son únicos y muy valiosos ya que son los mayores transformadores de CO2 en O2 del planeta, con rendimientos de fijación de carbono más de cinco veces superiores a las plantaciones de maíz, además de ser Ia principal fuente de biomasa y uno de los grupos ecológicos más variables del mundo (PuIz O., 2001 , Photobioreactors : production systems for phototrophic microorganisms). El uso de algunos microorganismos para este fin ha sido patentado (WO 2006/120278). Sin embargo, no se especifican las concentraciones necesarias para optimizar este proceso y, como otras patentes, se basa en Ia inyección directa de los gases de combustión. Esto implica numerosos problemas de adaptación de los organismos y si el reactor es abierto, Ia posibilidad de liberación del CO2 (desorción del CO2 disuelto), reduciendo los beneficios del sistema.
Sin embargo, y de forma más o menos independiente del organismo empleado, es necesario desarrollar un proceso capaz de absorber CO2 en elevadas concentraciones y a una velocidad muy superior a Ia que ocurre de forma natural y, a su vez, susceptible de ser acoplado a un sistema biológico que permita Ia transformación en materia orgánica de este CO2 absorbido. Esto permitiría Ia reconversión del CO2, procedente principalmente de Ia combustión, en materia orgánica.
EXPLICACIÓN DE LA INVENCIÓN Existe la necesidad de encontrar un sistema que permita Ia transformación en materia orgánica del carbono procedente del CO2, a una velocidad superior a Ia que ocurre en condiciones naturales. Los autores de Ia presente invención han conseguido establecer las condiciones de reacción necesarias para acoplar un proceso de captación de CO2 y otros gases, en fase líquida, procedentes principalmente de los procesos de combustión, con un sistema biológico que permite Ia transformación en materia orgánica del mismo.
Este proceso consigue captar concentraciones de CO2, y otros gases, similares a otros procesos (etanolaminas, Benefield), con un menor consumo energético, sin necesidad de tratamientos a diferentes presiones y/o temperaturas, permitiendo además reconvertir estos gases procedentes de Ia combustión, y en particular el carbono inorgánico del CO2. Lo fundamental es conseguir unos rangos de pH adecuados, compatibles con las concentraciones de carbono inorgánico, carbonato de sodio y bicarbonato necesarios para una absorción de elevadas concentraciones de CO2, y compatibles con las condiciones de cultivo adecuadas de los microorganismos fotosintéticos. Implica, por tanto, dos etapas diferenciadas que son optimizadas por separado, aunque considerando el necesario acoplamiento entre ellas.
El proceso se basa, por tanto, en Ia capacidad tampón de las soluciones de carbonato y bicarbonato, que permiten conciliar concentraciones de carbono inorgánico moderadamente elevadas con rangos de pH adecuados para incorporar Ia fase líquida a un cultivo de organismos fotosintéticos.
Por tanto, un primer aspecto de Ia invención se refiere a un procedimiento, de aquí en adelante procedimiento de Ia invención, para Ia captura de
CO2, así como de otros gases procedentes de Ia combustión como NOx y SOx, y que comprende: a) poner en contacto una fase líquida con sales tampón de carbonato-bicarbonato en una relación aproximada de 2:1 , cuya concentración de carbono inorgánico total menor o igual 25 g/L y un pH comprendido entre 8 y 12, con una corriente gaseosa que contiene CO2. b) regenerar Ia fase líquida enriquecida en CO2 obtenida en el paso anterior.
En una realización preferida de este aspecto de Ia invención, Ia concentración de carbono inorgánico tiene unos valores comprendidos entre 2 y 12 g/L. En otra realización más preferida de este aspecto de Ia invención, los valores de concentración de carbono inorgánico están comprendidos entre 3 y 8 g/l. En una realización particular Ia concentración de carbono inorgánico es de aproximadamente 4 g/L.
En una realización más preferida de este aspecto de Ia invención, los valores de pH están comprendidos entre 9 y 11. En una realización particular de Ia invención, los valores de pH se encuentran alrededor de 10.
