WO2009110957A1 - Photovoltaic device having low iron high transmission glass with lithium oxide for reducing seed free time and corresponding method - Google Patents
Photovoltaic device having low iron high transmission glass with lithium oxide for reducing seed free time and corresponding method Download PDFInfo
- Publication number
- WO2009110957A1 WO2009110957A1 PCT/US2009/000787 US2009000787W WO2009110957A1 WO 2009110957 A1 WO2009110957 A1 WO 2009110957A1 US 2009000787 W US2009000787 W US 2009000787W WO 2009110957 A1 WO2009110957 A1 WO 2009110957A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- oxide
- iron
- batch
- antimony
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 157
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 105
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 58
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 title claims abstract description 31
- 229910001947 lithium oxide Inorganic materials 0.000 title claims abstract description 31
- 230000005540 biological transmission Effects 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims description 24
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 229910000410 antimony oxide Inorganic materials 0.000 claims abstract description 25
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 claims abstract description 25
- 238000007670 refining Methods 0.000 claims abstract description 21
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 18
- 239000006066 glass batch Substances 0.000 claims description 13
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 12
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 11
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 11
- 239000000377 silicon dioxide Substances 0.000 claims description 10
- VQCBHWLJZDBHOS-UHFFFAOYSA-N erbium(iii) oxide Chemical compound O=[Er]O[Er]=O VQCBHWLJZDBHOS-UHFFFAOYSA-N 0.000 claims description 8
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 claims description 6
- 239000004615 ingredient Substances 0.000 claims description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052681 coesite Inorganic materials 0.000 claims description 4
- 229910052906 cristobalite Inorganic materials 0.000 claims description 4
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 4
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 4
- 229910052682 stishovite Inorganic materials 0.000 claims description 4
- 229910052905 tridymite Inorganic materials 0.000 claims description 4
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims description 3
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 3
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 3
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 3
- 229910000428 cobalt oxide Inorganic materials 0.000 claims description 3
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 claims description 3
- 229910052711 selenium Inorganic materials 0.000 claims description 3
- 239000011669 selenium Substances 0.000 claims description 3
- 238000000137 annealing Methods 0.000 claims description 2
- 239000006060 molten glass Substances 0.000 claims description 2
- 229910052684 Cerium Inorganic materials 0.000 claims 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims 1
- 238000002844 melting Methods 0.000 abstract description 6
- 230000008018 melting Effects 0.000 abstract description 6
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 25
- 239000000203 mixture Substances 0.000 description 14
- 239000003086 colorant Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 9
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 8
- 229910052787 antimony Inorganic materials 0.000 description 8
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 8
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 239000000040 green colorant Substances 0.000 description 7
- 239000006121 base glass Substances 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 5
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000000156 glass melt Substances 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 235000010344 sodium nitrate Nutrition 0.000 description 3
- 239000004317 sodium nitrate Substances 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- LJCFOYOSGPHIOO-UHFFFAOYSA-N antimony pentoxide Inorganic materials O=[Sb](=O)O[Sb](=O)=O LJCFOYOSGPHIOO-UHFFFAOYSA-N 0.000 description 2
- -1 antimony trioxide) Chemical compound 0.000 description 2
- 239000006105 batch ingredient Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000010459 dolomite Substances 0.000 description 2
- 229910000514 dolomite Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005816 glass manufacturing process Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 235000017550 sodium carbonate Nutrition 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- YEAUATLBSVJFOY-UHFFFAOYSA-N tetraantimony hexaoxide Chemical compound O1[Sb](O2)O[Sb]3O[Sb]1O[Sb]2O3 YEAUATLBSVJFOY-UHFFFAOYSA-N 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 238000006124 Pilkington process Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 239000005329 float glass Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- CIWAOCMKRKRDME-UHFFFAOYSA-N tetrasodium dioxido-oxo-stibonatooxy-lambda5-stibane Chemical compound [Na+].[Na+].[Na+].[Na+].[O-][Sb]([O-])(=O)O[Sb]([O-])([O-])=O CIWAOCMKRKRDME-UHFFFAOYSA-N 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B1/00—Preparing the batches
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B13/00—Rolling molten glass, i.e. where the molten glass is shaped by rolling
- C03B13/08—Rolling patterned sheets, e.g. sheets having a surface pattern
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C1/00—Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/0092—Compositions for glass with special properties for glass with improved high visible transmittance, e.g. extra-clear glass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0392—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
- H01L31/03921—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/20—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
- H01L31/202—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022466—Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0236—Special surface textures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0376—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
- H01L31/03762—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- This invention relates to a high transmission low iron glass, including lithium oxide, for use in photovoltaic devices (e.g., solar cells) or the like.
