WO2009111779A1 - Stabilized oil-in-water emulsions including agriculturally active ingredients - Google Patents

Stabilized oil-in-water emulsions including agriculturally active ingredients Download PDF

Info

Publication number
WO2009111779A1
WO2009111779A1 PCT/US2009/036507 US2009036507W WO2009111779A1 WO 2009111779 A1 WO2009111779 A1 WO 2009111779A1 US 2009036507 W US2009036507 W US 2009036507W WO 2009111779 A1 WO2009111779 A1 WO 2009111779A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
composition
active agent
ionic
mono
Prior art date
Application number
PCT/US2009/036507
Other languages
French (fr)
Inventor
Wen Xu
Holger Tank
Joey Cobb
Gary Sampson
Original Assignee
Dow Agrosciences Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40775195&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009111779(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dow Agrosciences Llc filed Critical Dow Agrosciences Llc
Priority to DK09716974.2T priority Critical patent/DK2271212T3/en
Priority to EP09716974.2A priority patent/EP2271212B1/en
Priority to PL09716974T priority patent/PL2271212T3/en
Priority to ES09716974.2T priority patent/ES2643991T3/en
Priority to LTEP09716974.2T priority patent/LT2271212T/en
Publication of WO2009111779A1 publication Critical patent/WO2009111779A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The present invention relates to stable, agricultural oil-in-water emulsion compositions.