Las concentraciones de pH podrían conseguirse, por ejemplo, añadiendo a Ia fase líquida NaHC03 en unas concentraciones comprendidas entre 5 y 22 g/L y Na2COs en unas concentraciones comprendidas entre 10 y 44 g/L. En una realización particular de Ia invención las concentraciones fueron de 11 g/L de NaHCθ3 y 22 g/L de Na2COs. En estas condiciones se puede alcanzar una eficiencia de depuración del CO2 del 80%, así como eficiencias de depuración para NOx y SOx del 50% y 95% respectivamente. La composición de Ia fase acuosa se puede modificar incrementando el contenido en Na2CO3, Io que aumenta el pH y mejora Ia eficacia de captura del CO2, aunque tiene el inconveniente de dificultar Ia posterior regeneración de Ia fase acuosa mediante tratamiento biológico. El empleo de fases acuosas enriquecidas en carbonato-bicarbonato permite conseguir rendimientos de depuración de los gases análogos a los obtenidos mediante el uso de fases acuosas enriquecidas en etanolaminas, aunque sin los consumos energéticos necesarios para Ia regeneración de éstos. Así mismo, es necesario trabajar a concentraciones de carbonato y bicarbonato inferiores a Ia constante del producto de solubilidad de las sales precipitadas a que pudiera dar lugar con los cationes presentes en el medio.
Elevadas concentraciones de carbono inorgánico disminuirían Ia productividad de las algas, pero concentraciones muy bajas disminuirían Ia captación de CO2. El pH tiene que ser superior a 8, porque sino el tampón carbonato - bicarbonato no ejercería su acción amortiguadora, y no se produciría Ia absorción de cantidades de CO2 notables, pero debe ser inferior a 12, para permitir su regeneración posterior. Los métodos clásicos de "sccruber" mantienen pH superiores a 12, Io que imposibilita su acoplamiento a sistemas biológicos de organismos fotosintéticos.
El contacto entre Ia fase gaseosa a depurar y Ia fase liquida puede hacerse por cualquier técnica habitualmente utilizada, como columnas de relleno aleatorio, ordenado o estructurado, columnas de pulverización, columnas de pisos, o columnas de burbujeo. Es preferible el uso de estas últimas ya que ofrecen los mejores rendimientos de depuración con el mínimo consumo de energía y volumen de fase líquida necesario. En este caso el tiempo de residencia recomendado de Ia fase acuosa es de entre
15-30 minutos. Así, una columna de burbujeo de 100 L es suficiente para depurar una corriente gaseosa de 200 L/min, capturando el 80% del CO2 contenido en Ia misma, mediante Ia circulación de 4 L/min de fase acuosa enriquecida en carbonato-bicarbonato. Este proceso es compatible con el uso tanto de agua dulce como de agua de mar o salobre para Ia preparación de Ia fase acuosa enriquecida en carbonato-bicarbonato, e incluso de aguas procedentes de usos agrícolas o del tratamiento secundario de aguas residuales, con Io que se obtiene una ventaja medioambiental y económica adicional.
La corriente gaseosa procede preferiblemente, aunque sin limitarse, de procesos de combustión de combustibles fósiles (carbón, petróleo, gas natural). Estos procesos de combustión proceden en su mayoría de fuentes de combustión estacionarias, como incineradores, cementeras, instalaciones de Ia industria metalúrgica, y particularmente de plantas generadoras de electricidad.
En general, para que Ia capacidad tampón sea suficiente, aumentando Ia captación de CO2 y manteniendo a Ia vez unos rangos adecuados de pH, Ia relación de carbonato:bicarbonato en Ia fase líquida preferiblemente es de aproximadamente 2:1. La reacción que tendría lugar se resume:
CO3 2" + H2O → HCO3 " + OH
OH" + CO2 → HCO3 "
CO3 2" + CO2 → 2 HCO3 "
Esta fase de captación de CO2 es previa, y se realiza de forma separada, a Ia fase de acoplamiento al sistema biológico, Io que permite Ia optimización de ambos procesos obteniendo un mayor rendimiento. Sin embargo, las condiciones de ambos procesos (pH, temperatura, concentración de sales e iones, ....) tienen que ser adecuadas para poder ser integrados en un solo procedimiento.