- a method is also provided.
- the glass composition used for the glass is a low-iron type glass composition which includes lithium oxide introduced to improve refining conditions by reducing seed free times.
- the glass and glass batch may include antimony oxide in order to support oxidation of the FeO to Fe 2 O 3 .
- the glass substrate used in a photovoltaic device may be patterned in certain example embodiments of this invention.
- Photovoltaic devices e.g., solar cells
- a solar cell may include, for example, a photoelectric transfer film made up of one or more layers located between a pair of substrate. These layers may be supported by a glass substrate.
- Example solar cells are disclosed in U.S. Patent Nos. 4,510,344, 4,806,436, 6,506,622, and 5,977,477, the disclosures of which are hereby incorporated herein by reference.
- Substrate(s) in a solar cell are sometimes made of glass. Glass that is fairly clear in color and highly transmissive to visible light is sometimes desirable. Glass raw materials (e.g., silica sand, soda ash, dolomite, and/or limestone) typically include certain impurities such as iron, which is a colorant. The total amount of iron present is expressed herein in terms Of Fe 2 O 3 in accordance with standard practice. However, typically, not all iron is in the from Of Fe 2 O 3 . Instead, iron is usually present in both the ferrous state (Fe 2+ ; expressed herein as FeO, even though all ferrous state iron in the glass may not be in the form of FeO) and the ferric state (Fe 3+ ).
- Fe 2+ ferrous state
- FeO ferric state
- Iron in the ferrous state (Fe 2+ ; FeO) is a blue-green colorant, while iron in the ferric state (Fe 3+ ) is a yellow-green colorant.
- the blue-green colorant of ferrous iron (Fe 2+ ; FeO) is of particular concern when seeking to achieve a fairly clear or neutral colored glass, since as a strong colorant it introduces significant color into the glass.
- iron in the ferric state (Fe 3+ ) is also a colorant, it is of less concern when seeking to achieve a glass fairly clear in color since iron in the ferric state tends to be weaker as a colorant than its ferrous state counterpart.
- a limiting performance factor for glass in connection with photovoltaic devices is the seed level, as opposed to solar performance, in certain instances.
- High seed levels are undesirable, in that these represent small imperfections in the glass.
- a solar cell glass substrate has a visible transmission of at least 75% (more preferably at least 80%, even more preferably at least 85%, and most preferably at least about 90%).
- a batch therefor includes a base glass (e.g., soda lime silica glass) and in addition comprises (or consists essentially of in certain other embodiments) a very small amount of total iron.
- the refining time required to achieve a seed free glass (or substantially seed free glass) can be reduced, which is high advantageous with respect to the glass manufacturing process.
- the glass and glass batch may include antimony oxide in order to support oxidation of the FeO to Fe 2 O 3 .
- the low iron glass is particularly efficiently made with respect to both performance and manufacturability using a combination of certain amounts of salt cake, antimony oxide (e.g., antimony trioxide), optionally sodium nitrate, and lithium oxide.
- antimony oxide e.g., antimony trioxide
- sodium nitrate optionally sodium nitrate
- lithium oxide optionally sodium nitrate
- the resulting patterned glass substrate may have fairly clear color that may be slightly yellowish (a positive b* value is indicative of yellowish color).
- the patterned glass substrate may be characterized by a visible transmission of at least 90%, a total solar/energy value of at least 90%, a transmissive a* color value of from - 1.0 to + 1.0 (more preferably from -0.5 to +0.5, and most preferably from -0.2 to 0), and a transmissive b* color value of from 0 to +1.5 (more preferably from +0.1 to +1.0, and most preferably from +0.2 to +0.7).
- These properties may be realized at an example non-limiting reference glass thickness of from about 3-4 mm.
- a method of making patterned glass comprising: providing a molten glass batch in a furnace or melter comprising SiO 2 , from about 0.01 to 0.06% total iron, salt cake, lithium oxide, and antimony oxide, and refining the glass batch wherein the batch has a seed free time of less than 100 minutes; forwarding a glass ribbon from the furnace or melter to a nip between first and second rollers, at least one of the rollers having patter defined in a surface thereof, wherein the glass ribbon reaches the nip at a temperature of from about 1,900 to 2,400 degrees F; at the nip, transferring the pattern from the roller(s) to the glass ribbon; the glass ribbon being at a temperature of from about 1 , 100 to 1 ,600 degrees F upon exiting the nip; and annealing the glass ribbon at least after the ribbon exits the nip, thereby providing a patterned glass having a visible transmission of
- a method of making a soda-lime-silica based low-iron highly transmissive glass for use in a photovoltaic device wherein the glass has visible transmission of at least 90%, a transmissive a* color value of -1.0 to +1.0 and a transmissive b* color value of from 0 to +1.5; and wherein the method comprises -providing the lithium oxide, antimony oxide and salt cake in the recited amounts in a batch in making the low-iron glass so that a seed free time in making the glass is no more than 100 minutes.
