WO2009112477A1 - Vorrichtung zur energieerzeugung in einem rotierenden system - Google Patents

Vorrichtung zur energieerzeugung in einem rotierenden system Download PDF

Info

Publication number
WO2009112477A1
WO2009112477A1 PCT/EP2009/052761 EP2009052761W WO2009112477A1 WO 2009112477 A1 WO2009112477 A1 WO 2009112477A1 EP 2009052761 W EP2009052761 W EP 2009052761W WO 2009112477 A1 WO2009112477 A1 WO 2009112477A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
tire
piezoceramic
charge
electrical energy
Prior art date
Application number
PCT/EP2009/052761
Other languages
English (en)
French (fr)
Inventor
Dr. Hans-Jürgen SCHREINER
Reiner Bindig
Konrad Tzschentke
Dr. Alfons Kelnberger
Original Assignee
Ceramtec Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceramtec Ag filed Critical Ceramtec Ag
Priority to US12/921,675 priority Critical patent/US8365589B2/en
Priority to DK09721014.0T priority patent/DK2268494T3/da
Priority to CN2009801168543A priority patent/CN102026833A/zh
Priority to JP2010550167A priority patent/JP2011517396A/ja
Priority to AT09721014T priority patent/ATE541720T1/de
Priority to EP09721014A priority patent/EP2268494B1/de
Publication of WO2009112477A1 publication Critical patent/WO2009112477A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/041Means for supplying power to the signal- transmitting means on the wheel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators

Definitions

  • the invention relates to a device for generating electrical energy in a rotating system for supplying power to electronic components in the system, with external forces acting on the system acting on piezoelectrically active energy converters in the system, whereby electrical energy is generated, and with an electronics for processing the electrical energy generated and forwarding these to the components.
  • Such a device is known from DE 603 10 104 T2.
  • a piezoelectric element and an actuating mass provided for contact with the piezoelectric element and a control circuit which is in electrical connection with the piezoelectric element are arranged in the interior of a tire or pneumatic tire.
  • the actuating mass is provided for deflecting the piezoelectric element as a result of external forces acting on the actuating mass in use to generate an electrical charge. This electrical charge or energy is provided by the control circuit components.
  • a disadvantage of this is that the piezoelectric element and the actuating mass are heavy and affects the rotating system or the tire in its rotational properties.
  • this device can not usually provide sufficient energy to provide, for example, sensors and transmission elements permanently and reliably, while also working under extreme acceleration ratios of some 10,000 g reliably and over a long life.
  • capacitive and inductive systems for energy transmission, and batteries or accumulators for energy storage systems on piezoceramic basis known, depending on the design - for example in the execution as a mass oscillator - relatively sensitive to the forces and deformations occurring in a tire as a rotating system during of operation, which can lead to the rapid destruction of the components.
  • the invention has for its object to improve a device according to the preamble of claim 1 so that the system is influenced as little as possible in its rotational properties.
  • the device should provide as much energy as possible in order, for example, to supply sensors and transmission elements permanently and reliably, while also functioning reliably under extreme acceleration conditions of a few 10,000 g and over a long service life.
  • the piezoelectrically active energy converters are piezoceramic fibers, each having an electrode and the electrodes of the fibers, which generate a charge of the same polarity, are connected via an electrically conductive outer electrode.
  • the external forces acting on the system cause changes in the acceleration during operation, causing the fibers to deform for a short time and generate electrical charges. These charges are tapped and provided as electrical energy to the components.
  • Piezoceramic fibers are light, so that the system is virtually unaffected in its rotational properties.
  • enough energy can be made available to sensors and transmission elements permanently and reliably and to function reliably under extreme acceleration conditions of some 10,000 g and over a long service life.
  • the rotating system is a tire, in particular for a motor vehicle.
  • the fibers are mechanically decoupled from each other, whereby each fiber contributes to the charge generation.
  • the piezoceramic fibers are attached to or integrated with the inside of the rotating system and with a tire on the inside of the tread. As a result, they are deformed directly by the forces acting from outside. If they are integrated into the tread, this can already happen during tire manufacture and is not visible to the customer. In addition, the fibers are then protected.
  • the fibers are preferably arranged transversely to the running surface of the rotating system or tire and preferably parallel to each other. This has the advantage that the fibers are more stable to deformations of the system or tire and more easily withstand these stresses.
  • the fibers have a diameter of 0.01 mm - 5 mm, preferably from 0.05 mm - 2 mm, particularly preferably 0.1 mm - 0.5 mm. At these diameters, the fibers are stable on the one hand and generate enough fertilizer on the other hand.
  • the fibers are produced by extrusion. As a result, they are particularly cost-effective and can be produced in any desired length. - A -
  • the fibers can also be made by sawing a plate-shaped piezoceramic disk.
  • the fibers generally have a rectangular or square cross-section. The preferred dimensions apply here accordingly.
  • the fibers for deriving the resulting charges via a highly flexible, three-dimensionally structured, metallic outer electrode are connected to groups of fibers, which is not destroyed by the force acting on the system or the tire forces and deformations.
  • the outer electrode consists of a fine wire mesh.
  • a wire mesh is highly flexible, three-dimensional structured and metallic.
  • the spacing of the fibers or the groups of fibers is selected such that the generated charge of individual fibers or groups of fibers never at the same time have the opposite polarity. As a result, the charges increase and do not cancel each other.
  • the fibers or groups of fibers which produce a charge of the same polarity are electrically combined and connected to a separate rectifier circuit so that neutralization of the charges is avoided.
  • the piezoelectric fibers can preferably also be produced by the fibers being in the unused new state, ie as blanks being piezoceramic plates or platelets which are mechanically processed during the production process in such a way that they are automatically transformed into defined fibers during production or during operation break.
  • the Plates or plates are provided with embossments along which the plates or plates can break.
  • the device is preferably used for measuring the tire pressure and / or for determining the roadway and / or driving dynamics properties of a motor vehicle.
  • the signal (charge) measured with the device can be compared with a setpoint value and a signal can be displayed if it exceeds or falls below the setpoint. For example, too low air pressure in the tire would cause a signal that deviates from the setpoint.
  • the invention is characterized in a preferred embodiment in that on an inner surface of the tire tread piezoelectrically active components, in particular piezoceramic fibers are integrated, which generate electric charges due to the acceleration changes in operation, and also due to their arrangement transverse to the direction of relatively large me- survive mechanical deformations of the tire.
  • fibers or piezoceramic fibers is meant a thin and flexible structure in relation to the length.
  • Fiber is also understood to mean a composite of fibers which forms a specific fiber structure.
  • the cross-section of the fibers can be of any desired design and, for example, round or angular or a combination thereof.
  • a structure of fibers is stronger and often stiffer than a construction of the same shape from the compact material "from the solid".