Una realización más preferida de Ia invención se refiere a Ia introducción de Ia fase líquida en Ia que se ha captado el CO2, en un biorreactor donde existen microorganismos fotosintéticos capaces de transformar el C inorgánico en C orgánico. A diferencia de los procesos existentes en el estado de Ia técnica de fijación de CO2 con microalgas o cianobacterias, en el procedimiento de Ia invención el CO2 es suministrado al reactor disuelto previamente en Ia fase acuosa, en las diferentes formas carbonadas solubles en agua (CO2, H2CO3, HCO3 ", CO3 =), por Io que Ia eficiencia de transporte es del 100%. En cuanto a los organismos fotosintéticos se pueden emplear, preferiblemente pero sin limitarse a ellas, tanto cianobacterias (Bacteria; Cianobacteria) como algas verdes (Eukaryota; Viridiplantae; Chlorophyta), siendo necesario que el microorganismo a utilizar tolere valores de pH alcalinos, así como elevadas concentraciones de carbono inorgánico total. Preferiblemente se emplean cianobacterias por su menor riesgo de contaminación, capacidad de fijación de nitrógeno atmosférico, mayor tolerancia a pH y concentraciones de carbono inorgánico elevados, así como facilidad de sedimentación y cosechado. Por ejemplo, especies de Spirulina y Anabaena cumplirían con estos requisitos y dan buenos resultados.
Respecto al sistema de cultivo, se pueden utilizar tanto reactores abiertos como cerrados, aunque preferiblemente se utilizan reactores abiertos por su menor coste, o reactores planos verticales de bajo coste. Preferiblemente, empleando reactores planos verticales en materiales flexibles. La superficie necesaria del biorreactor, es función del rendimiento de Ia depuración biológica, el cual depende del microorganismo, diseño de reactor y condiciones de operación del mismo.
Otro aspecto se refiere al procedimiento de Ia invención para Ia depuración de gases que proceden de Ia combustión de combustibles fósiles. Dichos gases puede provenir de sectores tan diversos como el transporte, el consumo doméstico o, más preferiblemente, de procesos de combustión industrial. Gases con elevadas proporciones de CO2 pueden proceder de plantas de generación de electricidad, de cementeras o de cualquier otra planta industrial que desarrollen procesos generadores de CO2. Otro aspecto se refiere al procedimiento de Ia invención para Ia depuración de gases procedentes de plantas de generación de electricidad.
Las microalgas, cianobacterias, u otros organismos fotosintéticos que se encuentran en el fotobiorreactor pueden utilizar el CO2, que previamente ha captado Ia fase líquida, para producir biomasa. Con el fin de mantener niveles óptimos de los organismos fotosintéticos dentro de los fotobiorreactores, periódicamente se extrae Ia biomasa del mismo.
Opcionalmente, Ia biomasa extraída puede desecarse, evaporándose al menos una porción del agua que contiene. Esta agua puede ser condensada posteriormente, y reutilizarse para preparar Ia fase líquida que se empleará en Ia etapa de captación del CO2.
La biomasa recuperada del fotobiorreactor puede emplearse directamente como fuel sólido o convertirlo, por ejemplo, en biodiesel u otro combustible orgánico, mediante procesos de pirólisis y/o licuefacción termoquímica. Estos procesos son bien conocidos en el estado de Ia técnica, y se describen, por ejemplo, en Yutaka et al., 1994 (Recoven/ of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction," Fuel 73(12): 1855-1857). La biomasa también puede ser utilizada para Ia gasificación y producir gases orgánicos inflamables que pueden emplearse en plantas energéticas.
Por "gases procedentes de Ia combustión" se entiende en esta memoria, gases generados en su mayor parte por procesos de combustión de combustibles fósiles (carbón, petróleo, gas natural). Principalmente hace referencia al CO2, aunque también, y sin limitarse a estos, a los óxidos de nitrógeno NOx (monóxido y dióxido de nitrógeno, NO y NO2 respectivamente) y a los óxidos de azufre ó SOx (dióxido y trióxido de azufre, SO2 y SO3).
La solución de sales tampón de carbonato - bicarbonato "en una relación aproximada de 2:1" implica que las concentraciones de sales son adecuadas para captar los gases procedentes de Ia combustión, principalmente CO2, de Ia corriente gaseosa, a Ia vez que Ia capacidad tamponadora es suficiente para mantener un pH adecuado que permita Ia incorporación de Ia fase liquida enriquecida en gases a un sistema biológico. Tal y como se ha descrito en Ia memoria, esta relación adecuada se consigue añadiendo sales solubles de carbonato y bicarbonato, en este caso carbonato y bicarbonato sódico, en unas concentraciones comprendidas entre 5 y 22 g/L para NaHCO3 y entre 10 y 44 g/L para Na2CO3.