- Fig. 1 is a cross sectional view of a solar cell according to an example embodiment of this invention.
- Fig. 2 is a chart setting forth glass batches according to certain examples of this invention.
- Fig. 3 is a chart setting forth example glass compositions according to example embodiments of this invention.
- Fig. 4 is a seed count versus refining time graph illustrating that the introduction of lithium oxide reduces the refining time needed to achieve seed- free status in high transmission low iron glass according to example embodiments of this invention.
- the solar cell includes, for example and without limitation, high transmission low-iron glass substrate 1 , conductive film 2 which may be transparent, a photoelectric transfer film 3 which may include one or more layers, a rear surface electrode 4, and an optional reflector 5.
- the photoelectric transfer film 3 may include a p-type silicon inclusive layer, an i-type silicon inclusive layer, and an n-type silicon inclusive layer. These silicon inclusive layers may be composed of amorphous silicon or any other suitable type of semiconductor with suitable dopants in certain example embodiments of this invention.
- the electrodes 2, 4 may be of a transparent conductor such as zinc oxide, or any other suitable material in certain example embodiments of this invention, and the reflector 5 may be of aluminum, silver or the like.
- one or both major surfaces (e.g., the interior surface only) of the glass substrate 1 may be patterned. Light tends to be refracted at interface(s) resulting from the patterning of the glass substrate 1 , thereby causing light to proceed through the semiconductor layer(s) at an angle(s) such that the path is longer. As a result, more light can be absorbed by the solar cell and output current and/or efficiency can be improved/increased.
- the patterned surface(s) of the glass substrate 1 may have a surface roughness (between peaks/valleys) of from about 0.1 to 1.5 ⁇ m, more preferably from about 0.5 to 1.5 ⁇ m.
- the glass substrate 1 has one or more surfaces which are patterned so as to have a waviness feature defined therein. In the Fig. 1 embodiment, only one surface of the glass substrate 1 is patterned, although in other example embodiments both surfaces of the glass substrate may be patterned.
- the optional patterning is preferably defined in the glass substrate 1 during the process of making the glass.
- An example technique for making such patterned glass is as follows.
- a furnace or melter is provided, as are first and second opposing rollers which define a nip therebetween. At least one of the rollers has a pattern defined in a surface thereof, where the pattern is made up of a plurality of peaks and valleys.
- a ribbon of glass exiting the furnace or melter is fed into the nip between the patterning rollers and reaches the nip at a temperature of from about 1,900 to 2,400 degrees F.
- the pattern(s) from the roller(s) is transferred to the ribbon of glass, and then the patterned glass ribbon exits the nip at a temperature of from about 1,100 to 1 ,600 degrees F.
- the patterned glass ribbon is annealed, and may then be cut into a plurality of sheets. These glass sheets may or may not be heat treated (e.g., thermally tempered), and may be used in solar cell applications such as shown in Fig. 1.
- Example techniques for making the patterned glass substrate 1 are illustrated and described in U.S. Patent Nos. 6,796,146 and/or 6,372,327 (except that different types of patterns are used), the disclosures of which are hereby incorporated herein by reference.
- Certain glasses for patterned substrate 1 utilize soda-lime-silica flat glass as their base composition/glass.
- a colorant portion may be provided in order to achieve a glass that is fairly clear in color and/or has a high visible transmission.
- glass herein may be made from batch raw materials silica sand, soda ash, dolomite, limestone, with the use of sulfate salts such as salt cake (Na 2 SO 4 ) and/or Epsom salt (MgSO 4 x 7H 2 O) and/or gypsum (e.g., about a 1 : 1 combination of any) as refining agents.
- sulfate salts such as salt cake (Na 2 SO 4 ) and/or Epsom salt (MgSO 4 x 7H 2 O) and/or gypsum (e.g., about a 1 : 1 combination of any) as refining agents.
- soda-lime-silica based glasses herein include by weight from about 10-15% Na 2 O and from about 6-12% CaO.
- the glass batch includes materials (including colorants and/or oxidizers) which cause the resulting glass to be fairly neutral in color (slightly yellow in certain example embodiments, indicated by a positive b* value) and/or have a high visible light transmission.