Description

STABILIZED OIL-IN- WATER EMULSIONS INCLUDING
AGRICULTURALLY ACTIVE INGREDIENTS FIELD OF THE INVENTION
The present invention relates to stable, agricultural oil-in-water emulsion compositions.
CROSS-REFERENCE TO RELATED APPLICATIONS
This Application claims the benefit of U.S. Provisional Application 61/068,530 filed on March 7, 2008, which is expressly incorporated by reference herein.
BACKGROUND AND SUMMARY
Concentrated oil-in water emulsions of liquid active ingredients or active ingredients dissolved in a solvent are commonly used in agricultural compositions due to certain advantages provided over other formulation types. Emulsions are water based, contain little or no solvent, allow mixtures of active ingredients to be combined into a single formulation and are compatible with a wide range of packaging material. However, there are also several disadvantages of such agricultural emulsions, namely that they are often complex formulations which require high amounts of surface- active agents for stabilization, are generally very viscous, have a tendency for Oswald ripening of the emulsion globules and separate over time. Therefore, improvements in such emulsion formulations are needed in the agricultural field.
Several oil-in-water emulsion compositions for cosmetics and dermatological applications have been described in patents U.S. 5,658,575; U.S. 5,925,364; U.S. 5,753,241; U.S. 5,925,341; U.S. 6,066,328; U.S. 6,120,778; U.S. 6,126,948; U.S. 6,689,371; U.S. 6,419,946; U.S. 6,541,018; U.S. 6,335,022; U.S. 6,274,150; U.S. 6,375,960; U.S. 6,464,990; U.S. 6,413,527; U.S. 6,461,625; and 6,902,737; all of which are expressly incorporated herein by reference. However, although these types of emulsions have found advantageous use in personal care products, these types of emulsions have not been used previously with agriculturally active compounds, which are typically present in emulsions at much higher levels than cosmetic active ingredients.
One example of an agricultural oil-in-water emulsion composition that is suitable for agriculturally active ingredients that are liquid or soluble in suitable solvents at relevant storage temperatures is disclosed in U.S. Patent Application Serial No. 11/495,228, the disclosure of which is expressly incorporated by reference herein.
The present invention is related to agricultural compositions comprising an oil-in-water emulsion, the oil-in-water emulsion composition having an oil phase and water phase, the oil-in-water emulsion composition comprising an oil adapted to form oily globules having a mean particle diameter of less than 800 nanometers, a vegetable based oil that has very low water solubility, and is compatible with the oil phase, at least one agriculturally active compound, at least one non-ionic lipophilic surface- active agent, at least one non-ionic hydrophilic surface-active agent, at least one ionic surface- active agent, and water.
DETAILED DESCRIPTION
One embodiment of the present invention is a novel oil-in-water emulsion composition having an oil phase and water phase, the oil-in-water emulsion composition comprising: an oil adapted to form oily globules having a mean particle diameter of less than 800 nanometers; a vegetable based oil having low water solubility and being compatible with the oil phase; at least one agriculturally active compound; at least one non-ionic lipophilic surface- active agent, at least one non-ionic hydrophilic surface- active agent; at least one ionic surface-active agent; and water. The oil phase of the oil-in-water emulsion of the present invention utilizes either an agriculturally active compound which is in the form of an oil, or alternatively, an agriculturally active compound dissolved or mixed in an oil, to form the oily globules. An oil is by definition, a liquid which is not miscible with water. Any oil which is compatible with the agriculturally active compound may be used in the oil-in-water emulsions of the present invention. The term 'compatible' means that the oil will dissolve or mix uniformly with the agriculturally active compound and allow for the formation of the oily globules of the oil-in-water emulsion of the present invention. Exemplary oils include, but are not limited to short-chain fatty acid triglycerides, silicone oils, petroleum fractions or hydrocarbons such as heavy aromatic naphtha solvents, light aromatic naphtha solvents, hydrotreated light petroleum distillates, paraffinic solvents, mineral oil, alkylbenzenes, paraffinic oils, and the like; vegetable oils such as soy oil, rape seed oil, coconut oil, cotton seed oil, palm oil, soybean oil, and the like; alkylated vegetable oils and alkyl esters of fatty acids such as methyloleate and the like. An agriculturally active compound is herein defined as any oil soluble compound, hydrophobic compound, of solid compound having a melting point of below about 95 degrees Celsius or less that shows some pesticidal or biocidal activity. It is understood to refer to the active compound per se when it is itself an oil or alternatively, the active compound dissolved in an oil of suitable polymeric modifier. Such compounds or pesticides include fungicides, insecticides, nematocides, miticides, termiticides, rodenticides, arthropodicides, herbicides, biocides and the like. Examples of such agriculturally active ingredients can be found in The Pesticide Manual, 12th Edition. Exemplary pesticides which can be utilized in the oil-in- water emulsion of the present invention include, but are not limited to, benzofuranyl methylcarbamate insecticides such as benfuracarb, and carbosulfan; oxime carbamate insecticides such as aldicarb; fumigant insecticides such as chloropicrin, 1,3-dichloropropene and methyl bromide; juvenile hormone mimics such as fenoxycarb; organophosphate insecticides such as dichlorvos; aliphatic organothiophosphate insecticides such as malathion and terbufos; aliphatic amide organothiophosphate insecticides such as dimethoate; benzotriazine organothiophosphate insecticides such as azinphos-ethyl and azinphos-methyl; pyridine organothiophosphate insecticides such as chlorpyrifos and chlorpyrifos-methyl; pyrimidine organothiophosphate insecticides such as diazinon; phenyl organothiophosphate insecticides such as parathion and parathion-methyl; pyrethroid ester insecticides such as bifenthrin, cyfluthrin, beta- cyfluthrin, cyhalothrin, gamma-cyhalothrin, lambda-cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, fenvalerate, and permethrin; and the like. Exemplary herbicides which can be used in the oil-in-water emulsion of the present invention include, but are not limited to: amide herbicides such as dimethenamid and dimethenamid-P; anilide herbicides such as propanil; chloroacetanilide herbicides such as acetochlor, alachlor, butachlor, metolachlor and S-metolachlor; cyclohexene oxime herbicides such as sethoxydim; dinitroaniline herbicides such as benfluralin, ethalfluralin, pendimethalin, and trifluralin; nitrile herbicides such asbromoxynil octanoate; phenoxyacetic herbicides such as 4-CPA, 2,4-D, 3,4-DA, MCPA, and MCPA-thioethyl; phenoxybutyric herbicides such as 4-CPB, 2,4-DB, 3,4-DB, and MCPB; phenoxypropionic herbicides such as cloprop, 4-CPP, dichlorprop, dichlorprop-P, 3,4-DP, fenoprop, mecoprop and mecoprop-P; aryloxyphenoxypropionic herbicides such as cyhalofop, fluazifop, fluazifop-P, haloxyfop, haloxyfop-R; pyridine herbicides such as aminopyralid, clopyralid, fluroxypyr, picloram, and triclopyr; triazole herbicides such as carfentrazone ethyl; and the like. The herbicides can also generally be employed in combination with known herbicide safeners such as: benoxacor, cloquintocet, cyometrinil, daimuron, dichlormid, dicyclonon, dietholate, fenchlorazole, fenchlorazole-ethyl, fenclorim, flurazole, fluxofenim, furilazole, isoxadifen, isoxadifen-ethyl, mefenpyr, mefenpyr-diethyl, MG191, MON4660, R29148, mephenate, naphthalic anhydride, N-phenylsulfonylbenzoic acid amides and oxabetrinil.
Exemplary fungicides which can be used in the oil-in- water emulsion of the present invention include, but are not limited to, difenoconazole, dimethomorph, dinocap, diphenylamine, dodemorph, edifenphos, fenarimol, fenbuconazole, fenpropimorph, myclobutanil, oleic acid (fatty acids), propiconazole, tebuconazole and the like.
It is understood by those skilled in the art that any combination of agriculturally active compounds may also be used in the oil-in-water emulsion of the present invention as long as a stable and effective emulsion is still obtained. The amount of agriculturally active ingredient within the oil-in-water emulsion will vary depending upon the actual active ingredient, the application of the agriculturally active ingredient and the appropriate application levels which are well known to those skilled in the art. Typically, the total amount of agriculturally active ingredient within the oil-in-water emulsion will be from about 1, generally from about 5, preferably from about 10, more preferably from about 15 and most preferably from about 20 to about 45, generally to about 40, preferably to about 35 and most preferably to about 30 weight percent based on the total weight of the oil-in-water emulsion.
The vegetable based oil may be included in the oil phase to prevent the oil droplets or globules from coalescing and growth. Examples of suitable vegetable based oils include soybean oil, rape seed oil, soy oil, coconut oil, cotton seed oil, palm oil, peanut oil, linseed oil, canola oil, olive oil, sunflower oil and corn oil. The amount of vegetable based oil used in the oil-in-water emulsion of the present disclosure typically ranges from about 0.1% to about 20%, preferably from about 1% to about 10%, and more preferably about 2% about 6%.