En esta memoria se entiende como "fotobiorreactor" un biorreactor dependiente de Ia luz solar. Un "biorreactor" tal y como se entiende en esta memoria, es un recipiente o sistema que mantiene un ambiente biológicamente activo. El fotobiorreactor es, por tanto, un recipiente en el que se lleva a cabo un proceso que involucra organismos fotosintéticos y que busca mantener ciertas condiciones ambientales propicias (pH, temperatura, concentración de oxígeno, etcétera) al elemento que se cultiva. El fotobiorreactor contiene, o está configurado para contener, un medio líquido que comprende al menos una especie de organismo fotosintético y teniendo, o bien una fuente de luz capaz de estimular Ia fotosíntesis, o bien una superficie con al menos una porción transparente a Ia luz de una longitud de onda capaz de estimular Ia fotosíntesis (por ejemplo, una luz de longitud de onda entre 400 y 700 nm).
El término "organismos fotosintéticos" ó "biomasa", tal y como se utiliza en esta memoria, incluye todos los organismos capaces de realizar Ia fotosíntesis, tales como plantas (o sus células) en sentido amplio, algas (incluyendo, pero sin limitarse, las pertenecientes a las clasificaciones taxonómicas Chlorophyta, Rhodophyta y Phaeophyta) y cianobacterias, u otras bacterias fotosintéticas, en forma unicelular o multicelular, que son capaces de crecer en una fase líquida (excepto cuando el término "biomasa" se emplea en otros documentos incorporados en esta memoria, que se puede emplear en un sentido más amplio, incluyendo también materia orgánica procedente de una gran variedad de plantas y/o animales). El término incluye también organismos modificados artificialmente o por ingeniería genética.
Por "algas verdes" se entiende, en esta memoria, todos los organismos que pueden ser clasificados dentro del Phylum Chlorophyta. El término "microalga" tal y como aquí se emplea, se refiere a un organismo fotosintético, preferiblemente del Phylum Chlorophyta, de una sola célula. En el término "cianobacteria" se incluyen todas las especies del Phylum Cianobacteria.
A Io largo de Ia descripción y las reivindicaciones Ia palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en Ia materia, otros objetos, ventajas y características de Ia invención se desprenderán en parte de Ia descripción y en parte de Ia práctica de Ia invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de Ia presente invención.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Fig. 1.- Representa un posible diagrama de flujo del procedimiento de Ia invención, mediante captura de contaminantes en fase acuosa por absorción con reacción química y posterior regeneración de Ia fase acuosa mediante tratamiento biológico con microorganismos fotosintéticos en fotobiorreactores.
Fig. 2. - Muestra Ia variación de Ia depuración de SO2 y NOχ con Ia concentración del compuesto en el gas de entrada y Ia relación líquido/gas utilizada
Fig. 3. - Representa Ia comparación de Ia eficacia de depuración de CO2 utilizando disoluciones carbonatadas o disoluciones de etanolaminas en función de las condiciones de operación.
EXPOSICIÓN DETALLADA DE MODOS DE REALIZACIÓN
A continuación se ilustrará Ia invención mediante unos ensayos realizados por los inventores, que pone de manifiesto Ia efectividad del procedimiento de captación de CO2 procedente de procesos de combustión y su regeneración mediante un sistema biológico.
EJEMPLO
En este ejemplo, los inventores han diseñado una planta de demostración que permite ensayar el procedimiento de Ia invención, con una columna de burbujeo de 250 L, para Ia depuración de gases de una caldera de gas-oil.
Sistema de captura de CO?
La captura de CO2 se realizó en una columna de burbujeo de 250 I, humedeciendo Ia corriente gaseosa con Ia fase líquida. El sistema tolera caudales de inundación de 20 L/min de líquido y 350 L/min de gases, siendo el caudal mínimo para el mojado de Ia columna de 4 L/min de líquido (datos experimentales). La fase líquida se preparó añadiendo alrededor de 11 g/L de NaHCθ3 y 22 g/L de Na2Cθ3, consiguiendo un pH de 10. La concentración de carbono inorgánico total fue de 4,0 g/L.
En estas condiciones se puede alcanzar una eficiencia de depuración del CO2 del 80%, así como eficiencias de depuración para NOx y SOx del 50 y 95% respectivamente.