  • a variant of the device according to the invention in a tire for motor vehicles is that over the circumference of the tire inner surface piezoelectric fiber structures are arranged, which rotate with the tire. These fiber structures are connected via electrical contacts in conjunction with an electronic unit that can access, store, manage and provide the generated energy.
  • Acceleration forces effective according to the invention always arise when the tread of the tire comes into contact with the roadway.
  • the tire is deformed and thus disturbed its uniform circular motion. This leads to changes in acceleration occurring, which are accompanied by impulses to the piezoceramic components and cause the charge separation according to the invention.
  • Decisive for the high acceleration values and thus for a significant charge generation is mainly the length of the time interval ⁇ t, in which the tread of the tire is deformed and thus the direction of movement of the fibers is changed.
  • Fig. 1 shows the basic time course of a point on the tread of a tire of a motor vehicle in the y-direction with the area of impact with the road. Thus, approximately the course of movement of a point on the tread is shown in Fig. 1.
  • the tire rotates uniformly, in the area II it begins to deform and strikes the road and in area III it is in contact with the roadway.
  • the acceleration values to which the piezoelectric components are exposed in region II are proportional to 1 / ( ⁇ t) 2 ( ⁇ t indicates the time interval in which the tread of the tire deforms and thus the tire Direction of movement of the fibers is changed).
  • this time interval .DELTA.t can be extremely short, so that accelerations of the order of magnitude of 10,000 g occur.
  • a first estimate of the charge to be generated at these high accelerations can be made as follows:
  • the piezoceramic components are designed as fibers, e.g. as a cylinder with diameters in the order of 100 microns.
  • Such fibers can be produced relatively inexpensively and in large series, for example by means of an extrusion process or bring into shape. With the methods and processes known in the ceramic industry, these fibers can be operated in electrical mode and polarity in the d 33 mode, which ensures a high energy yield. Of course, other dimensions and geometries are conceivable and may be advantageous depending on the application, for example, cuboid fibers or the like.
  • Such patches are also known as Macro Fiber Composites (MFC).
  • MFC Macro Fiber Composites
  • the great advantage of the fiber structures is that they can withstand the relatively high deformations when the tread strikes the road surface and are less prone to mechanical failure.
  • the fiber regions are narrower than the footprint of the tire.
  • the generated charge is not compensated by the symmetrical but opposite processes when hitting the tire surface and when removing the tire surface from the road.
  • the fiber regions extend completely or more or less continuously over the inner surface.
  • the spacing of the individual patches can also be regulated so that a group of patches in the above sense is sufficient.
  • continuous piezoceramic plates or plates of corresponding geometry would also be suitable. Although these would - as already mentioned - be destroyed during operation, but the function of the invention could be maintained by a suitable contact.
  • a suitable contacting could be formed by a kind of flexible, electrically conductive network on these plates, which survives the high deformations in the operation of the tire.
  • the device is used for measuring the tire pressure and / or for determining the roadway and / or driving dynamics properties.
  • FIG. 3 shows the fibers 5 or fiber structures according to the invention, each having one electrode 6 and the associated outer electrode 7.
  • the rotating system 1 is a tire for a vehicle, preferably a motor vehicle or a motorcycle, with a tread 8, a side surface 11 of a rubber-like composite material according to the prior art.
  • the direction of rotation 9 on the roadway 10 is indicated by an arrow.
  • piezoceramic fiber structures or fibers 5 (see Figure 3) are admitted, act on the operation of different strengths acceleration forces. This results in charges that can be stored and controlled via the electronics and control unit 4 electrically connected to the fibers.
  • the electronic and control units 4 are located on the inside of the tread 8, that is, where the fiber structures or fibers 5 are arranged.
  • sensor elements 2 for measuring the tire pressure or other sensors or even communication elements 3 or other electronic components can be supplied.
  • the fibers 5 are connected to groups of fibers 5, as shown in Figure 3 in four groups and are not destroyed by the force acting on the tire and deformations.
  • the piezoelectric fibers 5 do not necessarily have to be divided into four groups or partial regions; they may be any number or even only one region. It is important that, irrespective of the number or dimension of these areas, these areas are electrically separated into individual subareas. The reason for this is that the effects of charge generation can otherwise cancel out, due to direction-dependent processes when the tread strikes the road and when the tread separates from the road.
  • FIG. 3 shows a section of three fibers 5, each having an electrode 6. Via an outer electrode 7, the electrodes 6 are electrically connected to each other.
  • the outer electrode 7 consists of a fine wire mesh, which highly flexible, three-dimensionally structured and consists of a metal and is arranged above and / or below the fibers.
  • the fibers 5 may be glued, baked or soldered onto the electrodes 6.
  • the electrical wiring could be such that the individual fibers 5, fiber regions or fiber structures are electrically connected to each other via the outer electrode 7 and to the unit 6, sensor 2 for detecting the air pressure and the communication element 3, for example by cables laminated into the tire or other tracks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zur Erzeugung von elektrischer Energie in einem rotierenden System (1) zur Versorgung von elektronischen Bauteilen (2, 3) im System mit Strom, mit auf das System einwirkenden äußeren Kräften, die auf piezoelektrisch aktive Energiewandler im System wirken wodurch elektrische Energie erzeugt wird, und mit einer Elektronik (4) zur Verarbeitung der erzeugten elektrischen Energie und Weiterleitung dieser an die Bauteile (2, 3). Damit das System so wenig wie möglich in seinen Rotationseigenschaften beeinflusst wird, viel Energie zur Verfügung stellt und dabei auch unter extremen Beschleunigungsverhältnissen zuverlässig und über eine lange Lebensdauer funktioniert, wird erfindungsgemäß vorgeschlagen, dass die piezoelektrisch aktiven Energiewandler piezokeramische Fasern (5) sind, die jeweils über eine Elektrode (6) verfügen und die Elektroden (6) der Fasern, die eine Ladung gleicher Polarität erzeugen, über eine elektrisch leitende Außenelektrode (7) verbunden sind.

