WO2009111946A1 - 热泵循环系统及方法 - Google Patents

热泵循环系统及方法 Download PDF

Info

Publication number
WO2009111946A1
WO2009111946A1 PCT/CN2009/000255 CN2009000255W WO2009111946A1 WO 2009111946 A1 WO2009111946 A1 WO 2009111946A1 CN 2009000255 W CN2009000255 W CN 2009000255W WO 2009111946 A1 WO2009111946 A1 WO 2009111946A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat exchanger
refrigerant
external
compressor
Prior art date
Application number
PCT/CN2009/000255
Other languages
English (en)
French (fr)
Inventor
苏庆泉
Original Assignee
Su Qingquan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2008101016406A external-priority patent/CN101532744B/zh
Priority claimed from CN2008101016393A external-priority patent/CN101532700B/zh
Application filed by Su Qingquan filed Critical Su Qingquan
Publication of WO2009111946A1 publication Critical patent/WO2009111946A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat

Definitions

  • the present invention relates to a heat pump circulation system and method, and more particularly to a heat pump circulation system and method using tap water as a heat source.
  • the standard water that has been treated by the waterworks is usually sent to the water unit through the water supply pipe, for example, a living quarter, a water plant or a water garden unit, etc., and is sent through the tap water supply pipe network of the above unit. Reach households or other water terminals.
  • the temperature of the tap water sent to the water terminal is usually above 10 degrees Celsius, and even in the winter in the north, the temperature is not lower than 5 degrees Celsius due to the anti-freezing measures taken by the water pipe.
  • the user is not sensitive to the temperature of the tap water. For example, in the winter and summer, the temperature of the tap water may differ by 20 degrees Celsius, but this does not affect the normal use of the user.
  • Hydrogen is a secondary energy source that is converted from a variety of primary sources.
  • hydrocarbons for hydrocarbon reforming are considered to be the most economically viable options for a considerable period of time in the future due to the low price of hydrocarbons such as natural gas.
  • the existing vapor compression heat pump cycle technology has excellent efficiency as a hot water supply device. Potential.
  • the heat supply coefficient (COP) of the heat pump cycle system of the vapor compression heat pump cycle technology that is, the energy efficiency is greatly affected by the evaporator operating temperature, that is, the heat source temperature and the condenser operating temperature, that is, the hot water temperature.
  • the evaporator operating temperature that is, the heat source temperature
  • the condenser operating temperature that is, the hot water temperature.
  • the existing compressors of the vapor compression heat pump cycle technology are driven by the grid power, so that the primary energy efficiency is also restricted by the power generation efficiency of the grid user.
  • the compressor is equipped with FM control, there is still a loss of rectification due to the need to rectify the AC power of the grid to DC power.
  • the refrigerating medium according to the present invention refers to a substance that is circulated in a heat pump circulation system
  • the heat source refers to a medium that exchanges heat with a refrigerant in an external heat exchanger, and the heat source is in the process of heating cycle
  • the refrigeration shield releases heat and absorbs heat from the refrigerant during the refrigeration cycle.
  • a geothermal water source air or medium water is generally used as an external heat source.
  • the inventors have found in the technical solution of the present invention that no technique has been proposed in which tap water is used as a heat source in a heat pump cycle. This is due to the stable supply of tap water and the large supply, and the existing urban water supply system is very developed and widespread.
  • the water flow in the pipeline supplying the residential area is unstable.
  • the water flow is large in the morning, noon and evening, and the water flow is small during the daytime work. In the middle of the night, the water flow may stop.
  • the cause of the above-mentioned water flow instability is determined by the habits of water in people's lives and cannot be overcome.
  • tap water has a stable temperature range, for example, in winter, the temperature is 5 to 15 °C, which is usually higher than the outside air temperature. Tap water has a large amount of heat energy, and if it cannot be utilized, it causes a loss of whiteness, which is a pity. In the summer, the temperature is 15 ⁇ 25 °C, which is usually lower than the outside air temperature.
  • the cooling cycle is performed, if the tap water is used instead of the ambient air to exchange heat with the refrigerant, the refrigeration efficiency will be effectively improved. Therefore, it is necessary to develop a heat pump circulation system using tap water as a heat source. Summary of the invention
  • the main object of the present invention is to overcome the defects of the existing heat pump circulation system and method that cannot use tap water as a heat source, and to provide a heat pump circulation system and method, the technical problem to be solved is to make tap water as a heat pump cycle.
  • the heat source in the middle can improve the energy efficiency of the heat pump circulation system, which is more suitable for practical use.
  • a heat pump circulation system includes a compressor, an internal heat exchanger, a throttle valve, an external heat exchanger, and a four-way valve, and the four-way valve is respectively connected to a refrigerant working inlet of the compressor, a refrigerant refrigerant outlet of the compressor, an internal heat exchanger, and an external heat exchanger;
  • the four-way valve has the first a valve position and a second valve position; when the four-way valve is in the first valve position, the refrigerant outlet of the compressor is connected to the external heat exchanger, and the refrigerant inlet of the compressor is connected to the internal heat exchanger;
  • the four-way valve is in the second valve position, the refrigerant outlet of the compressor is connected to the internal heat exchanger, and the refrigerant inlet of the compressor is connected to the external heat exchanger;
  • the internal heat exchanger is connected with an external working fluid input.
  • an embodiment of the aforementioned heat pump circulation system wherein the external heat exchanger is filled with a heat storage agent.
  • the heat storage agent is one or more of the following materials: calcium chloride, barium chloride, potassium chloride, ammonium chloride, potassium hydrogencarbonate a hydrate or aqueous solution of sodium chloride, sodium sulfate, sodium carbonate, sodium acetate or a quaternary ammonium salt; and a stone wall having a carbon number of 12 24 .
  • the heat storage agent is directly filled in the external heat exchanger; or the heat storage agent is encapsulated in a closed container, and the sealed container is disposed in the external heat exchanger in.
  • an embodiment of the aforementioned heat pump circulation system wherein the heat source flow path of the external heat exchanger is connected to a tap water supply pipe.
  • an embodiment of the aforementioned heat pump circulation system wherein the external working fluid input pipe is connected to a tap water supply pipe.
  • an embodiment of the aforementioned heat pump cycle system further includes a fuel cell power generation subsystem for generating electricity and by-product heat; and the power generated by the fuel cell power generation subsystem is for driving the compressor.
  • the fuel cell power generation subsystem comprises: a reforming hydrogen production unit for preparing hydrogen; and a fuel cell, which is prepared by the above-mentioned reforming hydrogen production unit.
  • Hydrogen is used as a raw material for power generation and by-product heat; a circulation pump and a heat exchange device for circulating and performing heat exchange of the by-product heat; and a reversing valve disposed on an external shield output pipe of the internal heat exchanger, It has three interfaces, which are respectively connected to the external working fluid outlet of the above internal heat exchanger, the heat exchange device and the external working fluid output pipe.
  • an embodiment of the aforementioned heat pump circulation system further comprises: an internal combustion engine subsystem, a hot air subsystem or a gas turbine subsystem;
  • the internal combustion engine subsystem includes: an internal combustion engine for generating power and by-product heat for driving the compressor; a circulation pump and a heat exchange device for circulating and performing heat exchange of the by-product heat; And a reversing valve having three interfaces respectively connected to the outside of the internal heat exchanger Ministry of labor exports, heat exchangers and external working fluid output pipelines;
  • the heat engine subsystem includes: a heat engine for generating power and by-product heat, and using the power to drive the compressor; and a circulation pump and a heat exchange device for circulating the by-product heat Performing heat exchange; and a reversing valve having three interfaces respectively connected to the external working fluid outlet, the heat exchange device and the external working fluid output pipe of the internal heat exchanger;
  • the gas turbine subsystem includes a gas turbine for generating power and by-product heat; and the power is used to drive the compressor; and a heat exchange device for exchanging heat of the by-product heat; and reversing
  • the valve has three interfaces, which are respectively connected to the external working fluid outlet of the internal heat exchanger, the heat exchange device and the external working fluid output pipe.
  • the object of the present invention and solving the technical problems thereof are also achieved by the following technical solutions.
  • the above heat pump circulation system is employed, and the method comprises the following steps:
  • tap water is used as a heat source
  • the heat exchange described in the step includes at least one of the following processes: heat exchange between the tap water and the refrigerant, heat exchange between the tap water and the heat storage agent, The heat storage agent exchanges heat with the refrigerant, and the heat exchange between the tap water, the refrigerant and the heat storage agent.
  • the method further comprises: performing heat exchange between the tap water and the heat storage agent when the refrigerant refrigerant stops circulating; and when the tap water stops flowing, the heat storage agent and the refrigerant medium are performed. Heat exchange.
  • the method further includes: performing a reforming hydrogen production reaction using a hydrocarbon as a raw material to obtain hydrogen; using hydrogen as a raw material to generate electricity and by-product heat through the fuel cell, The power is used as the power for compressing the refrigerant; or the hydrocarbon is used as the fuel, and the internal combustion engine, the hot air machine or the gas turbine is used to generate power and by-product heat, and the power is used as the power for compressing the refrigerant.
  • the refrigeration shields in steps B and D both exchange heat with tap water.
  • the heat pump circulation system and method of the present invention have at least the following advantages: 1.
  • the above system provided by the present invention uses the by-product heat generated by the fuel cell or the internal combustion engine, the hot air machine, and the gas turbine subsystem for the above heat pump cycle. Secondary heating of the external working medium, and the The electric power or power is used to drive the compressor, and the operating temperature of the internal heat exchanger is significantly reduced under the condition that the temperature of the external working medium supplied from the system is constant, so that the heat supply coefficient of the heat pump cycle is further
  • the primary energy utilization efficiency of the heat pump circulation system is significantly improved, and the system as a whole is more compact and reliable.
  • the present invention achieves significant synergistic effects by organically integrating the heat pump circulation system and the fuel cell or internal combustion engine, the heat engine, and the gas turbine subsystem.
  • the use of the four-way valve and the switching valve makes the heat pump circulation system of the present invention have a function of simultaneously providing a cooling function and providing hot water, thereby being more suitable for application.