- materials may either be present in the raw materials (e.g., small amounts of iron), or may be added to the base glass materials in the batch (e.g., antimony and/or the like).
- the resulting glass has visible transmission of at least 75%, more preferably at least 80%, even more preferably of at least 85%, and most preferably of at least about 90% (sometimes at least 91%) (Lt D65). In certain example non-limiting instances, such high transmissions may be achieved at a reference glass thickness of about 3 to 4 mm
- the glass and/or glass batch comprises or consists essentially of materials as set forth in Table 2 below (in terms of weight percentage of the total glass composition):
- total iron (expressed as Fe 2 O 3 ): 0.001 - 0.05 % 0.005 - 0.045 % 0.01 - 0.03 %
- cerium oxide 0 - 0.07 % 0 - 0.04 % 0 - 0.02 %
- antimony oxide 0.01 - 1.0 % 0.01 - 0.5 % 0.1 - 0.3 %
- Lithium oxide 0.25-4.5% 0.25-3.5% 0.5-3%
- the antimony may be added to the glass batch in the form of one or more of Sb 2 O 3 and/or NaSbO 3 .
- Sb(Sb 2 O 5 ) Sb(Sb 2 O 5 ).
- antimony oxide herein means antimony in any possible oxidation state, and is not intended to be limiting to any particular stoichiometry.
- lithium oxide is not intended to be limiting to any particular stoichiometry.
- the presence of cerium oxide can have a detrimental effect on the transmission of the glass after exposure to UV and/or sunlight. This has been seen at 0.01 and 0.02% by weight.
- the glass contains no cerium oxide.
- the resulting glass may contain from 0 to 0.01% by weight of cerium oxide.
- the glass Due to the antimony (Sb), the glass is oxidized to a very low ferrous content (% FeO) by combinational oxidation with antimony in the form of antimony trioxide (Sb 2 O 3 ), sodium antimonite (NaSbO 3 ), sodium pyroantimonate (Sb(Sb 2 O 5 )), sodium or potassium nitrate and/or sodium sulfate.
- the composition of the glass substrate 1 includes at least twice as much antimony oxide as total iron oxide, by weight, more preferably at least about three times as much, and most preferably at least about four times as much antimony oxide as total iron oxide.
- the colorant portion is substantially free of other colorants (other than potentially trace amounts).
- other materials e.g., refining aids, melting aids, colorants and/or impurities
- the glass composition is substantially free of, or free of, one, two, three, four or all of: erbium oxide, nickel oxide, cobalt oxide, neodymium oxide, chromium oxide, and selenium.
- substantially free means no more than 2 ppm and possibly as low as 0 ppm of the element or material.
- the total amount of iron present in the glass batch and in the resulting glass, i.e., in the colorant portion thereof, is expressed herein in terms Of Fe 2 O 3 in accordance with standard practice. This, however, does not imply that all iron is actually in the form OfFe 2 O 3 (see discussion above in this regard). Likewise, the amount of iron in the ferrous state (Fe +2 ) is reported herein as FeO, even though all ferrous state iron in the glass batch or glass may not be in the form of FeO.
- iron in the ferrous state (Fe 2+ ; FeO) is a blue-green colorant
- iron in the ferric state (Fe 3+ ) is a yellow-green colorant
- the blue-green colorant of ferrous iron is of particular concern, since as a strong colorant it introduces significant color into the glass which can sometimes be undesirable when seeking to achieve a neutral or clear color.
- antimony e.g., in the form of antimony oxide
- antimony oxide acts as a decolorizer since during melting of the glass batch it causes iron in the ferrous state (Fe 2+ ; FeO) to oxidize to the ferric state (Fe 3+ ).
- This role of antimony as an oxidizer decreases the amount of ferrous state iron left in the resulting glass.
- the presence of antimony oxide in the glass batch causes an amount of the strong blue-green colorant of ferrous iron (Fe 2+ ; FeO) to oxidize into the weaker yellow-green ferric iron colorant (Fe 3+ ) during the glass melt (note: some ferrous state iron will usually remain in the resulting glass).
- the addition of antimony oxide results in a glass with a lower "glass redox" value (i.e., less iron in the ferrous state FeO).
- the proportion of the total iron in the ferrous state (FeO) is used to determine the redox state of the glass, and redox is expressed as the ratio FeO/ Fe2O3, which is the weight percentage (%) of iron in the ferrous state (FeO) divided by the weight percentage (%) of total iron (expressed as Fe2O3) in the resulting glass. Due to at least the presence of the antimony oxide, the redox of glass according to certain example embodiments of this invention is very low as mentioned above, and the amount of iron in the ferrous state (FeO) will also be low as discussed above.