Operando con esta columna, con mezclas binarias aire-C02 al 10% como fase gaseosa y agua de Ia red como fase líquida, se ha determinado el coeficiente volumétrico de transferencia de materia. Los resultados muestran como el valor de dicho coeficiente es elevado, alcanzándose valores de KLaL de 50 1/h. Además, operando sin adición de fase alcalina se consiguen eficiencias de depuración del 98% aunque sólo para el caso de muy bajos caudales de gas, de 4 L/min, y elevados caudales de líquido. Ello es debido a Ia propia alcalinidad del agua que resulta suficiente para depurar pequeños flujos de gas, pero no así para elevados flujos netos de absorción de CO2.
El sistema ha sido ensayado con mezclas de gases con presencia de SO2 (por encima de 50 ppm) y NOx. Los resultados muestran como el SO2, es un gas muy ácido que tiende a absorberse muy eficazmente en fases alcalinas. Respecto al NOx, su carácter ácido es mucho menos pronunciado, por Io que su velocidad de transferencia de materia es menor. La Fig. 2 muestra Ia variación de Ia depuración de SO2 y NO con Ia concentración del compuesto en el gas de entrada y Ia relación líquido/gas utilizada.
Comparación del sistema de captura de CO? empleando disoluciones carbonatadas o disoluciones de etanolaminas. El comportamiento observado ratifica que Ia reacción química de las etanolaminas con el CO2 es más rápida que con el carbonato por Io que el tamaños de los equipos y los caudales necesarios se reducen, aunque el uso de fases acuosas enriquecidas en bicarbonato-carbonato muestran rendimientos similares en orden de magnitud por Io que puede ser viable para algunas aplicaciones a menor escala. Además, es medioambientalmente compatible, mientras que el uso de etanolaminas no es posible para el acoplamiento con sistemas biológicos.
Las ventajas que presenta este sistema de captura se resumen en:
1- Rendimientos de captura de CO2 similares a Ia absorción química con aminas.
2- El compuesto utilizado como absorbente es más barato y disponible. 3- El compuesto utilizado como absorbente no es tóxico o nocivo.
A- Permite Ia utilización de cualquier calidad de agua.
5- En un único sistema se produce Ia desulfuración, reducción de NOx y captura de CO2.
6- Transformación y utilización del CO2 directamente, bien como combustible (biomasa, bioetanol, etc.) cuyas emisiones de CO2 son neutras.
7- Empleo de un sistema de regeneración biológica. Sistema biológico de regeneración.
Los microorganismos fotosintetizadores pueden ser, preferiblemente, de dos tipos: cianobacterias y algas (preferiblemente microalgas). En función del microorganismo y de las condiciones de cultivo se pueden obtener diferentes productos. Se han realizado ensayos con Anabaena, Synechocystis, Chlorococcum, Botryococcus, Spirulina y Chlorella. Las que a priorí han mostrado un mejor comportamiento son Synechocysitis y Chlorococcum. Botryococcus ha mostrado una baja velocidad de crecimiento aunque resulta interesante por su elevado contenido en lípidos. Por su parte, Chlorella ha mostrado un correcto crecimiento, al igual que Spirulina, aunque Spirulina tiene Ia ventaja de estar perfectamente adaptada a medios ricos en carbonatos y elevado pH.
Los ensayos se han realizado en fotobiorreactores planos en condiciones de laboratorio, aunque simulando condiciones externas mediante Ia operación en ciclo solar, utilizando como medio de cultivo Ia fase líquida procedente de Ia etapa de absorción de gases, después de haber sido utilizado para Ia depuración de gas real de combustión procedente de una caldera de gasoil. Debido al uso de iluminación artificial el máximo de radiación fotosintética utilizado ha sido de 850 μE/m2s, el cual es tres veces inferior al valor máximo en condiciones externas.
Empleando reactores planos verticales en materiales flexibles, de 300 L, y usando Ia cianobacteria Anabaena marina se han conseguido tasas de fijación de CO2 de 100 g/m2 día. De acuerdo con estos resultados, para Ia regeneración de Ia fase liquida producida en Ia captura del CO2 contenido en una corriente de gases de 200 L/min serían necesarios 120 m2 de superficie ocupada por reactores planos como los descritos anteriormente. La superficie necesaria es función del rendimiento de Ia depuración biológica, el cual depende del microorganismo, diseño de reactor y condiciones de operación del mismo.