  • the hot water system and method of the present invention have significant advantages of cleaning and high efficiency under the same raw materials and heating capacity as compared with the existing boiler combustion type hot water system.
  • the heating coefficient of the hot water system in the embodiment of the present invention is also significantly higher than that of the existing vapor compression heat pump circulating hot water system which uses the power of the grid as the power source and the air as the heat source.
  • the invention uses water as a heat source, especially tap water as a heat source, the heat source has low cost and high heat exchange efficiency, so that the equipment cost can be significantly reduced under the same heat pump cycle thermal efficiency condition as the geothermal heat source heat pump, and the air is
  • the source heat pump significantly increases the thermal efficiency of the heat pump cycle under substantially the same equipment cost conditions.
  • the heat pump circulation system and method of the present invention have the above-mentioned advantages and practical value, and are thus more suitable for practical use.
  • Figure 1 is a flow chart showing the refrigeration cycle of the first embodiment of the heat pump cycle system of the present invention.
  • Fig. 2 is a flow chart showing the heating cycle of the embodiment 1 of the heat pump cycle system of the present invention.
  • Fig. 3 is a flow chart showing the heating cycle of the embodiment 2 of the heat pump cycle system of the present invention.
  • Figure 4 is a flow chart showing the refrigeration cycle of the embodiment 2 of the heat pump cycle system of the present invention.
  • Fig. 5 is a flow chart showing the heating cycle of the third embodiment of the heat pump cycle system of the present invention.
  • Figure 6 is a flow chart showing the heating cycle of Embodiment 4 of the heat pump cycle system of the present invention.
  • Cooling Water Pipe 50 Gas Turbine Subsystem
  • FIG. 1 is a flow chart of the refrigeration cycle of the first embodiment of the heat pump cycle system of the present invention.
  • the heat pump circulation system includes a compressor 21, an internal heat exchanger 22, a throttle valve 23, an external heat exchanger 24, and a four-way valve 25, and the above components are connected by a pipeline to form a circulation loop, and the circulation loop is filled with refrigeration.
  • the compressor 21 is used to compress a refrigerant, and has a refrigeration shield inlet and a refrigerant outlet.
  • the four-way valve 25 is connected to the refrigerant inlet of the compressor 21, the refrigeration shield outlet of the compressor, the internal heat exchanger 22, and the external heat exchanger 24, respectively.
  • the four-way valve 25 has a first valve position (also referred to as a refrigeration valve position) and a second valve position (also referred to as a heating valve position); when the four-way valve is at the first valve position, the compressor 21 The refrigerant outlet is connected to the external heat exchanger 24, and the refrigeration shield inlet of the compressor 21 is connected to the internal heat exchanger 22; when the four-way valve 25 is at the second valve position, the refrigerant outlet of the compressor 21 is connected to The internal heat exchanger 22 and the refrigerant inlet of the compressor 21 are connected to the external heat exchanger 24.
  • a first valve position also referred to as a refrigeration valve position
  • a second valve position also referred to as a heating valve position
  • the temperature of the refrigerant after compression by the compressor 21 is increased; the compressed refrigerant is sent to the external heat exchanger 24 according to the four-way valve position (first valve position) shown in FIG. in.
  • the external heat exchanger 24 is connected to the heat source input pipe 12 and the heat source output pipe 14.
  • tap water is used as a heat source
  • the heat source input pipe 12 is connected to the tap water pipe 10 through the splitter 15.
  • the external heat exchanger 24 includes a heat source flow path and a refrigerant working flow path. The heat source flowing through the external heat exchanger 24 exchanges heat with the refrigerant, and the high temperature refrigerant heats the heat to the heat source. reduce.
  • the cooled refrigerant is sent to the throttle valve 23, and the refrigerant pressure after the throttle valve 23 is lowered, and is steamed in the internal heat exchanger 22. Hair, as the refrigerant volume expands and a phase change occurs, its temperature decreases.
  • Internal heat exchanger
  • the external working medium is used for heat exchange with the user's environment, thereby increasing or decreasing the ambient temperature.
  • the external working medium exchanges heat with the refrigerant.
  • the refrigerant absorbs the heat of the external working medium, and the external working medium releases the heat, and the temperature is lowered, and is sent to the user by the external working fluid output pipe 13. Since the external working temperature of the output is low, it can be supplied to the user as a cold source to achieve the cooling effect.
  • the refrigerating medium that has undergone heat exchange is again sent to the compressor 21, thereby completing a heat pump cycle.
  • the external heat exchanger 24 of the heat pump cycle system of the first embodiment includes a refrigerant working fluid flow path, a heat source flow path, and a heat storage agent filling container, and the heat storage agent filling container is filled with the heat storage agent.
  • the heat storage agent is preferably a latent heat storage agent having a phase transition temperature higher than a heat source temperature of 2 to 5 ° C, and includes a paraffin wax (highly saturated linear alkane) having a carbon number of 12 to 24 and a mixture thereof, chlorine a hydrate of a salt such as calcium, magnesium chloride, potassium chloride, ammonium chloride, potassium hydrogencarbonate, sodium chloride, sodium sulfate, sodium carbonate, sodium acetate or quaternary ammonium salt, or an aqueous solution of the above, and a mixture thereof.
  • a paraffin wax highly saturated linear alkane
  • chlorine a hydrate of a salt such as calcium, magnesium chloride, potassium chloride, ammonium chloride, potassium hydrogencarbonate, sodium chloride, sodium sulfate, sodium carbonate, sodium acetate or quaternary ammonium salt, or an aqueous solution of the above, and a mixture thereof.
  • the heat storage agent may be directly filled in the external heat exchanger, and the heat source and the refrigerant medium are respectively in the closed heat source flow path and the refrigerant working medium flow path; or the heat storage agent is packaged in the closed container and disposed in the external heat In the switch.
  • the refrigerant, the heat source, and the heat storage agent exchange heat with each other.
  • the heat storage agent functions to release heat from the heat source and absorb the heat of the refrigerant in the refrigeration cycle.
  • the heat storage agent can pass through the phase change (solidification) to the heat release of the heat source flowing through the external heat exchanger 24, while the heat pump circulation system operates without the heat source flowing through the outside.
  • the heat storage agent can also absorb the heat released from the refrigerant by phase change (melting), thereby ensuring continuous and efficient operation of the heat pump circulation system.
  • phase change melting
  • the heat storage agent can also absorb the heat released from the refrigerant by phase change (melting), thereby ensuring continuous and efficient operation of the heat pump circulation system.
  • heat can be exchanged between the heat source using tap water as an external heat exchanger and the refrigeration shield, so that tap water can be applied to the heat pump cycle.
  • Such a heat pump cycle system has a cooling (or heating) coefficient that is significantly higher than that of an air source heat pump cycle system.
  • FIG. 2 it is a flow chart of the heating cycle of the embodiment 1 of the heat pump cycle system of the present invention.
  • the heating cycle is the same as that used in the above refrigeration cycle, and the difference is that the four-way valve is located at the second valve position in the heating cycle, that is, the refrigerant outlet of the compressor 21 is connected to the internal heat exchange.
  • the refrigerant inlet of the compressor 21 is connected to the external heat exchanger 24, so that the flow direction of the refrigerant is opposite to the flow of the refrigerant in the refrigeration cycle shown in Fig. 1, so that the external working outlet pipe 13 can be made.
  • the temperature of the external work shield is higher than the temperature of the external working medium in the external working fluid input pipe 11, thereby achieving the effect of supplying heat to the user.
  • the heat storage agent in the external heat exchanger selects a latent heat storage agent having a phase transition temperature lower than the heat source temperature of 2 to 5 °C.
  • the external working fluid input pipe 11 is connected to the flow divider 15 so that the tap water is separated from the system by the system.
  • One part is used as a heat source and the other part is heated water.
  • the heat pump cycle system of the present embodiment further includes a fuel cell power generation system 30 for generating electricity and by-product heat as compared with the first embodiment.
  • the power generated by the fuel cell power generation subsystem 30 is supplied to the compressor 21 through a cable as power for driving the compressor 21.
  • the fuel cell power generation system 30 includes a reforming hydrogen generation unit 31, a fuel cell 32, a circulation pump 33, and a heat exchange unit 34.
  • the reforming hydrogen production unit 31 described above uses hydrocarbons and water as raw materials to undergo hydrogen reforming to produce hydrogen under the action of a catalyst.
  • the fuel cell 32 generates electricity by using hydrogen gas produced by the reforming hydrogen generator 31 as a raw material to generate direct current and by-product heat.
  • the circulation pump 33 is powered by the electric power generated by the fuel cell 32 and is used to circulate the cooling water of the fuel cell.
  • the heat exchange device 34 is configured to perform heat exchange of cooling water of the fuel cell, to cool the incoming hot cooling water, and to be circulated to the fuel cell.
  • the heat exchange device 34 is connected to a water supply pipe 18 and an output pipe 19.
  • a reversing valve 17 is provided on the water supply pipe 18.
  • the reversing valve 17 has a structure in which it has three interfaces and can be connected to three pipes, and has a switching structure inside, which can ensure that only two interfaces can be connected at the same time and the other interfaces can be cut off.
  • a reversing valve 16 is provided on the outer working fluid output pipe 13 of the internal heat exchanger 22.
  • the directional control valve 16 is connected to the above-described directional control valve 17.
  • the heat pump circulation system of this embodiment uses hydrocarbon as a raw material for heating, which has higher heating efficiency than direct combustion of hydrocarbons by boiler.
  • the above fuel cell 32 is a tannic acid fuel cell (PAFC), a molten carbonate fuel cell (MCFC), a solid oxide fuel cell (S0FC) or a proton exchange membrane fuel cell (PEMFC).
  • PAFC tannic acid fuel cell
  • MCFC molten carbonate fuel cell
  • S0FC solid oxide fuel cell
  • PEMFC proton exchange membrane fuel cell
  • FIG. 4 it is a refrigeration cycle diagram of Embodiment 2 of the heat pump cycle system of the present invention.
  • the refrigeration cycle is different in that the four-way valve is located at the first valve position, that is, the refrigerant outlet of the compressor 21 is connected to the external heat exchanger, and the compressor 21 is cooled.
  • the working fluid inlet is connected to the internal heat exchanger 22 such that the flow direction of the refrigerant medium is opposite to the flow direction of the refrigerant in the heating cycle shown in FIG. 3, so that the external working fluid output pipe 13 of the internal heat exchanger 22 can be made.
  • the temperature of the external working medium is lower than the temperature of the external working medium in the external working fluid input pipe 11, thereby achieving the effect of providing the user with the cooling amount.