In one embodiment of the present disclosure, a polymeric modifier may be included in the oil phase to retard crystallization of the agriculturally active ingredient. The polymeric modifier permits the use of agriculturally active ingredients that have melting points below about 95 degrees Celsius.
Examples of such agriculturally active ingredients that may be used in the oil-in-water emulsion composition of the present disclosure include Fluroxpyr Meptyl, Chloropyrifos, Chlorpyrifos methyl, Trifluralin, Cyhalofop butyl, Ethalfluralin, Benfluralin, Myclobutanil, Acequinocyl, Alpha-cypermethrin, Amitraz, Bensultap, Beta-cyfluthrin, Beta-cypermethrin, Bifenox, Bifenthrin, Bioresmethrin, Bromoxynil Octanoate, Butralin, Cyflufenamid, Cyfluthrin, Cypermethrin, Diclofop-methyl, Dicofol, Esfenvalerate, Ethalfluralin, Etofenprox, Fenazaquin, Fenoxaprop-P-ethyl, Fenpropathrin, Fenvalerate, Flumiclorac-pentyl, Fluoroglycofen-ethyl, Flurazole, Haloxyfop-etotyl, Indoxacarb, Lambda- cyhalothrin, Metamifop, Methoxychlor, Oxyfluorfen, Pendimethalin, Permethrin, Propaquizafop, Pyributicarb, Quizalofop-P-ethyl, Trifloxystrobin, Bromophos, Fenoxaprop-ethyl, Fluazolate, Nitrofen, and Profluralin. Suitable polymeric modifiers for addition to the oil phase have very low water solubility and good solubility in a mixture of the active ingredient in a molten state with or without additional solvent present. Examples of suitable polymeric modifiers may include ethyl cellulose, for example, Ethocel 10 Std FP, Ethocel Std 4, Ethocel Std 7, Ethocel 45, Ethocel 100 FP, and Ethocel 300; Polyacrylate, Latex, Polycarbonate, Polyvinyl Acetate homopolymers and copolymers, Polyolefin, Polyurethane, Polyisobutylene, Polybutene, Vinyl polymers, Polyester, Polyether, and Polyacrylonitrile. The components of the oil-in-water emulsion are combined using a process described below to produce oily globules having a lamellar liquid crystal coating. The lamellar liquid crystal coating is an extremely fine mono-or oligolamellar layer. Oligolamellar layer is understood to refer to a layer comprising from 2 to 5 lipid lamellae. This lamellar liquid crystal coating can be detected by
Transmission Electronic Microscopy after cryofracture or negative stain, X-Ray diffraction or Optical Microscopy under polarized light. Terms and structure of lamellar crystal liquid phase are well defined in "The Colloidal Domain" second edition, by D. Fennell Evans and H. Wennerstrom, Wiley- VCH (1999), pages 295- 296 and 306-307. The oligolamellar layer is comprised of the non-ionic lipophilic, non-ionic hydrophilic, and ionic surface-active agents, as stated previously. Preferably, the lipophilic surface- active agent and the hydrophilic surface- active agent each contain at least one optionally saturated and/or branched fatty hydrocarbon chain having more than 12 carbon atoms, preferably from 16 to 22 carbon atoms.
Preferably, the lipophilic surface-active agent has an HLB between about 2 and about 5. HLB is a standard term known to those skilled in the art and refers to Hydrophilic Lipophilic Balance which identifies the emulsifier's solubility in water or oil. Lipophilic describes the ability of a material to dissolve in a fat- like solvent or lipid. The lipophilic surface- active agent is typically selected from optionally ethoxylated mono-or polyalkyl ethers or esters of glycerol or polyglycerol, mono- or polyalkyl ethers or esters of sorbitan (optionally ethoxylated), mono- or polyalkyl ethers or esters of pentaerythritol, mono- or polyalkyl ethers or esters of polyoxyethylene, and mono- or polyalkyl ethers or esters of sugars. Examples of lipophilic surface- active agents include, but are not limited to sucrose distearate, diglyceryl distearate, tetraglyceryl tristearate, decaglyceryl decastearate, diglyceryl monostearate, hexaglyceryltristearate, decaglyceryl pentastearate, sorbitan monostearate, sorbitan tristearate, diethylene glycol monostearate, the ester of glycerol and palmitic and stearic acids, polyoxyethylenated monostearate 2 EO (containing 2 ethylene oxide units), glyceryl mono- and dibehenate and pentaerythritol tetrastearate. Hydrophilic describes the affinity of a material to associate with water.
The hydrophilic surface-active agent typically has a HLB of from about 8 to about 12 and are typically selected from mono- or polyalkyl ethers or esters of polyethoxylated sorbitan, mono- or polyalkyl ethers or esters of polyoxyethylene, mono- or polyalkyl ethers or esters of polyglycerol, block copolymers of polyoxyethylene with polyoxypropylene or polyoxybutylene, and mono- or polyalkyl ethers or esters of optionally ethoxylated sugars. Examples of hydrophilic surface-active agents include, but are not limited to polyoxyethylenated sorbitan monostearate 4 EO, polyoxyethylenated sorbitan tristearate 20 EO, polyoxyethylenated sorbitan tristearate 20 EO, polyoxyethylenated monostearate 8 EO, hexaglyceryl monostearate, polyoxyethylenated monostearate 10 EO, polyoxyethylenated distearate 12 EO and polyoxyethylenated methylglucose distearate 20 EO.
In addition to the lipophilic and hydrophilic surface- active agents, an ionic surface- active agent also comprises the oligolamellar layer of the lamellar liquid crystal coating.
Ionic surface- active agents which can be used in the oil-in-water emulsion of the present invention include (a) neutralized anionic surface- active agents, (b) amphoteric surface-active agents, (c) alkylsulphonic derivatives and (d) cationic surface- active agents. Neutralized anionic surface- active agents (a) include, but are not limited to, for example:
• alkali metal salts of dicetyl phosphate and dimyristyl phosphate, in particular sodium and potassium salts; • alkali metal salts of cholesteryl sulphate and cholesteryl phosphate, especially the sodium salts;
• lipoamino acids and their salts, such as mono- and disodium acylglutamates, such as the disodium salt of N-stearoyl-L-glutamic acid, the sodium salts of phosphatidic acid;
• phospholipids; and
• the mono- and disodium salts of acylglutamic acids, in particular N- stearoylglutamic acid.
Anionic surface- active agents chosen from alkyl ether citrates and mixtures thereof which can be used in the oil-in- water emulsions of the present invention are disclosed in U.S. 6,413,527, which is incorporated herein by reference. Alkyl ether citrates include monoesters or diesters formed by citric acid and at least one oxyethylenated fatty alcohol comprising a saturated or unsaturated, linear or branched alkyl chain having from 8 to 22 carbon atoms and comprising from 3 to 9 oxyethylene groups, and mixtures thereof. These citrates can be chosen, for example from the mono- and diesters of citric acid and of ethoxylated lauryl alcohol comprising from 3 to 9 oxyethylene groups. The alkyl ether citrates are preferably employed in the neutralized form at a pH of about 7. Neutralization agents can being chosen from inorganic bases, such as sodium hydroxide, potassium hydroxide or ammonia, and organic bases, such as mono,- di- and triethanolamine, aminomethyl-l,3-propanediol, N-methylglucamine, basic amino acids, such as arginine and lysine and mixtures thereof.
Amphoteric surface- active agents (b) include, but are not limited to phospholipids and especially phosphatidylethanolamine from pure soya. Alkylsulphonic derivatives (c) include, but are not limited to compounds of the formula: R- -CH CO- 0-(CH2CH2OL -CH
SO3M
in which R represents the radicals C16H33 and CIgH37, taken as a mixture or separately, and M is an alkali metal, preferably sodium. Cationic surface-active agents (d) include but are not limited to surface- active agents as disclosed in U.S. 6,464,990, which is incorporated herein by reference. They are typically selected from the group of quaternary ammonium salts, fatty amines and salts thereof. The quaternary ammonium salts include, for example: those which exhibit the following formula:
Figure imgf000011_0001
wherein the Rl to R4 radicals, which can be identical or different, represent a linear or branched aliphatic radical comprising from 1 to 30 carbon atoms or an aromatic radical, such as aryl or alkylaryl. The aliphatic radicals can comprise heteroatoms, such as oxygen, nitrogen, sulfur and halogens. The aliphatic radicals include alkyl, alkoxy, polyoxy(C2-C6)alkylene, alkylamido, (C12-C22 )alkyl- amido(C2-C6) alkyl, (C I2-C22) alkyl acetate and hydroxyalkyl radicals comprising approximately from 1 to 30 carbon atoms; X is an anion selected from halides, phosphates, acetates, lactates, (C2-Ce)alkyl sulfates, and alkyl- or alkylarylsulfonates. Preference is given, as quaternary ammonium salts to tetraalkylammonium chlorides, such as dialkyldimethylammonium and alkyltrimethylammonium chlorides in which the alkyl radical comprises approximately from 12 to 22 carbon atoms, in particularly behenyltrimethyl- ammonium, distearyldimethylammonium, cetyltrimethylammonium and benzyldimethylstearylammonium chlorides, or alternatively, stearamidopropyl- dimethyl(myristyl acetate) ammonium chloride; imidazolinium quaternary ammonium salts, such as those of formula:
Figure imgf000012_0001
wherein R5 represents an alkenyl or alkyl radical comprising from 8 to 30 carbon atoms, for example derived from tallow fatty acids; R6 represents a hydrogen atom, an alkyl radical comprising from 1 to 4 carbon atoms or an alkenyl or alkyl radical comprising from 8 to 30 carbon atoms; R7 represents an alkyl radical comprising from 1 to 4 carbon atoms; R8 represents a hydrogen atom or an alkyl radical comprising from 1 to 4 carbon atoms; and X is an anion selected from the group of the halides, phosphates, acetates, lactates, alkyl sulfates, or alkyl, and alkylarylsulfonates. R5 and R6 preferably denote a mixture of alkenyl or alkyl radicals comprising from 12 to 21 carbon atoms, for example derived from tallow fatty acids, R7 preferably denotes a methyl radical and R8 preferably denotes hydrogen. Quaternary diammonium salts are also contemplated, such as propanetallowdiammonium dichloride.