Description

Vorrichtung zur Energieerzeugung in einem rotierenden System
Die Erfindung betrifft eine Vorrichtung zur Erzeugung von elektrischer Energie in einem rotierenden System zur Versorgung von elektronischen Bauteilen im Sys- tem mit Strom, mit auf das System einwirkenden äußeren Kräften, die auf piezoelektrisch aktive Energiewandler im System wirken wodurch elektrische Energie erzeugt wird, und mit einer Elektronik zur Verarbeitung der erzeugten elektrischen Energie und Weiterleitung dieser an die Bauteile.
Eine derartige Vorrichtung ist aus der DE 603 10 104 T2 bekannt. Hier wird im Inneren eines Reifens bzw. Luftreifens ein piezoelektrisches Element und eine zum Kontakt mit dem piezoelektrischen Element vorgesehene Betätigungsmasse und eine Steuerschaltung angeordnet, welche mit dem piezoelektrischen Element in elektrischer Verbindung steht. Die Betätigungsmasse ist zum Auslenken des piezoelektrischen Elements als Folge von äußeren Kräften vorgesehen, welche im Gebrauch auf die Betätigungsmasse wirken, um eine elektrische Ladung zu erzeugen. Diese elektrische Ladung bzw. Energie wird von der Steuerschaltung Bauteilen zur Verfügung gestellt.
Nachteilig ist hieran, dass das piezoelektrische Element und die Betätigungsmasse schwer sind und das rotierende System oder den Reifen in seinen Rotationseigenschaften beeinflusst. Außerdem kann diese Vorrichtung in der Regel nicht eine ausreichende Energie zur Verfügung stellen, um beispielsweise Sensoren und Übertragungselemente dauerhaft und zuverlässig zu versorgen, und dabei auch unter extremen Beschleunigungsverhältnissen von einigen 10.000 g zuverlässig und über eine lange Lebensdauer funktionieren. Es sind neben kapazitiven und induktiven Systemen zur Energieübertragung, und Batterien oder Akkumulatoren zur Energiespeicherung auch Systeme auf piezokeramischer Basis bekannt, die je nach Konstruktion - beispielsweise in der Ausführung als Massenschwinger - relativ empfindlich gegenüber den in einem Reifen als rotierendes System auftretenden Kräften und Deformationen während des Betriebs sind, die zur schnellen Zerstörung der Bauteile führen können.
Es sind auch Lösungen bekannt, die in eine innere Lage der Reifenlauffläche integriert sind und somit aufgrund ihrer Masse stark die Laufruhe beeinträchtigen bzw. relativ starke Unwuchten erzeugen.
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung nach dem Oberbegriff des Anspruchs 1 so zu verbessern, dass das System so wenig wie möglich in seinen Rotationseigenschaften beeinflusst wird. Außerdem soll die Vorrichtung möglichst viel Energie zur Verfügung stellen, um beispielsweise Sensoren und Übertragungselemente dauerhaft und zuverlässig zu versorgen, und dabei auch unter extremen Beschleunigungsverhältnissen von einigen 10.000 g zuverlässig und über eine lange Lebensdauer funktionieren.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, dass die piezoelektrisch aktiven Energiewandler piezokeramische Fasern sind, die jeweils über eine E- lektrode verfügen und die Elektroden der Fasern, die eine Ladung gleicher Polarität erzeugen, über eine elektrisch leitende Außenelektrode verbunden sind. Die auf das System einwirkenden äußeren Kräfte bewirken Beschleunigungsände- rungen im Betrieb, wodurch sich die Fasern kurzzeitig verformen und elektrische Ladungen generieren. Diese Ladungen werden abgegriffen und als elektrische Energie den Bauteilen zur Verfügung gestellt. Piezokeramische Fasern sind leicht, so dass das System in seinen Rotationseigenschaften quasi nicht beeinflusst wird. Außerdem lässt sich genügend viel Energie zur Verfügung stellen, um beispielsweise Sensoren und Übertragungselemente dauerhaft und zuverlässig zu versorgen, und dabei auch unter extremen Beschleunigungsverhältnissen von einigen 10.000 g zuverlässig und über eine lange Lebensdauer zu funktionieren.
In bevorzugter Ausführungsform ist das rotierende System ein Reifen, insbeson- dere für ein Kraftfahrzeug.
Bevorzugt sind die Fasern voneinander mechanisch entkoppelt, wodurch jede Faser ihren Beitrag zur Ladungserzeugung beiträgt.
In einer bevorzugter Ausgestaltung sind die piezokeramischen Fasern an der Innenseite des rotierenden Systems und bei einem Reifen an der Innenseite der Lauffläche angebracht oder sind in diese integriert. Hierdurch werden sie direkt durch die von außen einwirkenden Kräfte verformt. Wenn sie in die Lauffläche integriert werden, kann dies schon bei der Reifenherstellung geschehen und ist für den Kunden nicht sichtbar. Außerdem sind die Fasern dann geschützt.
Die Fasern sind bevorzugt in Querrichtung zur Lauffläche des rotierenden Systems oder Reifens und bevorzugt parallel zueinander angeordnet. Dies hat den Vorteil, dass die Fasern stabiler gegenüber Verformungen des Systems oder Reifens sind und diese Belastungen leichter stand halten.
Die Fasern weisen einen Durchmesser von 0,01 mm - 5 mm, bevorzugt von 0,05 mm - 2 mm, besonders bevorzugt 0,1 mm - 0,5 mm auf. Bei diesen Durchmessern sind die Fasern einerseits stabil und generieren andererseits genügend La- düngen.
In einer erfinderischen Ausgestaltung werden die Fasern durch Extrusion hergestellt. Sie sind hierdurch besonders kostengünstig und in beliebiger Länge herzustellen. - A -
Die Fasern können jedoch auch durch Zersägen einer plattenförmigen Pie- zokeramikscheibe hergestellt sein. Hierbei weisen die Fasern in der Regel einen rechteckigen oder quadratischen Querschnitt auf. Die bevorzugten Maßangaben gelten hier entsprechend.
In bevorzugter Ausführungsform sind die Fasern zur Ableitung der entstehenden Ladungen über eine hochflexible, dreidimensional strukturierte, metallische Außenelektrode zu Gruppen von Fasern verbunden, die durch die auf das System oder den Reifen wirkende Kräfte und Deformationen nicht zerstört wird.
In erfinderischer Ausgestaltung besteht die Außenelektrode aus einem feinen Drahtnetz. Ein Drahtnetz ist hochflexibel, dreidimensional strukturiert und metallisch.
In weiterer erfinderischer Ausgestaltung ist der Abstand der Fasern oder der Gruppen von Fasern so gewählt, dass die erzeugte Ladung einzelner Fasern oder Gruppen von Fasern nie gleichzeitig die gegensätzliche Polarität haben. Hierdurch verstärken sich die Ladungen und heben sich nicht gegenseitig auf.
Bevorzugt sind die Fasern oder die Gruppen von Fasern, die eine Ladung gleicher Polarität erzeugen, elektrisch zusammengefasst sind und mit einer getrennten Gleichrichterschaltung verbunden, so dass eine Neutralisation der Ladungen unterbleibt.
Die piezoelektrischen Fasern können bevorzugt auch dadurch hergestellt werden, dass die Fasern im unbenutzten Neuzustand, d.h. als Rohlinge piezokera- mische Platten oder Plättchen sind, die während des Herstellungsprozesses mechanisch so bearbeitet werden, dass sie bei der Produktion oder während des Betriebs automatisch in definierte Fasern zerbrechen. Zum Beispiel können die Platten oder Plättchen mit Prägungen versehen werden, entlang derer die Platten oder Plättchen zerbrechen können.