Claims

REIVINDICACIONES
1. Procedimiento para capturar gases procedentes de Ia combustión, que comprende: a. poner en contacto una fase líquida con una corriente gaseosa que contiene dichos gases, donde Ia fase líquida contiene sales tampón de carbonato-bicarbonato en una relación aproximada de 2:1 , con una concentración de carbono inorgánico total menor o igual a 25 g/L y valores de pH comprendidos entre 8 y 12, y b. recuperar Ia fase líquida enriquecida en CO2 obtenida en el paso a).
2. Procedimiento según Ia reivindicación anterior, donde Ia concentración de carbono inorgánico tiene unos valores comprendidos entre 2 y 12 g/L.
3. Procedimiento según Ia primera reivindicación, donde Ia concentración de carbono inorgánico tiene unos valores comprendidos entre 3 y 6 g/L.
4. Procedimiento según cualquiera de las reivindicaciones anteriores, donde el pH tiene unos valores comprendidos entre 9 y 11.
5. Procedimiento según cualquiera de las reivindicaciones anteriores, donde el paso b) se lleva a cabo introduciendo Ia fase líquida, enriquecida en gases, en un fotobiorreactor.
6. Procedimiento según Ia reivindicación anterior, donde el fotobiorreactor es de tipo plano.
7. Procedimiento según cualquiera de las reivindicaciones 5-6, donde el organismo fotosintético del fotobiorreactor es una cianobacteria o un alga verde.
8. Procedimiento según Ia reivindicación 7, donde el organismo fotosintético es una cianobacteria.
9. Procedimiento según cualquiera de las reivindicaciones anteriores, donde los gases contaminantes proceden de Ia combustión de combustibles fósiles.
10. Procedimiento según cualquiera de las reivindicaciones 1-8, donde los gases contaminantes proceden de centrales de generación de energía eléctrica.
PCT/ES2009/070058 2008-03-14 2009-03-09 Captación de gases en fase líquida WO2009112624A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09720493.7A EP2258463B1 (en) 2008-03-14 2009-03-09 Liquid-phase gas collection
US12/996,056 US20110159575A1 (en) 2008-03-14 2009-03-09 Liquid-phase gas collection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200800753 2008-03-14
ES200800753A ES2325758B1 (es) 2008-03-14 2008-03-14 Captacion de gases en fase liquida.

Publications (1)

Publication Number Publication Date
WO2009112624A1 true WO2009112624A1 (es) 2009-09-17

Family

ID=41045082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070058 WO2009112624A1 (es) 2008-03-14 2009-03-09 Captación de gases en fase líquida

Country Status (5)

Country Link
US (1) US20110159575A1 (es)
EP (1) EP2258463B1 (es)
CL (1) CL2009000610A1 (es)
ES (1) ES2325758B1 (es)
WO (1) WO2009112624A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011101469A1 (fr) * 2010-02-22 2011-08-25 Agc Glass Europe Procédé d'épuration de gaz comprenant du co2 et dispositif correspondant
WO2012056126A1 (fr) * 2010-10-28 2012-05-03 IFP Energies Nouvelles Procédé intégré de production de calcite et de biomasse par des cyanobactéries pour la valorisation énergétique et la séquestration minérale de c02