Fatty amines include, but are not limited to those of formula:
R9(CONH)n(CH2)mN(Rl I)RlO
wherein R9 is an optionally saturated and/or branched hydrocarbon chain, having between 8 and 30 carbon atoms, preferably between 10 and 24 carbon atoms; RlO and RIl are selected from H and an optionally saturated and/or branched hydrocarbon chain, having between 1 and 10 carbon atoms; preferably between 1 and 4 carbon atoms; m is an integer between 1 and 10 and is preferably between 1 and 5; and n is either 0 or 1.
Examples of fatty amines include, but are not limited to, stearylamine, aminoethyl-ethanolamide stearate, diethylenetriamine stearate, palmitamidopropyldimethyl-amine, palmitamidopropyldiethylamine, palmitamidoethyldiethylamine, palmitamidoethyldimethylamine. Commercially available fatty amines include, but are not limited to, Incromine™ BB from Croda, Amidoamine™ MSP from Nikkol, and Lexamine™ series from Inolex, the Acetamine series from Kao Corp; Berol 380, 390, 453 and 455, and Ethomeen™ series from Akzo Nobel, and Marlazin™ LlO, OL2, OL20, Tl 5/2, T50 from Condea Chemie.
As described above, the surface- active agents form the lamellar liquid crystal coating of the oily globules suspended within the aqueous phase of the oil- in- water emulsion of the present invention. The amount of the three surface- active agents utilized in the oil-in- water emulsion of the present invention is typically from about 20, preferably from about 35 to about 65, preferably to about 55 weight percent of non-ionic lipophilic surface- active agent, from about 15, preferably from about 25 to about 50, preferably to about 40 weight percent of non-ionic hydrophilic surface-active agent and from about 5, preferably from about 10 to about 45, preferably to about 35 weight percent of ionic surface- active agent; based on the total combined weight of surface active agents. The coating of the oily globules comprises a total amount of hydrophilic surface- active agent, lipophilic surface- active agent and ionic surface- active agent to be between about 2 and about 20 percent by weight, based on the total weight of the oil-in- water emulsion. Preferably the total amount is from about 2.5, more preferably from about 3 to 10, more preferably to about 6 weight percent, based on the total weight of the oil-in- water emulsion. The ratio of the total weight of the surface-active compounds to the total weight of oil is typically from 1:2.5 to 1:25.
The amount of the polymeric modifier that may be utilized in one embodiment of the oil-in- water emulsion of the present disclosure is typically from about 0.2, preferably from about 2 to about 40, preferably to about 20 weight percent based on the total weight of the oil-in- water emulsion.
The aqueous phase is typically water, for example, deionized water. The aqueous phase may also contain other additives such as compounds that lower the freezing point, for example alcohols, e.g. isopropyl alcohol and propylene glycol; pH buffering agents, for example alkali phosphates such as sodium phosphate monobasic monohydrate, sodium phosphate dibasic; biocides, for example Proxel GXL; and antifoams, for example octamethylcyclotetrasiloxane (Antifoam A from Dow Corning). Other additives and/or adjuvants can also be present in the aqueous phase as long as the stability of the oil-in- water emulsion is still maintained. Other additives also include water-soluble agriculturally active compounds.
The oil phase or the coated oily globules are from 5, preferably from 8 and more preferably from 10 to 50 percent, preferably to 45 and most preferably to 40 weight percent, based on the total weight of the oil-in- water emulsion composition. The oil/water ratio is typically less than or equal to 1.
Other additives and/or adjuvants can also be present within the oil-in- water emulsion of the present invention, as long as the stability and activity of the oil-in- water emulsion is still obtained. The oil-in- water emulsions of the present invention may additionally contain adjuvant surface-active agents to enhance deposition, wetting and penetration of the agriculturally active ingredient onto the target site, e.g. crop, weed or organism. These adjuvant surface- active agents may optionally be employed as a component of the emulsion in either the oil or water phase, or as a tank mix component; the use of and amount desired being well known by those skilled in the art. Suitable adjuvant surface- active agents include, but are not limited to ethoxylated nonyl phenols, ethoxylated synthetic or natural alcohols, salts of the esters or sulphosuccinic acids, ethoxylated organosilicones, ethoxylated fatty amines and blends of surface- active agents with mineral or vegetable oils.
One embodiment of the oil-in-water emulsion of the present invention can be prepared according to the process described in U.S. 5,925,364, the teachings of which are incorporated herein by reference. The agriculturally active ingredient or a combination of agriculturally active ingredients is first melted or dissolved into the polymeric modifier, adding solvent if desired, after which the nonionic surface- active agent(s) is dissolved into the mixture. The then mixture is homogenized by cavitation using a high pressure homogenizer, to provide the small particle sized oily globules. The mean size of the coated oily globules is typically less than 800 nanometers, preferably less than 500 nanometers and most preferably about 200 nanometers, as determined using laser diffraction particle size analysis and scanning electron microscopy.
In one embodiment, the oil-in-water emulsion is prepared by:
1) melting or dissolving an agriculturally active ingredient(s) into the polymeric modifier and optionally a suitable solvent; 2) mixing an oil phase, comprising the lipophilic surfactant, the vegetable based oil, the polymeric modifier containing the dissolved agriculturally active ingredient(s), the hydrophilic surfactant, the ionic surfactant, an agriculturally active compound and optionally a suitable solvent and (B) an aqueous phase to obtain a mixture; and 3) homogenizing the mixture by subjecting the mixture to cavitation.
In the first step, the mixture can be formed by conventional stirring, for example, using a high shear homogenizer rotating at a rate of approximately between 2000 and 7000 rpm for a time approximately between 5 and 60 minutes and at a temperature between approximately 2O0C and 950C.
The homogenization can be performed by using a high pressure homogenizer operating at pressures between approximately 200 and 1000 bar as is well known to those skilled in the art. The process is performed by successive passages, generally from 2 to 12 passages, at a selected pressure; the mixture being returned to normal pressure between each passage. The homogenization of the second step may also be carried out under the action of ultrasound or alternatively by the use of a homogenizer equipped with a rotor-stator type head. Another embodiment of the oil-in-water emulsion of the present disclosure may be prepared without the polymeric modifier. In this embodiment, agriculturally active ingredients that are in liquid form or soluble in a suitable solvent at a relevant storage temperature may be used. The method is the same as described above with the exception that agriculturally active ingredient is not melted or dissolved in a polymeric modifier. Instead the agriculturally active ingredient is added directly to the oil phase.
Another embodiment of the present invention is the use of the oil-in-water emulsion in agricultural applications to control, prevent or eliminate unwanted living organisms, e.g. fungi, weeds, insects, bacteria or other microorganisms and other pests. This would include its' use for protection of a plant against attack by a phytopathogenic organism or the treatment of a plant already infested by a phytopathogenic organism, comprising applying the oil-in-water emulsion composition, to soil, a plant, a part of a plant, foliage, flowers, fruit, and/or seeds in a disease inhibiting and phytologically acceptable amount. The term "disease inhibiting and phytologically acceptable amount" refers to an amount of a compound that kills or inhibits the plant disease for which control is desired, but is not significantly toxic to the plant. The exact concentration of active compound required varies with the fungal disease to be controlled, the type of formulations employed, the method of application, the particular plant species, climate conditions, and the like, as is well known in the art.