Bevorzugt wird die Vorrichtung zur Messung des Reifendrucks und/oder zur Be- Stimmung der fahrbahn- und/oder fahrdynamischen Eigenschaften eines Kraftfahrzeugs verwendet.
Das mit der Vorrichtung gemessene Signal (Ladung) kann mit einem Sollwert verglichen werden und bei Überschreitung oder Unterschreitung des Sollwerts ein Signal angezeigt werden. Zum Beispiel würde ein zu niedriger Luftdruck im Reifen ein Signal verursachen, welches vom Sollwert abweicht.
Nachfolgend wird die Erfindung weiter erläutert.
Die Erfindung zeichnet sich in einer bevorzugten Ausführungsform dadurch aus, dass auf einer Innenfläche der Reifenlauffläche piezoelektrisch aktive Bauteile, insbesondere piezokeramische Fasern integriert werden, die aufgrund der Beschleunigungsänderungen im Betrieb elektrische Ladungen generieren, und außerdem bedingt durch ihre Anordnung quer zur Laufrichtung relativ große me- chanische Deformationen des Reifens überstehen.
Unter Fasern bzw. piezokeramische Fasern wird ein im Verhältnis zur Länge dünnes und flexibles Gebilde verstanden. Unter Fasern wird auch ein Verbund von Fasern verstanden, der eine bestimmte Faserstruktier bildet. Der Querschnitt der Fasern kann beliebig ausgebildet sein und zum Beispiel rund oder eckig oder eine Kombination hiervon sein. Eine Struktur aus Fasern ist fester und häufig steifer als eine Konstruktion der gleichen Form aus dem kompakten Werkstoff "aus dem Vollen". Eine Variante der erfindungsgemäßen Vorrichtung bei einem Reifen für Kraftfahrzeuge besteht darin, dass über den Umfang Reifeninnenfläche piezoelektrische Faserstrukturen angeordnet werden, die mit dem Reifen rotieren. Diese Faserstrukturen stehen über elektrische Kontakte in Verbindung mit einer elektroni- sehen Einheit, welche die erzeugten Energien abgreifen, speichern, verwalten und zur Verfügung stellen kann.
Prinzipiell ist ein frei aufgehängter, rotierender Reifen Zentrifugalkräften ausgesetzt, wobei die dazu korrespondierenden Beschleunigungen lediglich vom Radi- us des Reifens und der Winkelgeschwindigkeit abhängen. Ohne Einwirkung von äußeren Kräften lässt sich mit der erfindungsgemäßen Vorrichtung keine elektrische Energie erzeugen.
Im Fahrbetrieb treten aufgrund der Einwirkung von äußeren Kräften, die zur Ver- formung des Reifens an der Aufstandsfläche führen, sehr hohe Beschleunigungskräfte auf, die in den piezoelektrischen Komponenten aufgrund der piezoelektrischen Eigenschaften beispielsweise von Faserstrukturen elektrische Ladungsmengen Q erzeugen, womit beispielsweise ein Kondensator mit der Kapazität C aufgeladen werden kann. Diese Energie E mit
2 C kann als elektrische Energie abgerufen werden.
Erfindungsgemäß wirksame Beschleunigungskräfte entstehen immer dann, wenn die Lauffläche des Reifens mit der Fahrbahn in Kontakt kommt. Dabei wird der Reifen deformiert und somit seine gleichmäßige Kreisbewegung gestört. Das führt dazu, dass Beschleunigungsänderungen auftreten, die mit Kraftstößen auf die piezokeramischen Bauteile einhergehen und die erfindungsgemäße Ladungstrennung bewirken. Entscheidend für die hohen Beschleunigungswerte und damit entscheidend für eine signifikante Ladungserzeugung ist hauptsächlich die Länge des Zeitintervalls Δt, in dem die Lauffläche des Reifens deformiert und damit die Bewegungsrichtung der Fasern geändert wird.
Fig. 1 zeigt den prinzipiellen zeitlichen Verlauf eines Punktes auf der Lauffläche eines Reifens eines Kraftfahrzeuges in y-Richtung mit dem Bereich des Auftreffens auf die Fahrbahn. Fig. 1 stellt somit angenähert der Bewegungsverlauf eines Punktes auf der Lauffläche dar. Im Bereich I rotiert der Reifen gleichmäßig, im Bereich Il beginnt er sich zu verformen und schlägt auf die Fahrbahn auf und im Bereich III ist er mit der Fahrbahn im Kontakt.
Durch eine geeignete Näherungsrechnung lässt sich abschätzen, dass die Beschleunigungswerte, denen die piezoelektrischen Bauteile im Bereich Il ausge- setzt sind, proportional zu 1 /(Δt)2 sind (Δt gibt das Zeitintervall an, in dem die Lauffläche des Reifens deformiert und damit die Bewegungsrichtung der Fasern geändert wird). Je nach Beschaffenheit und den elastischen Eigenschaften des Reifens und der Winkelgeschwindigkeit abhängig von der Geschwindigkeit des Fahrzeugs kann dieses Zeitintervall Δt extrem kurz werden, so dass Beschleuni- gungen in der Größenordnung von 10.000 g auftreten.
Zusätzliche Einflüsse aufgrund von Fahrbahnunebenheiten oder sonstigen fahrdynamischen Faktoren, aufgrund derer zusätzliche Kräfte entstehen und zur La- dungsgeneherung beitragen, sind hier nicht berücksichtigt.
Eine erste Abschätzung der zu erzeugenden Ladung bei diesen hohen Beschleunigungen lässt sich folgendermaßen treffen:
Werden die piezoelektrischen Bauteile oder Fasern im d33 Mode betrieben, so gilt folgender Zusammenhang zwischen erzeugter Ladung und wirkender Kraft: Q = d33 F wobei d33 die piezoelektrische Ladungskonstante darstellt und beispielsweise in der Größenordnung von 400 pC/N liegt.
Liegt auf den piezokeramischen Materialien eine Masse von beispielsweise 0,005 kg, die durch eine zusätzliche Gummilage oder dergleichen realisiert werden kann, so ergibt eine erste Abschätzung die je Umdrehung des Reifens zu erwartende Ladungsmenge
Q = d33 - m - a
Q = 400^ ^=--- 55 -- l1((TT33ÄA:gg -- 1100000000 -- 99,,8811—
N sec"
Q « 0,2μC
Somit lassen sich genügend große Ladungsmengen erzeugen, die natürlich je nach Ausführung der erfindungsgemäßen Vorrichtung in einem großen Bereich variiert werden können.
Ein sehr großer Vorteil lässt sich erzielen, wenn die piezokeramischen Bauteile als Fasern ausgeführt sind, z.B. als Zylinder mit Durchmessern in der Größenordnung von 100 μm.
Solche Fasern lassen sich relativ kostengünstig und in Großserie beispielsweise mit Hilfe eines Extrusionsprozesses herstellen bzw. in Form bringen. Mit den in der keramischen Industrie bekannten Methoden und Prozessen können diese Fasern nach elektrischer Kontaktierung und Polung im d33 Modus betrieben werden, was eine hohe Energieausbeute sicherstellt. Natürlich sind auch andere Dimensionen und Geometrien denkbar und können je nach Anwendungsfall vorteilhaft sein, beispielsweise quaderförmige Fasern oder dergleichen.
Diese Fasern lassen sich dann entweder direkt bei der Herstellung des Reifens in den inneren Aufbau des Reifens einbringen oder sie lassen sich unabhängig vom Reifen mit elastischen Folien kombinieren. Somit entsteht ein elastisches Verbundbauteil, das in Form von sog. Patches in die Struktur des Reifens eingebracht werden kann.
Solche Patches sind auch unter dem Namen Macro Fiber Composites (MFC) bekannt.