  • the reversing valve 16 is switched to a position that communicates with the external working fluid output pipe, and the reversing valve 17 is switched to a position that communicates with the water supply pipe 18.
  • the heat exchange device 34 performs heat exchange between the cooling water and the water source supplied from the water supply pipe, so that hot water can be obtained in the output pipe 19 of the heat exchange device 34.
  • the heat pump circulation system of the present embodiment can simultaneously provide two functions of cooling and supplying hot water. Referring to FIG.
  • the heat pump cycle system of the present embodiment further includes: an internal combustion engine subsystem 40 that uses hydrocarbon as a fuel to generate power and produce heat by-product.
  • the power compressor 21 generated by the internal combustion engine system 40 is used to drive the compressor 21.
  • the internal combustion engine power generation subsystem 40 includes an internal combustion engine 41, a transmission mechanism 42, a circulation pump 43, and a heat exchange device 44.
  • the internal combustion engine 41 is fueled by a hydrocarbon, preferably powered by natural gas, and generates heat by-product, and drives the compressor 21 through the transmission mechanism 42 to operate.
  • the flue gas of the internal combustion engine is introduced into the heat exchange unit 44 through the flue gas duct 45, and the cooling heat of the internal combustion engine is introduced into the heat exchange unit 44 through the cooling water line 46.
  • the circulation pump 43 is for circulating cooling water of the internal combustion engine 41.
  • the heat exchange device 44 is connected to a water supply pipe 18 and an output pipe 19.
  • a reversing valve 17 is provided on the water supply pipe 18.
  • the reversing valve 17 has a structure in which it has three interfaces and can be connected to three pipes, and has a switching structure inside, which can ensure that only two interfaces can be connected at the same time to cut off another interface.
  • a reversing valve 16 is provided on the outer working fluid output pipe 13 of the internal heat exchanger 22.
  • the reversing valve 16 is connected to the above-described reversing valve 17.
  • the four-way valve 25 is at the second valve position, and the switching valve 16 and the switching valve 17 are simultaneously switched, the external working fluid flowing out of the internal heat exchanger can flow into the heat exchange device 44, thereby making the external The shield is secondarily heated by the by-product heat of the fuel cell, so that the temperature of the external working medium in the output pipe 19 is again increased.
  • the hot spring circulation system of the present embodiment uses hydrocarbon as a fuel to heat, which has higher heating efficiency than direct combustion of hydrocarbons by a boiler.
  • the internal combustion engine described in this embodiment can be replaced by a hot air machine, and the same technical effects can be achieved.
  • the switching valve 16 is switched to a position that communicates with the external working fluid output pipe, and the switching valve 17 is switched to the communication water supply pipe. 18 location.
  • the heat exchange unit 44 performs heat exchange between the cooling water and the flue gas and the water source supplied from the water supply pipe, so that hot water can be obtained at the output pipe 19 of the heat exchange unit 44.
  • the heat pump circulation system of the present embodiment can simultaneously provide two functions of cooling and supplying hot water.
  • the heat pump cycle system of the present embodiment further includes: a gas turbine subsystem 50 for generating power and by-product heat, the generated power being supplied to the compressor for driving the compression Machine 21.
  • the gas turbine subsystem 50 includes a gas turbine 51, a transmission 52, and a heat exchange 54.
  • the gas turbine 51 is fueled by a hydrocarbon, preferably natural gas, to generate power and to generate heat, which transmits power to the compressor 21 through the transmission mechanism 52.
  • the above-mentioned by-product heat is the heat carried by the flue gas after the combustion of the fuel, and the flue gas is introduced into the heat exchange device 54 through the flue gas duct 55, and is subjected to heat exchange. Emissions.
  • the heat exchange device 54 is connected to a water supply pipe 18 and an output pipe 19.
  • a reversing valve 17 is provided on the water supply pipe 18.
  • the reversing valve 17 has a structure in which it has three interfaces and can be connected to three pipes, and has a switching structure inside, which can ensure that only two interfaces can be connected at the same time to cut off another interface.
  • a commutation width 16 is provided on the outer working fluid output pipe 13 of the internal heat exchanger 22.
  • the directional control valve 16 is connected to the above-described directional control valve 17.
  • the working fluid flows into the heat exchange device 54, so that the external working medium is reheated by the by-product heat of the fuel cell, and the temperature of the external working medium in the output pipe 19 is again improved.
  • the heat pump circulation system of the present embodiment uses hydrocarbon as a fuel to heat, which has higher heating efficiency than direct combustion of hydrocarbons using a boiler.
  • the switching valve 16 is switched to a position that communicates with the external working fluid output pipe, and the switching valve 17 is switched to the communication water supply pipe. 18 location.
  • the low temperature external working medium is directly supplied to the user, and at the same time, the heat exchange unit 54 exchanges heat between the flue gas and the water source supplied from the water supply pipe, so that hot water can be obtained in the output pipe 19 of the heat exchange device 54.
  • the heat pump circulation system of the present embodiment can simultaneously provide two functions of cooling and supplying hot water.
  • the external working fluid input pipe 11 described in the above embodiment of the present invention is a supply pipe connected to the tap water to supply hot water to the user, so that the heat energy contained in the tap water supply system can be fully utilized.
  • Embodiment 5 of the present invention also proposes a heat pump circulation method using the heat pump circulation system shown in Embodiment 1, the heat pump circulation method comprising the following steps:
  • the heat exchange described in the step includes at least one of the following processes: heat exchange between the tap water and the refrigerant, heat exchange between the tap water and the heat storage agent, heat exchange between the heat storage agent and the refrigerant, and tap water and refrigeration Heat exchange between the quality and the heat storage agent.
  • Embodiment 6 of the present invention also proposes a heat pump circulation method using the heat pump circulation system shown in Embodiment 2.
  • the heat pump circulation method further includes the following steps: using hydrocarbon as a raw material for weighting Hydrogen is reacted to obtain hydrogen; hydrogen is used as a raw material to generate electricity and by-product heat through the fuel cell, and the electric power is used as a power for compressing the refrigerant.
  • the fuel cell is a phosphoric acid fuel cell (PAFC), a molten carbonate fuel cell (MCFC), a solid oxide fuel cell (S0FC) or a proton exchange membrane fuel cell (PEMFC).
  • PAFC phosphoric acid fuel cell
  • MCFC molten carbonate fuel cell
  • S0FC solid oxide fuel cell
  • PEMFC proton exchange membrane fuel cell
  • the heat pump circulation method further includes the following steps: using hydrocarbon as a fuel, using an internal combustion engine, a heat engine or a gas turbine to generate power and by-product heat, the power being Compress the power of the refrigerant.
  • the air source heat pump circulation system is powered by a commercial power source.
  • the condenser inlet temperature of the external working fluid is 37, the condenser outlet temperature is 45 °C, the outside air temperature is 10 °C, the evaporation temperature of the refrigerant in the evaporator is -5 °C, and the refrigerant in the condenser
  • the condensing temperature is 50 ° C
  • the compressor adiabatic efficiency is 0.85
  • the heat supply coefficient (COP) is 4.07. Since the power generation efficiency of the mains is usually 33%, the primary energy efficiency of this comparative example is about 134%. Comparative example 2
  • the air source heat pump circulation system powered by the mains is used for cooling.
  • the evaporator inlet temperature for external working fluid is 15 °C and the evaporator outlet temperature is 7 °C.
  • the outside air temperature is 35 ° C
  • the evaporation temperature of the refrigerant in the evaporator is 2 ° C
  • the condensation temperature of the refrigerant in the condenser is 50 ° C
  • the adiabatic efficiency of the compressor is 0.85
  • the refrigeration coefficient (COP ) is 3.72. .
  • the heating was carried out by the method of Example 5, powered by the commercial power.
  • the internal heat exchanger (ie condenser) of the external working fluid has an inlet temperature of 37 ° C, the internal heat exchanger outlet temperature is 45 ° C, the outside air temperature is 10 ° C, and the temperature of the source water (municipal supplied tap water) At 15 ° C, the evaporation temperature of the refrigerant in the external heat exchanger (ie evaporator) is 8 ° C, and the external heat exchanger is filled with paraffin with a carbon number of 15 and its freezing point and solidification heat are respectively about 10 °.
  • Example 2 Since the power generation efficiency of the commercial power supply is usually 33%, the primary energy efficiency of this example is about 180%.
  • Example 2
  • Example 5 Powered by the commercial power, the method of Example 5 was used for cooling.
  • the internal heat exchanger (ie evaporator) of the external working fluid has an inlet temperature of 15 ° C, the internal heat exchanger outlet temperature is 7 ° C, the outside air temperature is 35 ° C, and the temperature of the source water (municipal supplied tap water) 25 ° C, in internal heat exchanger
  • the evaporation temperature of the refrigerant is 2 °C
  • the condensation temperature of the refrigerant in the external heat exchanger (ie condenser) is 32 °C
  • the external heat exchanger is filled with paraffin with a carbon number of 18, and its freezing point and solidification
  • the heat-insulating efficiency of the compressor is 0.85
  • the coefficient of refrigeration (COP) is 6.6.
  • the internal heat exchanger (ie condenser) of the external working fluid has an inlet temperature of 37 °C, the internal heat exchanger outlet temperature is 42 °C, the heat exchanger 33 outlet temperature is 45 °C, and the outside air temperature is 10 °C.
  • the temperature of the source water (communication supply tap water) is 15 °C
  • the evaporation temperature of the refrigerant in the external heat exchanger is 8 °C
  • the external heat exchanger is filled with paraffin with a carbon number of 15, the freezing point and solidification
  • the heat is about 10 ° C and 170 kJ / kg
  • the condensing temperature of the refrigerant in the internal heat exchanger is 47 ° C
  • the adiabatic efficiency of the compressor is 0.85.
  • the proton exchange membrane fuel cell power generation subsystem uses natural gas as the raw material. It has a power generation efficiency of 37% and a heat recovery efficiency of 40%.
  • the heat pump circulation system COP of this embodiment has a COP of 5.89, and the overall primary energy efficiency of the system is 258%.
  • the COP in the above comparative examples and examples is the ratio of the heat or the cooling output of the heat pump circulation system to the power consumed by the compressor, and the overall primary energy efficiency of the system is the heat output of the whole system and the heat of the primary energy input.
  • the primary energy of the example 3 is natural gas
  • the primary energy of the comparative examples 1, 2 and the examples 1, 2 are fuels used in thermal power plants, such as natural gas, coal, and the like.
  • the heat pump circulation system and method of the present invention uses water as a heat source, particularly tap water as a heat source, which has low cost and high heat exchange efficiency, thereby improving the heat efficiency of the heat pump cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)