Additionally, the oil-in-water emulsions of the present invention are useful for the control of insects or other pests, e.g. rodents. Therefore, the present invention also is directed to a method for inhibiting an insect or pest which comprises applying to a locus of the insect or pest an oil-in-water emulsion comprising an insect-inhibiting amount of an agriculturally active compound for such use. The "locus" of insects or pests is a term used herein to refer to the environment in which the insects or pests live or where their eggs are present, including the air surrounding them, the food they eat, or objects which they contact. For example, insects which eat or contact edible or ornamental plants can be controlled by applying the active compound to plant parts such as the seed, seedling, or cutting which is planted, the leaves, stems, fruits, grain, or roots, or to the soil in which the roots are growing . It is contemplated that the agriculturally active compounds and oil-in-water emulsions containing such, might also be useful to protect textiles, paper, stored grain, seeds, domesticated animals, buildings or human beings by applying an active compound to or near such objects. The term "inhibiting an insect or pest" refers to a decrease in the numbers of living insects or pests, or a decrease in the number of viable insect eggs. The extent of reduction accomplished by a compound depends, of course, upon the application rate of the compound, the particular compound used, and the target insect or pest species. At least an inactivating amount should be used. The terms "insect or pest-inactivating amount" are used to describe the amount, which is sufficient to cause a measurable reduction in the treated insect or pest population, as is well known in the art.
The locus to which a compound or composition is applied can be any locus inhabited by an insect, mite or pest, for example, vegetable crops, fruit and nut trees, grape vines, ornamental plants, domesticated animals, the interior or exterior surfaces of buildings, and the soil around buildings.
Because of the unique ability of insect eggs to resist toxicant action, repeated applications may be desirable to control newly emerged larvae, as is true of other known insecticides and acaricides.
Additionally, the present invention relates to the use of oil-in-water emulsions comprising agriculturally active compounds which are herbicides. The term herbicide is used herein to mean an active ingredient that kills, controls or otherwise adversely modifies the growth of plants. An herbicidally effective or vegetation controlling amount is an amount of active ingredient which causes an adversely modifying effect and includes deviations from natural development, killing, regulation, desiccation, retardation, and the like. The terms plants and vegetation include emerging seedlings and established vegetation.
Herbicidal activity is exhibited when they are applied directly to the locus of the undesirable plant thereof at any stage of growth or before emergence of the weeds. The effect observed depends upon the plant species to be controlled, the stage of growth of the plant, the particle size of solid components, the environmental conditions at the time of use, the specific adjuvants and carriers employed, the soil type, and the like, as well as the amount of chemical applied. These and other factors can be adjusted as is known in the art to promote selective herbicidal action. Generally, it is preferred to apply such herbicides post emergence to relatively immature undesirable vegetation to achieve the maximum control of weeds.
Another specific aspect of the present invention is a method of preventing or controlling pests such as nematodes, mites, arthropods, rodents, termites, bacteria or other microorganisms, comprising applying to a locus where control or prevention is desired a composition of the present invention which comprises the appropriate active compound such as a nematocide, miticide, arthropodicide, rodenticide, termiticide or biocide.
The actual amount of agriculturally active compound to be applied to loci of disease, insects and mites, weeds or other pests is well known in the art and can readily be determined by those skilled in the art in view of the teachings above.
The composition of the present invention surprisingly offers stable agricultural oil-in-water emulsions having low viscosity and long term shelf life. Additionally, the stable agricultural oil-in-water emulsions of the present invention can offer other surprising improvements, e.g. efficacy. The following examples are provided to illustrate the present invention.
The examples are not intended to limit the scope of the present invention and they should not be so interpreted. Amounts are in weight parts or weight percentages unless otherwise indicated.
EXAMPLES
These examples are provided to further illustrate the invention and are not meant to be construed as limiting.
As disclosed herein, all temperatures are given in degrees Celsius and all percentages are weight percentages unless otherwise stated. In these examples, the process is performed using the following procedure:
For Examples 1-3, the agriculturally active ingredient and the VEGETABLE BASED OIL are added to the oil phase. For Examples 4 and 5 which include a polymeric modifier, the solid agriculturally active ingredient is melted or dissolved into the polymeric modifier. The polymeric modifier is then mixed into the oil phase A. The oil phase A and the aqueous phase B are heated separately to the desired temperature. Phase B is poured into Phase A, with stirring of 4000 - 8000 rpm provided by a Silverson L4RT high shear homogenizer fitted with a square hole high shear screen. Stirring and temperature conditions are maintained for 15 minutes.
The mixture is then introduced into a Niro Soavi high pressure 2-stage homogenizer of type Panda 2K, which is adjusted to a pressure of 500 to 900 bar for 2 to 12 successive passages.
A stabilized oil-in-water emulsion is thus obtained, the oily globules of which have a mean diameter of typically around 200 nm.
Example 1: Myclobutanil oil-in-water emulsion
Oil Phase A wt%
Myclobutanil 4.50
Soybean oil 4.00
Brij 72 2.65
Sorbitan (40EO) stearate (T ween 61 by Uniqema) 1.85
Oil (Al 50 ND) 11.00
Aqueous Phase B
Deionized water 65.20
Propylene glycol 10.00
Proxel GLX Biocide 0.30 n-Stearoyl glutamic acid di-sodium salt (Amisoft HS-
0.50
m 21P by Ajinomoto)
The size of the oily globules in the oil-in-water emulsion as determined by a Malvern Zetasizer was 184 nm. The oil-in-water emulsion was stable under accelerated storage test conditions of 2 weeks at 50C, 540C, and cycling 15 temperature from 400C to -100C with no change in the size of the oily globules and no sedimentation or syneresis. A control sample made without the addition of soybean oil showed significant oil droplet growth at under all of the conditions described above. Example 2: Fluroxypyr MHE oil-in-water emulsion
Oil Phase A wt%
Fluroxypyr methylheptyl ester 27.5
Soybean oil 2.0
Diglycerol monostearate (Nikkol DGMS by Nikko
2.6 Chemical Co.)
Sorbitan (40EO) stearate (Tween 61 by Uniqema) 1.9
Oil (AMD 810) 11.5 Aqueous Phase B
Deionized water 49.2
Sodium phosphate, diabasic 0.3
Sodium phosphate, monobasic monohydrate 0.2
Proxel GLX Biocide 0.3 n-Stearoyl glutamic acid di-sodium salt (Amisoft HS- 21P by Ajinomoto)
Propylene glycol 4
The size of the oily globules in the oil-in-water emulsion as determined by a Malvern Zetasizer was 251 nm. The oil-in-water emulsion was stable under accelerated storage test conditions of 11 days at 50C and 540C with no change in the size of the oily globules and no sedimentation or syneresis, and slight increase after 11 days at cycling temperature from -10 0C to 4O0C . A control sample made without the addition of soybean oil was phase separated after 2 days at the cycling temperature. Example 3: Propiconazole oil-in-water emulsion
Oil Phase A wt%
Propiconazole technical 15.5
Soybean oil 5.0
Brij 72 2.0
Sorbitan (40EO) stearate (T ween 61 by Uniqema) 1.5
Oil (Al 50 ND) 5.0
Aqueous Phase B
Deionized water 65.5
Propylene glycol 5
Cedepal TD-407 0.5
The size of the oily globules in the oil-in-water emulsion was determined by a Malvern Zetasizer was 185 nm. The oil-in-water emulsion was stable under accelerated storage test conditions of 8 week at 50C, 540C, and cycling temperature from 400C to -100C with no change in the size of the oily globules and no sedimentation or syneresis. A control sample made without the addition of soybean oil was less stable and showed oil droplet growth at the same storage test conditions.
Example 4: Fluroxypyr MHE oil-in-water emulsion
Oil Phase A wt%
Fluroxypyr methylheptyl ester 27.50
Ethocel std 10 2.59
Diglycerol monostearate ( Nikkol DGMS by Nikko Chemical Co.)
Sorbitan (40EO) stearate (T ween 61 by Uniqema) 1.93
Soybean oil 2.00
Oil (AMD 810) 11.51 Aqueous Phase B
Deionized water 46.60 n-Stearoyl glutamic acid di-sodium salt (Amisoft HS- 21 P by Ajinomoto)
Proxel GXL Biocide 0.30
Propylene glycol 4.00
Sodium phosphate, diabasic 0.30
Sodium phosphate, monobasic monohydrate 0.20
The size of the oily globules in the oil-in-water emulsion as determined by a Malvern Zetasizer was 332 nm. The oil-in-water emulsion was stable under accelerated storage test conditions of 16 days at 50C and 540C with no change in the size of the oily globules and no sedimentation or syneresis. A control sample made without the addition of soybean oil was less stable and showed oil droplets growth at the same storage test conditions. Example 5: Chlorpyrifos oil-in-water emulsion
Oil Phase A wt%
Chloropyrifos 20.00
Ethocel std 10 2.00
Soybean oil 4.00
Brij 72 2.59
Sorbitan (40EO) stearate (T ween 61 by Uniqema) 1.93
Oil (AMD 810) 8.00 Aqueous Phase B
Deionized water 50.98 n-Stearoyl glutamic acid di-sodium salt (Amisoft HS- 21 P by Ajinomoto)
Propylene glycol 10.00
The size of the oily globules in the oil-in-water emulsion as determined by a Malvern Zetasizer was 185 nm. The oil-in-water emulsion was stable under accelerated storage test conditions of 3 week at 50C, 540C, and cycling temperature from 400C to -100C. A control sample made without the addition of soybean oil having the same total weight percent of oil phase showed significant oil droplet size increase, and was destabilized at both the 540C and 50C storage condition during the same time period.