Der große Vorteil der wie auch immer realisierten Faserstrukturen liegt nun dar- in, dass sie die relativ hohen Deformationen beim Auftreffen der Lauffläche auf die Fahrbahn sehr gut überstehen können und dabei weniger anfällig für mechanisches Versagen sind.
Dies wird insbesondere dann erreicht, wenn die Fasern quer zur Lauffläche und parallel zueinander angeordnet sind. Dann sind sie wegen der mechanischen Entkopplung beispielsweise als Verbundbauteil bei den typischen Verformungen des Reifens in der Größenordnung 5 bis 10 % sehr stabil gegenüber diesen Verformungen und halten diesen Belastungen stand.
Normalerweise liegen die Belastungsgrenzen von piezokeramische Plättchen gegenüber Verformungen im Promillebereich, die nach Stand der Technik ausgeführten Piezogeneratoren (piezokeramische Plättchen plus Kontaktierung) würden also unter diesen Bedingungen beim Auftreffen der Lauffläche auf die Fahrbahn zerstört werden. Durch gezielte Einstellung des Füllgrades der Patches mit piezokeramischen Fasern lassen sich diesbezüglich optimale Bedingungen einstellen. Denkbar ist die Abstände der parallel angeordneten Fasern zu variieren, angefangen von direkt benachbart bis hin zu Vielfachen der Faserdurchmesser bzw. -breiten (je nach Geometrie)
Vorteilhaft ist es auch, wenn über den Umfang der Reifeninnenfläche mehrere Faserbereiche oder Patches gleichmäßig verteilt sind, damit lässt sich die Unwucht minimieren und die Energiebereitstellung um ein Vielfaches erhöhen.
In einer weiteren vorteilhaften Variante sind die Faserbereiche schmaler als die Aufstandsfläche des Reifen. So wird die erzeugte Ladung nicht durch die zwar symmetrisch aber gegenläufigen Abläufe beim Auftreffen der Reifenfläche auf und beim Abziehen der Reifenfläche von der Fahrbahn kompensiert.
Vorteilhaft kann auch sein, wenn die Faserbereiche sich ganz, bzw. mehr oder weniger durchgehend über die Innenfläche erstrecken.
Dabei erzielt man ein Maximum an Energieausbeute, allerdings muss man durch geeignete elektronische Ansteuerung dafür sorgen, dass sich die piezoelektrischen Effekte zur Ladungserzeugung wie oben beschrieben nicht aufheben.
Dies kann z.B. durch eine Gruppenbildung realisiert werden, so dass eine erste Gruppe von Patches von einer Elektronikeinheit angesteuert wird, die beim Auf- treffen der Lauffläche auf die Fahrbahn Energie erzeugt, und eine zweite Gruppe von Patches von einer zweiten Elektronikeinheit angesteuert wird, die beim Verlassen der Lauffläche von der Fahrbahn Energie erzeugt.
Der Abstand der einzelnen Patches kann auch so geregelt sein, dass eine Grup- pe von Patches in obigem Sinne ausreicht. Statt der Faserstrukturen wären durchaus auch durchgehende piezokeramische Platten oder Plättchen entsprechender Geometrie geeignet. Diese würden zwar - wie schon erwähnt - im Betrieb zerstört werden, die erfindungsgemäße Funktion jedoch könnte durch eine geeignete Kontaktierung aufrechterhalten werden.
Eine geeignete Kontaktierung könnte durch eine Art flexibles, elektrisch leitfähiges Netzwerk auf diesen Platten gebildet werden, welches die hohen Deformationen im Betrieb des Reifens überlebt.
Genauso wäre in einer weiteren Ausführungsform denkbar, piezokeramische Platten während des Herstellungsprozesses mit einer Prägung zu versehen, dergestalt, dass die Platten bei der Produktion oder während des Betriebs automatisch in definierte Fasern zerbrechen.
In einer vorteilhaften Ausführungsform wird die Vorrichtung zum Messen des Reifendrucks und/oder zur Bestimmung der fahrbahn- und/oder fahrdynamischen Eigenschaften verwendet.
Wenn ein Reifen an einem Kraftfahrzeug einen zu geringen Druck aufweist, ist die Aufstandsfläche des Reifens auf der Straße größer als bei einem Reifen mit korrekt eingestelltem Druck. Hieraus folgt ein anderes Messsignal der Vorrichtung. Wird dieses Messsignal abgegriffen und mit dem Messsignal eines Reifens mit korrektem Druck verglichen, kann so entweder der Druck im Reifen und/oder ein Signal für einen Reifen mit zu niedrigem Druck erzielt werden. Dieses Signal muss dann noch in geeigneter Weise angezeigt werden. Über die Verformung des Reifens in der Straßenebene kann auch auf die Fahrbahn und fahrdynamischen Eigenschaften geschlossen werden. In Fig. 2 ist ein bevorzugtes Ausführungsbeispiel der erfindungsgemäßen Vorrichtung dargestellt. Figur 3 zeigt die erfindungsgemäßen Fasern 5 oder Faserstrukturen mit jeweils einer Elektrode 6 und die zugehörige Außenelektrode 7.
Das rotierende System 1 ist ein Reifen für ein Fahrzeug, vorzugsweise ein Kraft- fahrzeug oder ein Motorrad, mit einer Lauffläche 8, einer Seitenfläche 11 aus einem gummiartigen Verbundmaterial nach dem Stand der Technik. Die Drehrichtung 9 auf der Fahrbahn 10 ist mit einem Pfeil angedeutet. In die Lauffläche 8 sind piezokeramische Faserstrukturen oder Fasern 5 (siehe Figur 3) eingelassen, auf die im Betrieb unterschiedlich starke Beschleunigungskräfte wirken. Dadurch entstehen Ladungen, die über die mit den Fasern elektrisch verbundene Elektronik- und Steuereinheit 4 gespeichert und gesteuert werden können. Die Elektronik- und Steuereinheiten 4 befinden sich an der Innenseite der Lauffläche 8, also dort, wo auch die Faserstrukturen bzw. Fasern 5 angeordnet sind. Damit können beispielsweise Sensorelemente 2 zur Messung des Reifendrucks oder andere Sensorik bzw. auch Kommunikationselemente 3 oder sonstige elektronische Bauteile versorgt werden. Die Fasern 5 sind dabei zu Gruppen von Fasern 5 verbunden, wie in der Figur 3 gezeigt zu vier Gruppen und werden durch die auf den Reifen wirkende Kräfte und Deformationen nicht zerstört. Die piezoelektrischen Fasern 5 müssen nicht notwendigerweise in vier Gruppen oder Teilbereiche auf- geteilt sein, es können beliebig viele oder auch nur ein Bereich sein. Wichtig ist, dass unabhängig von der Anzahl bzw. der Dimension dieser Bereiche diese e- lektrisch in einzelne Unterbereiche getrennt werden. Grund dafür ist, dass sich die Effekte zur Ladungserzeugung sonst aufheben können, aufgrund richtungsabhängiger Vorgänge beim Auftreffen der Lauffläche auf die Fahrbahn und beim Loslösen der Lauffläche von der Fahrbahn.
Figur 3 zeigt in einem Ausschnitt drei Fasern 5, die jeweils eine Elektrode 6 aufweisen. Über eine Außenelektrode 7 sind die Elektroden 6 miteinander elektrisch verbunden. Die Außenelektrode 7 besteht aus einem feinen Drahtnetz, welches hochflexibel, dreidimensional strukturiert und aus einem Metall besteht und über und/oder unter den Fasern angeordnet ist. Die Fasern 5 können auf die Elektroden 6 geklebt, eingebrannt oder gelötet werden. Die elektrische Verdrahtung könnte so aussehen, dass die einzelnen Fasern 5, Faserbereiche oder Faserstrukturen über die Außenelektrode 7 elektrisch untereinander und mit der Einheit aus Elektronik 6, Sensorelement 2 zur Erfassung des Luftdrucks sowie des Kommunikationselementes 3 verbunden sind, beispielsweise durch in den Reifen einlaminierte Kabel oder sonstige Leiterbahnen.