- Refining is the process by which bubbles are removed from the glass melt. This is achieved partly by rise to the surface which can be aided by bubble growth or by bubble dissolution (the latfer applying to small bubbles).
- the low iron glass is particularly efficiently made with respect to both performance and manufacturability using a combination of certain amounts of salt cake, antimony oxide (e.g., antimony trioxide), optionally sodium nitrate, and lithium oxide.
- the batch has a batch redox (as opposed to glass redox) of from +12 to +50, more preferably from +30 to +40. It is noted that glass according to certain example embodiments of this invention is often made via the known float process in which a tin bath is utilized.
- glasses according to certain example embodiments of this invention achieve a neutral or substantially clear color and/or high visible transmission.
- resulting glasses according to certain example embodiments of this invention may be characterized by one or more of the following transmissive optical or color characteristics when measured at a thickness of from about 1 mm - 6mm (most preferably a thickness of about 3-4 mm; this is a non-limiting thickness used for purposes of reference only) (Lta is visible transmission %). It is noted that in the table below the a* and b* color values are determined per 111. D65, 10 degree Obs.
- the aforesaid characteristics of the glass substrate 1 are for the glass substrate alone, not the overall solar cell or solar cell module.
- glasses for substrate 1 of certain embodiments of this invention achieve desired features of fairly clear color and/or high visible transmission, with slightly positive b* color in certain embodiments, while not requiring iron to be eliminated from the glass composition. This may be achieved through the provision of the unique material combinations described herein.
- Example glasses for substrates 1 were made and tested according to example embodiments of this invention. Glasses of this invention may be made from batch ingredients using well known glass melting and refining techniques.
- the compositions of the batches used in making the glasses of Example 1 (Ex. 1), Example 2 (Ex. 2) and the Comparative Example (CA) are set forth in Fig. 2, in terms of kg added to the batch.
- the batches for each of Ex. 1 and Ex. 2 included lithium oxide, added to the batch by way of lithium carbonate.
- the resulting glass compositions after refining and processing are set forth in Fig. 3. While not shown in Fig. 3, the glass composition included about 0.5% lithium oxide.
- the solar characteristics for the resulting example glasses are also shown in Fig. 3.
- Lta visible transmission% was measured in accordance with 111.
- Fig. 3 shows that the seed free time (in minutes, the time to achieve a substantially seed free glass), is greatly reduced for Examples 1-2 compared to the CA. It is believed that the use of the lithium oxide in combination with the antimony and salt cake in this low-iron high transmission glass improved the refining of the glass in this respect, reducing the time needed to eliminate or substantially eliminate the seeds in the batch. As shown in Fig. 4, the use of the lithium oxide (compared to not using lithium oxide) greatly reduced the time needed to eliminate the seeds from the glass melt during the manufacturing process, the glass having about 0.5% lithium oxide.
- the batch ingredients used provides for a seed free time of no more than 100 minutes, more preferably no more than about 90 minutes, and most preferably no more than about 80 minutes.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Glass Compositions (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09716735A EP2269233A1 (en) | 2008-03-06 | 2009-02-06 | Photovoltaic device having low iron high transmission glass with lithium oxide for reducing seed free time and corresponding method |
BRPI0909638A BRPI0909638A2 (en) | 2008-03-06 | 2009-02-06 | photovoltaic device having high transmission glass and low iron with lithium oxide to reduce seed free time and corresponding method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/073,562 US8671717B2 (en) | 2008-03-06 | 2008-03-06 | Photovoltaic device having low iron high transmission glass with lithium oxide for reducing seed free time and corresponding method |
US12/073,562 | 2008-03-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009110957A1 true WO2009110957A1 (en) | 2009-09-11 |
Family