Claims

WHAT IS CLAIMED IS:
1. An oil-in-water emulsion composition having an oil phase and water phase, the oil-in-water emulsion composition comprising: an oil adapted to form oily globules having a mean particle diameter of less than 800 nanometers; a vegetable based oil having low water solubility and being compatible with the oil phase; at least one agriculturally active compound; at least one non-ionic lipophilic surface- active agent; at least one non-ionic hydrophilic surface- active agent; at least one ionic surface-active agent; and water.
2. The composition of Claim 1 wherein the non-ionic lipophilic surface- active agent has an Hydrophilic Lipophilic Balance of between 2 and 5.
3. The composition of Claim 2, wherein the non-ionic lipophilic surface- active agent is selected from the group consisting of optionally ethoxylated mono-or polyalkyl ethers or esters of glycerol or polyglycerol, optionally ethoxylated mono- or polyalkyl ethers or esters of sorbitan, mono- or polyalkyl ethers or esters of pentaerythritol, mono- or polyalkyl ethers or esters of polyoxyethylene, and mono- or polyalkyl ethers or esters of sugars.
4. The composition of Claim 3, wherein the non- ionic lipophilic surface- active agent is selected from the group consisting of sucrose distearate, diglyceryl distearate, tetraglyceryl tristearate, decaglyceryl decastearate, diglyceryl monostearate, hexaglyceryltristearate, decaglyceryl pentastearate, sorbitan monostearate, sorbitan tristearate, diethylene glycol monostearate, the ester of glycerol and palmitic and stearic acids, polyoxyethylenated monostearate 2 EO (containing 2 ethylene oxide units), glyceryl mono- and dibehenate and pentaerythritol tetrastearate.
5. The composition of Claim 1, wherein the non-ionic hydrophilic surface-active agent has an Hydrophilic Lipophilic Balance between 8 and 12.
6. The composition of Claim 5, wherein the non- ionic hydrophilic surface- active agent is selected from the group consisting of mono- or polyalkyl ethers or esters of polyethoxylated sorbitan, mono- or polyalkyl ethers or esters of polyoxyethylene, mono- or polyalkyl ethers or esters of polyglycerol, block copolymers of polyoxyethylene with polyoxypropylene or polyoxybutylene, and mono- or polyalkyl ethers or esters of optionally ethoxylated sugars.
7. The composition of Claim 6, wherein the non-ionic hydrophilic surface- active agent is selected from the group consisting of polyoxyethylenated sorbitan monostearate 4 EO, polyoxyethylenated sorbitan tristearate 20 EO, polyoxyethylenated sorbitan tristearate 20 EO, polyoxyethylenated monostearate 8 EO, hexaglyceryl monostearate, polyoxyethylenated monostearate 10 EO, polyoxyethylenated distearate 12 EO and polyoxyethylenated methylglucose distearate 20 EO.
8. The composition of Claim 1, wherein the ionic surface-active agent is selected from the group consisting of (a) neutralized anionic surface-active agents, (b) amphoteric surface- active agents, (c) alkylsulphonic derivatives and (d) cationic surface-active agents.
9. The composition of Claim 8, wherein the ionic surface-active agent is selected from the group consisting of:
• alkali metal salts of dicetyl phosphate and dimyristyl phosphate, in particular sodium and potassium salts;
• alkali metal salts of cholesteryl sulphate and cholesteryl phosphate, especially the sodium salts; • lipoamino acids and their salts, such as mono- and disodium acylglutamates, such as the disodium salt of N-stearoyl-L-glutamic acid, the sodium salts of phosphatidic acid;
• phospholipids; • the mono- and disodium salts of acylglutamic acids, in particular N- stearoylglutamic acid; and.
• alkyl ether citrates.
10. The composition of Claim 8, wherein the ionic surface-active agent is a phospholipid.
11. The composition of Claim 8, wherein the ionic surface-active agent is an alkylsulphonic derivative.
12. The composition of Claim 8, wherein the ionic surface-active agent is selected from the group consisting of quaternary ammonium salts, fatty amines and salts thereof.
13. The composition of Claim 1, wherein the agriculturally active compound is selected from a group consisting of fungicides, insecticides, nematocides, miticides, biocides, termiticides, rodenticides, arthropodicides, and herbicides.
14. A method of controlling or preventing fungal attack, comprising applying a composition of Claim 13 to the fungus, soil, plant, root, foliage, seed or locus in which the infestation is to be prevented or controlled.
15. A method of inhibiting insects comprising applying to a locus where control or prevention is desired a composition of Claim 13.
16. A method of preventing or controlling unwanted vegetation comprising applying to a locus where control or prevention is desired a composition of Claim 13.
17. A method of preventing or controlling nematodes, comprising applying to a locus where control or prevention is desired a composition of Claim 13.
18. A method of preventing or controlling mites, comprising applying to a locus where control or prevention is desired a composition of Claim 13.
19. A method of preventing or controlling arthropods, comprising applying to a locus where control or prevention is desired a composition of claim 13.
20. A method of preventing or controlling bacteria and other microorganisms, comprising applying to a locus where control or prevention is desired a composition of claim 13.
21. A method of preventing or controlling rodents, comprising applying to a locus where control or prevention is desired a composition of claim 13.
22. A method of preventing or controlling termites, comprising applying to a locus where control or prevention is desired a composition of claim 13.
23. The composition of claim 1, further comprising a polymeric modifier being compatible with the oil phase.
24. The composition of claim 23, wherein the polymeric modifier is selected from the group consisting of Ethocel ethyl cellulose, for example, Ethocel 10 Std FP, Ethocel Std 4, Ethocel Std 7, Ethocel 45, Ethocel 100 FP, and Ethocel 300; Polyacrylate, Latex, Polycarbonate, Polyvinyl Acetate homopolymers and copolymers, Polyolefin, Polyurethane, Polyisobutylene, Polybutene, vinyle polymers, Polyester, Polyether, and Polyacrylonnitrile.
25. The composition of claim 23, wherein the agriculturally active compound is selected from the group consisting essentially of fluroxpyr meptyl, chloropyrifos, chlorpyrifos methyl, trifluralin, cyhalofop butyl, oxyfluorfen, ethalfluralin, benfluralin, myclobutanil, Acequinocyl, Alpha-cypermethrin, Amitraz, Bensultap, Beta-cyfluthrin, Beta-cypeπnethrin, Bifenox, Bifenthrin, Bioresmethrin, Bromoxynil Octanoate, Butralin, Cyflufenamid, Cyfluthrin, Cypermethrin, Diclofop-methyl, Dicofol, Esfenvalerate, Ethalfluralin, Etofenprox, Fenazaquin, Fenoxaprop-P-ethyl, Fenpropathrin, Fenvalerate, Flumiclorac-pentyl, Fluoroglycofen-ethyl, Flurazole, Haloxyfop-etotyl, Indoxacarb, Lambda- cyhalothrin, Metamifop, Methoxychlor, Oxyfluorfen, Pendimethalin, Permethrin, Propaquizafop, Pyributicarb, Quizalofop-P-ethyl, Trifloxystrobin, Bromophos, Fenoxaprop-ethyl, Fluazolate, Nitrofen, and Profluralin.
26. The composition of claim 24, wherein the oil-in- water emulsion composition is from about 1 to about 60 weight percent total oil phase, from about 0.2 to about 40 weight percent polymeric modifier, from about 1 to about 45 weight percent agriculturally active compound, from about 0.1 to about 20 weight percent vegetable based oil, from about 0.4 to about 13 weight percent non-ionic lipophilic surface- active agent, from about 0.3 to about 10 weight percent non- ionic hydrophilic surface-active agent, from about 0.1 to about 9 weight percent ionic surface- active agent, based on a total weight of the oil-in-water emulsion composition.
27. The composition of claim 1, wherein the oil-in-water emulsion composition is from about 1 to about 60 weight percent total oil phase, from about 0.1 to about 20 weight percent vegetable based oil, from about 1 to about 45 weight percent agriculturally active compound, from about 0.4 to about 13 weight percent non-ionic lipophilic surface-active agent, from about 0.3 to about 10 weight percent non-ionic hydrophilic surface- active agent, from about 0.1 to about 9 weight percent ionic surface-active agent, based on a total weight of the oil-in- water emulsion composition.
28. The composition of claim 1, wherein the vegetable based oil is selected from the group consisting essentially of soybean oil, rape seed oil, soy oil, coconut oil, cotton seed oil, palm oil, peanut oil, linseed oil, canola oil, olive oil, sunflower oil, and corn oil.
PCT/US2009/036507 2007-07-30 2009-03-09 Stabilized oil-in-water emulsions including agriculturally active ingredients WO2009111779A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DK09716974.2T DK2271212T3 (en) 2008-03-07 2009-03-09 STABILIZED OIL-IN-WATER EMULSIONS CONTAINING AGRICULTURALLY ACTIVE INGREDIENTS
EP09716974.2A EP2271212B1 (en) 2008-03-07 2009-03-09 Stabilized oil-in-water emulsions including agriculturally active ingredients
PL09716974T PL2271212T3 (en) 2008-03-07 2009-03-09 Stabilized oil-in-water emulsions including agriculturally active ingredients
ES09716974.2T ES2643991T3 (en) 2007-07-30 2009-03-09 Oil-in-water stabilized emulsions that include agriculturally active ingredients
LTEP09716974.2T LT2271212T (en) 2008-03-07 2009-03-09 Stabilized oil-in-water emulsions including agriculturally active ingredients