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2486790A1 (en) * 2011-02-11 2012-08-15 LGem B.V. Method and bioreactor for the cultivation of microorganisms
EP2556881A1 (en) * 2011-08-11 2013-02-13 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Combining algae cultivation and CO2 capture
DE102011055448A1 (de) * 2011-11-17 2013-05-23 Humboldt-Universität Zu Berlin Verfahren, Photobioreaktor und Photosyntheseschichten zur Kultur photoautotropher Mikroorganismen
CN216537812U (zh) * 2021-09-28 2022-05-17 中国华能集团清洁能源技术研究院有限公司 用于生物质电厂烟气的低温脱硫脱硝系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100633A (en) 1985-11-07 1992-03-31 Passamaquoddy Technology Limited Partnership Method for scrubbing pollutants from an exhaust gas stream
ES2062883T3 (es) * 1990-12-04 1994-12-16 Pacques Bv Procedimiento para la eliminacion de compuestos de azufre a partir de gases.
US20030073231A1 (en) * 2001-10-17 2003-04-17 Co2 Solution Inc. Photobioreactor
US6890497B2 (en) 1998-08-18 2005-05-10 The United States Of America As Represented By The United States Department Of Energy Method for extracting and sequestering carbon dioxide
WO2006120278A1 (es) 2005-05-11 2006-11-16 Consejo Superior De Investigaciones Científicas Procedimiento para fijar dióxido de carbono mediante la utilización de un cultivo de cianobacterias

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3856921A (en) * 1970-07-22 1974-12-24 Exxon Research Engineering Co Promoting scrubbing of acid gases
WO2007098150A2 (en) * 2006-02-21 2007-08-30 The Arizona Board Of Regents, A Body Corporate Acting On Behalf Of Arizona State University Photobioreactor and uses therefor
US20100083828A1 (en) * 2007-05-01 2010-04-08 Powerspan Corp. Removal of carbon dioxide from flue gas streams using mixed ammonium/alkali solutions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100633A (en) 1985-11-07 1992-03-31 Passamaquoddy Technology Limited Partnership Method for scrubbing pollutants from an exhaust gas stream
ES2062883T3 (es) * 1990-12-04 1994-12-16 Pacques Bv Procedimiento para la eliminacion de compuestos de azufre a partir de gases.
US6890497B2 (en) 1998-08-18 2005-05-10 The United States Of America As Represented By The United States Department Of Energy Method for extracting and sequestering carbon dioxide
US20030073231A1 (en) * 2001-10-17 2003-04-17 Co2 Solution Inc. Photobioreactor
WO2006120278A1 (es) 2005-05-11 2006-11-16 Consejo Superior De Investigaciones Científicas Procedimiento para fijar dióxido de carbono mediante la utilización de un cultivo de cianobacterias
ES2262432B1 (es) * 2005-05-11 2007-11-16 Consejo Superior Investig. Cientificas Procedimiento para fijar dioxido de carbono mediante la utilizacion deun cultivo de cianobacterias.