Description

热泵循环系统及方法 技术领域
本发明涉及一种热泵循环系统及方法, 特别是涉及一种以自来水作为 热源的热泵循环系统及方法。
本申请主张在 2008年 3月 10日提交中国专利申请 200810101639. 3号 和在 2008年 3月 10日提交的中国专利申请 200810101640. 6号的优先权, 所述在先申请的全部内容并入本申请中。 背景技术
在城市的供水系统中, 通常是将自来水厂经过处理的达到标准的水通 过供水管道送到用水单位, 比如, 生活小区、 用水工厂或者用水园林单位 等等, 经过上述单位的自来水供应管网送达各家各户或者其他用水终端。 在上述供水系统中, 送至用水终端的自来水的温度通常在 10摄氏度以上, 即使是在北方的冬季,由于所采取水管防冻措施的作用该温度亦不会低于 5 摄氏度。 就一般用水而言, 在大多数的情况下, 用户对自来水的温度并不 敏感, 例如在冬夏两个季节, 自来水的温度可能会相差 20摄氏度, 但这并 不影响用户的正常使用。 例如, 家庭中冲厕所用水、 景观用水、 浇灌植物 用水对水温没有严格要求。 在现实生活中有很多生活居住区的物业公司会 设置专门的热水供应装置, 以便满足住户供暖、 洗澡、 洗衣、 洗碗等对热 水的需求。 上述现有的热水供应装置一般采用燃气锅炉, 通过燃烧天然气 或者煤炭(但由于煤炭污染比较严重, 大多数的城市已实施煤改气) 来加 热自来水, 然后通过热水供应管网提供给终端用户。 但是, 现有的燃气锅 炉技术, 其热效率通常只有 80%左右。
另一方面, 随着全球能源价格的高涨和生态环境问题的日益凸显, 以 高效清洁为特征的新能源技术成为了世界各国竟相投入的研发领域。 氢源 系统新技术可将生物盾能和化石能源清洁高效地转化为氢能, 而与之集成 的燃料电池则可将氢能清洁高效地转化为电能并副产热能。 可见, 氢能及 燃料电池将成为多样的一次能源与多样的终端能源之间的一座新桥梁。
氢气是一种二次能源, 由各种一次能源转换而来。 在诸多氢气制造途 径之中, 由于天然气等碳氢化合物价格较低, 因而碳氢化合物重整制氢被 认为是今后相当一段时间里最为经济可行的选择。
现有的蒸气压缩式热泵循环技术作为热水供给装置具有高效清洁的优 势。 但是, 蒸气压缩式热泵循环技术的热泵循环系统的供热系数(COP )、 即能量效率受蒸发器工作温度, 即热源温度和冷凝器工作温度, 也即热水 温度的影响很大。 对于空气源热泵来说, 随着冬季气温下降, 热泵循环的 蒸发器工作温度随之下降, 从而引起热泵系统 COP即能量效率降低。
此外, 现有的蒸气压缩式热泵循环技术的压缩机是使用电网电力驱动 的, 因而其一次能源效率还受到电网用户端发电效率的制约。 当压缩机采 用调频控制时, 由于需将电网的交流电力整流为直流电力, 因而还会有整 流损失。
本发明所述的制冷工质是指在热泵循环系统中被循环的物质, 所述热 源是指与外部换热器中的制冷工质进行换热的介质, 该热源在制热循环过 程中向制冷工盾放热, 在制冷循环过程中从制冷工质吸热。 在现有的热泵 循环技术中, 一般是以地热水源、 空气或者中水作为外部热源。 发明人在 实现本发明的技术方案中发现还没有人提出过采用自来水作为热泵循环中 热源的技术。 这是由于, 自来水来源稳定且供应量大, 并且现有的城市供 水系统十分发达和普遍。 但针对某一具体局部的地区而言, 例如某个居民 居住区, 为该居住区供水的管道中的水流是不稳定的。 一般在早晨、 中午 和晚上水流较大, 白天工作时间水流较小, 在深夜时分, 可能水流会停止。 造成上述水流不稳的原因是由人们生活中的用水习惯决定的, 且不能克服。
但是, 自来水具有稳定的温度范围, 例如在冬季其温度为 5 ~ 15 °C, 通 常高于外气温度, 自来水具有大量的热能, 如不能加以利用, 造成白白流 失, 确实可惜。 在夏季其温度为 15 ~ 25 °C, 通常低于外气温度, 当进行制 冷循环时, 如果采用自来水代替环境空气与制冷工质进行热交换, 其制冷 效率将得到有效提高。 所以, 有必要开发一种采用自来水作为热源的热泵 循环系统。 发明内容
本发明的主要目的在于, 克服现有的热泵循环系统和方法中存在的不 能以自来水为热源的缺陷, 而提供一种热泵循环系统以及方法, 所要解决 的技术问题是使其以自来水作为热泵循环中的热源, 可以提高热泵循环系 统的能量效率, 从而更加适于实用。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。 依据 本发明提出的一种热泵循环系统, 其包括压缩机、 内部换热器、 节流阀、 外部换热器以及四通阀, 所述四通阀分别连接于压缩机的制冷工质入口、 压缩机的制冷工质出口、 内部换热器以及外部换热器; 该四通阀具有第一 阀位和第二阀位; 该四通阀位于第一阀位时, 压缩机的制冷工质出口连接 于外部换热器, 压缩机的制冷工质入口连接于内部换热器; 压缩机该四通 阀位于第二阀位时, 压缩机的制冷工质出口连接于内部换热器, 压缩机的 制冷工质入口连接于外部换热器; 所述内部换热器连接有外部工质输入管 道和外部工盾输出管道; 所述外部换热器, 包括有热源流路和制冷工质流 路。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 优选的, 前述的热泵循环系统的一个实施例, 其中所述的外部换热器 内充填有蓄热剂。
优选的, 前述的热泵循环系统的一个实施例, 其中所述的蓄热剂为下 列物质中的一种或者几种: 氯化钙、 氯化锬、 氯化钾、 氯化氨、 碳酸氢钾、 氯化钠、 硫酸钠、 碳酸钠、 醋酸钠或季铵盐的水合物或水溶液; 以及碳数 为 12 24的石墙。
优选的, 前述的热泵循环系统的一个实施例, 其中所述的蓄热剂直接 充填在外部换热器中; 或者将蓄热剂封装在密闭容器中, 将该密闭容器设 置在外部热交换器中。
优选的, 前述的热泵循环系统的一个实施例, 其中所述的外部换热器 的热源流路连接于自来水供应管道。
优选的, 前述的热泵循环系统的一个实施例, 其中所述的外部工质输 入管道接于自来水供应管道。
优选的, 前述的热泵循环系统的一个实施例, 其还包括燃料电池发电 子系统, 用于发电并副产热; 所述燃料电池发电子系统所发电力用于驱动 所述的压缩机。
优选的, 前述的热泵循环系统的一个实施例, 其中所述的其中所述的 燃料电池发电子系统包括: 重整制氢装置, 用于制备氢气; 燃料电池, 以 上述重整制氢装置制备的氢气为原料发电并副产热; 循环泵和换热装置, 用于将上述的副产热循环并进行热交换; 以及换向阀, 设置于内部换热器 的外部工盾输出管道上, 其具有三个接口, 分别连接于上述内部换热器的 外部工质出口、 换热装置和外部工质输出管道。
优选的, 前述的热泵循环系统的一个实施例, 其还包括: 内燃机子系 统、 热气机子系统或燃气轮机子系统;
所述内燃机子系统包括: 内燃机, 用于产生动力和副产热, 该动力用 于驱动所述的压缩机; 循环泵和换热装置, 用于将上述的副产热循环并进 行热交换; 以及换向阀, 其具有三个接口, 分别连接于上述内部换热器的外 部工质出口、 换热装置和外部工质输出管道;
所述热气机子系统包括: 热气机, 用于产生动力和副产热, 并将该动 力用于驱动所述的压缩机; 以及循环泵和换热装置, 用于将上述的副产热 循环并进行热交换; 以及换向阀, 其具有三个接口, 分别连接于上述内部换 热器的外部工质出口、 换热装置和外部工质输出管道;