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US6853008P 2008-03-07 2008-03-07
US61/068,530 2008-03-07

Publications (1)

Publication Number Publication Date
WO2009111779A1 true WO2009111779A1 (en) 2009-09-11

Family

ID=40775195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/036507 WO2009111779A1 (en) 2007-07-30 2009-03-09 Stabilized oil-in-water emulsions including agriculturally active ingredients

Country Status (8)

Country Link
US (1) US20090227459A1 (en)
EP (1) EP2271212B1 (en)
DK (1) DK2271212T3 (en)
HU (1) HUE035420T2 (en)
LT (1) LT2271212T (en)
PL (1) PL2271212T3 (en)
PT (1) PT2271212T (en)
WO (1) WO2009111779A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016055344A1 (en) * 2014-10-08 2016-04-14 Evonik Degussa Gmbh Use of hydrophobic, self-emulsifying polyglycerol esters as adjuvants and anti-spray drift agent
WO2017206328A1 (en) * 2016-05-30 2017-12-07 江苏辉丰农化股份有限公司 Anti-microbial composition
CN113349214A (en) * 2021-06-08 2021-09-07 山东师范大学 Imidacloprid pesticide microemulsion preparation and preparation method and application thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101779639A (en) * 2010-02-25 2010-07-21 深圳诺普信农化股份有限公司 Water emulsion agent for removing grass in paddy field and preparation method thereof
MX2014006487A (en) * 2011-11-30 2015-02-12 Dow Agrosciences Llc Stable suspoemulsions comprising a plurality of agriculturally active ingredients.
WO2013090501A1 (en) 2011-12-15 2013-06-20 Dow Agrosciences Llc High load aqueous suspension concentrate of an active ingredient
CN114467411A (en) * 2022-01-12 2022-05-13 深圳诺普信农化股份有限公司 Nano seed coating emulsion and its preparing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070027034A1 (en) * 2005-07-28 2007-02-01 Holger Tank Agricultural compositions comprising an oil-in-water emulsion based on oily globules coated with a lamellar liquid crystal coating
JP2007308440A (en) * 2006-05-22 2007-11-29 Shiseido Co Ltd Herbicide composition