ID=40591887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/000787 WO2009110957A1 (en) | 2008-03-06 | 2009-02-06 | Photovoltaic device having low iron high transmission glass with lithium oxide for reducing seed free time and corresponding method |
Country Status (4)
Country | Link |
---|---|
US (1) | US8671717B2 (en) |
EP (1) | EP2269233A1 (en) |
BR (1) | BRPI0909638A2 (en) |
WO (1) | WO2009110957A1 (en) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101477282B1 (en) * | 2008-05-13 | 2014-12-31 | 한국전자통신연구원 | Method of acquiring broadcast information |
US8289610B2 (en) | 2009-08-27 | 2012-10-16 | Guardian Industries Corp. | Electrochromic devices, assemblies incorporating electrochromic devices, and/or methods of making the same |
MX2012008288A (en) * | 2010-01-19 | 2012-08-31 | Guardian Industries | Improved secondary reflector panel (srp) with heat-treatable coating for concentrated solar power applications, and/or methods of making the same. |
US20110180130A1 (en) * | 2010-01-22 | 2011-07-28 | Guardian Industries Corp. | Highly-conductive and textured front transparent electrode for a-si thin-film solar cells, and/or method of making the same |
US8939606B2 (en) | 2010-02-26 | 2015-01-27 | Guardian Industries Corp. | Heatable lens for luminaires, and/or methods of making the same |
US8609455B2 (en) | 2010-04-26 | 2013-12-17 | Guardian Industries Corp. | Patterned glass cylindrical lens arrays for concentrated photovoltaic systems, and/or methods of making the same |
US10294672B2 (en) | 2010-04-26 | 2019-05-21 | Guardian Glass, LLC | Multifunctional photovoltaic skylight with dynamic solar heat gain coefficient and/or methods of making the same |
US9574352B2 (en) | 2010-04-26 | 2017-02-21 | Guardian Industries Corp. | Multifunctional static or semi-static photovoltaic skylight and/or methods of making the same |
US9423533B2 (en) | 2010-04-26 | 2016-08-23 | Guardian Industries Corp. | Patterned glass cylindrical lens arrays for concentrated photovoltaic systems, and/or methods of making the same |
US9151879B2 (en) | 2010-04-26 | 2015-10-06 | Guardian Industries Corp. | Multi-functional photovoltaic skylight and/or methods of making the same |
CN103153892B (en) * | 2010-05-20 | 2016-05-18 | 法国圣戈班玻璃厂 | For the glass baseplate of high temperature application |
US20110290295A1 (en) | 2010-05-28 | 2011-12-01 | Guardian Industries Corp. | Thermoelectric/solar cell hybrid coupled via vacuum insulated glazing unit, and method of making the same |
US9796619B2 (en) | 2010-09-03 | 2017-10-24 | Guardian Glass, LLC | Temperable three layer antirefrlective coating, coated article including temperable three layer antirefrlective coating, and/or method of making the same |
US8693097B2 (en) * | 2010-09-03 | 2014-04-08 | Guardian Industries Corp. | Temperable three layer antireflective coating, coated article including temperable three layer antireflective coating, and/or method of making the same |
US8354586B2 (en) | 2010-10-01 | 2013-01-15 | Guardian Industries Corp. | Transparent conductor film stack with cadmium stannate, corresponding photovoltaic device, and method of making same |
US20120087029A1 (en) | 2010-10-08 | 2012-04-12 | Guardian Industries Corp. | Mirrors for concentrating solar power (CSP) or concentrating photovoltaic (CPV) applications, and/or methods of making the same |
US9566765B2 (en) | 2010-10-08 | 2017-02-14 | Guardian Industries Corp. | Radiation curable adhesives for reflective laminated solar panels, laminated solar panels including radiation curable adhesives, and/or associated methods |
US8541792B2 (en) | 2010-10-15 | 2013-09-24 | Guardian Industries Corp. | Method of treating the surface of a soda lime silica glass substrate, surface-treated glass substrate, and device incorporating the same |
US20120090246A1 (en) | 2010-10-15 | 2012-04-19 | Guardian Industries Corp. | Refrigerator/freezer door, and/or method of making the same |
US8834664B2 (en) | 2010-10-22 | 2014-09-16 | Guardian Industries Corp. | Photovoltaic modules for use in vehicle roofs, and/or methods of making the same |
US9312417B2 (en) | 2010-10-22 | 2016-04-12 | Guardian Industries Corp. | Photovoltaic modules, and/or methods of making the same |
US8668990B2 (en) | 2011-01-27 | 2014-03-11 | Guardian Industries Corp. | Heat treatable four layer anti-reflection coating |
FR2972446B1 (en) * | 2011-03-09 | 2017-11-24 | Saint Gobain | SUBSTRATE FOR PHOTOVOLTAIC CELL |
EP2729425B1 (en) * | 2011-07-04 | 2016-05-04 | AGC Glass Europe | Sheet of float glass having high energy transmission |