所述燃气轮机子系统包括, 燃气轮机, 用于产生动力和副产热; 并将 该动力用于驱动所述的压缩机; 以及换热装置, 用于将上述副产热进行热 交换; 以及换向阀, 其具有三个接口, 分别连接于上述内部换热器的外部工 质出口、 换热装置和外部工质输出管道。
本发明的目的及解决其技术问题还采用以下的技术方案来实现。 依据 本发明提出的一种热水供给方法, 采用上述热泵循环系统, 该方法包括以 下步骤:
A压缩制冷工质;
B压缩后的制冷工盾进行热交换;
C 制冷工质膨胀;
D膨胀后的制冷工质进行热交换;
在步骤 B和 D的其中之一采用自来水作为热源, 且该步骤中所述的热 交换包括以下过程中的至少一种: 自来水与制冷工质进行热交换、 自来水 与蓄热剂进行热交换、 蓄热剂与制冷工质进行热交换、 以及自来水、 制冷 工质与蓄热剂三者之间进行热交换。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 优选的, 前述的热泵循环方法的一个实施例, 其还包括: 当制冷工质 停止循环时, 自来水与蓄热剂之间进行热交换; 当自来水停止流动时, 蓄 热剂与制冷工质进行热交换。
优选的, 前述的热泵循环方法的一个实施例, 其还包括: 以碳氢化合 物为原料进行重整制氢反应, 得到氢气; 以氢气为原料通过燃料电池发电 力和副产热, 所述的电力作为压缩制冷工质的动力; 或者以碳氢化合物为 燃料, 采用内燃机、 热气机或者燃气轮机产生动力和副产热, 所述的动力 作为压缩制冷工质的动力。
优选的, 前述的热泵循环方法的一个实施例, 所述的步骤 B和 D中的 制冷工盾都与自来水进行换热。
借由上述技术方案, 本发明热泵循环系统及方法至少具有下列优点: 1、 本发明提供的上述系统, 通过将燃料电池或内燃机、 热气机、 燃气 轮机子系统所产副产热用于上述热泵循环的外部工质的二次加热, 而将所 产电力或动力用于驱动上述压缩机, 在系统的对外供给的外部工质的温度 一定的条件下使上述内部换热器的工作温度得到显著的降低, 从而使上述 热泵循环的供热系数进而热泵循环系统的一次能源利用效率得到显著的提 高, 同时使系统整体更加简洁、 可靠。 如上所述, 本发明通过有机地融合 所提供热泵循环系统和燃料电池或内燃机、 热气机、 燃气轮机子系统, 取 得了显著的协同效应。
2、 由于四通阀和切换阀的利用可以使本发明的热泵循环系统具有同时 提供制冷功能和提供热水的功能, 从而更加适于适用。
3、 与现有的锅炉燃烧式热水系统相比较, 在相同原料和供热能力的条 件下, 本发明的热水系统和方法具有清洁高效的显著优势。
4、 本发明实施例中的热水系统供热系数也显著高于以电网电力为动 力、 以空气为热源的现有蒸气压缩式热泵循环热水系统的供热系数。
5、 本发明采用水作为热源, 尤其是自来水作为热源, 该热源成本低, 热交换效率高, 从而可以达到在与地热水源热泵基本相同的热泵循环热效 率条件下显著降低设备成本, 而在与空气源热泵基本相同的设备成本条件 下显著提高热泵循环的热效率的效果。
综上所述, 本发明特殊构成的热泵循环系统及方法, 其具有上述诸多 的优点及实用价值, 从而更加适于实用。
上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的 技术手段, 并可依照说明书的内容予以实施, 以下以本发明的较佳实施例 并配合附图详细说明如后。 附图说明
图 1是本发明热泵循环系统的实施例 1制冷循环的流程图。
图 2是本发明热泵循环系统的实施例 1制热循环的流程图。
图 3是本发明热泵循环系统的实施例 2制热循环流程图。
图 4是本发明热泵循环系统的实施例 2制冷循环的流程图。
图 5是本发明热泵循环系统的实施例 3的制热循环的流程图。
图 6是本发明热泵循环系统的实施例 4的制热循环的流程图。
10: 自来水管道 11 : 外部工质输入管道
12: 热源输入管道 13: 外部工质输出管道
14: 热源输出管道 15 : 分流器
16、 17 : 换向阀 18: 供水管
19: 输出管 21 : 压缩机 22: 内部换热器 23: 节流阀
24: 外部换热器 25: 四通阀
30: 燃料电池发电子系统
31: 重整制氢装置 32: 燃料电池
33: 循环泵 34: 换热装置
40: 内燃机子系统 41: 内燃机
42: 传动机构 43: 循环泵
44: 换热装置 45: 烟气管道
46: 冷却水管道 50: 燃气轮机子系统
51: 燃气轮机 52: 传动机构
54: 换热装置 55: 烟气管道 具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功 效,以下结合附图及较佳实施例, 对依据本发明提出的热泵循环系统及方法 其具体实施方式其功效, 详细说明如后。
请参阅图 1所示, 是本发明热泵循环系统的实施例 1制冷循环的流程 图。 该热泵循环系统包括压缩机 21、 内部换热器 22、 节流阀 23、 外部换热 器 24以及四通阀 25, 上述各部件通过管道相连形成循环回路,在上述循环 回路中填加有制冷工质。 所述压缩机 21用于压缩制冷工质, 并具有制冷工 盾入口和制冷工质出口。 所述四通阀 25分别连接于压缩机 21的制冷工质 入口、 压缩机的制冷工盾出口、 内部换热器 22以及外部换热器 24。 所述的 四通阀 25具有第一阀位(也称作制冷阀位)和第二阀位(也称作制热阀位); 该四通阀位于第一阀位时,压缩机 21的制冷工质出口连接于外部换热器 24, 压缩机 21的制冷工盾入口连接于内部换热器 22; 该四通阀 25位于第二阀 位时, 压缩机 21的制冷工质出口连接于内部换热器 22 , 压缩机 21的制冷 工质入口连接于外部换热器 24。经所述压缩机 21压缩后的制冷工质温度升 高; 经压缩后的制冷工质按照图 1中所示的四通阀阀位(第一阀位), 被输 送到外部换热器 24中。 该外部换热器 24连接有热源输入管道 12和热源输 出管道 14, 本实施例采用自来水作为热源, 所述的热源输入管道 12通过分 流器 15连接于自来水管道 10上。 在外部换热器 24中包含有热源流路和制 冷工质流路, 外部换热器 24中流过的热源与制冷工质进行换热, 高温的制 冷工质向热源放热, 制冷工质温度降低。 被冷却了的制冷工质被输送至节 流阀 23, 经过节流阀 23后的制冷工质压力降氐, 并在内部换热器 22中蒸 发, 由于制冷工质体积膨胀且发生相变, 其温度降低。 所述的内部换热器