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1301642C (en) * 1987-03-30 1992-05-26 Howard Bernard Dawson Chemical formulations
EP0591768B1 (en) * 1992-10-03 1997-04-23 Hoechst Aktiengesellschaft New sunfactants, process for their preparation, formulations thereof and their application
FR2709666B1 (en) * 1993-09-07 1995-10-13 Oreal Cosmetic or dermatological composition consisting of an oil-in-water emulsion based on oily globules provided with a lamellar liquid crystal coating.
GB9319129D0 (en) 1993-09-15 1993-11-03 Dowelanco Ltd Storage and dilution of stable aqueous dispersions
FR2725369B1 (en) 1994-10-07 1997-01-03 Oreal COSMETIC OR DERMATOLOGICAL COMPOSITION CONSISTING OF AN OIL IN WATER EMULSION BASED ON OIL CELLS PROVIDED WITH A LAMELLAR LIQUID CRYSTAL COATING
FR2730932B1 (en) * 1995-02-27 1997-04-04 Oreal TRANSPARENT NANOEMULSION BASED ON FLUID NON-IONIC AMPHIPHILIC LIPIDS AND USE IN COSMETICS OR DERMOPHARMACY
FR2742676B1 (en) * 1995-12-21 1998-02-06 Oreal TRANSPARENT NANOEMULSION BASED ON SILICON SURFACTANTS AND USE IN COSMETICS OR DERMOPHARMACY
FR2755854B1 (en) * 1996-11-15 1998-12-24 Oreal NANOEMULSION BASED ON NON-IONIC AND CATIONIC AMPHIPHILIC LIPIDS AND USES
FR2760641B1 (en) * 1997-03-13 2000-08-18 Oreal STABLE OIL-IN-WATER EMULSION, MANUFACTURING METHOD THEREOF AND USE THEREOF IN THE COSMETIC AND DERMATOLOGICAL FIELDS
FR2760970B1 (en) * 1997-03-18 2000-03-10 Oreal NANOEMULSIONS BASED ON NON-IONIC AMPHIPHILIC LIPIDS AND AMINO SILICONES AND USES
AU1818199A (en) * 1997-12-11 1999-06-28 President & Fellows Of Harvard College, The Anti-picornaviral ligands via a combinatorial computational and synthetic appro ach
FR2787026B1 (en) * 1998-12-14 2001-01-12 Oreal NANOEMULSION BASED ON MIXED ESTERS OF FATTY ACID OR FATTY ALCOHOL, CARBOXYLIC ACID AND GLYCERYL, AND ITS USES IN THE COSMETIC, DERMATOLOGICAL AND / OR OPHTHALMOLOGICAL FIELDS
FR2787027B1 (en) * 1998-12-14 2001-01-12 Oreal NANOEMULSION BASED ON SUGAR FATTY ESTERS OR SUGAR FATHER ETHERS AND ITS USE IN THE COSMETIC, DERMATOLOGICAL AND / OR OPHTHALMOLOGICAL FIELDS
FR2787326B1 (en) * 1998-12-17 2001-01-26 Oreal NANOEMULSION BASED ON FATTY ESTERS OF GLYCEROL, AND ITS USES IN THE COSMETIC, DERMATOLOGICAL AND / OR OPHTHALMOLOGICAL FIELDS
FR2787325B1 (en) * 1998-12-17 2001-01-26 Oreal NANOEMULSION BASED ON OXYETHYLENE OR NON-OXYETHYLENE SORBITAN FATTY ESTERS, AND ITS USES IN THE COSMETIC, DERMATOLOGICAL AND / OR OPHTHALMOLOGICAL FIELDS
FR2787728B1 (en) * 1998-12-23 2001-01-26 Oreal NANOEMULSION BASED ON FATTY ESTERS OF PHOSPHORIC ACID, AND ITS USES IN THE COSMETIC, DERMATOLOGICAL, PHARMACEUTICAL AND / OR OPHTHALMOLOGICAL FIELDS
FR2787703B1 (en) * 1998-12-29 2001-01-26 Oreal NANOEMULSION BASED ON ETHOXYL FATHER ETHERS OR ETHOXYL FATTY ESTERS, AND ITS USES IN THE COSMETIC, DERMATOLOGICAL AND / OR OPHTHALMOLOGICAL FIELDS
FR2788007B1 (en) * 1999-01-05 2001-02-09 Oreal NANOEMULSION BASED ON BLOCK COPOLYMERS OF ETHYLENE OXIDE AND PROPYLENE OXIDE, AND ITS USES IN THE COSMETIC, DERMATOLOGICAL AND / OR OPHTHALMOLOGICAL FIELDS
FR2788449B1 (en) * 1999-01-14 2001-02-16 Oreal NANOEMULSION BASED ON ALKYLETHER CITRATES, AND ITS USES IN THE COSMETIC, DERMATOLOGICAL, PHARMACEUTICAL AND / OR OPHTHALMOLOGICAL FIELDS
FR2789076B1 (en) * 1999-02-02 2001-03-02 Synthelabo ALPHA-AZACYCLOMETHYL QUINOLEINE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC APPLICATION
FR2809010B1 (en) * 2000-05-22 2002-07-12 Oreal NANOEMULSION BASED ON ANIONIC POLYMERS, AND ITS USES IN PARTICULAR IN THE COSMETIC, DERMATOLOGICAL, PHARMACEUTICAL AND / OR OPHTHALMOLOGICAL FIELDS
FR2811564B1 (en) * 2000-07-13 2002-12-27 Oreal NANOEMULSION CONTAINING NON-IONIC POLYMERS, AND ITS USES IN PARTICULAR IN THE COSMETIC, DERMATOLOGICAL, PHARMACEUTICAL AND / OR OPHTHALMOLOGICAL FIELDS
FR2819427B1 (en) * 2001-01-18 2003-04-11 Oreal TRANSLUCENT NANOEMULSION, MANUFACTURING METHOD THEREOF AND USES THEREOF IN THE COSMETIC, DERMATOLOGICAL AND / OR OPHTHALMOLOGICAL FIELDS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070027034A1 (en) * 2005-07-28 2007-02-01 Holger Tank Agricultural compositions comprising an oil-in-water emulsion based on oily globules coated with a lamellar liquid crystal coating
JP2007308440A (en) * 2006-05-22 2007-11-29 Shiseido Co Ltd Herbicide composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016055344A1 (en) * 2014-10-08 2016-04-14 Evonik Degussa Gmbh Use of hydrophobic, self-emulsifying polyglycerol esters as adjuvants and anti-spray drift agent
US10390530B2 (en) 2014-10-08 2019-08-27 Evonik Degussa Gmbh Use of hydrophobic, self-emulsifying polyglycerol esters as adjuvants and anti-spray-drift agents
WO2017206328A1 (en) * 2016-05-30 2017-12-07 江苏辉丰农化股份有限公司 Anti-microbial composition
CN113349214A (en) * 2021-06-08 2021-09-07 山东师范大学 Imidacloprid pesticide microemulsion preparation and preparation method and application thereof
CN113349214B (en) * 2021-06-08 2022-03-04 山东师范大学 Imidacloprid pesticide microemulsion preparation and preparation method and application thereof

Also Published As

Publication number Publication date
HUE035420T2 (en) 2018-05-02
PL2271212T3 (en) 2018-02-28
PT2271212T (en) 2017-12-06
LT2271212T (en) 2017-11-27
DK2271212T3 (en) 2017-12-04
US20090227459A1 (en) 2009-09-10
EP2271212B1 (en) 2017-08-30
EP2271212A1 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
CA2616235C (en) Agricultural compositions comprising an oil-in-water emulsion based on oily globules coated with a lamellar liquid crystal coating
AU2009212477B2 (en) Stabilized oil-in-water emulsions including agriculturally active ingredients
US20090227460A1 (en) Stabilized oil-in-water emulsions including meptyl dinocap
EP2278876B1 (en) Stabilized oil-in-water emulsions including agriculturally active ingredients
EP2271212B1 (en) Stabilized oil-in-water emulsions including agriculturally active ingredients
EP2663181A1 (en) Agricultural compositions comprising oil-in-water emulsions
EP2273872B1 (en) Stabilized oil-in-water emulsions including agriculturally active ingredients
AU2013202090B2 (en) Agricultural compositions comprising an oil-in-water emulsion based on oil globules coated with a lamellar crystal coating
AU2015227405A1 (en) Agricultural compositions comprising oil-in-water emulsions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09716974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009716974

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009716974

Country of ref document: EP