US8992045B2 (en) | 2011-07-22 | 2015-03-31 | Guardian Industries Corp. | LED lighting systems and/or methods of making the same |
US8742655B2 (en) | 2011-07-22 | 2014-06-03 | Guardian Industries Corp. | LED lighting systems with phosphor subassemblies, and/or methods of making the same |
US8540394B2 (en) | 2011-07-22 | 2013-09-24 | Guardian Industries Corp. | Collimating lenses for LED lighting systems, LED lighting systems including collimating lenses, and/or methods of making the same |
US9845943B2 (en) | 2011-07-22 | 2017-12-19 | Guardian Glass, LLC | Heat management subsystems for LED lighting systems, LED lighting systems including heat management subsystems, and/or methods of making the same |
US9202958B2 (en) | 2011-11-03 | 2015-12-01 | Guardian Industries Corp. | Photovoltaic systems and associated components that are used on buildings and/or associated methods |
US9341748B2 (en) | 2011-12-28 | 2016-05-17 | Guardian Industries Corp. | Mirror for use in humid environments, and/or method of making the same |
US9556069B2 (en) | 2011-12-28 | 2017-01-31 | Centre Luxembourgeois De Recherches Pour Le Verre Et La Ceramique (C.R.V.C.) Sarl | Mirror with optional protective paint layer, and/or methods of making the same |
US9082914B2 (en) | 2012-01-13 | 2015-07-14 | Gaurdian Industries Corp. | Photovoltaic module including high contact angle coating on one or more outer surfaces thereof, and/or methods of making the same |
EP3572382B1 (en) | 2012-02-24 | 2024-10-02 | PPG Industries Ohio, Inc. | Method of making a lithium containing glass with high oxidized iron content |
EP2834557A2 (en) | 2012-04-02 | 2015-02-11 | Guardian Industries Corp. | Heatable lens for luminaires, and/or methods of making the same |
JP6469566B2 (en) | 2012-04-18 | 2019-02-13 | ガーディアン・インダストリーズ・コーポレーション | Improved photovoltaic module for use in vehicle roof and / or manufacturing method thereof |
US8608525B1 (en) | 2012-06-05 | 2013-12-17 | Guardian Industries Corp. | Coated articles and/or devices with optical out-coupling layer stacks (OCLS), and/or methods of making the same |
US9332862B2 (en) | 2012-11-30 | 2016-05-10 | Guardian Industries Corp. | Refrigerator door/window |
US9181455B2 (en) | 2012-12-03 | 2015-11-10 | Guardian Industries Corp. | Method of making hydrophobic coated article, coated article including hydrophobic coatings, and/or sol compositions for use in the same |
US20140186613A1 (en) | 2012-12-27 | 2014-07-03 | Guardian Industries Corp. | Anti-reflection coatings with self-cleaning properties, substrates including such coatings, and related methods |
US9263701B2 (en) | 2013-03-14 | 2016-02-16 | Guardian Industries Corp. | Coated article and/or device with optical out-coupling layer stack (OCLS) including vacuum deposited index match layer over scattering matrix, and/or associated methods |
EP3049589A1 (en) | 2013-09-24 | 2016-08-03 | Guardian Industries Corp. | Multifunctional photovoltaic skylight with dynamic solar heat gain coefficient and/or methods of making the same |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61270234A (en) * | 1985-05-23 | 1986-11-29 | Toshiba Glass Co Ltd | Glass for fluorescent lamps emitting health ray |
JPH01239037A (en) * | 1988-03-16 | 1989-09-25 | Nippon Electric Glass Co Ltd | Glass for fluorescent lamp |
WO1995013993A1 (en) * | 1993-11-03 | 1995-05-26 | Vysoká S^¿Kola Chemicko - Technologická | Lead-free crystal glass with the refractive index higher than 1,52 |
US6391810B1 (en) * | 1999-08-04 | 2002-05-21 | F. X. Nachtmann Bleikristallwerke Gmbh | Lead- and barium-free crystal glass |
JP2003171141A (en) * | 2001-11-30 | 2003-06-17 | Asahi Techno Glass Corp | Illuminating glass composition and fluorescent lamp obtained by using the same |
US20060169316A1 (en) * | 2005-02-03 | 2006-08-03 | Guardian Industries Corp. | Solar cell low iron patterned glass and method of making same |
US20060249199A1 (en) * | 2005-05-05 | 2006-11-09 | Guardian Industries Corp. | Solar cell using low iron high transmission glass with antimony and corresponding method |
JP2007238398A (en) * | 2006-03-10 | 2007-09-20 | Nippon Sheet Glass Co Ltd | Soda-lime based glass composition |
WO2008096876A1 (en) * | 2007-02-08 | 2008-08-14 | Nippon Sheet Glass Company, Limited | Solar cell module, cover glass for crystalline silicon solar cell, and glass substrate for thin film solar cell |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3615767A (en) * | 1970-01-20 | 1971-10-26 | Fmc Corp | Glass manufacture employing sodium sulfite |