22 , 连接有外部工质输入管道 11和外部工质输出管道 13, 所述的外部工质 为用于与用户的环境进行换热, 从而提高或者降低环境温度。 在内部换热 器 22中外部工质与制冷工质进行热交换, 制冷工质吸收外部工质的热量, 外部工质放出热量后温度降低, 并由外部工质输出管道 13输送至用户。 由 于输出的外部工质温度较低, 从而可以作为冷源提供给用户, 从而达到制 冷的效果。 经过换热的制冷工质被再次输送到压缩机 21中, 从而完成一次 热泵循环。 较佳的, 本实施例 1的热泵循环系统的外部换热器 24包括制冷 工质流路、 热源流路以及蓄热剂充填容器, 在蓄热剂充填容器中充填蓄热 剂。较佳的,蓄热剂以相变温度高于热源温度 2 ~ 5 °C的潜热蓄热剂为宜, 其 包括碳数为 12 ~ 24 的石蜡(高级饱和直链烷烃)及其混合物, 氯化钙、 氯 化镁、 氯化钾、 氯化氨、 碳酸氢钾、 氯化钠、 硫酸钠、 碳酸钠、 醋酸钠、 季铵盐等盐类的水合物或上述物质的水溶液及其混合物等。 所述的蓄热剂 可以直接充填在外部换热器中, 而热源和制冷工质分别在封闭的热源流路 和制冷工质流路中; 或者将蓄热剂封装在密闭容器设置在外部热交换器中。 在外部换热器 24中, 制冷工质、 热源和蓄热剂之间相互进行热交换。 蓄热 剂的作用在于, 其可以向热源放热, 并在制冷循环中吸收制冷工质的热量。 这样, 即使在热泵循环系统不工作的情况下, 蓄热剂亦可通过相变(凝固) 向流经外部换热器 24的热源的放热, 而在热泵循环系统工作却无热源流经 外部换热器的情况下, 蓄热剂亦可通过相变 (融化)吸收制冷工质释放出 的热量, 从而保证热泵循环系统的连续高效运行。 通过在外部换热器中设 置蓄热剂可以实现以自来水作为外部换热器的热源与制冷工盾进行换热, 从而可以使自来水应用于热泵循环过程中。 这样的热泵循环系统具有明显 高于空气源热泵循环系统的制冷(或者供热) 系数。
请参阅图 2所示, 是本发明热泵循环系统的实施例 1制热循环的流程 图。 本制热循环与上述制冷循环所采用的设备是相同的, 其区别之处在于, 在制热循环中四通阀位于第二阀位, 即压缩机 21的制冷工质出口连接于内 部换热器 22, 压缩机 21的制冷工质入口连接于外部换热器 24 , 从而使制 冷工质的流向与图 1 所示的制冷循环的制冷工质流向相反, 从而可以使外 部工质出口管道 13中的外部工盾的温度高于外部工质输入管道 11 中外部 工质的温度, 从而达到为用户供热的效果。 此时, 在外部换热器中的蓄热 剂选择相变温度低于热源温度 2 ~ 5 °C的潜热蓄热剂为宜。
在实施例 1和实施例 2 中, 较佳的, 当向用户提供热水时, 所述的外 部工质输入管道 11连接于分流器 15,从而使自来水被本系统分流出两部分, 一部分作为热源, 另一部分做为被加热水。
请参阅图 3所示, 是本发明热泵循环系统的实施例 2的制热循环流程 图。 本实施例的热泵循环系统与实施例 1相比, 其还包括燃料电池发电子 系统 30, 用于发电并副产热。 所述燃料电池发电子系统 30所发电力通过电 缆提供给压缩机 21,作为驱动所述的压缩机 21的动力。所述的燃料电池发 电子系统 30包括重整制氢装置 31、燃料电池 32、循环泵 33和换热装置 34。 其中所述的重整制氢装置 31 , 采用碳氢化合物和水为原料, 在催化剂的作 用下发生重整制氢反应制备氢气。 所述的燃料电池 32 , 以上述重整制氢装 置 31制得的氢气为原料进行发电,产生直流电并副产热。所述的循环泵 33, 其采用上述燃料电池 32发出的电力为动力, 用于循环燃料电池的冷却水。 所述的换热装置 34, 用于进行燃料电池的冷却水的热交换, 使进入的热的 冷却水被降温, 并被循环至燃料电池。 该换热装置 34连接有供水管 18和 输出管 19。 该供水管 18上设有换向阀 17。 该换向阀 17的结构为, 其具有 三个接口, 可以与三个管道相连, 其内部具有切换结构, 可以保证只能同 时连通两个接口而切断另外的接口。 在内部换热器 22的外部工质输出管道 13上设置有换向阀 16。 该换向阀 16与上述的换向阀 17相连。 这样, 当四 通阀 25位于第二阀位时, 且同时切换换向阀 16和换向阀 17, 就可以使从 内部换热器流出的外部工质流入到换热装置 34, 从而使外部工质被燃料电 池的副产热进行二次加热,使输出管 19中的外部工质的温度再次得到提高。 本实施例的热泵循环系统是采用碳氢化合物为原料来制热, 比采用锅炉直 接燃烧碳氢化合物制热具有更高的供热效率。
上述的燃料电池 32 为嶙酸型燃料电池(PAFC)、 熔融碳酸盐燃料电池 (MCFC)、 固体氧化物燃料电池(S0FC )或者质子交换膜燃料电池(PEMFC)。
请参阅图 4所示, 是本发明热泵循环系统的实施例 2的制冷循环流程 图。 本制冷循环的与图 3所示的制热循环相比, 其区别在于, 四通阀位于 第一阀位, 即压缩机 21的制冷工质出口连接于外部换热器, 压缩机 21的 制冷工质入口连接于内部换热器 22, 从而使制冷工质的流向与图 3所示的 制热循环的制冷工质流向相反, 从而可以使在内部换热器 22的外部工质输 出管道 13中的外部工质的温度低于外部工质输入管道 11 中外部工质的温 度, 从而达到为用户提供冷量的效果。 同时, 换向阀 16切换到连通外部工 质输出管道的位置, 换向阀 17切换到连通供水管 18的位置。 从而使低温 外部工质直接输送给用户, 同时, 换热装置 34进行冷却水与由供水管提供 的水源热交换, 从而可以在换热装置 34的输出管 19得到热水。 从而使本 实施例的热泵循环系统能够同时提供制冷和供应热水的两项功能。 请参阅图 5 所示, 是本发明包含内燃机子系统或热气机子系统的热泵 循环系统的实施例 3的制热循环的流程图。 与实施例 1相比, 本实施例的 热泵循环系统还包括: 内燃机子系统 40, 其以碳氢化合物为燃料, 产生动 力并副产热。 所述内燃机系统 40所产生的动力压缩机 21 , 用于驱动所述的 压缩机 21。 所述的内燃机发电子系统 40包括内燃机 41、 传动机构 42、 循 环泵 43和换热装置 44。 所述的内燃机 41, 以碳氢化合物为燃料, 较佳的 以天然气为燃料产生动力并副产热, 并通过传动机构 42 来驱动压缩机 21 工作。 内燃机的烟气通过烟气管道 45通入换热装置 44 中, 内燃机的冷却 热通过冷却水管道 46通入换热装置 44中。 所述的循环泵 43, 用于循环内 燃机 41的冷却水。该换热装置 44连接有供水管 18和输出管 19。该供水管 18上设有换向阀 17。 该换向阀 17的结构为, 其具有三个接口, 可以与三 个管道相连, 其内部具有切换结构, 可以保证只能同时连通两个接口而切 断另外的接口。 在内部换热器 22的外部工质输出管道 13上设置有换向阀 16。 该换向阀 16与上述的换向阀 17相连。 这样, 当四通阀 25位于第二阀 位时, 且同时切换换向阀 16和换向阀 17, 就可以使从内部换热器流出的外 部工质流入到换热装置 44 , 从而使外部工盾被燃料电池的副产热进行二次 加热, 使输出管 19中的外部工质的温度再次得到提高。 本实施例的热泉循 环系统是采用碳氢化合物为燃料来制热, 比采用锅炉直接燃烧碳氢化合物 制热具有更高的供热效率。 本实施例中所述的内燃机可以被热气机所代替, 并可以达到相同的技术效果。
本实施例 3所示的热泵循环系统, 当四通阀 25切换到第一阀位时, 同 时, 换向阀 16切换到连通外部工质输出管道的位置, 换向阀 17切换到连 通供水管 18的位置。 从而使低温外部工质直接输送给用户, 同时, 换热装 置 44进行冷却水和烟气与由供水管提供的水源热交换, 从而可以在换热装 置 44的输出管 19得到热水。 从而使本实施例的热泵循环系统能够同时提 供制冷和供应热水的两项功能。