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
BEDEKAR, S.: "Properties of sodium carbonate- bicarbonate solutions", JOURNAL OF APPLIED CHEMISTRY., vol. 5, no. ISS.5, 1955, pages 72 - 75 *
BENSON, H.E.; FIELD, J.H.; JIMESON, R.M.: "C02 absorption employing hot potassium carbonate solutions", CHEMICAL ENGINEERING PROGRESS, vol. 50, no. 7, 1954, pages 356 - 364
GAMBINI M.; VELLINI M.: "C02 emission abatement from fossil fuel power plants by exhaust gas treatment", PROCEEDINGS OF 2000 INTERNATIONAL JOINT POWER GENERATION CONFERENCE MIAMI BEACH, FLORIDA, JULY 23-26, 2000, 2000
HERZOG H.: "What future for carbon capture and sequestration", ENVIRONMENTAL SCIENCE TECHNOLOGY, vol. 35, no. 7, 2001, pages 148A - 53A
HERZOG H.; FALK-PEDERSEN 0.: "The Kvaerner membrane contactor: lessons from a case study in how to reduce capture costs", FIFTH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2000, pages 121 - 5
KLOOSTERMAN, E. ET AL.: "Influence of Ionic Strength on the Absorption of C02 in Carbonate/ Bicarbonate Buffer Solutions", IND. ENG. CHEM. RES., vol. 26, 1987, pages 2216 - 2222 *
See also references of EP2258463A4
TOSH, J.S.; FIELD, J.H.; BENSON, H.E.; HAYNES, W.P.: "Equilibrium study of the system potassium carbonate, potassium bicarbonate, carbon dioxide, and water", UNITED STATES BUREAU OF MINES, 1959, pages 5484
YAGI Y.; MIMURA T.; LIJIMA M.; YOSHIYAMA R.; KAMIJO T.; YONEKAWA T.: "Improvements of carbon dioxide capture technology from flue gas", GHGT, INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGY, 2003
YUTAKA ET AL.: "Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction", FUEL, vol. 73, no. 12, 1994, pages 1855 - 1857

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011101469A1 (fr) * 2010-02-22 2011-08-25 Agc Glass Europe Procédé d'épuration de gaz comprenant du co2 et dispositif correspondant
BE1019198A3 (fr) * 2010-02-22 2012-04-03 Agc Glass Europe Procede d'epuration de gaz comprenant du co2 et dispositif correspondant.
WO2012056126A1 (fr) * 2010-10-28 2012-05-03 IFP Energies Nouvelles Procédé intégré de production de calcite et de biomasse par des cyanobactéries pour la valorisation énergétique et la séquestration minérale de c02
FR2966842A1 (fr) * 2010-10-28 2012-05-04 IFP Energies Nouvelles Procede integre de production de calcite et de biomasse par des cyanobacteries.

Also Published As

Publication number Publication date
EP2258463B1 (en) 2013-11-13
EP2258463A1 (en) 2010-12-08
CL2009000610A1 (es) 2010-03-26
EP2258463A4 (en) 2011-06-01
ES2325758B1 (es) 2010-06-24
ES2325758A1 (es) 2009-09-15
US20110159575A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
Thomas et al. Carbon dioxide capture strategies from flue gas using microalgae: a review
Song et al. Absorption-microalgae hybrid CO2 capture and biotransformation strategy—A review
Abd Rahaman et al. A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes
US9861933B2 (en) Method and apparatus for extracting carbon dioxide from air
Yang et al. Progress in carbon dioxide separation and capture: A review
RU2603736C2 (ru) Способ и аппарат для удаления диоксида углерода (со2) из потока газообразных веществ
US20140318000A1 (en) Combining algae cultivation and co2 capture
ES2325758B1 (es) Captacion de gases en fase liquida.
Liu et al. Post-Combustion Carbon Capture and Utilization by Sodium Hydroxide Aqueous Solution for Bicarbonate Microalgae Cultivation
Cozma et al. Removal of CO2 from gas streams in airlift reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09720493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009720493

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0906196

Country of ref document: BR

Free format text: IDENTIFIQUE OS SIGNATARIOS DA PETICAO NO 018100034141 DE 14/09/2010 E 018100042944 DE 12/11/2012. SOLICITA-SE, AINDA, A REGULARIZACAO DA PROCURACAO, TENDO EM VISTA QUE A APRESENTADA ESTA DATADA DE 02/10/2010, SENDO QUE A PETICAO DE ENTRADA NA FASE NACIONAL OCORREU EM 14/09/2010, E O TEXTO DA MESMA NAO POSSUI CLAUSULA QUE RATIFICA OS ATOS PRATICADOS ANTERIORMENTE.

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: PI0906196

Country of ref document: BR

Free format text: PEDIDO RETIRADO POR NAO CUMPRIMENTO DA EXIGENCIA FORMULADA E POR NAO HAVER MANIFESTACAO DO REQUERENTE CONTRA A PUBLICACAO DO ARQUIVAMENTO DA PETICAO (11.6.1).