Claims

Patentansprüche
1. Vorrichtung zur Erzeugung von elektrischer Energie in einem rotierenden System (1 ) zur Versorgung von elektronischen Bauteilen (2, 3) im System mit Strom, mit auf das System einwirkenden äußeren Kräften, die auf piezoelektrisch aktive Energiewandler im System wirken wodurch elektrische Energie erzeugt wird, und mit einer Elektronik (4) zur Verarbeitung der erzeugten elektrischen Energie und Weiterleitung dieser an die Bauteile(2, 3), dadurch gekennzeichnet, dass die piezoelektrisch aktiven Energiewandler piezokeramische Fasern (5) sind, die jeweils über eine Elektrode (6) verfügen und die Elektroden (6) der Fasern, die eine Ladung gleicher Polarität erzeugen, über eine elektrisch leitende Außenelektrode (7) verbunden sind.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass das rotierende System (1 ) ein Reifen insbesondere für ein Kraftfahrzeug ist.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Fasern (5) voneinander mechanisch entkoppelt sind.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Fasern (5) an der Innenseite des rotierenden Systems (1 ) und bei einem Reifen an der Innenseite der Lauffläche (8) angebracht sind oder in diese integriert sind.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Fasern (5) in Querrichtung zur Lauffläche (8) des rotierenden Systems (1 ) oder Reifens und bevorzugt parallel zueinander angeordnet sind.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Fasern (5) einen Durchmesser von 0,01 mm - 5 mm, bevorzugt von 0,05 mm - 2 mm, besonders bevorzugt 0,1 mm - 0,5 mm aufweisen.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Fasern (5) durch Extrusion hergestellt sind.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Fasern (5) durch Zersägen einer plattenförmigen Piezokeramikscheibe hergestellt sind.
9. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass die Fasern (5) zur Ableitung der entstehenden Ladungen über eine hochflexible, dreidimensional strukturierte, metallische Außenelektrode (7) zu Gruppen von Fasern (5) verbunden sind, die durch die auf das System (1 ) oder den Reifen wirkenden Kräfte und Deformationen nicht zerstört wird.
10.Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Außenelektrode (7) aus einem feinen Drahtnetz besteht.
11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Abstand der Fasern (5) oder der Gruppen von Fasern (5) so gewählt ist, dass die erzeugte Ladung einzelner Fasern (5) oder Gruppen von Fasern (5) nie gleichzeitig die gegensätzliche Polarität haben.
12. Vorrichtung nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die Fasern (5) oder die Gruppen von Fasern (5), die eine Ladung gleicher Polarität erzeugen, elektrisch zusammengefasst sind und mit einer getrennten Gleichrichterschaltung verbunden sind, so dass eine Neutralisation der Ladungen unterbleibt.
13. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass die Fasern (5) im unbenutzten Neuzustand, d.h. als
Rohlinge piezokeramische Platten oder Plättchen sind, die während des Herstellungsprozesses mechanisch so bearbeitet werden, dass sie bei der Produktion oder während des Betriebs automatisch in definierte Fasern (5) zerbrechen.
14. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung zur Messung des Reifendrucks und/oder zur Bestimmung der fahrbahn- und/oder fahrdynamischen Eigenschaften eines Kraftfahrzeugs verwendet wird.
15. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das mit der Vorrichtung gemessene Signal mit einem Sollwert verglichen wird und bei Überschreitung oder Unterschreitung des Sollwerts ein Signal angezeigt wird.
PCT/EP2009/052761 2008-03-10 2009-03-10 Vorrichtung zur energieerzeugung in einem rotierenden system WO2009112477A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/921,675 US8365589B2 (en) 2008-03-10 2009-03-10 Device for generating energy in a rotating system
DK09721014.0T DK2268494T3 (da) 2008-03-10 2009-03-10 Indretning til at generere energi i et roterende system
CN2009801168543A CN102026833A (zh) 2008-03-10 2009-03-10 用于在旋转系统中产生能量的装置
JP2010550167A JP2011517396A (ja) 2008-03-10 2009-03-10 回転系内の電気エネルギの形成装置
AT09721014T ATE541720T1 (de) 2008-03-10 2009-03-10 Vorrichtung zur energieerzeugung in einem rotierenden system
EP09721014A EP2268494B1 (de) 2008-03-10 2009-03-10 Vorrichtung zur energieerzeugung in einem rotierenden system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008013498 2008-03-10
DE102008013498.8 2008-03-10

Publications (1)

Publication Number Publication Date
WO2009112477A1 true WO2009112477A1 (de) 2009-09-17

Family

ID=40578371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/052761 WO2009112477A1 (de) 2008-03-10 2009-03-10 Vorrichtung zur energieerzeugung in einem rotierenden system

Country Status (8)

Country Link
US (1) US8365589B2 (de)
EP (1) EP2268494B1 (de)
JP (1) JP2011517396A (de)
CN (1) CN102026833A (de)
AT (1) ATE541720T1 (de)
DE (1) DE102009001424A1 (de)
DK (1) DK2268494T3 (de)
WO (1) WO2009112477A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7814781B2 (en) * 2008-03-17 2010-10-19 Infineon Technologies, Ag Active and adaptive tire systems
US8841785B2 (en) * 2008-04-15 2014-09-23 Infineon Technologies Ag Energy harvester
DE112009005383T5 (de) * 2009-11-17 2012-09-13 Urban Environment Engineering Co. Ltd. Generatorvorrichtung für ein Fahrzeug
US9001626B1 (en) * 2011-03-11 2015-04-07 Rockwell Collins, Inc. Piezoelectric acceleration timer
CN102957338A (zh) * 2011-08-29 2013-03-06 文仁信 车辆上的压电发电装置
JP5921290B2 (ja) * 2012-03-30 2016-05-24 国立大学法人 東京大学 タイヤ振動特性検知方法、及び、タイヤ振動特性検知装置
KR101915064B1 (ko) * 2012-08-23 2018-11-05 삼성전자주식회사 플렉서블 장치 및 그 동작 방법
CN102795062B (zh) * 2012-08-29 2015-04-08 河北永发耐磨拉轮胎制造有限公司 一种防爆轮胎及制造该防爆轮胎的方法
JP5947698B2 (ja) * 2012-10-23 2016-07-06 住友ゴム工業株式会社 タイヤ発電装置
CN103786535B (zh) * 2012-11-05 2018-07-27 杨红光 相对旋转体间电量传输电路
CN102937137B (zh) * 2012-11-20 2015-01-14 浙江大学 压电发电滚动轴承单元
CN103888021B (zh) * 2014-02-26 2015-10-28 浙江大学 基于轮胎气门嘴的能量采集系统及方法
KR101557245B1 (ko) * 2014-12-03 2015-10-21 성균관대학교산학협력단 타이어 코드지용 섬유를 이용한 정전기 에너지 발생장치
CN105616080A (zh) * 2016-04-06 2016-06-01 陕西科技大学 一种新型电热轮椅
DE112017005345T5 (de) * 2016-10-24 2019-07-18 Mario Smiljanić Ultraschallgreifsystem
CN108058546B (zh) * 2017-12-18 2020-05-19 刘利忠 一种基于轮胎形变利用介电弹性体发电的防爆轮胎
DE202018001843U1 (de) 2018-04-12 2018-04-30 Rudi Danz Multifunktionale Module zur Erzeugung elektrischer Energie auf Verkehrswegen für die Elektromobilität
US11791748B2 (en) * 2019-07-24 2023-10-17 Tdk Corporation Smart wheel energy harvester
JP2022093421A (ja) 2022-04-19 2022-06-23 雄三 安形 発電機能付きタイヤ及びそれを装着した車両