请参阅图 6 所示, 是本发明包含燃气轮机子系统的热泵循环系统的实 施例 4的制热循环的流程图。 与实施例 1相比, 本实施例的热泵循环系统 还包括: 燃气轮机子系统 50, 用于产生动力并副产热, 其产生的动力提供 给所述的压缩机, 用于驱动所述的压缩机 21。 所述的燃气轮机子系统 50包 括燃气轮机 51、 传动机构 52和换热装置 54。 所述的燃气轮机 51, 以碳氢 化合物为燃料, 较佳的以天然气为燃料, 产生动力并副产热, 该动力通过 传动机构 52将动力传送到压缩机 21。上述的副产热是燃料燃烧后的烟气所 携带的热量, 烟气通过烟气管道 55通入换热装置 54 中, 进过换热后进行 排放。该换热装置 54连接有供水管 18和输出管 19。该供水管 18上设有换 向阀 17。 该换向阀 17的结构为, 其具有三个接口, 可以与三个管道相连, 其内部具有切换结构, 可以保证只能同时连通两个接口而切断另外的接口。 在内部换热器 22的外部工质输出管道 13上设置有换向阔 16。 该换向阀 16 与上述的换向阀 17相连。 这样, 当四通阀 25位于第二阀位时, 且同时切 换换向阀 16和换向阀 17使内部换热器 22与换热装置 54连通, 就可以使 从内部换热器流出的外部工质流入到换热装置 54, 从而使外部工质被燃料 电池的副产热进行二次加热, 使输出管 19中的外部工质的温度再次得到提 高。 本实施例的热泵循环系统是采用碳氢化合物为燃料来制热, 比采用锅 炉直接燃烧碳氢化合物制热具有更高的供热效率。
本实施例 4所示的热泵循环系统, 当四通阀 25切换到第一阀位时, 同 时, 换向阀 16切换到连通外部工质输出管道的位置, 换向阀 17切换到连 通供水管 18的位置。 从而使低温外部工质直接输送给用户, 同时, 换热装 置 54进行烟气与由供水管提供的水源热交换, 从而可以在换热装置 54的 输出管 19得到热水。 从而使本实施例的热泵循环系统能够同时提供制冷和 供应热水的两项功能。
较佳的, 本发明上述实施中所述的外部工质输入管道 11是连接于自来 水的供应管道, 从而向用户提供热水, 这样可以将自来水供应系统中所含 有的热能被充分利用。
本发明的实施例 5还提出一种热泵循环方法, 其采用实施例 1所示的 热泵循环系统, 该热泵循环方法包括以下步骤:
A压缩制冷工质; B压缩后的制冷工质进行热交换; C制冷工质膨胀; D膨胀后的制冷工质进行热交换; 在步骤 B和 D的其中之一采用自来水作 为热源, 且该步骤中所述的热交换包括以下过程中的至少一种: 自来水与 制冷工质进行热交换、 自来水与蓄热剂进行热交换、 蓄热剂与制冷工质进 行热交换、 以及自来水、 制冷工质与蓄热剂三者之间进行热交换。 当制冷 工质停止循环时, 自来水与蓄热剂之间进行热交换; 当自来水停止流动时, 蓄热剂与制冷工盾进行热交换。
本发明的实施例 6还提出一种热泵循环方法, 其采用实施例 2所示的 热泵循环系统, 与实施例 6相比, 该热泵循环方法还包括以下步骤: 以碳 氢化合物为原料进行重整制氢反应, 得到氢气; 以氢气为原料通过燃料电 池发电力和副产热, 所述的电力作为压缩制冷工质的动力。 所述的燃料电 池为:磷酸型燃料电池 (PAFC)、 熔融碳酸盐燃料电池 (MCFC)、 固体氧化物燃 料电池(S0FC )或者质子交换膜燃料电池(PEMFC)。 或者采用实施例 3或者 实施例 4的热泵循环系统, 与实施例 6相比, 该热泵循环方法还包括以下 步骤: 以碳氢化合物为燃料, 采用内燃机、 热气机或者燃气轮机产生动力 和副产热, 所述的动力作为压缩制冷工质的动力。
本发明上述实施的热泵循环方法中, 当向用户提供热水时, 其被加热 水也来源于自来水供应管道, 可以将自来水供应系统中所含有的热能被充 分利用。 比较例 1
采用以市电为动力的空气源热泵循环系统供暖。 所供外部工质的冷凝 器入口温度为 37 , 冷凝器出口温度为 45°C, 外气温为 10°C, 蒸发器中制 冷工质的蒸发温度为 -5 °C, 冷凝器中制冷工质的冷凝温度为 50°C, 压缩机 绝热效率为 0.85, 其供热系数(COP) 为 4.07。 由于市电的用户端发电效 率通常为 33%, 因而本比较例的一次能源效率约为 134%。 比较例 2
采用以市电为动力的空气源热泵循环系统供冷。 供外部工质的蒸发 器入口温度为 15°C, 蒸发器出口温度为 7°C。 外气温为 35°C, 蒸发器中制 冷工质的蒸发温度为 2°C, 冷凝器中制冷工质的冷凝温度为 50°C, 压缩机 绝热效率为 0.85, 其制冷系数( COP )为 3.72。 实例 1
以市电为动力, 采用实施例 5 的方法供暖。 所供外部工质的内部热交 换器(即冷凝器)入口温度为 37°C, 内部热交换器出口温度为 45°C, 外气 温为 10°C,水源水(市政供应的自来水)的温度为 15°C,外部热交换器(即 蒸发器) 中制冷工质的蒸发温度为 8°C, 外部热交换器中充填有碳数为 15 的石蜡, 其凝固点与凝固热分别约为 10°C和 170kJ/kg, 内部热交换器中制 冷工质的冷凝温度为 50°C, 压缩机绝热效率为 0.85, 其供热系数(COP) 为 5.45。 由于市电的用户端发电效率通常为 33%, 因而本实例的一次能源 效率约为 180%。 实例 2
以市电为动力, 采用实施例 5 的方法供冷。 所供外部工质的内部热交 换器(即蒸发器)入口温度为 15°C, 内部热交换器出口温度为 7°C, 外气 温为 35°C, 水源水(市政供应的自来水) 的温度为 25°C, 内部热交换器中 制冷工质的蒸发温度为 2 °C, 外部热交换器(即冷凝器)中制冷工质的冷凝 温度为 32 °C , 外部热交换器中充填有碳数为 18的石蜡, 其凝固点与凝固热 分别约为 29 °C和 240kJ/kg, 压缩机绝热效率为 0. 85, 其制冷系数(COP ) 为 6. 66。 实例 3
采用实施例 6的方法供暖。 所供外部工质的内部热交换器(即冷凝器) 入口温度为 37 °C, 内部热交换器出口温度为 42 °C, 换热器 33出口温度为 45 °C,外气温为 10°C, 水源水(市政供应的自来水) 的温度为 15 °C, 外部 热交换器中制冷工质的蒸发温度为 8 °C, 外部热交换器中充填有碳数为 15 的石蜡, 其凝固点与凝固热分别约为 10°C和 170kJ/kg, 内部热交换器中制 冷工质的冷凝温度为 47 °C , 压缩机绝热效率为 0. 85, 质子交换膜燃料电池 发电子系统以天然气为原料, 其发电效率为 37 %, 热回收效率为 40 %。 本 实施例的热泵循环系统 COP为 5. 89 , 系统整体的一次能源效率为 258%。
上述比较例及实例中的 COP为热泵循环系统对外输出的热量或冷量与 压缩机所耗电能之比, 而系统整体的一次能源效率为系统整体对外输出的 热量与所投入一次能源的热量之比,实例 3的一次能源为天然气,比较例 1、 2及实例 1、 2的一次能源为火力发电厂所用燃料, 如天然气、 煤炭等。
本发明所述实施例中未曾详细描述的其他技术细节,皆可采用现有技 术中的对应方案实现。
以上所述, 仅是本发明的较佳实施例而已, 并非用以限定本发明,任何 熟悉本专业的技术人员, 在不脱离本发明技术方案范围内,当可利用上述揭 示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱 离本发明技术方案的内容, 依据本发明的技术实质对以上实施例所作的任 何简单修改、 等同变化与修饰, 均仍属于本发明技术方案的范围内。 工业应用性
本发明的热泵循环系统及方法采用水作为热源, 尤其是自来水作为热 源, 该热源成本低, 热交换效率高, 从而可以提高热泵循环的热效率。