US7169722B2 (en) * | 2002-01-28 | 2007-01-30 | Guardian Industries Corp. | Clear glass composition with high visible transmittance |
US7144837B2 (en) * | 2002-01-28 | 2006-12-05 | Guardian Industries Corp. | Clear glass composition with high visible transmittance |
US7488538B2 (en) * | 2005-08-08 | 2009-02-10 | Guardian Industries Corp. | Coated article including soda-lime-silica glass substrate with lithium and/or potassium to reduce sodium migration and/or improve surface stability and method of making same |
US20070207912A1 (en) * | 2006-03-02 | 2007-09-06 | Guardian Industries Corp. | Method of making glass including use of boron oxide for reducing glass refining time |
US8648252B2 (en) * | 2006-03-13 | 2014-02-11 | Guardian Industries Corp. | Solar cell using low iron high transmission glass and corresponding method |
US7557053B2 (en) * | 2006-03-13 | 2009-07-07 | Guardian Industries Corp. | Low iron high transmission float glass for solar cell applications and method of making same |
-
2008
- 2008-03-06 US US12/073,562 patent/US8671717B2/en not_active Expired - Fee Related
-
2009
- 2009-02-06 EP EP09716735A patent/EP2269233A1/en not_active Withdrawn
- 2009-02-06 WO PCT/US2009/000787 patent/WO2009110957A1/en active Application Filing
- 2009-02-06 BR BRPI0909638A patent/BRPI0909638A2/en not_active IP Right Cessation
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61270234A (en) * | 1985-05-23 | 1986-11-29 | Toshiba Glass Co Ltd | Glass for fluorescent lamps emitting health ray |
JPH01239037A (en) * | 1988-03-16 | 1989-09-25 | Nippon Electric Glass Co Ltd | Glass for fluorescent lamp |
WO1995013993A1 (en) * | 1993-11-03 | 1995-05-26 | Vysoká S^¿Kola Chemicko - Technologická | Lead-free crystal glass with the refractive index higher than 1,52 |
US6391810B1 (en) * | 1999-08-04 | 2002-05-21 | F. X. Nachtmann Bleikristallwerke Gmbh | Lead- and barium-free crystal glass |
JP2003171141A (en) * | 2001-11-30 | 2003-06-17 | Asahi Techno Glass Corp | Illuminating glass composition and fluorescent lamp obtained by using the same |
US20060169316A1 (en) * | 2005-02-03 | 2006-08-03 | Guardian Industries Corp. | Solar cell low iron patterned glass and method of making same |
US20060249199A1 (en) * | 2005-05-05 | 2006-11-09 | Guardian Industries Corp. | Solar cell using low iron high transmission glass with antimony and corresponding method |
JP2007238398A (en) * | 2006-03-10 | 2007-09-20 | Nippon Sheet Glass Co Ltd | Soda-lime based glass composition |
WO2008096876A1 (en) * | 2007-02-08 | 2008-08-14 | Nippon Sheet Glass Company, Limited | Solar cell module, cover glass for crystalline silicon solar cell, and glass substrate for thin film solar cell |
Also Published As
Publication number | Publication date |
---|---|
US8671717B2 (en) | 2014-03-18 |
US20090223252A1 (en) | 2009-09-10 |
EP2269233A1 (en) | 2011-01-05 |
BRPI0909638A2 (en) | 2015-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8671717B2 (en) | Photovoltaic device having low iron high transmission glass with lithium oxide for reducing seed free time and corresponding method | |
US8802216B2 (en) | Solar cell using low iron high transmission glass with antimony and corresponding method | |
US7700869B2 (en) | Solar cell low iron patterned glass and method of making same | |
US20100122728A1 (en) | Photovoltaic device using low iron high transmission glass with antimony and reduced alkali content and corresponding method | |
US8648252B2 (en) | Solar cell using low iron high transmission glass and corresponding method | |
US7893350B2 (en) | Low iron transmission float glass for solar cell applications and method of making same | |
US7743630B2 (en) | Method of making float glass with transparent conductive oxide (TCO) film integrally formed on tin bath side of glass and corresponding product | |
EP2611748B1 (en) | High transmittance glass | |
US20140147679A1 (en) | Sheet of float glass having high energy transmission | |
US20130053233A1 (en) | Method for producing a sheet of glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09716735 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 5765/DELNP/2010 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: P922/2010 Country of ref document: AE |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009716735 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0909638 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100903 |