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040078662A1 (en) * 2002-03-07 2004-04-22 Hamel Michael John Energy harvesting for wireless sensor operation and data transmission
EP1605528A2 (de) * 2004-06-10 2005-12-14 Société de Technologie Michelin Piezoelektrische Keramikfasern mit metallischem Kern
EP1650057A2 (de) * 2004-10-20 2006-04-26 Société de Technologie Michelin System und Verfahren zur Erzeugung elektrischer Leistung aus der mechanischen Energie eines drehenden Reifens
US20060260390A1 (en) * 2005-05-19 2006-11-23 Oguzhan Oflaz Tire monitor and method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7549327B2 (en) * 2001-02-16 2009-06-23 Automotive Technologies International, Inc. Tire-mounted energy generator and monitor
US7603894B2 (en) * 2000-09-08 2009-10-20 Automotive Technologies International, Inc. Self-powered tire monitoring system
US5644184A (en) * 1996-02-15 1997-07-01 Thermodyne, Inc. Piezo-pyroelectric energy converter and method
GB0222680D0 (en) 2002-10-01 2002-11-06 Haswell Moulding Technologies Power generation
JP2005024385A (ja) * 2003-07-02 2005-01-27 Matsushita Electric Ind Co Ltd 感圧センサ
KR101023712B1 (ko) * 2003-12-29 2011-03-25 피렐리 타이어 소시에떼 퍼 아찌오니 차량 타이어 내에서 전기 에너지를 생산하는 방법 및시스템
EP1993857B1 (de) * 2006-03-02 2016-10-26 Continental Teves AG & Co. oHG Reifenmodul mit piezoelektrischem wandler
US20080252174A1 (en) * 2007-04-10 2008-10-16 Advanced Cerametrics, Inc. Energy harvesting from multiple piezoelectric sources
DE102008012659B4 (de) * 2007-04-16 2019-02-21 Continental Teves Ag & Co. Ohg Reifenmodul mit piezoelektrischem Wandler
US8011237B2 (en) * 2008-02-22 2011-09-06 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Piezoelectric module for energy harvesting, such as in a tire pressure monitoring system
TWI438337B (zh) * 2008-10-08 2014-05-21 Ind Tech Res Inst 擺動裝置及其獵能裝置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040078662A1 (en) * 2002-03-07 2004-04-22 Hamel Michael John Energy harvesting for wireless sensor operation and data transmission
EP1605528A2 (de) * 2004-06-10 2005-12-14 Société de Technologie Michelin Piezoelektrische Keramikfasern mit metallischem Kern
EP1650057A2 (de) * 2004-10-20 2006-04-26 Société de Technologie Michelin System und Verfahren zur Erzeugung elektrischer Leistung aus der mechanischen Energie eines drehenden Reifens
US20060260390A1 (en) * 2005-05-19 2006-11-23 Oguzhan Oflaz Tire monitor and method

Also Published As

Publication number Publication date
US20110011172A1 (en) 2011-01-20
EP2268494A1 (de) 2011-01-05
ATE541720T1 (de) 2012-02-15
CN102026833A (zh) 2011-04-20
JP2011517396A (ja) 2011-06-02
US8365589B2 (en) 2013-02-05
EP2268494B1 (de) 2012-01-18
DK2268494T3 (da) 2012-05-14
DE102009001424A1 (de) 2009-09-17

Similar Documents

Publication Publication Date Title
EP2268494B1 (de) Vorrichtung zur energieerzeugung in einem rotierenden system
DE102007010780B4 (de) Reifenmodul mit piezoelektrischem Wandler
EP3000139B1 (de) Verfahren und vorrichtung zur herstellung eines elastomerstapelaktors
EP1833688B1 (de) Reifenmodul sowie luftreifen mit reifenmodul
EP2705549B1 (de) Elektromechanische wandlereinrichtung
DE102006040316B4 (de) Piezokeramischer Flächenaktuator und Verfahren zur Herstellung eines solchen
WO2017036671A1 (de) Vorrichtung für die kraft- und momenterfassung
WO2007099159A1 (de) Reifenmodul mit piezoelektrischem wandler
DE10359990A1 (de) Auf rotierenden Elementen angeordneter Energiewandler zur Umwandlung von mechanischer in elektrischer Energie
DE10301192A1 (de) Vorrichtung zur Stromversorgung eines Reifendrucksensors
DE102012016378B4 (de) Dielektrischer Elastomeraktor und Verfahren zu seiner Herstellung
WO2001035468A2 (de) Verfahren zur herstellung eines piezoelektrischen wandlers
DE202012101371U1 (de) Elektrische Vorrichtung für Fahrzeuge
EP1171806B1 (de) Uhrwerk mit einem mikrogenerator und testverfahren für uhrwerke
WO2015067235A2 (de) VORRICHTUNG ZUR VERSCHLEIßÜBERWACHUNG AN FAHRLEITUNGEN
DE112017005345T5 (de) Ultraschallgreifsystem
WO2010060684A2 (de) Verfahren zur herstellung eines mikromechanischen bauelements sowie mit dem verfahren hergestelltes bauelement bzw. dessen verwendung
DE102006024006A1 (de) Vorrichtung zur Umwandlung von mechanischer Energie in elektrische Energie
DE102015011709A1 (de) Lagerungseinrichtung für einen Kraftwagen
DE102013019483A1 (de) Verfahren und Vorrichtung zur Schwingungsdämpfung einer angetriebenen Achse mit Momentenquerverteilung
DE19829202B4 (de) Mikrosystem, Verfahren zu seiner Herstellung und seine Verwendung
WO2014056472A1 (de) Dielektrischer rollenaktor
DE102010060906A1 (de) Sensormodul mit Weckeinrichtung
DE102010063471B4 (de) Mikroelektromechanisches Element
DE102012105169A1 (de) Wechselstrommaschine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980116854.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721014

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12921675

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010550167

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009721014

Country of ref document: EP