Claims

权 利 要 求
1、 一种热泵循环系统, 其包括压缩机、 内部换热器、 节流阀、 外部换 热器以及四通阀, 其特征在于:
所述四通阀分别连接于压缩机的制冷工质入口、 压缩机的制冷工质出 口、 内部换热器以及外部换热器; 该四通阀具有第一阀位和第二阀位; 该 四通阀位于第一阀位时, 压缩机的制冷工盾出口连接于外部换热器, 压缩 机的制冷工质入口连接于内部换热器; 压缩机该四通阀位于第二阀位时, 压缩机的制冷工质出口连接于内部换热器, 压缩机的制冷工质入口连接于 外部换热器;
所述内部换热器连接有外部工质输入管道和外部工质输出管道; 所述外部换热器, 包括有热源流路和制冷工质流路。
2、 根据权利要求 1所述的热泵循环系统, 其特征在于其中所述的外部 换热器内充填有蓄热剂。
3、 根据权利要求 2所述的热泵循环系统, 其特征在于其中所述的蓄热 剂为下列物质中的一种或者几种: 氯化钙、 氯化镁、 氯化钾、 氯化氨、 碳 酸氢钾、 氯化钠、 硫酸钠、 碳酸钠、 醋酸钠、 季铵盐的水合物或水溶液及 其混合物; 以及碳数为 12 ~ 24的石蜡及其混合物。
4、 根据权利要求 2- 3所述的热泵循环系统, 其特征在于其中所述的蓄 热剂直接充填在外部换热器中; 或者将蓄热剂封装在密闭容器中, 将该密 闭容器设置在外部热交换器中。
5、 根据权利要求 1-4任一项所述的热泵循环系统, 其特征在于其中所 述的外部换热器的热源流路连接于自来水供应管道。
6、 根据权利要求 1-5任一项所述的热泵循环系统, 其特征在于其中所 述的外部工质输入管道接于自来水供应管道。
7、 根据权利要求 1-6所述的热泵循环系统, 其特征在于其还包括燃料 电池发电子系统, 用于发电并副产热; 所述燃料电池发电子系统所发电力 用于驱动所述的压缩机。
8、 根据权利要求 7所述的热泵循环系统, 其特征在于其中所述的燃料 电池发电子系统包括:
重整制氢装置, 用于制备氢气;
燃料电池, 以上述重整制氢装置制备的氢气为原料发电并副产热; 循环泵和换热装置, 用于将上述的副产热循环并进行热交换; 以及 换向阀,设置于内部换热器的外部工质输出管道上,其具有三个接口, 分别连接于上述内部换热器的外部工质出口、换热装置和外部工质输出管道。
9、 根据权利要求 1-6所述的热泵循环系统, 其特征在于其还包括: 内 燃机子系统、 热气机子系统或燃气轮机子系统;
所述内燃机子系统包括: 内燃机, 用于产生动力和副产热, 该动力用 于驱动所述的压缩机; 循环泵和换热装置, 用于将上述的副产热循环并进 行热交换; 以及换向阀, 其具有三个接口, 分别连接于上述内部换热器的 外部工质出口、 换热装置和外部工质输出管道;
所述热气机子系统包括: 热气机, 用于产生动力和副产热, 并将该动 力用于驱动所述的压缩机; 以及循环泵和换热装置, 用于将上述的副产热 循环并进行热交换; 以及换向阀, 其具有三个接口, 分别连接于上述内部 换热器的外部工质出口、 换热装置和外部工质输出管道;
所述燃气轮机子系统包括, 燃气轮机, 用于产生动力和副产热; 并将 该动力用于驱动所述的压缩机; 以及换热装置, 用于将上述副产热进行热 交换; 以及换向阀, 其具有三个接口, 分别连接于上述内部换热器的外部 工质出口、 换热装置和外部工质输出管道。
10、 一种热泵循环方法, 其特征在于该方法包括以下步骤:
A压缩制冷工质;
B压缩后的制冷工质进行热交换;
C 制冷工质膨胀;
D膨胀后的制冷工质进行热交换;
在步骤 B和 D的其中之一采用自来水作为热源, 且该步骤中所述的热 交换包括以下过程中的至少一种: 自来水与制冷工质进行热交换、 自来水 与蓄热剂进行热交换、 蓄热剂与制冷工质进行热交换、 以及自来水、 制冷 工质与蓄热剂三者之间进行热交换。
11、 根据权利要求 10所述的热泵循环方法, 其特征在于:
当制冷工质停止循环时, 自来水与蓄热剂之间进行热交换;
当自来水停止流动时, 蓄热剂与制冷工质进行热交换。
12、 根据权利要求 10所述的热泵循环方法, 其特征在于其还包括: 以碳氢化合物为原料进行重整制氢反应, 得到氢气; 以氢气为原料通 过燃料电池发电力和副产热, 所述的电力作为压缩制冷工质的动力; 或者 以碳氢化合物为燃料, 采用内燃机、 热气机或者燃气轮机产生动力和 副产热, 所述的动力作为压缩制冷工盾的动力。
13、 根据权利要求 10-12任一项所述的热泵循环方法, 其特征在于步 骤 B和 D中的制冷工质都与自来水进行换热。
PCT/CN2009/000255 2008-03-10 2009-03-10 热泵循环系统及方法 WO2009111946A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200810101639.3 2008-03-10
CN200810101640.6 2008-03-10
CN2008101016406A CN101532744B (zh) 2008-03-10 2008-03-10 热泵循环系统及方法
CN2008101016393A CN101532700B (zh) 2008-03-10 2008-03-10 热水供给系统及方法

Publications (1)

Publication Number Publication Date
WO2009111946A1 true WO2009111946A1 (zh) 2009-09-17

Family

ID=41064739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000255 WO2009111946A1 (zh) 2008-03-10 2009-03-10 热泵循环系统及方法

Country Status (1)

Country Link
WO (1) WO2009111946A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107285593A (zh) * 2017-07-06 2017-10-24 四川天润德环境工程有限公司 一种污水源热泵与污泥干化联用的设备
CN108798898A (zh) * 2018-04-20 2018-11-13 华电电力科学研究院有限公司 质子交换膜燃料电池与燃气轮机联合供应蒸汽和热水的系统及方法
CN109681944A (zh) * 2019-02-13 2019-04-26 上海虹铂环保科技有限公司 一种利用电空气源热水机组深度回收烟气潜化废热组合装置
CN112833583A (zh) * 2021-01-21 2021-05-25 青岛科技大学 一种地热能分布式供能系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037650A (en) * 1975-05-23 1977-07-26 National Research Development Corporation Thermal storage apparatus
CN1492195A (zh) * 2003-09-04 2004-04-28 上海交通大学 蓄冷家用空调器
CN1749670A (zh) * 2004-09-15 2006-03-22 松下电器产业株式会社 热泵蓄热装置
CN1786611A (zh) * 2005-12-08 2006-06-14 上海交通大学 燃料电池和空气源热泵热水器的联合系统
CN101103477A (zh) * 2004-11-25 2008-01-09 丰田自动车株式会社 燃料电池系统
CN201007583Y (zh) * 2007-01-18 2008-01-16 罗问林 一种多功能节能空调机组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037650A (en) * 1975-05-23 1977-07-26 National Research Development Corporation Thermal storage apparatus
CN1492195A (zh) * 2003-09-04 2004-04-28 上海交通大学 蓄冷家用空调器
CN1749670A (zh) * 2004-09-15 2006-03-22 松下电器产业株式会社 热泵蓄热装置
CN101103477A (zh) * 2004-11-25 2008-01-09 丰田自动车株式会社 燃料电池系统
CN1786611A (zh) * 2005-12-08 2006-06-14 上海交通大学 燃料电池和空气源热泵热水器的联合系统
CN201007583Y (zh) * 2007-01-18 2008-01-16 罗问林 一种多功能节能空调机组

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107285593A (zh) * 2017-07-06 2017-10-24 四川天润德环境工程有限公司 一种污水源热泵与污泥干化联用的设备
CN108798898A (zh) * 2018-04-20 2018-11-13 华电电力科学研究院有限公司 质子交换膜燃料电池与燃气轮机联合供应蒸汽和热水的系统及方法
CN108798898B (zh) * 2018-04-20 2023-11-28 华电电力科学研究院有限公司 质子交换膜燃料电池与燃气轮机联合供应蒸汽和热水的系统及方法
CN109681944A (zh) * 2019-02-13 2019-04-26 上海虹铂环保科技有限公司 一种利用电空气源热水机组深度回收烟气潜化废热组合装置
CN112833583A (zh) * 2021-01-21 2021-05-25 青岛科技大学 一种地热能分布式供能系统

Similar Documents

Publication Publication Date Title
US10001326B2 (en) Electric power peak-shaving and combined heat and power waste heat recovery device and operation method thereof
CN101055121B (zh) 微型分布式太阳能驱动冷热电联供系统
CN100432547C (zh) 太阳能-地源联合供暖供热水供电制冷系统及其操作方法
CN201740312U (zh) 小型分散式太阳能冷热电联供系统
CN100570244C (zh) 一种跨临界co2/r22热泵空调及热水三联供方法
CN101532744B (zh) 热泵循环系统及方法
CN101210722A (zh) 三位一体的智能型地源热泵空调系统
JP2007255779A (ja) 温冷熱供給システム
CN109682110B (zh) 分段溶液吸收的微型分布式冷热电联供装置及其控制方法
WO2009111946A1 (zh) 热泵循环系统及方法
CN203615646U (zh) 一种蓄热型地源热泵装置
CN110567025B (zh) 一种储热罐耦合压缩式热泵的热电解耦系统及运行方法
CN204421418U (zh) 一种太阳能联合复合式循环蓄冷系统
CN101532700B (zh) 热水供给系统及方法
JP2004139914A (ja) 燃料電池発電・給湯システム
CN207501486U (zh) 一种实现天然气和太阳能相结合的家用冷热电三联供系统
CN201973957U (zh) 储能空调热水器
CN214148097U (zh) 地热能提高cchp系统以电定热模式冷热调峰能力装置
CN201145449Y (zh) 三位一体的智能型地源热泵空调系统
CN101464055A (zh) 热水供给系统及方法
JP2005291615A (ja) コージェネ給湯装置
CN204006448U (zh) 相变蓄热全热回收空调系统
CN202350381U (zh) 一种空调热水机
US10551096B2 (en) Combined heat and power system with energy control module
CN102620476A (zh) 太阳能辅助空气源跨临界二氧化碳多功能热泵系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09718721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09718721

Country of ref document: EP

Kind code of ref document: A1